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Preface

Open channel hydraulics has always been a very interesting domain of scientific
and engineering activity because of the great importance of water for human liv-
ing. The free surface flow, which takes place in the oceans, seas and rivers, can be
still regarded as one of the most complex physical processes in the environment.
The first source of difficulties is the proper recognition of physical flow processes
and their mathematical description. The second one is related to the solution of
the derived equations. The equations arising in hydrodynamics are rather compli-
cated and, except some much idealized cases, their solution requires application
of the numerical methods. For this reason the great progress in open channel flow
modeling that took place during last 40 years paralleled the progress in computer
technique, informatics and numerical methods. It is well known that even typi-
cal hydraulic engineering problems need applications of computer codes. Thus,
we witness a rapid development of ready-made packages, which are widely dis-
seminated and offered for engineers. However, it seems necessary for their users
to be familiar with some fundamentals of numerical methods and computational
techniques applied for solving the problems of interest. This is helpful for many rea-
sons. The ready-made packages can be effectively and safely applied on condition
that the users know their possibilities and limitations. For instance, such knowledge
is indispensable to distinguish in the obtained solutions the effects coming from
the considered physical processes and those caused by numerical artifacts. This
is particularly important in the case of hyperbolic equations, like the Saint-Venant
equations or the advection equation.

In principle, numerical open channel hydraulics can be regarded as a sub-domain
of Computational Fluid Dynamics (CFD) and the general methods and experiences
of CFD are applicable in open channel flow modeling. Moreover, the open channel
flow can be often treated as one-dimensional, which makes it relatively easy to solve
compared to multidimensional flows considered in geophysics and industrial engi-
neering. On the other hand, due to a range of specific issues, numerical open channel
hydraulics developed into a branch of its own as early as in the years 1960s and
1970s. There exist a number of very good books on the subject, written at that time
and later. A non-exhaustive list includes “Unsteady flow in open channel” edited
by K. Mahmood and V. Yevjevich and containing the papers written by recognized
experts, “Practical aspects of computational river hydraulics” by J.A. Cunge, F.M.

v



vi Preface

Holly and A. Verwey, “Computational hydraulics-Elements of the theory of free sur-
face flow” by M.B. Abbott, “Dynamic hydrology” by P.S. Eagleson, “Open channel
hydraulics” by V.T. Chow, “Open channel flow” by F.M. Henderson, “Kinematic
wave modeling in water resources: surface water hydrology” by V.P. Singh, “The
hydraulics of open channel flow: An introduction” by H. Chanson. These books
cover most of the theoretical and practical issues related to open channel flow
modeling and can be recommended for any engineer working in this field.

As far as the computational techniques are considered, one can recommend
the following books: “Incompressible flow and the finite-element method” by
P.M. Gresho and R.L. Sani, “Computational fluid dynamics” by M.B. Abbott
and D.R. Basco, “Numerical head transfer and fluid flow” by S.V. Patankar,
“Computational physics” by D. Potter, “Computational techniques for fluid dynam-
ics” by C.A.J. Fletcher, “Finite volume methods for hyperbolic problems” by
R.J. LeVeque, “The finite element method in engineering science” by O. C.
Zienkiewicz. These books covering large area of the fluid dynamics and other
engineering sciences are useful for open channel flow modeling as well.

In view of the continuous advance in numerical techniques, the present book is
an attempt to complement the existing works with a more detailed and up-to-date
discussion of selected numerical aspects of open channel hydraulics. It is largely
based on author’s own research and focuses on one-dimensional models of steady
and unsteady flow and transport in open channels and their networks.

The book is organized in nine chapters. Chapter 1 presents the background infor-
mation on the open channel hydraulics and the derivation of the governing equations
for both steady and unsteady flow, as well as for the transport of the constituents
dissolved in the flowing water including the transport of thermal energy.

The next two chapters cover the basic numerical methods applicable for solving
nonlinear equations and systems of linear and nonlinear equations (Chapter 2) and
ordinary differential equations and their systems (Chapter 3). Implementation of the
presented methods for solution the steady gradually varied flow in a single channel
and in channel network is given in Chapter 4. These methods are also the basic
building blocks for more complex numerical algorithms described in the following
chapters.

Chapter 5 is an introduction to the partial differential equations of hyperbolic and
parabolic types, frequently occurring in open channel hydraulic. It covers the classi-
fication of equations, formulation of solution problem, and introduction to the finite
difference and element methods. This chapter ends by discussion of convergence,
consistency and stability of the numerical methods.

In Chapters 6 and 7 the advection and advection-diffusion equations are con-
sidered. Basing on the solution using the finite difference box scheme, the main
problems of numerical integration of the hyperbolic equations are discussed. The
modified equation approach for the accuracy analysis of the numerical solution of
hyperbolic equations is described. Besides the standard methods of solution, the
splitting technique for the advection-diffusion transport equation is presented.

Chapter 8 is entirely devoted to the unsteady flow. Solution of the system of Saint
Venant equations using both finite difference and element methods is described.
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Solution of unsteady flow with moveable bed and the problem of propagation of
steep waves are briefly described.

Chapter 9 covers the simplified models and theirs application for flood routing.
Particular attention is focused on the close relation between the spatially lumped
models and the discrete forms of distributed models. The conservative properties of
the non-linear and linear simplified models are discussed.

The book includes numerous computational examples and step-by-step descrip-
tions of numerical algorithms. It is the hope of the author that the reader will find it
useful and easy to follow.

I am grateful to Springer and to the members of the Editorial Advisory Board
of series Water Science and Technology Library for the possibility of publish-
ing my work. My thanks are to Prof. Witold Strupczewski, for initiating the idea
of this book, to the Editor-in-Chief Prof. Vijay. P. Singh for his valuable sug-
gestions on its contents, and to Ms. Petra van Steenbergen and Ms. Cynthia de
Jonge for their kind assistance in submitting the manuscript. I would also like to
acknowledge the support received from Prof. Ireneusz Kreja, Dean of the Faculty
of Civil and Environmental Engineering of the Gdańsk University of Technology.
I owe a lot to the persons who assisted me in the work on the manuscript: Dr.
Dariusz Gąsiorowski, who prepared many numerical examples, Ms. Katarzyna
Olszonowicz, who prepared all the figures and my son Dr. Adam Szymkiewicz,
whose remarks and suggestions helped to improve the text. Finally, I highly appre-
ciate the effort of all members of staff involved at all stages of the editorial process
of my book.

Gdansk, Poland Romuald Szymkiewicz
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Chapter 1
Open Channel Flow Equations

1.1 Basic Definitions

Open channel is a conduit in which a part of the cross-section of the flowing stream,
taken perpendicularly to the flow velocity vector, is exposed atmosphere. Open
channels can be divided into natural and artificial ones. Natural channels, like rivers
or creeks, result from the geophysical processes acting at the Earth surface, without
essential participation of human activity. Conversely, artificial channels are built by
men and comprise, among others, navigable, energetic and irrigation channels.

Another possible division of open channels is between prismatic and non-
prismatic ones. A prismatic channel has constant cross-sectional shape and constant
longitudinal bottom slope. Of course, such properties can be possessed only by arti-
ficial channels. All natural channels are non-prismatic. A schematic representation
of a non-prismatic channel is shown in Fig. 1.1.

In natural channels the sections can be either compacted (Fig. 1.1a) or composite
(Fig. 1.1b). In composite cross-section distinct parts exist (1, 2 and 3 in Fig. 1.1b),
characterized by different bed elevations and possibly different bed roughness.
This case is representative, for instance, of a river flowing over flooded terrace
and calculation of the flow parameters requires appropriate treatment. Figure 1.1a
also shows some basic variables used in open channel hydraulics. They are listed
below.

Water stage, denoted by h, is the elevation of the free surface of water at a spe-
cific cross-section of the channel, measured with respect to the assumed datum. The
elevation of the bottom measured with respect to the same datum is denoted by Z.

The depth of flow H is the vertical distance between the water surface and the
channel bottom. In natural channels the depth and bed elevation have local meaning
only, since they vary along the axis x, which is parallel to the flow direction and y
axis, which is horizontal and normal to x. Conversely, in prismatic channels both Z
and H are uniquely defined for each cross-section and depend on x only. Thus, the
following relation holds:

h(x) = Z(x) + H(x). (1.1)

1R. Szymkiewicz, Numerical Modeling in Open Channel Hydraulics, Water Science
and Technology Library 83, DOI 10.1007/978-90-481-3674-2_1,
C© Springer Science+Business Media B.V. 2010
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Fig. 1.1 Possible shapes of cross-sections of the non-prismatic channel (a) compacted,
(b) composite

The longitudinal bed slope is defined as:

s = −∂Z

∂x
, (1.2)

Its value is usually small, which allows for considerable simplifications of the
flow equations. In Fig. 1.2 a longitudinal profile of channel is shown.

The slope is uniquely defined for prismatic channels only. For natural channels
the bed slope has rather local meaning, however its average value along channel axis
taken over longer distances of practical interest is rough but important information.

h

h( x )

bottomϕ
Z( x )

datum

H( x ) H’( x )

Fig. 1.2 Definition of the cross-section parameters for prismatic channel
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The value of H(x) should be distinguished from so-called depth of flow of section
H′(x), which is measured perpendicularly to the bottom (Fig. 1.2). Since both depths
are related to each other by means of the bed slope H′ (x) = H (x) cos (ϕ), then for
small values of the longitudinal bed slope, when cos(ϕ) ≈ 1, one can assume that
H (x) ≈ H′ (x). Only in particular situations, for steep channels, this difference is
appreciable (Akan 2006, French 1985). Consequently, usually it is reasonable to
assume that the flow depth is measured vertically from bottom to the water surface,
whereas the distance along channel axis is considered as horizontal one. The prob-
lem of co-ordinates system is summarized by Liggett (1975) as follows: “For open
channel flow the system of co-ordinates is not entirely orthogonal in that x lies in
the bed of the channel and z is vertical. This arrangement assumes that the cosine of
the channel slope is approximately unity.”

The cross-section can be characterized by the following geometric parameters:

• Top width B is the width of the channel at the level of water surface (Fig. 1.1).
• Flow area A is the wetted cross-sectional area measured perpendicularly to the

vector of channel flow velocity.
• Wetted perimeter P is the length of the interface between the water and the

channel bed.
• Hydraulic radius R is the ratio of the wetted flow area and the wetted perimeter:

R = A

P
. (1.3)

This parameter is meaningful only for compact cross-sections as shown in
Fig. 1.1a.

• Hydraulic depth Ha is the ratio of the wetted flow area A and the top width B:

Ha = A

B
. (1.4)

Ha and B represent the dimensions of a rectangle of area A equivalent to the
natural cross-section (Fig. 1.1a).

The cross-sections of prismatic channels are typically triangular, rectangular or
trapezoidal so the parameters listed above can be expressed as analytical functions
of the depth H. Consider for example a trapezoidal channel (Fig. 1.3) characterized
by the channel width at the level of bottom b, and the side slope m, which is the
cotangent of the angle ψ between the side and horizontal plane.

For such type of channel the cross-section parameters A, P and B are given by
the following formulas:

A = b · H + m · H2 (1.5)

P = b + 2H
√

1 + m2 (1.6)

B = b + 2m · H (1.7)
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b

ψ

B

m  H

datum
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h

H

Z

H
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.

∇

∇

Fig. 1.3 Trapezoidal channel cross-section

For m = 0 the trapezoidal cross-section becomes rectangular, whereas for b = 0
it becomes triangular. For natural channels, the geometric parameters are usually
expressed as function of the water stage, presented in tabularized form.

The basic quantities characterizing liquid flow are: pressure, density, velocity and
acceleration. The flow is described by the scalar or vector fields of these variable
parameters. In general all those variables depend on three spatial coordinates and
time. However, in open channel flow the component of the velocity vector parallel
to the channel axis is typically dominating and in addition it has relatively uniform
distribution over the cross-section area. Thus, it is assumed that the flow parameters
are functions of two variables only: x and t, which represent the spatial coordinate
related to the channel axis and time.

The flowing stream is conveniently characterized by the following averaged
quantities:

• Discharge, which represents the mass or volume of water flowing through
considered cross-section per unit time. The volume discharge is defined as:

Q =
∫∫

A

u · dA (1.8)

where:

u – normal velocity to the cross-section,
A – wetted cross-sectional area,
Q – flow discharge.

• Average flow velocity in the cross-section, which ensures the same discharge as
actual velocity distribution over cross-section. It is defined as follows:

U = Q

A
= 1

A

∫∫

A

u · dA (1.9)
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where: U – average velocity in a cross-section.
• Volume flux per unit time and unit width of the vertical cross-section measured

between the water surface and the bottom, given by the formula:

q =
h∫

Z

u · dz = U · H (1.10)

where q is flow discharge related to the width unit of a channel. For channel
having a rectangular cross-section q is equal:

q = Q

B
(1.11)

The total energy of water particle traveling along a streamline (a line constructed
in the velocity field, so that at its every point the velocity vector is tangential to this
line) is given by the Bernoulli equation:

Esl = zsl + psl

γ
+ u2

sl

2g
(1.12)

where:

Esl – total energy of traveling particle along a streamline,
zsl – elevation of the streamline above the assumed datum,
psl – local pressure,
γ – specific weight,
usl – local velocity,
g – local acceleration due to gravity.

In Eq. (1.12) the term (psl /γ ) is the pressure head, whereas the term (u2
sl/2 g) rep-

resents velocity head. The term (psl /γ + zsl) is called the piezometric head (Chanson
2004).

When the flow in open channel with cross-sectional average velocity is consid-
ered, the total energy of flow referred to the assumed datum is:

E = Z + H + α · U2

2 g
= h + α · U2

2 g
, (1.13)

whereas the specific energy of the open channel flow relative to the bottom of a
channel is defined by formula (Fig. 1.4):

ES = H + α · U2

2g
(1.14)

where:
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z
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Fig. 1.4 Representation of
the energy equation’s terms

E – total energy related to the assumed datum,
Es – specific energy related to the bottom,
Z – elevation of the bed above the assumed datum,
H – depth,
h – elevation of the water surface above the assumed datum,
U – average flow velocity,
α – kinetic energy correction factor (Coriolis coefficient).

The Coriolis coefficient α is introduced to correct the kinetic energy calculated
using the average flow velocity U instead of the actual velocities, variable over
wetted cross-sectional area A. Comparison of both energies yields:

α = 1

U3 · A

∫∫

A

u3·dA (1.15)

Coefficient α is never less than 1. Its value increases with the increasing
differentiation of flow velocity distribution over cross-section.

Analysis of Eq. (1.13) for horizontal channel with α = 1 shows that the specific
energy is a function of the flow depth H only, i.e. Es = Es (H). From its examination
results that Es tends to infinity for H tending either to 0 or to infinity. This means
that in the interval 〈0, ∞) the function Es(H) has an extreme minimum point. At this
point the following condition resulting from Eq. (1.14) is valid:

α · Q2

g
= A3

B
(1.16)
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Then except this point, there are two alternate depths H for which Es(H) takes
the same values. The depth corresponding to the extreme minimum is critical depth.
This depth, designed as Hc, ensures that the flowing stream with flow rate Q has least
specific energy or for given specific energy the flow rate is greatest. The critical
depth divides the interval 〈0, ∞) into two parts. The channel flow with H < Hc

is so called supercritical or torrential flow, whereas the flow with H >Hc is called
subcritical or fluvial one. To distinguish these cases the following dimensionless
Froude number is introduced:

Fr = U√
g · H

(1.17)

This number, representing the ratio of inertial and gravity forces, is expressed
by the average flow velocity U and the celerity of gravity wave in shallow water
(g H)1/2. Using the Froude number one can distinguish:

• critical flow when Fr=1,
• supercritical flow when Fr > 1,
• subcritical flow when Fr < 1.

The subcritical flow is typical form of channel flow. It is characterized by rela-
tively high depths and small velocities. This form of flow is required as the most
suitable one in natural channel. The supercritical flow is characterized by relatively
small depths and great velocities. In natural conditions it can occur in upper parts of
rivers. This kind of flow is typically observed on the weirs of dams.

Since Eq. (1.13) represents the total mechanical energy related to the assumed
datum, then its derivative with regard to x represents local energy grade line slope
S. Therefore one can write:

dE

dx
= −S (1.18)

where S is energy grade line slope or friction slope. The negative sign at right side
of Eq. (1.18) takes into account the fact that energy decreases with increasing of x
(Fig. 1.4).

The water flow in open channel can be classified with regard to various criteria.
Taking into account the time variability one can distinguish:

• steady flow, when the flow parameters do not vary in time,
• unsteady flow when the flow parameters vary in time.

With the time variation of flow is connected the notion of time-invariant process
or system. A channel reach can be considered as a physical system, which is capable
to transform the flood wave occurring at the upstream end to the one observed at the
downstream end. If the same waves entering the channel at given time intervals
produce the same response, the considered channel reach is a time-invariant system.
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It means that its main properties affecting the flow process, such as the shape of
cross-sections and hydraulic roughness do not vary in time. In the opposite case,
when the channel properties vary in time, the system is called time-variable.

Steady flows can be further divided with respect to the spatial variability of the
parameters. From this point of view one can distinguish uniform and non-uniform
flows. A uniform flow is characterized by spatially constant flow parameters such as
velocities and depths, so that the water surface and the energy line are parallel to the
bottom. Thus uniform flow can occur in prismatic channels only, in which the shape
of cross-sections does not vary and the bed slope is constant. In natural channels
such kind of flow does not exist. For steady uniform flow the average velocity is
given by the well known empirical formulas:

• The Chézy equation:

U = CC (R · s)1/2 (1.19)

where:

CC – the Chézy coefficient,
R – hydraulic radius,
s – longitudinal channel bed slope, equal to the energy line slope S.

• The Manning equation

U = 1

nM
R2/3 · s1/2 (1.20)

This equation can be considered as the Chézy equation with CC defined as
follows:

CC = 1

nM
R1/6 (1.21)

where nM is the Manning roughness coefficient. In SI units this coefficient is
expressed in s/m1/3.

The depth Hn which satisfies Eqs. (1.19) or (1.20) is called normal depth. In the
case of uniform flow, when the flow velocities and wetted cross-sectional areas do
not vary, the energy grade line, the hydraulic grade line and bottom line are parallel
one another.

In particular cases it can occur that the normal depth is equal to the critical depth.
The channel slope, for which the uniform flow is critical, is called the critical slope
(Chanson 2004, French 1985). Usually it is denoted sc. Relation between the normal
and critical depths can be used to characterize the channel slope. One can distinguish
(Chanson 2004):

• mild slope when Hn > Hc,
• critical slope when Hn = Hc,
• steep slope when Hn < Hc.
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The non-uniform flow does not satisfy the conditions of uniform flow, so the
depths and velocities vary along channel axis. Consequently the bottom, water sur-
face and energy line are not parallel to each other. Depending on the degree of the
spatial variability one can distinguish gradually and rapidly varied flows. To explain
the essential difference between both types of flow, let us recall the Bernoulli equa-
tion (Eq. 1.12). In open channel gradually varied flow the water particles move along
nearly straight streamlines. Since the streamlines have insignificant curvature, the
cross-sectional surface, orthogonal to the streamline, are nearly flat. It means that
they are almost normal to the velocity vectors and the vertical components of veloc-
ity do not exist. These assumptions imply that the sum (zsl + p/γ ) representing the
elevation of the hydraulic grade line above the assumed datum, can be considered
as constant. Consequently the pressure distribution in the stream flowing in a chan-
nel with small bed slope, in which the streamlines are nearly parallel to the bottom,
is governed by the hydrostatic law. Conversely, when rapid flow is considered, one
needs to take into account the curvature of the streamlines and cross-sections. The
law of hydrostatic distribution of pressure along the depth is no longer valid.

In non-uniform flow the friction slope S is usually also expressed with the
Manning formula. Although this formula has been derived for steady uniform flow,
it is applicable for non-uniform flow as well. It is assumed that the error gener-
ated due to this approximation is small comparing with the one resulting from the
estimation of the coefficient nM. The reformed formula (1.20) is used:

S = n2
M · U2

R 4/3
= n2

M · Q2

R 4/3 · A2
(1.22)

For steady uniform flow the friction slope is constant, whereas for non-uniform
flow it varies along channel axis.

To solve practical open channel flow problems the energy equations written for
two neighboring stations is usually applied. For a channel reach presented in Fig. 1.5
it takes the following form:

h i + α · U2
i

2 g
= h i+1 + α · U2

i+1

2 g
+� xi · S (1.23)

where:

hi, hi+1 – elevations of the water surface above the assumed datum in cross-
section i and i+1 respectively,

U1, Ui+1 – average flow velocities in cross-section i and i+1 respectively,
S – average friction slope between both cross-sections,
Δxi – distance between considered stations.

The average value of the friction slope is determined using its local values in both
cross-sections calculated using Eq. (1.22). Equation (1.23) allows us to compute the
water surface profile in open channel for steady gradually varied flow.
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Fig. 1.5 Sketch of a channel reach

This section covers only basic information on the open channel flow, which is
necessary for further presentation of numerical applications. For more comprehen-
sive discussion of the theoretical background for the open channel hydraulics the
reader is directed to the works of Akan (2006), Chanson (2004), Chow (1959),
French (1985), Henderson (1966), Jain (2000), Singh (1996) and others.

1.2 General Equations for Incompressible Liquid Flow

Domination of one component of the velocity vector is a typical attribute of the
open channel flow. This feature allows us to consider the flow process as spatially
one-dimensional phenomenon. Similarly to the other types of surface water flows,
the governing equations are derived from two principles of conservation:

• momentum conservation law,
• mass conservation law.

The derivation can be performed in various ways. The approaches found in the
literature differ with respect to the formulation of the principle of conservation, and
to the stage at which the one-dimensionality assumption is introduced. For exam-
ple, the open channel flow equations are very often derived by balancing the fluxes
and forces acting on the considered control volume, with an a priori assumption
of uniform velocity flow distribution over a channel cross-section. Next, when the
governing equations are derived, some additional factors are introduced to correct
the balanced quantity. In such a way the correction parameters α or β appear in the
1D dynamic equation.

A more consistent approach is to derive the unsteady open channel flow equations
from general equations of hydrodynamics. It allows us to show clearly that this kind
of flow is governed by equations being a particular case of general equations for 3D
unsteady flow. In addition, the effects of introduced simplifications and assumptions



1.2 General Equations for Incompressible Liquid Flow 11

can be easily followed. This point of view coincides with the suggestion given by
Abbott and Basco (1989). These authors cite Bird, Steward and Lightfoot (1960),
who stated: “It is not. . . necessary to formulate a momentum balance (or mass bal-
ance for continuity) whenever one begins to work on a new flow problem. In fact,
it is seldom desirable to do so. It is quicker, easier and safer to start with the equa-
tions of conservation of mass and momentum in general form and to simplify these
equations to fit the problem at hand”. Moreover Abbott and Basco (1989) state:
“The advantage of this procedure is that when we are finished discarding terms and
simplifying the equations (based on intuition, experiments, field data, experience,
etc.) we will have available a complete list of assumptions.” This approach will be
followed here.

It is well known that in general case the flow of viscous and incompressible
fluid is described by the Navier–Stokes equations and the continuity equation. These
equations are derived from the momentum and mass conservation principles, respec-
tively. Although the Navier–Stokes equations describe all forms of flow, in practice
they are useful for laminar flow only, while every large scale geophysical surface
flow is turbulent (Eagleson 1970). Therefore the open channel flow must be consid-
ered as turbulent. In such kind of flow random fluctuations of velocities and pressure
are present. Since it is impossible to describe these fluctuations, the instantaneous
velocity is expressed in terms of a time-averaged velocity and its random part,
according to the Reynolds hypothesis. The same is applied for pressure. Inserting
these relations into the Navier–Stokes equations one obtains the Reynolds equa-
tions. As a result of this operation an additional tensor of turbulent stresses appears.
Applying the Boussinesq concept of the eddy viscosity one obtains the following
system of equations (French 1985):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= Fx − 1

ρ

∂p

∂x
+ 1

ρ
(μ+ μT )�u, (1.24)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= Fy − 1

ρ

∂p

∂y
+ 1

ρ
(μ+ μT )�v, (1.25)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= Fz − 1

ρ

∂p

∂z
+ 1

ρ
(μ+ μT )�w, (1.26)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (1.27)

where:

t − time,
x, y, z − spatial coordinates,
u, v, w − components of the velocity vector in x, y and z direction respectively,
ρ − water density,
μ − coefficient of dynamic viscosity,
μT − coefficient of turbulent viscosity (eddy viscosity),
p − pressure,
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Fx, Fy, Fz − components of gravitational forces in x, y and z direction
respectively,

Δ – Laplace operator.

The system of Eqs. (1.24), (1.25), (1.26) and (1.27) is formally very similar the
system of Navier–Stokes equations. However, it is interpreted in a different way.
Eqs. (1.24), (1.25), (1.26) and (1.27) describe the relations between time averaged
values of the dependent variable, while the Navier–Stokes equations relate their
instantaneous values. Conversely to the coefficient μ depending on the physical
properties of the water, the coefficient μT is a function of the flow turbulence only.
As the turbulent diffusion is much more important than the molecular one because
μT�μ (Martin and McCutcheon 1999), is reasonable to neglect the dynamic
viscosity.

The system of Eqs. (1.24), (1.25), (1.26) and (1.27) representing the momentum
and mass conservation equations written in general form will be used to derive the
equations for open channel flow.

1.3 Derivation of 1D Dynamic Equation

Equations (1.23), (1.24), (1.25) and (1.26) can be simplified when the specific fea-
tures of the open channel flow problem are taken into account. Usually open channel
flow can be considered as a propagation of long waves in shallow water. These
waves have relatively small amplitudes compared to their lengths so the accel-
erations and velocities in vertical direction are negligibly small in relation to the
accelerations and velocities in horizontal directions. Let us assume the co-ordinate
system as shown in Fig. 1.6, in which after Liggett (1975), x corresponds to the
direction of the primary flow, y is the horizontal direction normal to primary flow,
whereas z is the vertical direction.

The gravity force is the only force acting along z axis:

F z = −g, (1.28)

y

z

x

H(x,y,t)

h(x,y,t)

datum

Z(x,y)

ϕbottom

Fig. 1.6 Assumed system of
co-ordinates
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Consequently Eq. (1.26) takes the following form:

− g − 1

ρ

∂p

∂z
= 0. (1.29)

Integration of this equation with regard to z from the bottom to the water surface
(Fig. 1.6)

h∫

Z

∂p

∂z
dz = −

h∫

Z

ρ · g · dz (1.30)

yields:

p (h)− p (Z) = −ρ · g (h − Z) . (1.31)

Since at the water surface the pressure is equal to the atmospheric one p(h)= Pa

then the following formula representing pressure variation along z axis accordingly
to the hydrostatic pressure law, is obtained:

p (z) = Pa + ρ · g (h − z) for Z ≤ z ≤ h (1.32)

where:

Pa − atmospheric pressure,
ρ − water density,
g – acceleration due to gravity,
h – elevation of the water surface above the datum,
Z – elevation of the bottom above the datum,
z – vertical co-ordinate.

Let us assume that the velocity vector is parallel to x axis – it has one component
only u = u(z, x, t). Consequently Eq. (1.25) for the component v disappears, whereas
Eq. (1.24) becomes:

∂u

∂t
+ u

∂u

∂x
= F x − 1

ρ

∂p

∂x
+ μT

ρ

(
∂2 u

∂x 2
+ ∂2 u

∂z 2

)
. (1.33)

In addition, let us assume that the channel bed is inclined towards x axis and its
slope is given by the angle ϕ (Fig. 1.6). The only force acting along x axis is the
component of the gravitational force parallel to the bottom:

Fx = −g · sin (ϕ) . (1.34)

For a small bottom slope which is usually assumed for open channels (see Section
1.1), one has sin(ϕ) ≈ tg(ϕ). Then the component Fx is expressed as:
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F x = − g
∂Z

∂x
, (1.35)

where ∂Z/∂x accordingly to Eq. (1.2) is the longitudinal channel bed slope. With
Eqs. (1.32) and (1.35), Eq. (1.33) is rewritten as follows:

∂u

∂t
+ u

∂u

∂x
+ g

∂Z

∂x
+ 1

ρ

∂

∂x
(P a + ρ · g · H) − μT

ρ

(
∂2 u

∂x 2
+ ∂2 u

∂z 2

)
= 0. (1.36)

In turbulent open channel flow the vertical velocity distribution is rather uniform,
so the actual velocity u(x,z,t) can be replaced by the depth-averaged one U(x,t). Let
us introduce:

• the average horizontal velocity U(x,t):

U(x,t) = 1

H

h∫

Z

u(x,z,t) d z, (1.37)

where H = h−Z designates the depth;
• the deviation u′′(z) of the actual velocity from the average one (Fig. 1.7):

u′′ (z) = u (z)− U. (1.38)

From Eq. (1.37) results the following condition:

h

u(z)

u z( )

U

z

H

Z

datum

Fig. 1.7 Actual and averaged distribution of horizontal velocity u along the vertical axis



1.3 Derivation of 1D Dynamic Equation 15

h∫

Z

u′′ (z) dz = 0. (1.39)

Averaging the horizontal velocity over depth allows us to eliminate the variability
in z direction and consequently to reduce the number of dimensions. To do it, Eq.
(1.36) must be integrated over depth:

h∫

Z

(
∂u

∂t
+ u

∂u

∂x
+ g

∂Z

∂x
+ 1

ρ

∂

∂x
(P a + ρ · g · H) − μT

ρ

(
∂2u

∂x2
+ ∂2u

∂z 2

))
dz = 0.

(1.40)

The integration limits, i.e. the water stage h and the bottom elevation Z, in a
general case are functions of the horizontal spatial coordinates. Therefore while
integrating Eq. (1.40) we will face a problem of differentiation inside the integral
with variable limits. According to the Leibniz rule (Korn and Korn 1968, McQuarrie
2003) in such a case the differentiation of any function φ is carried out as follows:

h (x)∫

Z(x)

∂φ

∂x
d z = ∂

∂x

h (x)∫

Z(x)

φ · d z − φ(h)
∂h

∂x
+ φ(Z)

∂Z

∂x
. (1.41)

Let us integrate subsequent terms of Eq. (1.40). The first term is integrated as
follows:

I1 =
h∫

Z

∂u

∂t
dz = ∂

∂t

h∫

Z

u · d z − u(h)
∂h

∂t
+ u(Z)

∂Z

∂t
. (1.42)

If we:

• make use of the definition (1.37),
• assume that the channel bed does not change its position with time,
• assume that the velocity at the water surface is equal to the average one

then Eq. (1.42) will take the following final form:

I1 = ∂

∂t
(U · H) − U

∂H

∂t
= H

∂U

∂t
. (1.43)

The integral of the second term with Eq. (1.38) is rearrangered to the form:
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I2 =
h∫

Z

u
∂u

∂x
dz = 1

2

h∫

Z

∂(U + u′′)2

∂x
d z

= 1

2

⎡

⎣ ∂
∂x

h∫

Z

(U + u′′)2dz − (U + u′′)2
z=h

∂h

∂x
+ (U + u′′)2

z=Z
∂Z

∂x

⎤

⎦ .

(1.44)

Developing the square of sum and assuming that the flow velocities at the water
surface and at the channel bottom are equal to the average velocity U, one obtains:

I2 = 1

2

⎡

⎣ ∂
∂x

⎛

⎝
h∫

Z

U2 · dz +
h∫

Z

2U · u′′ · dz +
h∫

Z

(
u′′)2 dz

⎞

⎠− U2 ∂ (h − Z)

∂x

⎤

⎦ .

(1.45)
Integrals in the brackets are calculated term by term as follows:

h∫

Z

U2 · d z = U2·H, (1.46)

h∫

Z

2U · u′′ · dz = 2U

h∫

Z

u′′ · dz = 0. (1.47)

The last integral at the right hand side of Eq. (1.45)
h∫

Z
(u′′)2dz cannot be cal-

culated since the actual distribution of the velocity over the depth is unknown.
However, a rough estimation of this integral in relation to the integral (1.46) can
be attempted. To this end let us assume a hypothetical vertical distribution of u(z) as
presented in Fig. 1.8.

Over the entire depth the deviation of actual velocity is taken as u′′(z) = ±0.2U.
Then we have:

h∫

Z

(u′′)2dz =
h∫

Z

(0.2U)2d z = 0.04 U2

h∫

Z

d z = 0.04 U · H. (1.48)

The result of integration shows that even for the assumed significant non-
uniformity of the vertical distribution of velocity, the value of integral (1.48)
constitutes only 4% of the value of integral (1.46). To take into account these inte-
gral we can consider it as a fraction of integral (1.46) and to add its value to (1.46).
This allows us to write:
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Fig. 1.8 Assumed hypothetical vertical distribution of flow velocity

h∫

Z

U2 · d z +
h∫

Z

(u′′)2dz = U2·H+
h∫

Z

(u′′)2dz =

⎛

⎜⎜⎜
⎝

1 +

h∫

Z
(u′′)2dz

U2 · H

⎞

⎟⎟⎟
⎠

U2·H = β·U2·H.

(1.49)
In this equation we recognize

β = 1 +

h∫

Z
(u′′)2dz

U2 · H
. (1.50)

as a correction parameter. Coming back to Eq. (1.45) we have:

I2 = 1

2

[
∂

∂x

(
β · U2 · H

)
− U2 ∂H

∂x

]
. (1.51)

Developing of the derivative in Eq. (1.51) yields:

I2 = 1

2

[

H
∂
(
β · U2

)

∂x
+ β · U2 ∂H

∂x
− U2 ∂H

∂x

]

. (1.52)

Neglecting the difference of the last two terms as small value, which additionally
can be corrected by chosen value of β, the integral of the second term of Eq. (1.40)
takes its following final form:

I2 = β · U
∂U

∂x
H. (1.53)
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Introduction of the correction factor β requires a comment. Assumption of the
uniform flow velocity distribution instead of the actual one always requires a correc-
tion of the conservative quantity, which depends on the velocity. In the case of the
discrete energy equation (1.23) applied for channel flow, comparison of the actual
kinetic energy with that calculated with the average velocity shows that it is neces-
sary to introduce the correction factor α, given by Eq. (1.15). This coefficient was
introduced into the dynamic equation of the Saint Venant system by Chow (1959).
However, Abbott (1979) in this same equation introduces the factor β, which cor-
rects the momentum. It is worth emphasizing that usually at first the unsteady flow
equations are derived assuming a priori one dimensionality and afterwards the effect
of averaging is corrected. In the derivation from general equations as we have just
applied, the correction factor appears naturally as a result of the averaging process.
Such a way of derivation ensures a simple interpretation of the corrective parameter
β and explains the real reasons of its appearance. It corrects the balance of momen-
tum affected by the average flow velocity introduced instead of the actual velocity
distribution over the cross-sectional area. This parameter allows us to include the
estimated value of integral (1.48), impossible to be calculated directly. For u(z)=
const., i.e. when u"(z) = 0 for Z ≤ z ≤ h one obtains β = 1.

The terms of Eq. (1.40) representing gravitation and pressure are integrated as
follows:

I3 =
h∫

Z

g
∂Z

∂x
d z = g

∂Z

∂x
H, (1.54)

I4 = 1

ρ

h∫

Z

∂

∂x
(Pa + ρ · g · H) d z = 1

ρ

∂Pa

∂x
H + g

∂H

∂x
H. (1.55)

The term describing the turbulent diffusion of momentum in x direction takes the
form:

I5 =
h∫

Z

μT

ρ

∂2u

∂x2
d z = μT

ρ

h∫

Z

∂2

∂x2
(U + u") d z =

= μ T

ρ

∂2U

∂x2
H + μT

ρ

h∫

Z

∂2 u"

∂x2
d z = μD

ρ

∂2 U

∂x2
H,

(1.56)

where μD is the coefficient of dispersive transport of momentum in x direction. It
represents the combined effect of the turbulent viscosity with coefficient μT and
vertical velocity averaging. This is an analogous situation to the one discussed pre-
viously, where integrating the term of velocity advection led to the correction factor
β (see Eq. 1.50).

The term describing the momentum transfer in vertical is integrated as follows:
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I6 =
h∫

Z

μT

ρ

∂2 u

∂z2
d z = 1

ρ

(
μT ∂u

∂z

∣∣∣∣
h
− μT ∂u

∂z

∣∣∣∣
Z

)
. (1.57)

The terms in parentheses are the tangential stresses at the water surface and at the
bottom, respectively. The former ones are caused by the action of the wind blowing
above the water surface in direction parallel to x axis. It generates the stresses which
can be estimated using the following formula (Hervouet 2007, Singh 1996):

τ (h) = a |W| W (1.58)

where:

a – empirical coefficient depending on the density and viscosity of air and on
the roughness of the water surface,

W – component of the wind velocity vector acting along the channel axis.

In many practical cases the wind-generated stresses are negligible. They can be
important for example in lower parts of river, where the bed slope is typically small.

The second term of Eq. (1.57) describing the stresses at the bottom is expressed
by the well known formula (Chanson 2004):

τ (Z) = ρ · g · n2

H1/3
|U| U. (1.59)

Inserting Eqs. (1.58) and (1.59). In Eq. (1.57) yields:

I 6 = a

ρ
|W| W − g · n2

H1/3
|U| U. (1.60)

Finally, the integration of Eq. (1.40) allows us to present it in the form:

H
∂U

∂t
+β · U

∂U

∂x
H + g

∂Z

∂x
H + 1

ρ

∂P a

∂x
H + g

∂H

∂x
H+

−μ
D

ρ

∂ 2 U

∂x 2
H − a

ρ
|W| W + g n 2

H1/3
|U| U = 0,

(1.61)

After dividing both sides by the depth H, which is always non-zero, one obtains:

∂U

∂t
+ β · U

∂U

∂x
+ g

∂

∂x
(H + Z)+

+g · n 2
M

H4/3
|U| U + 1

ρ

∂P a

∂x
− a

ρ · H
|W| W − μD

ρ

∂ 2 U

∂x 2
= 0.

(1.62)

Equation (1.62) is the dynamic equation for 1D unsteady open channel gradu-
ally varied flow. This equation, derived from Eqs. (1.23), (1.24), (1.25) and (1.26),



20 1 Open Channel Flow Equations

contains all the significant components which determine the flow process. The only
process omitted in the derivation is the lateral water inflow distributed along the
channel.

1.4 Derivation of 1D Continuity Equation

Similarly to the dynamic equation, the continuity equation for one-dimensional flow
can be derived from the general three-dimensional from. Let us assume a uni-
form motion in y direction. Then Eq. (1.27) takes a simpler form, which must be
integrated over the depth from the bottom Z(x) to the surface h(x):

h∫

Z

(
∂u

∂x
+ ∂w

∂z

)
d z = 0. (1.63)

The terms in parentheses are integrated separately giving:

I1 =
h∫

Z

∂u

∂x
dz = ∂

∂x

h∫

Z

u · dz − u(h)
∂h

∂x
+ u(Z)

∂Z

∂x
=

= ∂

∂x
(U · H) − u(h)

∂h

∂x
+ u(Z)

∂Z

∂x
,

(1.64)

I2 =
h∫

Z

∂w

∂x
d z = w(h) − w(Z), (1.65)

where w(h) and w(Z) are the vertical velocities at the water surface and at the bottom,
respectively. These velocities can be found from the kinematic condition at each of
the limits, which says that a particle laying at the limit moves together with the limit.
Then:

w(h) = D h

D t
, (1.66)

w(Z) = DZ

D t
. (1.67)

The total derivatives Dh/Dt and DZ/Dt represent the velocities of traveling water
surface and bottom in the vertical direction, respectively:

D h

Dt
= ∂h

∂t
+ u(h)

∂h

∂x
, (1.68)

D Z

D t
= ∂Z

∂t
+ u(Z)

∂Z

∂x
(1.69)
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In many geophysical flows the motion of the water surface in the vertical direc-
tion is caused by external sources like rain, evaporation or lateral inflow. This fact
must be taken into account in Eq. (1.68), which should be modified as follows:

D h

Dt
= ∂h

∂t
+ u(h)

∂h

∂x
− δ (1.70)

where δ is the source term representing additional inflow.
Substitution of Eqs. (1.69) and (1.70) in Eq. (1.65) yields:

I 2 = ∂h

∂t
+ u(h)

∂h

∂x
− δ − ∂Z

∂t
− u(Z)

∂Z

∂x
. (1.71)

The sum I1 + I2, is equivalent to the integral (1.63) and can be written as:

∂

∂x
(UH) −u(h)

∂h

∂x
+ u(Z)

∂Z

∂x
+

+∂h

∂t
+ u(h)

∂h

∂x
− δ − ∂Z

∂t
− u(Z)

∂Z

∂x
= 0.

(1.72)

Since accordingly to Eq. (1.1) we have h = H+Z then Eq. (1.72) becomes:

∂H

∂t
+ ∂

∂x
(UH) = δ. (1.73)

In such a way the 1D continuity equation (1.73) for open channel flow was
derived from 2D equation via its integration along the vertical direction.

1.5 System of Equations for Unsteady Gradually Varied Flow
in Open Channel

Integration of the system of equations (1.24), (1.25), (1.26) and (1.27) over the depth
with the assumption of uniform flow in y direction allowed us to derive 1D dynamic
and continuity equations:

∂U

∂t
+β · U

∂U

∂x
+ g

∂

∂x
(H + Z) + g · n 2

H4/3
|U| U+

+ 1

ρ

∂P a

∂x
− a

ρ · H
|W| W − μD

ρ

∂2U

∂x2
= 0,

(1.74)

∂H

∂t
+ ∂

∂x
(U · H) = δ. (1.75)

The above system of partially differential equations describes unsteady flow in an
open channel. Let us recall the major assumptions introduced during the derivation:
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• Motion of water is gradually varied,
• Channel bed slope is small,
• Flow is considered as one dimensional process,
• Velocity distribution over depth is uniform,
• Pressure is governed by the hydrostatic law,
• Friction slope is estimated as for the steady flow,
• Lateral inflow does not influence the momentum balance.

Since Eqs. (1.74) and (1.75) are written per unit channel width, this system is
valid for a wide rectangular channel. The parameter β in dynamic equation (1.74)
occurred as a result of the integration over depth. It corrects the error in momentum
balance introduced by velocity averaging. It appeared naturally from the Leibniz
rule applied to calculate the integrals with variable limits.

Usually, in Eq. (1.74) the last three terms are neglected as less important com-
pared to the others. Dimensionless analysis shows that longitudinal dispersion of
momentum is insignificant (French 1985). Similarly, in most cases the temporal and
spatial variability of the atmospheric pressure and the wind velocity do not influence
remarkably the river flow. Therefore the terms representing them can be omitted. If
in addition we assume β = 1 and δ = 0, introduce the bottom slope s defined by Eq.
(1.7) and the friction slope S, which for flow per unit width is:

S = n2
M

H4/3
|U| U. (1.76)

then Eqs. (1.74) and (1.75) become:

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
= g(s − S), (1.77)

∂H

∂t
+ ∂

∂x
(U · H) = 0, (1.78)

In practical applications it is more convenient to use the flow rate and water stage
instead of depth and velocity as the dependent variables. The equations with new
variables can be derived as previously from Eqs. (1.24), (1.25), (1.26) and (1.27),
with the same assumptions. However, they should be integrated not only with regard
to depth but with regard to the channel width as well. Taking into account that the
velocity is averaged over the entire wetted cross-sectional area A, the following
system of equations is obtained:

1

g

∂U

∂t
+ ∂

∂x

(
U2

2 g

)
+ ∂h

∂x
+ S = 0, (1.79)

∂A

∂t
+ ∂Q

∂x
= q, (1.80)
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where:

U – cross-sectional average flow velocity,
h – water level above assumed datum defined by Eq. (1.1),
A – cross-sectional area,
Q – flow rate
q – lateral inflow per unit length of a channel.

Omitting the lateral inflow q we obtain the unsteady open channel flow equa-
tions in the form proposed in 1871 by Barré de Saint-Venant to describe the process
of propagation of the flood waves (Chanson 2004). After him, these equations are
known in literature as the system of Saint Venant equations.

The dynamic equation (1.79) is similar to Eq. (1.77). However, the variables
involved in Eq. (1.79) are related to the whole cross-section, and not to the unit
width. For this reason, their interpretation is different. Now U is the velocity
averaged over the cross-section:

U(x,t) = Q

A
= 1

A

∫

A

∫
u(x,y,z,t) d A, (1.81)

whereas S is the friction slope, which for a channel cross-section is given by
formula:

S = n2

R4/3
|U| U, (1.82)

where R is hydraulic radius.
Similarly, the correction parameter β is related to the entire cross-section. Now,

its general definition resulting from integration of the convective term u∂u/∂x over
the whole cross-section is following:

β = 1 +

∫∫

A
(u′′)2dA

U2 · A
, (1.83)

where u′′=u – U is the difference between the actual velocity u at any point of the
cross-section and the averaged flow velocity U.

The correction factor β, usually applied in dynamic equation of the Saint Venant
system, is given as (Abbott 1979, Liggett 1975):

β =

∫∫

A
u2 · dA

U2 · A
(1.84)

This factor called the Boussinesq coefficient (Chanson 2004) represents the ratio
of the actual momentum and the momentum calculated with the averaged velocity
U. If instead of u′′ we substitute in Eq. (1.83) the expression u′′=u − U then
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β = 1 +

∫∫

A
(u − U)2dA

U2 · A
=

∫∫

A
u2dA

U2 · A
+

2U2 · A − 2U
∫∫

A
u · dA

U2 · A
. (1.85)

Since with Eq. (1.81) the second term at the right hand side vanishes, then Eq.
(1.85) becomes Eq. (1.84). As one can see, integration of the momentum equation
over depth using the Leibnitz rule gives another possible viewpoint on introduction
of the momentum correction while averaging of the flow velocity.

Eliminating both depth and average flow velocity from Eqs. (1.79) and (1.80)
can be carried out using Eqs. (1.1) and (1.10). In addition, a constant position of the
channel bed is assumed so ∂Z /∂t = 0. Since the wetted cross-section area A is a
function of the water stage h, then one can write:

∂A

∂t
= ∂A

∂h

∂h

∂t
= B

∂h

∂t
(1.86)

These assumptions allow us to reform both equations of unsteady flow to obtain:

∂Q

∂t
+ ∂

∂x

(
β · Q 2

A

)
+ g · A

∂h

∂x
+ g · n 2

R4/3
|Q| Q

A
= 0, (1.87)

∂h

∂t
+ 1

B

∂Q

∂x
= q

B
. (1.88)

where B is channel width at the water surface level. Equations (1.87) and (1.88)
constitute the most popular mathematical model of the unsteady open channel flow.
It should be added that the system of Saint Venant equations is expressed in many
forms depending on the assumed dependent variables, geometry of a channel and
other factors taken into account. For a systematic review of these forms see Singh
(1996).

1.6 Steady Gradually Varied Flow in Open Channel

In many practical applications the steady and gradually varied flow in open chan-
nels must be considered. Typical problem connected with this kind of flow is the
determination of the flow profile behind a dam.

The governing equation describing steady gradually varied flow can be obtained
in different ways. The manner of derivation depends on our preferences. We can
write balance equation directly for the steady gradually varied flow with introduced
a priori simplifying assumptions or to derive them from the Saint Venant equations,
describing a more general case of unsteady gradually varied flow. Both approaches
will be shown in the following sections.
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1.6.1 Derivation of Governing Equation from the Energy Equation

Let us consider two neighboring cross-sections enclosing a channel reach of length
dx as shown in Fig. 1.9. At the upstream end the depth is equal to H and the average
flow velocity is equal to U, whereas at the downstream end we have the depth H +
dH and the velocity U + dU, respectively. The Bernoulli equation takes the following
form:

Z + H + α · U2

2 g
= Z − s · dx + H + dH + α (U + dU)2

2 g
+ S · dx (1.89)

where:

E – total mechanical energy above the assumed datum,
Z – bed elevation with regard to the datum,
H – depth,
U – average flow velocity,
s – bottom slope,
S – friction slope,
g – gravitational acceleration,
α – energy correction factor.

E(x)

S

U dU+

U

bottom

datum

dx

Z–s.dx
 

s

x

H

Z

H+dH

αU 
2

2g

z
.dx

2g
α(UdU+)2

Fig. 1.9 Schematic representations of a channel reach
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The square velocity at the downstream end can be expressed using an approx-
imate formula, since the term (dU)2 can be omitted as significantly smaller than
other terms in the expression (U+dU)2:

(U + dU)2 = U2 + 2U · dU + (dU)2 ≈ U2 + 2U · dU

Using this relation Eq. (1.89) can be rearranged to the following form:

s = dH

dx
+ α

g

U · dU

dx
+ S (1.90)

The second term at the right-hand side of Eq. (1.90) can be expressed as follows:

α

g

U · dU

dx
= α

2 g

dU2

dx
(1.91)

Substitution of Eq. (1.91) in Eq. (1.90) and using the definitions (1.1) and (1.2)
yields:

d

dx

(
h + α · Q2

2 g · A2

)
= −S (1.92)

This is differential representation of the energy conservation principle. Equation
(1.92) has general character, since it holds for both prismatic and non-prismatic
channels.

Equation (1.92) can be reduced to the standard form of the steady gradually flow
equation for a prismatic channel, in which the depth is dependent variable. To this
end let us introduce relation (1.1), which allows us to rewrite Eq. (1.92) as follows:

d

dx

(
Z + H + α · Q2

2 g · A2

)
= −S (1.93)

Let us differentiate the left-hand side of Eq. (1.93). Assuming that Q = const.
one obtains:

d

dx

(
Z + H + α · Q 2

2 g · A2

)
= dZ

dx
+ dH

dx
− α · Q 2 · B

g · A3

dH

dx
(1.94)

where B is channel width at the water surface. Equations (1.94) and (1.22) are
substituted in Eq. (1.93). Simple rearrangement yields:

(
1 − α · Q 2 · B

g · A3

)
dH

dx
= −dZ

dx
− n2

M · |Q| Q

R4/3 · A2
(1.95)



1.6 Steady Gradually Varied Flow in Open Channel 27

One can assume that in a single channel the direction of the steady flow coincides
with the positive direction of x axis. Then the modulus in last term of Eq. (1.95)
can be omitted. The next assumption concerns the flow velocity distribution over
the cross-section of the channel. It is considered as quasi-uniform, so that one can
assume α = 1. Moreover, for a rectangular cross-section the second term in brackets
represents the square of the Froude number since:

Q 2 · B

g · A3
= 1

g

Q2

A2

1

H
= U2

g · H
= F2

r (1.96)

Substitution of Eqs. (1.2), (1.22) and (1.96) in Eq. (1.95) yields:

dH

dx
= s − S

1 − F2
r

. (1.97)

In such a way the classic ordinary differential equation describing the water sur-
face profile for a steady gradually varied flow is obtained. However, one should
remember that it holds only for prismatic channel with Q = const.

1.6.2 Derivation of Governing Equation from the System
of Saint-Venant Equations

The steady gradually varied flow can be considered as a particular case of the
unsteady gradually varied flow. For this reason it should be possible to derive the
governing equations from the system of Saint Venant equations (1.87) and (1.88),
previously discussed. This manner of derivation seems to be more instructive, since
it clearly shows the direct relations between the derived equations which govern the
steady flow and the fundamental principles of mass and momentum conservation
used in open channel flow modeling. In addition, such approach allows us to derive
the most general form of the steady flow equations.

The Saint Venant equations (1.87) and (1.88) can be rewritten for a channel with
variable cross-sections and with non-uniform velocity distribution over the cross-
sections as follows:

∂A

∂t
+ ∂Q

∂x
= q, (1.98)

∂Q

∂t
+ ∂

∂x

(
β · Q 2

A

)
+ g · A

∂h

∂x
= −g · A · S (1.99)

where:

t – time,
x – longitudinal distance,
h – water surface elevation,
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q – lateral inflow,
β – momentum correction factor
S – friction slope given by Eq. (1.22).

For steady flow one obtains:

∂A

∂t
= 0, (1.100)

∂Q

∂t
= 0. (1.101)

Therefore all the functions depend on the variable x only and consequently Eqs.
(1.98) and (1.99) become ordinary differential equations. They take the following
forms:

dQ

dx
= q (1.102)

d

dx

(
β · Q 2

A

)
+ g · A

dh

dx
= −g · A · S (1.103)

Equation (1.103) can be rearranged to a form more suitable for integration. To
this end both its sides are divided by g·A. This yields:

1

gA

d

dx

(
β · Q2

A

)
+ dh

dx
= − S. (1.104)

Taking into account the definition of the average flow velocity in the channel
cross-section (1.9), the first term of Eq. (1.104) is differentiated as:

1

gA

d

dx

(
βQ2

A

)
= 1

g

β

A

d

dx
(Q · U) = 1

g

β

A

(
U

dQ

dx
+ Q

dU

dx

)
(1.105)

Consequently Eq. (1.104) becomes:

β

g

U

A

dQ

dx
+ β

g

Q

A

dU

dx
+ dh

dx
= −S (1.106)

Substitution of Eqs. (1.9) and (1.102) into Eq. (1.106) leads to:

d

dx

(
h + β · Q2

2g · A2

)
= −S − β · Q

g · A2
q (1.107)

Therefore, in the case of steady gradually varied flow the water surface profile is
described by the following equations:

dQ

dx
= q, (1.108)
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dE

dx
= − S − β · Q

g · A2
q (1.109)

where

E = h + β · Q 2

2 g · A2
. (1.110)

Note that E represents the total energy of the flowing stream related to the
assumed datum. A comment is needed to explain the problem of the correction of
the conservative quantity represented by the governing differential equation. This
correction is introduced when the locally variable velocity over a cross-section is
replaced by the average velocity. If the momentum conservation principle is applied
as it is done while deriving the dynamic equation in the Saint Venant system, then
the correction parameter β should rather be used. On the other hand, if the energy
conservation principle is applied, then the correction parameter α should be used.
However, during the derivation of the steady flow equation from the system of
Saint Venant equations, the dynamic equation (1.99) is transformed into Eq. (1.109)
representing the conservation of energy. Therefore, from now on in the governing
equation of the steady flow the correction parameter α will be used. Note that when
Eq. (1.92) is derived directly from the mechanical energy conservation principle,
the parameter α arises in this equation in natural way.

Since Eqs. (1.108) and (1.109) were derived from the system of Saint Venant
equations, they should be applicable for all types of open channels. Indeed, as it
will be shown later, numerical integration of Eq. (1.109) by the implicit trapezoidal
rule leads to the well known step method, commonly applied in practice. Usually
the step method is derived directly from the principle of energy conservation applied
for two neighboring cross-sections lying along channel axis, i.e. for discrete system.

Equation (1.109) can be recast into Eq. (1.97), which has been previously derived
for rectangular channel from the energy principle and is more familiar in open
channel hydraulics. To this order using Eq. (1.108) the spatial derivative of the
mechanical energy is transformed to the form:

dE

dx
= d

dx

(
h + α · Q 2

2 g · A2

)
= dh

dx
+ α · Q

g · A2
q − α · Q2

g · A3

dA

dx
(1.111)

As previously, one can assume that the flow direction coincides with the positive
direction of x axis, so that the modulus in the friction slope (Eq. 1.82) is omitted.
Substitution of Eqs. (1.82) and (1.111) with Eq. (1.1) in Eq. (1.109) yields:

dh

dx
= −

n2
M · Q2

R4/3 · A2
+ α · Q2 · B

g · A3

dZ

dx
+ 2α · Q

g · A2
q

1 − α · Q2 · B

g · A3

(1.112)
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For constant flow discharge along the channel axis (Q = const.), i.e. when the
lateral inflow is neglected (q = 0), one obtains a simpler version of Eq. (1.112):

dh

dx
= −

n2
M · Q2

R4/3 · A2
+ α · Q2 · B

g · A3

dZ

dx

1 − α · Q 2 · B

g · A3

(1.113)

For a rectangular channel with longitudinal bed slope s, instead of the water
stage h the flow depth H can be introduced. To this end the water level h expressed
by Eq. (1.1) is substituted in Eq. (1.113) resulting in the following equation:

d

dx
(H + Z) = −

n2
M · Q2

R4/3 · A2
+ α · Q2 · B

g · A3

dZ

dx

1 − α · Q 2 · B

g · A3

(1.114)

Now, introducing the definition of the longitudinal bed slope (1.2) and the Froude
number (1.17) into Eq. (1.114) one obtains:

dH

dx
= s − S

1 − α · F2
r

. (1.115)

Note that for α = 1 Eq. (1.115) coincides with Eq. (1.99). In such a way the
classic form of the governing equation for steady gradually varied flow in prismatic
open channel was derived directly from the system of Saint Venant equations.

1.7 Storage Equation

In hydraulic practice one has often to consider a river flowing through reservoir
behind a dam. In such a case the dimensions of wetted cross-sections increase signif-
icantly, whereas the average flow velocities decrease. Location of a reservoir along
the river course influences propagation of flood waves, reducing their peaks flows
and volumes. For flood routing purposes it is sometimes reasonable to neglect spa-
tial variability of the flow parameters and to reduce formally the reservoir to a point
characterized by time dependent capacity of retained water only. Such assumption
leads to the so-called storage equation.

To derive the storage equation let us consider the situation shown in Fig. 1.10.
The capacity of the reservoir behind the dam depends on the topography of the
valley and on the water stage kept in the reservoir h(t).

If the width and depth of the reservoir are not too large, meaning that the flow
process is still one dimensional, the flood wave propagating through reservoir can
be modeled using the system of Saint Venant equations. However, if we are not
interested in considering the internal distribution of the velocity and pressure fields
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Fig. 1.10 Scheme of a retention reservoir

in the reservoir, the problem of reservoir’s dynamic can be reduced to the problem of
mass conservation only, considered at the global scale. In such a case we neglect the
flow velocities and the behavior of the reservoir will be described by one dependent
variable h(t) only.

To obtain the governing equation let us apply the mass conservation principle to
a control volume constituted by the entire capacity of the reservoir, limited by an
appropriate control surface. The mass conservation principle means that the time
variation of the mass contained in reservoir is caused by the net flow through the
control surface only. This statement is expressed as follows:

d

dt

∫∫∫

V

ρ · dV +
∫∫

σ

ρ · U · n · dA = 0 (1.116)

where:

t – time,
ρ – water density,
V – control volume,
σ – control surface,
U – vector of flow velocity,
n – unit vector normal to surface σ and oriented towards outside of volume.

If we assume constant water density (ρ = const), then Eq. (1.116) will express
the conservation of the water volume in reservoir:

d

dt

∫∫∫

V

dV +
∫∫

σ

U · n · dσ = 0 (1.117)



32 1 Open Channel Flow Equations

The first term of equation represents the time variation of volume since:

∫∫∫

V

dV = V (1.118)

The second term represents the net exchange of the water in reservoir with its
surrounding. Taking into account the main ways of exchange, this term can be
expressed as a sum the following components:

∫∫

σ

U · n · dσ = −I(t) + O(t) + E(t) − P(t) + G(t) (1.119)

where:

I(t) – river inflow,
O(t) – river outflow,
E(t) – evaporation from reservoir surface,
P(t) – rainfall on reservoir surface,
G(t) – infiltration through reservoir bottom.

Substitution of Eqs. (1.118) and (1.119) in Eq. (1.117) yields:

dV

dt
= I(t) − O(t) − E(t) + P(t) − G(t) (1.120)

This equation, known as the storage equation, represents the volume balance of
water in the reservoir. Note that this approach leads to the equations involving the
derivative with regard to time only. Equation (1.120) is called the volume balance
equation (Singh 1996).

For practical reasons the storage equation is more often expressed in terms of the
water level instead of the volume. The following relation:

dV = F (h) dh (1.121)

where F(h) is area of reservoir at the water level, allows us to rewrite Eq. (1.120) as
follows:

dh

dt
= 1

F(h)
(I(t) − O(t) − E(t) + P(t) − G(t)). (1.122)

Solving this equation one obtains the function h(t) representing time variation of
the water level in reservoir caused by the components of balance taken into account
in Eq. (1.122).

Equation (1.122) can be derived in other way, directly from the differential con-
tinuity equation (1.80). This manner of derivation will be used in Chapter 9 while
discussing the lumped flood routing models.
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1.8 Equation of Mass Transport

1.8.1 Mass Transport in Flowing Water

The rivers are recipients of many substances originating either from natural geo-
physical processes or from human activity. For instance during the water run-off
from a catchment small mineral particles are rinsed, which together with the river
water form a mixture having the features of solution. In a similar way various
chemical substances applied in agriculture are delivered to the rivers and streams,
including fertilizers, herbicides and pesticides. An important natural constituent of
water is the dissolved oxygen, playing fundamental role in aquatic life. All these
substances are readily dissolved in water but they do not react with water.

The substances present in the flowing water, which for the sake of shortness
will be referred to as pollutants, can be divided into active and passive. Active
pollutants have significant effect on the density and viscosity of water, thus chang-
ing the hydrodynamic conditions of flow. In such case, the equations describing
pollutant transport are coupled with the flow equations and should be solved simul-
taneously. On the other hand, the passive pollutants have negligible influence on
flow conditions, and consequently allow for splitting and separate solution of the
hydrodynamic and transport problem.

The pollutants can be also classified with respect to their behaviour in water, into
conservative and non-conservative ones. A conservative pollutant does not change
its overall mass in time, whereas the non-conservative does. An example of conser-
vative pollutant is the chloride ion. The changes of mass of pollutant may result from
its natural properties (for instance radioactive materials), or from chemical and bio-
logical processes in which the pollutant is involved (e.g. dissolved oxygen). In the
following part we will focus on the transport of passive pollutants, both conservative
and non-conservative.

Let us introduce some basic definitions. The quantity of constituent dissolved in
water can be expressed by:

• the concentration being the ratio of its mass to the volume of water in which it is
dissolved

c = Mp

V
, (1.123)

• the total load in the considered volume of water

Mp = c · V (1.124)

where:

c – concentration, i.e. mass of considered pollutant per unit volume of water,
Mp – mass of considered pollution,
V – volume of water.
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The concentration is usually expressed in kg·m−3, mg·dm−3, or g·m−3. The load
of pollutant is expressed in mass units, i.e. kg and its derivatives. In the stream
charcterized by the discharge Q, the flow rate of dissolved constituent φ is used,
instead of the load Mp. It is defined as follows:

φ = c · Q (1.125)

where φ represents the mass of pollutant flowing through the wetted cross-sectional
area normal to the channel axis per unit time.

The intensity of mass transport is defined by the flux, which expresses the mass
of pollutants flowing through the unit area of a channel cross-section normal to the
velocity vector and per unit time. Then its units are kg·m−2·s−1 and their derivatives.

The transport of any pollutant dissolved in the flowing water is considered as
a superposition of two fundamental physical processes: advection and diffusion.
Advection is the movement of the constituent dissolved in water due to the motion of
water itself. Accordingly to Eq. (1.125), the advective flux is expressed as follows:

φad = c · U (1.126)

where:

φad − mass flux due to advection,
U – flow velocity or advective velocity.

For constant flow velocity advection does not disturb the initial distribution of
the concentration over the channel axis (Fig. 1.11). The concentration distribution
moves with the average velocity of the stream, so that after time t1 it takes the
position which is shifted with regard to initial one by the value of L=U·t1. The
shape of initial distribution will change for variable flow velocity.

Advection is a reversible process. It means that for the opposite flow conditions
imposed at t = t1 the distribution of concentration c(x, t = t1) will reach the shape
and position of initial distribution c(x, t = 0).

c (x,t = 0) c (x,t = t1)

L = U.t1)

c

x

Fig. 1.11 Advective transport of initially imposed distribution of concentration with constant flow
velocity U
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The second fundamental transport process is the mass diffusion, which causes the
mass of dissolved constituent to move from places of higher concentration towards
diminishing concentration. This phenomenon is governed by the Fick’s Ist law of
diffusion (Baehr and Stephan 2006). Accordingly to this law the diffusive flux of
mass, for instance in x direction, is expressed as:

φx = − DM ∂c

∂x
, (1.127)

where:

φx – the diffusive flux of mass in x direction,
∂c/∂x – gradient of concentration,
DM – coefficient of molecular diffusion.

The negative sign at the right hand side of Eq. (1.127) ensures a positive mass
flux in the direction of decreasing concentration c.

The molecular diffusion is an important transport process when water is at rest or
during laminar flow. The value of the diffusion coefficient depends on the physical
properties of the solution and its temperature. Typical values of the diffusion coeffi-
cient are 10−10 to 10−9 m2·s−1 in liquids (Baehr and Stephan 2006). Conversely to
advection, the process of diffusion is irreversible. It means that there is no possibility
to obtain the initial concentration distribution by reversing flow conditions.

As we will see later, an equation similar to the Fick’s law can be applied to
describe other processes in flowing stream, which in physical sense have nothing
in common with the molecular diffusion. However, the effects of these processes
can be considered as similar to the effects of diffusion. Such a case is known as the
diffusive analogy, although the coefficient of proportionality does not depend on the
physical properties of the considered solution.

1.8.2 Derivation of the Mass Transport Equation

In the control volume V limited by the control surface σ , the mass of constituent
dissolved in the water body can vary in time due to the flux through the surface σ or
due to the chemical processes taking place in water, which increase or decrease the
mass of constituent. This statement is written as:

∂

∂t

∫

V

c · d V +
∫

σ

q · n · d σ −
∫

V

δ · d V = 0, (1.128)

where:

c – concentration,
V – control volume,
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σ – control surface,
q – mass flux through the surface σ ,
n – unit vector normal to the surface σ and oriented out of the control volume,
δ – density of internal source/sink, which represents the intensity of generation

or decay of dissolved constituent.

Using the Gauss-Ostrogradski theorem (Korn and Korn 1968, McQuarrie 2003),
Eq. (1.128) is rewritten as:

∂c

∂t
+ div q + δ = 0. (1.129)

Next, one can substitute Eqs. (1.126) and (1.127) describing the advection and
diffusion fluxes into (1.129). Using a more general vector notation one obtains:

∂c

∂t
+ div(U · c − DM · grad c) + δ = 0, (1.130)

where:

U = (u, v, w)T − velocity vector,
DM – tensor of molecular diffusion having non-zero elements only on main

diagonal.

In scalar form Eq. (1.130) becomes:

∂c

∂t
+ ∂

∂x
(u · c) + ∂

∂y
(v · c) + ∂

∂z
(w · c) +

− ∂

∂x

(
DM

x
∂c

∂x

)
− ∂

∂y

(
DM

y
∂c

∂y

)
+ − ∂

∂z

(
DM

z
∂c

∂z

)
+ δ = 0,

(1.131)

In such a way the 3D advection-diffusion transport equation was derived. It holds
for laminar flow only, since the molecular diffusion was taken into consideration. As
mentioned earlier, every large-scale flow of surface waters is turbulent (Eagleson
1970), which means that random fluctuations of the velocities and concentration
arise. Similarly to the Navier–Stokes equations considered in preceding Section 1.2,
the Reynolds approach has to be applied. Therefore it is assumed that the instanta-
neous values of velocities and concentrations can be expressed as sums of their
time-averaged values and fluctuations. The instantaneous value of concentration can
be expressed by a formula:

c = c̄ + c′, (1.132)

where c̄ is the time averaged value of concentration and c’ is the fluctuation of
concentration from its averaged value. Substituting these relations in Eq. (1.131)
and taking into account the rules of operation on the averaged values one obtains:
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∂c

∂t
+ ∂ (u · c)

∂x
+ ∂ ( v · c)

∂y
+ ∂ (w · c)

∂z
+

− ∂

∂x

(
DM

x
∂c

∂x

)
− ∂

∂y

(
DM

y
∂c

∂y

)
− ∂

∂z

(
DM

z
∂ c

∂z

)

+ u′ · c′ + v′ · c′ + w′ · c′ + δ = 0

(1.133)

In Eq. (1.133) the bars designate the averaged values, whereas the terms
u′ · c′, v′ · c′, w′ · c′ containing the products of fluctuations of both velocity and
concentration represent the effect of averaging of the advection transport. It is an
additional effect of the turbulent transport. Similarly to the turbulent transport of
momentum in the Navier–Stokes equations these terms can be expressed using the
afore-mentioned diffusive analogy. It implies that the turbulent advective transport
can be described with formulas analogous to the Fick’s law (1.127):

u′ · c′ = −DT
x
∂c

∂x
, (1.134a)

v′ · c′ = −DT
y
∂c

∂y
, (1.134b)

w′ · c′ = −DT
z
∂c

∂z
(1.134c)

in which the coefficients DT
x , DT

y , DT
z are called the coefficients of turbulent mass

diffusion. Eq. (1.133) combined with Eqs. (1.134a), (1.134b) and (1.134c) takes the
following form:

∂c

∂t
+ ∂ (u · c)

∂x
+ ∂ ( v · c)

∂y
+ ∂ (w · c)

∂z
+

− ∂

∂x

((
DM

x + DT
x

) ∂c

∂x

)
− ∂

∂y

((
DM

y + DT
y

) ∂c

∂y

)

− ∂

∂z

((
DM

z + DT
z

) ∂ c

∂z

)
+ δ = 0

(1.135)

The experiments show that the turbulent transport and diffusivity is much greater
than the molecular ones (Martin and McCutcheon 1999). Since DT � DM there-
fore the molecular diffusion can be neglected. In the following the bars denoting
the time-averaged values will be omitted. However, from this moment it should be
remembered that the velocities and concentration must be interpreted as averaged
values. Consequently Eq. (1.135) is rewritten in the following final form:

∂c

∂t
+ ∂ (u · c)

∂x
+ ∂ (v · c)

∂y
+ ∂ (w · c)

∂z
+

− ∂

∂x

(
DT

x
∂c

∂x

)
− ∂

∂y

(
DT

y
∂c

∂y

)
− ∂

∂z

(
DT

z
∂c

∂z

)
+ δ = 0

(1.136)
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Equation (1.136) is 3D advection-diffusion transport equation which is valid for
the turbulent flow. Then, if we know the 3D velocity field and we are able to esti-
mate the coefficients of turbulent diffusion, this equation can be solved. For the
imposed initial-boundary conditions one obtains the function c(x, y, z, t). Although
such solution is possible, it is not a trivial problem. In open channel hydraulic such
approach is rarely applied. Instead, one makes use of the particular properties of the
open channel flow to simplify Eq. (1.136).

Relatively small depths of rivers compared to widths and lengths cause that mix-
ing process in the vertical direction is more rapid than for the other directions normal
to the channel axis. Consequently, the vertical distribution of concentration becomes
relatively uniform not far away from the source of pollution. It allows us to eliminate
vertical dimension from Eq. (1.136). This elimination is carried out by its integration
over depth.

Let us integrate Eq. (1.136) with regard to z changing from the channel bottom
to the water stage:

h∫

Z

[
∂c

∂t
+ ∂

∂x
(u · c) + ∂

∂y
(v · c) + ∂

∂z
(w · c)+

− ∂

∂x

(
DT

x
∂c

∂x

)
− ∂

∂y

(
DT

y
∂c

∂y

)
− ∂

∂z

(
DT

z
∂c

∂z

)
+ δ

]
dz = 0.

(1.137)

It is assumed that any function in Eq. (1.137) is averaged vertically using the
formula applied previously for the components of flow velocity. Then we will apply
the following:

F(x,y,t) = 1

H

h∫

Z

f (x,y,z,t) d z. (1.138)

f = F + f ′′, (1.139)

h∫

Z

f ′′ · d z = 0, (1.140)

where f” is the deviation of the actual value of function f from its averaged value F.
All functions are replaced accordingly to the formula (1.139) and afterwards the

subsequent integrals in Eq. (1.137) are calculated as in the case of the Reynolds
equations. Finally, the following 2D advection-diffusion transport equation is
obtained:

∂(H · C)

∂t
+ ∂

∂x

(
H · U · C − H · DT

x
∂C

∂x
+ H · u′′ · c′′

)
+

+ ∂

∂y

(
H · V · C − H · DT

y
∂C

∂x
+ H · v′′ · c′′

)
+ H · δ = 0

(1.141)
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where:

C – vertically averaged concentration,
U, V – vertically averaged the velocity vector components in x and y direction,

respectively.

Equation (1.141) has been derived with the assumption that no fluxes through the
limits of the water layer exist:

DT
z
∂c

∂z

∣∣∣∣
h

= 0, (1.142)

DT
z
∂c

∂z

∣∣∣∣
Z

= 0. (1.143)

In the case of mass transport in open channels such assumption is admissible.
In Eq. (1.141) two additional terms, u′′ · c′′ and v′′ · c′′occurred. These terms rep-

resent additional mass fluxes, resulting from the vertical averaging of the variable
velocity and concentration functions. They are expressed, in a similar manner to
the previously considered turbulent transport, with formulas analogous to the Fick’s
law:

u′′ · c′′ = −DD
x
∂C

∂x
, (1.144a)

v′′ · c′′ = −DD
y
∂C

∂y
. (1.144b)

where DD
x and DD

y are called coefficients of dispersion in x and y direction,
respectively. Substitution of Eqs. (1.144a) and (1.144b) in Eq. (1.142) yields:

∂

∂t
(H · C) + ∂

∂x
(H · U · C) + ∂

∂y
(H · V · C)+

− ∂

∂x

(
H(DT

x + DD
x )
∂C

∂x

)
− ∂

∂y

(
H(DT

y + DD
y )
∂C

∂y

)
+ H · δ = 0

(1.145)

The coefficients of dispersion DD
x and DD

y represent the effect of vertical averag-
ing of velocity and concentration. To better explain the concept of their introduction
let us follow the imagination of flow and mass transport processes in open channel
basing on idea proposed by Cunge et al. (1980) and presented in Fig. 1.12.

If the velocity distribution is non-uniform in the vertical direction and the turbu-
lent diffusion does not exist (DT = 0), then the initial distribution of concentration
is traveling along x axis with shape deformation cased by the variable velocity only.
Since the particles in the vicinity of the bottom move slower than those in the upper
part of the stream, the initial distribution becomes deformed in space as it is shown
by the dashed lines in Fig. 1.12. When the flow is turbulent, the rectangular distribu-
tion is additionally subjected to increased dispersion caused by random fluctuations
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Fig. 1.12 Illustration of dispersion concept in open channel

of velocities. So the deformation of initial distribution occurs in two ways simultane-
ously. Because both velocity and concentration distributions are replaced by uniform
ones, the observed dispersion of particles should be reproduced by an additional
term in the transport equation. This is the reason of introducing of the dispersive
terms into Eq. (1.145). The introduced term has diffusive character. However, the
coefficient DD is obviously not related to the physical properties of the consid-
ered solution but to the degree of non-uniformity of the velocity and concentration
distributions.

As results from experiments, the values of the longitudinal dispersion are signifi-
cantly larger than those of the turbulent diffusion DD � DT . It appears that DD can
reach the value even of the order of 102 m2·s−1 (Cunge et al. 1980). For this reason
sometimes the turbulent diffusion in Eq. (1.145) is neglected.

Considering the pollutant transport in open channels, one can distinguish two
different zones in which the mathematical modeling should be carried out using dif-
ferent approaches. If we are dealing with a point source of pollution as in Fig. 1.13,
then the pollutant transport in the zones near to the source must be analyzed as 2D
(or even 3D) problem.

Q

L

x

y

Lz

Fig. 1.13 Distribution of concentration near the source of pollutant
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In this zone of length Lz, not far away from the source, we can expect the uni-
form distribution of concentration in the vertical direction only. Assumption of the
uniform distribution over the whole wetted cross-sectional area is not admissible.
Thus, for such a case Eq. (1.145) is suitable model. 1D model, preferable for open
channels, can be applied only when the pollutants are well mixed over whole cross-
section of a channel, which sometimes happens at quite large distant (Ly in Fig. 1.13)
from the point of release of the pollutant.

When the condition of good mixing is satisfied, Eq. (1.145) can be simplified by
elimination of the second dimension normal to the channel axis, i.e. by elimination
of the independent variable y. To this order Eq. (1.145) must be integrated over the
width of the channel from 0 to B (Fig. 1.14).

Since we assume that the water does not flow in y direction, i.e. V = 0, and the
depths at the limits of integrations are: H(y = 0), H(y = B) = 0 then the integral
reduces to:

B∫

0

(
∂

∂t
(H · C) + ∂

∂x
(H · U · C) − ∂

∂x

(
H(DT

x + DD
x )
∂C

∂x

)
+ H · δ

)
dy = 0

(1.146)
The integrals of subsequent terms of Eq. (1.146) are following:

B∫

0

∂

∂t
(H · C) dy = ∂

∂t

B∫

0

H · C · dy = ∂

∂t

(
A · C

)
(1.147)

B∫

0

∂

∂x
(H · U · C) dy = ∂

∂x

B∫

0

(H · U · C) dy = ∂

∂x

(
Q · C

)
(1.148)

B

y

H(y)

h

y dy

Z(y)

Fig. 1.14 Sketch of cross-section for integration of Eq. (1.145) in y direction
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B∫

0

∂

∂x

(
H(DT

x + DD
x )
∂C

∂x

)
dy = ∂

∂x

B∫

0

(
H(DT

x + DD
x )
∂C

∂x

)
dy

= ∂

∂x

(

A(DT
x + DD

x )
∂C

∂x

) (1.149)

B∫

0

H · δ· dy = δ

B∫

0

H· dy = δ · A (1.150)

Substitution of Eqs. (1.147), (1.148), (1.149) and (1.150) in Eq. (1.146) yields

∂

∂t
(A · C) + ∂

∂x
(Q · C) − ∂

∂x

(
A
(
DT

x + DD
x

) ∂·
∂x

)
+ A · δ = 0. (1.151)

Consequently 1D advection-diffusion transport equation was obtained. In this
equation the bar denotes the averaged concentration over cross-sectional area:

C(x,t) = 1

A

B∫

0

⎛

⎝
h∫

Z

c(x,y,z,t)dz

⎞

⎠dy (1.152)

To simplify notation the bar will be omitted, however, in 1D transport equation
considered further, the concentration should be interpreted as averaged over channel
cross-section. In addition, in the sum of the diffusion coefficients the turbulent dif-
fusion coefficient is neglected as much smaller than the dispersion coefficient and
the subscripts x and the superscript D are omitted, since only one coefficient is used.
Consequently Eq. (1.151) becomes:

∂

∂t
(A · C) + ∂

∂x
(Q · C) − ∂

∂x

(
A · D

∂C

∂x

)
+ A · δ = 0. (1.153)

Equation (1.153) describes 1D advection-diffusion transport of passive pollu-
tant dissolved in water for non-prismatic open channel. In particular cases it can be
subjected to additional simplifications.

The products in Eq. (1.153) can be differentiated:

C
∂A

∂t
+ A

∂C

∂t
+ C

∂Q

∂x
+ Q

∂C

∂x
− ∂

∂x

(
A · D

∂C

∂x

)
+ A · δ = 0. (1.154)

If the considered channel is fed by a lateral inflow, then the continuity equation
(1.80) is valid. Substitution of this equation as well as of Eq. (1.9) yields:

∂C

∂t
+ U

∂C

∂x
− 1

A

∂

∂x

(
A · D

∂C

∂x

)
+ q · C

A
+ δ = 0. (1.155)
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Equation (1.155) can be simplified further. Assuming a constant coefficient of
dispersion D and differentiating the diffusive term leads to the following:

∂C

∂t
+
(

U − D

A

∂A

∂x

)
∂C

∂x
− D

∂2C

∂x2
+ q · C

A
+ δ = 0. (1.156)

As results from Eq. (1.156), the variability of the wetted cross-sectional area
generates an effect of additional advection. Depending on the sign of the derivative
∂A/∂x an increase or decrease of the advective transport may occur.

For steady and uniform flow, when A = const, U = const and q = 0, Eq. (1.156)
becomes an advection-diffusion equation with constant parameters:

∂C

∂t
+ U

∂C

∂x
− D

∂ 2 C

∂x2
+ δ = 0. (1.157)

It is the simplest form of 1D transport equation. For some initial and boundary
conditions Eq. (1.157) can be solved analytically. For this reason it is often used to
check the accuracy of the numerical methods applied to solve more realistic forms
of transport equations.

1.9 Thermal Energy Transport Equation

Apart from dissolved constituents, the flowing stream also transports heat. This phe-
nomenon has several implications. First of all, the heat transport determines the
seasonal changes of open channel hydraulic. The most important change occurs
at the beginning of winter in temperate and cold climates, when intensive heat
exchange through the water–air interface leads to water cooling. When the water
temperature reaches 0◦C, ice can occur in the stream. After some time, in suitable
circumstances the ice layer at the water surface appears. In such a case the hydraulic
conditions of flow change radically, from those typical to a free-surface flow to the
ones characteristic for closed-conduit flow. The presence of the ice disturbs the nav-
igation and operation of the hydraulic structures. On the other hand the temperature
of water determines the possible concentration of the gases dissolved in water influ-
encing in this way the chemical and biological processes. Finally it determines the
self-purification and living conditions for aquatic fauna. Therefore the knowledge of
the spatial and temporal evolution of the water temperature has essential meaning
from the viewpoint both hydraulic and water-quality related studies.

Variation of the water temperature is described by the head transport equation,
which is derived from the energy conservation principle. In this case the conser-
vative quality is the total energy i.e. kinematic and internal (thermal) energy per
unit volume of water. Note that for an incompressible liquid like water, the internal
energy is defined through its temperature.

In the case of turbulent flow the energy conservation principle applied for the
control volume V of the water limited by the control surface σ leads to the following
equation:
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∂θ

∂t
+ div(u · θ − (α + αT) grad θ ) = 0. (1.158)

where:

t – time,
θ – time averaged temperature of water,
u – time averaged vector of flow velocity,
α – tensor of molecular heat diffusion
αT – tensor of turbulent heat diffusion

The tensors of heat diffusion are given by formulas:

α = 1

ρ · cw
λ, αT = 1

ρ · cw
λT (1.159)

where:

λ – tensor of molecular heat conduction,
λT – tensor of turbulent heat conduction,
cw – specific heat of water,
ρ – density of water.

Both tensors have only 3 non-zero elements located on the main diagonal and
related with the respective spatial directions. These components are given as:

αx = λx

ρ · cw
,. (1.160a)

αy = λy

ρ · cw
, (1.160b)

αz = λz

ρ · cw
(1.160c)

αT
x = λT

x

ρ · cw
,. (1.161a)

αT
y = λT

y

ρ · cw
, (1.161b)
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αT
z = λT

z

ρ · cw
(1.161c)

where λx, λy, λz are the coefficients of molecular heat conductivity in x, y and z
direction, respectively, whereas λT

x , λT
y , λT

z are the coefficients of turbulent heat
conductivity in the same directions. In SI system the components of tensor of heat
diffusion are expressed in the same units as the coefficient of mass diffusion, i.e. in
m2·s−1. Since the components of turbulent diffusivity tensor are much greater than
the coefficients of molecular heat diffusion

(
α � αT

)
, then α can be neglected. With

this assumption Eq. (1.158) can be rewritten in scalar notation as follows:

∂θ

∂t
+ ∂

∂x
(u · θ ) + ∂

∂y
(v · θ ) + ∂

∂z
(w · θ )+

− ∂

∂x

(
aT

x
∂θ

∂x

)
− ∂

∂y

(
aT

y
∂θ

∂y

)
− ∂

∂z

(
aT

z
∂θ

∂z

)
= 0

. (1.162)

As for the mass transport equation, it is well justified to reduce the number of
dimensions also in this case. Equation (1.162) can be simplified by integration in
the vertical direction from the bottom of water layer to its surface. The integra-
tion is carried out with identical assumptions as applied for the mass transport. It
means that any function in Eq. (1.162) is averaged in the vertical using the formulas
(1.138), (1.139) and (1.140), whereas the velocity vector component in z direction
is eliminated (w = 0). Since in this case the integration is slightly different, let us
carry it out.

Equation (1.162) is integrated over depth:

h∫

Z

[
∂

∂t
(T + θ ′′) + ∂

∂x
((U + u′′)(T + θ ′′))+

∂

∂y
((V + v′′)(T + θ ′′)) + − ∂

∂x

(
aT

x
∂

∂x

(
T + θ ′′)

)
−

∂

∂y

(
aT

y
∂

∂y

(
T + θ ′′)

)
− ∂

∂z

(
aT

z
∂θ

∂z

)]
d z = 0,

(1.163)

where:

T – vertically averaged water temperature,
U – vertically averaged horizontal flow velocity in x direction,
V – vertically averaged horizontal flow velocity in y direction,
u′′ – the deviation of actual value of u from its averaged value U,
θ ′′ – the deviation of actual value of θ from its averaged value T.

The respective terms of Eq. (1.163) are integrated as follows:
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I1 =
h∫

Z

∂

∂t
(T + θ ′′) d z = ∂

∂t

h∫

Z

(T + θ ′′) d z = ∂

∂t
(T · H), (1.164a)

I2 =
h∫

Z

∂

∂x
((U + u′′)(T + θ ′′)) d z = ∂

∂x

h∫

Z

(U · T + u′′ · T + U · θ ′′ + u′′ · θ ′′) d z =

= ∂

∂x
(H · U · T + H · u′′ · θ ′′),

(1.164b)

I3 =
h∫

Z

∂

∂y
((V + v′′)(T + θ ′′)) d z = ∂

∂y

h∫

Z

(V · T + v′′ · T + U · θ ′′ + v′′ · θ ′′) d z =

= ∂

∂y
(H · V · T + H · v′′ · θ ′′),

(1.164c)

I4 =
h∫

Z

∂

∂x

(
αT

x
∂

∂x
(T + θ ′′)

)
d z = ∂

∂x
αT

x

⎛

⎝
h∫

Z

∂

∂x
(T + θ ′′) d z

⎞

⎠ =

= ∂

∂x

(
αT

x · H
∂T

∂x

)
,

(1.164d)

I5 =
h∫

Z

∂

∂y

(
αT

y
∂

∂y
(T + θ ′′)

)
d z = ∂

∂y
αT

y

⎛

⎝
h∫

Z

∂

∂y
(T + θ ′′) d z

⎞

⎠ =

= ∂

∂y

(
αT

y · H
∂T

∂y

)
,

(1.164e)

I6 =
h∫

Z

∂

∂z

(
αT

z
∂θ

∂z

)
d z = αT

z
∂θ

∂z

∣∣∣∣
h

− αT
z
∂θ

∂z

∣∣∣∣
Z

. (1.164f)

The integral of the last term of Eq. (1.163) I6 represents the difference between
the fluxes through the water surface at z = h and the channel bottom at z = Z. The
energy exchange across the bottom is not important, except for the flow under ice
cover. Thus one can assume:

αT
z
∂θ

∂z

∣∣∣∣
Z

= 0, (1.165)

where αz
T is the coefficient of turbulent conductivity in z direction. On the other

hand, the flux through the water surface has essential importance for heat trans-
port since this is the main way of energy exchange, which determines the water
temperature. One can assume that:
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Fig. 1.15 Scheme of a channel reach transporting and exchanging heat

− αT
z
∂θ

∂z

∣∣∣∣
h

= φ, (1.166)

where φ is the net rate of heat transport between the water and the air in both ways.
It is caused by many physical processes which take place at the air–water interface
(Fig. 1.15).

Substitution of all calculated integrals in Eq. (1.163) yields:

∂

∂t
(T · H) + ∂

∂x

(
T · H · U − αT · H

∂T

∂x
+ H · u′′ · θ ′′

)
+

+ ∂

∂y

(
T · H · V − αT · H

∂T

∂y
+ H · v′′ · θ ′′

)
− φ

ρ · cw
= 0

. (1.167)

The terms u′′ · θ ′′ and v′′ · θ ′′ and represent the already well-known additional
transport effect, this time due to the fluctuations of the velocity and temperature. As
previously, it can be expressed using a formula similar to the Fourier law (Baehr and
Stephan 2006):

u′′ · θ ′′ = − 1

ρ · cw
λD

x
∂T

∂x
= −αD

x
∂T

∂x
, v′′ · θ ′′ = − 1

ρ · cw
λD

y
∂T

∂y
= −αD

y
∂T

∂y
,

(1.168)
in which αD

x , αD
y are the coefficients of longitudinal heat dispersion. Substitution of

Eq. (1.168) in Eq. (1.167) yields:
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∂

∂t
(H · T) + ∂

∂x
(H · T · U) + ∂

∂y
(H · T · V)+

− ∂

∂x

((
αT

x + αD
x

)
H
∂T

∂x

)
− ∂

∂y

((
αT

y + αD
y

)
H
∂T

∂y

)
− φ

ρ · cw
= 0

.

(1.169)

Since the order of magnitude of the turbulent diffusion coefficients is much
less than the order of magnitude of the dispersion coefficients, the former can be
neglected. It allows us to rewrite Eq. (1.169) as follows:

∂

∂t
(H · T) + ∂

∂x
(H · T · U) + ∂

∂y
(H · T · V)+

− ∂

∂x

(
αD

x · H
∂T

∂x

)
− ∂

∂y

(
αD

y · H
∂T

∂y

)
− φ

ρ · cw
= 0

. (1.170)

Equation (1.170) describes 2D unsteady heat transport. In open channel
hydraulics this equation is applied locally, in the area where the water is not well
mixed over the cross-section and two velocity vector components must be taken into
consideration.

To obtain 1D equation for a channel reach, in which the water is well mixed
in cross-section, Eq. (1.170) should be integrated over the channel width B, i.e.
in y direction (Fig. 1.14). Since in y direction the water does not move, V = 0. In
addition, the depths at the limits of integrations are: H(y = 0), H(y = B) = 0. If there
is one flow direction only, then the indices connected with the dispersion coefficient
D can be omitted. Finally, the integration is carried out for the reduced form of Eq.
(1.170):

B∫

0

(
∂

∂t
(H · T) + ∂

∂x
(H · U · T) − ∂

∂x

(
H · α ∂T

∂x

)
− φ

ρ · cw

)
dy = 0 (1.171)

The integration carried out in the same way as for the mass transport equation,
gives:

∂

∂t
(A · T) + ∂

∂x
(Q · T) − ∂

∂x

(
α
∂T

∂x

)
− B · φ
ρ · cw

= 0, (1.172)

In this equation:

• T(x,t) = 1
A

B∫

0

(
h∫

Z
θ · dz

)

dy is the temperature averaged over cross-section,

• Q(x,t) =
B∫

0

(
h∫

Z
u · dz

)

dy is the flow rate,

• A(x,t) =
B∫

0

(
h∫

Z
dz

)

dy is the wetted cross-sectional area,
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• B(x,t) =
B∫

0
dy is the channel width at water surface.

The net flux of heat through the water surface φ resulting from the energy balance
at the interface has negative sign if the water emits heat towards atmosphere and it
has positive sign when heat is absorbed by the water from atmosphere. The term φ

takes into account all important processes connected with the heat transfer such as:

• short wave solar radiation,
• long wave water surface radiation,
• long wave atmosphere radiation,
• sensible heat conducted between the water and atmosphere,
• latent heat of vaporization or condensation.

Since some of the above listed processes are determined by the water temperature
then the net flux is a function of temperature as well: φ = φ(T).

For a channel reach, which is not fed by the lateral inflow and for a constant
coefficient of longitudinal dispersion α, Eq. (1.172) can be further simplified:

∂T

∂t
+ U

∂T

∂x
− α

A

∂

∂x

(
A
∂T

∂x

)
− φ

ρ · cw · Ha
= 0, (1.173)

where:

U = Q/A – averaged velocity,
Ha = A/B – hydraulic depth.

If the flow is steady then A = const. and U = const. In such a case Eq. (1.173) is
reduced to the simplest form of the advection-diffusion head transport equation:

∂T

∂t
+ U

∂T

∂x
− α

∂2T

∂x2
− φ

ρ · cw · Ha
= 0. (1.174)

Assuming constant parameters this equation can be solved analytically for some
initial-boundary conditions.

1.10 Types of Equations Applied in Open Channel Hydraulics

In this chapter the basic equations of open channel hydraulics were introduced. They
represent a variety of types depending of the considered kind of flow. For instance,
equations defining the critical depth (Eq. 1.16) and the normal depth for steady uni-
form flow (Eq. 1.20) are nonlinear algebraic equations, with respect to the unknown
value of HC or Hn, respectively. In other cases the unknown quantity is a function of
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a single independent variable, either x or t, and is specified by an ordinary differen-
tial equation (ODE), which contains derivatives of the function with respect to the
considered variable. An example of ODE is given by the storage equation (1.122),
while steady gradually varied flow is described by a system of two coupled ODEs
(Eqs. 1.108 and 1.109). Finally, if the unknown function depends on both space and
time, it is described by a partial differential equation (PDE), which contains deriva-
tives with respect to both x and t. This is the case of mass and energy transport
equations (Eq. 1.153 and 1.172), while the Saint Venant equations (1.87) and (1.88)
represent a system of two coupled PDEs.

A common feature of all these equations is that in principle they can be solved
only approximately, using numerical methods. Depending on the type of equation
to be solved, numerical approaches differ in complexity and may include multiple
stages, each of them constituting a separate numerical problem. For instance, ODEs
and PDEs are transformed in a process called discretization into systems of linear
or nonlinear algebraic equations, which are then solved to obtain the values of the
unknown functions at specified points in time-space domain.

In Chapter 2 we discuss the numerical techniques applied to solve single nonlin-
ear algebraic equations and systems of linear and nonlinear algebraic equations,
which are the basic building blocks for more complex numerical algorithms.
Numerical solution of ODEs and their systems is the subject of Chapters 3. The
methods presented in these two chapters are then applied to solve steady flow prob-
lems in Chapters 4. Partial differential equations, which are most challenging type
of equations from the numerical point, are discussed from Chapters 5 to 8.
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Chapter 2
Methods for Solving Algebraic Equations
and Their Systems

2.1 Solution of Non-linear Algebraic Equations

2.1.1 Introduction

In this section we consider the solution of the following equation:

f (x) = 0, (2.1)

where x is real variable and f(x) is real and continuous. The roots of Eq. (2.1) rep-
resent the values of x for which f(x) = 0. For our purpose we are interested in
determination of the real roots only.

The determination of the roots is carried out in two stages. At first the searched
roots must be located, i.e. we have to know their number and their approximate
positions. For this purpose the plot of f(x) is very useful and it should be done.
On the other hand, usually some reasonable approximation of the searched roots is
available from engineering analysis. For example the flow depth cannot be negative
number, so all negative roots are eliminated immediately as they are not the subject
of interest.

Each root must be separated from the others, so that in the specified interval
designed by two endpoints only a single root exists. Practically this is carried out by
examination of the signs of function f(x) at two selected values of x, let say a and b.
If f(x) has opposite sign at both ends of interval 〈a, b〉 then within this interval
at least one root exists (Fig. 2.1). Unfortunately this statement says nothing about
the number of roots between a and b. To answer this question an examination of
the derivative of function f(x) is required. If in the interval (a, b) the derivative of
function f(x) exists and it does not change its sign, i.e. f ′(x) > 0 or f ′(x) < 0 for a <
x < b, then there is a single root in 〈a, b〉 (Fig. 2.2).

When an approximate position of the root is found, one can pass to the second
stage of calculations. A suitable method for determination of a single root with
required level of precision must be applied. In further discussions we assume that
the interval in which a single root exists is already known. Some methods use both
endpoints of interval containing a root, whereas other ones need one point from

53R. Szymkiewicz, Numerical Modeling in Open Channel Hydraulics, Water Science
and Technology Library 83, DOI 10.1007/978-90-481-3674-2_2,
C© Springer Science+Business Media B.V. 2010
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Fig. 2.1 Roots of equation f(x) = 0 in the interval 〈a, b〉
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Fig. 2.2 Single root of function f(x) in the interval 〈a, b〉

this interval only. The former are called bracketing methods and the latter – open
methods.

2.1.2 Bisection Method

The concept of bisection method is to divide the interval 〈a, b〉 in two halves, and to
choose for further search the half which contains the root. This procedure is repeated
until the required accuracy criterion is satisfied.

The algorithm of determination the approximated value of the root of Eq. (2.1)
in interval 〈a, b〉 by bisection method with the assumed tolerance ε, can be listed as
follows:

(1) Compute c = (a + b)/2,
(2) Compute f(c),
(3) Verify: if |f (c)| ≤ ε then c is searched value of the root and problem is solved.

Otherwise:
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(4) Choose from two subintervals 〈a· c〉 and 〈c, b〉 this one, in which is the root and
determine endpoints of new interval: if f(a) · f(c) < 0, then set b = c, otherwise
set a = c;

(5) Go to point 1.

After ith iteration the length of initial interval 〈a, b〉 is reduced to the following
one:

bi − ai = 1

2i
(b − a); (i = 1,2, . . . ). (2.2)

In general case it is very difficult to estimate the true error of the calculated root.
In practice two types of accuracy criteria are commonly used. The first one assumes
that xi is a good approximation of searched root of equation f (x) = 0, if |f(xi)| is
a small number and conversely, if |f(xi)| is large number then xi is considered as
unsatisfying approximation of the root. The iterations are stopped when:

|f (xi)| ≤ ε (2.3)

where ε is positive number representing the assumed tolerance. However, sometimes
this approach can lead to false results, as illustrated in Fig. 2.3.

Even for small value of ε one can obtain an inaccurate solution of Eq. (2.1) if f(x)
varies only insignificantly in neighborhood of the root (Fig. 2.3a).

The second criterion is based on the examination of the length of currently
reduced interval. The iterations are stopped, when bi − ai ≤ ε′ where ε′ is spec-
ified tolerance however related to the length of interval, not to the value of function
f(x), as previously.

Comparing with other methods, the bisection method converges to the exact solu-
tion rather slowly. However it has two important advantages. First of all, it is always
convergent, what means that it always leads to the solution. Moreover, it does not

x

y = f (x)
y = f (x)

f (c)

f (c)

x cc

y y
a) b)

ε ε

x x

Fig. 2.3 Various forms of f(x) close to the root: slowly (a) and rapidly (b) varied
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require more assumptions on f(x) and its derivative, apart from the continuity of f(x)
in 〈a, b〉.

2.1.3 False Position Method

The false position method is one of the oldest methods of solution of the non-linear
equations. It is similar in concept to the bisection method, but the interval containing
root is divided in two parts proportionally to the values of f(x) at the endpoints.
Consequently, it is usually more efficient than the bisection method.

Consider again the interval 〈a, b〉 containing a single root (Fig. 2.4).
The points A(a, f(a)) and B(b, f(b)) we join by a straight line. It intersects the x

axis at point c. Its position is calculated using the formula derived from the similarity
of triangles (Fig. 2.4):

c = a · f (b) − b · f (a)

f (b) − f (a)
. (2.4)

Close to the root numbers of the same order may appear in both numerator and
denominator of Eq. (2.4), so significant round-off errors can be generated. For this
reason a rearranged formula is recommended:

c = a + f (a)
a − b

f (b) − f (a)
, (2.5)

The second term of Eq. (2.5) can be considered as the correction of a.
According to Eq. (2.5) one or both endpoints of the considered interval can move

during the iterations. It depends on the shape of function f(x) within the interval 〈a,
b〉. For monotonic function, when its second derivative f ′′(x) does not change the
sign in 〈a, b〉, one end will be fixed. For instance, if f(a) > 0 and f ′′(x) > 0 for a ≤ x
≤ b, then the end a is fixed (Fig. 2.5).

In such a case Eq. (2.5) may be reformed as follows:

 A

f (a) f (c)

f (b)

f (x)

a c

B

b

y

x

x

Fig. 2.4 Sketch of false position method
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y = f(x)

B

b = x0xxx 1i −1i
a

A
y

xx

f (a)

f (b)

Fig. 2.5 False position method with one fixed endpoint

x0 = b,

xi+1 = xi − f (xi)

f (xi) − f (a)
(xi − a) for i = 1, 2,...

(2.6)

Similar formula can be written in opposite situation as well, when the endpoint
b is fixed (Fig. 2.6).

Note that as the termination criterion rather relation (2.3) should be used. When
one end of the interval is fixed, then we approach the root from side of second end
and consequently, it is impossible to check the interval’s length. This can be seen in
Figs. 2.5 and 2.6.

The algorithm for solution of the non-linear equation using the false position
method is similar to the one for bisection method. The only difference is the way of
calculation of the point c dividing the interval 〈a, b〉.
Example 2.1 A trapezoidal channel with b = 2.5 m, nM = 0.025, m = 1.5,
s = 0.0005 carries a discharge Q = 8 m3/s. Determine the normal flow depth using
the false position method. Assuming the same termination criterion, compare the
number of needed iterations with those for the bisection method.

b = x0

f (a)

f (b)

y=f (x)

B

x1 x ia

A
y

x
x

Fig. 2.6 False position method with fixed endpoint b
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The normal depth satisfies the steady uniform discharge flow equation expressed
using the Manning formula (1.20)

Q = 1

nM
R2/3 · s1/2 · A (2.7)

For the trapezoidal shape of a channel as presented in Fig. 1.3, the cross-sectional
parameters are given by Eqs. (1.5) and (1.6), which lead to the following equation:

f (H) = Q − 1

n

(
b · H + m · H2

b + 2H
√

1 + m2

)5/3
s1/2 = 0 (2.8)

The root of Eq. (2.8) must be searched in the domain of the positive real numbers.
Note that f(H = 0) = Q then f(H) is expressed in units of the flow rate, i.e. in
[m3/s]. This allows us to choose easily the value of the parameter ε representing
the tolerance for convergence criterion. The root of Eq. (2.8) was searched in the
interval 〈0, 2.0 m〉.

To obtain the normal depth H = 1.546 m with assumed tolerance ε = 0.001 m3/s,
the false position method required 6 iterations, whereas the bisection method needed
11 iterations to reach the identical result.

2.1.4 Newton Method

The non-linear equation in standard form f(x) = 0 is solved. Assume that approx-
imated value of its root is xi and next approximated value xi+1 is located from
preceding one of distance h, so we have:

xi+1 = xi + δx, (2.9)

where δx is a small value. Assuming that f(x) is continuous and differentiated its
value at point xi+1 can be expressed using the Taylor series expansion:

f (xi + δx) = f (xi) + δx · f ′(xi) + (δx)2

2
f ′′(xi) + . . . . (2.10)

The Newton method uses Eq. (2.10) in which the terms with 2nd and higher order
of derivatives are neglected. On the other hand, it is expected that f(xi + δx) = 0.
Then Eq. (2.10) is reduced to the following:

f (xi)+ δx · f ′(xi) = 0 (2.11)

and the distance between two consecutive approximations of the root is equal to:

δx = − f (xi)

f ′(xi)
. (2.12)
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Substitution of Eq. (2.12) in Eq. (2.9) yields:

xi+1 = xi − f (xi)

f ′(xi)
. (2.13)

Interpretation of formula (2.13) is given in Fig. 2.7. The new approximation of
the root xi+1 is determined by the point of intersection of x axis and a straight line
tangential to the function f(x) at the old approximation of the root xi.

The same relation can be derived from the equation of the line tangential to the
function y = f(x) at point xi.

An important problem in the Newton method is the first estimation of root. If
f(a) · f(b) < 0, f ′(x) 
= 0 for a ≤ x ≤ b and f ′′(x) does not change the sign, then any
value x0 from the interval 〈a, b〉 can be taken as the starting point. However even all
those conditions are satisfied, the Newton method may not be successful. One can
conclude that before using the Newton method, it is worth to examine the derivative
of function f(x) and to begin the iteration at the part of interval 〈a, b〉 in which f ′(x)
has greater values.

From Eq. (2.13) results that correction of the root δx decreases the value of
derivative increases. It means that the Newton method is more efficient for steep
function f(x) in surrounding of root. If f(x) has local extreme points, it can be
impossible to reach the solution at all.

To stop iterations the criterion (2.3)

|f (xi)| ≤ ε (2.14)

is usually applied.
The algorithm of solution of a non-linear equation using the Newton method can

be written as follows:

x

A

B

a
x i + 1 i

y

x b

δ x

f (b)

f (xi)

f (a)

y = f(x)

Fig. 2.7 Interpretation of the Newton method
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x

y = f (x )

f x( )

i+1 i 0xxxx

Fig. 2.8 Newton method with constant tangent

(1) Assume the starting point taking x1 from the interval 〈a, b〉 containing a single
root,

(2) Compute f(x1),
(3) Compute f ′(x1),
(4) Compute x2 = x1 − f (x1)/f ′(x1)
(5) Verify: if |f (x2)| ≤ ε then x2 is searched value of the root and problem is solved.

Otherwise:
(6) Set x1 = x2 and go to point 2.

Note that in contrast to the bisection and false position methods the Newton
method does not refine the interval containing the searched root, i.e. it belongs to
the open methods.

Sometimes the function f(x) is difficult to differentiate. In such a case the Newton
method can be modified in two ways. In the first case a constant value of derivative
is used, corresponding to the derivative calculated at the starting point. Then the
Newton formula becomes the following one:

xi+1 = xi − f (xi)

f ′(x0)
, i = 0, 1, 2, . . . . (2.15)

It means that in the consecutive approximations of the root, the lines parallel to
the tangent at x0 are applied instead of the tangents (Fig. 2.8).

The second way of modification of the Newton method is based on the numerical
approximation of the derivative f ′(x). Using the backward difference formula result-
ing from the Taylor series expansion of the function f(x), its derivative is expressed
as:

f ′(xi) ≈ f (xi) − f (xi−1)

xi − xi−1
. (2.16)
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Then Eq. (2.11) takes the following form:

xi+1 = xi − xi − xi−1

f (xi) − f (xi−1)
· f (xi). (2.17)

One can notice that to calculate xi+1 two preceding approximations are needed.
This version of the Newton method is known as the secant method. Note that Eq.
(2.17) is very similar to Eq. (2.6).

Example 2.2 A trapezoidal channel with b = 2.5 m, m = 1.5, carries a discharge
Q = 8 m3/s. Determine the normal flow depth using the Newton method with the
assumed tolerance ε = 0.001 m.

The critical depth satisfies the formula (1.16):

α · Q2

g
= A3

B
(2.18)

where:

Q – flow rate,
α – Coriolis coefficient,
g – acceleration due to gravity,
A – wetted cross-section area,
B – channel width at the surface level.

For our purposes Eq. (2.18) is rearranged to the form:

B = g · A3

α · Q2
(2.19)

For the trapezoidal shape of a channel, the cross-sectional parameters are given
by Eqs. (2.3) and (2.4). Substituting these formulas in Eq. (2.70) yields:

f (H) = (b + 2m · H)− g

α · Q2

(
b · H + m · H2

)3
(2.20)

Its derivative with regard to H is following:

f ′(H) = 2m − 3g

α · Q2

(
b · H + m · H2

)2
(b + 2m · H) (2.21)

The root of Eq. (2.20) is located in the interval 〈0, 2 m〉. At its endpoints the
function (2.20) takes the following values: f(H = 0) = 2.5 m and f(H = 2 m)
= –327.259 m.

Note, that f(H) is expressed in units of the length i.e. in [m]. This allows us to
choose the value of the parameter ε representing the tolerance. It was assumed to be
equal ε = 0.001 m. As the first estimation of root end of the interval was assumed.
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It means that H0 = 2 m. For the assumed set of data, the critical depth H = 0.727 m
was obtained after 7 iterations.

2.1.5 Simple Fixed-Point Iteration

Similarly to the Newton method, the fixed-point iteration (or successive substitu-
tion) belongs the open methods. In this approach the considered non-linear equation
f(x) = 0, where f(x) is continuous function, is transformed to the equivalent form:

x = ϕ (x) (2.22)

Assume that the first estimate of the root x0 is known. The formula (2.22) can
be used to predict a new value of x: x1 = ϕ(x0). In next step x1 is substituted in Eq.
(2.22) to calculate x2 = ϕ(x1). Repeating this substitution one obtains a sequence of
approximations of the searched root:

x0,
x1 = ϕ(x0),
x2 = ϕ(x1),
...
xi = ϕ(xi−1).

(2.23)

where i is the iteration index.
The iteration process (2.23) implies two essential questions:

• How to find the function ϕ(x)?
• When is the sequence xi convergent?

The transformation of equation f(x) = 0 into equation x = ϕ(x) can be accom-
plished by algebraic manipulation leading to the isolation of x at the left-hand side of
the equality, by adding x to both sides of solved equation f(x) = 0 or by simultaneous
application of both mentioned techniques.

As far as the convergence is considered, the following condition ensures that the
iterations converge to the root (Chapra and Canale 2006):

∣∣ϕ′(x)
∣∣ < 1 (2.24)

If relation (2.24) is satisfied, then the sequence xi converges for any starting
point x0 taken from the interval 〈a, b〉. The limit of this sequence is the root.
Then the essential problem of solution of the non-linear equation f(x) = 0 using
the fixed-point iteration, is to transform it into the equation x = ϕ(x) ensuring that
the condition (2.24) is satisfied.
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The properties of the convergence process for fixed-point iteration can be illus-
trated graphically. To this order let us reform Eq. (2.22) and express it as a set
of two following equations: y1 = x and y2 = ϕ(x). These functions, plotted in
x–y plane, intersect at the point corresponding to the root of solved equation
f(x) = 0 (Fig. 2.9). Starting from the first estimate x0 we tend to the root through the
consecutive estimates, depending on the sign of the derivative ϕ′(x).

The root can be approached from one side (monotone pattern – Fig. 2.9) or from
both sides alternatively (oscillating pattern – Fig. 2.10).

In Fig. 2.11 an opposite situation is presented. When the condition (2.24) is not
satisfied, the iterations diverge. After starting from x0 the consecutive estimates tend
in the opposite direction with regard to the root.

Transformation of f(x) into ϕ(x) has essential meaning for successful application
of the fixed-point iteration. The proper choice of function ϕ(x) should ensure that
the solution procedure is convergent, and that the convergence is as fast as possible
(see Bjorck and Dahlquist (1974) for more details).

The algorithm of solution of a non-linear equation using fixed-point iteration can
be written as follows:

(1) Assume the starting point taking x1 from the interval 〈a, b〉 containing a single
root,

(2) Compute x2 = ϕ(x1),
(3) Compute f (x2),
(4) Verify: if |f (x2)| ≤ ε then x2 is the searched value of the root and problem is

solved.
Otherwise:

(5) Set x1 = x2 and go to point 2.
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Fig. 2.9 Fixed-point iteration for 1 > ϕ′(x) > 0
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Fig. 2.10 Fixed-point iteration for 0 > ϕ′(x) > – 1
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Fig. 2.11 Example of
divergent iterations for
φ′(x) < –1

Example 2.3 A trapezoidal channel with b = 2.5 m, m = 1.5, carries a discharge
Q = 8 m3/s. Determine the critical flow depth using the fixed-point iteration with
the assumed tolerance ε = 0.001 m.
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The formula (2.18) describing the critical flow is transformed as follows:

f (H) = α · Q2

g
− A3

B
= 0 (2.25)

The notations applied in Eq. (2.18) are valid. For the trapezoidal shape of a
channel the cross-sectional parameters A and B are given by Eqs. (1.5) and (1.7).
Substitution of these equations causes that the critical depth being the root of Eq.
(2.25) must be calculated by iteration.

The fixed-point iteration requires that the function f(H) is rearranged to the form:

H = ϕ(H) (2.26)

In this case the transformation is a delicate issue, since practically all forms
obtained by simple algebraic manipulations on Eq. (2.25) do not ensure conver-
gence. Good results are obtained if Eq. (2.25) is rearranged to the following form:

− 1 + 1

A

(
α · Q2 · B

g

)1/3

= 0 (2.27)

and next, to its both sides the critical depth H is added:

H = H − 1 + 1

A

(
α · Q2 · B

g

)1/3

(2.28)

Substitution of Eqs. (1.5) and (1.7) in Eq. (2.28) yields the final equation:

H = H − 1 + 1
(
b · H + m · H2

)
(
α · Q2 (b + 2m · H)

g

)1/3

(2.29)

Then the formula for fixed-point iteration is:

Hi+1 = Hi − 1 + 1
(
b · Hi + m · H2

i

)
(
α · Q2 (b + 2m · Hi)

g

)1/3

(2.30)

where i is the index of iteration.
As the termination criterion the following relation involving the results of two

consecutive iterations is assumed:

|Hi+1 − Hi| ≤ ε (2.31)

where the parameter ε represents accepted tolerance.
The root of Eq. (2.25) is located, as in Example 2.2, in the interval 〈0, 2 m〉. At

the interval endpoints the function (2.25) takes the following values: f(H = 0) =
6.524 m and f(H = 2 m) = –222.739 m.
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As the starting point of iteration the end of interval was assumed, i.e. H0 = 2 m.
The critical depth H = 0.727 m was obtained after 11 iterations. This is the same
result as given by the Newton method in Example 2.2, however to obtain it more
iterations were needed.

2.1.6 Hybrid Methods

The list of available methods to solve nonlinear algebraic equations is much longer
(see e.g. Bjorck and Dahlquist 1974, Press et al. 1992) and includes some hybrid
approaches, which are modifications or combinations of the four basic ones pre-
sented above. Two such methods will be presented here: the Ridders method and
the Steffensen method.

The Ridders method is a combination of the false position and bisection methods
(Press et al. 1992). Assume that a single root of non-linear equation (2.1): f (x) = 0 is
located in the interval 〈a, b〉. The iterations are performed according to the following
algorithm:

1. Calculate f(x) at midpoint of specified interval: c = (a + b)/2;
2. Assume, that f(x) is approximated in 〈x1, x2〉 by an exponential function build on

the values of f(x) in known points a, b, c, in the following form

f (a) − 2f (c)eα + f (b)e2α = 0. (2.32)

It is a quadratic equation with regard to eα . Its solution is following:

eα = f (c) + sign(f (b))
√

f (c)2 − f (x1)f (b)

f (b)
, (2.33)

Apply the false position method, however not for f(a), f(c), f(b) but for f(a), f(c)
eα , f(b) e2α . This allows us to calculate new approximation of the root d. With Eq.
(2.33) one obtains:

d = c + (b − a)
sign(f (a) − f (a))f (c)
√

f (c)2 − f (a)f (b)
. (2.34)

3. Reduce the dimensions of the interval by checking of the signs in a, b, c and d.
It is carry out as follows:

If f(c) · f(d) < 0, then a = c and b = d,
else
if f(c) · f(d) > 0 then if f(b) · f(d) > 0 then b = d else a = d

Note that the method uses the function f(x) only. Its derivative is not needed. To
terminate the iteration the following criterion, similar to this applied in the Newton
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method, can be used: |f(d)| ≤ ε, where ε is assumed positive number representing
the tolerance.

The Steffenson method is a modified version of the false position method (Bjorck
and Dahlquist 1974), where the iteration convergence is accelerated. The following
iterative formula is applied:

xi+1 = xi − f (xi)

g(xi)
. (i = 0,1,2, . . . ), (2.35)

where:

g(xi) = f (xi + f (xi)) − f (xi)

f (xi)
.

In Example 2.4 the efficiency of the hybrid methods is compared with the effi-
ciency of those of the standard methods which do not require the derivative of
f(x).

Example 2.4 In a rectangular channel of width b = 50 m crossed by the sharp-
crested weir of height p = 1.0 m which spans entire channel, the flow discharge is
Q = 7.20 m (Fig. 2.12). Determine the depth of the water head h taking into account
the velocity head and assuming that the flow coefficient is dependent on the water
depth.

Including the velocity head the discharge equation is given as:

Q = K · b
√

2 g

⎡

⎣
(

h + v2
0

2 g

)3/2

−
(

v2
0

2 g

)3/2
⎤

⎦ , (2.36)

where:

h – head,
b – weir width,

Q
h = ?

p

3 4 − h

p

h

b

Fig. 2.12 Sharp-crested weir which spans entire width
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v0 – average flow velocity,
g – acceleration due to gravity,
K – flow coefficient.

The average flow velocity behind a weir is given as:

v0 = Q

b(p + h)
(2.37)

The flow coefficient for the considered type of weir is determined by the
following formula (Roberson et al. 1998):

K = 0.40 + 0.05
h

p
. (2.38)

This formula is valid up to an h/p value of about 10.
Equation (2.36) is transformed to the typical form:

f (h) = Q − K · b
√

2 g

⎡

⎣
(

h + v2
0

2 g

)3/2

−
(

v2
0

2 g

)3/2
⎤

⎦ = 0. (2.39)

With Eqs. (2.37) and (2.38) this equation is non-linear with regard to head h. For
the fixed-point iteration Eq. (2.39) is transformed to the following one:

h =
⎛

⎝ Q

K · b
√

2 g
+
(

v2
0

2 g

)3/2
⎞

⎠

2/3

− v2
0

2 g
(2.40)

The single root of Eq. (2.39) is located in the interval 〈0, 1.5 m〉. In the termi-
nation criterion, taken in the form of relation |f (hi)| ≤ ε, the tolerance parameter
ε = 0.00001 m3/s is assumed.

The results of consecutive iterations for all applied methods are listed in
Table 2.1. Note that the methods differ significantly in efficiency. The total num-
ber of iterations needed to reach a solution of the same accuracy varies from 3 to 18.
In this case the most effective are the fixed point method and the Ridders method,
which require 3 iterations only. Other methods needed much more iterations to reach
the solution with the same accuracy. This fact should be taken into considerations,
while developing the computer codes for complex problems, in which the non-linear
equations are solved many times.
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Table 2.1 Comparison of convergence for selected methods applied to solve Eq. (2.39)

Method

Iteration Fixed point Bisection False position Steffensen Ridders

1 0.78958 0.75000 0.55015 0.15936 0.83379
2 0.78934 1.12500 0.73239 0.31090 0.78680
3 0.78934 0.93750 0.77665 0.45216 0.78935
4 – 0.84375 0.78656 0.57844 –
5 – 0.79688 0.78874 0.68184 –
6 – 0.77344 0.78922 0.75202 –
7 – 0.78516 0.78932 0.78346 –
8 – 0.79102 0.78934 0.78918 –
9 – 0.78809 0.78935 0.78935 –
10 – 0.78955 0.78935 – –
11 – 0.78882 – – –
12 – 0.78918 – – –
13 – 0.78937 – – –
14 – 0.78928 – – –
15 – 0.78932 – – –
16 – 0.78934 – – –
17 – 0.78936 – – –
18 – 0.78935 – – –

2.2 Solution of Systems of the Linear Algebraic Equations

2.2.1 Introduction

Solution of systems of linear equations is one of the most basic problems of numeri-
cal analysis, which arises in multiple applications, for example when solving partial
differential equations with finite difference or finite element method. While many
ready-made numerical subroutines for linear systems are available, it seems worth-
while to present in this section some basic algorithms, which can be conveniently
used in the framework of numerical modeling of open channel flow.

Let us consider a system of N linear equations with N unknowns:

N∑

j=1

aijxj = bi, (i = 1, 2, . . . , N). (2.41)

In matrix notation this system is rewritten as follows:

AX = B, (2.42)

where:
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A =

⎡

⎢⎢⎢
⎣

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN1 aN2 . . . aNN

⎤

⎥⎥⎥
⎦

, X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1
x2
...

xN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1
b2
...

bN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

A =(aij) (i, j = 1, 2, . . ., N) is real square matrix of system coefficients,
X =(xi) (i = 1, 2, . . ., N) is column vector of unknowns,
B =(bi) (i = 1, 2, . . ., N) is the column vector of constants,
N is dimension of system.

It is assumed that the matrix A is nonsingular so that the system (2.42) has a
solution. In some cases the matrix A assumes one of the following particular forms:

• diagonal matrix, in which the non-zero elements are laying on its main diagonal
only, i.e.:

aij

{ 
= 0 for i = j
= 0 for i 
= j

(i, j = 1,2,..., N) (2.43)

• identity matrix, which is a diagonal one with all elements on the main diagonal
equal to 1:

aij =
{

1 for i = j,
0 for i 
= j,

(i, j = 1, 2, . . . , N) (2.44)

Usually the symbol I is reserved for this matrix.

• lower triangular matrix having non zero elements on the main diagonal and
below:

L =

⎡

⎢⎢⎢⎢⎢
⎣

l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

. . .
lN1 lN2 lN3 . . . lNN

⎤

⎥⎥⎥⎥⎥
⎦

,

lij

{ 
= 0 for i > j
= 0 for i ≤ j

(i, j = 1,2,..., N) (2.45)
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Fig. 2.13 Banded matrix
having bandwidth equal to 6

• upper triangle matrix having non zero elements on the main diagonal and above:

U =

⎡

⎢⎢⎢⎢⎢
⎣

u11 u12 u13 . . . u1 N

u22 u23 . . . u2 N

u33 . . . u3 N
. . .

...
uNN

⎤

⎥⎥⎥⎥⎥
⎦

;

uij

{ 
= 0 for i ≤ j
= 0 for i > j

(i, j = 1,2,..., N) (2.46)

• banded matrix, which has all non zero elements concentrated around the main
diagonal within a band of specified bandwidth (Fig. 2.13);

• sparse matrix, which has a large number of elements equal to zero – banded
matrices can be sparse if the band is narrow or if there are many zeros within the
band;

• symmetric matrix for which aij = aji.

For the cases listed above one can take advantage of the matrix structure to make
the solution algorithm much more efficient.

The methods for solving the systems of algebraic equations are divided into two
groups:

– direct methods,
– iterative methods.

Direct methods are capable to provide an exact solution after executing a finite
number of mathematical operations (it is true on condition that the round-off errors
do not exist). Iterative methods start from an initial guess of the solution and provide
a series of its better approximations. If this series is convergent, i.e. if it tends to a
limit, this limit is a solution of the considered system (2.42). Therefore the iterative
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methods are capable to provide the approximate solution only, within the assumed
tolerance.

The choice of a suitable method of solution depends on the dimension of consid-
ered system of equations. Generally it is assumed that direct methods are efficient
for the systems having rather small dimensions, say 60 by 60. For larger systems,
especially with very sparse matrices, iterative methods are recommended as more
effective. In such a case application of the direct methods is a waste of computer
memory and time of computation. However in the case of open channel flow mod-
eling situation is particular. As results from Chapter 1, all derived equations or their
systems are one dimensional. Consequently, the final systems of algebraic equa-
tions obtained from discretization of the ordinary or partial differential equations,
even those containing hundreds of unknowns, have banded matrices with very nar-
row bandwidth. For instance, as we will see in Chapters 6, 7 and 8, for 1D transport
equation solved by the implicit methods one obtains systems with tri-diagonal matri-
ces, while for the system of Saint Venant equations the bandwidth is equal to 5 or
7, according to the applied method of solution. The matrices’ bandwidths become
wider for flow in open channel network. However at the same time they become
very sparse, since the total number of the non-zero coefficients in each matrix row
is still very small. Consequently, in the case of the equations applied in open channel
hydraulics it can be reasonable to apply direct methods to solve even very large sys-
tems of equations. However, this can be done on condition that the implemented
algorithms for these methods will take into account the untypical properties of
matrix. For instance, very efficient solver basing on the Gauss elimination method
can be obtained on condition that it works on the non-zero elements only. For this
reason this section is limited to direct methods.

2.2.2 Gauss Elimination Method

Let us begin with the solution of a system of linear algebraic equations with upper
triangular matrix:

UX = B (2.47)

or in scalar form:

u11x1 + · · · + u1,N−1xN−1 + u1,NxN = b1,
...

uN−1,N−1xN−1 + uN−1,NxN = bN1,
uN,NxN = bN .

(2.48)

Assuming that uii 
= 0 (i = 1, 2, . . ., N), the unknowns can be calculated in the
inverse order: xN, xN–1, . . ., x1 using the following formulas:
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xN = bN

uN,N
,

xN−1 = bN−1 − uN−1, N · xN

uN−1, N−1
,

. . .

x1 = b1 − u1,2 · x2 − u1, 3 · x3 − · · · − u1,N−1 · xN−1 − u1, N · xN

u1,1
,

(2.49)

Equations (2.49) can be rewritten shorter as:

xN = bN

uN,N
(2.50a)

xi =
bi −

N∑

k=i+1
ui,k · xk

ui,i
(i = N − 1, . . . , 1). (2.50b)

Since the unknowns are calculated from last one to the first one, this algorithm is
known as back substitution. Similarly easily one can solve the system of equations
with lower triangular matrix. In such a case the computational process is called
forward substitution (Bjorck and Dahlquist 1974).

The Gauss elimination method is the most important direct method to solve any
system of linear algebraic equations. It bases on such a way of elimination of the
subsequent unknowns, which finally reduces the solved system to the one with upper
triangular matrix as Eq. (2.48). Afterwards, the obtained system is solved using
previously presented algorithm.

Now consider the system (2.42) rewritten follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11x1 + a12x2 + a13x3 + . . .+ a1 NxN = b1,
a21x1 + a22x2 + a23x3 + . . .+ a2 NxN = b2,
a31x1 + a32x2 + a33x3 + . . .+ a3 NxN = b3,

. . .

aN1x1 + aN2x2 + aN3x3 + . . .+ aNNxN = bN .

(2.51)

The elimination is performed in multiple sweeps through the whole system and in
each sweep the coefficients are modified. Thus, we introduce additional superscript
to distinguish coefficients obtained in subsequent sweeps. The superscript equal to 1
is designated to original matrix, i.e.: a(1)

ij = aij and b(1)
i = bi. Using this convention

the system (2.51) is rewritten as:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
11 x1 + a(1)

12 x2 + a(1)
13 x3 + . . .+ a(1)

1 NxN = b(1)
1 ,

a(1)
21 x1 + a(1)

22 x2 + a(1)
23 x3 + . . .+ a(1)

2 NxN = b(1)
2 ,

a(1)
31 x1 + a(1)

32 x2 + a(1)
33 x3 + . . .+ a(1)

3 NxN = b(1)
3 ,

. . .

a(1)
N1x1 + a(1)

N2x2 + a(1)
N3x3 + . . .+ a(1)

NNxN = b(1)
N .

(2.52)

Assume that the coefficient matrix is not singular and a(1)
11 
= 0. Otherwise, the sys-

tem (2.52) must be rearranged. Let us carry out the following sequence of operations
for i = 2, 3, . . ., N:

• define the multiplier a(1)
i1 / a(1)

11 ,
• multiply the first equation by this multiplier,
• subtract the first equation from ith equation.

In such a way one obtains a reduced system, which has dimension (N – 1) ×
(N – 1). Its coefficients are a(2)

ij . This system written together with the first equation
of original system (2.51) is as follows:

a(1)
11 x1 + a(1)

12 x2 + a(1)
13 x3 + . . .+ a(1)

1 NxN = b(1)
1 ,

a(2)
22 x2 + a(2)

23 x3 + . . .+ a(2)
2 NxN = b(2)

2 ,

a(2)
32 x2 + a(2)

33 x3 + . . .+ a(2)
3 NxN = b(2)

3 ,
. . .

a(2)
N2x2 + a(2)

N3x3 + . . .+ a(2)
NNxN = b(2)

N ,

(2.53)

Its coefficients are given by the formulas:

a(2)
ij = a(1)

ij − a(1)
i1

a(1)
11

a(1)
1j , b(2)

i = b(1)
i − a(1)

i1

a(1)
11

b(1)
1 for i = 2,3, . . . , N; j = 2,3, . . . , N.

Similarly to the preceding step, assume that a(2)
22 
= 0 and repeat the same sequence

of operations but for the reduced system (2.53). We obtain the second reduced
system:

a(1)
11 x1 + a(1)

12 x2 + a(1)
13 x3 + . . .+ a(1)

1 NxN = b(1)
1 ,

a(2)
22 x2 + a(2)

23 x3 + . . .+ a(2)
2 NxN = b(2)

2 ,

a(3)
33 x3 + . . .+ a(3)

3 NxN = b(3)
3 ,

. . .

a(3)
N3x3 + . . .+ a(3)

NNxN = b(3)
N .

(2.54)
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In Eq. (2.54) new coefficients a(3)
ij and b(3)

i are given by:

a(3)
ij = a(2)

ij − a(2)
i2

a(2)
22

a(2)
2j , b(3)

i = b(2)
i − a(2)

i1

a(2)
22

b(2)
2 , for i = 3,4, . . . , N; J = 3,4, . . . , N.

Continuing this way of elimination, after N – 1 steps we obtain the following
reduced system of equations:

a(1)
11 x1 + a(1)

12 x2 + a(1)
13 x3 + . . .+ a(1)

1 NxN = b(1)
1 ,

a(2)
22 x2 + a(2)

23 x3 + . . .+ a(2)
2 NxN = b(2)

2 ,

a(3)
33 x3 + . . .+ a(3)

3 NxN = b(3)
3 ,

. . .

a(N)
NNxN = b(N)

N .

(2.55)

The coefficients of the above system were calculated by the following formulas:

a(k+1)
ij = a(k)

ij − a(k)
ik

a(k)
kk

a(k)
kj , (2.56)

where:

k = 1, 2, . . ., N – 1,
j = k + 1, k + 2, . . ., N,
i = k + 1, k + 2, . . ., N.

Thus, the final result of elimination is a system with upper triangular matrix
(2.55). Now the determination of the unknowns can be done easily, using the
formulas (2.50a) and (2.50b).

The elements a(1)
11 , a(2)

22 , a(3)
33 , . . ., a(n)

NN , determining the elimination process, are
called the pivot elements. The elimination was possible since we arbitrary assumed
that their values differ to zero. If in kth step of elimination the pivot element appears
to be equal to zero, it is necessary to rearrange the matrix by changing of the rows
in such a way that at position (k, k) non zero element must appear (Fig. 2.14).
Therefore, row k is swapped with row l for which a(k)

lk 
= 0 (Fig. 2.14).
It is recommended to choose such row for which:

∣∣∣a(k)
lk

∣∣∣ = max
k≤i≤N

∣∣∣a(k)
ik

∣∣∣ , (2.57)

where i is the row index.
There are two cases when the pivot elements certainly differ from zero:

• when matrix A has dominating main diagonal, i.e. when:
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k

k

l

Fig. 2.14 Matrix of
coefficients after k steps of
elimination

|aii| ≥
N∑

j=1
j
=i

∣∣aij
∣∣ (i = 1, 2, . . . , N), (2.58)

• when matrix A is symmetrical and positively defined, i.e. when it satisfies the
following conditions:

A = AT (symmetrical) (2.59)

and

XTAX > 0 for each X 
= 0 (positively defined) . (2.60)

For any matrix the condition (2.58) may be verified easily, whereas the condi-
tion (2.60) is more difficult to check. More information on the problem is given by
Bjorck and Dahlquist (1974).

2.2.3 LU Decomposition Method

Assume that it is possible to decompose the matrix A of the system (2.42) and to
present it in the form of product of two matrices: lower triangular matrix and upper
triangular matrix:

A = LU (2.61)

Then the considered system (2.42) is equivalent to the following one:

L U X = B. (2.62)

The system (2.62) can be split into two systems:



2.2 Solution of Systems of the Linear Algebraic Equations 77

L Y = B (2.63)

U X = Y, (2.64)

which should be solved subsequently.
There is a theorem which states that in fact, each matrix A may be rearranged

in such a way, that the decomposition on the triangle matrices becomes possible
(Bjorck and Dahlquist 1974). This fact results from the equivalency of the Gauss
elimination method and LU decomposition. Actually, the matrix obtained as the
result of elimination is the upper triangular matrix. Accordingly, the elements of the
lower matrix are lik = a(k)

ik / a(k)
kk , which occur in Eq. (2.56) for i = 2, 3, . . ., N; k =

1, 2, . . ., i – 1 as well as by the elements at the main diagonal lii = 1 for i = 1, 2,
. . ., N. Therefore one can write:

⎡

⎢⎢⎢
⎣

a11 a12 . . . a1,N−1 a1 N

a21 a22 . . . a2,N−1 a2 N
...

...
...

...
aN1 aN2 . . . aN,N−1 aNN

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1
l21 1
...

...
lN1 lN2 . . . lN,N−1 1

⎤

⎥⎥⎥
⎦

×

⎡

⎢⎢⎢⎢
⎣

a(1)
11 a(1)

12 . . . a(1)
1,N−1 a(1)

1 N

a(2)
22 . . . a(2)

2,N−1 a(2)
2 N
...

a(N)
NN

⎤

⎥⎥⎥⎥
⎦

. (2.65)

Note that in the decomposition of A using the Gauss elimination the vector of
right side hand B was not involved. This is an advantage of LU decomposition
technique, since one can decompose A only once and after then to use L and U for
various vectors of right side hand. Such situation occurs very often.

Discretization of 1D partial differential equation using implicit method usually
leads to systems of linear algebraic equation (2.42) with tri-diagonal matrices:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

β1 γ1
α2 β2 γ2
α3 β3 γ3

. . .
αN−1 βN−1 γN−1

αN βN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.66)

Such a system can be solved using a very simple and effective algorithm,
based on the LU decomposition. Matrix (2.66) is decomposed in following triangle
matrices:
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L =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1
l2 1

l3 1
. . .

lN−1 1
lN 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.67a)

U =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

u1 γ1
u2 γ2

u3 γ3
. . .

. . .
uN−1 γN−1

uN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.67b)

The elements l2, l3, . . ., lN and u1, u2, u3, . . ., uN are computed using the
following formulas:

u1 = β1 (2.68a)

li = αi

ui−1

ui = βi − li · γi−1

⎫
⎪⎬

⎪⎭
for i = 2,3, . . . , N. (2.68b)

Knowing the triangular matrices one can determine the vector X by solving the
two systems (2.63) and (2.64). The computations are carried out as follows:

y1 = b1, (2.69a)

yi = bi − liyi−1 for i = 2,3, . . . , N (2.69b)

and

xN = yN/uN , (2.70a)

xi = (yi − γi xi+1)/ui for i = N − 1, N − 2, . . . ,1. (2.70b)

If the system of equations is solved only once for given matrix A and the right
side hand B, then it is not necessary to remember the elements li, and the algorithm
becomes simpler:

u1 = β1; y1 = b1, (2.71a)

l = αi
/

ui−1,
ui = βi − l · γi−1,
yi = bi − l · yi−1,

⎫
⎬

⎭
for i = 2, 3, · · · , N (2.71b)
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and

xN = yN
/

uN (2.72a)

xi = (yi − γixi+1)
/

ui for i = N − 1,N − 2,1. (2.72b)

The presented technique of solution is called the Thomas method or “double
sweep” method (Fletcher 1991). This algorithm is very useful and can be applied
for many open channel flow problems.

The Gauss elimination method or LU decomposition are especially suitable to
solve effectively the systems with banded matrices. After elimination the matrices
L and U are also banded. The only disadvantage is that during elimination the zeros
within the band are replaced by non zero elements.

2.3 Solution of Non-linear System of Equations

2.3.1 Introduction

Previously, in Section2.2 we considered systems of linear algebraic equations of the
form:

AX = B, (2.73)

where: A is square matrix of the coefficients, X is vector of unknowns and B is
vector of right hand side defined as follows:

A =

⎡

⎢⎢⎢
⎣

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN1 aN2 . . . aNN

⎤

⎥⎥⎥
⎦

X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1
x2
...

xN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1
b2
...

bN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

where aij and bi were constant numbers. However, in many engineering appli-
cations one obtains systems of algebraic equations in which the coefficients are
functions of the unknowns, i.e. aij = aij (x1, x2, . . .,xN) or/and bij = bij (x1, x2,
. . .,xN). Such systems are called non-linear. In open channel hydraulics the systems
of non-linear equations usually arise as a part of more complex algorithms. For
instance, some numerical methods of solution applied for the ordinary and partial
differential equations or their systems lead to the systems of algebraic non-linear
equations. In the next chapters we will see numerous examples of such systems.

Usually, instead of the form (2.94), the following notation for the non-linear
systems is used:

F (X) = 0, (2.74)
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where:

X = (x1, x2, x3, . . ., xN)T,
F(X) = (f1(X), f2(X), . . ., fN(X))T,
T – transposition symbol,
N – dimension of system.

Of course, both forms are equivalent, since we have:

F(X) = AX − B (2.75)

and both will be used further. In scalar notation Eq. (2.74) is written as:

f1
(
x1,x2, . . . xN

) = 0,
f2
(
x1,x2 . . . ,xN

) = 0,
...

fN
(
x1,x2 . . . xN

) = 0.

(2.76)

The vector X, which satisfies Eq. (2.76) is its solution.
All numerical methods of solution of the non-linear systems are iterative ones. In

the next sections we present the Newton method and the Picard method, which are
standard methods commonly applied in open channel hydraulics.

2.3.2 Newton Method

Assume that approximate solution of Eq. (2.74) is known. Then one can write:

X = X(k) +�X(k). (2.77)

where:

X – exact solution of Eq. (2.74),
X(k) – solution approximation i iteration k,
�X(k) – vector of differences between exact and estimate,
k – index of iteration.

It is assumed that the functions being the components of system are continu-
ous and differentiated with regard to vector X. Since form definition results that
F(X) = 0, then using the Taylor series expansion around X(k), one can write:

F(X(k) +�X(k)) ≈ F(X(k)) + ∂F(X(k))

∂X
�X(k) ≈ 0. (2.78)
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It means that the Taylor series was truncated and all terms with the derivatives
of order higher than one were neglected. The correction vector can be expressed as
follows:

�X(k) = X(k+1) − X(k), (2.79)

since X(k+1) estimates of exact solution X. Therefore one can write:

∂F(X(k))

∂X
(X(k+1) − X(k)) = −F(X(k)), (2.80)

where:

∂F(X(k))

∂X
= J(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂f1
(

x(k)
1 ,x(k)

2 , . . . x(k)
N

)

∂x1
. . .

∂f1
(

x(k)
1 ,x(k)

2 , . . . x(k)
N

)

∂xN

... . . .
...

∂fn
(

x(k)
1 ,x(k)

2 , . . . x(k)
N

)

∂x1
. . .
∂fn
(

x(k)
1 ,x(k)

2 , . . . x(k)
N

)

∂xN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

is the Jacobian matrix of system (2.74). Then the final form of the Newton method
is following:

X(k+1) = X(k) −
(

J(k)
)−1

F
(

X(k)
)

. (2.81)

One can see, that the method applied in the form of Eq. (2.81) is time and memory
consuming. In each iteration it requires to build the Jacobian matrix of dimension
N × N, and next to inverse it. For these reasons the Newton method is applied rather
in the form of Eq. (2.80), rewritten as follows:

J(k)�X(k) = −F(k). (2.82)

In such a way, instead of inversing of the matrix J, a system of linear equa-
tions must be solved with regard to the correction vector �X(k). Afterwards the new
estimate of X is calculated:

X(k+1) = X(k) +�X(k). (2.83)

This approach is more efficient especially when J is banded. Note, that the inver-
sion of a banded matrix produces a matrix, which looses banded form and has all
non zero elements.

In order to reduce the computational time sometimes the original Newton method
is modified, similarly to the modification of this method for scalar equation. Instead
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of computing the Jacobian matrix J in each iteration, the Jacobian from the first
estimate is applied is all subsequent iterations:

J(0)�X(k) = −F(k). (2.84)

The convergence of this iteration is slower, but the Jacobian matrix does not have
to be calculated in each iteration what is important when the derivatives must be
calculated numerically. The criteria of convergence will be discussed in next section.

2.3.3 Picard Method

The Picard method, also known as the consecutive substitution, is a fixed-point itera-
tion developed for a system of non-linear equations. From the subsequent equations
of the system (2.76) one unknown is isolated at left side of equality sign. Then one
obtains:

x1 = g1
(
x1,x2 . . . xN

)
,

x2 = g2
(
x1,x2 . . . xN

)
,

...
xN = gN

(
x1,x2 . . . xN

)
,

(2.85)

or using the matrix notation:

X = G (X) (2.86)

where:

X = (x1, x2, x3, . . ., xN)T,
G(X) = (g1(X), g2(X), . . ., gN(X))T,

Given the first estimate X(0), one can generate the following sequence of
approximations:

X(k+1) = G(X(k)), (2.87)

where k is iteration index. If this sequence tends to the limit X for k → ∞, then this
limit is the solution of system (2.74).

Modified variants of the Picard method are often used. For instance the Picard
method can be applied directly to solve the non-linear system in form of Eq. (2.73).
In this case, it is given as:

A(k) · X(k+1) = B (2.88)
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Another version of the method is obtained by transformation of Eq. (2.88) to a
formula similar to the Newton one. To this end the term A(k) ·X(k) is subtracted from
both sides of Eq. (2.88):

A(k) · X(k+1) − A(k) · X(k) = −A(k) · X(k) + B (2.89)

Substitution of Eqs. (2.79) and (2.75) in Eq. (2.89) yields

A(k)�X(k) = −F(k) (2.90)

Equation (2.90) differs from the Newton method in the matrix of coefficients
only. Since in Eq. (2.90) an original matrix of the solved system is involved then it
is simpler. As we will see in Chpater 4, this method can be quite effective.

The iterations carried out with the Newton or Picard methods are stopped
when the criterion for convergence is satisfied. In both methods one can apply the
following tests:

∣∣∣x(k+1)
i − x(k)

i

∣∣∣ =
∣∣∣�x(k+1)

i

∣∣∣ ≤ ε for i = 1, 2, N, (2.91)

where:

k– iteration index,
ε– positive number being a specified tolerance.

In this condition the differences between two consecutive iterations are exam-
ined. The above criterion is suitable for the cases when the convergence processes
is relatively fast. Checking of the solution accuracy for slowly convergent iterations
should be carried out thoroughly. Although the consecutive iterations vary insignifi-
cantly, the difference between the exact solution and its estimate in kth iteration may
be appreciable. Such situation is illustrated in Fig. 2.15.

δ

δ

ε
εa

b

number of iterations 

x
(  = 0)k *

* * * * * * * * * * * * * * *

 initial estimate

k

x
exact value

Fig. 2.15 Influence of the criterion (2.91) on final error of solution for: (a) quickly convergent
iterations; (b) slowly convergent iterations
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To stop the iterations another criterion, in the form of the Euclidean norm, may
be employed. This norm, which serves to quantify the size of vector, this case is
defined as norm of residual vector:

‖�X‖ =
(
�x2

1 +�x2
2 +�x2

3 + . . .+�x2
N

)1/2
. (2.92)

The iterations are terminated when the following relation is satisfied:

∥∥∥�(k+1)
∥∥∥ ≤ ε′, (2.93)

where ε′ > 0 determines assumed tolerance.
Experience shows, that the Newton method converges very quickly on condition

that the first estimate is close to the solution. Otherwise it can suffer from possible
divergence. Generally it is said, that the Newton method has poor global conver-
gence (Press et al. 1992). As far as the Picard method is considered, it is slower, but
converges even if the initial guess is far from the solution. These properties will be
confirmed in Chapter 4 while solving some open channel flow problems.
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Chapter 3
Numerical Solution of Ordinary
Differential Equations

3.1 Initial-Value Problem

3.1.1 Introduction

Ordinary differential equations (ODEs) contain derivatives of an unknown function
with respect to a single independent variable. Such equations describe for example
steady flow in open channel (Eqs. 1.97, 1.108 and 1.109). In this case the indepen-
dent variable is the spatial coordinate x. Another example is the storage equation
(1.122), which is an ODE with respect to time. More time-dependent ODEs will
be introduced in Chapter 9. Moreover ODEs with regard to time appear when
unsteady flow and transport equations are solved using the finite element method.
Their solution is one of the steps in the computational process.

Consider the following equation:

y′ = dy

dx
= f (x,y), (3.1)

where x is the independent variable, whereas y is the dependent variable. Integration
of Eq. (3.1) yields:

y(x) =
∫

f (x,y) · dx + C (3.2)

where C is the integration constant. Thus, the obtained solution is not unique.
Indeed, we have an infinite number of solutions satisfying Eq. (3.1), correspond-
ing to an infinite number of different possible values of the constant C. However,
in practice we are interested rather in a unique solution for the specified range of x
from the interval 〈a, b〉. To choose the proper solution, an auxiliary condition must
be formulated. In the case of Eq. (3.1) it is called initial condition. Then the prob-
lem can be formulated as follows: determine the function y(x),which satisfies both

85R. Szymkiewicz, Numerical Modeling in Open Channel Hydraulics, Water Science
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the ordinary differential equation (3.1) in the interval 〈a, b〉 and the specified initial
condition:

y(a) = y0, (3.3)

where a and y0 are specified values.
The problem of solution of Eq. (3.1) formulated in such a way is called an

initial-value problem for the ordinary differential equation. It is assumed that the
initial-value problem has a unique solution, i.e. there is only one function y(x)
which simultaneously satisfies Eq. (3.1) and the initial condition (3.3). The prob-
lem of existence and uniqueness of solution is discussed for instance by Ascher and
Petzold (1998).

In majority of engineering applications the initial-value problem for ordinary
differential equations is solved using numerical methods. This approach allows us
to compute the estimates y1,y2,...,yN, of the exact solution y(x1),y(x2),...,y(xN) at
selected points x1,x2,...,xN within the interval 〈a, b〉. Starting from the point (a, y0)
given by the specified initial condition, we have to move over the interval 〈a, b〉
from one node to the next, calculating the approximated values of the exact solution
y(xi) until the endpoint xN = b is reached. It is expected that the applied method
will generate the approximations y1,y2,. . .yi. . . which reproduce the true shape of
the function y(x) with sufficient accuracy (Fig. 3.1).

The accuracy of approximation depends on the following two factors:

• selection of the points x1,x2,. . .,
• method of calculation of the estimates y1,y2,. . ..

The distance between two neighboring nodes, denoted by �xi is called the step
size:

�xi = xi+1 − xi (i = 1,2, . . . ). (3.4)

A constant step size is often applied �xi = �x = const and many numeri-
cal methods proposed for integration of the ordinary differential equations were
derived for constant �x. In principle, constant stepsize can be easily applied for

y
y x( )

x

y
0

a = x0 x1 x2 x =  bN

Fig. 3.1 Function y(x) and its estimate calculated using the numerical method
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time-dependent ODEs, although even in this case variable stepsizes may be rec-
ommended for the sake of efficiency. As far as the space-dependent ODEs are
considered, constant �x can be used for flow in artificial channels having a con-
stant bed slope and constant shape of the cross-sections. In such a case it is easy
to determine the parameters of cross-section as wetted area, wetted perimeter and
surface width, as a function of position, i.e. of variable x. Conversely, integration of
the same equations for natural channels must be carried out with variable step size.
The shape of the rivers’ cross-sections is irregular and varies continuously along
their axes. The computational nodes are chosen in such a way that they correspond
to the cross-sections for which data obtained from field measurements are available.
Therefore, we must apply non-uniform point spacing along x axis.

The methods of numerical integration of ODEs can be classified according to dif-
ferent criteria. In general, numerical integration schemes lead to algebraic equations,
where the unknown represents the value of the function y(x) at the next integration
point yi+1. If it can be computed using information only from the last node i, then
the method is called one-step. The one-step methods are also called self starting
methods. It means that the initial condition is sufficient to perform the computing
process by these methods. If the information from more than one preceding step
is required (yi, yi–1, etc) then the method is called multi-step. To initiate multistep
methods, apart from imposed the initial condition, additional values of y at the first
few points, i.e. y1, y2,. . . must be calculated using a one-step method.

If the resulting algebraic equation is linear, i.e. yi+1 can be isolated at one side of
the equation:

yi+1 = G (x, yi, yi−1, yi−2, ...) (3.5)

then the method is called explicit. In the opposite case yi+1 cannot be extracted from
the algebraic formula, and the following nonlinear relation arises:

yi+1 = G (x, yi+1, yi, yi−1, yi−2, ...) (3.6)

Such a scheme is called implicit. The nonlinear equation has to be solved with
regard to yi+1 in each step, using an iterative method. Usually the fixed-point method
is applied. Its implementation for Eq. (3.6) is called the “predictor-corrector”
method. The prediction of yi+1 is performed using the explicit method, whereas the
formula (3.6) serves to its correction.

There are a variety of methods which belong to the mentioned types. Due to
exceptional properties of the rivers only some of them are applicable in open channel
hydraulic and therefore only some of them will be presented in this chapter.

3.1.2 Simple Integration Schemes

Let us begin with a short presentation of the finite differences. The finite differ-
ence, being an approximation of the derivative, can be used to derive directly some
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methods of solution for both the initial-value and the boundary-value problems.
Appropriate difference formula comes from the Taylor series expansion of a func-
tion around considered point x. For the function depending on one independent
variable only, the Taylor series can be written as follows:

y(xi+1) = y(xi) +
∞∑

m=1

�xm

m!
dmy

d xm

∣∣∣∣
xi

. (3.7)

As this series has infinite number of terms, taking into account any finite number
of its terms introduces a truncation error. Consequently instead of the exact value
of function its approximation is obtained. Of course, the error of approximation
depends on the number of terms taken into consideration. Assuming that only the
first three terms are taken into account, an estimate of y(xi+1) can be expressed using
Eq. (3.7), rewritten in the following form:

yi+1 = yi + �x
d y

d x

∣∣∣∣
i
+ �x 2

2

d2y

dx 2

∣∣∣∣
i
+ O(�x3). (3.8)

where:

yi, yi+1 – the values of y(x) at node i and i+1 respectively,
�x – distance between the nodes i and i+1

The term O(�x3) indicates that the truncation error is of the order �x3. It means
that the error varies proportionally to the step size �x raised to the 3rd power. If we
take a half of step size then the estimated error of yi+1 is reduced 8 times.

Directly from Eq. (3.8) one can find an estimate of the derivative of 1st order:

d y

d x

∣∣∣∣
i
= y i+1 − y i

�x
− �x

2

d2y

d x 2

∣∣∣∣
i

+ · · · (3.9)

One can notice, that the following finite difference

d y

d x

∣∣∣∣
i
≈ yi+1 − yi

�x
(3.10)

approximates the derivative of y(x) at node i with accuracy of first order, i.e. O(�x).
This formula is called the forward difference.

Similar approach can be applied to derive the backward difference formula. To
this order the Taylor series expansion is performed to provide with the estimate of
y(xi–1). It takes the following form:

yi−1 = yi − �x
d y

d x

∣∣∣∣
i
+ �x 2

2

d2y

dx 2

∣∣∣∣
i
+ O (�x3). (3.11)
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This equation yields the formula:

d y

d x

∣∣∣∣
i
≈ yi − yi−1

�x
(3.12)

The approximation by backward difference introduces a truncation error of order
O(�x), similarly to the forward difference (3.10).

Subtracting Eq. (3.8) from Eq. (3.11) gives:

yi+1 − yi−1 = 2�x
d y

d x

∣∣∣∣
i
+ �x 3

3

d3y

dx 3

∣∣∣∣
i
+ · · · . (3.13)

from which one obtains the approximating formula known as the centered
difference:

d y

d x

∣∣∣∣
i
≈ yi+1 − yi−1

2�x
(3.14)

In contrast to the previous formulas this one ensures accuracy of 2nd order, i.e.
the truncation error is O(�x 2).

All the presented formulas approximating the derivative of the 1st order can be
used to derive certain basic methods for numerical solution of the initial-value-
problem. To this end let us approximate Eq. (3.1) at node i (Fig. 3.2) using the
previously derived finite differences. Subsequent substitution of the formulas (3.10),
(3.12) and (3.14) in Eq. (3.1) yields:

• For the forward difference:

y i+1 − y i

�x
= f (xi,yi). (3.15)

which gives the explicit or forward Euler method:

yi+1 = yi +�x · f (xi,yi). (3.16)

y

xx x xi  −1 i i+1
ΔxΔx

xp

P

(1- x θ)ΔθΔx

Fig. 3.2 Sketch for
approximation of Eq. (3.1)
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• For the backward difference:

y i − y i−1

�x
= f (xi,yi). (3.17)

which gives the implicit or backward Euler method:

yi = yi−1 +�x · f (xi,yi). (3.18)

• For the centered difference:

y i+1 − y i−1

2�x
= f (xi,yi). (3.19)

from which results the Nystrom method:

yi+1 = yi−1 + 2�x · f (xi,yi). (3.20)

In the same way further methods can be derived. Assume that the approximation
of the derivative is performed at midpoint of the interval 〈xi, xi+1〉, in which the value
of f(x, y) is taken as arithmetic average from both nodes. Then Eq. (3.1) becomes:

y i+1 − y i

�x
= 1

2
(f (xi,yi) + f (xi+1,yi+1)) . (3.21)

This is known as the implicit trapezoidal method:

yi+1 = yi + �x

2
(f (xi,yi) + f (xi+1,yi+1)) . (3.22)

Both Euler methods and the trapezoidal method can be rewritten as a single uni-
fied formula. To obtain this formula let us approximate the differential equation (3.1)
at point P (Fig. 3.2).

The position of point P, which may move within the interval 〈xi, xi+1〉, is
determined by the weighting parameter θ defined as follows:

θ = xP − xi

�x
. (3.23)

Since xi ≤ xP ≤ xi+1 then θ ranges from 0 to 1. Approximation of Eq. (3.1) gives:

y i+1 − y i

�x
= fP. (3.24)

The value of derivative f(x, y) at point P is calculated by linear interpolation
between the endpoints of the interval:

fP = (1 − θ )f (xi,yi) + θ · f (xi+1,yi+1) (3.25)
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Substitution of Eq. (3.25) in Eq. (3.24) yields:

yi+1 = yi +�x ((1 − θ )f (xi,yi) + θ · f (xi+1,yi+1)) (3.26)

This scheme is equivalent to:

• the forward Euler method for θ = 0,
• the implicit trapezoidal rule for θ = 1/2,
• the Galerkin method for θ = 2/3,
• the backward Euler method for θ = 1.

An alternative way of derivation of theses formulas is to consider the integration
of ordinary differential equation (3.1) over the domain defined by the boundaries of
the interval:

yi+1∫

yi

dy =
xi+1∫

xi

f (x,y)dx. (3.27)

From Eq. (3.27) results:

yi+1 = yi +
xi+1∫

xi

f (x,y)dx. (3.28)

The presented methods differ in the way of approximating of integral, i.e. the
quadrature rule used in its calculation.

Let us consider the forward Euler method (3.16). This formula may be derived
from Eq. (3.28) as well. For this purpose the integral in Eq. (3.28) must be calcu-
lated using the quadrature in the form of rectangular formula. If the area under the
curve in the interval is approximated by the area of the rectangle having dimensions
Δx by f(xi, yi) (Fig 3.3a) one obtains:

xi+1∫

xi

f (x,y)dx ≈ �x · f (xi,yi). (3.29)

Introducing this result in Eq. (3.28) one obtains the required forward Euler
formula:

yi+1 = yi +�x · f (xi,yi). (3.30)

The forward Euler method has a very simple geometrical interpretation shown in
Fig. 3.3b. The function y(x) in the interval 〈xi, xi+1〉 is replaced by its tangent at point
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f x y( , ) f x y( , )
y
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Δx Δx

f x y ( , )i    iΔx

y x    ( )i+1

yi+1

yi

a) b)

Fig. 3.3 Interpretation of the explicit Euler method

xi. From this figure results that the value of the step size�x determines the accuracy
of numerical solution. The difference y(xi)–yi increases with increasing �x.

Conversely to the forward Euler method, the backward one is obtained if in
Eq. (3.28) the integral is approximated by the area of rectangle having dimensions
Δx by f(xi+1, yi+1) (Fig. 3.4):

xi+1∫

xi

f (x,y)dx ≈ �x · f (xi+1,yi+1). (3.31)

Consequently one obtains:

yi+1 = yi +�x · f (xi+1,yi+1). (3.32)

x                                                 x x
i i +1

Δx

f x y( , )

f x    y   ( , )i+1 i +1

f x y( , )

Fig. 3.4 Interpretation of implicit Euler method
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Fig. 3.5 Interpretation of the implicit trapezoidal method

In other words, the function y(x) in the interval 〈xi, xi+1〉 is replaced by its tangent
at xi+1.

If the trapezoidal quadrature formula is applied one can write (Fig. 3.5):

xi+1∫

xi

f (x,y) d x ≈ 1

2
(f (xi, yi)+ f (xi+1, yi+1)) �x (3.33)

Substitution of this result in Eq. (3.28) gives the trapezoidal formula (3.22):

yi+1 = yi + �x

2
(f (xi,yi) + f (xi+1,yi+1)) . (3.34)

One can say that in this case the function y(x) is replaced in the interval 〈xi, xi+1〉
by a straight line with the slope equal to the arithmetic average of the slopes at both
endpoints of the interval.

3.1.3 Runge–Kutta Methods

More accurate methods can be obtained by increasing the number of intermediate
points between xi and xi+1. For example, the widely used Runge–Kutta methods can
be expressed by the following general formulas:

yi+1 = yi +�x
m∑

j=1

wj · kj for i = 0, 1, 2, . . . ,, (3.35a)
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where

k1 = f (xi,yi), (3.35b)

kj = f

⎛

⎝xi + cj ·�x, yi +�x
j−1∑

l=1

aj l · kl

⎞

⎠ 2 ≤ j ≤ m . (3.35c)

In these formulas m ≥1, wj, cj, ajl are numerical coefficients. If at node xi an esti-
mate yi is known, then yi+1 at the node xi+1 = xi+ �x is obtained from Eq. (3.35a),
which uses the previously calculated coefficients k1,k2,. . .,km. This is repeated in
each step of integration: i = 0, 1, 2, . . ., N where N is number of steps in the inter-
val 〈a, b〉. If the number of components in Eq. (3.35a) is m, then the corresponding
Runge–Kutta method is called m-stage.

Comparison of Eqs. (3.35a) and (3.28) indicates that in fact the Runge–Kutta
methods use some specific estimation of the integral. One can write that:

xi+1∫

xi

f (x,y)dx = �x
m∑

j =1

wj .kj = �x . f̄ (x, y) , (3.36)

Where f (x,y) is a certain representative average value of the derivative dy/dx
in the interval 〈xi, xi + �x〉. One can assume that as a quadrature the rectangular
method is applied. The area under the curve f(x, y) is approximated by the area
of rectangular having a base equal to Δx and height defined as an average value
calculated with the weighting coefficients wj.

Let us consider the simplest, one stage Runge–Kutta method with m = 1. Since
in this case

k1 = f (xi, yi) , (3.37)

then the condition w1 = 1 must be satisfied and consequently:

xi+1∫

xi

f (x,y) dx ≈ � x · f (xi,yi) (3.38)

Then general formula (3.35a) in this case takes the following particular form:

yi+1 = yi +�x f
(
xi, yi

)
(3.39)

which is equivalent to the forward Euler formula presented earlier (3.16) (Legras
1971).
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Improvement of the solution accuracy is possible by increasing the number of
stages. For m = 2 one obtains two versions of the Runge–Kutta method. They are:

• the improved Euler method for which:

k1 = f (xi,yi). (3.40a)

k2 = f

(
xi + 1

2
�x, yi + 1

2
�x · k1

)
, (3.40b)

yi+1 = yi +�x · k2, (3.40c)

• the Euler–Cauchy method for which:

k1 = f (xi,yi), (3.41a)

k2 = f (xi +�x, yi +�x · k1), (3.41b)

yi+1 = yi +�x
1

2
(k1 + k2), (3.41c)

Both versions have simple geometrical interpretations shown in Figs. 3.6 and 3.7
respectively.

In the improved Euler method the function y(x) is represented in the interval 〈xi,
xi+1〉 by a straight line having slope calculated at midpoint, i.e. at xi+�x/2 (Fig. 3.6).
The Euler–Cauchy method uses the representative value of the derivative f (x,y)

Δx/ 2 Δx / 2

x                                                                  xi      i+1

yi

y
i+1

y (x
i+1

y (x)

slope f

slope f(xi,yi)

Δx
2

k
2

1,  y +ix +(            )

y

i

x

)

Fig 3.6 Interpretation of the improved Euler method
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Fig. 3.7 Interpretation of the Euler–Cauchy method

equal to the arithmetic average value taken for both endpoints of the interval: xi

and xi+1 (Fig. 3.7).
The most popular and widely applied version of the Runge–Kutta method is the

4-stage one. For m =4 one obtains the following formulas (Legras 1971):

k1 = f (xi,yi), (3.42a)

k2 = f

(
xi + �x

2
, yi +�x

k1

2

)
, (3.42b)

k3 = f

(
xi + �x

2
, yi +�x

k2

2

)
, (3.42c)

k4 = f (xi +�x, yi +�x · k3), (3.42d)

yi+1 = yi + �x

6
(k1 + 2k2 + 2k3 + k4). (3.42e)

This version is very often applied in open channel hydraulics, however rather to
integrate the ordinary differential equations with time as the independent variable.
There are the Runge–Kutta formulas derived up to m =8 (Legras 1971). However,
formulas with more than 4 stages are seldom used in engineering practice. The same
is true for the multistep methods, such as Adams–Bashford, Adams–Moulton or
Backward Differentiation Formula (BDF) (see Ascher and Petzold (1998) for more
details on these schemes).

Example 3.1 A flood wave of known form is passing through a reservoir closed by a
dam with a weir. Knowing that reservoir works accordingly to Eq. (1.122) compute
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the outflow from the reservoir O(t) through a weir. The storage equation (1.122) is
applied in a simplified form:

dh

dt
= 1

F(h)
(I(t) − O(t)) (3.43)

where:

t – time,
h(t) – water level above assumed datum,
F(h) – area of reservoir at the level of surface,
I(t) – inflow into reservoir,
O(t) – outflow from reservoir.

The flood wave is described by the formula:

I(t) = q0 + (qm − q0)

(
t

tm

)
exp

(
1 −

(
t

tm

))
(3.44)

where:

q0 – baseflow discharge of the inflow (initial inflow),
qm – peak discharge of the inflow,
tm – time of the peak flow.

The outflow O(t) from the reservoir takes place through a weir (Fig. 3.8)
Since the weir is contracted the flow is governed by the following discharge

equation (Roberson et al. 1998):

O(t) = K · (L − 0.20H)
√

2 g · H3/2, (3.45)

bottom

datum

H

A–A

A

A

h

L

Z

p.

Fig. 3.8 Weir of a dam
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where:

H – head,
L – weir width,
p – height of the dam,
Z – bottom elevation above the assumed datum,
g – acceleration due to gravity,
K – flow coefficient given as K = 0.40 + 0.05H/p (Roberson et al. 1997):

Replacing in Eq. (3.45) the head H with the water level h one obtains:

O(t) = K
√

2 g (L − 0.20 (h(t) − Z − p)) (h(t) − Z − p)3/2 (3.46)

The area of the water surface F varies with the water level elevation h as showed
in Fig. 3.9:

Substitution of Eq. (3.162) in Eq. (1.160) yields:

dh

dt
= I(t) − K

√
2 g (L − 0.20 (h(t) − Z − p)) (h(t) − Z − p)3/2

F(h(t))
. (3.47)

Solving this storage equation with appropriate initial condition one obtains the
function h(t) representing the evolution in time of the water level in reservoir. The
initial condition h(t=0) = h0 can be found from the discharge equation (3.45). To
this order one can assume that at the beginning the flow is steady with a constant
discharge equal to baseflow q0. The corresponding head at the weir is given by as:

H(t = 0) =
(

q0

K
√

2 g (L − 0.20 (h(t) − Z − p))

)2/3

. (3.48)
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Fig. 3.9 Area of reservoir’s
water surface versus elevation
of the water level above the
assumed datum
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Fig. 3.10 Transformation of
the flood wave I(t) flowing
through reservoir for two
different lengths of weir

Therefore the required initial condition takes the following form:

h(t = 0) = h0 = Z + p +
(

q0

K
√

2 g (L − 0.20 (h(t) − Z − p))

)2/3

. (3.49)

Knowing this condition one can use the formulas (3.42) for computation the
approximated values of h(i·�t) (i = 1, 2, 3, . . . where �t is time step and i is index
of time step).

The following data were assumed: q0 = 2.50 m3/s, qm = 100 m3/s, tm = 6 h and
p = 5 m. Computations were performed for two values of weir’s length: L = 12.0
m and L = 7.50 m. This parameter mostly influences the discharge through weir
so it determines the flood wave transformation process by reservoir. The results of
calculations provided by the Runge–Kutta method are shown in Fig. 3.10.

The changes of time step value in the range from 60 to 360 s only insignificantly
affected the final results.

3.1.4 Accuracy and Stability

Each numerical method of integration of the initial-value problem gives an approx-
imate value of the exact solution. If we assume that at node xi the exact value
of solution is known, i.e. y(xi) = yi, then the error at node xi+1 is considered as
generated in a single step. Obviously, the difference:

r(�x) = y(xi +�x) − yi+1, (3.50)

being the error of approximation of the exact solution by the numerical method,
should be as small as possible. Smaller value of r(�x) means more accurate method
of solution. If instead of yi+1, a formula of applied method, which depends on some
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coefficients and on the values of the derivative f(x,y), is substituted in Eq. (3.50), then
one can assume, that the error r is a function of the step size �x only. Therefore it
can be expanded in the Taylor series with regard to �x around zero (Ascher and
Petzold 1998):

r(�x) = r(O) +�x
dr

d�x

∣∣∣∣ 0
+�x2

2!
d2r

d�x2

∣∣∣∣ 0
+�x3

3!
d3r

d�x3

∣∣∣∣ 0
+ · · · (3.51)

If the difference (3.50) is equal to zero, all the terms of the Taylor series are
equal to zero as well. However the error of approximation exists always, although
its magnitude depends on the applied solution scheme. The error of approximation is
defined by so called the order of integration method. The considered method is said
to be of order p, if for each initial-value problem the first p terms of series (3.51) are
equal to zero. Therefore, if a method is of order p, then the error of approximation
generated in a single step is:

r(�x) = �xp+1

(p + 1)!
dp+1r

d�xp+1

∣∣∣∣ 0
. (3.52)

This definition is valid for all numerical methods of integration of the initial-
value problem.

Let us examine accuracy of the methods described by Eq. (3.26):

yi+1 = yi +�x ((1 − θ )fi + θ · fi+1) (3.53)

The linear multistep methods frequently applied to solve numerically initial value
problems for both scalar ordinary differential equation and system of such equa-
tions, derived by means of an interpolating polynomial, have a common general
form (Ascher and Petzold 1998):

k∑

j=0

αj · yi−j = �x
k∑

j=0

βj · fi−j (3.54)

where:

aj, β j – coefficients of the method,
yi – nodal values of function y(x),
fi – nodal values of derivative,
i – node index,
k – number of past integration steps,
Δx – step size.

Note that the method (3.53) belongs to this family as well. In this case we have
k = 1. The corresponding coefficients are given as follows: α0 = 1, α1 = −1, β0 =
θ , β1 = 1–θ .
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Assume that y(x) is the exact solution of the considered ordinary differential
equation (3.1) and it possesses the required derivatives. Introducing this function
into formula (3.54) one obtains a local error of solution ri:

k∑

j=0

αj · yi−j −�x
k∑

j=0

βj · fi−j = ri (3.55)

As it was stated above, the order of the method can be found by the analysis of
the local truncation error. Thus, the nodal values of function y(x) and its derivative
f(x) in Eq. (3.55) are expanded in Taylor series around the node i. Consequently, the
error ri will be also expressed in the form of Taylor series:

ri =
∞∑

p=0

Cp ·�x· dpy

dxp

∣∣∣∣
i

(3.56)

with the following coefficients Cp:

C0 =
k∑

j=0

αj (3.57a)

Cp = (−1)p

⎛

⎝ 1

p!
k∑

j=1

j p · αj + 1

(p − 1)!
k∑

j=0

j p−1 · βj

⎞

⎠ (for p ≥ 1) (3.57b)

Calculation of these coefficients allows us to find the order of linear multistep
method. If C0, C1, . . .,Cp = 0, Cp+1 
=0 then considered method is of order p (Ascher
and Petzold 1998). For Eq. (3.53) we obtain:

C0 = 1 − 1 = 0, (3.58a)

C1 = 1 − θ − (1 − θ) = 0, (3.58b)

C2 = −1

2
+ (1 − θ) = 1

2
− θ , (3.58c)

C3 = −1

6
(−1)− 1

2
(1 − θ) = −1

3
+ θ

2
(3.58d)

One can notice that the method (3.53) is of 1st order for θ
=1/2 and it is of 2nd
order for θ = 1/2. Therefore one can say that:

• both explicit (θ = 0) and implicit (θ = 1) Euler methods are of 1st order since
C0 = 0, C1 = 0 and C2 
= 0,

• the trapezoidal implicit method (θ = 1/2) is of 2nd order since C0 = 0, C1 = 0,
C2 = 0 and C3 
= 0.
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The first non-zero coefficient Cp+1 is called the error constant of the method.
Note that it is equal to 1/2 or –1/2 for the Euler methods and –1/12 for the implicit
trapezoidal rule.

The second important property of each method of integration is the numerical
stability. Roughly speaking, stability means that if the initial condition is slightly
changed, then the solution at following points will be also only slightly changed
with respect to the original solution. Unstable methods tend to produce oscilla-
tory solutions with unlimited growth of numerical error. To examine this question
let us express the linear multistep method in terms of the so-called characteristic
polynomials (Ascher and Petzold 1998):

ρ(Z) =
k∑

j=0

αj · Zk−j, (3.59a)

σ (Z) =
k∑

j=0

βj · Zk−j (3.59b)

where Z is a complex number.
For considered Eq. (3.53) these polynomials take the following forms:

ρ(Z) = Z − 1, (3.60a)

σ (Z) = θ · Z + (1 − θ ) (3.60b)

The region of absolute stability of any method is given by the ratio of both
polynomials

z = ρ(Z)

σ (Z)
= ρ(ei·ϕ)

σ (ei·ϕ)
(3.61)

where i is imaginary unit, whereas ϕ ranges in interval 〈0, 2π〉. A picture of the sta-
bility region is obtained by plotting of boundary given by Eq. (3.61) on the complex
plane. Substituting Eq. (3.60) in Eq. (3.61) yields:

z = Z − 1

θ · Z + (1 − θ )
= ei·ϕ − 1

θ · ei·ϕ + (1 − θ )
(3.62)

Using the following well known relation (McQuarrie 2003):

ei ϕ = cos (ϕ)+ i · sin (ϕ)

Equation (3.62) is rewritten as follows:

z = cos (ϕ)+ i · sin (ϕ)− 1

θ (cos (ϕ)+ i · sin (ϕ))+ (1 − θ )
= (cos (ϕ)− 1)+ i · sin (ϕ)

(θ · cos (ϕ)+ (1 − θ))+ i · θ · sin (ϕ)
(3.63)
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Division of the complex numbers gives:

z = (cos (ϕ)− 1) (θ · cos (ϕ)+ (1 − θ))+ θ · sin2 (ϕ)

(θ · cos (ϕ)+ (1 − θ))2 + θ2 · sin2 (ϕ)
+

+i
(θ · cos (ϕ)+ (1 − θ)) sin (ϕ)− θ · (cos (ϕ)− 1) sin (ϕ)

(θ · cos (ϕ)+ (1 − θ))2 + θ2 · sin2 (ϕ)

(3.64)

One can see that the extent of the region of absolute stability depends on the
weighting parameter θ . In Fig. 3.11 are shown the regions corresponding to the
selected values of θ . Note that for θ = 0 (explicit Euler method) the region of abso-
lute stability is very small, having the form of unit circle at left part of the complex
plane. Increasing of θ increases the stability region, which for θ = 1/2 (the implicit
trapezoidal rule) contains the whole left half of the complex plane (Fig. 3.11b).
Further increasing of θ includes a fraction of the real part of the complex plane to
the region of absolute stability as well (Fig. 3.11a). The largest region of stability
is obtained for the implicit Euler method corresponding to θ = 1. It contains entire
complex plane except the shadowed unit circle (Fig. 3.11a).

The theory of the numerical methods for initial value problem in ODEs distin-
guishes a very important family kind of the so called A-stable methods. This term
should not be mistaken with the absolute stability. The difference method is con-
sidered as A-stable if its region of absolute stability covers the whole left part of
complex plane. This type of methods is recommended for solving so called stiff
systems of the ordinary differential equations (Ascher and Petzold 1998).

In the case of Eq. (3.53) the real part of the complex number defining the region
of stability (3.64) can be reduced to the following form:

Re (z) = (1 − cos (ϕ)) (2θ − 1)

(θ · cos (ϕ)+ (1 − θ))2 + θ2 · sin2 (ϕ)
(3.65)

Since 0 ≤ ϕ ≤ 2π then from Eq. (3.65) results that the region of absolute stability
of the method (3.53) will be kept at right half of the complex plane if only:

1
/

2 ≤ θ ≤ 1 (3.66)

This condition confirms the results presented in Fig. 3.11. The method (3.53) will
be A-stable as long as its weighting parameter θ satisfies the condition (3.66).

From practical viewpoint the most interesting methods for solving the ordinary
differential equations are those which have large region of absolute stability. This
explains the reasons of popularity of such methods as the implicit trapezoidal rule
and backward Euler method. As we will see in later, these methods are of great
importance in open channel hydraulic as well.

More information on the problems of accuracy and stability analysis is given
for example by Ascher and Petzold (1998), Bjorck and Dahlquist (1974), LeVeque
(2007), Ralston (1965).
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Fig. 3.11 Absolute stability regions of the method (3.53) for various values of weighting
parameter θ : (a) out of shadow; (b) inside of shadow

3.2 Initial Value Problem for a System of Ordinary
Differential Equations

The initial-value problem, discussed previously for a scalar ordinary differential
equation, can be also formulated for a system of ordinary differential equations of
the following general form:

dy1

dx
= f1(x,y1,y2„ . . . ,yN), (3.67a)
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dy2

dx
= f2(x,y1,y2„ . . . ,N), (3.67b)

...
...

dyN

dx
= fN(x,y1,y2, . . . ,yN) (3.67c)

The goal is to find such set of the functions y1(x),y2(x),. . .,yN(x), which satisfy
simultaneously the system of equations (3.67) in the considered interval 〈a, b〉 and
the following initial conditions:

y1(a) = y1,0, y2(a) = y2,0, . . . , yN(a) = yN,0,

where y1,0, y2,0, . . ., yN,0 are given values.
To solve the initial-value problem one can apply any of the methods derived for

the scalar equation. These formulas remain the same. The only difference is that
vectors are used instead of scalars.

Using the vector notation the system (3.67) is rewritten shorter, as follows:

d y(x)

dx
= f(x,y) for a < x ≤ b with y(a) = y0 (3.68)

where

y(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1(x)
y2(x)

...
yN(x)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, f (x,y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x,y)
f2(x,y)

...
fN(x,y)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, yo =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1,0
y2,0

...
yN,0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

If for instance the implicit trapezoidal rule (3.139) is applied to solve the system
(3.68), then one obtains:

yi+1 = yi + �x

2
(fi + fi+1). (3.69)

where i is index of node and �x is step size. Other formulas can be implemented in
a similar manner.

In many cases, for instance in the numerical solution of 1D partial differen-
tial equation using the finite element method, one obtains a systems of ordinary
differential equations written in the following form:

A
d y
d t

+ B · y = 0, (3.70)

where A is a constant matrix, whereas B is a variable matrix dependent on time
t and sometimes, in addition on unknown vector y. Obviously, the system (3.70)
can be reduced to the form of Eq. (3.68). However such a transformation is not
recommended, since both B and A are tri-diagonal matrices. Diagonalization of
Eq. (3.70) requires that the matrix A is inverted. However, it should be remembered
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that the inversion of a banded matrix gives a matrix A−1 which has all non-zero
elements. In such a way the advantage of the tri-diagonal matrix in Eq. (3.70)
is lost.

As it was mentioned in the preceding section, the most suitable methods for solu-
tion of the systems of ODEs are the A-stable methods. They are recommended to
solve the stiff systems, in which the component equations describe the processes
having different time scale. It means that there are some processes which occur
much more rapidly than others. After Ascher and Petzold (1998), “An initial value
problem is stiff in some interval if the step size needed to maintain stability is much
smaller than the step size required to represent the solution accuracy”. However, it
appears that among the standard methods only some of them can be classified as
A-stable ones. It is proved that only the implicit methods of order not higher than
2, i.e. for p ≤ 2, are A-stable (Ascher and Petzold 1998, Bjorck and Dahlquist
1974). Among all standard methods of solution of the initial-value problem only
implicit Euler and implicit trapezoidal methods satisfy both mentioned condi-
tions. The previously introduced unified formula (3.53) can be rewritten in vector
notation as:

yi+1 = yi +�t ((1 − θ ) y′
i + θ · y′

i+1), (3.71)

with θ ranging from 0 to 1. From the preceding section it is known that for θ = 1 Eq.
(3.71) becomes the backward Euler method, whereas for θ = 1/2 it is the implicit
trapezoidal one. Remember that this formula is A-stable for 1/2 ≤ θ ≤ 1

To solve the system (3.70) the vector of derivatives:

y′ = A−1( − B · y), (3.72)

is substituted in Eq. (3.71). This gives:

yi+1 = yi +�t ( − (1 − θ ) A−1 · Bi · yi − θ · A−1 · Bi+1 · yi+1) (3.73)

Multiplying both sides by A and grouping similar terms, yields the following
system of algebraic equations:

(A +�t · θ · Bi+1) yi+1 = (A −�t (1 − θ )Bi) yi, (3.74)

which can be rewritten as:

Ri+1 · yi+1 = Fi, (3.75)

where:

Ri+1 = A +�t · θ · Bi+1 (3.76a)

Fi = (A −�t (1 − θ ) Bi) yi (3.76b)
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In such a way the solution of the initial-value problem for a system of ordinary
differential equations was reduced to the solution of the system of algebraic equa-
tions in each time step. This system may be linear or non-linear one according to
the solved problem. In the latter case, an iterative method must be applied. Note that
the matrix R is banded as the matrices A and B in the system (3.70).

3.3 Boundary Value Problem

The system of the ordinary differential equations considered in preceding section:

dy
dx

= f(x,y). (3.77)

requires some auxiliary information to be solved. If all needed data are specified
at the same value of the independent variable x, then the considered problem is
the initial-value one. This problem was discussed in previous section. In contrast
to the initial-value problem one can formulate another one, in which the auxiliary
conditions are specified at different values of the independent variable. Since usually
they are imposed at two different points, corresponding to the ends of the interval
〈a, b〉, then the problem formulated in such a way is called two-point boundary-
value problem or simply the boundary-value problem. Obviously, more than one
additional condition is required only by a system of ordinary differential equations
or by an equation of higher order than 1st, which can be reduced to the equivalent
system of equations. In open channel hydraulics the ordinary differential equations
usually appear in the form of a single equation of 1st order. Thus formally it is
impossible to formulate a boundary-value problem directly, in the way mentioned
above. However, such type of problem can be formulated if we assume that one of
the parameters of the ODE is unknown, but constant in the interval 〈a, b〉, in which
the considered equation is integrated (Ascher and Petzold 1998, Press et al. 1992).
Therefore we have:

dy

dx
= f (x,y,λ) (3.78)

where λ is a constant parameter. Then one more ordinary differential equation is
added to the system:

dλ

dx
= 0 (3.79)

This means that the constant λ is considered as a function over the interval
〈a, b〉, which is independent of x.

In such a way we have the system of equations (3.78) and (3.79), for which one
can formulate the boundary-value problem. This problem is formulated as follows:



108 3 Numerical Solution of Ordinary Differential Equations

determine the function y(x) over the interval 〈a, b〉 which satisfies within this inter-
val Eqs. (3.78) and (3.79) and moreover, which satisfies the following boundary
conditions:

y(a) = ya (3.80a)

and

y(b) = yb (3.80b)

where ya and yb are specified values of y at both endpoints of the interval.
To solve numerically the above formulated problem two following approaches

can be applied (Bjorck and Dahlquist 1974, Stoer and Bulirsch 1980):

• the finite difference method,
• the shooting method.

Both methods are briefly described below, while more details on their application
are provided in Chapter 4.

In the finite difference method the interval of integration 〈a, b〉 is divided using
N nodes xi into the segments of length �x. Equation (3.79) is approximated at
midpoint xi + �x/2 of each segment using the implicit trapezoidal formula (3.22).

y i+1 − y i

�x
= 1

2
(f i + f i+1) for i = 1, 2, · · · , N − 1 (3.81)

In such a way one obtains N – 1 algebraic equations containing N + 1 unknowns.
There are N values of the function yi at each node and the constant parameter λ.
To this system two equations should be added, which correspond to the boundary
conditions imposed at the endpoints of the interval. Consequently the closed system
may be written as follows:

AX = B (3.82)

where:

A – sparse matrix having dimensions (N + 1)×(N + 1),
X = (y1, y2,. . .,yN–1, yN, λ)T – vector of unknowns,
B – vector of right side hand.

Solving this system one obtains the nodal values of y(x) and the value of
parameter λ.

The shooting method is based on converting the boundary-value problem into an
equivalent initial-value problem (Chapra and Canale 2006). The solution is obtained
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Fig. 3.12 Conversion of the boundary-value problem into a sequence of the initial-value problems

indirectly. A sequence of solutions of the initial-value problems is carried out for
various values of the parameter λ until the condition imposed at x = b is satisfied
with specified tolerance. Then the following initial-value problem:

dy

dx
= f (x,y,λ) with y (a) = ya (3.83)

is solved. Since y = y(x, λ) then the solution depends on the assumed value of λ.
Solution of the boundary-value problem will be such a solution of the initial-value
problem for which the second boundary condition:

y(b, λ̄) = yb (3.84)

is satisfied (Fig. 3.12).
If we introduce the following function:

F(λ) = y(b, λ) − yb (3.85)

which defines the difference between the value of y(b) computed for given value of
λ and imposed value of y as the boundary condition yb, then solution of problem is
reduced to determination of the root of function F(λ). To find the root, at first the
interval in which it is located must be done. To this order we should specify such
two values of λ, say λ(1) and λ(2), for which the following relation is valid:

F(λ(1)) · F(λ(2)) < 0 (3.86)

Afterwards the bisection or false position method can be used to determine the
root with required accuracy i.e. the approximated value of λ̄.
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Chapter 4
Steady Gradually Varied Flow in Open Channels

4.1 Introduction

4.1.1 Governing Equations

In many practical applications the flow in open channels can be considered as steady
and gradually varied. Such a flow can take place either in a single channel or in a
channel network. The solution of steady flow equation can constitute a separate
engineering problem or it can be a part of a more complex problem. The first case
arises, for example, while computing the flow distribution and the flow profiles in a
watering channel network. The second case can occur in unsteady flow modeling,
when steady gradually varied flow in a channel network is assumed as the initial
condition for unsteady flow equations.

Sometimes the analysis of the steady gradually varied flow in channel network is
carried out using the unsteady flow equations, i.e. the system of Saint Venant equa-
tions. Starting from the hydrostatic state, these equations are solved numerically
with the boundary conditions corresponding to the required final steady state.
Consequently the water stages and discharges asymptotically tend to their steady
state values. However, such an indirect approach seems to be somewhat artificial. It
is better to apply a direct approach, i.e. to use the appropriate equations describing
steady flow and to solve them with a suitable numerical method. Such a concept is
presented below.

As it was shown in Section 1.6, the governing equations describing steady grad-
ually varied flow can be obtained from the system of Saint Venant equations:

dQ

dx
= q, (4.1)

dE

dx
= d

dx

(
h + α · Q2

2g · A2

)
= −S − α · Q

g · A2
q, (4.2)

where:

h – water level above the accepted datum,
Q – discharge,

111R. Szymkiewicz, Numerical Modeling in Open Channel Hydraulics, Water Science
and Technology Library 83, DOI 10.1007/978-90-481-3674-2_4,
C© Springer Science+Business Media B.V. 2010
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A – wetted cross-sectional area,
x – longitudinal distance,
q – lateral inflow,
α – energy correction factor
S – friction slope given by equation:

S = (nM)
2 · Q2

R4/3 · A2
(4.3)

where:

nM – Manning coefficient,
R – hydraulic radius.

Since Eqs. (4.1) and (4.2) are derived from the Saint Venant equations, they
should be applicable for all types of open channels. Indeed, as will be shown later,
numerical integration of Eq. (4.2) by the implicit trapezoidal rule leads to the well
known step method, commonly applied in practice. Usually the step method is
derived directly from the principle of energy conservation applied for the discrete
system of two neighboring cross-sections along channel axis.

4.1.2 Determination of the Water Surface Profiles for Prismatic
and Natural Channel

For a rectangular channel and Q = const. Equations (4.1) and (4.2) with α = 1 may
be rearranged to the form of Eq. (1.97):

dH

dx
= s − S

1 − F2
r

. (4.4)

where:

H – flow depth,
s – channel bed slope,
Fr – Froude number.

Equation (4.4) is the base for theoretical analysis of the water surface pro-
files arising for various flow conditions in open channels. The profiles can be
deduced by taking into account the relation between the bed slope s, critical
slope sc and the friction slope S, as well as the relations between the flow depth
H, normal depth Hn and critical depth Hc. This rather theoretical analysis, pre-
sented in detail for example by Chow (1959), French (1985), Singh (1996) and
others, provides some qualitative conclusions. Typical water profiles which can
occur during the steady gradually varied flow in open channel are presented in
Fig. 4.1.
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Fig. 4.1 Typical forms of the water flow profiles resulting from the analysis of Eq. (4.4) for
channel with mild slope, steep slope, inverse slope and horizontal bed

Some of the presented profiles are important for engineering practice, such as the
backwater curve presented in Fig. 4.2.

Others have rather theoretical significance, although they can occur locally in
particular circumstances, as it is shown in Figs. 4.3 and 4.4.

Note that the profiles shown in Fig. 4.1 were deduced from the analysis of the
relations between the variables involved in Eq. (4.4) but not from its direct solution.
To summarize, Eq. (4.4) is rather not applied in modern hydraulics to solve practical
problems, although years ago it was adapted to solve some particular cases (Chow
1959).

s s< c

H
Hn

c

datum

Fig. 4.2 Typical flow profile behind a dam
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Fig. 4.3 Typical flow profiles at downstream of gate
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Fig. 4.4 Typical flow profile occurring between channels of mild slope and channel of steep slope

For practical application, when natural channels are considered, instead of
Eq. (4.4) the discrete energy equation leading to the so-called step method is
commonly used. Let us recall this approach.

A channel reach enclosed by two sections 1 and 2, as presented in Fig. 4.5, is
taken into consideration. Neglecting the lateral inflow, i.e. for q = 0 and Q1 =
Q2, one can write the following equation representing the energy conservation
principle:

h 1 + α · Q2

2 g · A2
1

= h 2 + α · Q 2

2 g · A2
2

+�Hf (4.5)

where �Hf is the friction loss in the channel reach.
Sometimes in Eq. (4.5) an additional term representing the so-called eddy losses

is introduced as well (French 1985). It takes into account the effects of expan-
sion or contraction caused by sudden change of the cross-sectional area, which
can be appreciable in non – prismatic channels. However, it seems that if these
losses are neglected in the Saint Venant equations, then they can be omitted in the
case of steady flow as well. If the cross-section area changes suddenly at any point
in the considered channel, it should be treated as a point of discontinuity of h(x),
which divides the channel into two segments. At this point special equations con-
necting both segments must be introduced. They result from the mass and energy
conservation principles. This problem is discussed in Section 4.2.4.



4.1 Introduction 115

s

Q

h1

H

Z

1

1

datum

1 2

Q 2

2gA2
1

Hf
Q2

2gA2
2

H

Z

h
2

2

2

α      
α      

Δ

Δ x
x

Fig. 4.5 Channel reach definition for the step method

The term�Hf is usually approximated using the arithmetic average of the friction
slope over the considered channel reach. Then the following formula can be written:

�Hf = �x · S = �x
S1 + S2

2
(4.6)

where S1 and S2 are the friction slopes given by formula (4.3). Therefore they are
calculated as follows:

S1 = (nM)
2
1 · Q2

R4/3
1 · A2

1

, (4.7a)

S2 = (nM)
2
2 · Q2

R4/3
2 · A2

2

(4.7b)

Other methods to estimate the average friction slope for a channel reach exist
(French 1985). However, they will not be considered here. As it will be shown later,
the use of arithmetic average is consistent with the discrete form of the differential
equation (4.2) obtained using the implicit trapezoidal method.

Substitution of Eqs. (4.7a) and (4.7b) in Eq. (4.5) yields:

h1 + α · Q2

2g · A2
1

= h2 + α · Q2

2g · A2
2

+ �x

2

(
(nM)

2
1 · Q2

R4/3
1 · A2

1

+ (nM)
2
2 · Q2

R4/3
2 · A2

2

)

(4.8)

It should be remembered, that the calculation of the flow profile proceeds always
towards the direction for which the water surface asymptotically tends to the final
level corresponding to the normal depth. Depending on the node numeration, it can
be the direction of either increasing or decreasing indices. If for example the water
level in cross-section number 2, is known, then h1 can be easily calculated. Since
Eq. (4.8) is a non-linear algebraic equation with regard to h1, then to solve it one
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of the well-known methods as for example the bisection, secant or Newton method
should be applied. If h1 is calculated, one can pass to the next reach enclosed by the
next pair of sections. This procedure, called the step method (Chow 1959, French
1985), is repeated until the criterion for convergence to the normal water level is
satisfied.

While comparing the two presented approaches to solve the steady gradually
varied flow, i.e. by the solution of the ordinary differential equation (4.4) and by the
step method, one can notice some kind of inconsistency. For a prismatic channel
the general approach, based on the unsteady flow equations, allowed to derive the
equations for steady flow, whereas for a non-prismatic channel a different approach
had to be used. This makes impression that the steady flow in open channel must be
analyzed with different methods to reach the same goal, depending on the geometry
of the channel. This fact has been noticed by other authors as well. For instance
Roberson et al. (1998) explicitly distinguish the two possible approaches: “Modern
methods for computing the water surface profile may be divided into two cate-
gories: methods based on the solution of the energy equation between different
channel sections and methods based on the solution of the differential equation
describing the rate of change of depth with distance”. However, as the matter of
fact, both approaches are equivalent. This coincidence will be shown in the next
section.

4.1.3 Formulation of the Initial and Boundary Value Problems
for Steady Flow Equations

The water profile along channel axis in steady gradually varied flow can be formally
obtained by solving one of the previously presented ordinary differential equations.
To this end a proper problem of their solution must be formulated. For practical
applications it is more convenient to write the ordinary differential equations with
regard to the water stage h(x) than with regard to the depth H(x). For example,
given the flow discharge Q the function h(x) can be obtained via the solution of the
so-called initial value problem for ordinary differential equation. Such situation is
illustrated in Fig. 4.6.

In a channel, which carries the discharge Q, the water level was raised owing to
a dam from the level hn, corresponding to the normal depth, to the assumed level
h0. Then behind a dam the backwater curve occurs (Fig. 4.6). This curve can be
calculated on condition that its value h0 at control x = 0 is known. In such a way it
is possible to reproduce all the typical water profiles showed in Fig. 4.1, which can
occur in open channel.

Sometimes the flow profile must be determined in another way. If at both ends
of open channel the water levels are imposed and the flow discharge in channel is
unknown, the flow profile can be obtained via the solution of the so-called boundary
problem (or two points boundary value problem) for ordinary differential equations.
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This problem has been already presented in Section 3.3. Such a situation takes place
when a channel of length L connects two reservoirs, as it is shown in Fig. 4.7. If
the water levels in reservoirs are time – invariant, the curve h(x) must satisfy the
steady gradually varied flow equations in the domain 0 ≤ x ≤ L and two additional
conditions imposed at both ends of the channel.

Another particular set of problems occur for steady gradually varied flow in open
channel network. These questions will be taken up in Section 4.4.
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4.2 Numerical Solution of the Initial Value Problem for Steady
Gradually Varied Flow Equation in a Single Channel

4.2.1 Numerical Integration of the Ordinary
Differential Equations

The steady flow profile can be obtained using a number of relatively simple
graphical or analytical approaches, which do not involve numerical computations.
However, these methods are limited to prismatic channels, and thus they will not
be considered here. Their detailed presentation can be found in French (1985). In
this chapter we shall focus on a more general approach, suitable for channels with
arbitrary cross-section geometry.

A general mathematical model of steady flow is given by the previously presented
system of the ordinary differential equations (4.1) and (4.2), which with Eq. (4.3) is
rewritten as follows:

dQ

dx
= q, (4.9)

d

dx

(
h + α · Q2

2g · A2

)
= − n2

M · Q2

R4/3 · A2
− α · Q

g · A2
q (4.10)

These equations describe the flow profile h(x) and the discharge Q(x) along
the channel axis. To calculate these functions for a single channel an appropriate
problem of solution for Eqs. (4.9) and (4.10) should be formulated.

Let us assume a channel of length L, divided by N nodes (at which the channel
cross-sections are known), into intervals of length Δxi = xi+1 − xi. When the dis-
charge Q at any channel cross-section is given and the distribution of lateral inflow
along channel is known, Eq. (4.9) can be solved immediately. Its integration over
the interval Δxi yields:

Qi+1 = Qi +
xi+1∫

xi

q(x) · dx (4.11)

This formula allows us to determine the discharges at all nodes along the consid-
ered channel reach. To this order the integral in Eq. (4.11) is calculated numerically
using any quadrature formula, such as the rectangular or trapezoidal rule. Knowing
the discharges Qi (i = 1, 2, . . ., N) one can solve Eq. (4.10). For this purpose the
following initial value problem is formulated: calculate the water flow profile h(x),
which satisfies Eq. (4.10) and the initial condition h(x = x0) = h0 imposed at control
end of the considered channel reach.

There exist numerous methods to solve the initial value problem for the ordinary
differential equations (Ascher and Petzold 1998, Le Veque 2007, Press et al. 1992,
Stoer and Bulirsch 1980). Some of them were presented in Chapter 3. As it was
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explained, the cross sections of an open channel obtained by field measurements
are distributed along channel in a non-uniform way, so the lengths of intervals Δxi

vary. Consequently it is better to avoid such methods of solution, which need an
interpolation between neighboring nodes as for instance the methods of Runge–
Kutta. Such type of methods can be applied rather for prismatic channels in which
interpolation is possible. Similarly, multi-step methods should be avoided, as they
are suitable rather for uniformly spaced grid points. For natural rivers with vari-
able cross-sections only the Adams–Moulton method of the lowest order should be
applied, since it uses the cross-sectional parameters at the grid points only. For these
reasons the implicit trapezoidal rule (3.22) seems to be the best choice:

yi+1 = yi + � x

2
(y′

i + y′
i+1). (4.12)

where:

yi, yi+1 are the values of the unknown function at nodes i and i + 1 respectively,
y′

i, y′
i+1 are the values of the derivatives of y(x) at nodes i and i + 1 respectively,

�x is the integration step.

The trapezoidal rule, being an implicit method, has two important advantages:

– it ensures approximation of 2nd order of accuracy,
– it requires data from cross – sections i and i + 1 only, thus it is especially suitable

for integration with variable step size as it occurs in open channel.

Application of the formula (4.12) to solve Eq. (4.10) yields:

(

h i+1 + α · Q 2
i+1

2 g · A2
i+1

)

=
(

h i + α · Q 2
i

2 g · A2
i

)

+

− � x i

2

(
(nM)

2
i · Q 2

i

R4/3
i · A2

i

+ α · Qi

g · A2
i

qi + (nM)
2
i+1 · Q 2

i+1

R4/3
i+1 · A2

i+1

+ α · Qi+1

g · A2
i+1

qi+1

)

(4.13)
where:

i – index of cross-section,
Δxi – length of interval number i.

Note that if the index i increase as x decreases, then in Eq. (4.13) the step size
Δxi should have negative sign.

Sometimes the lateral inflow q(x) can be neglected. With qi = qi+1 = 0 the
discharge is Qi = Qi+1 = const. and Eq. (4.13) can be simplified:
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(

hi+1 + α · Q2

2g · A2
i+1

)

=
(

hi + α · Q2

2g · A2
i

)

− �xi

2

(
(nM)

2
i · Q2

R4/3
i · A2

i

+ (nM)
2
i+1 · Q2

R4/3
i+1 · A2

i+1

) (4.14)

Let us compare Eq. (4.14) with Eq. (4.8). It is easy to find out that they are identi-
cal. It means that the ordinary differential equation (4.10) solved by the trapezoidal
rule coincides with the discrete energy equation (4.8), usually applied to calculate
the water profile in natural channels. Note that Eq. (4.14) has been derived directly
from the most general mathematical model of 1D unsteady flow in open channel,
i.e. the Saint Venent equations. Therefore any special treatment of the steady grad-
ually varied flow in natural channels is not needed. On the other hand, any special
procedures for numerical integration of Eq. (4.4) are not needed as well.

Equation (4.14) should be solved either for prismatic or non-prismatic channel
by one of the methods previously listed for Eq. (4.8). In such a way it is possible to
obtain the flow profiles corresponding to all zones distinguished by the theoretical
analysis of Eq. (4.4) and presented in Fig. 4.1.

4.2.2 Solution of the Non-linear Algebraic Equation Furnished
by the Method of Integration

The goal of the applied approach is to determine the water flow profile for specified
depth imposed at the downstream end. Since all variables in Eq. (4.14) correspond-
ing to the node i are known, this algebraic equation contains only one unknown hi+1.
However as hi+1 is involved in other parametrs, it cannot be expressed explicitly. To
solve the problem Eq. (4.14) is reformed as follows:

f (hi+1) =
(

h i+1 + α · Q 2

2g · A2
i+1

)

−
(

h i + α · Q 2

2g · A2
i

)

+ �x i

2

(
(nM)

2
i · Q 2

R4/3
i · A2

i

+ (nM)
2
i+1 · Q 2

R4/3
i+1 · A2

i+1

) (4.15)

The value of hi+1 that makes f(hi+1) = 0 is the root of Eq. (4.15) and is the
solution to the problem. To obtain it one of the numerical methods for determining
roots of the non-linear algebraic equations described in Section 2.1 must be applied.

Numerical experiments provide us with interesting insights into the proper-
ties of Eq. (4.15). Apparently no difficulties occur for the standard problem of
backwater curve behind a dam, where the intervals Δx are of the order of hun-
dreds meters. However, for other type of flow profiles presented in Fig. 4.1 some
computational problems can arise. For instance it appears that starting from the



4.2 Numerical Solution of the Initial Value Problem 121

same initial condition H0 = Hc, i.e. when the critical depth is imposed at x = 0,
two different physically admissible solutions can be obtained. On the other hand,
sometimes the correct solution cannot be obtained at all. The possible existence
of many solutions results from the existence of multiple roots of the function
f(hi+1).

In order to investigate these effects in a more detailed way, let us consider steady
gradually varied flow in a trapezoidal channel with b = 3.5 m, nM = 0.015, m =
1.5, s = 0.001 that carries a discharge Q = 4 m3/s. To simplify interpretation of the
results of calculations let us change the independent variable. Let us use the depth
Hi+1 instead of the water level hi+1. The objective is to determine the water flow
profiles for various characteristic depths imposed at the downstream end as initial
condition.

For the assumed data the normal depth satisfying the Manning formula:

Q = 1

nM
R2/3 · s1/2 · A (4.16)

solved by the false position method (see Section 2.1.3) is equal to Hn = 0.664 m,
whereas the critical depth satisfying the equation:

Q2

g
= A3

B
(4.17)

and solved by the same method, is equal to Hc = 0.490 m.
The flow profiles are calculated for the following initial conditions imposed at

x = 0:

• H0 = 1.00 m (H0 > Hn and H0 > Hc)
• H0 = 0.55 m (H0 < Hn and H0 > Hc)
• H0 = 0.45 m (H0 < Hn and H0 < Hc).

An analysis of the function f(Hi+1) concerns the first reach of channel, which is
bounded by the cross-sections 0 and 1. So it will deal with the function f(H1) only.

It is well known that while solving any non-linear algebraic equation, at first the
searched root must be separated. In considered Eq. (4.15) all possible roots of func-
tion f(H1) exist in the domain of positive real numbers. In the interval defined by two
endpoints, only one root may exist. Afterwards a suitable method for determination
a single root is applied. To check the number of roots and their positions the graph
of f(H1) should be drawn.

The plots of function f(H1) obtained for the assumed data are presented in
Figs. 4.8, 4.10 and 4.11.

It appears that for the imposed initial value of H0 the shape of the function f(H1)
strongly depends on the value of the stepsize�x. One can notice, that depending on
the assumed values of H0 and Δx there are one, two or three roots of the function
(4.15) in the domain of real positive numbers. Therefore, while solving Eq. (4.15)
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the separation of the roots must be done very thoroughly. The single root should be
properly selected and then its value must be approximated with sufficient accuracy.
Otherwise one can find a false root and consequently obtain an unphysical solution.

The presented plots of f(H1) show why only some attempts of computations can
be successful, while others can fail or to deliver false solutions. The crucial point
during the computational process is to choose the proper value of stepsize�x, since
as results form the presented figures, it determines both the shape of function f(H1)
and the number of its roots. The significance of this parameter is due to the fact
that one of the most important terms of Eq. (4.7) representing the losses of energy
is governed by the stepsize �x. For example, Fig. 4.8 shows that in the case of a
large stepsize applied for the subcritical flow (H0 = 1.00 m > Hc) only one root
exists. Then the solution will be always reached without any difficulties. On the
other hand, for small values of �x one or even two additional roots occur. However
both of them are physically inadmissible. The appropriate root can be identified
taking into account that the extreme minimum value of f(Hi+1) roughly corresponds
to the critical depth, which in this case is equal to Hc = 0.49 m. This is clearly
shown in Fig. 4.9.

Similar results to the ones presented in Fig. 4.8 are also obtained for the following
initial condition: Hc = 0.49 m < H(x = 0) = H0 = 0.55 m < Hn = 0.664 m. They
are shown in Fig. 4.10.

One should remember that while the calculations proceed from the cross section
i to the cross section i + 1 (i = 1, 2, 3,. . .), the depth Hi+1 varies. Therefore at the
same time the form of the function f(Hi+1) varies as well. For this reason in every
cross-section, a separation of the interval containing the searched root must de done
very thoroughly.
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If the imposed depth H0 is greater than critical depth, as in the considered case,
the root at the right-hand side of the extreme point should be chosen as the proper
one. If we choose one of the roots from the left-hand side of the minimum, the
calculated solution will have unphysical character.

Figure 4.11 shows a situation opposite to the ones presented in Figs. 4.8 and
4.10. One can see that with too large step size applied for the supercritical flow
(H0 = 0.45 m < Hc) it is impossible to obtain a physically reasonable solution.
On the other hand, for small values of Δx two roots occur. However, only one of
them is physically admissible. To choose the suitable root one can use previously
presented information on the minimum point of f(Hi+1), which corresponds to the
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critical depth. Therefore if the imposed depth H0 is less than critical one, as in this
case, the root at left side of extreme point should be chosen. Conversely, if H0 is
greater than Hc we have to choose the one from the right-hand side.

The influence of the stepsize on the number of roots is a very important con-
clusion, since in the numerical analysis it is usually considered that the step of
integration influences only the accuracy and stability of the numerical solution. The
presented results suggest that in some cases the correct solution can be obtained
only if additional conditions on the stepsize are satisfied.

From the above discussed properties of the function f(Hi+1) results that it is pos-
sible to calculate numerically all types of the flow profiles, which can occur during
steady varied flow in open channel. The calculations can be carried out for both arti-
ficial and natural channels, since the approach based on the ordinary differential
energy equation is capable of predicting the depth of flow at arbitrary longitu-
dinal distances. This feature is an important advantage as in rivers the distances
between neighboring cross-sections are variable. However the numerical solution
of the non-linear equations should be performed especially thoroughly. The func-
tion f(Hi+1) given by Eq. (4.15) can have one, two or three roots, which in addition
can move along axis. Some of them are physically inadmissible. For these reasons
the separation of the interval containing the single root must be carried out very
precisely. To determine the root within an interval the bracketing methods should
be used, rather than the open ones. Thus, the bisection and false position methods
will be more reliable than the Newton and simple fixed-point iteration methods.
The latter methods can be applied on condition that the interval containing the
correct root is sufficiently narrow, so that f(Hi+1) varies monotonically over the
interval.
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4.2.3 Examples of Numerical Solutions of the Initial
Value problem

Example 4.1 A trapezoidal channel with b = 3.5 m, nM = 0.015, m = 1.5, s =
0.001 carries a discharge Q = 4 m3/s. Determine the water flow profiles for various
characteristic depths imposed at the downstream end.

For the assumed data the normal depth satisfying the Manning formula is equal
to Hn = 0.664 m, whereas the critical depth satisfying the Equation (4.16) is equal
to Hc = 0.490 m. The flow profiles were computed for h(x = 0) corresponding to
the depths H0 = 1.0 m > Hn, H0 = 0.664 m = Hn and H0 = 0.40 m = Hc. They
are shown in Fig. 4.12. As it could be expected, the profiles obtained by numerical
solution have typical forms resulting from the theoretical analysis of Eq. (4.4) and
presented in Fig. 4.1. The plots correspond to case A – zones a and b. The backwater
curve calculated for zone c, i.e. for supercritical flow, is discussed later.
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Fig. 4.12 Steady gradually
varied flow profiles in a
channel with uniform
longitudinal slope for various
depths H0 imposed at x = 0

Example 4.2 A trapezoidal channel with b = 3.5 m, nM = 0.015, m = 1.5 and
horizontal bed (s = 0.0) carries a discharge Q = 4 m3/s. Determine the water flow
profiles for various depths imposed at the downstream end.

The calculation performed for H0 = Hc, corresponding to the free overfall at the
channel end gave the flow profile in the form of a typical drawdown curve obtained
for the critical depth imposed at downstream end (Fig. 4.13). Similar, but more gen-
tle drawdown curve results for a greater value of H0 imposed as the initial condition
at x = 0.
Example 4.3 A trapezoidal channel with b = 3.5 m, nM = 0.015, m = 1.5 and having
adverse bed slope s = −0.001 carries a discharge Q = 4 m3/s. Determine the water
flow profile assuming that the channel terminates in a free overfall, i.e. the critical
depth is imposed at the downstream end.
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In Fig. 4.14 one can see that computed drawdown curve corresponds to the one
presented in Fig. 4.3 (case C, zone b).

Example 4.4 A trapezoidal channel with b = 3.5 m, nM = 0.010, m = 1.5 and a
steep bed slope s = 0.005 carries a discharge Q = 4 m3/s. Determine the water flow
profile for the following initial conditions, imposed at x = 0:
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• H0 = 0.75 m > Hc,
• Hn< H0 = 0.35 m < Hc,
• H0 = 0.25 m < Hn.

The considered type of flow corresponds to case B in Fig. 4.1. To obtain the
results displayed in Fig. 4.15 small stepsize equal to Δx = 1.0 m had to be applied.
Note that the flow profiles for all three zones a, b, and c can be reproduced using the
same approach.

Example 4.5 An interesting case arises when the critical depth is imposed as the
initial condition. To illustrate this problem let us consider steady flow in the chan-
nel from Example 4.4. It is a channel with mild slope s = 0.001 < sc for which
the critical depth is equal to Hc = 0.49 m. This value is imposed at x = 0 as
the initial condition H0 = Hc. Let us plot the function f(H1) given by Eq. (4.15).
Figure 4.16 presents the values of the function for the stepsize Δx = 0.25 m. One
can see that there are two roots, both located in the vicinity of the minimum point
of f(H1), which is at H1 = Hc. Therefore a question arises, which root should be
taken into consideration. The choice of the root depends on the type of curve which
is required. If the curve in zone b (Fig. 4.1, case A) is searched, then the root at the
right-hand side of the minimum point must be chosen. Conversely, if the drawdown
curve from zone c is computed, the other root should be taken. Summarizing, the
initial condition H0 = Hc can generate the backwater (zone c) or drawdown (zone
c) curve depending on the chosen root. The two possible profiles are presented in
Fig. 4.17.

The presented examples show that practically all possible forms of the flow
profile displayed in Fig. 4.1 can be reproduced by the numerical solution of the
governing equation for the steady gradually varied flow (4.2).
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Fig. 4.17 Two different flow
profiles computed with Δx =
0.25 m for the same initial
condition H0 = Hc at x = 0

4.2.4 Flow Profile in a Channel with Sudden Change
of Cross-Section

Sometimes the backwater curve should be computed for a channel composed of two
reaches with a sharp discontinuity in the cross-section geometry. In such a case a
significant local change of the water level can occur. The considered situation is
presented in Fig. 4.18.

Let us assume that the computation of the backwater curve proceeds step by
step from the downstream end, where the initial condition is imposed, towards the
upstream end. However sometimes it is impossible to continue the computations
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Fig. 4.18 Channel changing a cross-section area

using the same algorithm. It can occur in the junction of two segments having sig-
nificantly different cross-sections. To overcome the problem, one has to introduce
two computational cross-sections, located very close to each other at the two sides
of the discontinuity (Fig. 4.18).

The equation relating water stages and discharges in both segments results from
the energy conservation principle written for the two cross-sections. It has the
following form:

(

h i + α · Q 2

2g · A2
i

)

=
(

h i+1 + α · Q 2

2g · A2
i+1

)

+�HL (4.18)

where

�HL – local energy loss,
i – index of cross-section at left side of junction,
i + 1 – index of cross-section at right side of junction.

In open channels the local losses are usually neglected, so Eq. (4.18) becomes:
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(

h i + α · Q 2

2g · A2
i

)

=
(

h i+1 + α · Q 2

2g · A2
i+1

)

(4.19)

Note that Eq. (4.19) is equivalent to Eq. (4.14) applied in the step method, if
in the latter Δxi = 0 is assumed. Thus, in order to compute the flow profile for a
channel with sudden change in cross-section parameters, only a slight modification
of the algorithm presented in Section 4.2.2 is required.

Example 4.6 A channel with constant bed slope s = 0.001 and carrying a discharge
Q = 4 m3/s is composed of two segments of lengths L1 and L2. Each part has a
trapezoidal cross-section characterized by different parameters:

– part 1: L1 = 550 m, b1 = 3.5 m, nM1= 0.015, m1 = 1.5,
– part 2: L2 = 450 m, b2 = 2.0 m, nM2= 0.015, m2 = 1.4.

Determine the water flow profile for the water level h(x = 0) = h0 imposed at the
downstream end.

The normal depths satisfying the Manning formula are Hn1 = 0.664 m for the
first part of channel and Hn2 = 0.857 m for the second one. The imposed h(x = 0)
corresponds to the depth H0 = 1.50 m > Hn1. The results obtained for Δx =50 m =
const. are shown in Fig. 4.19.

As it could be expected, in the first segment of the channel, a typical backwater
curve was obtained. In the node x = −550 m a discontinuity of the water surface
occurred, resulting from the sudden change of the channel parameters. Since the
velocity head in the first part is smaller than in the second one, the water surface
falls while passing between channel segments. Afterwards the flow profile tends
asymptotically to Hn2, which is the normal depth in the second segment of channel.
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Fig. 4.19 Steady gradually varied flow profile in channel with varying cross-sections for depth
H0 =1.5 m > Hn1 imposed at x = 0
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Fig. 4.20 Steady gradually varied flow profile in channel with varying cross-sections for depth
H0 =1.5 m > Hn1 imposed at x = 0

In next example the same data as in the previous case is used, but the parameters
b, nM and m of the two segments are swapped.

The results of computation are presented in Fig. 4.20. This time the velocity head
in the first part is larger than in the second one, so that when moving towards the
upstream end one can observe a significant rising of the water surface at the junction
of the segments.

4.2.5 Flow Profile in Ice-Covered Channel

In cold climate regions with long seasons of low temperature the rivers can be cov-
ered by ice layer. The appearance of the ice cover radically changes the flow regime.
Flow with free surface becomes flow in closed conduit. Consequently the veloc-
ity distribution over a cross-section becomes similar to the one in pipes and the
energy losses increase remarkably. Additionally, variable coefficient of roughness
occurs along the wetted perimeter. Due to the ice cover the flow profile is modified.
Comparing with the free surface flow the same discharge Q causes increase of the
water levels especially in the upstream part of channel, so that the backwater curve
becomes much longer. The knowledge of the new position of the water surface is of
great importance for the design of flood banks.

The flow profile in an ice covered channel can be computed using the same
equations for the steady gradually varied flow and a similar solution algorithm.
The modifications concern the calculation of the cross-sectional parameters and the
equivalent Manning roughness coefficient, which takes into account the additional
friction coming from the ice cover.
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Fig. 4.21 View of the cross-section of ice layer

Let us assume that the thickness of ice layer at the channel surface is equal to
δice. In a hole made in the ice layer, as in Fig. 4.21, the surface of water is below the
ice surface.

The difference is caused by different specific weights of ice and water. Their ratio
is γ ice/γ w = 0.92. Therefore, the bottom of the ice layer is located in water at the
depth:

δw = 0.92 · δice (4.20)

whereas the elevation of the bottom of the ice layer above the accepted datum is:

hice(x) = h(x) − 0.92 · δice (4.21)

where:

δice– thickness of ice layer,
δw– submersion of ice layer in water,
h(x)– elevation of the free water surface above the assumed datum,
hice(x) – elevation of the bottom of ice layer above the assumed datum.

While solving Eq. (4.14) the unknown function is h(x), as previously. However, all
the cross-sectional parameters have to be calculated for hice(x).

The next modification concerns the Manning roughness coefficient. Since one
part of the wetted perimeter corresponds to the channel bed and the other one to the
ice bottom, then as in other 1D flow models, a single equivalent roughness coef-
ficient must be introduced. To this order the relatively simple Belokon formula is
applied (French 1985):

(nM)e = (nM)b

(

1 + pice

pb

(
(nM)ice

(nM)b

)3/2
)2/3

(4.22)
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where:

(nM)e– equivalent roughness coefficient,
(nM)b– roughness coefficient associated with the bed,
(nM)ice– roughness coefficient associated with bottom of ice cover,
pice– wetted perimeter associated with ice cover,
pb– wetted perimeter associated with the bed.

Example 4.7 A trapezoidal channel with b = 3.5 m, m = 1.5, s = 0.001 carries a
discharge Q = 4 m3/s. The Manning roughness coefficient taken for channel bed is
equal to (nM)b = 0.024. The normal depth satisfying the Manning formula is Hn =
0.664 m. Determine the water flow profiles for two different cases:

– flow with free surface,
– flow with ice cover,

assuming in each case the same initial condition imposed at the downstream end,
i.e. h(x = 0) corresponding to the depth H0 = 2.0 m > Hn = 0.664 m. The thickness
of the ice cover is constant, δice = 0.25 m, whereas the Manning coefficient for
bottom surface of the ice takes the same value as for channel bed i.e. nb = 0.024.
It should be remembered, that the actual values of (nM)ice can range in a relatively
large interval, from 0.01 even to 0.10 (Gray and Prowse, 1993). The computations
were carried out for Δx = 50 m. The flow profiles are shown in Fig. 4.22.

A significant difference between the two cases can be observed. The appearance
of the ice cover at the water surface increases the friction loss and consequently also
increases the flow depths. In this case, in which the data were assumed arbitrarily,
the increase exceeds 30% in the upstream part of channel.
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Fig. 4.22 The steady gradually varied flow profile in channel with free surface (a) and with ice
cover (b) for initial depth H0 = 2.0 m imposed at x = 0
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4.3 Solution of the Boundary Problem for Steady Gradually
Varied Flow Equation in Single Channel

4.3.1 Introduction to the Problem

Apart from the initial value problem for steady gradually varied flow equation, the
boundary value problem can be formulated as well. The boundary value problem
arises when the depths (or water stages) at the two endpoints of the considered
channel are known, but the discharge Q is unknown. The solution of the boundary
problem consists in the determination of the water flow profile between the two
endpoints and the value of the discharge Q. A typical example of such a problem is
the flow in a channel connecting two reservoirs with constant water levels (compare
Section 4.1.3). A similar problem can be formulated for a river reach bordered by
the upstream and downstream ends. If during the steady gradually varied flow the
water levels are measured at both ends of considered reach, then the water flow
profile h(x) and the discharge Q can be obtained via the solution of the boundary
value problem as well.

Another type of the boundary problem arises when the discharge and the depths
at the endpoints are known, but the Manning roughness coefficient nM is unknown.
In this case, the solution of the problem results in the flow profile and the value of
nM (on condition that nM is constant along the channel reach).

In practice the boundary problems can be solved using different approaches.
The first one is based on the numerical integration of the unsteady flow equations,
i.e. the system of Saint Venant equations. The equations are solved for the bound-
ary conditions which asymptotically tend to the required constant values and after
a sufficiently long time the steady state solution is reached. Cunge et al. (1980)
showed that this system of equations approximated with the box scheme of the finite
difference method in the case of steady flow does not coincide with the discrete
Bernoulli equation used for computation of the steady flow in non-prismatic chan-
nels. Consequently the differences between both approaches can occur. It should be
also remembered that while the discharge Q results directly from the solution of the
Saint Venant equations, the coefficient nM must be estimated by the trial and error
method.

The second method of calculation of the flow profile and the values of Q or nM

is based on the solution of the initial value problem for steady flow. It is performed
repetitively for the values of Q or nM which are chosen by trial and error, until
the condition imposed at the opposite channel end is satisfied. This approach is
known as the shooting method (Bjorck and Dahlquist 1974). A simple variant of
this method was applied by Chow (1959) to solve the steady flow in a channel
connecting two reservoirs.

The third possible approach is to solve directly the boundary value problem. To
this end the steady flow equation is discretized over the considered channel reach,
for example using the finite difference method. This results in a system of algebraic
equations involving the water depths at the cross-sections within the channel reach
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and the discharge Q (or the Manning coefficient nM). The system is nonlinear and
should be solved using an iterative method.

Although the boundary value problem for ordinary differential equations is not
formulated in open channel hydraulic, however practically, it is solved using the trial
and error approach. In certain cases such problem ought to be formulated, since it
allows us to apply general well known mathematical methods to calculate some
hydraulic problems as for example the steady flow profile and discharge in channel.

As the boundary value problem can be formulated for the ordinary differential
equations of higher order than 1 or for the system of differential equations, we have
to consider the system of equations (4.1) and (4.2):

dE

dx
= − S − α · Q

g · A2
q, (4.23)

dQ

dx
= q (4.24)

After its solution the water flow and discharge are known. However one can
assume another situation. Knowing the discharge Q and the water levels at both
channel’s ends, one can try to compute the water flow profile and the Manning
roughness coefficient nM as a solution of the boundary value problem as well.
To this order a constant value of nM must be assumed. Owing to this assumption
and neglecting the lateral inflow q one can write formally the following system of
ordinary differential equations:

dE

dx
= −S, (4.25)

dnM

dx
= 0 (4.26)

which should be solved instead of Eqs. (4.23) and (4.24). An approach, in which a
new variable is introduced and a new equation is added, is very often applied while
solving the boundary value problem for the ordinary differential equations (Ascher
and Petzold 1998, Press et al. 1992).

4.3.2 Direct Solution Using the Newton Method

To solve the boundary problem for the ordinary differential equations by the finite
difference method, the channel of length 〈0, L〉 is divided by N nodes into N − 1
intervalsΔxi. For simplicity let us assume that the lateral inflow does not exist so we
have q = 0. Equations (4.23) and (4.24) are approximated at the midpoint of each
interval xi+Δxi/2 by a centered difference corresponding to the implicit trapezoidal
rule, applied previously:
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E i+1 − E i

�x i
= −1

2
(S i + S i+1) , (4.27)

Q i+1 − Q i

�x i
= 0 (4.28)

where:

i – index of cross section,
Δxi – length of interval number i.

From Eq. (4.28) results that Qi = Qi+1 = Q = const. for i = 1, 2, . . ., N, whereas
introducing into Eq. (4.25) the energy E and the friction slope S defined by the
expressions (4.2) and (4.3) respectively, yields:

(

h i+1 + α · Q 2

2g · A2
i+1

)

−
(

h i + α · Q 2

2g · A2
i

)

+ �x i

2

(
n2

M · Q 2

R4/3
i · A2

i

+ n2
M · Q 2

R4/3
i+1 · A2

i+1

)

= 0

(4.29)

Note that formally this equation coincides with the well known discrete energy
equation usually applied to calculate the water profile in natural channels. However
in the case of the initial value problem, in Eq. (4.29) only one unknown exists. This
allows us to calculate the water level step by step, marching along channel axis from
cross-section to cross-section. When solving the boundary value problem, the water
levels described by Eq. (4.29) must be solved simultaneously at all cross-sections,
since they have to satisfy two imposed boundary conditions. To this order similar
equations should be written for each intervalΔxi(i = 1,2, . . ., N − 1). In such a way
one obtains a system of N − 1 algebraic equations with N + 1 unknowns. There are
N water levels hi at nodes and flow discharge Q. When flow in a single channel is
considered, this system has to be completed by two additional equations resulting
from the imposed boundary conditions (Fig. 4.23).
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Fig. 4.23 Channel connecting two reservoirs having constant water levels



4.3 Solution of the Boundary Problem 137

Assuming subcritical flow in the channel, the following conditions should be
imposed at the ends of channel:

E(x = 0) = h1 = hu − α · Q2

2g · A2
1

(4.30)

E(x = L) = hN = hd − α · Q2

2g · A2
N

(4.31)

where:

hu, hd – water levels imposed at upstream and downstream reservoir
respectively,

h1, hN – water levels at upstream and downstream end of channel respectively.

Since the discharge Q is unknown, the boundary problem formulated above has
non–linear boundary conditions.

The final system of equations can be written in matrix form:

AX = B (4.32)

where:

A – matrix of coefficients,
B = (hu,0,. . .,0,hd,0)T – vector of right side,
X = (h1,h2,. . .,hN−1,hN,Q)T – vector of unknowns,
T – transposition symbol.

The matrix A of dimensions (N + 1) × (N + 1) is very sparse (Fig. 4.24).
Its non-zero elements are defined as follows:

1

1

N

N+1

N N+1

Fig. 4.24 Structure of
matrix A
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a1,1 = 1, (4.33a)

a1, N+1 = α · Q

2g · A2
1

, (4.33b)

ai, i = 1, for i = 2,3, · · · , N − 1 , (4.33c)

ai, i−1 = −1, for i = 2,3, · · · , N − 1 (4.33d)

ai, N−1 =− α · Q

2 g · A2
i−1

+ α · Q

2g · A2
i

+ �xi−1

2

(
n2

M · Q

R4/3
i−1 · A2

i−1

+ n2
M · Q

R4/3
i · A2

i

)

for i = 2,3,· · · , N − 1,

(4.33e)

aN,N = 1, (4.33f)

aN, N+1 = α · Q

2g · A2
N

(4.33g)

aN+1, N−1 = −1, (4.33h)

aN+1, N = 1 (4.33i)

a N+1, N+1 = − α · Q

2g · A2
N−1

+ α · Q

2g · A2
N

+ � x N−1

2

(
n2

M · Q

R4/3
N−1 · A2

N−1

+ n2
M · Q

R4/3
N · A2

N

)

(4.33j)

The system of non-linear equations (4.32) can be solved by the Newton method,
which is implemented as follows (see Section 2.3.2):

J(k) · �X(k+1) = −F(k) (4.34)

where:

k is iteration index,
�X(k) = X(k+1) – X(k) is correction vector,
F(k) = A(k) X(k) – B is vector of residuals in Eq. (4.32),
J(k) is Jacobian matrix.

After assuming the first estimation of the unknown vector X(0), the iterative pro-
cess is continued until two succeeding solutions satisfy the following criterions for
convergence:

∣∣∣X(k+1)
i − X(k)i

∣∣∣ ≤ εH for i = 1, . . . , N (4.35)

and
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∣∣∣X(k+1)
N+1 − X(k)N+1

∣∣∣ ≤ εQ (4.36)

where εH and εQ represent the specified tolerances for water level Hi and discharge
Q respectively.
Example 4.8 Let us consider an idealized channel with the following geometrical
parameters: L = 5000 m, is s = 0.0005, b = 5 m and m = 1.4. The Manning
roughness coefficient is nM = 0.020. The channel is divided by N = 101 nodes into
100 reaches of the constant length Δx = 50 m. The bed elevation above the datum
changes linearly from z(x = 0) = 4.0 m at the upstream end to z(x = L) = 2.5 m
at the downstream end. The boundary condition imposed at the upstream reservoir
was equal to hu = 7.5 m whereas at the downstream one the water level hd takes
the following values: 6.5, 5 and 4 m. The velocity head in boundary conditions (see
Eqs. (4.30) and (4.31)) is neglected.

Numerical tests showed that the Newton iterative process was convergent in par-
ticular cases only, when the starting value of the discharge Q was close enough to
the exact solution. With the initial water level corresponding to the hydrostatic state,
rapid convergence is ensured for Q(0) ranging from 5 to 80 m3/s. For example start-
ing from Q(0) = 40 m3/s only 4 iterations are needed to obtain the solution Q =
27.594 m3/s with εH = 0.001 m and εQ = 0.1 m3/s. Unfortunately for values of Q(0)

outside this range the iterations failed to converge. Thus one can conclude that the
Newton method is very effective only on condition that the starting value of the dis-
charge Q(0) is properly chosen. The calculated flow profiles are shown in Fig. 4.25.

4.3.3 Direct Solution Using the Newton Method
with Quasi–Variable Discharge

Schulte and Chaudhry (1987) solved the steady gradually – varied flow in looped
network of open channels using both discrete energy and continuity equations. This
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approach can be applied for a single channel as well. In the proposed algorithm
two unknowns, the water level and the discharge are introduced at each grid point.
Therefore in the numerical solution the discharge is treated as variable which for-
mally varies along x axis, although from the physical point of view the discharge
is constant over the entire channel. This approach can be called the solution with
quasi–variable discharge.

Equations (4.27) and (4.28) can be rewritten as follows:

(

h i+1 + α · Q2
i+1

2g · A2
i+1

)

−
(

h i + α · Q2
i

2g · A2
i

)

+�x i

2

(
n2

M · Q2
i

R4/3
i · A2

i

+ n2
M · Q2

i+1

R4/3
i+1 · A2

i+1

)

= 0

(4.37)

−Q i + Q i+1 = 0 for i = 1,2,3, . . . , N − 1 (4.38)

They constitute the system of non-linear equations, which can be expressed in
matrix form similar to Eq. (4.32). However, this time the vector of unknowns has
the following structure:

X = (h1, Q1, h2, Q2, . . . , hN−1, QN−1, hN , QN)
T (4.39)

As one can see, this method leads to a larger system of non-linear algebraic equa-
tions, since instead of a system of dimension (N + 1) × (N + 1) one obtains a system
of dimension (2N) × (2N). As we have 2(N − 1) equations in form of Eqs. (4.37)
and (4.38) two additional equations are required to complete the system. They come
from the imposed boundary conditions. The structure of matrix A corresponding to
the assumed structure of vector X (Eq. 4.39) is shown in Fig. 4.26.

The goal of such approach is to improve the convergence of the Newton iteration
process, which in the preceding algorithm can suffer from the lack of convergence.

1

1 2N

2N

Fig. 4.26 Structure of matrix
A for the system obtained in
Schulte and Chaudhry (1987)
method (dots represent
non-zero elements)
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Compared to the previously described approach, in which only one value of the flow
discharge in the channel was computed, solution system of Eqs. (4.37) and (4.38)
is more costly in terms of numerical work. However, the iterative process appears
less sensitive on the initial guess of the discharge. Practically always a convergent
solution is reached. The water profiles computed for the same data as in Example
4.8 are identical to the ones displayed in Fig. 4.25.

4.3.4 Direct Solution Using the Improved Picard Method

To solve the non linear system of equations the Picard method can be applied as
well. The Picard iterative scheme for Eq. (4.32) can be written in the following
form (compare Section 2.3.3):

A(k) · X(k+1) = B (4.40)

where k is iteration index. Its application for the single channel considered previ-
ously in Example 4.8 showed that regardless of the first evaluation of the discharge
Q it was impossible to reach the solution. The typical situation for Q(0) = 50 m3/s is
presented in Fig. 4.27 as tooth oscillations. While the water levels relatively quickly
tend to the expected values, the discharge Q(k) oscillates with constant amplitude
during subsequent iterations. Therefore the standard Picard method cannot be used
in the considered case.

For the equations of steady gradually varied flow an improvement of the itera-
tion process that it becomes convergent, is possible. As results from Fig. 4.27 the
discharge Q oscillates around its real value in the subsequent iterations. This fact
suggests the way of improvement of the Picard method. Instead of Eq. (4.40) the
following modified scheme can be used (Szymkiewicz and Szymkiewicz 2004):
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A∗ · X(k+1) = B (4.41)

where A∗ =A
(
0.5
(
X (k) + X (k−1)

))
is the modified matrix of coefficients. It means

that to calculate the vector X in iteration k + 1, the matrix A is calculated using the
arithmetic average value of X from two preceding iterations. Consequently the esti-
mation accepted for the next iteration is closer to its real value. For k = 1 A∗ =
A(X(0)) is recommended. The positive results of the proposed improvement are
confirmed by the following example.

Example 4.9 The calculations carried out for the same data as previously with the
assumed tolerances εH = 0.001 m and εQ = 0.1 m3/s were always successful. The
first estimation of the water profile corresponded to the hydrostatic state with h(x) =
hu = const. The final discharge Q = 27.969 m3/s was computed for the initial
approximations of Q(0) ranging from −1,000 to 1,000 m3/s after 12 ÷ 15 iterations.
The results of improved convergence obtained for Q(0) = 50 m3/s are presented in
Fig. 4.28.

One can notice that the iteration process (4.41) relatively quickly converges to the
solution. The performed tests show that Q(0) can take any positive or negative value
except zero. In the last case the hydrostatic state is obtained. This is because for
Q(0) = 0 the system of equations is split into a series of independent equations, each
with only one unknown. These results prove indirectly that the system (4.32) has a
unique solution. This fact was confirmed additionally by the solution of Eq. (4.32)
with the following boundary conditions: hu = 7.5 m and hd = 4.0 m, corresponding
to the uniform steady state flow. The water flow profile parallel to the channel bed
(h(x) = 2.39 m = const.) and a discharge Q = 30.1 m3/s satisfying the Manning
formula were obtained.

Comparing the Newton and Picard methods one can state that the Newton method
ensures rapid convergence on condition that it is convergent. It needs only 4–6
iterations to obtain a solution, whereas the modified Picard method needs 12–15
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iterations to obtain the solution with the same tolerances. However the Newton
method failed for some sets of data while the Picard one appeared unconditionally
convergent. The observed difference in the number of iterations is evident because
the Picard method converges linearly while the convergence of the Newton one is
quadratic (Bjorck and Dahlquist 1974).

To solve the system of linear algebraic equations (4.41) with sparse matrix of
coefficients an iterative method seems suitable. However the attempts to solve it
with Gauss–Seidel and SOR methods failed. Finally, Eqs. (4.34) and (4.41) should
be rather solved by the Gauss elimination method in its version using non-zero
elements of matrix J or A only.

Let us consider the second possible type of the boundary problem for steady
gradually varied flow equations, in which the Manning coefficient nM is considered
as an unknown. This case is described by Eqs. (4.25) and (4.26). The elements of
the vectors X and b as well as the elements of the matrix A must be modified. The
vector X is defined as follows:

X = (h1,h2, . . . ,hN ,nM)
T , (4.42)

whereas the matrix A has the following elements:

a 1,1 = a N,N = 1, (4.43a)

a i,i = 1, a i,i−1 = −1 for i = 2,3, . . . , N − 1, (4.43b)

a i,N+1 = �x i−1

2

(
n M · Q 2

R4/3
i−1 · A2

i−1

+ n M · Q 2

R4/3
i · A2

i

)

for i = 2,3, . . . , N − 1 , (4.43c)

a N,N+1 = �x N−1

2

(
n M · Q 2

R4/3
N−1 · A2

N−1

+ n M · Q 2

R4/3
N · A2

N

)

. (4.43d)

The vector of the right-hand side B = (b1,b2,. . .,bN,bN+1)T has the following
components:

b1 = ho, bN = hL, (4.44a)

bi = α · Q 2

2g · A2
i−1

− α · Q 2

2g · A2
i

for i = 2, . . . , N − 1 , (4.44b)

bN+1 = α · Q 2

2g · A2
N−1

− α · Q 2

2g · A2
N

. (4.44c)

Numerical tests carried out for the channel described in Example 4.8 show that
for εH = 0.0001 and εn = 0.001 the finite difference method with the Picard iteration
ensures a convergent solution for any starting value of nM

(0). However, the number
of iterations depends on the initial choice of nM

(0).
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4.3.5 Solution of the Boundary Problem Using
the Shooting Method

In this approach the process of solution of the boundary problem for the system of
equations (4.23) and (4.24) is carried out as a sequence of solutions of initial value
problems. Assuming q = 0 the corresponding initial value problem can be written
in the following form (see Section 3.3):

dE

dx
= −S with E (x = 0) = Eo. (4.45)

Since E = E(x; Q) the solution depends on the chosen value of Q. Therefore
for any assumed value of Q one obtains the corresponding value of E(x = L, Q).
Solution of the boundary value problem coincides with the solution of the initial
value problem with such a value of Q, for which the boundary condition at the
downstream end is satisfied, i.e.:

E (L, Q) = EL. (4.46)

Let us introduce the function:

F (Q) = E (L,Q)− EL, (4.47)

which represents the difference between the calculated value of E at x = L for the
assumed Q and the imposed boundary condition at x = L equal to EL (Fig. 4.29).

In such a way the solution of the boundary problem can be considered as finding
the root of Eq. (4.47). The value of F(Q) can be calculated for any value of Q. To
this end the initial value problem (4.45) should be solved to obtain E(x = L, Q). If
a couple of values of Q are known, say Q(1) and Q(2), which satisfy the following
relation:

F
(

Q(1)
)

· F
(

Q(2)
)
< 0, (4.48)
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Fig. 4.29 Solution of the boundary problem as a sequence of initial value problems
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then the root Q∗ of F(Q) is located inside the interval 〈Q(1), Q(2)〉. The root can be
found using one of the methods of solution of the non linear algebraic equations as
the bisection method or the secant method. Note that the Newton method is rather
less suitable since it requires the derivative of function F(Q), which in this case can
be obtained via numerical approximation only.

Let us apply the method to compute the water flow profile and flow discharge in
channel connecting two reservoirs with different but constant in time water levels
presented in Fig. 4.23.

Example 4.10 A channel connecting two reservoirs of length L = 5,000 m with
bed slope s = 0.0005 has trapezoidal cross section with base width b = 10 m and
side slope m = 1. The Manning coefficient is equal to nM = 0.030. The channel is
divided into N = 50 intervals having constant length Äx = 100 m. The bed elevation
varies linearly from 4.0 m above the datum at the upstream end to 2.5 m at the
downstream end. As it was showed by Chow (1959), the shape of the flow profile
h(x) depends on the relation between the water levels in reservoirs and the normal
depth in the channel Hn.

In the upstream reservoir a constant water level equal to ho = 10.0 m, which
corresponds to the depth Ho = 4.0 m, is assumed. The velocity head is neglected.
Computations were carried out for the following values of the water levels in the
downstream reservoir: hL = 8.75, 7.50 and 4.25 m. These values correspond to the
depths: HL = 4.25, 4.00 and 3.75 m. The results of calculations are presented in
Fig. 4.30.

The shapes of the flow profiles agree with those obtained by Chow (1959).
The computed discharge for HL = 4.25 m is equal to Q = 102.24 m3/s, whereas
for HL = 3.75 m it is equal to Q = 123.07 m3/s. Further calculations were car-
ried out for the same set of data, but taking into account the velocity head in
the boundary condition at the upstream end. The computed velocity heads at the
upstream end were: 0.092 m for hL = 8.75 and 0.134 m for hL = 4.25 m. For this

0 1 2 3 4 L = 5     x [km ]

H  = 5 mns = 0,0005

H [m ]
H HH H LL 00

8

6

4

2

0

H  = 5 m0

Fig. 4.30 The flow profiles for various water levels in downstream reservoir
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Fig. 4.31 Plot of function F(Q)

reason the previously computed discharges were modified to Q = 98.022 m3/s and
Q = 117 m3/s respectively.

In the presented example the function F(Q) has a regular shape, as presented in
Fig. 4.31, and possesses one root. To find it the bisection method has been applied.
The number of iterations depends on the dimension of interval in which the root is
localized, and on the required tolerance of solution. For εH = 0.0001 m the total
number of iteration was less than 20.

In contrast to the presented approach Chow (1959) solved the same problem by
the trial and error method using in addition the so-called discharge curve Q(hL).
However, formulation of the boundary value problem allows us to calculate both the
flow profile h(x) and the discharge Q directly.

The shooting method can be also used to find the value of the Manning coefficient
nM when the discharge Q and the water levels at the endpoints are known. In this
case, instead of the root of function F(Q), the root of function F(nM) should be
determined. The function F(nM) is defined as follows:

F (nM) = E (L,nM)− EL, (4.49)

whereas the criteria for convergence take the following form:

∣∣∣h(k+1)
i − h(k)i

∣∣∣ ≤ εH for i = 1,2, . . . , N (4.50a)

and
∣∣∣n(k+1)

M − n(k)M

∣∣∣ ≤ εn (4.50b)

where εn is the assumed tolerance for the Manning coefficient nM.

Example 4.11 A rectangular channel with B = 0.385 m, and L = 10 m has longi-
tudinal slope equal to s = 0.0005 (Fig. 4.32). Computations were performed over
the length of L1 = 8 m, which was divided into segments of length equal to Δx =
0.5 m = const.
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Fig. 4.32 The considered laboratory flume (Szymkiewicz 2000)
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Fig. 4.33 Calculated and measured water profile in channel (Szymkiewicz 2000)

An experiment performed in hydraulic laboratory provided the following data:
Q = 0.0375 m3/s, ho = 1.314 m, hL = 1.309 m. Only few iterations are needed to
obtain the solution satisfying the following tolerances: εH = 0.0001 and εn = 0.001.

Regardless of the starting value of the Manning coefficient n(0)
M , convergent

solutions were reached. This fact confirms that the iterative process converges
unconditionally. The differences between the computed and observed water lev-
els did not exceed 0.002 m, whereas the computed Manning coefficient is equal to
nM = 0.0201. In Fig. 4.33 computed and observed water levels are compared.

4.4 Steady Gradually Varied Flow in Open Channel Networks

4.4.1 Formulation of the Problem

In practical applications the steady gradually varied flow is considered not only in
a single open channel but in open channel networks as well. There are two types of
channel networks: tree – type and looped ones (Fig. 4.34).
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Fig. 4.34 Tree – type (a) and looped (b) network

A network consists of branches, which join each other in the junction. Usually the
junction gathers three branches. If a particle of water starting from an arbitrary point
of the network can reach another point via only one possible route, the network is
called a tree – type one, whereas if it can travel towards the destination point using
multiple alternative ways, the network is called looped. The upper parts of river
systems tend to form tree – type networks. In natural conditions the looped network
can appear rather in the lowest parts of rivers (deltas).

In an open channel network one can distinguish two kinds of branches. The
first one connects two junctions, i.e. its both ends are located at the neighboring
junctions. The second kind of branch has one end located at a junction, whereas
the opposite end is a pendant one. Note that the additional conditions, which are
required to ensure the solution of flow problem, must be imposed at pendant ends.

While for a single channel both initial value and boundary value problems can
be formulated, for a channel network in principle only the boundary value problem
should be formulated, since the discharges in branches and the flow profiles are the
goal of computations. Although the governing equations describing this kind of flow
are the same, the solution of flow equations for network becomes more complicated
comparing with a single channel.

Various approaches were proposed to solve the boundary value problem for a
channel network. Some of them are applicable to tree type networks only. Similarly
to a single channel, the final system of nonlinear algebraic equations cannot be
efficiently solved by the standard Picard or Newton methods because the iterative
process suffer from the lack of convergence. Thus, Schulte and Chaudhry (1987)
introduced the discharge Q as an additional unknown at each computational node
(see Section 4.3.3), although they do not vary within each branch. This modifi-
cation allows solving efficiently the resulting system of equations by the Newton
method, but the system itself is considerably larger than the system resulting from
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the approach in which the discharge Q is treated as a single unknown for the whole
branch. Consequently, the computational cost of the solution is increased.

Naidu et al. (1997) have proposed an algorithm based on the decomposition of
the channel network into small units. The problem is solved in each unit using the
IV order Runge–Kutta method and the local solutions are connected to obtain the
final solution for whole network using the shooting method. However, the proposed
algorithm works for tree-type networks only.

The steady flow problem can be also solved indirectly using the Saint-Venant
equations describing the unsteady flow, with the specified, constant in time boundary
conditions. After a sufficiently long time the system reaches steady state and the
corresponding water surface profiles in the channel network are obtained (Cunge
et al. 1980).

All the mentioned methods do not have general character. However, it is possi-
ble to propose a very effective general algorithm, which will work for any type of
network and for any kind of boundary conditions imposed at pendant channel ends.
This approach based on the approximation of the governing equations by the finite
difference method appeared a robust tool in the case of single channel and can be
successfully adapted for a channel network.

4.4.2 Numerical Solution of Steady Gradually Varied Flow
Equations in Channel Network

Let us consider a channel network consisting of M channels (branches). It can be
either tree type or looped one. Each channel is divided into Nj (j = 1, 2 , . . ., M)
intervals of constant or variable lengthΔxi. The total number of grid points in whole
network is�Nj. In addition, let us assume positive direction of flow in each channel
corresponding to the direction of increasing of the indexes.

To solve the boundary problem for the considered network the governing
ordinary differential equations (4.23) and (4.24) are approximated by the finite dif-
ference method. Equation (4.23) is approximated, as in the previous section, by
centered differences, coinciding with the implicit trapezoidal rule. Since in the
network branches the water can flow in both directions, this fact should be taken
into account in the sign of the friction force. Therefore for channel j Eq. (4.23) is
approximated by the following formula:

(

h i+1 + α · Q2
j

2g · A2
i+1

)

−
(

h i + α · Q2
j

2g · A2
i

)

+ �xi

2

(
n2

M · Qj · ∣∣Qj
∣∣

R4/3
i · A2

i

+ n2
M · Qj · ∣∣Qj

∣∣

R4/3
i+1 · A2

i+1

)

= 0

(4.51)

Similar equations are written for each interval Δxi(i = 1,2, . . ., Nj − 1). In this
way one obtains a system of Nj − 1 algebraic equations with Nj + 1 unknowns.
There are Nj water levels hi at the nodes and the flow discharge Qj.
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The system of equations (4.51) can be presented in the matrix form:

AX = B (4.52)

where:

A – matrix of coefficients,
B = (0, 0, . . .,0)T – vector of right hand side,
X = (h1, h2, . . . ,h Nj ,Qj

)T – vector of unknowns,
T – transposition symbol.

The matrix A of dimensions (Nj + 1) × (Nj + 1) is very sparse. Its structure is
similar to the one obtained for a single channel (Fig. 4.24). Its non–zero elements
are defined as follows:

ai,i = 1, for i = 2,3, . . . , Nj − 1 , (4.53a)

a i,i−1 = 1, for i = 2,3, . . . ,Nj − 1 , (4.53b)

a i,Nj−1 =− α · Qj

2 g · A2
i−1

+ α · Qj

2 g · A2
i

+� x i−1

2

(
(nM)

2
j · |Qj|

R4/3
i−1 · A2

i−1

+ (nM)
2
j · |Qj|

R4/3
i · A2

i

)

for i = 2,3, . . . ,Nj − 1,
(4.53c)

a Nj,Nj = 1, (4.53d)

a Nj,Nj −1 = −1 (4.53e)

aNj+1,Nj+1 = − α · Qj

2g · A2
Nj−1

+ α · Qj

2g · A2
Nj

+ �xN−1

2

(
(nM)

2
j · |Qj|

R4/3
N−1 · A2

N−1

+ (nM)
2
j · |Qj|

R4/3
N · A2

N

)

(4.53f)

When flow in a single channel was considered this system had to be completed by
two additional equations resulting from the imposed boundary conditions. However,
in the case of channel network such system of equations is written for each branch
separately. To assembly them, apart from the mentioned boundary conditions, which
are imposed at pendant nodes only, additional equations must be specified for each
junction. For a junction of three channels I, J, K formed by the nodes i, j, k as
presented in Fig. 4.35. one can write the continuity equation:

QI = QJ + QK (4.54)
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channels

and the energy equations:

hi + α · Q2
I

2g · A2
i

= hj + α · Q2
J

2g · A2
j

= hk + α · Q2
K

2g · A2
k

(4.55)

In the above equations the energy losses are neglected. Sometimes the velocity
heads can be also neglected as relatively small.

For each junction of the considered channel network three additional equations
in form of Eqs. (4.54) and (4.55) can be written. This enables us to close the
global system of equations for the entire network. The matrix of this system con-
tains submatrices corresponding to each channel in form presented in Eq. (4.52),
connected by the equations for junctions. The final matrix is banded and very
sparse.

To better illustrate the presented procedure of solution let us consider a looped
channel network as presented in Fig. 4.36. It consists of seven channels and four
junctions. The network has two pendant nodes, at which the boundary conditions
are imposed. In all branches of the network subcritical flow is assumed. The dis-
charge is assumed positive if the direction of the flow corresponds to the direction
of increasing node indices, as shown by the arrows in Fig. 4.36. Each channel is
divided into 10 intervals of constant length. Then the total number of grid points
is 77.

For each channel one can write a system of 10 equations in form of Eq. (4.51).
Therefore for the entire network one obtains a global system containing 7 subsys-
tems, written for each branch separately. Then one has 70 equations, whereas the
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Fig. 4.36 Example of looped channel network
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total number of unknowns is equal to 84 (77 water levels in grid point and 7 dis-
charges in branches). To close the system the following additional equations are
introduced:

• for the four junctions − 4 continuity equations of type (4.54) and 8 energy
equations of type (4.55);

• for the two pendant channel ends (number 1 and 77) − 2 equations given by the
prescribed boundary conditions.

Finally one obtains the global system of dimension 84×84 having 84 unknowns.
In each row of the global matrix there are only 3 or 4 non-zero elements.

Assuming subcritical flow in channel, the following conditions can be imposed
at the pendant channel’s ends:

• the water level with velocity head;
• the water level;
• the discharge.

Preliminary numerical tests carried out for the considered network showed that
the Newton iterative method applied to solve Eq. (4.52) failed to converge. This con-
clusion coincides with the well-established opinion of its poor global convergence
properties (Press et al. 1992). On the other hand, application of the modified Picard
method described in Subsection 4.3.4 is successful. Therefore the non-linear system
of equations (4.52) is solved as follows:

A∗ · X(k+1) = B (4.56)

where k is index of iteration and

A∗ = A
(

0.5
(

X (k) + X (k−1)
))

(4.57)

is modified matrix of coefficients. Numerous tests confirmed that with the presented
algorithm it is possible to overcome the problem of poor convergence of the standard
Picard method.

Example 4.12 Let us consider a problem of the flow past an island, which occurs
when a long island divides the river into two channels, as shown in Fig. 4.37. This is
a well-known problem in open channel hydraulics. While some special algorithms
were proposed to solve such problem (French 1985), it can be considered as a par-
ticular case of the flow in a looped channel network and solved with the method
described above.

The system consists of 4 channels and 2 junctions. The network has 2 pendant
nodes at which the boundary conditions are imposed. In all branches of the network
subcritical flow is assumed. The flow is assumed from the upstream end (node u in
Fig. 4.37) towards the downstream end (node d in Fig. 4.37). The positive direction
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Fig. 4.37 Considered channel network

of flow in each channel is marked with an arrow. The channels have trapezoidal
cross-sections. The bed elevation at the upstream end is assumed to be equal to
10.000 m above the datum, whereas at the downstream it is equal to 9.000 m. Each
channel is divided into 10 intervals of constant length, which gives the total number
of grid points equal to 44. First let us consider a symmetric system, where the two
channels surrounding the island have the same parameters (Table 4.1). In such a
case the solution must be symmetrical as well.

The boundary conditions are specified in terms of water levels at the upstream
end and the downstream end of the network: hu= 11.500 m, hd= 10.500 m. The
results obtained for the data from Table 4.1 are displayed in Table 4.2.

As it could be expected the flow in channel 1 bifurcated symmetrically into chan-
nels 2 and 3. To obtain these results, with the assumed accuracy of εh= 0.001 m and
εQ= 0.001 m3/s, 18 iterations are needed. The iterations converged for arbitrary
initial approximations of the discharges Q(0) in the channels.

The second case concerns an asymmetrical network, in which the channels sur-
rounding the island have different characteristics (Table 4.3). Compared to channel
2, channel 3 is longer, narrower, less smooth and has smaller slope. Consequently,
the flow in channel 1 bifurcates into channels 2 and 3 in asymmetrical way. As it is
shown in Table 4.4, the discharges in the two channels differ by a factor larger than
3. Also in this case no problem with convergence occurs.

Example 4.13 Let us consider the steady gradually varied flow in a tree – type net-
work taken from Naidu et al. (1997), which is presented in Fig. 4.38. It consists of
41 branches. The total number of nodes is 470.

The parameters of the channels are given in Table 4.5.

Table 4.1 Characteristics of the channels from Fig. 4.37 – the symmetric case

Channel
number Length [m]

Bed width
[m] Side slope Bed slope nM Δx [m]

1 300 4.0 1.5 0.001 0.025 30
2 400 3.5 1.5 0.001 0.035 40
3 400 3.5 1.5 0.001 0.035 40
4 300 4.0 1.5 0.001 0.025 30



154 4 Steady Gradually Varied Flow in Open Channels

Table 4.2 Results for the network from Fig. 4.37 – the symmetric case

Channel
number

Discharge
Q [m3/s]

Upstream
water
level [m]

Downstream
water level
[m]

1 14.451 11.500 11.176
2 7.225 11.176 10.810
3 7.225 11.176 10.810
4 14.451 10.810 10.500

Table 4.3 Characteristics of the channels from Fig. 4.37 – the asymmetric case

Channel
number Length [m]

Bed width
[m] Side slope Bed slope nM Δx [m]

1 300 4.0 1.5 0.001 0.025 30
2 400 3.5 1.5 0.001 0.035 40
3 800 1.5 1.5 0.0005 0.045 80
4 300 4.0 1.5 0.001 0.025 30

Table 4.4 Results for the network from Fig. 4.37 – the asymmetric case

Channel
number

Discharge
Q [m3/s]

Upstream
water
level [m]

Downstream
water level
[m]

1 12.418 11.500 11.305
2 9.370 11.305 10.743
3 3.048 11.305 10.743
4 12.418 10.743 10.500

In order to simplify the problem the velocity heads at the junctions are neglected.
The first solution is carried out for exactly the same data as in the paper by Naidu
et al. (1997). Since their method requires that the discharge is known in at least one
branch, Q = 40 m3/s is imposed at node number 1, while the water levels are known
at all pendant nodes except the node 1 (Table 4.6).

As the result of calculation the water profiles and discharges in all branches,
including the water level at node 1, are obtained. The results of calculation by the
modified Picard method differ only insignificantly from those obtained by Naidu
et al. (1997). The final result with εH= 0.001 m and εQ= 0.1 m3/s was obtained
after 18 iterations. The greatest difference, equal to 0.007 m, exists at node 1. At
other nodes the depths calculated by both approaches are practically the same.

The second solution is obtained assuming that the discharges in all branches,
including the first one, are unknown. On the other hand, the water levels are known
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Fig. 4.38 Channel network used in Example 4.13 (after Naidu et al. 1997)

Table 4.5 Characteristics of the network from Fig. 4.38

Channel
Bed width
[m] Side slope Bed slope nM Length [m]

Number
of reaches

1 10.0 2.0 0.000133 0.015 2,500.0 20
2 8.5 2.0 0.00015 0.016 2,000.0 20
3 4.0 2.0 0.00020 0.020 1,500.0 15
4 4.0 2.0 0.00021 0.020 1,400.0 15
5 1.5 2.0 0.00024 0.022 1,000.0 10
6 1.5 2.0 0.00024 0.022 1,100.0 10
7 3.0 2.0 0.00022 0.020 1,200.0 15
8 1.0 1.0 0.00025 0.022 1,000.0 10
9 0.5 1.0 0.00050 0.030 700.0 5
10 0.5 1.0 0.00050 0.030 700.0 5
11 1.0 1.0 0.00025 0.022 1,000.0 10
12 2.0 2.0 0.00024 0.022 1,000.0 10
13 1.5 2.0 0.00024 0.022 1,000.0 10
14 0.5 1.0 0.00050 0.030 700.0 5
15 1.75 2.0 0.00024 0.022 1,000.0 10
16 0.9 0.9 0.00025 0.022 900.0 10
17 0.5 1.0 0.00050 0.030 700.0 5
18 7.0 2.0 0.00016 0.017 1,700.0 15
19 3.5 1.0 0.00025 0.022 1,400.0 15
20 2.5 2.0 0.00022 0.022 1,300.0 15
21 4.0 2.0 0.00017 0.018 1,500.0 15
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Table 4.5 (continued)

Channel
Bed width
[m] Side slope Bed slope nM Length [m]

Number
of reaches

22 2.7 1.0 0.00022 0.022 1,200.0 15
23 1.75 2.0 0.00024 0.022 1,200.0 10
24 2.0 2.0 0.00024 0.020 1,200.0 10
25 1.75 2.0 0.00024 0.022 1,000.0 15
26 1.5 2.0 0.00024 0.022 1,100.0 10
27 0.5 1.0 0.00050 0.030 700.0 5
28 0.5 1.0 0.00050 0.030 700.0 5
29 1.75 2.0 0.000024 0.022 1,000.0 10
30 0.5 1.0 0.00050 0.030 700.0 5
31 1.0 1.0 0.00025 0.025 1,000.0 10
32 0.5 1.0 0.00050 0.030 700.0 5
33 1.5 2.0 0.00024 0.022 900.0 10
34 1.5 1.0 0.00025 0.022 1,200.0 15
35 1.5 1.0 0.00025 0.022 900.0 10
36 1.25 2.0 0.00024 0.022 800.0 8
37 1.0 2.0 0.00022 0.022 1,000.0 15
38 1.0 1.0 0.00025 0.022 800.0 8
39 0.5 1.0 0.00050 0.030 700.0 5
40 0.5 1.0 0.00050 0.030 700.0 5
41 0.75 2.0 0.00024 0.022 700.0 8

Table 4.6 Water levels imposed at pendant nodes in Fig. 4.38

Node Water levels [m] Node Water levels [m]

1 12.199 337 9.608
128 10.265 343 9.497
134 10.246 360 9.600
145 10.242 371 9.587
156 10.235 377 9.494
174 10.248 388 9.496
185 10.249 440 9.212
196 10.232 449 9.568
202 10.236 455 9.675
266 9.761 461 9.231
320 9.489 470 9.234

at all pendant nodes, including node 1, where the previously calculated value is
applied. Thus one can expect the resulting discharge value Q in the first branch to
be close to the value specified in the previous calculation, i.e. Q = 40 m3/s. Indeed,
the obtained result is Q = 40.005 m3/s. Other discharges are in similarly good agree-
ment with the previous results (differences being less than 0.4%). The solution was
obtained after 17 iterations. Thus, it seems that the approach basing on the finite dif-
ference discretization of the steady flow equation combined with improved Picard
iterative scheme works efficiently for both tree – type and looped channel network
and for any type of boundary conditions specified at its pendant ends.



References 157

References

Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and
differential – algebraic equations. SIAM, Philadelphia

Bjorck A, Dahlquist G (1974) Numerical methods. Prentice-Hall, Englewood Cliffs, NJ
Chow VT (1959) Open channel hydraulics. Mc Graw-Hill, New York
Cunge J, Holly FM, Verwey A (1980) Practical aspects of computational river hydraulics. Pitman

Publishing, London
French RH (1985) Open channel hydraulics. McGraw-Hill, New York
Gray DM, Prowse TD (1993) Snow and floating ice. In: Maidment DR (ed.) Handbook of

hydrology. McGraw-Hill, New York
Le Veque RJ (2007) Finite difference methods for ordinary and partial differential equations:

Steady–state and time dependent problems. SIAM, Philadelphia.
Naidu BJ, Murty Bhallamudi S, Narasimhan S (1997) GVF computation in tree type channel

networks. J. Hydr. Engng. ASCE 123 (8):700–708
Press WH, Teukolsky SA, Veterling WT, Flannery BP (1992). Numerical recipes in C, Cambridge

University Press
Roberson JA, Cassidy JJ, Chaudhry MH (1998) Hydraulic engineering, 2nd edn. Wiley, New York
Schulte AM, Chaudhry MH (1987) Gradually-varied flow in open channel network. J. Hydr. Res.

25 (3):358–371
Singh VP (1996) Kinematic wave modelling in water resources: Surface water hydrology. John

Wiley, New York
Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer-Verlag, New York
Szymkiewicz R (2000) Mathematical modeling of river flow. Polish Scientific Publisher PWN,

Warsaw (in polish)
Szymkiewicz R, Szymkiewicz A (2004) Method to solve the non-linear systems of equations for

steady gradually varied flow in open channel network. Commun. Numer. Methods Engng.
20 (4):299–312



Chapter 5
Partial Differential Equations of Hyperbolic
and Parabolic Type

5.1 Types of Partial Differential Equations and Their Properties

5.1.1 Classification of the Partial Differential Equations
of 2nd Order with Two Independent Variables

The governing equations for unsteady flow and transport processes presented in
Chapter 1 are partial differential equations (PDEs). They result from the application
of the laws of conservation of some physical quantities like mass and momentum,
and describe the evolution of an unknown function (like the water stage, discharge
or concentration) with respect to temporal and spatial variables. Other examples
of PDEs, in form of simplified flood routing models, will be introduced later in
this book. This chapter discusses in more detail the basic properties of PDEs and
numerical techniques applied to solve them.

As we could see in Chapter 1, a PDE may contain derivatives of various orders
(first or second order in the presented examples). Thus, any PDE is additionally
labeled as being of 1st order, 2nd order, 3rd order and so on. The order of a partial
differential equation corresponds to the highest order of derivative which appears in
the considered equation. Moreover, PDEs can be classified as hyperbolic, parabolic
and elliptic ones. Since the proper designation of the type of considered equation
is essential to formulate well-posed solution problem, let us begin with a brief
discussion of classification of the partial differential equations.

For an equation of 2nd order with two independent variables there is very simple
way of classification (Potter 1973). Such kind of equation can be written in the
following general form:

a1
∂f

∂t2
+ a2

∂2f

∂t · ∂x
+ a3

∂2f

∂x2
+ a4

∂f

∂t
+ a5

∂f

∂x
+ a6 · f =δ(x,t), (5.1)

where:

t, x – independent variable (time and space position respectively),
f(x, t) – dependent variable,
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a1,. . .,a6 – equation’s coefficients,
δ(x, t) – source term,

Depending on the form of coefficients, Eq. (5.1) is considered as:

– linear equation with constant coefficients when a1, a2, a3, . . . = const.,
– linear equation with variable coefficients when a1 = a1(x, t), a2 = a2(x, t), a3 = a3

(x, t), . . .,
– quasi-linear equation when a1 = a1(x, t, f), a2 = a2(x, t, f), a3 = a3(x,t, f), . . .,
– non-linear equation when a1 = a1(x, t, f, ∂f/∂t, ∂f/∂x), a2 = a2(x, t, f, ∂f/∂t, ∂f/∂x),

a3 = a3(x,t, f, ∂f/∂t, ∂f/∂x), . . ..
As far as the type of equation is considered, Eq. (5.1) is called:

– elliptic, when � = a2
2 − a1 · a3 < 0

– parabolic, when � = a2
2 − a1 · a3 = 0,

– hyperbolic, when � = a2
2 − a1 · a3 > 0.

Note that the value of discriminant � determining the type of equation depends
only on the values of the coefficients related to the derivatives of the 2nd order.
Thus the type of 2nd order equation does not depend on the presence of the terms
containing derivatives of 1st order or on the presence of source terms. The system of
classification is valid globally only for linear equations with constant coefficients.
When the coefficients vary it is possible that Eq. (5.1) can change its type in the
considered domain, so the classification is valid only locally.

In the case of open channel flow the partial differential equations of 2nd order
are associated with pollutant transport and simplified models of unsteady flow in the
form of diffusive wave (see Chapters 1, 7 and 9). They have the form of advection-
diffusion equation, i.e.:

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
= 0, (5.2)

where:

f – scalar function as pollutant concentration or temperature,
U – cross-sectional average flow velocity,
D – coefficient of diffusion.

Comparing Eqs. (5.2) and (5.1) one obtains:

� = a2
2 − 4a1 · a3 = 0 − 4 · 0 · D = 0,

which means, that the advection-diffusion equation (5.2) is of parabolic type.
There are some general relations, which enable us to predict the type of PDE

even without a detailed analysis. It is known, that the flow problems variable in time
(unsteady ones) are described by the equations of hyperbolic or parabolic type. If
the considered problem is related to wave propagation, then the equations will be
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certainly of hyperbolic type. However, if in the equations some processes of dissipa-
tion are represented, as for example the stresses resulting from the liquid viscosity,
heat conduction or mass diffusion, then one can expect equations of parabolic type.
Finally, elliptic equations usually describe steady problems and equilibrium states
and are rarely used in open channel flow modeling.

5.1.2 Classification of the Partial Differential Equations
via Characteristics

The presented method of classification, while simple and clear, can be applied for
the equations of 2nd order only. If we have a single equation of first order or a system
of such equations, their type can be defined by the analysis of characteristics. To
better explain this approach, let us make a short introduction to the characteristics
concept using the simplest type of equation, i.e. the pure advection equation:

∂f

∂t
+ U

∂f

∂x
= 0, (5.3)

where U is advective velocity. Both sides of Eq. (5.3) are multiplied by dt:

∂f

∂t
dt + U · dt

∂f

∂x
= 0. (5.4)

If we introduce the following notation:

dx = U · dt (5.5)

and substitute it in Eq. (5.4), then we obtain:

∂f

∂t
dt + ∂f

∂x
dx = 0. (5.6)

The right hand side of Eq. (5.6) is the total derivative of the function f(x, t), so
that Eq. (5.4) can be rewritten as follows:

d f = 0 for, (5.7a)

dx = U · dt (5.7b)

or
df

dt
= 0 for

dx

dt
= U. (5.8)

Therefore Eq. (5.3), which is a PDE, can be integrated as an ordinary differential
equation, along the lines defined by Eq. (5.5) in (x, t) plane. From Eq. (5.8) results
that in this case, the time variation of function f is equal to zero along this line. The
formula:
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dx

dt
= U (5.9)

defines the characteristics of the pure advection equation, or more precisely, it deter-
mines the slope of the line tangent to the characteristic lines. In a general case, when
U 
= const., the characteristics are curves in (x, t) plane.

The concept of characteristics can be used to classify the partial differential equa-
tions of 2nd order like Eq. (5.1). Fletcher (1991) showed, that the discriminant
� = a2

2−a1·a3 determines both type of equation and the nature of its characteristics.
He found out that:

– hyperbolic equation has two real characteristics,
– parabolic equation has one real characteristic;
– elliptic equation has two imaginary characteristics.

This is valid for the equations of 1st order as well.
Coming back to the pure advection equation (5.3), one can find out that this equa-

tion is of hyperbolic type. It has one characteristic only, which is real. In addition
one can notice that with U = const. its characteristics are straight lines as presented
in Fig. 5.1.

Since along these lines the function f(x, t) does not vary, the governing equation
can be easily integrated as an ordinary differential equation, on condition that the
initial data are given along any line in (x, t) plane, which is not a characteristics.
These properties form the base of the method of characteristics, one of the funda-
mental method for solution of PDEs of hyperbolic type (Abbott and Basco 1989).
For a long time this method was the only one commonly applied to solve such kind
of equations. Even now, the method of characteristics is widely applied to solve the
unsteady pipe flow equations, very similar to the Saint Venant equations (Abbott
and Basco 1989). In open channel hydraulic, as we shall see later, if the advection
diffusion equation is solved by a splitting approach, the method of characteristics is
frequently used for solving the advective part.

As an instructive exercise, let us apply this method to solve of the pure advec-
tion equation (5.3). From Eq. (5.7a) results that the function f(x, t) does not vary
along the characteristic line (5.7b). This fact allows us to find the following formula,
representing an exact solution of Eq. (5.3):

t

x

tgφ = —1
U

U > 0

φFig. 5.1 Characteristics of
the pure advection equation
for U = const. > 0



5.1 Types of Partial Differential Equations and Their Properties 163

f (x, t) = f (x0, t0) = f

⎛

⎝x −
t∫

t0

U · dt, t0

⎞

⎠ (5.10)

Therefore a particle, which at current moment t is in the position defined by x, at
t = t0 was in the following position:

x0 = x −
t∫

t0

U · dt (5.11)

Since in this case we assumed a constant flow velocity, then the characteristics
being a straight line of slope 1/U, allows us to rewrite Eq. (5.10) as

f (x, t) = f (x − (t − t0)U, t0) (5.12)

From Eq. (5.12) results that the advection equation with constant advective veloc-
ity U causes pure translation of the initial distribution of f(x, t0) along the channel
axis. This information is very useful, since it helps us to evaluate the accuracy of
numerical methods of solution.

In open channel hydraulics the pure advection equation describes the advective
transport of pollutants derived in Chapter 1, and as well as the kinematic wave equa-
tion, which is a simplified flood routing model (see Chapter 9). Apart from single
equations of 1st order, systems of 1st order PDEs exist, as for example the system of
Saint Venant equations. Classification of a system of equations can be also carried
out using analysis of characteristics.

In the case of two independent variables t and x the system of two 1st order
PDEs with two dependent variables u(x, t) and v(x, t) has the following general form
(Fletcher 1991):

A 11
∂u

∂t
+ B 11

∂u

∂x
+ A 12

∂v

∂t
+ B 12

∂v

∂x
= F1, (5.13a)

A 21
∂u

∂t
+ B 21

∂u

∂x
+ A 22

∂v

∂t
+ B 22

∂v

∂x
= F2, (5.13b)

In matrix notation it can be written as:

A
∂�

∂t
+ B

∂�

∂x
= F, (5.14)
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With

� =
{

u
v

}
, F =

{
F1
F2

}
, A =

[
A 11 A 12
A 21 A 22

]
, B =

[
B 11 B 12
B 21 B 22

]
.

where:

� – vector of unknown functions,
A, B – matrices of coefficients,
F – vector of right hand side.

From the definition of characteristics results that the total derivative of � is
constant along a characteristic, so that

d� = I
∂�

∂t
dt + I

∂�

∂x
dx = 0, (5.15)

where I is identity matrix given as follows:

I =
[

1 0
0 1

]
.

Thus, Eqs. (5.10), (5.11) and (5.12) can be written together as:

[
A B

Idt Idx

]
⎡

⎢⎢
⎣

∂�

∂t
∂�

∂x

⎤

⎥⎥
⎦ =

[
F

0

]

. (5.16)

From the formal definition, the characteristic are such lines in time-space domain,
at which the governing system of equation does not possesses a unique solution.
This take place when the determinant of the coefficient matrix is equal to zero.
This condition leads to the ordinary differential equation, which defines the char-
acteristics. Equation (5.14) has no solution when the determinant of the matrix of
coefficients in Eq. (5.16) is equal to zero, i.e. if det (A · dx − B · dt) = 0. This
condition can be written as:

(A11 A22 − A21A12)

(
dx

dt

)2

− (A11B22 − A21B12 + B11A22 − B22A 12)
dx

dt
+ (B11B22 − B21B12) = 0.

(5.17)

Equation (5.17) has two roots. Their values depend on the value of discriminant
�, which is given by:

� = (A 11B22 − A21B12 + A22B11 − A12B21) 2+
−4(A 11A22 − A21A12)(B11B22 − B21B12).

(5.18)
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The value of discriminant � determines the type of the system of equation. The
possible cases are following:

– for � > 0 Eq. (5.17) has two real roots and the system (5.13) is hyperbolic,
– for � = 0 Eq. (5.17) has one real and one imaginary root and the system (5.13) is

parabolic,
– for � < 0 Eq. (5.17) has two imaginary roots and the system (5.13) is elliptic.

Although we consider classification of the systems of PDEs, the same method
of classification is valid for a scalar equation as well. Let us reconsider the pure
advection equation (5.3). For this equation relation (5.16) takes the following form:

[
1 U

dt dx

]⎡

⎢
⎣

∂f

∂t
∂f

∂x

⎤

⎥
⎦ =

[
0

0

]

. (5.19)

The equation of characteristic is given by the matrix determinant of Eq. (5.19),
which must be equal to zero. Then the condition:

det

[
1 U
dt dx

]
= 0 (5.20)

gives the following relation:

dx = U · dt (5.21)

In such a way we obtained previously derived Eq. (5.9), which defines the char-
acteristic of pure advection equation. Since this characteristic is a real one, the
advection equation is classified as a hyperbolic PDE.

5.1.3 Classification of the Saint Venant System
and Its Characteristics

Let us apply the considered approach to examine the system of Saint Venant
equations (1.77) and (1.78):

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
= g(s − S), (5.22a)

∂H

∂t
+ H

∂U

∂x
+ U

∂H

∂x
= 0 . (5.22b)
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This system is rewritten in the form of Eq. (5.14) with:

� =
{

U
H

}
, F =

{
g(s − S)
0

}
, A =

[
1 0
0 1

]
, B =

[
U g
H U

]
.

The equation of characteristics is derived from the condition (5.15), which gives:

det

⎡

⎢⎢
⎣

1 0 U g
0 1 H U
dt 0 dx 0
0 dt 0 dx

⎤

⎥⎥
⎦ = 0. (5.23)

From Eq. (5.23) one obtains the following equation:

(
d x

d t

)2

− 2U
d x

d t
+ (U2 − g · H) = 0. (5.24)

Equation (5.24) has positive discriminant � = 4 U2 − 4(U2 − g · H) = 4 g · H.
Its square root is equal to:

√
� = 2

√
g · H. (5.25)

and the equations of characteristics are:

d x

d t

∣∣∣∣
1

= 2 U + 2
√

g · H

2
= U +√g · H, (5.26a)

d x

d t

∣∣∣∣
2

= 2 U − 2
√

g · H

2
= U −√g · H. (5.26b)

Therefore the system of Saint Venant equations, having two real characteristics,
is classified as hyperbolic. In a similar manner one can classify the systems contain-
ing n equations of first order. We will apply this approach in Section 8.5 to classify
the system of three equations.

The physical interpretation of the expression
√

g · H which appeared in Eq.
(5.26) results from the analysis of the simplified form of governing equations (5.22).
The first simplification deals with neglecting the source and the advective terms.
Equation (5.22) become the following ones:

∂U

∂t
+ g

∂H

∂x
= 0, (5.27a)

∂H

∂t
+ H

∂U

∂x
= 0 (5.27b)
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Note that omitting the right side of Eq. (5.22a) means that the frictionless flow in
horizontal channel is considered. In the next step the linearization of Eq. (5.27b) is
performed. Instead of variable coefficient H(x, t) a constant one, equal to the average
flow depth H is introduced. Therefore we obtain:

∂U

∂t
+ g

∂H

∂x
= 0, (5.28a)

∂H

∂t
+ H

∂U

∂x
= 0 . (5.28b)

Both equations are differentiated with regard to x and to t respectively, yielding:

∂2 U

∂t · ∂x
+ g

∂2H

∂x2
= 0, (5.29a)

∂2 H

∂t2
+ H

∂U

∂x · ∂t
= 0 (5.29b)

Combining these equations one obtains:

∂2 H

∂t2
= g · H

∂2H

∂x2
(5.30)

In a similar way, inverting the order of differentiation of Eqs. (5.28a) and (5.28b),
we arrive to the second possible form of the shallow water wave equation

∂2 U

∂t2
= g · H

∂2U

∂x2
(5.31)

Setting:

c =
√

g · H (5.32)

Equations (5.30) and (5.31) can be presented in the common form:

∂2 f

∂t2
= c2 ∂

2f

∂x2
. (5.33)

In this equation f represents the flow depth H(x, t) or the flow velocity U(x, t).
This equation has the form of the well-known wave equation, describing a vibrat-

ing stretched string, where c represents the wave speed in the string (for details see
e.g. Billingham and King (2000)). In the case of shallow water equations c is the
speed of wave occurring at the free surface of water. Coming back to the equations
of characteristics (5.26) one can find out that they represent the net velocities of
propagating small disturbances of H or U arising at the surface of stream flowing at
the velocity U. These disturbances travel in space and time depending of the rela-
tion between U and c. More information on interpretation of the characteristics is
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provided by an appropriate transformation of the system of shallow water equations
(5.22) (Billingham and King 2000, Hervouet 2007, Tan Weiyan 1992).

Le us consider the system of Eqs. (5.22a) and (5.22b) in its homogeneous
version:

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
= 0, (5.34a)

∂H

∂t
+ H

∂U

∂x
+ U

∂H

∂x
= 0 . (5.34b)

Using relation (5.32) the flow depth is expressed as:

H = c2

g
(5.35)

Substituting Eq. (5.32) in the continuity equation (5.34b) yields:

∂

∂t

(
c2

g

)
+ c2

g

∂U

∂x
+ U

∂

∂x

(
c2

g

)
= 0 . (5.36)

Developing the derivatives in (5.36) and dividing both sides of the obtained
equation by the factor g·c gives:

∂ (2c)

∂t
+ U

∂ (2c)

∂x
+ c

∂U

∂x
= 0 . (5.37)

Dynamic equation (5.34a) coupled with Eq. (5.35) yields:

∂U

∂t
+ U

∂U

∂x
+ c

∂ (2c)

∂x
= 0, (5.38)

If we now add and subtract Eqs. (5.37) and (5.38) we obtain the following two
equations:

∂ (U + 2c)

∂t
+ (U + c)

∂ (U + 2c)

∂x
= 0 . (5.39a)

∂ (U − 2c)

∂t
+ (U − c)

∂ (U − 2c)

∂x
= 0 . (5.39b)

In such a way the governing system of shallow water equations is expressed in
an equivalent form, in which the characteristic equations are involved. Note that
both equations describe advective transport of the quantities U + 2c or U − 2c with
advective celerity U + c or U − c, respectively. Therefore using Eqs. (5.26a) and
(5.26b) they can be rewritten as:

d (U + 2c)

dt
= 0 for

dx

dt

∣∣∣∣
1

= U + c (5.40a)
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d (U − 2c)

dt
= 0 for

dx

dt

∣∣∣∣
2

= U − c (5.40b)

These equations show that the quantities U ± 2c are constant on the characteris-
tic curves determined by U ± c. The transported quantities are called the Riemann
invariants of the system (5.34). The characteristic equations are of great importance
for numerical solution of the hyperbolic equations since they allow for an appropri-
ate formulation of the required auxiliary conditions. This is because the character of
characteristics vary depending on the relation between the flow velocity U and the
wave celerity c. On the other hand these variables are related to each other via the
Froude number Fr defined by Eq. (1.17). This number, being the ratio of U and c,
allows us to determine the character of channel flow. Assuming U > 0 the following
situations are possible:

– if U < c, (Fr < 1) the flow is subcritical: the wave celerity exceeds the flow velocity,
so any flow disturbance at the considered channel reach travels in both directions,
downstream and upstream;

– if U > c, (Fr > 1) the flow is supercritical: the flow velocity exceeds the wave
celerity, so any flow disturbance at the considered channel reach travels in one
direction – downstream;

– if U = c, (Fr = 1) the flow is critical.

The relation between the characteristics of hyperbolic equations and the required
auxiliary conditions is the subject of the next section.

5.1.4 Well Posed Problem of Solution of the Hyperbolic
and Parabolic Equations

Classification of the partial differential equations has essentials meaning, because
it allows us to formulate properly the problem of solution for the considered PDE.
PDEs are solved in strictly defined domains and for strictly defined auxiliary con-
ditions, imposed at the limits of the solution domain. In other words, each solution
of the equation or the system of equations corresponds to the conditions a priori
imposed on this unknown solution. Therefore the function being the solution of
the considered problem must satisfy simultaneously both the solved equation in
the domain of solution and the additional conditions imposed at its limits. These
additional conditions usually are called the limit conditions. They are divided in
two kinds: the initial conditions and the boundary conditions. The initial condi-
tions provide information on the function or the functions in the solution domain at
the initial moment t0. They are present in the unsteady problems, when one of the
independent variable is time. The boundary conditions, on the other hand, provide
information imposed at the physical boundary the considered domain of solution.
In open channel flow problems such boundaries are constitute by the upstream end
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and the downstream end of a channel. If at the boundary of the considered domain
the value of the unknown function is given, then it is said that Dirichlet condition is
imposed, whereas if the derivative of the function is set, then it is said that Neumann
condition is imposed. Apart from the mentioned conditions so-called mixed condi-
tions can be formulated as well. Since in open channel flow they are not applied we
do not them discussed here.

After Hadamard (Fletcher 1991) the problem equation and auxiliary conditions
of solution, i.e. the limit conditions are mathematically well posed if they ensure:

– existence of solution,
– uniqueness of solution.
– continuous dependence of solution on the auxiliary conditions.

The problem of proving the existence of solution is important from the point of
view of mathematical formalism. For the purposes of engineering practice, how-
ever, it is reasonable to assume that the model equations based on the principles of
conservation laws have solution in most cases.

The uniqueness of solution is related to the auxiliary conditions formulated for
the considered type of equation. Generally, if there are too few boundary conditions
no unique solution can be obtained, whereas too many conditions imposed at the
boundary can generate unphysical solution (Fletcher 1991). In order to properly
define the auxiliary conditions one needs to know the type of solved equations. For
this reason, the correct classification of considered partial differential equations and
the knowledge of their characteristics structure has fundamental meaning for well
posedness of solution problem.

For some problems the way of proper formulation of the initial and boundary
conditions is well known. For instance for the hyperbolic equations the following
rule is valid: at every boundary of the considered solution domain it is necessary
to impose as many additional conditions as many characteristics enter the solution
domain from this boundary. This rule results from the nature of characteristics dis-
cussed in the preceding section. As an example, let us consider the pure advection
equation (5.13):

∂f

∂t
+ U

∂f

∂x
= 0 for U = const. (5.41)

The characteristics of Eq. (5.41) on the plane (x,t), given by Eq. (5.9) and depen-
dent on the sign of the flow velocity U, are presented in Fig. 5.2. Then if we want
to solve Eq. (5.41) in the domain: 0 ≤ x ≤ L and t ≥ 0 with U > 0, the following
auxiliary conditions must be prescribed (Fig. 5.2a):

– initial condition:

at t = 0 f (x, 0) = fi (x) for 0 ≤ x ≤ L should be imposed

– boundary condition:
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a) b)
t t

x x
U > 0 U < 0x = 0 x = 0x  =  L x = L

Fig. 5.2 The characteristics for pure advection equation (5.27) for U >0 (a) and for U < 0 (b)

at the upstream end x=0 f(0,t)=f0(t) for t ≥ 0 should be imposed
where fi(x) and f0(t) are given.

If the velocity vector has opposite (negative) sign, as in Fig. 5.2b, then the bound-
ary condition must be imposed at the opposite end of the channel reach i.e. at x = L.
Generally, for the pure advection equation the boundary condition is prescribed at
the end, where the water inflows.

As the second example let us consider the system of Saint Venant equations
(5.22). In the preceding section it was shown that this system possesses two families
of real characteristics given by Eqs. (5.26a) and (5.26b):

dx

dt

∣∣∣∣
1

= U + √
g · H, (5.42a)

dx

dt

∣∣∣∣
2

= U − √
g · H (5.42b)

In this case the structure of the characteristics in the solution domain (0≤ x ≤L
and t ≥ 0) can vary according to the relation between the flow velocity U and the
wave celerity in the shallow water c = (g · H)1/2. If U < (g · H)1/2, i.e. for the
subcritical flow when the Froude number is less than unity (Fr < 1), both families
of characteristics are inclined in the opposite directions. Their form is presented in
Fig. 5.3.

Since two characteristics enter the solution domain through the line t = 0, two
initial conditions must be prescribed: U(x,0) = Ui(x), H(x,0) = Hi(x) for 0 ≤ x ≤ L.
As only one characteristic enters the solution domain through each of the boundaries
x = 0 and x = L, then at each channel end only one additional condition must be
imposed: U(0,t) = U0(t) or H(0,t) = H0(t) for t≥0 and U(L,t) = UL(t) or H(L,t) =
HL(t) for t ≥ 0.

If U > (g · H)1/2, i.e. for the supercritical flow in the channel, when the Froude
number is greater than unity (Fr > 1), both families of characteristics are inclined
in the same direction. Their form is presented in Fig. 5.3 by dashed lines. In this
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Fig. 5.3 Characteristics for the system of Saint Venant equations with U < (g · H)1/2 (solid lines)
and for U > (g · H)1/2 (dashed lines)

case the initial conditions are prescribed identically as previously, so both functions
H and U must be imposed for t = 0 and 0 ≤ x ≤ L. The boundary conditions
are specified as follows: at the upstream end of the channel x = 0, both functions
U(0, t) = U0 (t) and H (0, t) = H0 (t) for t ≥ 0 have to be imposed, whereas at the
downstream end x = L no condition is required, since through this boundary no
characteristic enters the solution domain (Fig. 5.3).

As results from the presented discussion, the knowledge of the characteristics
structure is indispensable in the case of hyperbolic equations because it allows us
to prescribe correctly the required auxiliary conditions and consequently to ensure
well-posedness of the solution problem.

Quite a different situation appears in the case of the partial differential equations
of parabolic type. In such a case the characteristics are not useful since some of
them have imaginary character. The problem of proper formulation of the auxiliary
conditions for these equations is well known. To ensure the unique solution of the
parabolic equation as diffusion equation (5.17):

∂f

∂t
− D

∂2f

∂x2
= 0 (5.43)

in the solution domain, i.e. for 0 ≤ x ≤ L and t ≥ 0, the following initial-boundary
conditions should be specified (Fig. 5.4):

– for t = 0 the initial condition takes the form: f(x,0) = fi(x) for 0 ≤ x ≤ L,
– at the upstream end x = 0 the Dirichlet boundary condition f (0, t) = f0(t) for t ≥

0, is applied,
– at the downstream end x = L either the Dirichlet boundary condition f(0, t) =

fL(t) for t ≥ 0, or the Neumann condition ∂f(L, t)/∂x = φL(t) for t ≥ 0 is applied.

Of course, the Dirichlet and Neumann conditions can be inverted and imposed at
opposite ends as listed above. However we have to remember that for the advection-
diffusion equation, which is also of parabolic type, the Dirichlet condition must



5.1 Types of Partial Differential Equations and Their Properties 173

boundary condition fL (t  )  or 

boundary condition f0 (t  )

initial condition fi (x  )
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Fig. 5.4 Auxiliary conditions
on the solution domain limits
for the parabolic equation

be specified at least at one boundary. For a system of parabolic equations a set of
additional conditions, similar to the one presented above, have to be imposed for
each dependent variable (Fletcher 1991).

The initial and boundary conditions i.e. the functions fp, f0 and fL, one should
be consistent. Otherwise, false gradients of the function f(x, t) can occur during the
computation. They can give rise to numerical disturbances.

The third condition of well-posedness, i.e. stability, requires that insignificant
variations of the initial and boundary conditions cause only insignificant variations
of the obtained solution. Usually the additional conditions have approximate char-
acter. If they are not fulfilled exactly then the errors generated during computation
will increase in uncontrolled manner and consequently these errors can dominate
the numerical solution. This problem is especially important for the hyperbolic
equations.

By analogy one can formulate similar requirements in relation to the numerical
algorithm. It is assumed that the numerical problem is well-posed if:

– the numerical solution exists.
– the numerical solution is unique,
– the numerical solution continuously depends on the approximate auxiliary

conditions.

As states Fletcher (1991), the well-posed numerical problem requires not only
the well-posedness of the solution problem for the partial differential equations, but
it requires also that the numerical algorithm of solution is well-posed (stable). Only
in such a case an approximate solution of the well-posed numerical problem will
be close to the exact solution of the well-posed problem for the partial differential
equation.
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5.1.5 Properties of the Hyperbolic and Parabolic Equations

A classical hyperbolic equation, often used as an example to demonstrate the
properties of this type of equations, is the linear wave equation (5.33):

∂2f

∂t2
− c2 ∂

2f

∂x2
= 0 (5.44)

where:

t – time,
x – position,
c – celerity of the wave propagation (in this case = (g · H)1/2)
f(x, t) – function satisfying Eq. (5.44), which can be either the flow depth H(x, t)

or the flow velocity U(x, t).

Generally Eq. (5.44) describes the propagation of a small disturbance on the
surface of shallow body of perfect liquid. Assuming c = 1, one obtains:

∂2f

∂t2
− ∂2f

∂x2
= 0 (5.45)

Assume that we seek the solution of Eq. (5.45) in the following domain: 0 ≤
x ≤ 1 and t ≥ 0. Since this equation has two real characteristics described by the
equations dx/dt = 1 and dx/dt = −1, respectively. shown in Fig. 5.5 (Fletcher 1991),
additional conditions must be given at t = 0, x = 0 and x = 1.

After Fletcher (1991) let us assume the following initial-boundary conditions:

– initial conditions

f (x, t = 0) = sin (π · x),
∂f (x, t = 0)

∂t
= 0 for 0 ≤ x ≤ 1

– boundary conditions

f (x = 0,t) = 0 and f (x = 1,t) = 0 for t ≥ 0

t

x0                                                                              1

= − 1
dx

dt

dx

dt
=1

≤ ≤ ≥0      1,        0x t

Fig. 5.5 Characteristics of Eq. (5.45)
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Table 5.1 The values of function (5.33) for 0 ≤ x ≤ 1

x f(x, t) x f(x, t)

0.00 0.000 0.60 −0.294
0.10 0.294 0.70 −0.476
0.20 0.476 0.75 −0.500
0.25 0.500 0.80 −0.476
0.30 0.476 0.90 −0.294
0.40 0.294 1.00 0.000
0.50 0.000 − −

For the above specified conditions, Eq. (5.45) has an exact solution (Fletcher
1991):

f (x, t) = sin (π · x) · cos (π · x) 0 ≤ x ≤ 1 (5.46)

This solution has character of a non-damped oscillation, independent of the time
t. The values of function (5.46) are displayed in Table 5.1.

The lack of attenuation of the propagating wave is a typical feature of linear
hyperbolic equations. For this reason any discontinuity, introduced into their solu-
tion by initial or boundary conditions, will never disappear. Moreover, in the case
of the hyperbolic non-linear equations a discontinuity in the solution domain may
occur even if the initial and boundary conditions are continuous.

As far as parabolic PDEs are considered, they arise for problems associated with
dissipative mechanisms like, for instance, the liquid viscosity or the diffusive mass
or heat transport. The most popular example of such type of equation is the diffusion
equations describing the transport of mass or energy without the advection. For the
coefficient of diffusion equal to unity (D = 1 m2/s) the diffusion equations is as
follows:

∂f

∂t
= ∂2f

∂x2
. (5.47)

We are looking for its solution in the same domain as it was done previously for
the hyperbolic equation, i.e. for 0 ≤ x ≤ 1 and t ≥ 0, with the following auxiliary
conditions:

– initial condition: f (x, 0) = sin(π · x) for 0 ≤ x ≤ 1,
– boundary conditions: f (0, t) = f (1, t) = 0 for t > 0.

For those conditions Eq. (5.47) has the following analytical solution (Fletcher
1991):

f (x, t) = sin (π · x) exp( − π2 · t). (5.48)

From Eq. (5.48) results that the function f(x, t) is attenuated exponentially.
This process illustrates the mechanism of dissipation. Note that in the hyperbolic
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Table 5.2 The values of function (5.48) for 0 ≤ x ≤ 1

x f (x, t = 0.0) f (x, t = 0.05) f (x, t = 0.10)

0.00 0.000 0.000 0.000
0.10 0.309 0.189 0.115
0.20 0.588 0.359 0.219
0.30 0.809 0.494 0.302
0.40 0.951 0.581 0.354
0.50 1.000 0.610 0.373
0.60 0.951 0.581 0.354
0.70 0.809 0.494 0.302
0.80 0.588 0.359 0.219
0.90 0.309 0.189 0.115
1.00 0.000 0.000 0.000

equations the lack of such a mechanism leads to non-attenuated oscillations. As
the solution of a parabolic equation advances in time, it is diffused in space. The
presence of the dissipation mechanism causes that even if the initial or boundary
conditions contain a discontinuity, it disappears after some time, and the solution
inside the considered domain will be always smooth. The function f(x, t) for the
selected values of time: t = 0, t = 0.05 and t = 0.10 are displayed in Table 5.2. One
can see, that the wave is strongly attenuated as time increases.

The solutions of hyperbolic and parabolic equations presented above can be
interpreted in a more general way, via analysis of the Fourier representation of a
general solution of wave equation. The Fourier representation of the solution of
wave equation can be written as follows (Fletcher 1991):

f (x, t) =
∞∑

m=−∞
fm (x, t) (5.49)

where fm(x, t) is mth component of representation. Since both considered equations
were assumed to be linear, the components of the Fourier representation can be
considered independently. Each of them has the following form:

fm(x, t) = Am · e−p(m)t · ei·m·(x−q(m)·t) (5.50)

where:

Am – amplitude of the mth component,
m – wave-number related to the components’ wave length λ by formula

m = 2π /λ,
p(m) – dissipation parameter, which determines how rapidly the amplitude of

the wave is attenuated,
q(m) – wave propagation speed,
i – imaginary unit.
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Equation (5.50) describes the propagation of a plane wave that is subjected to
both dissipation and dispersion. The propagating wave is described by two parame-
ters: amplitude and phase speed. If during propagation the amplitude is attenuated,
i.e. decreases in time, it is said that the wave is subjected to dissipation. If dur-
ing propagation the phase speed varies, it is said that the wave is subjected to
dispersion.

Let us assume, that the movement is described by the equations discussed ear-
lier. Introducing successively Eq. (5.50) into these equations one can determine the
dissipation parameter p(m) and the wave speed q(m). Consequently one obtains a
particular form of Eq. (5.50) corresponding to the considered equations:

Since the wave described by Eq. (5.50) must satisfy the partial differential equa-
tion (5.44), it can be substituted into this equation. The derivatives of 2nd order in
Eq. (5.44) are given as:

∂2f

∂t2
=
∂

∂t

(
∂

∂t
(Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t))

)
=

=
∂

∂t
(Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t) · ( − p(m) + i · m · q(m))) =

= Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t) · ( − p(m) + i · m · q(m))2

(5.51)

∂2f

∂x2
=
∂

∂x

(
∂

∂x
(Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t))

)
=

=
∂

∂x
(Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t)) · ( − i · m)) =

= Am · exp ( − p(m) · t) exp ( − i · m(x − q(m)t))( − i · m)2

(5.52)

Substitution of Eqs. (5.51) and (5.52) in Eq. (5.44) yields:

Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t))( − p(m) + i · m · q(m))2+
−c2 · Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t)( − i · m)2 = 0

(5.53)

Dividing both sides of Eq. (5.53) by Eq. (5.50) and rearranging them one obtains
the following expression:

− p(m) + i · m · q(m) = −c · i · m (5.54)

from which results:

p(m) = 0, (5.55)

q(m) = −c (5.56)

Then the wave (5.50) satisfying the wave equation (5.44) is expressed as follows:

fm(x, t) = Am · e−i·m(x−c·t) (5.57)
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This is a confirmation of the previously obtained result – the plane wave satisfy-
ing the wave equation (5.44) moves without any deformation. In other words, such
a wave does not dissipate.

A similar approach can be applied to the examine the propagation of a plane
wave governed by the diffusion equation:

∂f

∂t
= D

∂2f

∂x2
. (5.58)

As the wave described by Eq. (5.50) must satisfy the partial differential equation
(5.58), let us substitute them . The derivative of 1st order with regard to time is given
as:

∂f

∂t
= ∂

∂t
(Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t)) =

=Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t) · ( − p(m) + i · m · q(m))
(5.59)

On the other hand, the derivative of 2nd order with regard to x is given by Eq.
(5.52). Substitution of Eqs. (5.59) and (5.52) in Eq. (5.58) yields:

Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t)) · ( − p(m) + i · m · q(m)) =
=D · Am · exp ( − p(m)t) exp ( − i · m(x − q(m)t)) · (−i · m)2

(5.60)

After dividing both sides of Eq. (5.60) by Eq. (5.50) one obtains:

− p(m) + i · m · q(m) = D · (−i · m)2 (5.61)

From this relation results that:

p(m) = D · m2 and q(m) = 0 (5.62, 5.63)

Therefore the plane wave governed by the diffusion equation (5.58) is as follows:

fm(x, t) = Am · e−D·m2·t · ei·m·x (5.64)

In this equation one can notice the factor representing the dissipation process
which is responsible for attenuation of the wave amplitude with time. Therefore the
properties of the parabolic partial differential equation observed in its exact solution
(5.48) are confirmed by the Fourier analysis.

5.1.6 Properties of the Advection-Diffusion Transport Equation

The wave equation and the diffusion equation are rather seldom applied in open
channel hydraulics. However, both equations are closely related to the advection-
diffusion transport equations (1.157) or (1.174) describing the transport of mass or
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heat in open channels. They can be rewritten in simplified form as:

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
= δ, (5.65)

where:

f(x, t) – function represented transported quantity,
U – cross-sectional average flow velocity,
D – coefficient of diffusion.
δ – source term.

The advection-diffusion transport equation is one of the most challenging equa-
tions in mathematical physics, as it represents a superposition of two very different
transport processes: advection and diffusion. The first one has hyperbolic character,
whereas the second one has parabolic character. In the preceding section we dis-
cussed the properties of the hyperbolic and parabolic partial differential equations
separately, showing that they are completely different. According to the relative
intensity of the advective and diffusive transport, Eq. (5.65) can be dominated by
either hyperbolic or parabolic features. Numerical problems arise when the trans-
port process is dominated by advection. Thus, it seems instructive to evaluate in
more detail the role of subsequent terms of Eq. (5.65). To this order we follow the
way applied by Szymkiewicz and Mitosek (2007).

As we found out previously, the partial differential equations of hyperbolic
type are related to the problem of wave propagation without any dissipative pro-
cess. Therefore in the solution of hyperbolic equation no damping is observed.
Consequently any discontinuity introduced into the solution by initial or boundary
conditions cannot disappear in time as it happens in case of parabolic equation.

In order to explain the considered process of damping and smoothing of the prop-
agating wave let us begin with the 1D pure advection equation being the simplest
example of the hyperbolic equation. The following equation

∂f

∂t
+ U

∂f

∂x
= 0 (5.66)

where:

f – scalar quantity (temperature or concentration),
U – flow velocity

describes the transport of heat or mass of dissolved substance by flowing stream
of fluid. The term ∂f/∂t represents accumulation for unsteady process whereas the
term U ∂f/∂x represents advection. If U = const., then according to Eq. (5.66) the
initial distribution of f will be translated along x axis without any deformation. In
Fig. 5.6 an exact solution of the advective transport equation with constant velocity
U = 0.5 m/s is shown. The rectangular distribution of f(x, t) imposed at the boundary
x = 0 is transported towards the downstream end keeping its initial shape.



180 5 Partial Differential Equations of Hyperbolic and Parabolic Type

t [s]

1

0.8

0.6

0.4

0.2

0

x = 0.0 x = 500 m x = 1000 m
f

36000 600 1200 1800 2400 3000

Fig. 5.6 Pure translation of f along x axis

Sometimes a hyperbolic equation contains a source term, which represents the
exchange of transported quantity or describes a chemical process. To show the role
of source term let us consider the following equation, similar to Eq. (5.66):

∂f

∂t
+ U

∂f

∂x
= δ (5.67)

where δ represents source (δ > 0) or sink (δ < 0) term. Let us assume the simplest
form of the source term:

δ = κ · f (5.68)

where κ is a decay coefficient. Exact solution of Eq. (5.67) for the set of data
accepted previously and with κ = 0.0001 s−1 is presented in Fig. 5.7. One can notice
that in this case the initially rectangular distribution of f is transported along x axis
without any smoothing. Its height is systematically reduced in time with intensity
determined by the term δ acting as a sink. Of course, this effect can be considered
as some kind of damping. However it has a non-dissipative character.

It is well known that the dissipative processes are irreversible while advection
with source term can be inverted. To this order the signs of U and δ should be
reversed. Then starting from final distribution of f at the downstream end one can
get the boundary condition at the upstream end.

To obtain the effect of smoothing of the sharp fronts of f, a diffusion term should
be introduced into Eq. (5.67). In this way pure advection equation becomes the
advection-diffusion equation (5.65):

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
= δ, (5.69)
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Fig. 5.7 Advective transport with δ = 0.0001 · f
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Fig. 5.8 Solution of advective-diffusive transport with U = 0.5 m/s, D = 0.625 m2/s, δ = 0.0001 · f

Now instead of a hyperbolic equation we have a parabolic one. Consequently
while solving the transport of f having a rectangular distribution at x = 0 one obtains
simultaneously the following effects:

– translation with flow velocity U,
– reduction of the height of rectangle,
– smoothing.

It means that the transported rectangular distribution looses its initial steep shape.
In Fig. 5.8 the combined effect of advection with flow velocity U = 0.5 m/s,
diffusion with D = 0.625 m2/s and sink with δ = 0.0001· f s−1 is presented.

The solution of Eqs. (5.66), (5.67) and (5.69) presented above, can be interpreted
in a more general way, via analysis of the Fourier representation of a general solution
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of wave equation (5.50) introduced in the preceding section. First, let us list the
functions f and δ as well as the derivatives represented in Eq. (5.69). We have:

f (x,t) = Am · exp (− p(m)t) · exp (− i · m(x − q(m) · t) (5.70)

δ = κ · f = κ · Am · exp (− p(m)t) · exp (− i · m(x − q(m) · t) (5.71)

∂f

∂t
= Am · exp (− p(m) · t) · exp (− i · m(x − q(m) · t) · (− p(m) + i · k · q(m)) (5.72)

∂f

∂x
= Am · exp (− p(m) · t) · exp (− i · m(x − q(m) · t) · (− i · m) (5.73)

∂2f

∂x2
= Am · exp (− p(m) · t) exp (− i · m(x − q(m)t))(− i · m)2 (5.74)

Using these relations one obtains the following Fourier components:

– for pure advection equation (Eq. 5.66) we have p(m) = 0 and q(m) = U, which
gives:

fm(x, t) = Am · ei·m·(x−U·t) (5.75)

– for advection equation with source term (Eq. 5.67) we have p(m) = κ and q(m) =
U, which gives:

fm(x, t) = Am · e−κ·t · ei·m·(x−U·t) (5.76)

– for advection-diffusion equation (5.69) without the source term (δ = 0) we have
p(m) = D m2 and q(m) = U, which gives:

fm(x, t) = Am · e−D·m2·t · ei·m·(x−U·t) (5.77)

– for advection-diffusion equation (5.69) with the source term in the form of Eq.
(5.68) we have p(m) = κ + D · m2 and q(m) = U, which gives:

fm(x, t) = Am · e−(κ+D·m2)·t · ei·m·(x−U·t) (5.78)

It can be seen that all the considered transport equations, i.e. Equations (5.66),
(5.67) and (5.69) ensure wave propagation at the same speed regardless of its wave-
length λ (or wave number m since m = 2π /λ). In each case all components have the
same speed, equal to the advective velocity q(m) = U, while the damping process
depends on the type of equation.

For the plane wave governed by pure advection equation (Eq. 5.66) its ampli-
tude is not damped. The propagating wave keeps constant amplitude and con-
sequently initial distribution of transported quantity f is not disturbed, as it was
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shown in Fig. 5.6. Introduction of a source term into the pure advection equation
(Eq. 5.67) changes the behavior of the propagating wave. While traveling, the wave
amplitude is decreased in every time decrement �t by exp (−κ·�t). Although
the general solution (Eq. 5.49) contains an infinite number of the components of
the Fourier representation, the process of attenuation is the same for all of them,
since it is not dependent on the wave number. All amplitudes are decreased in the
same way. Consequently, as the initial distribution of f is decreased proportion-
ally with time, it retains the initially imposed general form, as it was presented in
Fig. 5.7.

The solution of the advection-diffusion transport without the source term (Eq.
(5.69) with δ = 0) shows that the propagating plane wave is attenuated because
of the diffusion. The diffusive term acts with variable intensity, since the damping
depends on the wave number m. The wave attenuation is more rapid for short waves
than for long ones. Consequently the amplitude of any component of the Fourier
representation is attenuated depending on its wavelength. Since a general solution
of the propagation wave (Eq. 5.49) contains an infinite number of components, each
of them is damped in a different way. The effect of this process is observed as a
smoothing of the initial distribution of f, especially significant for steep fronts. If
in the considered advection-diffusion equation the source term with a decay coeffi-
cient κ is present, its solution contains coupled effect of both diffusive and source
terms (Eq. 5.69). The amplitude of propagating wave is decreased by a term partially
dependent on the decay coefficient κ and partially on the coefficient of diffusion D
multiplied by the wave number m raised to the second power. The combined effect
of both processes is seen in Fig. 5.8.

The effects caused by various terms of the advection-diffusion transport equa-
tions (5.65) are worth to remember, since they are helpful in the interpretation the
results of its numerical solution. Numerical errors often produce effects similar to
the results of physical processes, for example numerical diffusion influences the
solution in the same way as physical diffusion. Thus it is important to know what
kind of solution should result from the physical transport mechanisms included in
the considered equation.

5.2 Introduction to the Finite Difference Method

5.2.1 Basic Information

Partial differential equations describing flow and transport in open channels are rou-
tinely solved using numerical methods. Analytical solutions have limited applicabil-
ity for practical problems, which are characterized by irregular and non-uniformly
spaced channel cross-sections and variable in time boundary conditions. Thus, ana-
lytical solutions are useful mostly as a tool to verify the accuracy of numerical
methods, which are then applied to solve real-life problems.
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Numerical methods allow to solve the mathematical problems in which both the
data and the results of calculations are given in the form of numbers. Operating on
numbers is their basic feature. The same feature is characteristic of computers. For
this reason there exist a very close relation between the progress in numerical meth-
ods and in computer technology. This is particularly true in the domain of solution
of the partial differential equations.

It is well known that differential calculus is based on the concept of continu-
ous medium. This idea must be applied to derive these equations. However, the
main concept of the numerical methods is a number. Therefore the continuous
domain and the partial differential equations must be converted to the form suit-
able for a treatment by the computational tools, i.e. a PDE or a system of PDEs
must be converted into a system of algebraic equations, suitable for numerical
solution.

In general, this process of transformation is carried out in two stages (Fletcher
1991). At first the continuous domain of solution of the considered equation is dis-
cretized, i.e. it is converted into a discrete domain constituted by a set of points,
separated from each other. The idea of such conversion is presented in Fig. 5.9.

The continuous time-space domain C, defined as: xu ≤ x ≤ xd and t0≤ t ≤ tmax,
is replaced by a set of points called nodes. The nodes can be uniformly spaced with
constant intervals �x = const. and �t = const., or they can be located in non-
uniform way. The position of any node is defined by its co-ordinates xj and tn, with
1 ≤ j ≤ M, 1 ≤ n ≤ N. The discrete domain D is then constituted by M × N nodes.
The numerical methods allow to calculate the approximate values of the solution of
the partial differential equations in these nodes only. To this order the second stage
of transformation is necessary, i.e. the conversion of the partial differential equation
(or system of K equations) into the system of algebraic equations, i.e.:

∂f 1

∂t
+ · · · = 0

...
∂f K

∂t
+ · · · = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

→ A · X = B, (5.79)

x
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t
D

t

t

t

N

n

1

x   xu d
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t

t

max

x x j  x Mx

Fig. 5.9 Conversion of continuous domain C into discrete domain D
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where:

A – matrix of coefficients of the system of algebraic equations,
X – vector of unknowns,
B – vector of right hand side.

This process is called discretization of the partial differential equations. Its details
depend on the applied numerical method. Solving the system of algebraic equations
one obtains an approximate solution of the partial differential equation or system of
equations.

Sometimes the discretization is made in two steps. At first, a discretization with
regard to one of the independent variables, for instance with regard to x, is carried
out. In such a way one obtains a system of ordinary differential equations with
regard to the second independent variable, which is usually the time t. In the second
step this system is integrated numerically using one of the methods presented in
Chapter 3. Such an approach is called semi-discretization and will be applied in the
following part of the book. Practically the derivatives with regard to time are always
discretized by the finite difference technique, whereas the discretization in space is
carried out using various possible methods, like finite difference (FD), finite element
(FE) or finite volume (FV).

As far as the spatial discretization of the open channel flow equations is con-
sidered, the finite difference method dominates. This is due to one-dimensional
character of the majority of open channel flow problems. Note that practically all
equations derived in Chapter 1 are one dimensional. However, some specific flow
problems require other methods. For example, to model the flow with shock waves
as caused by a dam break, the finite volume method is recommended. On the other
hand the well-known finite element method seems to be best suited for 2D or 3D
flow problems, while it is generally believed to be less useful for 1D problems. Later
in this book we will show that a modification of the standard FE method makes it a
very efficient tool also for 1D flow and transport equations. In this chapter basic FD
and FE algorithms will be introduced.

5.2.2 Approximation of the Derivatives

The finite difference method is one of the most frequently used method of solution
of the partial differential equations. Its concept is to replace directly the derivatives
in the equation by approximate formulas in the form of the difference equations.
To this end the continuous domain, which in the case of 1D equations has always
a rectangular shape, is covered by the mesh of nodes (grid points) as in Fig. 5.10.
This grid is build of two families of straight lines. The first family is parallel to the
x axis. The distances between the lines equal to �xj, can vary. The second family is
parallel to the time axis t. and it is usually distanced with constant time step �t. If
the intervals �x are constant as well, then the grid is uniform.



186 5 Partial Differential Equations of Hyperbolic and Parabolic Type

t

1                     1        +1                                                                   j j          j −
x

t

n+1

n

1

Δ Δx          x

Δt

Δt

j−1 j

j = M

Fig. 5.10 Grid points covering the domain of solution at the plane x−t

In the intersection of both families of lines one obtains the nodes, in which the
approximate value of solution will be calculated. In a uniform grid the position of
any node can be defined by two indices j and n. The first one determines the spatial
co-ordinate xj = (j−1) �x, whereas the second one – the time tn = (n−1) �t.

To convert the partial differential equation into a system of algebraic equa-
tions appropriate difference formulas approximating the derivatives must be used.
In Chapter 3 some of the simplest expressions resulting directly from the Taylor
series expansion were derived. These formulas such as forward (Eq. 3.10), backward
(Eq. 3.12) or centered differences (Eq. 3.14) approximating the derivative of 1st
order can be applied for discretization the considered equation. There are a variety
of approximating formulas, which can be used to transform the partial differential
equation. They may be derived using a more general approach which is presented
here after Fletcher (1991).

The general form of applied approximation should be selected a priori. Assume
that we are looking for a symmetrical approximating formula of 1st order derivative
at node j. Its general equation is assumed to be:

∂f

∂x

∣∣∣∣
j

= a · fj−1 + b · fj + c · fj+1 + O(�x m) , (5.80)

where a, b, c are the coefficients to be determined and O(�xm) indicates the accuracy
of applied approximation. Since for approximation carried out at the node j the
values of function f in neighboring nodes j − 1 and j + 1 are involved, then the
formula (5.80) is said to be symmetrical.

To determine the unknown coefficients in Eq. (5.80) the nodal values of f are
expanded in the Taylor series around the node j. For the function f(x, t), depending
on two independent variables, the Taylor series is given as:
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f (x +�x, t +�t) = f (x, t) +
∞∑

m=1

1

m!
(
�x

∂

∂x
+�t

∂

∂t

)m

f (x, t). (5.81)

At any time level n, for the nodes j + 1 and j − 1 distanced respectively by �x
and −�x from node j, formula (5.81) becomes:

fj+1 = fj +�x
∂f

∂x

∣∣∣∣
j
+ �x2

2

∂2f

∂x2

∣∣∣∣
j
+ O

(
�x3

)
. (5.82a)

fj−1 = fj −�x
∂f

∂x

∣∣∣∣
j
+ �x2

2

∂2f

∂x2

∣∣∣∣
j
+ O

(
�x3

)
. (5.82b)

Using the Taylor series (5.82) we define the values of fj−1 and fj+1 (Fig. 5.11). To
this end let us consider equally spaced nodes for which �xj−1 = �xj = �x.

Next we substitute these expressions into Eq. (5.80). Gathering similar terms one
obtains:

a · fj−1 + b · fj + c · fj+1 = (a + b + c) fj + ( − a + c) �x
∂f

∂x

∣∣∣∣
j
+

+ (a + c)
�x2

2

∂2f

∂x2

∣∣∣∣
j
+ ( − a + c)

�x3

6

∂ 3f

∂x 3

∣∣∣∣
j
+ . . . . (5.83)

Comparison of the left hand side of Eq. (5.80) and the right side hand of Eq.
(5.83) yields:

a + b + c = 0, (−a + c) �x = 1.

For any value of the parameter c, the above equations give:

f

fj

j j+1

ΔxjΔx j−1

xj−1

Fig. 5.11 Sketch for approximation of the derivatives of f(x, t) with regard to x
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a = c − 1

�x
, b = − 2 c + 1

�x
.

If we assume such value of c that cancels the third term of the right side hand of
Eq. (5.83), then one obtains an approximating formula as accurate as possible for
the assumed form of Eq. (5.80). This case corresponds to:

c = −a = 1

2
�x and b = 0.

Substitution of these relations in Eq. (5.80) yields:

∂f

∂x

∣∣∣∣
j

= 1

2�x
( − fj−1 + fj+1) − �x 2

6

∂3 f

∂x3

∣∣∣∣
j
+ . . . . (5.84)

In such a way the centered difference formula (3.14) is derived. It ensures the
accuracy of 2nd order i.e. produces a truncation error of order O(�x2).

Following a similar way one can derive a symmetrical formula for the derivative
of 2nd order. Assume that the approximation will be carried out using the formula
analogical to Eq. (5.80), i.e.:

∂2f

∂x2

∣∣∣∣
j

= a · fj−1 + b · fj + c · fj+1 + O(�x m) , (5.85)

then its right side hand is given by Eq. (5.83) as well. Comparison of the left hand
side of Eq. (5.85) and the right hand side of Eq. (5.83) yields a system of 3 equations
with 3 unknown parameters a, b and c:

a + b + c = 0, (−a + c) �x = 0, (a + c)
�x2

2
= 1.

Its solution is the following:

a = 1

� x2
, b = 2

� x2
, c = 1

� x2
.

Consequently the approximating formula for the derivative of 2nd order is:

∂2f

∂x2

∣∣∣∣
J

= fj−1 − 2fj + fj+1

� x 2
+ O(� x 2). (5.86)

This well known three-point symmetrical formula approximates the derivative
of 2nd order with accuracy of order O(�x2). Usually Eq. (5.86) is derived directly
using the Taylor series expansion.

The main advantages of the presented approach are: the possibility of deriva-
tion of symmetrical or asymmetrical formulas, involving various number of nodes
depending on the required order of formula and easy application for both uniform
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and non-uniform grids. For illustration let us derive three-points asymmetrical for-
mula approximating the derivative of first order. Assume that its general form is the
following:

∂f

∂x

∣∣∣∣
j

= a fj + b fj+1 + c fj+2 + O(�xm). (5.87)

Substituting fj+1 and fj+2 as the Taylor series expansion around the node j and
regrouping, one obtains:

∂f

∂x

∣∣∣∣
j

= (a + b + c) f n
j + (b ·�x + c · 2�x)

∂f

∂x

∣∣∣∣
j
+

+
(

b ·�x2

2
+ c(2�x)2

2

)
∂2f

∂x2

∣∣∣∣
j

+ . . . . (5.88)

Comparing the respective sides of Eqs. (5.87) and (5.88) one can find the
following conditions:

a + b + c = 0, b ·�x + c (2�x) = 1,
b ·�x2

2
+ c (2�x)2

2
= 0,

which ensure the most accurate approximating formula. These conditions give:

a = − 1.5

�x
, b = 2

�x
, c = − 0.5

�x
.

Finally the searched asymmetric formula is as follows:

∂f

∂x

∣∣∣∣
j

= − 1.5 fj + 2 f n
j+1 − 0.5 fj+2

�x
− �x2

3

∂3f

∂x3

∣∣∣∣
j

+ . . . . (5.89)

As it can be seen, this formula approximates the first order derivative with accu-
racy of O(�x2). In such a way one can derive various formulas approximating the
derivatives of various order of the function f(x).

The solution of flow or transport equations for natural open channels is usually
performed on non-uniform grids. In such a case the appropriate approximating for-
mulas can be easily derived using the same approach. Assume that the first order
derivative is approximated in non-equally spaced nodes at the cross section j as
presented in Fig. 5.12.

A general form of the searched formula is given by Eq. (5.80). The nodal values
of function f at j − 1 and j + 1 are calculated with Taylor series expansion around
the node j. They are following:
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fj−1 = fj −�xj−1
∂f

∂x

∣∣∣∣
j
+ �x2

j−1

2

∂2f

∂x2

∣∣∣∣∣
j

+ O
(
�x3

)
. (5.90)

fj+1 = fj +�xj
∂f

∂x

∣∣∣∣
j
+ �x2

j

2

∂2f

∂x2

∣∣∣∣∣
j

+ O
(
�x3

)
. (5.91)

Substitution of Eqs. (5.90) and (5.91) in Eq. (5.80) yields after regrouping:

∂f

∂x

∣∣∣∣
j
= (a + b + c) fj + ( − a ·�xj−1 + c ·�xj)

∂f

∂x

∣∣∣∣
j

+
(

a ·�x2
j−1

2
+ c ·�x2

j

2

)
∂ 2f

∂x2

∣∣∣∣
j

+ . . .

(5.92)

Comparing the respective sides of Eqs. (5.80) and (5.92) one obtains the
following relations:

a + b + c = 0, − a ·�xj−1 + c ·�xj = 1, a ·�x2
j−1 + c ·�x2

j = 0.

Solution of this system of equations gives:

a = − 1

2�xj−1
, (5.93a)

b = − 1

2�xj−1

(
1 − 1

χ2

)
, (5.93b)

c = − 1

2χ2 ·�xj−1
(5.93c)

where χ is the ratio of the neighboring space intervals:

χ = �xj

�xj−1
(5.94)

Then the approximating formula is given by:

∂f

∂x

∣∣∣∣
j

= 1

2�xj−1

(
−fj−1 + χ2 − 1

χ2
fj + 1

χ2
fj+1

)
. (5.95)
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The approximating formula for the second order derivative is carried out simi-
larly. We assume a general formula in the form of Eq. (5.85), in which the nodal
values of f given by Eqs. (5.90) and (5.91) are substituted:

∂2 f

∂x2

∣∣∣∣
j

= (a + b + c) fj + ( − a ·� xj−1 + c · � xj)
∂f

∂x

∣∣∣∣
j

+
(

a ·�x2
j−1

2
+ c · �x2

j

2

)
∂2f

∂x2

∣∣∣∣
j

+ . . .

(5.96)

Comparing the respective sides of Eqs. (5.85) and (5.96) one obtains the
following relations:

a + b + c = 0, − a ·�xj−1 + c ·�xj = 0,
a ·�x2

j−1

2
+ c ·�x2

j

2
= 1.

which yields:

a = − 2

�x2
j−1 (1 + χ)

(5.97a)

b = − 2

�x2
j−1

1

1 + χ

(
1 + 1

χ

)
(5.97b)

c = 2

�x2
j−1

1

χ + χ2
(5.97c)

Substitution of Eqs. (5.97a), (5.97b) and (5.97c) in Eq. (5.85) gives:

∂2f

∂x2

∣∣∣∣
j

= 2

�x2
j−1

1

1 + χ

(
fj−1 −

(
1 + 1

χ

)
fj + 1

χ
fj+1

)
. (5.98)

It is obvious that any discretization introduces an error. The exceptions are repre-
sented by some particular cases when the exact solution has very simple analytical
form. For instance the backward or forward difference ensure exact approximation
only when the solution is a linear function of x (Fletcher 1991).

Summarizing the problem of approximation of the derivative of 1st order, let us
list the basic formulas discussed previously in Chapter 3 and in current one. We
have:

– forward difference

df

dx

∣∣∣∣
j
= fj+1 − fj

�x
+ O(�x), (5.99)

– backward difference

df

dx

∣∣∣∣
j
= fj − fj−1

�x
+ O(�x), (5.100)
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– centred difference

df

dx

∣∣∣∣
j
= fj+1 − fj−1

2� x
+ O(� x2). (5.101)

Using the presented formulas for approximation of the derivatives existing in
considered equation, one can combine various versions of the finite difference
method. These versions are usually called schemes of the finite difference method.
However the numerical schemes constructed using the backward, forward and cen-
tred differences for the partial differential hyperbolic equations can generate some
negative effects in the solution. These issues will be presented in details in the next
sections. Now we can say generally that the obtained numerical solution can con-
tain unphysical oscillations or it can be artificially smoothed. These phenomena are
caused by the properties of above mentioned approximating formulas. The wig-
gles are caused by the centered difference approximating the advective term. This
phenomenon arises because the approximation of the first derivative at node j is
independent of fj (Abbott and Basco 1989). In Fig. 5.13 one can see two different
functions f1(x) and f2(x) having the same value of 1st order derivative approximated
by the centered difference.

On the other hand, approximation of the first derivative by the backward differ-
ence eliminates the wiggles, but at the same time it gives rise to intensive artificial
smoothing. To limit both effects it is sometimes necessary to include the nodal
value of the unknown function to approximate its first derivative at the same node.
Such formula, which covers simultaneously Eqs. (5.99), (5.100) and (5.101) can be
simply derived using the previously applied approach.

The assumed formula for the first derivative (5.80) compared with the result of
the Taylor series expansion (5.83) allows us to write the following conditions:

f(x)

xj xx j+1xx jx –1

f  (x)

f  (x)

 2

 1

Fig. 5.13 Approximation of the 1st order derivative of f(x) using the centred difference does not
involve f(xj)
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a + b + c = 0, (−a + c)�x = 1.

The coefficients b and c can be expressed in relation to a as follows:

c = 1

�x
+ a (5.102a)

b = −2a − 1

�x
(5.102b)

Substitution of these relations in Eq. (5.80) yields:

∂ f

∂ x

∣∣∣∣
j
≈ a ·�x · fj−1 − (2a ·�x + 1) fj + (1 + a�x) fj+1

�x
(5.103)

Setting a·�x = −η one obtains:

∂ f

∂ x

∣∣∣∣
j
≈ −η · fj−1 + (2η − 1) fj + (1 − η) fj+1

�x
(5.104)

This formula involves the weighting parameter η. According to its value, Eq.
(5.104) describes all the standard approximations of the 1st derivative given by Eqs.
(5.99), (5.100) and (5.101). For η = 0 it gives the forward difference, for η = 0.5 –
the centred difference, whereas for η =1 − the backward difference. However the
most interesting property of Eq. (5.104) is that, if necessary, it enables a gradual
increase of the weight of fj in the approximation of the derivative.

An in-depth discussion of various aspects of the finite difference method is given
by Fletcher (1991). His main suggestions and recommendations, very useful for
computational practice, can be summarized as follows:

1. For a smooth function the truncation error of the Taylor series expansion is dom-
inated by the first term of its truncated part and consequently it determines the
accuracy of approximation. This is valid for all approximating formulas.

2. The accuracy of approximation of the derivatives increases with the order of
approximating formula.

3. The error of approximation depends on the value of mesh dimension �x.
It can be expected that this error is more efficiently reduced by decreas-
ing �x than by increasing the order of approximating formula. Therefore,
while increasing the order of approximation, grid refinement should be applied
simultaneously.

4. A negative aspect of increasing of the order of approximation is that more
nodal values of the function f(x) are involved in approximating formulas.
Moreover, increasing of formula’s order only very slowly improves the results
of computations for sparse mesh.

5. Increasing of the approximating formula order does not guarantee better accu-
racy approximation for rapidly varied function, especially when discontinuities
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occur. This is because in such a case the truncation error of the Taylor series is
not dominated by the first term of the neglected part of the series.

As far as the approximation of the derivative of the first order is considered,
Fletcher (1991) concludes that the approximation which should be applied in prac-
tice is the one of 2nd order, whereas approximations of higher order should be used
in exceptional circumstances only.

Another very important problem concerns the representation of waves on the
numerical grid. This has particular meaning in open channel flow modeling as the
considered flow processes have the character of wave motion. Discrete character of
grid points gives rise to limited possibility of wave representation. It appears that the
shortest waves which can be represented on the mesh spaced with�x have the length
equal to double space interval. Then the numerical solution of the partial differential
equation at a grid point should be considered as a long-wave representation of its
exact solution. As it was shown by Fletcher (1991), all difference formulas better
approximate the derivatives in the case of long waves than short ones. This sug-
gests the following conclusion: to improve the results of computations dealing with
the wave propagation problems, grid refinement should be applied. Such approach,
allowing to take into account the shorter and shorter waves, ought to be used in the
case when large gradients are expected in the solution. Comprehensive discussion of
this question is presented by Abbott and Basco (1989), Fletcher (1991) and others.
We will take up these questions in Chapter 6, while discussing the properties of the
applied numerical methods. However at the moment one can find out that except the
prismatic channels the grid refinement rather cannot be applied. This is because the
data on channel geometry at the grid points are obtained from field measurements.

5.2.3 Example of Solution: Advection Equation

Using the finite difference method let us solve the pure advection equation (5.3), the
simplest example of hyperbolic equation:

∂f

∂t
+ U

∂f

∂x
= 0 (5.105)

where:

f – scalar function,
U – flow velocity.

Assume that U = const. > 0 and the solution is searched in the domain: 0 ≤ x ≤
L and t ≥ 0, where L is the length of the channel reach, in which flowing water
transports the dissolved pollutant. For positive advection velocity, the following
initial-boundary conditions are imposed:

– initial condition: f (x, t = 0) = fi(x) for 0 ≤ x ≤ L
– boundary condition: f (x = 0, t) = f0(t) for t ≥ 0
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Fig. 5.14 Grid points for the upwind scheme

where fi(x) and f0(t) are given functions, satisfying the condition of consistency:
fi(0) = f0(0).

To solve Eq. (5.105) let us apply the difference scheme known as the upwind
scheme. This scheme uses the grid points shown in Fig. 5.14.

The derivatives are approximated at the node (j, n) as follows:

∂f

∂t

∣∣∣∣

n

j
= f n+1

j − f n
j

�t
, (5.106a)

∂f

∂x

∣∣∣∣

n

j
= f n

j − f n
j−1

�x
(5.106b)

where:
j – index of cross-section,
n – index of time level,
�x – spatial mesh dimension,
�t – time step,

Substitution of Eq. (5.106) in advection equation (5.105) yields:

f n+1
j − f n

j

�t
+ U

f n
j − f n

j−1

�x
= 0 for j = 2,3, · · · , M (5.107)

where M is the total number of cross-sections. Note that f n+1
1 is known from the

boundary condition. Therefore in each equation of the system (5.107) only one
unknown f n+1

j exists. It can be easily calculated, giving:

f n+1
j = Ca f n

j−1 + (1 − Ca) f n
j (5.108)
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where Ca denotes so called advective Courant number, defined as follows:

Ca = U ·�t

�x
(5.109)

Setting in Eq. (5.108) j = 2, 3, . . ., M one can compute the nodal values of
the function f in all nodes at the time level tn+1. Note that the computations can
be run in any order – not only from the upstream end towards the downstream
end. It is impossible to reverse the order of calculations. The numerical schemes,
which do not require respecting the imposed order of calculations of f at the
new time level, are called explicit schemes. If calculations must be carried out
in the required order at the new time level, it is said that an implicit scheme is
applied.

The upwind scheme is extremely simple, but it is rather seldom used to solve
practical problems. This classical and very instructive finite difference scheme
usually serves to explain some questions of numerical solution of the hyper-
bolic equations. To examine how the upwind scheme works, let us solve the pure
advection equation (5.105) for arbitrary assumed data.

Example 5.1 In a prismatic channel of length L the water flows with constant
velocity U. Assume that:

– U = 0.5 m/s = const.,
– �x = 100 m = const.,
– initial condition is f (x,t = 0) = 0 for 0 ≤ x ≤ L;
– boundary condition is

f (x = 0, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fm · t
Tm

for 0 ≤ t ≤ Tm

Fm ·
(

2 − t
Tm

)
for Tm ≤ t ≤ 2Tm

0 for t > 2Tm

with Fm = 100 and Tm = 1,200 s.

Therefore we will examine advective transport of a scalar quantity represented
by the function f, which has the initial distribution in the form of triangle having
height of Fm = 100 and a base equal to 2Tm.

Taking into account the analytical solution of the advection equation in the form
of expression (5.12), one can predict the form of the exact solution in the case con-
sidered here. The triangular distribution forced at the upstream end will travel along
channel axis with any shape deformation. Then in each cross-section it must be the
same, shifted in time only. For our analysis we take the cross-section located in
position distanced 5,000 m from the upstream end.

The results of computations are shown in Fig. 5.15. One can see that the upwind
scheme gives exact solution for the Courant number equal to unity (Ca = 1) only.
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Fig. 5.15 Solution of the pure advection equation using the upwind scheme for various Courant
number

For other values it produces results completely different from the exact one. One
observe the attenuation of triangular distribution, which increases as the Courant
number decreases. On the other hand, for Ca > 1 very intensive instabilities in the
solution occur (Fig. 5.16).

The results of numerical experiments carried out for various set of �x and �t
indicate that the accuracy of solution is determined by the assumed values of the
numerical parameters. The exact solution is obtained only for a particular set of
data, for which the advective Courant number is equal to unity. For other sets one
obtains either oscillating solutions or damped solutions. Since the only physical
process represented in the solved equation is advection, these observed effects must
have numerical roots. A more detailed explanation of such behavior is the subject
of Section 5.4.

5.3 Introduction to the Finite Element Method

5.3.1 General Concept of the Finite Element Method

The finite element method is one of the most popular approaches for solving the par-
tial differentia equations. Its advantages are especially appreciable in application to
2D and 3D problems. On the other hand, it is seldom applied for 1D problems, as in
this case it does not seem to possess significant benefits compared with the finite dif-
ference method, while being more complicated in implementation. However, using
the finite element method one can develop very effective algorithms for solution
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Fig. 5.16 Solution of the pure advection equation using the upwind scheme for Ca = 1.035

the open channel flow problems as well. For this reason our presentation of this
method will be limited to 1D case. Comprehensive presentations of the finite ele-
ment method oriented to solve the fluid mechanics problems are given by Gresho
and Sani (1998), Fletcher (1991), Oden and Reddy (1976), Zienkiewicz (1972)
among others.

Similarly to the finite difference method, the goal of application of the finite
element method is to find an approximate solution of a partial differential equation
(or a system of such equations), which must be satisfied by unknown function in the
solution domain. As in the finite difference method, in FE method the approximate
solution is searched in a set of isolated nodes, which constitute discrete domain
covering the continuous physical domain. However, the manner of transformation
of the solved differential equation into the system of algebraic equations is quite
different. The finite element method belongs to the family of the so-called weighted
residual methods. To explain briefly the concept of this approach, let us consider the
problem of solution of the partial differential equation written in a symbolic form:

�(f ) = 0, (5.110)

with the auxiliary conditions imposed at the limits of the solution domain C

B(f ) = 0. (5.111)

which must be satisfied by the unknown function f(x, t). The weighted residual meth-
ods assume the following general form of the approximate solution of Eq. (5.110):
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fa (x,t) =
K∑

j=1

αj (t) · Nj (x) (5.112)

where:

fa(x, t) – approximation of exact solution f(x, t),
αj(t) – coefficients, which are to be determined,
Nj(x) – assumed approximating functions.

For an arbitrary approximation Eq. (5.110) will not be satisfied. Substitution of
this approximate solution in Eq. (5.110) yields:

�(fa) = R 
= 0. (5.113)

where R is the equation’s residual. We should try to choose such values of the coeffi-
cients αj(t) that R is minimized over the solution domain, i.e the best approximation
of f is ensured. To find these values the following condition is applied:

∫

C

wj · R · dC =
∫

C

wj ·�(fa) · dC = 0, (5.114)

which means that the integral of the weighted residual must be equal to zero.
Assuming a set of the weight functions wj one obtains a system of ordinary differ-
ential equations for unsteady problem or a system of algebraic equations for steady
problem. There are a couple possibilities to choose the weight functions, which
lead to various numerical schemes. If we assume that the approximating functions
applied in Eq. (5.112) are used, i.e. as the weight functions:

wj(x) = Nj(x) (5.115)

then the Galerkin method is obtained. For j tending to infinity, the approximated
solution fa(x, t) should tend to the exact one f(x, t) (Fletcher 1991).

Remember that in 1D unsteady flow process the unknown function f depends on
two independent variables: the spatial co-ordinate x and the time t. In such a case the
partial differential equation (5.110) is at first approximated in space only using the
finite element method. This leads to a system of the ordinary differential equation
with regard to time t. Next, the obtained system must be integrated over time. To
this end one can use the finite element method as well. However such approach
does not give any advantages. It is better to use standard methods of numerical
solution of the initial-value problem for the ordinary differential equations, which
were presented in Chapter 3. Application of one of these methods leads to the system
of algebraic equations, which can be linear or non-linear depending on the solved
differential equation. The obtained system is completed by introducing the imposed
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boundary conditions and after that it is solved usually using direct methods. Let us
remember that approximation of 1D partial differential equation leads to the system
with banded tridiagonal matrix. For the system of equations the bandwidth is larger.

In the finite element method the continuous domain is divided into smaller sub-
areas called the finite elements. It is assumed that these elements are joined in a
finite number of points lying on the element’s circumference. These points are the
nodes, in which the approximate solution will be computed. Since in open chan-
nel hydraulics we have 1D equations, then the domain of solution has the form of
channel reach of length L so that we have 0 ≤ x ≤ L. Consequently, in this case the
applied finite elements can take the form of linear segments only.

The unknown function f in the solution domain is approximated as follows:

fa (x, t) = N (x) · f (t) , (5.116)

where:

fa – approximation of the function f in C,
N(x) = (N1,. . .,Nj,Nj+1,. . .NM) – matrix of basis or shape functions,
f(t) = (f1,. . .,fj, fj+1,. . ., fM)T – vector of the nodal values of function f, which

for time dependent problems has the components being functions of time,
T – transposition symbol,
M – total number of nodes.

The row matrix N has components dependent on space co-ordinates only. They
should be chosen in such a way that Eq. (5.116) is satisfied at the nodes. This
means that substitution of the node co-ordinates in Eq. (5.116) ensures that the
approximation fa must be equal to the nodal value of f. In other words, for x =
xj is fa = fj. The set of functions Nj(x) is called basis or shape functions (Fletcher
1991, Zienkiewicz 1972).

Equation (5.114) determining the best approximation of f, in such a case will take
the following form:

L∫

0

Nj ·�(N · f) · dx = 0 for j = 1, 2, ..., M. (5.117)

Since the considered channel reach was divided with M nodes into M − 1 finite
elements of length �xj, Eq. (5.117) can be rewritten as follows:

L∫

0

N ·�(N · f) · dx =
M−1∑

j=1

�xj∫

0

N ·�(N · f) · dx = 0, (5.118)

The main question, which arises while solving any equation with the finite ele-
ment method, is the choice of elements and the trial functions. As we found out
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Fig. 5.17 Linear finite elements containing 2 nodes (a) and 3 nodes (b)

previously, the shape of elements depends on the dimensionality of solved problem.
For open channel flow equation this choice is restricted to segments of straight line.
The number of nodes which constitute a segment, depends on the degree of poly-
nomial applied for approximation. For our purposes we will consider the simplest
element as shown in Fig. 5.17a, which allows us to apply the linear shape functions
only.

The chosen shape functions must be continuous over an element and they have
to ensure that fa is continuous between elements.

Let us consider a channel reach of length L, which is divided into the sub-
intervals-elements bounded by nodes j and j + 1. Their lengths are �xj = xj+1−xj

(Fig. 5.17a). In such element the function f can be approximated using a linear
polynomial:

fa (x) = a · x + b for xj ≤ x ≤ xj+1, (5.119)

The coefficients a and b can be determined by the solution of the following
system of equations:

fj = a · xj + b, (5.120a)

fj+1 = a · xj+1 + b (5.120b)

which gives:

a = fj+1 − fj
xj+1 − xj

, (5.121a)

b = − fj+1 − fj
xj+1 − xj

xj + fj. (5.121b)

Substitution of Eq. (5.121) in Eq. (5.119) yields:

fa (x) = fj+1 − fj
xj+1 − xj

x − fj+1 − fj
xj+1 − xj

xj + fj. (5.122)

This equation can be rewritten as follows:

fa (x) = Nj (x) · fj + Nj+1 (x) · fj+1, (5.123)
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where:

Nj (x) = xj+1 − x

�xj
, for xj ≤ x ≤ xj+1 (5.124a)

Nj+1 (x) = x − xj

�xj
, for xj ≤ x ≤ xj+1 (5.124b)

Therefore for an element containing two nodes the appropriate shape functions
have the form of linear Lagrange polynomials. Very similar expression to Eq.
(5.123) is derived for the preceding element j − 1. In the approximaring formula
for this element the trial functions Nj−1(x) and Nj(x) will occur. Consequently, the
function Nj(x) contributes to the elements containing the node j only, i.e. it is non-
zero in the elements j − 1 and j. In others elements this function is equal to zero.
Then Nj (x) is defined as follows:

Nj(x) = 0 for x < xj−1 , (5.125a)

Nj(x) = x − xj−1

�xj−1
for xj−1 ≤ x ≤ xj (element j − 1) , (5.125b)

Nj(x) = 1 for x = xj , (5.125c)

Nj(x) = xj+1 − x

�xj
for xj ≤ x ≤ xj+1 (element j) , (5.125d)

Nj(x) = 0 for x > xj+1 . (5.125e)

The function Nj(x) shown in Fig. 5.18 has typical form, because of which it is
called hat function.

Differentiation of the shape functions with regard to x in element j gives:

dNj

dx
= d

dx

(
xj+1 − x

�xj

)
= − 1

� xj
, (5.126a)

Fig. 5.18 The form of linear trial function Nj(x)
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dNj+1

dx
= d

dx

(
x − xj

�xj

)
= 1

�xj
(5.126b)

Then the derivative of the approximating function fa(x) given by Eq. (5.123) is:

dfa
dx

= − 1

�xj
fj + 1

�xj
fj+1 = −fj + fj+1

�xj
. (5.127)

While solving unsteady flow equations the time derivative of unknown function
occurs as well. This derivative in element j is given as:

dfa
dt

= d

d t
(Nj(x) · fj(t) + Nj+1(x) · fj+1(t)) = Nj(x)

dfj(t)

d t
+ Nj+1(x)

dfj+1(t)

d t
. (5.128)

Integration of the shape functions over element j is carried out as follows:

xj+1∫

xj

Nj(x)dx =
xj+1∫

xj

xj+1 − x

�xj
dx = 1

2
� xj, (5.129a)

xj+1∫

xj

Nj+1(x)dx =
xj+1∫

xj

x − xj

�xj
dx = 1

2
� xj, (5.129b)

whereas for integration of a product of shape functions the following formula can
be used (Zienkiewicz 1972):

xj+1∫

xj

Nαj · Nβj+1 · dx =
xj+1∫

xj

Nβj · Nαj+1 · dx = α! · β!
(α + β + 1)!� xj, (5.130)

where α and β are the exponents of powers of the shape functions.

5.3.2 Example of Solution: Diffusion Equation

Let us consider the diffusion equation with D = const.:

∂f

∂t
− D

∂2f

∂x2
= 0. (5.131)

This equation will be solved for the following auxiliary conditions:

– initial condition:

f (x, t = 0) = fi (x) for 0 ≤ x ≤ L(L is length of considered channel reach)
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Fig. 5.19 Assumed discrete solution domain for the diffusion equation

– boundary conditions:

f (x = 0, t) = f0 (t) and f (x = L, t) = fL (t) for t ≥ 0.

The functions fi(x), f0(t) and fL(t) are given.
To solve Eq. (5.131) the Galerkin finite element method is applied. Assume that

considered segment of a channel is divided with M nodes into M − 1 elements
of length �xj (j = 1,2,. . ., M − 1). The discretized solution domain is shown in
Fig. 5.19.

According to the Galerkin procedure the numerical solution must satisfy the
condition (5.118). For Eq. (5.131) this condition takes the following form:

M−1∑

j=1

xj+1∫

xj

(
∂fa
∂t

− D
∂2fa
∂x2

)
N(x) · dx = 0, (5.132)

where N(x) is the vector of shape functions having components given by Eq. (5.125).
In Eq. (5.132) the subscript a denotes the approximation of function according to
formula (5.123).

Let us calculate one integral-component of the above sum, corresponding to the
element j. Since in this element only two components of the vector N(x), i.e. Nj(x)
and Nj+1(x), are non-zero then in Eq. (5.132) only two following non-zero products
will occur:

I(j) =
xj+1∫

xj

(
∂fa
∂t

− D
∂2fa
∂x2

)
Nj(x) · dx, (5.133)

I(j+1) =
xj+1∫

xj

(
∂fa
∂t

− D
∂2fa
∂x2

)
Nj+1 (x) · dx, (5.134)

Calculation of the integral (5.133) carried out term by term provides
consecutively:

– The time variation term
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I(j)1 =
xj+1∫

xj

∂fa
∂t

dx =
xj+1∫

xj

(
Nj(x)

d fj
d t

+ Nj+1(x)
d fj+1

d t

)
Nj(x)dx =

= � xj

3

d fj
dt

+ � xj

6

d fj+1

dt
.

(5.135)

– The diffusive term

Calculation of this term is slightly more complicated. This is because linear poly-
nomials were applied for approximation, whereas in this term the derivative of 2nd
order occurs, which cannot be calculated directly. To solve this problem, at first
one can carry out an integration by parts decreasing the order of derivative. This is
performed as follows:

I(j)2 =
xj+1∫

xj

D
∂2fa
∂x2

Nj(x)dx = D · Nj
∂fa
∂x

∣∣∣∣

xj+1

xj

− D
xj+1∫

xj

∂fa
∂x

∂Nj

∂x
dx =

= −D
d f

dx

∣∣∣∣
j
− D

(−fj + fj+1

�xj

) (
− 1

� xj

) xj+1∫

xj

dx = − D
d f

d x

∣∣∣∣
j
+ D

� xj
( − fj + fj+1).

(5.136)
Finally, the integral (5.133) equal to I(j)1 − I(j)2 , is given as:

I(j) = � xj

3

d fj
d t

+ � xj

6

d fj+1

d t
− D

� xj
( − fj + fj+1) + D

d fj
d x

∣∣∣∣
j

(5.137)

Calculation of the integral (5.134) is performed similarly. For its consecutive
terms one obtains:

I(j+1)
1 =

xj+1∫

xj

∂fa
∂t

Nj+1(x)dx =
xj+1∫

xj

(
Nj(x)

d fj
d t

+ Nj+1(x)
d fj+1

d t

)
Nj+1(x)dx =

= � xj

6

d fj
d t

+ � xj

3

d fj+1

d t
(5.138)

I(j+1)
2 =

xj+1∫

xj

D
∂2fa
∂x2

Nj+1(x)dx = D · Nj+1
∂fa
∂x

∣∣∣∣

xj+1

xj

− D
xj+1∫

xj

∂fa
∂x

∂Nj+1

∂x
dx =

= D
d f

d x

∣∣∣∣
j+1

− D

(−fj + fj+1

� xj

)
1

� xj

xj+1∫

xj

dx = D
d f

d x

∣∣∣∣
j
− D

� xj
( − fj + fj+1).

(5.139)
Finally, the integral (5.134) equal to I(j+1)

1 − I(j+1)
2 , is given as:

I(j+1) = � xj

6
fj + � xj

3
fj+1 + D

� xj
( − fj + fj+1) − D

df

dx

∣∣∣∣
j+1

. (5.140)
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The equations similar to (5.137) and (5.140) are obtained for all elements (j =
1, 2, . . ., M − 1). According to Eq. (5.132) they should be assembled leading to the
following global system of ordinary differential equations:

– for j = 1

� xj

3

d fj
d t

+ � xj

6

d fj+1

d t
− D

� xj
( − fj + fj+1) + D

d fj
d x

∣∣∣∣
j
= 0 (5.141a)

– for j = 2, 3, . . ., M−1

� xj−1

6

d fj−1

d t
+
(
� xj−1

3
+ � xj

3

)
d fj
d t

+ � xj

6

d fj+1

d t
+

+ D

� xj−1
( − fj−1 + fj) − D

� xj
( − fj + fj+1) = 0

(5.141b)

– for j = M

� xj−1

6
fj−1 + � xj−1

3
fj + D

� xj−1
( − fj−1 + fj) − D

df

dx

∣∣∣∣
j
= 0. (5.141c)

Equation (5.141) can be rewritten in matrix notation as:

A
df
dt

+ B · f + F = 0 (5.142)

where:

A – constant matrix, symmetrical and tri-diagonal,
B – constant matrix, symmetrical and tri-diagonal,
f = (f1, f2,. . .,fM)T – vector of unknowns set up from nodal values of f,
df
dt

=
(

df1
dt

,
df2
dt

, · · · ,
dfM
dt

)T

– vector of time derivatives,

F =
(

D
df1
dt

, 0, · · · ,0, − D
dfM
dt

)T

– vector representing fluxes through the

ends,
T – symbol of transposition.

Both matrices A and B have dimensions of (2M) × (2M).
The initial-value problem for the system (5.142) can be solved using the previ-

ously presented implicit trapezoidal method (3.22), yielding the following system
of algebraic equations:

(A + 0.5�t · B) fn+1 = (A − 0.5�t · B) fn − 0.5�t · Fn+1 − 0.5�t · Fn, (5.143)

where:
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n – index of time level,
�t – time step.

In such a way the Crank–Nicolson finite element method is obtained. After intro-
ducing the required boundary conditions this system of linear algebraic equations is
solved with double sweep method giving approximate values of f at next time level.

Assume that we consider the solution domain divided into 6 elements. In this
case the matrices A and B have the following structure:

1x
D

Δ
−

1x
D

Δ 0 0 0 0 0

−
1x

D
Δ 1x

D
Δ
+

2x
D

Δ
−

2x
D

Δ 0 0 0 0

0 −
2x

D
Δ 2x

D
Δ

+
3x

D
Δ

−
3x

D
Δ 0 0 0

B= 0 0 −
3x

D
Δ 3x

D
Δ
+

4x
D

Δ
−

4x
D

Δ 0 0

0 0 0 −
4x

D
Δ 4x

D
Δ
+

5x
D

Δ
−

5x
D

Δ 0

0 0 0 0 −
5x

D
Δ 5x

D
Δ
+

6x
D

Δ
−

6x
D

Δ

0 0 0 0 0 −
6x

D
Δ 6x

D
Δ

1

3
xΔ 1

6
xΔ 0 0 0 0 0

1

6
xΔ 1

3
xΔ + 2

3
xΔ 2

6
xΔ 0 0 0 0

0 2

6
xΔ 2

3
xΔ
+

3x
3

Δ

3

6
xΔ 0 0 0

A= 0 0 3

6
xΔ 3

3
xΔ
+

4x
3

Δ

4

6
xΔ 0 0

0 0 0 4

6
xΔ 4x

3
Δ

+

5x
3

Δ

5

6
xΔ 0

0 0 0 0 5

6
xΔ 5

3
xΔ +

6x
3

Δ

6

6
xΔ

0 0 0 0 0 6

6
xΔ 6

3
xΔ
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Vector F represents the fluxes of the transported quantity through the bound-
ary. This vector can have only one nonzero component. This takes place when a
Neumann boundary condition D·∂f/∂x is imposed at x = 0 or at x = L. Otherwise
its all elements disappear.

It is interesting to compare the semi-discrete forms of the FE and FD meth-
ods. For any internal node for uniform grid points (�x = const.), the finite element
method gives:

1

6

dfj−1

dt
+ 4

6

dfj
dt

+ 1

6

dfj+1

dt
− D

fj−1 − 2fj + fj+1

� x2
= 0 (5.144)

whereas spatial discretization of the diffusion equation by the finite difference
method leads to the following formula:

dfj
dt

− D
fj−1 − 2fj + fj+1

� x2
= 0. (5.145)

One can see that in this case the only difference between the methods deals with
the approximation of the time derivative at node j. In the finite element method
it is considered as a weighted averaged taken from three nodes: j − 1, j and j + 1.
Consequently this method requires to solve the system of equations with tri-diagonal
matrix for both explicit and implicit schemes.

Example 5.2 Solve the diffusion equation using the Crank–Nicolson finite element
method for the following auxiliary conditions:

– initial condition: f (x, 0) = 0 for 0 ≤ x ≤ L.
– boundary conditions: f(0, t) = 1.0 and f(L, t) = 0.0 for t > 0

Note, that in this case the values of f n+1
1 and f n+1

M known as imposed boundary
conditions must be introduced into the system (5.143).

The results of calculations carried out for L = 4 m, �x = 0.1, D = 0.01 m2/s are
shown in Fig. 5.20. It appears that they are very similar for different values of time
step. This fact suggests that conversely to the advection equation solved in Example
5.1 by the finite difference upwind scheme, this time the value of the applied time
step is not restricted.

0.0 0.5 1.0 1.5 2.0 2.5 x [m]

f
1.0

0.5

0.0

Fig. 5.20 Solutions of the
diffusion equation obtained
for t = 50 s
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The Crank–Nicolson scheme in both version i.e. with the finite difference and
element methods is known as very effective and reliable tool for solving the dif-
fusion equation. A detailed examination of its numerical properties will be given
later.

5.4 Properties of the Numerical Methods for Partial
Differential Equations

5.4.1 Convergence

Each numerical method of solution of the partial differential equations is useful on
condition that it is convergent. The theory of truncation error says that refinement
of the grid provides more accurate numerical solution. Generalizing, one can expect
that approximate solution tends to the exact one, while the mesh dimensions�t and
�x are systematically reduced. More formally, one can say that solution of the sys-
tem of algebraic equations, which approximates the considered partial differential
equation is convergent, if it tends to the exact solution of the differential equation
for any value of the independent variable, when the mesh dimensions tend to zero
(Abbott and Basco 1989, Fletcher 1991). Then it is required that:

f n
j → f

(
xj,tn

)
while �x,�t → 0 ,

where

fjn – approximate value of the function f at the node (j, n),
f(xj,tn) – exact value of the function f at the same node (xj, tn).

If this requirement is satisfied, the method is said to be convergent. This
statement, while obvious, is usually difficult to be proved theoretically.

The difference between the exact solution of the partial differential equation and
the exact solution of the system of algebraic equations, called the solution error, is
given as:

En
j = f

(
xj, tn

)− f n
j . (5.146)

where e n
j is the solution error at the node (j, n). It should be remembered that the

exact solution of the system of algebraic equation is still only the approximate solu-
tion of the differential equation. We assume that in the solution of the algebraic
equations no errors caused by the iteration process as well as by the round-off errors
during the computation are present.

The value of solution error En
j at the node (j, n) depends on approximation accu-

racy of the differential equation, i.e. on the values of mesh dimensions �x and
�t, as well as on the values of higher order derivatives neglected in the numerical
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approximation. These issues can be illustrated on the examples of the pure advection
equation and the pure diffusion equation, which have exact solutions.

In Section 5.2.3 we considered the numerical solution of advection equation
(5.105) using the up-wind scheme given by formula (5.108). The results of this
application are shown in Figs. 5.15 and 5.16. Now we will continue the numer-
ical experiments with this scheme using the same data as assumed previously in
Example 5.1. Let us remember that this equation has an exact solution. Starting
with �x = 100 m and �t = 100 s, which ensures Ca = 0.5, the grid is refined in
such a way that constant value of the Courant number Ca is kept. The results of cal-
culation carried out for systematically reduced values of�x and�t are presented in
Fig. 5.21.

Comparing the consecutive solutions with the exact one, we see that the numer-
ical solution approaches the analytical one as the mesh dimensions are reduced.
This means that the up-wind scheme provides the solutions which converge to the
exact one.

In this case we managed to demonstrate the convergence of the applied numeri-
cal scheme directly via numerical tests, since the exact solution of solved equation
is known. Unfortunately, in practical cases the exact solutions of equations are
unknown. For this reason for some classes of solved problems the convergence
may be proved indirectly. To this end the Lax Equivalence Theorem is applied,
which reads as follows: “Given a properly posed initial-value problem and a finite
difference approximation to it that satisfies the consistency condition, stability is
necessary and sufficient condition for convergence” (Abbott and Basco (1983) after
Rychtmyer and Morton (1967)). Therefore, if the considered numerical method
satisfies both consistency and stability conditions at the same time it satisfies
the convergence condition. The advantage of this approach is obvious, since it is
relatively easy to verify the consistency and stability.
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Fig. 5.21 Effect of mesh shrinking for pure advection equation solved by the up-wind difference
scheme
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5.4.2 Consistency

The system of algebraic equations obtained as an approximation of the partial dif-
ferentia equation is said to be consistent with this equation if in the limit, when the
mesh dimensions tend to zero, it becomes the governing partial differential equation
at every node of the grid. This condition is examined by replacing the nodal values
of functions by their Taylor series expansion around the considered node. One can
say that this is a process inverse to discretization. The equation obtained in such
a way is not exactly the same as the original equation, since it contains additional
terms. The condition of consistency requires that these extra terms tend to zero as
the grid is refined.

Let us verify the consistency condition for the up-wind scheme for advection
equation described in the preceding section (Eq. 5.107):

f n+1
j − f n

j

�t
+ U

f n
j − f n

j−1

�x
= 0 (5.147)

All nodal values of f should be replaced by the Taylor series expansion round the
node (j, n) (see Fig. 5.14):

f (x +�x,t +�t) = f (x,t) +
∞∑

m=1

1

m!
(
�x

∂

∂x
+�t

∂

∂t

)m

f (x,t). (5.148)

The consecutive nodal values present in Eq. (5.147) are following:

f n
j−1 = f n

j −�x
∂f

∂x

∣∣∣∣

n

j
+ �x2

2

∂2f

∂x2

∣∣∣∣

n

j
− �x3

6

∂3f

∂x3

∣∣∣∣

n

j
+ · · · (5.149)

f n+1
j = f n

j +�t
∂f

∂t

∣∣∣∣

n+1

j
+ �t2

2

∂2f

∂t2

∣∣∣∣

n+1

j
+ �t3

6

∂3f

∂t3

∣∣∣∣

n+1

j
+ · · · (5.150)

Substitution of Eqs. (5.149) and (5.150) in Eq. (5.147) yields:

∂f

∂t
+ U

∂f

∂x
= R(f ) (5.151)

The right hand side of Eq. (5.151) is equal:

R(f ) = −�t

2

∂2f

∂t2
− U ·�x

2

∂2f

∂x2
+ �t2

6

∂3f

∂t3
− U ·�x2

6

∂3f

∂x3
+ · · · (5.152)

In Eqs. (5.151) and (5.152) the indices are omitted, but we have to remember
that it is valid for the node (j, n). The extra term R(f) results from the truncation
error and it depends on the applied method of solution. We expect that R(f) will dis-
appear for mesh dimensions tending to zero.Indeed, one can notice that for �x→0
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and �t→0 R(f) →0 and consequently Eq. (5.151) becomes the original advection
equation (5.105). The same approach can be used to prove the consistency of any
other numerical scheme.

5.4.3 Stability

As it was fund out previously, a convergent numerical method of solution of the par-
tial differential equation must be not only consistent but stable as well. Stability is
a property of a numerical method that ensures damping of any random disturbance
which can occur during the computational process. Such disturbance can arise from
auxiliary conditions or round-off errors. Typical symptoms of instability are unphys-
ical oscillations occurring in the numerical solution. Let us come back to the results
of solution of the pure advection equation using the upwind scheme, which were
presented in Figs. 5.15 and 5.16. One can see that as long as the advective Courant
number is not greater than unity, the obtained solutions are smooth although they are
sometimes inaccurate (Fig. 5.15). However, if the Courant number slightly exceeds
unity, the solution is immediately affected by strong oscillations (Fig. 5.16). These
oscillations cause that the solution looses its physical sense. The amplitudes of oscil-
lations increase with time and with increasing distance from bounds. It should be
mentioned that there are another kinds of oscillations, which can be precluded by
stable numerical methods as well. Such oscillations should be distinguished from
those generated by instability. In next section this question will be taken up.

The numerical method is considered stable if insignificant variation of input
data causes similarly insignificant variation of the final results. Conversely, if the
numerical method is not capable to damp such errors, then these errors can increase
in an unlimited way and finally they can dominate the solution. Such method is
called unstable one. When an unstable method is applied to solve the open chan-
nel unsteady flow equations, then usually the computation fails. This is because the
oscillating depth takes the negative values, for which the solved equations are not
valid.

All numerical methods can be divided into the following ones: absolutely sta-
ble, conditionally stable and unstable. For obvious reasons the unstable methods are
not interesting. To conclude on the stability of applied scheme, an analysis of its
stability must be done. This analysis provides the detailed information of particu-
lar conditions, which must be satisfied to ensure a stable solution. As it was shown
previously, while discussing the solutions of pure advection and pure diffusion equa-
tions, a stable solution required certain relations between the mesh dimensions �x
and �t, and the physical parameters, being the coefficients of solved equation. The
stability analysis can be carried out using the matrix method. The details of this
approach are given for instance by Fletcher (1991). However the most commonly
applied method of stability analysis is the Neumann approach (Potter 1973, Fletcher
1991, Abbott and Basco 1983). This method is applied below.
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The numerical methods applied for solving the partial differential equation pro-
vides the solution, which approximates the exact one. Then there is a difference
between them:

E n
j = f (xj,tn) − f n

j . (5.153)

where:

E n
j – solution error at the node (j, n),

f (xj,tn) – exact solution at the node (j, n),
f n

j – approximate solution at the node (j, n).

Such error is introduced at every grid point (j, n) for j = 1,2,3, . . ., M and for
n = 0,1,2, . . ..

Let us consider the box scheme applied previously to solve the advection equa-
tion (5.105). Since f n

j = f (xj,tn) − E n
j then substitution of this expression in Eq.

(5.108) yields:

f (xj,tn+1) − En+1
j = Ca(f (xj−1,tn) − En

j−1) + (1 − Ca) (f (xj,tn) − E n
j) (5.154)

Since the exact solution f(x, t) must satisfy the algebraic equation of the scheme
(5.108):

f (xj,tn+1) = Ca · f (xj−1,tn) + (1 − Ca) f (xj,tn) (5.155)

then Eq. (5.154) is reduced to the following form:

En+1
j = Ca · En

j−1 + (1 − Ca)En
j (5.156)

The same equation can be written for j = 2,3, . . ., M and for n = 0,1,2, . . . . Note,
that the system (5.156) has identical structure as the one provided by the up-wind
scheme, i.e. as Eq. (5.108). This system is completed by the appropriate initial and
boundary conditions. It is assumed that E0

j = 0 for j = 2, 3, . . ., M and En
1 = 0 for

n = 0, 1, 2, . . ., since the exact initial and boundary conditions do not generate any
error.

In the Neumann method the errors at the nodes at considered time level n are
expanded in a finite complex Fourier series. The conclusions on stability or insta-
bility are deduced by examining how a single component of series behaves while
passing from time level n to time level n + 1.

Using the Fourier series, the error E n
j at the node xj can be expressed as follows

(Abbott and Basco 1989):
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E n
j =

K∑

k= 1

An
k · ei·k·m·j·�x, (5.157)

where:

j = 2,3, . . ., M, – index of node,
i = (−1)1/2 – imaginary unit,
n – index of time level,
k – index of Fourier component,
m – wave number,
�x – space interval,
An

k – Fourier coefficient (amplitude of component kth at the time level n),
K – index of given finite value.

The wave number is given as:

m = 2π

λ
(5.158)

where λ is the wave length. Let us multiply both sides of Eq. (5.158) by the space
interval �x:

m ·�x = 2π

λ
�x

and let us introduce a new variable N:

N = λ

�x
(5.159)

which represents the number of grid intervals over one wavelength. Then Eq. (5.158)
can be rearranged to the form:

ϕ = m ·�x = 2π

N
, (5.160)

where ϕ = m ·�x is dimensionless wave number. As the shortest waves represented
at the considered grid points have wavelength 2�x, whereas the longest ones tend
to infinity, then 2 ≤ N ≤ ∞ implies that 0 ≤ ϕ ≤ π .

For the linear problems as considered here, it is sufficient to examine the behavior
of one Fourier component. Therefore, instead of Eq. (5.157), one can consider only
one component of the sum corresponding, for example, to k = 1. For simplicity this
index will be omitted. Taking into account Eq. (5.158) the chosen component can
be written as:

E n
j = An · ei ·ϕ·j. (5.161)

Note that the time is included in the amplitude An.
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Equation (5.161) can be substituted into Eq. (5.156) yielding:

An + 1 · e i·ϕ ·j = Ca · An · e i·ϕ (j − 1) + (1 − Ca)An · e i ·ϕ· j. (5.162)

Dividing both sides by the factor ei ·ϕ·j one obtains:

An+1

An
= G, (5.163)

where
G = 1 − Ca + Ca · e−i·ϕ (5.164)

G is interpreted as the amplification factor of the amplitude of kth component of
Fourier representation of the error function, while passing from the time level n to
n + 1. The error amplitude will not increase if the modulus of G is not greater than
unity:

|G| ≤ 1 (5.165)

Using the Euler relation e−i·ϕ = cosϕ − i · sinϕ, Eq. (5.164) is reformed to the
following form:

G = 1 − Ca + Ca · cosϕ − i · Ca · sinϕ (5.166)

Since the amplification factor G is a complex number, therefore the condition
(5.165) yields:

|G| =
[
(1 − Ca(1 − cosϕ))2 + (Ca · sinϕ)2

]1/2 ≤ 1. (5.167)

This relation can be reduced to the following one:

4 sin2 ϕ

2

(
C2

a(1 + cos2 ϕ

2
) − Ca

)
≤ 0. (5.168)

Since ϕ ranges from 0 to π , then inequality (5.168) can be verified for its extreme
values only. Note that for ϕ = 0 this relation is satisfied for any value of Ca, whereas
setting ϕ = π one obtains:

Ca (Ca − 1) ≤ 0 (5.169)

As the Courant number is always positive, then relation (5.169) will be true for:

Ca ≤ 1 (5.170)

The final conclusion is then following: to avoid amplification of the Fourier
wave amplitude while solving the advection equation using the up-wind scheme,
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the Courant number cannot exceed unity. This condition implies the following
restriction with regard to the applied time step:

�t ≤ �x

U
(5.171)

As long as the value of time step �t does not exceed this limit, we can be sure
that the solution of the advection equation provided by the upwind scheme is still
numerically stable. Since the stability requires satisfying the condition (5.171), then
the up-wind scheme is conditionally stable. This property explains the oscillating
results of computation provided by Ca = 1.035 and shown in Fig. 5.16.

Equation (5.170) is known as Courant-Friedrichs-Levy (CFL) condition (Potter
1973). It is valid for all hyperbolic partial differential equations solved by explicit
schemes. The Courant number can be interpreted as relation between the propaga-
tion celerity in analytical solution (in this case it is the advection velocity U) and the
celerity of propagation in the numerical solution �x /�t (Abbott and Basco 1983).

Summarizing the above presented considerations, we can state that upwind
scheme applied for the advection equation is only conditionally stable – the mesh
dimensions must satisfy appropriate relations. Since from the preceding section this
scheme is known to be consistent as well, then it is convergent if only the stabil-
ity conditions is respected while computations. Then, using the Lax Equivalence
Theorem we confirmed the convergence of the up-wind scheme. Note that the same
was deduced from the numerical experiments.

As far as the numerical solution of the diffusion equation by the Crank-Nicolson
finite element method (5.141) is considered, for uniform elements we have the
following formula for any internal node:

1

6

f n+1
j−1 − f n

j−1

�t
+ 4

6

f n+1
j − f n

j

�t
+ 1

6

f n+1
j+1 − f n

j+1

�t
+

−D

2

f n+1
j−1 − 2f n+1

j + f n+1
j+1

� x2
− D

2

f n
j−1 − 2f n

j + f n
j+1

� x2
= 0

(5.172)

This equation is rewritten in the form:

(1 − 3Cd) f n+1
j−1 + (4 + 6Cd) f n+1

j + (1 − 3Cd) f n+1
j+1 =

(1 + 3Cd) f n
j−1 + (4 − 6Cd) f n

j + (1 + 3Cd) f n
j+1

(5.173)

where Cd, sometimes called the diffusive Courant number, is given by:

Cd = �t · D

�x2
(5.174)
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Using Eq. (5.161) one obtains the following formula for Fourier component
representing the error function:

An + 1 · e i ·ϕ· j
(
(1 − 3Cd)e −i·ϕ·j + (4 + 6Cd) + (1 − 3Cd) e i·ϕ·j) =

= An · e i ·ϕ· j
(
(1 + 3Cd)e −i·ϕ·j + (4 − 6Cd) + (1 + 3Cd) e i·ϕ·j) . (5.175)

Dividing both sides of Eq. (5.175) by An·ei·ϕ·j yields:

An + 1

An
= G = (1 + 3Cd)(e−i ·ϕ + e i ·ϕ) + (4 − 6Cd)

(1 − 3Cd)(e−i ·ϕ + e i ·ϕ) + (4 + 6Cd)
. (5.176)

Since
(
ei·ϕ + e−i·ϕ) /2 = cosϕ then

G = (1 + 3Cd)cosϕ + (2 − 3Cd)

(1 − 3Cd)cosϕ + (2 + 3Cd)
. (5.177)

The stability condition (5.165) requires:

− 1 ≤ (1 + 3Cd)cosϕ + (2 − 3Cd)

(1 − 3Cd)cosϕ + (2 + 3Cd)
≤ 1. (5.178)

This relation must be satisfied for the extreme values of the dimensionless wave
number ϕ, i.e. for ϕ = 0 and ϕ = π i.e. for cosϕ = 1 and for cosϕ = −1. Substituting
consecutively these values one can find out that relation (5.178) is satisfied for any
value of Cd. Therefore the Crank–Nicolson finite element method applied for solv-
ing the diffusion equation is absolutely stable. This explains the results of solution
obtained in Example 5.2.
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Chapter 6
Numerical Solution of the Advection Equation

6.1 Solution by the Finite Difference Method

6.1.1 Approximation with the Finite Difference Box Scheme

In order to show the specific problems related to the numerical solution of partial
differential hyperbolic equations, let us solve the pure advection equation (5.3):

∂f

∂t
+ U

∂f

∂x
= 0 (6.1)

where:

f – scalar function,
U – flow velocity assumed to be constant.

To solve this equations one can use a number of finite difference schemes.
We begin with applying the implicit four point scheme commonly called the box
scheme. This scheme has interesting history (see Abbott and Basco 1989), is well
known and frequently used in open channel flow modeling. It is very flexible and
particularly suitable for illustrating all the most important aspects of the numerical
solution of hyperbolic equations.

The scheme uses grid points shown in Fig. 6.1. The derivatives are approximated
inside the mesh, at point P. To this end the following formulas are used:

∂f

∂t

∣∣∣∣
P

= ψ
f n+1
j−1 − f n

j−1

�t
+ (1 − ψ)

f n+1
j − f n

j

�t
(6.2)

∂f

∂x

∣∣∣∣
P

= (1 − θ )
f n
j − f n

j−1

�x
+ θ

f n+1
j − f n+1

j−1

�x
(6.3)

where:

j – index of cross-section,
n – index of time level,
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�x – spatial mesh dimension,
�t – time step,
ψ – weighting parameter which ranges 〈0, 1〉,
θ – weighting parameter which ranges 〈0, 1〉,

Originally, in the box scheme the meaning of parameter ψ is opposite, since it
denotes the distance from the cross-section j − 1 to point P (Fig. 6.1) (Abbott and
Basco 1989, Cunge et al. 1980). We change this convention to be compatible with
the notation used in the lumped flood routing models presented in Chapter 9, in
which the box scheme occurs in implicit way.

Substitution of Eqs. (6.2) and (6.3) in advection equation (6.1) yields:

ψ
f n+1
j−1 − f n

j−1

�t
+ (1 − ψ)

f n+1
j − f n

j

�t
+

+U

(

(1 − θ )
f n
j − f n

j−1

�x
+ θ

f n+1
j − f n+1

j−1

�x

)

= 0 for j = 2,3, · · · ,M

(6.4)

where M is the total number of cross-sections in the considered channel reach. Note,
that with the assumption U > 0 the value f n+1

1 is known from the boundary condition
proscribed at the upstream end. Therefore in each equation of the system (6.4) only
one unknown f n+1

j exists. It can be easily isolated, giving:

f n+1
j = α · f n

j−1 + β · f n
j + γ · f n+1

j−1 (6.5)

n + 1

Δx

θΔt
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j                                            j−1

x

Fig. 6.1 Grid points for the box scheme
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where:

α = ψ + (1 − θ )Ca

1 − ψ + θ · Ca
, (6.6a)

β = 1 − ψ − (1 − θ )Ca

1 − ψ + θ · Ca
, (6.6b)

γ = −ψ + θ · Ca

1 − ψ + θ · Ca
(6.6c)

The advective Courant number Ca was defined in preceding chapter (Eq. 5.109)
as follows:

Ca = U ·�t

�x
(6.7)

Setting in Eq. (6.5) j = 2, 3, . . ., M one can compute the nodal values of the
function f in all nodes at the time level tn+1. Note that the computations must run in
a strictly defined order – from the upstream end towards the downstream end and it
is impossible to reverse the order of calculations. Such scheme is said to be implicit.

The box scheme involves two weighting parameters ψ and θ , which can take
any value form the interval 〈0, 1〉. Moreover the mesh dimensions �x and �t are
mutually related via the Courant number (6.7). One can suppose that the values of
all mentioned parameters will determine the accuracy of the numerical solution pro-
duced by the box scheme. To examine this influence let us solve advection equation
(6.1) for an arbitrary set of data.

Example 6.1 In a prismatic channel of length L the water flows with constant
velocity U. Assume that:

– initial condition is following: f (x,t = 0) = 0 for 0 ≤ x ≤ L,
– boundary condition is following:

f (x = 0,t) =

⎧
⎪⎨

⎪⎩

Fm · t
Tm

for 0 ≤ t ≤ Tm

Fm ·
(

2 − t
Tm

)
for Tm ≤ t ≤ 2Tm

0 for t > 2Tm

where Fm is peak value and Tm is time to peak. Therefore we will examine advective
transport of a scalar quantity represented by the function f, which has initial distri-
bution in the form of a triangle with the height equal to Fm and the base equal to
2Tm.

Knowing the analytical solution of the advection equation (see Section 5.1.2) we
expect that the triangular distribution imposed at the upstream end will travel along
the channel axis without any shape deformation. Then in each cross-section it will
be shifted in time only.



222 6 Numerical Solution of the Advection Equation

1.2

0.8

0.4

0

0.4
t [s]

x = 0 x = 5000 m

C  = 1.0a
C   = 0.5a

C  = 2.0a

0                    3600                  7200                10800               14400                18000

f/Fm.

Fig. 6.2 Solution of advection equation using the box scheme for various values of the Courant
number with ψ = 0.5 and θ = 0.5

The following data are assumed: U = 0.5 m/s = const., �x = 100 m = const.,
Fm = 100 and Tm = 1,200 s. As a control we take the cross-section distanced 5,000
m from the upstream end. Let us begin with assuming ψ = 0 and θ = 0. For these
values of the weighting parameters one obtains α = Ca, β = 1−Ca and γ = 0,
and consequently Eq. (6.5) turns into Eq. (5.108). This version of the box scheme
coincides with the upwind scheme previously discussed in Section 5.2.3. The results
of computations are shown in Figs. 5.15 and 5.16.

The results of numerical experiments carried out for other sets of the parameters
ψ , θ and Ca are shown in Figs. 6.2, 6.3 and 6.4. One can see that the exact solution
is given only for specific combinations of the parameters, as for instance ψ = 0.5,
θ = 0.5 and Ca = 1. For other sets one obtains either oscillating or damped solutions.

Since the only physical process represented in the solved equation is advection
then observed effects in its solution must have the numerical roots. In order to
explain such behavior of the box scheme let us analyze its numerical properties.

6.1.2 Stability Analysis of the Box Scheme

It is known from Section 5.4 that the local solution error satisfies the equation of the
applied numerical scheme. Therefore, according to Eqs. (6.5) and (5.153) one can
write:

En+1
j = α · En

j−1 + β · En
j + γ · En+1

j−1 (6.8)
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Fig. 6.3 Solution of advection equation using the box scheme for various values of ψ with θ = 0
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Fig. 6.4 Solution of advection equation using the box scheme for various values of θ with ψ =
0.5 and Ca = 0.5
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With Fourier representation of the solution error (5.161), Eq. (6.8) takes the
following form:

An + 1 · e i·ϕ ·j = α · An · e i·ϕ (j − 1) + β · An · e i ·ϕ· j + γ · An + 1 · e i·ϕ (j − 1). (6.9)

Dividing both sides by ei ·ϕ·j one obtains:

An+1

An
= G = β + α · e−i·ϕ

1 − γ · e−i·ϕ , (6.10)

where G is the amplification factor. The error amplitude should not increase, so it is
required that |G| ≤ 1.

Using the Euler relation e−i·ϕ = cosϕ− i · sinϕ (McQuarrie 2003), Eq. (6.10) is
reformed to the following form:

G = β + α · cosϕ − i · α · sinϕ

1 − γ · cosϕ + i · γ · sinϕ
(6.11)

Arithmetic operations on complex numbers allow us to rewrite this equation as:

G = β + (α − β · γ ) cosϕ − α · γ
1 − 2γ · cosϕ + γ 2

− (α + β · γ ) sinϕ

1 − 2γ · cosϕ + γ 2
i (6.12)

The amplification factor G is a complex number, therefore the stability condition
|G| ≤ 1 yields the following relation:

|G| =
{[
β + (α − β · γ ) cosϕ − α · γ

1 − 2γ · cosϕ + γ 2

]2

+
[
(α + β · γ ) sinϕ

1 − 2γ · cosϕ + γ 2

]2
}1/2

≤ 1

(6.13)
Since ϕ ranges from 0 to π , then inequality (6.13) can be verify for its extreme

values only. Setting ϕ = π one obtains:

(
β − α

1 + γ

)2

≤ 1 (6.14)

This inequality is equivalent to the following relation:

− 1 ≤ β − α

1 + γ
≤ 1 (6.15)

Substitution of the parameters α, β and γ defined by Eqs. (6.6a), (6.6b) and
(6.6c) in Eq. (6.15) yields the following relation:

− 1 ≤ 1 − 2ψ − 2(1 − θ )Ca

1 − 2ψ + 2θ · Ca
≤ 1 (6.16)
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which is equivalent to the following two inequalities:

−1 ≤ 1 − 2Ca

1 − 2ψ + 2θ · Ca
and (6.17a)

1 − 2Ca

1 − 2ψ + 2θ · Ca
≤ 1. (6.17b)

These relations will be satisfied for:

θ ≥ 1

2
and (6.18a)

ψ ≤ 1

2
(6.18b)

Both conditions ensure that the denominators in Eqs. (6.17a) and (6.17b) are
always different from zero. Since the inequalities (6.17a) and (6.17b) are satisfied
for any value of the Courant number, then the conditions (6.18a) and (6.18b) ensure
unconditional stability of the box scheme.

Note that for ψ = 0 and θ = 0 Eq. (6.5) becomes the upwind scheme, with very
different numerical properties. Its stability was analyzed in Section 5.3.

6.2 Amplitude and Phase Errors

The numerical results presented in preceding section constitute a good starting point
for the discussion of the numerical aspects of solution of the hyperbolic equations.
The open channel flow equations, being of hyperbolic type like the advection equa-
tion, do not contain any mechanism of dissipation. The solution of such equation
has the form of wave, with a specific amplitude and celerity. It is important that the
applied numerical scheme changes neither the wave amplitude nor its phase celer-
ity. This means that the numerical methods should not introduce into solution any
artificial dissipation or dispersion. The numerical method which generates artifi-
cial dissipation is called a dissipative method, whereas the method which produces
artificial dispersion is called a dispersive one. In the first case the wave amplitude
is attenuated giving rise to unphysical smoothing, whereas in the second case the
wave celerity is affected giving rise to the unphysical oscillations of the results.
Due to numerical dispersion and dissipation the solution of hyperbolic equations is
much more difficult and challenging than the solution of the elliptic equations. The
same is true for parabolic equations containing significant advective term, like the
advection-diffusion transport equation widely applied to model the motion of scalar
quantity in open channels, where the turbulent flow of large Reynolds numbers usu-
ally takes place. Both phenomena, having purely numerical roots, can be examined
by an appropriate numerical analysis. As an example, let us perform such analy-
sis for the considered numerical solution of the pure advection equation using the
difference box scheme.



226 6 Numerical Solution of the Advection Equation

The dissipative and dispersive properties of any numerical scheme are expressed
by the amplitude and phase errors. Both errors can by estimated using the amplitude
factor G and its modulus. To this end two coefficients of convergence R1 and R2 are
defined. The coefficient R1 is expressed by the ratio of the amplification factors for
numerical solution and for exact one. For first time these coefficients were intro-
duces by Leendertse (see Abbott and Basco 1989, Cunge et al. 1980, Liggett and
Cunge 1975). Since for the exact solution this factor is equal to unity, then the coef-
ficient R1 is represented by the modulus of the amplification factor |G|. As we will
see further, both coefficients of convergence are functions of the Courant number
Ca and the variable N, being the number of space interval �x per wavelength of kth
Fourier component of the solution.

Let us begin with an analysis of the dissipative properties of the box scheme.
Substitution of Eq. (5.160) in Eq. (6.13) yields the following formula

|G| =

⎧
⎪⎨

⎪⎩

⎡

⎣
β + (α − β · γ ) cos

(
2π
N

)
− α · γ

1 − 2γ · cos
(

2π
N

)
+ γ 2

⎤

⎦

2

+
⎡

⎣
(α + β · γ ) sin

(
2π
N

)

1 − 2γ · cos
(

2π
N

)
+ γ 2

⎤

⎦

2
⎫
⎪⎬

⎪⎭

1/2

(6.19)

Equation (6.19) expresses the modulus of the amplification factor as a function of
the parameter N, representing the relation between the wave length λ and the space
interval �x (see Eqs. (5.158), (5.159) and (5.160)).

Plotting this function for selected values of the Courant number and the weight-
ing parameters, one can show the relation between the wave length and intensity of
the wave amplitude attenuation. The plots in Figs. 6.5 and 6.6 show that for Ca =
1, ψ = 0.5 and θ = 0.5 the box scheme is dissipation free since |G| = 1 for any
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Fig. 6.5 Modulus of the amplification factor (6.19) versus the parameter N for advection equation
solved by the box with ψ = 0.5 and Ca = 2.0
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Fig. 6.6 Modulus of the amplification factor (6.19) versus the parameter N for the advection
equation solved by the box scheme with θ = 0.5 and Ca = 2.0

length of the wave. Consequently the wave amplitude is neither damped nor ampli-
fied. On the other hand θ ≥ 0.5 and ψ ≤ 0.5 give |G| > 1, which means that the
scheme increases the wave amplitude in time. Finally this process leads to numerical
instability. This fact could be expected on the basis of the stability analysis carried
out previously – compare Eqs. (6.18a) and (6.18b). For other values of the param-
eters the box scheme becomes dissipative. One can notice that the most intense
damping is for short waves (small values of N) and large Courant numbers. Damping
is reduced for increasing wavelength.

In a similar way can be analyzed the dissipative properties of the up-wind
scheme. With ψ = 0 and θ = 0 from Eqs. (6.6a), (6.6b) and (6.6c) results that
α = Ca, β = 1 − Ca and γ = 0. Substituting these values in Eq. (6.19) and taking
into account Eq. (5.160) one obtains the following formula

|G| =
([

1 − Ca

(
1 − cos

(
2π

N

))]2

+
[

Ca · sin

(
2π

N

)]2
)1/2

. (6.20)

The dissipative behavior of the up-wind scheme is summarized graphically in
Fig. 6.7.

This figure confirms the numerical stability conditions shown previously. As long
as the Courant number does not exceed unity, the up-wind scheme damps the wave
amplitude ensuring stable solution, since the modulus of its amplification factor
does not exceed unity as well. At the same time we can observe (as previously) that
short waves are more intensively damped than long ones. For Ca = 1 one obtains
|G| = 1, which means that the wave amplitude is neither damped nor amplified.
However, for greater values of Ca the scheme becomes unstable, as in this case
the value of modulus of the amplification factor exceeds unity. Moreover, Fig. 6.7
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shows that indeed, as it was mentioned previously, the waves represented on the grid
cannot be shorter than 2�x. Relation (6.20) is valid for N ≥ 2 only.

The second type of error is the phase error. This one can be represented using the
amplitude factor G as well. Since it is a complex number:

G = Re G + i · Im G (6.21)

then the phase celerity of kth components of the Fourier series is defined by the
angle φ as:

tan (φ) = Im G

Re G
(6.22)

For the box scheme (Eq. 6.12) one obtains:

tan (φ) = − (α + β · γ ) sin (ϕ)

β + (α − β · γ ) cos (ϕ) − α · γ (6.23)

A similar expression can be derived for the exact solution of the pure advection
equation. To this end let us write this solution in the following form:

f (x,t) = F(t)ei·m·x. (6.24)

Substituting Eq. (6.24) in Eq. (6.1) yields:

dF

dt
ei·m·x + i · m · U · F · ei·m·x = 0. (6.25)
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This expression can be simplified to:

dF

dt
= −i · m · U · F. (6.26)

Equation (6.26) has the following solution:

F(t) = e−i·m·U·t. (6.27)

Now this result can be substituted in the solution (6.24):

f (x,t) = ei·m(x−U·t). (6.28)

For the neighboring time levels tn and tn+1 = tn+�t we obtain respectively:

f n = ei·m(x−U·tn), (6.29)

f n+1 = ei·m(x−U(tn+� t)) = ei·m·xe−i·m·U·te−i·m·U·� t (6.30)

Dividing the respective sides of these equations yields:

f n+1

f n
= e−i·m·U·� t = e−i·Ca·m·� x = e−i·Ca·ϕ . (6.31)

Let us compare this equation with Eq. (5.163). Equation (6.31) can be considered
as the definition of the amplification factor for exact solution of the pure advection
equation. Since e−ϕ·i = cos (ϕ) − i · sin(ϕ), then the factor takes the following
form:

Gexact = cos(Ca · ϕ) − i · sin(Ca · ϕ). (6.32)

The corresponding angle øexact defining the exact phase celerity of wave is given
by the following relation:

tan(φexact) = ImGexact

ReGexact = − sin(Ca · ϕ)

cos (Ca · ϕ)
= tan( − Ca · ϕ). (6.33)

Then one can write:

φexact = −Ca · ϕ = −Ca · m ·�x. (6.34)

Now let us consider again Eq. (6.23) representing the phase celerity of the wave
described by the advection equation solved by the box scheme. The numerical
scheme is dispersion free, if for any Fourier component k the angle ø is constant.
Conversely, if the component’s phase celerity varies, the scheme is dispersive. Note
that for the box scheme constant phase celerity is ensured by ψ = 0.5, θ = 0.5
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and Ca = 1. In such a case one obtains: α = 1, β = 0 and γ = 0. Consequently
Eq. (6.23) becomes:

tan(φ) = − sin (ϕ)

cos (ϕ)
= tan (− ϕ) = tan (− m ·�x) (6.35)

which means that ø = −ϕ = −m·�x. Therefore, for the mentioned values of the
weighting parameters and for the Courant number equal to unity the box scheme is
not dispersive. At the same time Eq. (6.35) coincides with Eq. (6.33) for the exact
solution of the advection equation.

Obviously, in real-life cases the computations are performed with Ca 
= 1. This
means that the dispersion error occurs always. It is interesting to know how the
applied scheme changes the phase celerity comparing with the exact solution.
Dispersive properties of any scheme are expressed by the coefficient R2 defined
as the ratio of the numerical phase celerity to the exact celerity:

R 2 = φ

φexact . (6.36)

Substitution of Eqs. (6.23) and (6.34) in Eq. (6.36) yields:

R2 =
arctan

(
(α − β · γ ) sin (2π/N)

β + (α − β · γ ) cos (2π/N)− α · γ
)

2Ca · π/N
. (6.37)

where α, β and γ are given by Eqs. (6.6a), (6.6b) and (6.6c).
The coefficient R2 given by Eq. (6.37) and calculated for ψ = 0.5 and θ = 0.5 is

shown in Fig. 6.8 as a function of the wavelength (expressed by N i.e. the number of
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Fig. 6.8 Phase portraits for the box scheme with ψ = 0.5 and θ = 0.5
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space intervals �x per wavelength) for various values of the Courant number. Note
that the assumed values of the weighting parameters ensure that the box scheme
is dissipation free. Figures 6.5 and 6.6 show that in this case the modulus of the
amplification factor is constant and equal to unity.

In Fig. 6.8 we observe that R2 decreases with increasing wavelength. The value
of this coefficient, being significant for short waves, tends to unity for long waves.
It means that the phase celerity of the long waves is less affected by the numerical
approximation than the celerity of the short waves. The only case when the wave
celerity is not affected corresponds to Ca = 1. Note that the Courant numbers greater
than 1 cause that the numerical phase celerity is less than the celerity in the exact
solution (R2 < 1). For Ca < 1 the situation is opposite. The numerical phase celerity
dominates over the one corresponding to the exact solution (R2 > 1). This fact can
be related to the solution of the advection equation using the box scheme presented
in Fig. 6.2. For Ca>1 which corresponds to R2<1, the oscillations occur behind the
steep front of f, whereas for Ca<1, or R2>1, the oscillations occur before the front of
wave. Let us remember that the shortest waves possible to represent at the numerical
grid are equal to 2�x. For this reason the coefficient R2 cannot be resolved for N < 2.

The information on the dissipative and dispersive properties of the numerical
schemes provided by the amplification factor G and coefficient R2 is helpful in the
interpretation of the results of computations. However, comparing the graphs as
those presented in Figs. 6.7 and 6.8 provides only general (qualitative) information
on the properties of the numerical schemes, but it does not allow a quantitative
evaluation.

6.3 Accuracy Analysis Using the Modified Equation Approach

Since numerical methods are the main tool of solution of partial differential equa-
tions, the solution of any open channel flow problem having practical meaning
will have approximate character. Therefore the question of great importance is to
estimate the accuracy of the obtained solution. Usually, as it was shown in the pre-
ceding sections, the only available information on the accuracy concerns the order of
approximation of the derivatives. One can say that our knowledge on applied numer-
ical scheme as the order of approximation, its consistency and the stability condition
is necessary but insufficient to explain and to predict its behavior. The examples
of solution of the pure advection equation using the box scheme, presented in
Section 5.2.3, confirm this conclusion.

The same is true for the coefficients of convergence, which characterize the
amplitude and phase error. They explain rather general tendencies of the applied
numerical method. As these coefficients are related to the wave lengths, information
resulting from such an analysis cannot be used directly to assess the numerical
errors generated while solving the differential equations (Fletcher 1991). However,
there is a tool which can provide more information on the numerical properties
of the applied method of solution and which can help us to better understand the
obtained results. It is called the modified equation approach. For the first time the
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term “modified equation approach” was used in Section 5.4.2 in context of the con-
sistency of numerical method. The method was proposed by Warming and Hyett
(1974). Afterwards it was applied by many authors, e.g. Abbott and Basco (1989),
Fletcher (1991). Such analysis provides large amount of information and addition-
ally can suggests the way of increasing the solution accuracy. This method is very
useful since it gives possibility to separate the numerical and physical effects in
the obtained solution. It is particularly well suited for examining numerical dissi-
pation and dispersion. Consequently this approach allows us to interpret correctly
the results of computation. Moreover, in the case of hyperbolic equations the mod-
ified equation method allows us to draw practically full information on the applied
numerical method, including sometimes the stability conditions as well.

The numerical dissipation and dispersion can be clearly showed while consider-
ing the numerical solution of the pure advection equation using the box difference
scheme presented in Section 6.1. To this order let us come back to the Section 5.2
and let us take up again the accuracy of approximation of the derivatives.

The transformation of the partial differential equation into the system of algebraic
equations is based on the Taylor series expansion (Korn and Korn 1968):

f (x +�x) = f (x) +
∞∑

m=1

(�x)m

m!
∂mf (x)

∂xm
(6.38)

While approximating the derivative, the appropriate formulas are obtained owing
to truncation of the Taylor series. This process introduces truncation error. For
instance, the forward difference (Eq. 5.99):

∂f

∂x

∣∣∣∣
x

≈ f (x +�x) − f (x)

�x
(6.39)

is obtained from Eq. (6.38) in which the terms up to the one containing the first
derivative only were taken into account:

f (x +�x) = f (x) +�x
∂f

∂x
+ R. (6.40)

In this equation R denotes the truncation terror:

R = �x2

2!
∂2f

∂x2
+ �x3

3!
∂3f

∂x3
+ �x4

4!
∂4f

∂x4
+ · · · (6.41)

The exact value of the derivative resulting from (6.40) is:

∂f

∂x

∣∣∣∣
x

= f (x +�x) − f (x)

�x
+ R(�x) (6.42)

As we know from Section 5.4.2, the term R (�x) informs us how the error caused
by truncation varies with respect to the value of �x. In this case we have:
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R(�x) = �x

2!
∂2f

∂x2
+ �x2

3!
∂3f

∂x3
+ �x3

4!
∂4f

∂x4
+ · · · (6.43)

which means that the error caused by approximation of the 1st derivative using
formula (6.39) vary linearly with the variation of �x.

Usually the truncation error is related to the order of approximating formula. The
latter is determined by the highest order of derivative accounted in the approximat-
ing formula. For instance, formula (6.39) approximates the 1st order derivative of
f(x) with accuracy of 1st order, since in the Taylor series (6.40) only the terms up
to first order were taken. Unfortunately, as it was stated previously, the order of the
method is a general information only and it says nothing about the nature of the
error and its consequences for the solution. However, it appears that the truncation
error determines the numerical properties of numerical scheme. To explain this fact,
let us remember that for smooth functions the error provided by truncation of the
Taylor series is determined by the value of the first term of the truncated part of
series.

As an example consider the following function:

f (x) = ex (6.44)

The 1st derivative of f(x) at point x = 1 is equal to 2.7183. If we calculate its
approximated value using the formula (6.39) assuming �x = 0.1, then we will
obtain:

∂f

∂x

∣∣∣∣
x=1

≈ f (1.1) − f (1)

0.1
= 2.8588

Therefore the approximation error is: δ = 2.8588 − 2.7183 = 0.1405. This dif-
ference represents the value of the total truncated part of the Taylor series, i.e. it is
simply R(�x). Now we can calculate the value of the first term of the truncated part
for previously assumed x = 1 and �x = 0.1. We obtain:

�x

2!
∂2f

∂x2

∣∣∣∣
x=1

= 0.1359

One can see that indeed for smooth functions the value of the truncated part of
the Taylor series is dominated by the value of its first term. In the considered case
the first term is equal to 0.1359, while a sum of other terms is equal to 0.0046 only.

Fletcher (1991) shows convincingly that the kind of error dominating in the
numerical solution depends on the order of derivative in the first term of the trun-
cated part of the Taylor series expansion. He considered the propagation of a plane
wave, which simultaneously is subjected to dissipation and dispersion. This wave is
described by Eq. (5.50):

fm(x, t) = Am · e−p(m)t · ei·m·(x−q(m)·t) (6.45)
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where:

Am – amplitude of the mth component,
m – wave-number related to the components’ wave length λ by formula m =

2π /λ,
p(m) – dissipation parameter, which determines how rapidly the amplitude of

the wave is attenuated,
q(m) – wave propagation speed,
i – imaginary unit.

Assume that this wave is governed by the linear advection-diffusion equation:

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
= 0 (6.46)

We showed previously, in Section 5.1.6, that for this equation Eq. (6.45) has the
following parameters:

p(m) = D · m2 and (6.47a)

q(m) = U (6.47b)

then it becomes Eq. (5.77):

fm(x, t) = Am · e−D·m2·t · e−i·m(x−U·t) (6.48)

We also found out earlier that Eq. (6.48) describes the wave, which propagates
with constant celerity with simultaneously attenuated amplitude.

Now, assume that the wave (6.45) is governed by the linear Kortweg-de Vries
equation (Billingham and King 2000, Whitham 1979):

∂f

∂t
+ U

∂f

∂x
+ E

∂3f

∂x3
= 0 (6.49)

where E is the coefficient of dispersion. For his equation we obtain the following:

p(m) = 0 and (6.50a)

q(m) = U − E · m2 (6.50b)

and consequently we have:

f m(x, t) = Am · e−i·m(x−(U−E·m2)t) (6.51)

In this case the attenuation does not exist. However the wave propagates with
celerity depending on the coefficient of dispersion and on the wavelength. If there
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are waves of different length, they move at different speeds, which simply means
that dispersion occurs. The advective velocity U is affected more intensive for short
wave (large value of m) than for long ones depending on the sign of E.

Fletcher (1991) proposes to assume the following rule: the even order deriva-
tives are associated with dissipation process, whereas the odd order derivatives are
associated with dispersion process. This assumption has important meaning for the
modified equation approach, since it can be related with the truncation error.

Now we can go back to the solution of advection equation using the difference
box scheme given by Eq. (6.4). Following the consistency analysis described in
Section 5.4.2, one can see that at each grid point (j, n) the box scheme modifies the
advection equation to the following form:

∂f

∂t
+ U

∂f

∂x
= R(f ) (6.52)

where:

R(f ) = �t2

2

∂2f

∂t2
+ U�x

2

∂2f

∂x2
+ (ψ�x + (1 − θ )U�t)

∂2f

∂x∂t
+

−�t2

6

∂3f

∂t3
−
(
ψ
�x2

2
+ (1 − θ )

U�x�t

2

)
∂3f

∂x2∂t
+

+
(

−ψ�x�t

2
+ (1 − θ )

U�t2

2

)
∂3f

∂x∂t2
− U�x2

6

∂3f

∂x3
+ · · ·

(6.53)

To facilitate further analysis, all the time derivatives, except that of the 1st order,
are eliminated from Eq. (6.53). To this order the advection equation is differentiated:

∂2f

∂x∂t
= −U

∂2f

∂x2
, (6.54a)

∂2f

∂t2
= U2 ∂

2f

∂x2
, (6.54b)

∂3f

∂x2∂t
= −U

∂3f

∂x3
, (6.54c)

∂3f

∂x∂t2
= U2 ∂

3f

∂x3
, (6.54d)

∂3f

∂t3
= −U3 ∂

3f

∂x3
. (6.54e)

Substitution of Eq. (6.54) in Eqs. (6.53) and (6.52) yields:

∂f

∂t
+ U

∂f

∂x
= Dn

∂2f

∂x2
+ En

∂3f

∂x3
+ · · · (6.55)
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where:

Dn = U ·�x

2
((2θ − 1)Ca + (1 − 2ψ)) (6.56)

En = U ·�x2

6

(
(2 − 3θ )C2

a + 3(ψ + θ − 1)Ca + (1 − 3ψ)
)

(6.57)

Equation (6.55) is called modified equation (Fletcher 1991), whereas the coeffi-
cients (6.56) and (6.57) are called coefficients of numerical diffusion and numerical
dispersion, respectively. For the considered PDE the form of the modified equation
depends on the numerical method applied to solve it. Generally one can say that R(f)
contains all terms of the Taylor series neglected while approximation the derivatives
in the solved equation.

The modified equation allows us to conclude on the properties of the applied
scheme. For instance, in Section 5.4.2 such equation was used to prove consistency
of the upwind scheme. This equation allows us to deduce other properties as well.

As far as the order of approximation by the box scheme is considered, from Eqs.
(6.56) and (6.57) result that it depends on the values of weighting parameters. For
ψ = 0.5 and θ = 0.5 it represents accuracy of 2nd order with regard to both variables
x and t. In this case the coefficient of numerical diffusion is cancelled as the space
and time derivatives are approximated with the centered difference (see Fig. 6.1).
For other values of θ and ψ the scheme is an approximation of 1st order.

The box scheme will be stable, if the coefficient of numerical diffusion is non-
negative (Dn � 0), since only in such a case the problem of solution of Eq. (6.55)
will be well-posed. For Dn < 0, this problem is ill–posed and the solution of Eq.
(6.55) does not exist. The condition Dn ≥ 0 will be always satisfied for θ ≥ 0.5
and ψ ≤ 0.5, irrespectively of the value of the Courant number. This means that the
box scheme is absolutely stable. For other values of the weighting parameters the
scheme is conditionally stable or even unstable.

The modified equation (6.55) allows us to examine the dissipative and dispersive
properties of the box scheme as well. In the modified equation, similarly to Eqs.
(6.46) and (6.49), the terms with odd derivatives are associated with the numerical
dispersion and the terms with even derivatives are associated with the numerical
dissipation. Since for smooth functions the truncation error is determined by the
first term of truncated part of the Taylor series, then the first term at the right hand
side of Eq. (6.55) will determine the error dominating in the solution. If this term
contains an odd derivative, the scheme will be dispersive, whereas if it contains
an even derivative – the scheme will be dissipative. Numerical diffusion is associ-
ated with the derivative of the lowest even order. Consequently, according to the
dominating term in the truncation error, we will obtain either smooth or oscillating
solution. These effects have numerical nature and they are unrelated to the physical
processes represented in the solved equation. They are particularly distinct when
strong gradients of function f occurs in the solution.
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If the applied method is dissipation free, oscillations will occur in the solution.
They cannot be explained by the numerical instabilities as they can appear for
numerically stable schemes as well. To eliminate them some numerical diffusion
should be introduced. If it is sufficiently large, the oscillations are suppressed. At
the same time the gradients of function f are reduced – the steep front is smoothed.
However in the case of discontinuity of f, the truncation error is not dominated by
the first term of the truncated part of the Taylor series, but rather by the next term.
Consequently, the oscillations can occur even if the applied scheme is slightly dis-
sipative. The problem of generation of the numerical diffusion is independent of the
spatial dimensionality. For 2D and 3D problems tensors of numerical diffusion and
dispersion appear at the place of scalar coefficients.

Using the modified equation (6.55) provided by the box scheme, one can carry
out a full analysis and interpretation of the computational results displayed in Figs.
5.15, 5.16, 6.2, 6.3 and 6.4.

Let us begin with the solution obtained for θ = 0 and ψ = 0, i.e. using the well
known upwind scheme. For these values of the weighting parameters one obtains:

Dn = U ·�x

2
(1 − Ca) (6.58a)

En = U ·�x2

6
(2C2

a − 3Ca + 1) (6.58b)

The upwind scheme ensures accuracy of order O(�t, �x). Since in this case the
term containing the derivative of 2nd order dominates in the truncation error, then
in the numerical solution a dissipation error must occur. Consequently the modified
equation (6.55) can be rewritten as:

∂f

∂t
+ U

∂f

∂x
= Dn

∂2f

∂x2
(6.59)

It means that solving the pure advection equation with upwind scheme, we are
actually solving the advection-diffusion equation. The exact solution is provided
only for Ca = 1. In this case, as results from Eq. (6.58a), one obtains Dn = 0. This
means that the modified equation (6.59) becomes the original Eq. (6.1). Assuming
Ca < 1, we have Dn > 0, which triggers numerical diffusion, giving rise to attenuation
of the initially imposed distribution of f along the channel axis. This attenuation
increases as the Courant number decreases, which can be observed in Fig. 5.15. In
such a situation the numerical dispersion of the scheme is not significant, since the
right hand side of Eq. (6.55) is dominated by its first term. It is worth to add that
for Ca > 1 Eq. (6.59) cannot be solved, as for Dn < 0 the problem of its solution
is ill-posed. Confirmation of this conclusion is given in Fig. 5.16, where for Ca =
1.035 numerical instability occurred.

Now let us consider the case illustrated in Fig. 6.2. These results were provided
by θ = 0,5 and ψ = 0,5. For these values, the coefficients of numerical diffusion
and dispersion in the modified equation (6.55) are given by:
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Dn = 0 (6.60a)

En = U ·�x2

12
(C2

a − 1). (6.60b)

Then this equation takes the following form:

∂f

∂t
+ U

∂f

∂x
= En

∂3f

∂x3
(6.61)

In such a way the Kortweg-de Vries equation (6.49) is obtained. Equation (6.61)
will provide the exact solution only for Ca = 1, for which En = 0. For other values
of the Courant number the error of numerical dispersion is generated and the scheme
provides oscillating solution. The position of oscillations (before or behind the peak)
varies and it depends on the sign of En, i.e. on the assumed value of the Courant
number (Fig. 6.2). They will be present always.

Influence of the weighting parameter ψ is shown in Fig. 6.3. In this case θ = 0.5
and Ca = 0.5 are assumed. For these values the modified equation contains:

Dn = U ·�x

2
(1 − 2ψ), (6.62a)

En = U ·�x2

12

(
3

4
− 3ψ

)
(6.62b)

Setting ψ = 0.5 the numerical diffusion is eliminated. In such a case the right
hand side of the modified equation is dominated by the dispersive term, since
En 
= 0. Consequently, an oscillating solution is produced (Fig. 6.3). For ψ < 0.5
the box scheme provides the numerical diffusion. Therefore solution obtained with
ψ = 0.25 and ψ = 0.0 is damped and similar to the one provided by the advection-
diffusion equation. On the other hand, for ψ > 0.5 an unstable solution is generated,
since Dn < 0.

The last example of calculation deals with ψ = 0.5 and Ca = 0.5. For these
values Eqs. (6.56) and (6.57) give:

Dn = U ·�x

4
(2θ − 1), (6.63a)

En = U ·�x2

8
(θ − 1) (6.63b)

In this version of the box scheme the numerical diffusion is cancelled by setting
θ = 0.5. However we obtain En < 0 which means that the scheme is dispersive.
Consequently one can observe oscillations behind the peak (Fig. 6.4). Assuming
θ > 0.5 we introduce numerical diffusion, which is the most intense for θ = 1. The
obtained solution differs appreciably from the exact one. Assuming θ < 0.5 we have
Dn < 0. Then the solution should be unstable. Indeed, in Fig. 6.4 one can see the
effects of numerical instability for θ = 0.475.
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Note that all the presented conclusions were drawn from the modified equation
corresponding to the solved pure advection equation. Thus, the modified equation
approach seems to be a robust tool for consistency, stability and accuracy analysis
for the hyperbolic partial differential equations. In the next sections we will use it
many times.

6.4 Solution of the Advection Equation with the Finite
Element Method

6.4.1 Standard Finite Element Approach

Assume that the pure advection equation (6.1) with constant flow velocity is solved
for 0 ≤ x ≤ L and t ≥ 0 with appropriate auxiliary conditions. To solve this equation
the Galerkin finite element method, presented in Section 5.3, is applied. The con-
sidered channel reach is divided into M − 1 elements of length �xj (j = 1, 2, . . .,
M − 1). The discrete solution domain is shown in Fig. 5.19. According to the
Galerkin procedure the numerical solution must satisfy the condition (5.118), which
for Eq. (6.1) is written as follows:

L∫

o

�(fa) · N (x) dx =
M−1∑

j=1

xj+1∫

xj

(
∂fa
∂t

+ U
∂fa
∂x

)
N (x) dx = 0, (6.64)

where:

N – vector of shape functions given by Eq. (5.125),
fa – aproximation of function f defined by Eq. (5.116).

Let us calculate a single component of the above sum, corresponding to the
element j:

I =
xj+1∫

xj

(
∂fa
∂t

+ U
∂fa
∂x

)
N (x) dx (6.65)

A similar procedure was applied previously in Section 5.3.2 while solving the dif-
fusion equation. Since in this element only two components of the vector N(x), i.e.
Nj(x) and Nj+1(x), are non-zero then in Eq. (6.65) only two non-zero products, cor-
responding to these functions will occur. Therefore in element j we have to calculate
the following two integrals:
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I(j) =
xj+1∫

xj

(
∂fa
∂t

+ U
∂fa
∂x

)
Nj(x) · dx, (6.66a)

I(j+1) =
xj+1∫

xj

(
∂fa
∂t

+ U
∂fa
∂x

)
Nj+1 (x) · dx, (6.66b)

Integration of the time derivative in Eq. (6.66a) was carried out in Section 5.3.2.
It yields:

xj+1∫

xj

∂fa
∂t

Nj(x) · dx = � xj

3

d fj
d t

+ � xj

6

d fj+1

d t
, (6.67)

whereas integration of the advective term gives:

xj+1∫

xj

U
∂fa
∂x

Nj(x) · dx = U

�x
( − fj + fj+1)

xj+1∫

xj

Nj(x) · dx = U

2
( − fj + fj+1). (6.68)

In a similar way is calculated integral (6.66b). Substituting the results of
integration in Eqs. (6.66a) and (6.66b) one obtains the following:

I(j) = � xj

3

d fj
d t

+ � xj

6

d fj+1

d t
+ U

2
( − fj + fj+1) (6.69a)

I(j+1) = � xj

6
fj + � xj

3
fj+1 + U

2
( − fj + fj+1) (6.69b)

The same equations are obtained for all elements (j = 1, 2, . . ., M − 1). According
to Eq. (6.64) they are assembled in a global system of equations:

– j = 1:

� x1

3

df1
dt

+ � x1

6

df2
dt

+ U

2
( − f1 + f2) = 0, (6.70a)
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– j = 2,. . ., M − 1:

�xj−1

6

dfj−1

dt
+
(
�xj−1

3
+ �xj

3

)
dfj
dt

+ �xj

6

dfj+1

dt
+

+U

2
( − fj−1 + fj) + U

2
(− fj + fj+1) = 0.

(6.70b)

– j = M:

�xM−1

6

dfM−1

dt
+ �xM−1

3

dfM
dt

+ U

2
(− fM−1 + fM) = 0. (6.70c)

In matrix notation this system of ordinary differential equations takes the
following form:

A
df
dt

+ C · f = 0, (6.71)

where:

d f
dt

=
(

df1
dt

,
df2
dt

, . . . ,
dfM
dt

)T

,

f = (f1, f2, . . . , fM)T ,

A, C – tridiagonal matrices.

The integration of such a system of ODEs is described in Chapter 3. The
application of generalized two-level scheme (3.71) yields the following system of
equations:

(A +�t · θ · C) fn+1 = (A −�t (1 − θ )C) fn, (6.72)

where:

n – index of time level,
θ – weighting parameter ranging from 0 to 1,
�t – time step.

Let us consider an equation of system (6.72) corresponding to node j. For equally
spaced nodes when �x = const., it takes the following form:

(
1
6 − θ Ca

2

)
f n+1
j−1 + 2

3
f n+1
j +

(
1
6 + θ Ca

2

)
f n+1
j+1 =

(
1
6 + (1 − θ ) Ca

2

)
f n
j−1 + 2

3
f n
j +

(
1
6 − (1 − θ ) Ca

2

)
f n
j+1 = 0.

(6.73)
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Fig. 6.9 Grid points for the
method (6.73)

where Ca is the advective Courant number defined by Eq. (6.7). One can notice that
Eq. (6.73) involves the grid points presented in Fig. 6.9. Appropriate equations for
the extreme nodes j = 1 and j = M are given by Eqs. (6.70a) and (6.70c).

The modified equation corresponding to Eq. (6.73) is as follows:

∂f

∂t
+ U

∂f

∂x
= Dn

∂2f

∂x2
+ En

∂3f

∂x3
+ . . . (6.74)

The coefficients of numerical diffusion Dn and dispersion En are given by:

Dn =
(
θ − 1

2

)
Ca ·� x · U, (6.75a)

En = U ·� x2

2

(
2

3
− θ

)
C2

a. (6.75b)

The values of these coefficients depend on the chosen value of θ :

– for the implicit trapezoidal rule (θ = 1/2):

Dn = 0, (6.76a)

En = 1

12
U ·�x2 · C2

a, (6.76b)

– for the Galerkin method (θ = 2/3):

Dn = 1

6
U ·� x · Ca, (6.77a)

En = 0 (6.77b)
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– for the implicit Euler method (θ = 1):

Dn = 1

2
U ·� x · Ca, (6.78a)

En = −1

6
U ·�x2 · C2

a. (6.78b)

From the above relations results that the finite element method applied to solve
advection equation is dissipation free when the time integration is carried out using
the implicit trapezoidal rule, whereas it generates numerical diffusion when the
Galerkin or implicit Euler methods are used. Consequently one can expect an oscil-
latory solution in the first case and an artificially damped solution for the other two
methods. The method is absolutely stable for θ ≥ 1/2, since this condition ensures
that Dn ≥ 0.

To illustrate the influence of the weighting parameter θ on the solution accuracy
a propagation of the steep front of concentration governed by the pure advection
transport equation is considered.

Example 6.2 In a straight open channel of length L the water flows with constant
velocity U. Assume:

– initial condition: f(x, t) = 0 for 0 ≤ x ≤ L
– boundary condition:

f (x = 0, t) =
{

0 for t ≤ 0
1 for t > 0

The steep front of the function f entering the upstream end travels along channel
axis with constant velocity. Assume U = 0.5 m/s = const. and�x = 100 m = const.

In Fig. 6.10 this traveling front is shown after t = 7,200 s. The exact solution has
the form of sharp front imposed as the boundary condition at x = 0 shifted along x

0 1 2 3 4 5 6 7 8 9 10 x [km]
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1.0

1.2
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exact

Θ = 0.50

Θ = 0.67

Θ = 1.00

f

Fig. 6.10 Solution of the
advection equation by the
finite element method with
various values of the
weighting parameter θ
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axis to the position x = 0.5 × 7,200 = 3,600 m. This solution cannot be reproduced
by the finite element method for any value of θ and for any value of the advective
Courant number. As results from Eqs. (6.76a), (6.76b), (6.77a), (6.77b), (6.78a) and
(6.78b), regardless of the values of these parameters the finite element method is
always either dissipative or dispersive one. Therefore, either unphysical damping or
oscillations will be always present in the numerical solution.

To improve the solution acuracy of the advection equation provided by the finite
element method some modifications to its standard version were proposed. Below
we present two ways of increasing of the accuracy approximation of the advection
equation up to 3rd order with regard to both x and t variables.

6.4.2 Donea Approach

In the approach proposed by Donea (1984) the approximation accuracy of the time
derivative in the advection equation (6.1) is increased. At first this equation is
approximated with regard to time:

∂f

∂t

∣∣∣∣

n

+ U
∂f

∂x

∣∣∣∣

n

= 0 (6.79)

For this purpose usually the time derivative is replaced by one of standard dif-
ference formula. However, Donea (1984) proposed a more accurate approximation
resulting from the Taylor series expansion of the function f(x, t) around the time
level n. The Taylor formula:

f n+1 = f n +�t
∂f

∂t

∣∣∣∣

n

+ �t2

2

∂2f

∂t2

∣∣∣∣

n

+ �t3

6

∂3f

∂t3

∣∣∣∣

n

+ · · · (6.80)

retaining the terms up to 3th order allows us to express the first order derivative as
follows:

∂ f

∂t

∣∣∣∣

n

= f n+1 − f n

�t
− �t

2

∂2f

∂t2

∣∣∣∣

n

− �t2

6

∂2f

∂t3

∣∣∣∣

n

+ O(�t3) (6.81)

Equation (6.81) is approximation of 3rd order with regard to time. The time
derivatives of the order higher than one are eliminated using the following expres-
sions obtained from differentiation of the considered advection equation (6.1):

∂2f

∂t2
= U2 ∂

2f

∂x2
, (6.82a)

∂ 3 f

∂t3
= U2 ∂

2

∂x2

(
∂f

∂t

)
. (6.82b)

Substitution of Eq. (6.81) with Eqs. (6.82a) and (6.82b) in Eq. (6.79) yields:
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f n+1 − f n

�t
− �t

2
U2 ∂

2f n

∂x2
− �t2

6
U2 ∂

2

∂x2

(
∂f n

∂t

)
+ U

∂f n

∂x
= 0. (6.83)

Approximation of the time derivative gives:

f n+1 − f n

�t
− �t

2
U2 ∂

2f n

∂x2
− �t2

6
U2 ∂

2

∂x2

(
f n+1 − f n

�t

)
+ U

∂f n

∂x
= 0. (6.84)

After regrouping one obtains:

f n+1 − �t2

6
U2 ∂

2f n+1

∂x2
= f n + �t2

2
U2 ∂

2f n

∂x2
− �t2

6
U2 ∂

2 f n

∂x2
+�t · U

∂f n

∂x
(6.85)

If we introduce the advective Courant number Ca , Eq. (6.85) will take the final
form:

f n+1 − C2
a

6
�x2 ∂

2f n+1

∂x2
= f n + C2

a

3
�x2 ∂

2f n

∂x2
+ Ca ·�x

∂f n

∂x
(6.86)

Note that f n+1 and f n must be still discretized with regard to x. To this end the
Galerkin finite element method with linear trial functions is used. For uniform grid
points the following algebraic equation is obtained:

(
1

6
− C2

a

6

)
f n+1
j−1 +

(
2

3
+ C2

a

3

)
f n+1
j +

(
1

6
− C2

a

6

)
f n+1
j+1 =

=
(

1

6
+ C2

a

6
+ Ca

2

)
f n
j−1 +

(
2

3
− C2

a

3

)
f n
j +

(
1

6
+ C2

a

6
− Ca

2

)
f n
j+1

(6.87)

Such equation is written for each internal node j = 2,3,. . ., M − 1. For j = 1 the
appropriate equation is given by the imposed boundary condition, whereas for j = M
Eq. (6.87) is modified according to the rules of the finite element method. Integration
of the diffusive term in Eq. (6.86) for linear shape functions was explained in
Section 5.3. Consequently one obtains a system of linear algebraic equations with
tri-diagonal matrix. Its solution provides the nodal values of the function f at the
time level n+1.

The Donea method used for solving the steep front propagation for the data from
Example 6.2 provided much better results compared to the standard finite element
method. In Fig. 6.11 one can see that the method produces results which coincide
with the exact solution (Ca = 1) or which are only sightly different from the exact
solution for other values of Ca.

The accuracy analsis using the modified equation approach shows that the
method modifies the advection equation to the form of Eq. (6.74) in which Dn =
0 and En = 0 regardless of the value of Courant number. Therefore the method
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Fig. 6.11 Solution of the advection equation by the finite element method with Donea formulation

approximates the advection equation with accuracy of 3rd order with regard to x
and t. For Ca = 1 all the terms of higher order in the modified equation dissapear as
well, so the method provides the exact solution. The method is only conditionally
stable, as for stability the condition Ca ≤ 1 is required (Donea 1984).

6.4.3 Modified Finite Element Approach

6.4.3.1 The Concept of the Modified Finite Element Method

Another approach to improve the standard finite element method was proposed by
Szymkiewicz (1995). It deals with modification of the process of integration and it
leads to a more general form of algebraic equations approximating the governing
equation. The accuracy analysis carried out using the modified equation approach
provides information which suggests the way of increasing the solution accuracy up
to 3rd order. The resulting formula comprises the standard finite element and finite
difference schemes as particular cases.

According to the Galerkin procedure, described in details in Section 6.4.1, the
solution of the advection equation must satisfy condition (5.118), which in this
case takes the form of Eq. (6.64). In the standard approach the function f(x, t) is
approximated as follows:

fa(x, t) =
M∑

j=1

fj(t)Nj(x) (6.88)
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where:

Nj(x) – vector of shape functions given by Eq. (5.125),
fa – aproximation of function f defined by Eq. (5.116).
j – index of node,
M – number of grid points.

where fj(t) represents nodal value of function f(x, t). When linear basis functions are
applied in each element only two following integrals in Eq. (6.64) exist:

I1 =
xj+1∫

xj

fa(x, t)Nj(x)dx =
(

2

3
fj(t) + 1

3
fj+1(t)

)
�xj

2
(6.89a)

I2 =
xj+1∫

xj

fa(x, t)Nj+1(x)dx =
(

1

3
fj(t) + 2

3
fj+1(t)

)
�xj

2
(6.89b)

where �xj is the distance between nodes. This standard approach can be modified.
Namely, the integral of the product of approximation of function and basis function
in an element can be expressed as a product of certain average value of the function
in the element and the integral of the basis function in this element, i.e.:

I1 =
xj+1∫

xj

fa(x,t)Nj(x)dx = fc(t)

xj+1∫

xj

Nj(x)dx = fc(t)
�xj

2
(6.90a)

I2 =
xj+1∫

xj

fa(x,t)Nj+1(x)dx = fc(t)

xj+1∫

xj

Nj+1(x)dx = fc(t)
�xj

2
(6.90b)

The weighted average fc(t) in the element can be expressed using the following
formulas:

– for Eq. (6.90a):
fc(t) = ω · fj(t) + (1 − ω)fj+1(t) (6.91a)

– for Eq. (6.90b):
fc(t) = (1 − ω)fj(t) + ω · fj+1(t) (6.91b)

where ω is a weighting parameter ranging from 0 to 1. Equations (6.90a) and (6.90b)
can be rewritten as follows:

I1 = (ω · fj(t) + (1 − ω)fj+1(t))
�xj

2
(6.92a)

I2 = ((1 − ω)fj(t) + ω · fj+1(t))
�xj

2
(6.92b)



248 6 Numerical Solution of the Advection Equation

6.4.3.2 Solution of the Advection Equation Using the Modified
Finite Element Method

Calculation of a single integral in expression (6.64) over an element is carried out
in the following way:

xj+1∫

xj

(
∂fc
∂t

+ U
∂fa
∂x

)
Nj(x)dx =

(
ω

dfj
dt

+ (1 − ω)
dfj+1

dt

)
� xj

2
+ U

(−fj + fj+1
)

(6.93a)

xj+1∫

xj

(
∂fc
∂t

+ U
∂fa
∂x

)
Nj+1(x)dx =

(
(1 − ω)

dfj
dt

+ ω
dfj+1

dt

)
� xj

2
+ U

(−fj + fj+1
)

(6.93b)

In these expressions the subscript a denotes approximation according to the
formula (6.88) while the subscript c denotes approximation by Eqs. (6.91a) and
(6.91b). It means that the alternative way of approximation of equations is applied
only to the time derivative, while the derivative of 1st order with regard to x is
approximated using the standard approach.

When all integrals in each element are assembled according to Eq. (6.64), the
global system of ordinary differential equations over time of dimension M × M is
obtained. For equally spaced nodes this system has the following form:

– for j = 1

ω
dfj
dt

+ (1 − ω)
dfj+1

dt
+ U

� x
( − fj + fj+1) = 0, (6.94a)

– for j = 2, 3, . . ., M − 1

1 − ω

2

dfj−1

dt
+ ω

dfj
dt

+ 1 − ω

2

dfj+1

dt
+ U

2� x
( − fj−1 + fj+1) = 0, (6.94b)

– for j = M

(1 − ω)
dfj−1

dt
+ ω

dfj
dt

+ U

� x
( − fj−1 + fj) = 0, (6.94c)

Equation (6.94) can be written in a more compact matrix form:

A
df
dt

+ C · f = 0 (6.95)
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where:

A – constant tri-diagonal matrix,
C – constant tri-diagonal matrix,
f = (f1, f2, . . .,fM)T – vector of unknowns comprising nodal values of f,
df
dt

=
(

df1
dt

,
df2
dt

, · · · ,
dfM
dt

)T

– vector of time derivatives,

T – symbol of transposition.

The system (6.95), similarly to the one obtained for the standard finite ele-
ment method, is solved using formula (3.71) with the weighting parameter θ . Its
application for (6.95) yields:

(A +�t · θ · C) f n+1 = (A −�t (1 − θ )C) f n, (6.96)

where:

n – index of time level,
θ – weighting parameter ranging from 0 to 1,
�t – time step.

The equation for node j takes the following form:

(
1 − ω

2
− θ

Ca

2

)
f n+1
j−1 + ω · f n+1

j +
(

1 − ω

2
+ θ

Ca

2

)
f n+1
j+1 =

=
(

1 − ω

2
+ (1 − θ )

Ca

2

)
f n
j−1 + ω · f n

j +
(

1 − ω

2
− (1 − θ )

Ca

2

)
f n
j+1

. (6.97)

where Ca is the advective Courant number (Ca = U·�t/�x). Equation (6.97)
involves grid nodes presented in Fig. 6.12.

1− ω
2

1 − ω
2

ω

Δt

Δx Δx

t

t

t n

n + 1

xx                          x                           xj −1                              j                                 j+1

(1 − θ) Δt

θΔt

Fig. 6.12 Numerical grid for
the modified finite element
method
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Table 6.1 Particular cases of the method depending on the values ω and θ

ω θ Method

1
1
1
2/3
2/3

1/2
1
0
1/2
1

FD Crank-Nicolson
FD implicit Euler
FD explicit Euler
FE Crank-Nicolson
FE implicit Euler

It can be seen that the modified FE approach yields a six-point implicit scheme
with two weighting parameters. For some particular values of ω and θ one obtains
well known methods of numerical solution of the advection equation. Some of them
are listed in Table 6.1.

6.4.3.3 Stability Analysis of the Modified Finite Element Method

Stability analysis for numerical solution of the linear advection equation solved by
the modified finite element method is carried out using the Neumann method. In this
approach the solution error E(x, t) described by the same formula as the considered
scheme, is expanded in the Fourier series (see Section 5.4.3). Since we consider the
linear equation, the properties of the method can be deduced on the basis of the
behaviour of one component of series.

Substitution of Eq. (5.161) in Eq. (6.97) yields:

(1 − ω)An+1 1
ei·ϕ + 2ω · An+1 + (1 − ω)An+1 · ei·ϕ + θ · Ca

(
An+1 · ei·ϕ − An+1 1

ei·ϕ
)

= (1 − ω)An 1
ei·ϕ + 2ω · An + (1 − ω)An · ei·ϕ − (1 − θ )Ca

(
An · ei·ϕ − An 1

ei·ϕ
)

(6.98)
where

i = (−1)1/2 – imaginary unit,
j – index of node,
An – Fourier coefficient accounting for time variability,
n – index of time level,
φ = m·�x – dimensionless wave number given by Eq. (5.160),

Using the following Euler relations (Korn and Korn 1968):

sin (ϕ) = ei·ϕ − e−i·ϕ

2i
, (6.99a)

cos (ϕ) = ei·ϕ + e−i·ϕ

2
, (6.99b)

Equation (6.98) is reformed to the formula representing the amplification factor:
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An+1

An
= G = [ω + (1 − ω)cos (ϕ)]2 + θ2C2

asin2 (ϕ)− θ C2
asin2 (ϕ)

[ω + (1 − ω)cos (ϕ)]2 + θ2C2
asin2 (ϕ)

+

− [ω + (1 − ω)cos (ϕ)] Casin (ϕ)

[ω + (1 − ω)cos (ϕ)]2 + θ2C2
asin2 (ϕ)

i

(6.100)

where G is the amplification factor in the form of complex number. The condition
of numerical stability (Potter 1973) |G| ≤ 1 implies the following condition:

(

1 + (1 − 2θ)C2
a · sin2 (ϕ)

[ω + (1 − ω)cos (ϕ)]2 + θ2 · C2
a · sin2 (ϕ)

)1/2

≤ 1. (6.101)

Since

ω + (1 − ω)cos (ϕ) = cos2
(ϕ

2

)
+ (2ω − 1)sin2

(ϕ
2

)

the condition (6.101) can be rewritten as:

(

1 + (1 − 2θ)C2
a · sin2 (ϕ)

[
cos2

(
ϕ
2

)+ (2ω − 1)sin2 (ϕ
2

)]2 + θ2 · C2
a · sin2 (ϕ)

)1/2

≤ 1. (6.102)

The dimensionless wave number φ varies in the range 0≤ ϕ ≤ π , so cos2(φ /2),
sin2(φ /2) and sin2(φ) vary as well. The conditions:

θ ≥ 1
/

2 and (6.103a)

ω ≥ 1
/

2 (6.103b)

ensure that relation (6.102) is satisfied for any Courant number. Therefore the
conditions (6.103a) and (6.103b) guarantee unconditional stability.

6.4.3.4 Accuracy Analysis Using the Modified Equation Approach

The numerical properties of the methods listed in Table 6.1 are well known and we
also know that they are rather usuitable to solve the advection equation. However,
it appears that using the accuracy analysis carried out by the modified equation
approach it is possible to reach a higher order of approximation compared to the
methods given in Table 6.1. Let us carry out the accuracy analysis for system (6.97).
If all nodal values of function f are expanded in Taylor series around the node
(j, n+1) and substituted in Eq. (6.97), then after regrouping the following modified
equation is obtained:

∂f

∂t
+ U

∂f

∂x
= Dn

∂2f

∂x2
+ En

∂3f

∂x3
+ . . . (6.104)
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The coefficients of numerical diffusion Dn and dispersion En are given by:

Dn =
(
θ − 1

2

)
Ca ·� x · U, (6.105)

En = U ·� x2

2

(
2

3
− ω +

(
θ − 2

3

)
C2

a

)
. (6.106)

From the modified equation results that the finite element method is of 2nd order
of accuracy with regard to both x and t for θ = 1/2 only. For other values of θ it is
of 1st order of accuracy with regard to t. However, from formula (6.106) results that
the possible order of accuracy can be increased. Namely, for θ = 1/2 and for

ω = 2

3
− C2

a

6
(6.107)

the terms of 2nd and 3rd order in the modified equation (6.104) are cancelled. It
means that in this case the proposed version of the finite element method ensures
an accuracy of 3rd order with regard to x as well as to t. This holds for Ca ≤ 1
only because of the stability condition (6.103b). Consequently one can expect that
appropriate value of the weighting parameter ω will provide more accurate numeri-
cal solution than the one given by the standard versions of finite element and finite
difference method.

To illustrate the effect of improvment of the finite element method the advective
transport equation is solved.

Example 6.3 In a straight open channel of length L the water flows with constant
velocity U. Assume that:

– initial condition is given by the Gauss distribution

f (x, t = 0) = 1√
2π

exp

(

− (x − μ)2

2σ 2

)

for 0 ≤ x ≤ L,

where μ is mean value and and σ is standard deviation;
– boundary condition is following: f (x = 0, t) = 0 for t ≥ 0.

The initially imposed distribution of the function f along x axis travels towards
downstream channel end with constant velocity. The following set of data is
accepted: U = 0.5 m/s, �x = 100 m, �t = 100 s, μ = 1,400 m and σ = 264 m;

In Fig. 6.13 this distribution is shown for t = 14,400 s. The exact solution per-
fectly agrees with the numerical solution provided by the modified finite element
method. This result confirms that the accuracy of the standard finite element method
can be appreciably improved.
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Fig. 6.13 Solution of the
advection equation by the
modified finite element
method for θ = 0.5, Ca = 0.5
and ω = 0.625 (exact – solid
line, numerical – dotted line)

6.5 Numerical Solution of the Advection Equation
with the Method of Characteristics

6.5.1 Problem Presentation

The difficulties arising in numerical solution of the pure advection equation using
the methods based on the approximation of the derivatives were the motivation to
seek alternative approaches. One of them is the method of characteristics, which for
a long time was the main tool for solving hyperbolic equations. In this section we
present a couple of algorithms based on this approach.

Again, we consider the advection equation (6.1) with U = const. > 0. It is solved
in the following domain: 0 ≤ x ≤ L and t ≥ 0. The initial condition is: f(x, t = 0) =
fi (x) for 0 ≤ x ≤ L. With assumed U > 0 the boundary condition is imposed at the
upstream end (x = 0) only: f(x = 0, t) = fo(t) for t ≥ 0. For the constant velocity the
characteristics of Eq. (6.1) are straight lines in the (x, t) plane defined by Eq. (5.9):

dx = U · dt. (6.108)

Let us cover the domain of solution with a mesh having the dimensions �x ×
�t, as presented in Fig. 6.14.

If we assume such values of the mesh dimensions�x and�t that they satisfy the
characteristic equation (6.108):

�x = U ·�t (6.109)

then the diagonals of the mesh will coincide with the characteristics (Fig. 6.14).
From the definition of characteristics results that the value of f is constant along a
characteristic. Thus, the values at the new time level can be calculated as:
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Fig. 6.14 Grid points applied in the method of characteristics

f (xj+1, tn+1) = f (xj, tn) or (6.110)

f n+1
j+1 = f n

j (6.111)

Equation (6.110) implies that the particle which at the time tn is in the node
(xj, tn) after the time step �t will travel to the node (xj+1, tn+1). Then, if the flow
velocity U is constant, numerical solution of the advection equation by the method
of characteristics is equivalent to the exact solution.

6.5.2 Linear Interpolation

Unfortunately, in natural channels the flow velocity varies is space (U = U(x)) or
even in time as well (U = U(x, t)). In such a situation it is impossible to construct
such a grid which satisfies Eq. (6.108). Consequently the characteristics will no
longer coincide with the diagonals of mesh and they will intersect the time level n
between the nodes as it is presented in Fig. 6.15.

As the function f does not vary along the characteristic, its value at the node
(j, n + 1) is equal to the one at the point of intersection x∗:

f n+1
j = f (x∗, tn) (6.112)

where

x∗ = xj − U�t. (6.113)

The value of f at x∗ can be calculated, for instance, using the linear interpolation
between the nodes j and j − 1. This yields:
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Fig. 6.15 Characteristic of the advection equation going through grid point (j, n + 1) and passing
between the nodes

f ∗ = f n
j − U ·� t

� x
(f n

j − f n
j−1). (6.114)

and consequently:

f n+1
j = f n

j − U ·� t

� x
(f n

j − f n
j−1). (6.115)

According to Eq. (5.109), which defines the Courant number we have:

U ·� t

� x
= Ca (6.116)

Substitution of Eq. (6.116) in Eq. (6.115) yields:

f n+1
j = Ca f n

j−1 + (1 − Ca)f n
j (6.117)

Note that the method of characteristics with the interpolation coincides with the
well known upwind scheme, being on the other hand, a particular case of the finite
difference box scheme. This scheme was discussed in details in the preceding chap-
ter and it has been shown to generate strong numerical diffusion. The example of
its application is given in Figs. 5.15 and 5.16, whereas its numerical properties were
described in Section 5.4.

6.5.3 Quadratic Interpolation

Since linear interpolation appeared unsuccessful, a natural way of increasing of the
solution accuracy seems to apply an interpolating polynomial of higher degree say
of 2nd degree. For this purpose assume a local system of co-ordinates (X, Y) at node
j−2 (Fig. 6.15). In this system we define the following polynomial:

Y(X) = A · X2 + B · X + C for 0 ≤ X ≤ 2�x. (6.118)
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Using nodes j − 2, j − 1 and j one can express its coefficients as:

A = 1

2�x2
(f n

j−2 − 2f n
j−1 + f n

j ), B = 1

�x
( − 1.5f n

j−2 + 2f n
j−1 − 0.5f n

j ), C = f n
j−2

Then Eq. (6.118) takes the following form:

Y(X) = 1

2�x2
(f n

j−2−2f n
j−1+f n

j )X2+ 1

�x
(−1.5f n

j−2+2f n
j−1−0.5f n

j )X+f n
j−2 (6.119)

One can see in Fig. 6.15 that we are looking for the value of Y(X) at the point X∗,
which is equal to:

X∗ = 2�x − U ·�t = �x

(
2 − U ·�t

�x

)
= �x (2 − Ca) (6.120)

where Ca is the advective Courant number defined by Eq. (6.116). Since the function
f is constant along the characteristics, then its nodal value f n+1

j is the same as at the
point X∗, i.e.:

Y(X∗) = f n+1
j = (−0.5Ca + 0.5C2

a

)
f n
j−2 + (2Ca − C2

a

)
f n
j−1

+ (1 − 1.5Ca + 0.5C2
a

)
f n
j

(6.121)

As the boundary condition is given at node j = 1, then this equation is not self
starting and an apparent node j = 0 must be added, where f n

0 = f n
1 is assumed. As it

will be shown in the next example, this method also produces significant numerical
errors.

6.5.4 Holly–Preissmann Method of Interpolation

A very interesting approach to solve the problem of interpolation was proposed by
Holly and Preissmann (1977). The interpolation is performed between two nodes
j − 1 and j using a polynomial of 3rd degree. To determine this polynomial the
values of function f as well as its spatial derivative are used.

Knowing the function f and its derivative at the time level tn at the nodes j − 1
and j, (which makes together 4 values), one can determine the polynomial of 3rd
degree. This polynomial is given by the formula:

Y(α) = A · C3
a + B · C2

a + C · Ca + D, (6.122)

in which Ca is the well known Courant number (Eq. 6.116), considered here as an
independent variable ranging from 0 to 1. The coefficients A, B, C and D can be
determined using the following conditions, satisfied by the polynomial (6.122):

Y(1) = f n
j−1, (6.123a)
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Y(0) = f n
j , (6.123b)

Y ′(1) = df

dx

∣∣∣∣

n

j−1
, (6.123c)

Y ′(0) = df

dx

∣∣∣∣

n

j
(6.123d)

These conditions allow us to express the interpolating polynomial as:

Y(α) = f n+1
j = a1 · f n

j−1 + a2 · f n
j + a3

∂f

∂x

∣∣∣∣

n

j−1
+ a4

∂f

∂x

∣∣∣∣

n

j
, (6.124)

where:

a1 = C2
a (3 − 2Ca) , a2 = 1 − C2

a (3 − 2Ca) , a3 = C2
a (1 − Ca) �x,

a4 = −Ca (1 − Ca)
2 �x

In order to calculate the derivatives of the function f Holly and Preissmann
(1977) assumed that the derivative ∂f/∂x is transported similarly to the function
f with the advection velocity U. Therefore it satisfies the following advection
equation:

∂

∂t

(
∂f

∂x

)
+ U

∂

∂x

(
∂f

∂x

)
= 0. (6.125)

Substitution of the previously determined coefficients A, B, C and D in equation
for Y′(α) obtained by differentiation of Eq. (6.122), yields:

Y ′(Ca) = ∂f

∂x

∣∣∣∣

n+1

j
= b1 · f n

j−1 + b2 · f n
j + b3

∂f

∂x

∣∣∣∣

n

j−1
+ b4

∂f

∂x

∣∣∣∣

n

j
, (6.126)

where

b1 = 6Ca(Ca − 1)

� x
, b2 = −6Ca(Ca − 1)

� x
, b3 = Ca(3Ca − 2),

b4 = (Ca − 1)(3Ca − 1)

This method provides relatively low numerical diffusion. It is only conditionally
stable and can be applied for Ca ≤ 1. Moreover, the method requires as the initial
condition not only the values of the unknown function, but also its derivative, which
can be problematic in some cases.
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6.5.5 Interpolation with Spline Function of 3rd Degree

Interpolation of the function f can be carried out using a spline function of 3rd degree
(Szymkiewicz 1993). An important feature of this approach is that no limitation of
the time step �t exists.

The spline function of 3rd degree is composed of the segments which is a poly-
nomial of 3rd degree assuming the values of interpolated function at nodes. This
function is the most smooth curve among all polynomials of 3rd degree. It is impor-
tant that the spline function tends to the interpolated one when the distances between
the nodes are reduced. The interpolating function is expressed as follows:

Y(x) = fj + αj(x − xj) + βj(x − xj)
2 + γj(x − xj)

3 for xj ≤ x ≤ xj+1 (6.127)

Where:

fj – nodal value of the function f,
αj, β j, γ j – coefficients of the polynomial to be determined,
j = 1, 2, . . ., M − 1 – index of node,
M – total number of nodes.

If the values of function f are given at all nodes at the time level tn (Fig. 6.16),
then the polynomial (6.127) can be determined.

It means that the coefficients αj, β j, γ j for j = 1,2, . . ., M − 1 can be calculated.
Detailed description of the spline function and the method of its determination is
given by Stoer and Bulirsch (1980). The algorithm is very simple and it reduces
itself to the solution of the system of linear algebraic equations with tri-diagonal
matrix. Knowing the interpolating polynomial, one can use it to compute the values
of function f at the points of intersection x∗

j of the backward characteristics going
through the nodes at the time level tn+1 (Fig. 6.16). In such a way the problem is
solved, since we have:

Y(x∗
j ) = f n+1

j+1 = f n
j + αj(x∗

j − xj) + βj(x∗
j − xj)2 + γj(x∗

j − xj)3 for j = 1,2, . . . , M − 1 .
(6.128)
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Fig. 6.16 Grid points with the backward characteristics
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Fig. 6.17 Grid points with the forward characteristics

The value of f n+1
1 is given by the imposed boundary condition.

The presented approach makes use of the backward characteristics, which start
from the nodes at the time level tn+1 and intersect the time level tn . An alternative
method would be to apply the forward characteristics starting from the nodes at the
time level tn ,which intersect the time level tn+1 (Fig. 6.17).

The appropriate formula can be derived in a similar way as presented previously.
The only difference is that this time the characteristics are going through the nodes
at the time level n and they intersect the time level n + 1, so we must interpolate at
this level.

To illustrate the presented techniques of interpolation, they are applied to solve
the same case of the advection transport.

Example 6.4 In straight open channel of length L the water flows with constant
velocity U. Assume the following auxiliary conditions:

– initial condition is determined by the Gauss distribution

f (x, t = 0) = 1√
2π

exp

(

− (x − μ)2

2σ 2

)

for 0 ≤ x ≤ L,

with the mean value μ and the standard deviation σ ;
– boundary condition: f (x = 0,t) = 0 for t > 0.

Therefore, the initial distribution of the function f in form of the Gauss distribu-
tion moves along the channel axis with constant velocity. Computations are carried
out for U = 0.5 m/s, �x = 100 m, μ = 1,400 m, σ = 264 m and for various values
of time step �t.

In Fig. 6.18 this traveling distribution is shown after t = 9,600 s. The exact solu-
tion corresponds to the initially imposed distribution, with the center of gravity
shifted to the position x = μ + U · T = 1,400 + 0.5 · 9,600 = 6,200 m. This solution
is provided by all method of interpolation for Ca = 1. For other values of the Courant
number the solution accuracy depends on the applied method of interpolation.

As it could be expected, the linear interpolation provides strongly smoothed solu-
tion for the Courant number less than unity (Fig. 6.18). It is because of the numerical



260 6 Numerical Solution of the Advection Equation

0 2000 4000 6000 8000 10000

0.00

0.20

0.40

0.60

0.80

1.00

f f/ m

x [m]

t = 0

C  = 0.75a

t = 9600 s

exact
solution

C  = 0.50a

Fig. 6.18 Solution of the
advection equation by the
method of characteristics with
linear interpolation

diffusion generated by the method, which disappears for Ca = 1 only. It should be
added that for Ca > 1 the linear interpolation produces unstable results.

Increasing of the degree of interpolating polynomial does not improve the accu-
racy solution. As one can see in Fig. 6.19, that the polynomial of 2nd degree
introduces numerical dispersion and oscillations appear. The same is true for
polynomials of higher degrees (Cunge et al. 1980).

Thus, one can suppose that the standard manner of interpolation cannot be suc-
cessful and some special interpolating techniques should rather be applied. This
suggestion is confirmed by the results displayed in Figs. 6.20 .

One can see that the method of interpolation proposed by Holly and Preissmann
(1977) ensures an excellent agreement with the exact solution. The difference in
peak obtained for Ca = 0.5 is 1.6% only. Similarly accurate solution is provided by
the interpolation with the spline function.
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Fig. 6.19 Solution of the
advection equation by the
method of characteristics with
quadratic interpolation
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Fig. 6.20 Solution of the advection equation by the method of characteristics with interpolation
by the Holly–Preissmann approach
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Chapter 7
Numerical Solution of the Advection-Diffusion
Equation

7.1 Introduction to the Problem

Comparing the advection-diffusion equation (1.157) with the pure advection
equation one can notice, that only the diffusive term differs one another equa-
tion. However this term introduces an essential difference between both equations.
First of all the transport equation becomes a partial differential equation of 2nd
order, whereas the advection equation is of 1st order. In addition, the type of equa-
tion changes as well. Instead of a hyperbolic equation we face a parabolic one.
Consequently the auxiliary conditions should be reformulated as the parabolic equa-
tion needs two boundary conditions imposed at both upstream and downstream
channel ends. More information on the properties of advection-diffusion equation
were given in Section 5.1.6.

Numerical experiments show that the diffusive term has very positive influence
on the numerical solution process. This term has dissipative character so it posses
smoothing properties giving rise to positive numerical effects. If the transport is dif-
fusion dominated, no numerical difficulties are expected. In such a case to solve
the advection-diffusion equation one can choose any scheme of the finite difference
or finite element method. If the applied scheme is dissipation-free, its dispersiv-
ity will be neutralized by the diffusion term. Conversely, a dissipative scheme will
reinforce the smoothing effect caused by the diffusion term. On the other hand, for
the advection dominated transport all numerical problems presented in Chapter 6
related to the pure advection equation, occur. For this reason the essential question
is to distinguish, which of the process is dominating.

A criterion, which allows us to define the participation of both forms of transport
is called the Peclet number (Patankar 1980). For the grid points spaced with �x
interval this number is given by the following relation:

P = U ·�x

D
(7.1)
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where:

P – Peclet number,
U – advection velocity,
D – coefficient of diffusion,
�x – mesh dimension.

The Peclet number can be considered as the relation between the advective and
diffusive Courant numbers:

P = Ca

Cd
(7.2)

where:

Ca – the advection Courant number given by Eq. (5.109),
Cd – the diffusive Courant number given by Eq. (5.174).

Since this number is similar to the Reynolds number, very often it is called the
cell Reynolds number (Fletcher 1991).

From the definition of the Peclet number (7.1) results that:

– P = ∞ for pure advection equation, when D = 0,
– P = 0 for pure diffusion equation, when U = 0.

Numerical difficulties arise for large value of the Peclet number when the trans-
port is dominated by advection. They have the same roots as those connected with
the hyperbolic equation. If in the advection-diffusion transport equation the natu-
ral physical dissipative process represented by the diffusive term is relatively weak,
there is no possibility to suppress the oscillations. On the other hand, if we intro-
duce some numerical dissipation, it can dominate the physical one. Consequently,
in the numerical solution too strong attenuation will be observed. The trouble with
the numerical diffusion is that it produces in the solution the advection–diffusion
equation the same effects as the physical diffusion.

During the last 30 years many numerical techniques and algorithms were pro-
posed. In these approaches both eulerian and lagrangian representation of the
transport equation are used. One can say that the methods basing on the direct
approximation of the partial differential equations like the finite difference method
or the finite element method applied in their standard forms, do not lead to effective
algorithms. Some of the more accurate approaches are presented in the following
sections.
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7.2 Solution by the Finite Difference Method

7.2.1 Solution Using General Two Level Scheme
with Up-Winding Effect

Many finite difference schemes have been proposed to solve the advection-diffusion
equation – for a review see e.g. Fletcher (1991). They have different properties
and not all of them are equally useful. Generally it can be said that nearly all dif-
ference schemes work well for diffusion-dominated transport. Conversely, if the
transport is advection-dominated, i.e. for a large Peclet number, practically all
of them suffer from poor accuracy. Since the difference methods are based on
the Taylor series expansion, a truncation error, greater or smaller, occurs always.
Consequently, numerical schemes will always generate a dissipation and dispersion
errors. The problems related to the solution of advection-diffusion equation with the
finite difference method will be illustrated using a general two-level approximating
formula. Note that the box scheme used previously for solving the advection equa-
tion is not appropriate for the advection-diffusion equation, since it is not capable to
approximate the diffusive term.

Consider the advection-diffusion equation (1.157) without source term:

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
= 0, (7.3)

with constant flow velocity U and coefficient of diffusion D are assumed. Equation
(7.3) is solved in the following domain: 0 ≤ x ≤ L, t ≥ 0, where L is length of the
channel reach. The following auxiliary conditions are assumed:

– initial condition: f(x, t = 0) = fi(x) for 0 ≤ x ≤ L
– boundary conditions: f(x = 0, t) = fo(t) for t ≥ 0

f (x = L, t) = fL(t) for t ≥ 0 or ∂f /∂x|x=L = ϕL(t) for t ≥ 0

where: fi(x), fo(t), fL(t), ϕL(t) are known.

Equation (7.3) is approximated on the numerical grid shown in Fig. 7.1 using
previously presented approximating formulas for the derivatives involved in this
equation. They are following:

– for 1st order time derivative (Eq. 5.99)

df

dt

∣∣∣∣
n

≈ f n+1 − f n

�t
, (7.4)
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Fig. 7.1 Grid points for general two levels difference scheme

– for 1st order spatial derivative (Eq. 5.100)

∂ f

∂ x

∣∣∣∣
j
≈ −η · fj−1 + (2η − 1) fj + (1 − η) fj+1

�x
(7.5)

– for 2nd order spatial derivative (Eq. 5.86)

∂2f

∂x 2

∣∣∣∣
j

≈ fj−1 − 2fj + fj+1

�x 2
. (7.6)

where �t is time step and �x is spatial step, whereas n and j are the indices of time
level and node, respectively.

Let us apply these formulas for Eq. (7.3) and assume that it is approximated
at point P (Fig. 7.1). The position of this point with respect to the time axis is
determined by the parameter θ ranging form 0 to 1.

Substitution of Eqs. (7.4), (7.5) and (7.6) in Eq. (7.1) yields:

f n+1
j − f n

j

�t
+ U

[

(1 − θ)
−η · f n

j−1 + (2η − 1) f n
j + (1 − η) f n

j+1

�x
+

+ θ
−η · f n+1

j−1 + (2η − 1) f n+1
j + (1 − η) f n+1

j+1

�x

]

+

−D

[

(1 − θ)
f n
j−1 − 2f n

j + f n
j+1

�x2
+ θ

f n+1
j−1 − 2f n+1

j + f n+1
j+1

�x2

]

=

0 for j = 2,3, . . . , M − 1

(7.7)
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where:

η – the weighting parameter ranging from 0 to 1,
θ – the weighting parameter ranging from 0 to 1,
M – number of grid points.

Setting j = 2,3, . . ., M– 1 one obtains a system of algebraic equation, which
must be completed by the prescribed boundary conditions. In matrix notation this
system is rewritten as:

A · f = R (7.8)

where:

A =

⎡

⎢⎢⎢⎢⎢
⎣

b1 c1
a2 b2 c2

a3 b3 c3
. . .

aM bM

⎤

⎥⎥⎥⎥⎥
⎦

, f =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f n+1
1

f n+1
2

f n+1
3
...

f n+1
M−1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, R =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R1
R2
R3
...

RM−1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

The matrix coefficients are as follows:

b1 = 1, c1 = 0

a = θ (−η · Ca − Cd), b = 1 + θ (Ca (2η − 1)+ 2Cd), c = θ (Ca (1 − η)− Cd)

bM = 1, cM = 0

whereas the elements of the vector of the right hand side are:

R1 = f0 (tn+1)

Rj = f n
j − Ca (1 − θ)

(
−η · f n

j−1 + (2η − 1) f n
j + (1 − η) f n

j+1

)

−Cd (1 − θ)
(

f n
j−1 − 2f n

j + f n
j+1

)
for j = 2, 4, . . . , M − 1

RM = fL (tn+1)

In the above equations

Ca = U ·�t

�x
and (7.9)
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Cd = D · �t

�x2
(7.10)

represent the previously introduced advective and diffusive Courant numbers,
respectively.

Note, that for specific values of the weighting parameters determine some well
known schemes are obtained. For instance θ = 1/2 and η = 1/2 correspond to the
Crank-Nicolson finite difference scheme; θ = 1 and η = 1/2 – to the fully implicit
centered difference scheme; θ = 0 and η = 1 – to the upwind scheme. Thus, Eq.
(7.7) can be considered as general two-level difference scheme.

The accuracy analysis performed using the modified approach, shows that Eq.
(7.7) modifies the advection-diffusion equation to the following form:

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
= Dn

∂2f

∂x2
+ En

∂3f

∂x3
+ · · · (7.11)

The coefficients of numerical diffusion Dn and dispersion En are defined as
follows:

Dn = U ·�x

2
((2θ − 1) Ca + (2η − 1)) (7.12)

En = U ·�x2

2

(
−1

3
+ Ca (2η − 1) (1 − θ)+ C2

a

(
θ − 2

3

))
(7.13)

The amplification factor G is expressed as:

G = 1 − (1 − θ) Ca [(1 − 2η) (cos (ϕ)− 1)+ i sin (ϕ)]

1 + θ Ca [(1 − 2η) (cos (ϕ)− 1)+ i sin (ϕ)]
(7.14)

where:

i = (−1)1/2 imaginary unit,
ϕ = 2π /N dimensionless wave number,
N – number of grid intervals per wavelength.

The condition of numerical stability |G| ≤ 1 requires that:

θ ≥ 1
/

2 and (7.15a)

η ≥ 1
/

2 (7.15b)

For the values of weighting parameters satisfying these relations the scheme is
absolutely stable.

Let us remember that formula (7.5) describes all the standard approximations
of 1st order derivative, because η = 0 gives the forward difference, η = 0.5 – the
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centred difference, whereas η= 1 – the backward difference. Since η can take values
from 0 to 1, then Eq. (7.5) is capable to increase the up-wind effect in a gradual
manner.

As it can be seen, for θ = 0.5 and η = 0.5 the coefficient of numerical dif-
fusion (Eq. 7.12) disappears, whereas the coefficient of numerical dispersion (Eq.
7.13) is still present. This means that if the physical diffusion in Eq. (7.3) is not
strong enough, oscillations will occur. Therefore in case of weak physical diffusion
introduction of some artificial diffusion may be necessary.

Example 7.1 In prismatic open channel of length L the water flows with constant
velocity U. The initial condition is determined by the Gauss distribution:

f (x,t = 0) = 1√
2π

exp

(

− (x − μ)2

2σ 2

)

for 0 ≤ x ≤ L, (7.16)

The following Dirichlet boundary conditions are imposed at both channel ends:

f (x = 0,t) = 0 for t > 0

fL (t) = 0 for L → ∞ and t > 0.

Assume that: U = 0.5 m/s = const., D = 0.25 m2/s = const., �x = 100 m =
const. and �t = 25 s (Ca = 0,125), whereas the mean value is μ = 1,400 m and the
standard deviation is σ = 264 m. In Fig. 7.2 the distributions of the function f along
channel axis for t = 7,200 s is shown. One can see that the solution obtained for θ
= 0.5 and η = 0.5 i.e. for the fully centered scheme is oscillating. Such behavior
could be expected, because in this case the value of Peclet number is P = 200, so
the transport is advection-dominated.

To suppress the oscillations, at first θ = 1 is assumed. This increases the dis-
sipativity of the scheme by introducing numerical diffusion, however it appears
insufficient to ensure smooth solution. To suppress entirely the oscillations it is nec-
essary to increase the value of the second weighting parameter η as well, η = 0.60
should be assumed.

Note that to provide smooth solution it was necessary to introduce only small
additional up-wind effect. This is an interesting feature of the applied scheme.

7.2.2 The Difference Crank-Nicolson Scheme

Let us consider the Crank-Nicolson scheme, which is the most commonly applied
method for the solution of 1D diffusion equation. We will investigate its behavior
in the case of the advection-diffusion equation. Setting in Eq. (7.7) θ = 0.5 and
η = 0.5 one obtains:



270 7 Numerical Solution of the Advection-Diffusion Equation

0 2000 4000 6000 8000 10000

– 0.20

0.00

0.20

0.40

0.60

0.80

1.00

f/fm

x [m]

t = 0
t = 7200s

θ =  0.50, η= 0.50

θ = 1.0, η = 0.60

θ = 1.0, η = 0.50

Fig. 7.2 Solution of the advection-diffusion equation by the difference scheme with D = 0.25
m2/s and Ca = 0.125 for various weighting parameters θ and η.

f n+1
j − f n

j

�t
+ U

4

(
f n
j+1 − f n

j−1

�x
+ f n−1

j+1 − f n+1
j−1

�x

)

+

− D

2

(
f n
j−1 − 2f n

j + f n
j+1

�x2
+ f n+1

j−1 − 2f n+1
j + f n+1

j+1

�x2

)

= 0 for j=2,3, . . . , M−1

(7.17)
Collecting the similar terms and substituting of the Courant numbers Ca and Cd

one obtains:

−
(

Ca

4
+ Cd

2

)
f n+1
j−1 + (1 + Cd) f n+1

j

(
Ca

4
− Cd

2

)
f n+1
j+1 =

=
(

Ca
4 + Cd

2

)
f n
j−1 + (1 − Cd) f n

j −
(

Ca
4 − Cd

2

)
f n
j+1 for j = 2,3, . . . , M − 1.

(7.18)

This system of equation is completed using two equations given by the assumed
boundary conditions. To illustrate the properties of the Crank-Nicolson scheme, let
us solve the advection-diffusion equation (7.3).

Example 7.2 We use the same data as in Example 7.1 except the coefficient of dif-
fusion. Numerical tests carried out for various values of the diffusion coefficient
D allow us to notice that some of them generate oscillating solution. However, for
increasing value of D the oscillations are systematically reduced and finally they
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Fig. 7.3 Solution of the advection-diffusion equation by the difference Crank-Nicolson scheme
with Ca = 1.5 for various coefficients of diffusion

disappear. This tendency is illustrated in Fig. 7.3. Increasing of the diffusion
coefficient gives rise to increased smoothing of the results.

One can suppose, that the Crank-Nicolson scheme becomes effective tool for
solving the advection-diffusion equation for sufficiently large participation of a
diffusion in the transport process.

Explanation of these features of the Crank-Nicolson scheme can be obtained by
the analysis of the modified equation (7.11). For the assumed values of the weighting
parameters θ = 0.5 and η = 0.5 one obtains:

Dn = 0 and (7.19)

En = U ·�x2

6

(
1 + C2

a

2

)
. (7.20)

It means that the Crank-Nicolson scheme is dissipation free, since both deriva-
tives of 1st order were approximated with the centred difference. The scheme does
not generate numerical diffusion (Dn = 0). However, it is always dispersive, because
En cannot be cancelled. Consequently, since no smoothing mechanism exists, the
solution of the advection equation by the Crank-Nicolson scheme will be always
oscillating.

On the other hand, while solving the advection-diffusion equation, a smoothing
of solution is caused by the physical dissipation represented in the equation by the
diffusion term. The intensity of smoothing increases with increasing of the coeffi-
cient of diffusion D. For sufficiently large value of D the wiggles are suppressed
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completely. An explanation of this property, resulting from analysis of the eigenval-
ues of the matrix of system (7.8) approximating the advection-diffusion equation,
is given by Fletcher (1991). The eigenvalues of the tridiagonal matrix of the system
(7.8) are related to a, b and c as:

λj = b + 2
√

a · c cos

(
j · π

M − 1

)
for j = 1, 2, . . . , M − 1 (7.21)

For solution to be spatially non-oscillatory, the real eigenvalues are required.
Therefore the condition:

a · c ≥ 0 (7.22)

must be respected to ensure smooth solution. For the system (7.18), obtained from
(7.8) with θ = 0.5 and η = 0.5 corresponding to the Crank-Nicolson scheme,
relation (7.22) takes the following form:

(
Ca

4
+ Cd

2

)(
−Ca

4
+ Cd

2

)
≥ 0. (7.23)

This inequality will be satisfied for:

Ca

Cd
≤ 2. (7. 24)

Accordingly to Eq. (7.2), the ratio Ca/Cd defines the Peclet number. Therefore,
the Crank-Nicolson scheme will provide highly accurate solution of the advection-
diffusion equation on condition that the Peclet number is not greater than
2 (P ≤ 2).

7.2.3 Numerical Diffusion Versus Physical Diffusion

A problem of great importance while solving the advection-diffusion transport equa-
tion is that the numerical error in form of the numerical diffusion gives rise to the
same symptoms in solution as the physical diffusion. Therefore it is very important
to distinguish in solution the effects of both processes and not to confuse them. To
this order the modified equation approach should be applied as very helpful tool.
This problem deals first of all with the advection dominated transport. For diffusion
dominated transport the significance of numerical diffusion is relatively low. This
fact is illustrated by the example presented below.

Example 7.3 The advection-diffusion equation is solved for a straight prismatic
channel in which the water flows at constant velocity U. The channel is divided
into intervals of constant length �x. The following initial-boundary conditions are
specified:
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– at t = 0: f(x, t) = 0 for x≥ 0,
– at x = 0 the function f jumps immediately from 0 to 1 and remains constant i.e.:

f (x = 0,t) =
{

0 for t = 0
1 for t> 0

– at the downstream end located at x = L→∞ the function is still equal to zero:
f(x) = 0.

These conditions describe the propagation of a steep front, which simultaneously
is subjected to the diffusion. Analytical solution of the advection-diffusion equation
is following (Chanson 2004, Elliot and James 1984):

f (x,t) = 1

2
erfc

(
x − U · t√

4D · t

)
+ 1

2
exp

(
U · x

D

)
erfc

(
x + U · t√

4D · t

)
(7.25)

where erfc(·) is the complementary function to the error function erf(·): erfc(·) =1
– erf(·). For more information about the error function see for example McQuarrie
(2003).

The same problem is solved using the difference scheme (7.7) with θ = 0 and η
= 1.0. It means that the following explicit scheme is applied:

f n+1
j − f n

j

�t
+ U

f n
j − f n

j−1

�x
− D

f n
j+1 − 2f n

j + f n
j−1

�x2
= 0 for j = 2,3, · · · M − 1

(7.26)

The advection-diffusion equation is solved analytically and numerically for U =
0.01 m/s and �x = 1 m. In Figs. 7.4 and 7.5 both solutions are compared for
t = 3,000 s.

Calculations were carried out with �t = 10 s for D = 0.002 m2/s and
D = 0.02 m2/s. This corresponds to the Pecet numbers equal to 5 and 0.5, respec-
tively. Although in both cases one can notice the presence of the numerical diffusion,
it is more significant for P = 5, i.e. for advection-dominated transport. For greater

f
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Fig. 7.4 Analytical and numerical solution of the advection-diffusion equation at t = 3,000 s and
for D = 0.002 m2/s, i.e. for P = 5
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Fig. 7.5 Analytical and numerical solution of the advection-diffusion equation at t = 3,000 s and
for D = 0.02 m2/s, i.e. for P = 0.5

coefficient of diffusion D the influence of the numerical diffusion is relatively small.
Note that for θ = 0 and η = 1.0 the coefficient of numerical diffusion (7.12) given
as:

Dn = U ·�x

2
(1 − Ca) (7.27)

for the assumed data is equal to 0.0045 m2/s. Then its relative influence on the con-
sidered transport process varies with variation of the coefficient of physical diffusion
D.

To solve the advection-diffusion equation dissipation-free numerical methods
should be applied if only possible. As it was shown previously, these methods pro-
vide accurate solutions for the Peclet number not greater than 2. Therefore, if the
computation can be carried out with low value of the Peclet number, then the best
choice is the application of a non-dissipative scheme as the Crank-Nicolson one.
In opposite case, when the dissipative numerical method is applied to solve the
advection-diffusion equation, we have to remember that in the solution a superpo-
sition of the physical and numerical diffusion will take place. We must be able to
separate the effects of both processes. This question is particularly important if the
value of coefficient of physical diffusion is determined by optimization methods in
which the observed and computed functions at the downstream end are compared.
In such a situation one can obtain a false value of searched coefficient of physi-
cal diffusion. Let us discuss this question using the results of the presented below
examples of solution.

Example 7.4 The advection-diffusion equation (7.3) is solved for a straight pris-
matic channel in which the water flows at constant velocity U. The following
initial-boundary conditions are specified:

– at t = 0:

f (x,t = 0) = exp

(
− (x − μ)2

2σ 2

)
for x ≥ 0,
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where μ is mean value, whereas σ is standard deviation.
– at x = 0 and at x = L is assumed: f(x = 0, t) = 0, f(x = L, t) = 0 for t ≥ 0.

The equation is solved using the difference scheme (7.7) with η = 0.5,
which generates the numerical diffusion characterized by the following coefficient
(Eq. 7.12):

Dn = U ·�x

2
· (2θ − 1) · Ca (7.28)

Note, that for θ = 0.5 Eq. (7.7) becomes the Crank-Nicolson scheme, whereas
for θ = 1 we obtain the fully implicit scheme.

Equally spaced grid is assumed. The computations are performed for the follow-
ing set of data: L = 15 km, U = 0.5 m/s, �x = 50 m, �t = 50 s, μ = 1400 m, σ =
264 m and D = 12.5 m2/s. The obtained results are displayed in Fig. 7.6.

The Crank-Nicolson scheme (θ = 0.5) does not generate numerical diffusion –
from Eq. (7.28) one obtains Dn = 0. However, the physical diffusion is so strong,
that it is capable to ensure smooth solution. Remember that the Crank-Nicolson
scheme provides highly accurate solution for P ≤ 2. In the considered case this
restriction is respected.

If we increase the value of the weighting parameter, let’s say assuming θ = 1,
then we obtain more damped solution. This is because of the additional numer-
ical diffusion generated by the method. For the assumed data Eq. (7.28) gives

t = 0

t = 7200 s

θ = 0,5

θ = 1

x[m]

f

1.0

0.8

0.6

0.4

0.2

0.0
0                      2500                   5000                  7500

Fig. 7.6 Numerical solution of the advection-diffusion equation using the difference scheme (7.7)
for various values of the weighting parameter θ
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Dn = 6.25 m2/s. In other words, while solving the advection-diffusion equation
(7.3) using the dissipative scheme, as a matter of fact we obtain a solution, which
coincides with the exact solution of the following equation:

∂f

∂t
+ U

∂f

∂x
− (D + Dn)

∂2f

∂x2
= 0 (7.29)

If we apply a dissipative method to solve the advection-diffusion equation,
then as results form Eq. (7.29), we always reinforce the diffusive transport and
consequently we increase smoothing.

While the numerical dispersion generated by the applied scheme can be identi-
fied relatively easily owing to the oscillating solution, identification of the numerical
diffusion needs some additional analysis. Note that the lack of evaluation of the
numerical diffusion can lead to wrong conclusions on the strength of physical dif-
fusion, since in the solution we observe common effect of both natural and artificial
dissipative processes. We must be aware that the numerical diffusion generated by
the standard numerical methods for typically used mesh dimensions�x and�t, can
be of the order similar to the physical one, i.e. Dn ≈ D. This conclusion is illustrated
in the example presented below.

Example 7.5 In straight channel of length L, having constant bed slope and constant
cross-sections, the water flows with constant velocity U. Assume that initially at t =
0, the concentration along channel axis is equal to zero: f(x, t = 0) = 0 for 0 ≤ x ≤
L. At the upstream end x = 0 the following boundary condition is imposed:

f (x = 0,t) =

⎧
⎪⎨

⎪⎩

fm
t

tm
for 0 ≤ t ≤ tm

fm
(

2 − t
tm

)
for tm ≤ t ≤ 2tm

0 for t > 2tm

This means that a triangular distribution of concentration with peak fm occurring
at tm is assumed. At the downstream end x = L the Neumann boundary condition
∂f /∂x|x=L = 0 is imposed.

The advection-diffusion equation is solved using the difference scheme (7.7) with
η = 0.5 for the following data: L = 5,000 m, �x = 50 m, U = 0.5 m/s, fm = 1 and
tm = 1,200 s. Computations were performed for the two following sets of
parameters:

(1) θ = 1, Ca = 1, D = 5 m2/s;
(2) θ = 1, Ca = 1.4, D = 0 m2/s.

The results of calculation obtained for these sets of data are shown in Fig. 7.7.
They represent the graph of f in time at position x = 2,500 m.

As one can see, the results are practically identical for two different sets of
data. This fact can be easily explained. Let us calculate the coefficient of numerical
diffusion according to Eq. (7.28) for the first set of data:
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Fig. 7.7 Equivalent effect of the physical and numerical diffusion

Dn = 0.5 · 50

2
(2 · 1 − 1) · 1 = 12.5 m2/s

This means that the diffusive transport was artificially increased and the obtained
solution coincides with the exact solution of the advection-diffusion equation pro-
duced by a non-dissipative method for the following value of diffusion coefficient:
D + Dn = 5 + 12.5 m2/s = 17.5 m2/s.

In the second set of data the physical diffusion is neglected (D = 0), whereas the
values of θ and Ca are such, that the scheme generates numerical diffusion with
Dn = 17.5 m2/s. Obviously, in this case the results are the same as previously.
Actually, each set of data which satisfies the condition: D + Dn = 17.5 m2/s will
provide the same numerical solution.

In such a situation one can expect problems while trying to identify the real value
of the coefficient D from the results of field experiments, applying the optimization
approach. Since one can obtain the same results for practically infinite number of
combinations of the values of parameters D, θ and Ca, then the determination of the
extreme point of the objective function may be impossible. This problem may be
solved on condition that we are capable to separate the effect of numerical diffusion
from the effect of physical diffusion in the solution. As we showed previously, this
can be done via the analysis of the modified equation only.

7.2.4 The QUICKEST Scheme

One of the most frequently applied finite difference approaches is the QUICKEST
scheme (Quadratic Upstream Interpolation for Convective Kinematics with



278 7 Numerical Solution of the Advection-Diffusion Equation

Estimated Streaming Terms). This method approximates the advection-diffusion
equation with accuracy of 3rd order.

The QUICKEST scheme was at first proposed by Leonard (1979). To approxi-
mate the advective term apart from the grid points the intermediate points j – 1/2 and
j + 1/2 are used. At these point the values of function f are determined via quadratic
interpolation based on the nodes j – 2, j – 1 and j in the first case, and j – 1, j and
j + 1 in second case, respectively.

An equivalent scheme was derived by Basco (Abbott and Basco 1989),
who introduced appropriate difference operators approximating the terms of the
advection-diffusion equation. This variant, being more often used, will be presented
below.

Let us approximate the equation of advection-diffusion with explicit centred
difference scheme, including the truncation error. One obtains:

f n+1
j − f n

j

�t
+ U

f n
j+1 − f n

j−1

2�x
= D

f n
j+1 − 2f n

j + f n
j−1

�x2
+

+
[
�t

2

∂2f

∂t2
+ �t2

3!
∂3f

∂t3
+ �t3

4!
∂4f

∂t4
+ · · ·

]n

j

+

+ U

[
�x2

3!
∂3f

∂x3
+ �x4

5!
∂5f

∂x5
+ . . .

]n

j
+

−D

[
2�x2

4!
∂4f

∂x4
+ 2�x4

6!
∂6f

∂x6
+ . . .

]n

j

.

(7.30)

Equation (7. 30) is simplified by:

– neglecting all terms with spatial derivatives of order higher than 3,
– replacing all derivatives with regard to time by the spatial derivatives using the

expression resulting from advection-diffusion equation (7.3).

Taking into account these assumptions Eq. (7.30) is rearranged to the following
form:

f n+1
j = f n

j − Cd

2

(
f n
j+1 − f n

j−1

)
+ Cd

(
f n
j+1 − 2f n

j + f n
j−1

)
+

+Ca

[
Ca
2 �x2 ∂2f

∂x2 + �x3

6

(
1 − C2

a − 6Cd
) ∂3f
∂x3

]n

j
.

(7.31)

The differential operators are approximated by the formulas:

∂2f

∂x2

∣∣∣∣

n

j
≈ f n

j+1 − 2f n
j + f n

j−1

�x2
, (7.32)
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∂3f

∂x3

∣∣∣∣

n

j
≈ ∂3f

∂x3

∣∣∣∣

n

j− 1
2

= f n
j+1 − 3n

j + 3f n
j−1 − f n

j−2

Δx3
. (7.33)

Substitution of Eqs. (7.32) and (7.33) in Eq. (7. 31) yields the final form of the
scheme:

f n+1
j = f n

j +
[
Cd (1 − Ca)− Ca

6

(
C2

a − 3Ca + 2
)]

f n
j+1+

−
[
Cd (2 − 3Ca)− Ca

2

(
C2

a − 2Ca − 1
)]

f n
j

+
[
Cd (1 − 3Ca)− Ca

2

(
C2

a − Ca − 2
)]

f n
j−1

+
[
Cd · Ca + Ca

6

(
C2

a − 1
)]

f n
j−2.

(7.34)

As in the formula for node j the values of f coming from preceding nodes are
involved, the method is not self-starting.

Note that Eq. (7.34) with U = 0 (Ca = 0) coincides with the explicit differ-
ence scheme for diffusion equation (Eq. (7.7) with θ = 0), whereas for D = 0 and
Ca = 1 one obtains the well known formula f n+1

j = f n
j−1, coinciding with the upwind

scheme for the advection equation (Eq. 5.108) with Ca = 1). Leonard (1979) showed
that the region of stability of method (7.34) varies according to the relation between
Ca and Cd.

7.3 Solution Using the Modified Finite Element Method

Let us reconsider the advection-diffusion equation (Eq. 7.3) but this time with vari-
able advection velocity U = U(x) and constant coefficient of diffusion D = const. Of
course all discussed methods can be developed for variable flow velocity. However,
as we will see soon, the modified element method allows taking into account U(x)
in a natural way.

To solve Eq. (7.3) the modified Galerkin finite element method, presented in the
Section 6.4.3, is applied. For some particular choices of the weighting parameters
this approach reduces to the well known finite element or finite difference methods.
Assume that the segment of a channel is divided with M nodes into M– 1 elements
of length �xj (j = 1,2, . . .,M– 1). The discretized solution domain is shown in
Fig. 5.19.

Accordingly to the Galerkin procedure the numerical solution must satisfy
the condition (5.118). For Eq. (7.3) with previously proposed modification this
condition takes the following form (Szymkiewicz 1993):

M−1∑

j=1

xj+1∫

xj

(
∂fc
∂t

+ Uc
∂fa
∂x

− D
∂2fa
∂x2

)
N(x) · dx = 0, (7.35)
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where N(x) is the vector of shape functions having components given by Eq. (5.125).
In Eq. (7.35) the subscript c denotes approximation of function according to formula
(6.91), whereas a denotes the approximation of the function according to formula
(6.88).

Let us calculate a single component of the above sum, corresponding to the ele-
ment j. Since in this element only two components of the vector N(x), i.e. Nj(x) and
Nj+1(x), are non-zero, then in Eq. (7.35) only two following non-zero products will
occur:

I(j) =
xj+1∫

xj

(
∂fc
∂t

+ Uc
∂fa
∂x

− D
∂2 fa
∂x2

)
Nj(x) · dx, (7.36a)

I(j+1) =
xj+1∫

xj

(
∂fc
∂t

+ Uc
∂fa
∂x

− D
∂2 fa
∂x2

)
Nj+1 (x) · dx, (7.36b)

Calculation of the integrals (7.36) is carried out step by step as it was shown
previously:

– for the time variation term in Section 6.4.3.2
– for the advective term in Sections 6.4.1 and 6.4.3.2,
– for the diffusive term in Section 5.3.2 (Eqs. 5.136 and 5.139).

Finally, the integral (7.36a) gives:

I(j) = ω
�xj

2

d fj
d t

+ (1 − ω)
�xj

2

d fj+1

d t
+

+ (ω·Uj + (1−ω)Uj+1)
2 ( − fj + fj+1) − D

� xj
( − fj + fj+1) + D

d fj
d x

∣∣∣
j

(7.37a)

whereas the integral (7.36b) gives:

I(j+1) = (1 − ω)
� xj

2
fj + ω

� xj

2
fj+1+

+ ((1−ω)Uj +ω·Uj+1)
2 ( − fj + fj+1) + D

� xj
( − fj + fj+1) − D df

dx

∣∣∣
j+1

.

(7.37b)
where ω is the weighting parameter ranging from 0 to 1.

Equations similar to (7.37a) and (7.37b) are obtained for all elements (j = 1,
2, . . ., M – 1). According to Eq. (7.35) they should be assembled leading to the
following global system of ordinary differential equations:

– for j = 1

ω
� xj

2
d fj
d t + (1 − ω)

� xj
2

d fj+1
d t + (ω·Uj+(1−ω)Uj+1)

2 ( − fj + fj+1)

− D
� xj

( − fj + fj+1) + D
d fj
d x

∣∣∣
j

(7.38a)
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– for j = 2, 3, . . ., M– 1

(1 − ω)
� xj−1

2

d fj−1

d t
+ ω

(
� xj−1

2
+ � xj

2

)
d fj
d t

+ (1 − ω)
� xj

2

d fj+1

d t
+

+ (1−ω)Uj−1+ω·Uj
2 ( − fj−1 + fj) + ω·Uj+(1−ω)Uj+1

2 ( − fj + fj+1)+
+ D
� xj−1

( − fj−1 + fj) − D
� xj

( − fj + fj+1) = 0
(7.38b)

– for j = M

(1 − ω)
� xj−1

2
fj−1 + ω

� xj−1

2
fj+

+ ((1−ω)Uj−1+ω·Uj)
2 ( − fj−1 + fj) + D

� xj−1
( − fj−1 + fj) − D df

dx

∣∣∣
j
.

(7.38c)

As the Dirichlet boundary conditions at the upstream and downstream ends are
imposed, the fluxes at these endpoints disappear. Consequently Eq. (7.38) can be
rewritten in the following matrix notation:

A
df
dt

+ (B + C) f = 0 (7.39)

where:

A– constant three-diagonals matrix given by the time variable term,
B– variable three-diagonals matrix given by the advective term,
C– constant three-diagonals matrix given by the diffusion term,
f = (f 1, f 2, . . ., fM) T – vector of unknowns set up from nodal values of f,
df
dt

=
(

df1
dt

,
df2
dt

, · · · ,
dfM
dt

)T

– vector of time derivatives,

T– symbol of transposition.

All matrices are of dimensions of (2M) × (2M).
The initial-value problem is solved using the two levels method (3.71) described

in Section 3.2. This method used for Eq. (7.39) yields the following system of
algebraic equations:

(A +�t · θ · (Bn+1 + C)) fn+1 = (A −�t (1 − θ )(Bn + C)) fn, (7.40)

where:

n – index of time level,
θ – weighting parameter,
�t – time step.
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After introducing the imposed boundary conditions this system is solved using
an appropriate method giving approximated value of f at next time level.

Example 7.6 In a straight channel of length L having constant bed slope and
constant cross-sections, the water flows with constant velocity. Assume that initially
at t = 0, the concentration along channel axis is equal to zero: f(x, t = 0) = 0 for 0
≤ x ≤ L. At the upstream end x = 0 the following boundary condition is imposed:

f (x = 0,t) =
{

0 for t ≤ 0
1 for t > 0

At the downstream end x = L the Neumann boundary condition

∂f

∂x

∣∣∣∣
x=L

= 0

is assumed. Therefore this example deals with the propagation of the sharp front of
concentration caused simultaneously by advection and diffusion (without the source
terms). In this case the advective-diffusive transport equation has the analytical
solution given by (7.25).

The following data are assumed: L = 5000 m, U = 0.5 m/s, �x = 100 m, �t =
100 s, which gives Ca = 0.5, whereas the coefficient of diffusion is D = 10 m2/s. It
means that in this case the Peclet number is relatively high (P = 40). This indicates
that advection dominates in the transport process.

In the Fig. 7.8 a comparison between analytical and numerical solution is
presented. The numerical solution is obtained with the following values of the
weighting parameters: θ = 0.5 and ω = 0.625 (calculated using Eq. (6.107)). Very
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advection-diffusion equation
obtained for various time with
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small differences between the solutions confirm good properties of the proposed
method. In spite of large value of the Peclet number only insignificant wiggles,
quickly disappearing with time, occurred.

7.4 Solution of the Advection-Diffusion Equation
with the Splitting Technique

The splitting technique (also called factorized steps or decomposition method) is
not a numerical method of solution of the partial differential equations. It should be
rather considered as an approach that simplifies a complex problem by its decom-
position. The concept of such approach is to split in each time step the governing
equation or the system of equations into a sequence of simpler problems. Next, the
obtained equations are solved using the appropriate numerical methods. The split-
ting process can be carried out in different ways. For example a 2D or 3D problem
can be split with regard to the independent spatial variables in order to be solved
as a sequence of 1D problems. The governing equation can be decomposed with
regard to time as well. An example of such approach is well known Alternating
Direction Implicit (ADI) method commonly used to solve 2D diffusion equation in
which to reach solution at new time level we ought to perform the calculations in
two stages with a half time step at each one (Abbott and Basco 1989). At every
stage 1D diffusion equations are solved. Such approach leads to simpler and more
efficient algorithms, which save the computational time and memory.

The decomposition can be also performed with regard to the physical processes
present in the governing equation. For instance in the case of advection-diffusion
equation we deal with a superposition of two physically different processes: advec-
tion and diffusion. Therefore this equation can be split in two equations representing
the advective part and the diffusive part respectively.

Theoretical background of the factorized steps technique was given by Yanenko
(1971). A comprehensive and up-to-date information on the splitting technique for
hyperbolic problems is given by LeVeque (2002). The method and its implementa-
tion is presented by Cunge et al. (1980). Many examples of its implementation for
solving both hydrodynamics and transport equations were published in numerous
papers as well. In this section we will limit our consideration to the problem of 1D
advection-diffusion transport equation.

Let us consider the advection-diffusion equation with the source term (1.157):

∂f

∂t
+ U

∂f

∂x
− D

∂ ,2f

∂x2
+ δ = 0. (7.41)

This equation can be rewritten as follows:

∂f

∂t
= F (7.42)
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where the term F contains all terms of Eq. (7.41) except the time derivative:

F = −U
∂f

∂x
+ D

∂2f

∂x2
− δ. (7.43)

Equation (7.42) integrated over a single time step 〈t, t + �t 〉 gives:

ft+�t = ft +�t

t+�t∫

t

F · dt, (7.44)

where ft and ft+�t denote the values of function f at the time levels t and t+ �t
respectively. Numerical methods differ in the way of approximation of the differen-
tial operators in F and in the quadrature method used to calculate the integral in Eq.
(7.44).

From Eq. (7.43) results that the new variable F can be presented as the sum of
three components representing the advective and diffusive transport as well as the
source term:

F = F(1) + F(2) + F(3), (7.45)

where:

F(1) = −U
∂f

∂x
, F(2) = D

∂2f

∂x2
, F(3) = −δ.

Substitution of Eq. (7.45) in Eq. (7.44) yields:

ft+�t = ft +�t

t+�t∫

t

(F(1) + F(2) + F(3))dt =

= ft +�t

t+�t∫

t

F(1)dt +�t

t+�t∫

t

F(2)dt +�t

t+�t∫

t

F(3)dt

. (7.46)

Let us exclude the first two terms of the right side hand and denote them as:

f (1)t+�t = ft +�t

t+�t∫

t

F(1)dt. (7.47)

Then Eq. (7.46) will take a more compact form:

ft+�t = f (1)t+�t +�t

t+�t∫

t

F(2)dt +�t

t+�t∫

t

F(3)dt. (7.48)
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The same can be applied to Eq. (7.48). Introducing a new variable:

f (2)t+�t = f (1)t+�t +�t

t+�t∫

t

F(2)dt (7.49)

allows us to rewrite Eq. (7.48) as follows:

f (3)t+�t = f (2)t+�t +�t

t+�t∫

t

F(3)dt. (7.50)

As it was afore-mentioned, in each time step �t the solution of the advection-
diffusion equation (7.41) is performed in three stages. In the first stage the pure
advection equation (7.47) is solved. Next, the diffusion equation (7.49) is solved
using the results obtained in the first stage. As the last stage of the calculation, Eq.
(7.50) representing the source term is solved. This algorithm can be written in a
more general form. Solution of Eq. (7.41) in the time interval 〈t, t+ �t〉 is obtained
as a results of the following sequential solutions:

∂f (1)

∂t
= F(1) with the initial condition f (1)t = ft, (7.51a)

∂f (2)

∂t
= F(2) with the initial condition f (2)t = f (1)t+�t

. (7.51b)

∂f (3)

∂t
= F(3) with the initial condition f (3)t = f (2)t+�t

. (7.51c)

The searched value of the function f at the time level t + �t is given as follows:

ft+�t = f (3)t+�t. (7.52)

Note that in each time step the result obtained from the preceding stage are used
as initial condition for the next one.

The splitting process can introduce an error into solution. As shows LeVeque
(2002) this error does not exist for linear problems, whereas it occurs for nonlin-
ear equations. Consequently, for linear problems the order of computational stages
preformed in a single time step does not matter.

The advantage of the splitting technique is the possibility of using different
numerical methods for solving each part of the transport equation. To solve the
pure advection equation the method of characteristics with appropriate technique of
interpolation is very often used, whereas the diffusion equation can be solved using a
number of well known numerical methods. For instance Cunge et al. (1980) suggest
the Holly-Preissmann approach for solution of the advective part (see Section 6.5.4)
and an explicit difference scheme for the diffusive part of the governing equation.
Good results can be also achieved with other methods (Szymkiewicz 1995).
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For illustration of this approach the equation of advection-diffusion transport
with a source term describing the decay of the transported matter is solved. If we
assume the steady state and the source term in the simplest form δ = κ·f (κ is
constant of decay), then the governing equation (7.41) is reduced to the following
ordinary differential equation:

U
df

dx
− D

d2f

dx2
+ κ · f = 0. (7.53)

For constant value f0 imposed at x = 0 Eq. (7.53) has the exact solution (Elliot
and James 1984):

f (x) = f0 · exp

(
U · x

2D

(
1 −

(
1 + 4

K · D

U2

)
1/2
))

for x > 0 (7.54)

where:

f0 – concentration imposed at the upstream end,
κ – constant of decay.

In the example presented below we solve Eq. (7.41) using the splitting technique
for such initial and boundary conditions which ensures the solution equivalent to
Eq. (7.54).

Example 7.7 In a straight channel of length L in which the water flows with constant
velocity U let us solve the advection-diffusion transport equation (7.41):

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
+ δ = 0. (7.55)

Assume that initially at t = 0, the concentration along channel axis is equal to
zero: f(x, t = 0) = 0 for 0 ≤ x ≤ L. At the upstream end x = 0 the following boundary
condition is imposed:

f (x = 0,t) =
{

0 for t ≤ 0
1 for t > 0.

Therefore at x = 0 a jump of function f is imposed. At the downstream end x =
L the Neumann boundary condition (∂f /∂x) x=L = 0 is assumed.

The following numerical methods are applied to solve Eq. (7.55):

• the method of characteristics with interpolation via spline functions of 3rd degree
for the advection term,

• the Crank-Nicolson difference scheme for the diffusion term,
• the implicit trapezoidal rule for the source term.

Equation (7.55) is solved for the following data: L = 12 km, U = 0,5 m/s,
x = 100 m, t = 100 s, D = 10 m2/s and κ = 0.0004 s−1. Since the function imposed
at the upstream end does not vary in time, the solution tends to the steady state. For



7.4 Solution of the Advection-Diffusion Equation with the Splitting Technique 287

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

f

x[km]

Fig. 7.9 Analytical (solid
line) and numerical (dotted
line) solutions of the
advection-diffusion equation
with source term after t = 3 h

the assumed data it is reached after t = 3 h. The function f(x) corresponding to this
state is shown in Fig. 7.9. For comparison the exact solution (7.54) of Eq. (7.53) is
plotted as well. It can be seen that very good agreement between both solutions is
obtained.

Example 7.8 Assuming that dissolved mater is fully mixed in the river cross section,
the evaluation of the biochemical oxygen demand (BOD) and the dissolved oxygen
(DO) in flowing stream can be described by the system of two 1D equations (Elliot
and James 1984):

∂B

∂t
+ U

∂B

∂x
− 1

A

∂

∂x

(
D · A

∂B

∂x

)
+ (K1 + K3) B = 0 (7.56)

∂C

∂t
+ U

∂C

∂x
− 1

A

∂

∂x

(
D · A

∂C

∂x

)
− K2 (Cs − C) + K1 · B + φ = 0 (7.57)

where:

t – time [s],
x – position [m],
B – BOD concentration of [mgl−1],
C – concentration of DO of [mgl−1]],
U – average velocity of water flow [m s −1 ],
E – coefficient of longitudinal dispersion [m2 s−1],
A – wetted cross-sectional area [m2]
K1 – the BOD reaction rate [s−1],
K2 – the reaeration rate coefficient [s−1],
K3 – the rate coefficient for removal of BOD by sedimentation and adsorption

[s−1],
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Cs – the saturated dissolved oxygen concentration [mgl−1],
φ– the net removal rate of dissolved oxygen for all processes other then

biochemical oxidation.

One can add that finding appropriate formulas for all biochemical processes
represented in the source terms in these equations is a complex task and their mathe-
matical description is still subject of research. We neglect this problem here since the
source terms rather do not complicate the numerical solution of advective-diffusive
transport equation.

The required auxiliary conditions are formulated as follows:

– the initial conditions: for t = 0 B(x, t) = Bi(x) and C(x, t) = Ci(x) for 0 ≤x ≤L are
given,

– the boundary conditions:

at the upstream end B(x = 0, t) = B0(t) and C(x = 0, t) = C0(t) for t≥ 0 are
imposed

at the downstream end (∂B/∂x)x=L = φB (t) and (∂C/∂x)x=L = φC (t) for
t ≥ 0 are imposed.

Solving numerically the initial-boundary problem for Eqs. (7.56) and (7.57), the
distribution of the dissolved oxygen and the biochemical oxygen demand along
considered channel reach is obtained. In the considered example it is assumed that
initially BOD(x, t = 0) = 0 and DO(x, t = 0) = 5 mg dm−1. The time constant load
causes that at point x = 0.8 km the BOD increases immediately to 20 mg dm−1.
The computations were performed for K1 = 1.25 · 10−4 s−1, K2 = 5 · 10−6 s−1,
K3 = 5 · 10−4 s−1, Cs = 5 mg l−1, D = 10 m2/s,�t = 100 s, L = 15 km, �x = 100
m and U = 0.25 m/s. The results obtained for t = 10 h are presented in Fig. 7.10.
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Fig. 7.10 Steady distribution
of BOD and DO along
channel downstream of the
point of release the pollutant
obtained via solution of Eqs.
(7.56) and (7.57)
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One can notice that the computed distributions BOD(x) and DO(x) are typical for
the flow downstream of the point of discharging when the waste water is released
with a load constant in time.

7.5 Solution of the Advection-Diffusion Equation Using
the Splitting Technique and the Convolution Integral

7.5.1 Governing Equation and Splitting Technique

In certain cases, when the flow in open channel is steady and uniform, 1D linear
advective-diffusive equation describing the transport of pollutants can be solved
without the approximation of derivatives. In this approach one can use the exact
solution of the advective-diffusive equation with constant coefficients obtained for
the upstream boundary condition in form of the Dirac delta function and the down-
stream end tending to infinity. Therefore instead of a system of algebraic equations
given by the finite difference or element method, an integral of convolution must
be calculated numerically. For this purpose any quadrature method can be used.
The error dependent on the accuracy of applied method is much smaller than the
one caused by the truncation of Taylor series. Consequently the proposed approach
is capable of producing highly accurate solution, because it does not generate any
numerical dissipation or dispersion (Szymkiewicz and Weinerowska 2005).

In Chapter 1 the following equation describing transport of a passive substance
dissolved in water in open channel was derived (Eq. 1.153):

∂(A · f )

∂t
+ ∂(Q · f )

∂x
− ∂

∂x

(
D · A

∂f

∂x

)
− δ = 0 (7.58)

where:

t – time,
x – spatial coordinate,
f – concentration,
D – coefficient of longitudinal dispersion,
A – cross-sectional area,
Q – discharge,
δ – source term.

Equation (7.58) is solved in domain: 0 ≤ x ≤ L and t ≥ 0 (L – length of channel
reach). After developing the derivatives in the two first terms and taking into account
the continuity equation (1.80) one obtains:

∂f

∂t
+ Q

A

∂f

∂x
− 1

A

∂

∂x

(
D · A

∂f

∂x

)
+ q

A
f − δ = 0 (7.59)
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where q is lateral inflow. This equation can be rewritten as follows:

∂f

∂t
+ U

∂f

∂x
− 1

A

∂

∂x

(
D · A

∂f

∂x

)
− ϕ = 0 (7.60)

where:

U = Q/A – cross sectional average velocity,
ϕ = δ– q · f/A – modified source term.

To solve the above equation an approach based on the splitting technique
described in preceding section is applied. Equation (7.60) can be rewritten in the
form

∂f

∂t
+ F(1) + F(2) = 0 (7.61)

where

F(1) = U
∂f

∂x
− 1

A

∂

∂x

(
D · A

∂f

∂x

)
and F(2) = −ϕ

At every time step �t Eq. (7.60) is solved in two stages. In the first stage the
advective-diffusive transport is considered:

∂f (1)

∂t
+ U

∂f (1)

∂x
− 1

A

∂

∂x

(
D · A

∂f (1)

∂x

)
= 0 (7.62)

with the initial condition f (1)(t) = f(t). In the second stage the source term is taken
into account:

∂f (2)

∂t
= ϕ (7.63)

with the initial condition f (2)(t) = f (1) (t +�t). Finally one obtains: f (t + �t) = f (2)

(t + �t). The above equations are solved using the convolution approach and the
finite difference method, respectively.

7.5.2 Solution of the Advective-Diffusive Equation
by Convolution Approach

Let us consider an advective-diffusive transport equation in the form:

∂f

∂t
+ U

∂f

∂x
− D

∂2f

∂x2
= 0 (7.64)
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with constant coefficients (U = const., D = const.). For the initial condition f (x, t
= 0) = 0 and the boundary conditions f (x = 0, t) = δ(t), f(x → ∞, t) = 0 for t ≥ 0
the following exact solution is obtained (Eagleson 1970):

f (x,t) = 1

(4π · D)1/2

x

t3/2
exp

(
− (U · t − x)2

4D · t

)
(7.65)

It holds for t > 0 and x > 0. The function δ(t) imposed at the upstream end
represents the Dirac delta function (McQuarrie 2003).

A river reach bounded by cross-sections x = 0 and x = x1 is considered as
dynamic linear and time invariant system. Therefore it can be described by a
convolution integral:

f1(t) =
P∫

0

w(τ )f0(t − τ )dτ (7.66)

where P is memory of the system. Equation (7.66) represents the way of transfor-
mation of function f0(t) into f1(t) (Fig. 7.11). More information on the Dirac delta
function and the convolution integral is given in Section 9.5.

Equation (7.66) allows us to calculate the function f1(t) at any point x1> 0 for any
function f0(t) imposed at upstream boundary x = 0, on condition that the function
w(t) is given.

Equation (7.66) says, that an output at time t is determined by an input taken from
time interval 〈t – P, t〉 because for t ≥ P the function w(t) insignificantly differs to
zero. In this case for x = x1 Eq. (7.65) becomes an impulse response function for
the considered river reach:

w(t) = 1

(4π · D)1/2

x1

t3/2
exp

(
− (U · t − x1)2

4D · t

)
(7.67)

Application of Eq. (7.66) will be successful on condition that the mass balance
is satisfied. This requirement implies the following condition:

P∫

0

w(t)dt = 1 (7.68)

f f

t t

x = 0 x x = x

0 1

1

Fig. 7.11 A channel reach of length x1 as a system transforming f0(t) into f1(t)



292 7 Numerical Solution of the Advection-Diffusion Equation

As the convolution integral can be calculated numerically using any quadra-
ture method (Press et al. 1992), this relation can be used to determine suitable
value of system memory and time step �τ accepted to compute the integral in Eq.
(7.66). We will come back to the Dirac delta function and the convolution technique
in Chapter 9, while discussing the linear lumped flood routing models.

Let us apply the described approach to solve the simplest case of advective-
diffusive transport for a steady uniform flow in straight and long channel.

Example 7.9 In open channel a steady uniform flow takes place. The flow velocity U
is constant. The initial concentration is equal to zero, whereas at x = 0 the following
function f0(t) is assumed:

f0(t) =
⎧
⎨

⎩

0 for t < 600 s
fm for 600 s ≤ t ≤ 1800 s
0 for t > 1800 s

It means that a rectangular distribution of concentration is imposed. It is a very
challenging test for the method of solution.

Assuming U = 0.5 m s−1 compute the functions fi(t) (j = 1, 2) at the points x1
= 1,500 m and x2 = 3,000 m for two values of diffusion coefficient: D = 0.0005
m2 s−1 and 0.5 m2 s−1.

The obtained solutions presented in Fig. 7.12 are close to the exact one. One can
suppose that the error resulting from trapezoidal rule used to integrate a convolution
is not significant. The calculations were carried out for�τ = 2 s. The Peclet number
(Eq. 7.1) for the data used here is equal to (U|D)�x=1,000�x. It means a total
domination of advection in the transport process, even for the smallest value of �x
applied in practice.

0 1800 3600 5400 7200 9000 t [s]
0

0.2

0.4

0.6

0.8

1

boundary condition D = 5  10    m  /s D = 5  10    m  /s−4 −12 2. .

x = 0 x = 1500 m x = 3000 m
f/fm

Fig. 7.12 Advective-diffusive transport of a rectangular distribution of concentration with
U = 0.5 m/s
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7.5.3 Solution of the Advective-Diffusive Equation with Variable
Parameters and Without Source Term

The example of solution presented above concerned a steady uniform flow. As a
matter of fact, steady flow in a natural stream is spatially varied. The velocity and
cross-sectional areas vary along x axis. Such case of transport is described by Eq.
(7.60). Neglecting the source term it can be rewritten as:

∂f

∂t
+ U

∂f

∂x
− 1

A

∂

∂x

(
D · A

∂f

∂x

)
= 0 (7.69)

where:

U = U(x) – cross-sectional average velocity,
A = A(x) – area of wetted cross-section.

Both functions U(x) and A(x) can be obtained from the solution of the system of
equations for steady gradually varied flow described in Chapter 4.

The convolution approach, which holds for steady uniform flow, can be extended
to solve the transport equation with variable coefficients, i.e. for steady gradually
varied flow. To this end the diffusive term in Eq. (7.69) is differentiated:

∂f

∂t
+
(

U − ∂D

∂x
− D

A

∂A

∂x

)
∂f

∂x
− D

∂2f

∂x2
= 0 (7.70)

In this equation the advective velocity and the coefficient of diffusion vary in
space. To solve Eq. (7.70) using the presented method, one can “freeze” locally
the velocity and the diffusivity. For this purpose a channel of length L is divided
into M intervals of length �xi as in the finite difference or finite element method
(Fig. 7.13a).

Each channel reach is considered as a dynamic system in which both the advec-
tive velocity and the coefficient of diffusion are assumed constant. Let us introduce
new variables defined as follows:

. . .

ΔxΔx Δx M1 2
a)

b)

x  = 0 x                     x                                            x                     x   = L x0 1 2 M −1

M−1

M

M1f t  (  ) 2f t  (  )f t  (  ) f t      (  ) f t   (  )0 subsystem
M

subsystem
2

subsystem
1

Fig. 7.13 A channel divided into intervals of length �xi (a) represented by M subsystems (b)
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uj = 1

2

[(
U − ∂D

∂x
− D

A

∂A

∂x

)

j−1
+
(

U − ∂D

∂x
− D

A

∂A

∂x

)

j

]

≈

≈ 1
2

[(
Uj−1 − Dj−Dj−1

�xj
− Dj−1

Aj−1

Aj−Aj−1
�xj

)
+
(

Uj − Dj−Dj−1
�xj

− Dj
Aj

Aj−Aj−1
�xj

)] (7.71)

dj = 1

2
(Dj−1 + Dj) (7.72)

where:

uj – modified average advective velocity between nodes j– 1 and j,
dj – average coefficient of diffusion between nodes j– 1 and j.

For each segment j = 1, 2, . . ., M one obtains the following impulse response:

wj(t) = 1

(4π · dj)1/2

�xj

t3/2
exp

(

− (uj · t −�xj)2

4dj · t

)

(7.73)

Consequently the function fj(t) for consecutive nodes (j = 1, 2, 3, . . .) can be
calculated as follows:

fj(t) =
Pj∫

o

wj(τ )fj−1(t − τ )dτ (7.74)

where Pj is memory of system j. Therefore a channel of length L has been divided
into M subsystems of length �xj in series, where the output from preceding reach
is the input for next one (Fig. 7.13b). This procedure is illustrated by solution of
Eq. (7.69) for steady gradually varied flow.

Example 7.10 In a trapezoidal channel of width B = 10 m, bank slope 1 : 1.5, bed
slope s = 0.0005, the Manning coefficient nM = 0.025 the discharge rate is Q =
18.487 m3 s−1. The normal depth corresponding to this value of Q is Hn = 1.5 m.
At x = 0 the water level was raised by a dam to Ho = 5 m (Fig. 7.14). For these data
the flow profile h(x) and the flow velocity U(x) are computed with �x = −300 m
= const. for 25 nodes using approach presented in Chapter 4. The calculated depths
vary from 5 m at x = 0 to 1.502 m at x = −7,200 m. The corresponding cross-
sectional areas vary from 87.5 m2 to 18.43 m2 and velocities from 0.091 to 0.43 m
s−1 respectively.

Next at the upstream end (x = −7,200 m) the rectangular distribution of concen-
tration as in Example 7.9, is specified. The function f 25(t) calculated at the section
of a dam for constant coefficient of diffusion D = 0.0075 m2 s−1 is presented in
Fig. 7.15.

The initial rectangular distribution of function f travels along x axis with insignif-
icant deformation. It results from varied velocity U(x) and small value of D. Due to
the lack of numerical dissipation and dispersion the obtained solution is free of
oscillations and it keeps very strong gradients. The error of solution can be caused
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Fig. 7.14 A steady varied flow in a channel
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Fig. 7.15 Advective-diffusive transport with varied flow velocity U = U(x)

by numerical calculation of the convolution and by averaging of the flow velocities
between the nodes on each intervals �xi (i = 1, 2, . . ., 25) only. Because the initial
distribution is changed insignificantly and the mass balance is satisfied perfectly,
one can suppose that this error is relatively small. Note that for assumed set of data
the Peclet number is very high (P = 17,200) and no other method can ensure the
solution of Eq. (7.69) with similar accuracy.

7.5.4 Solution of the Advective-Diffusive Equation
with Source Term

The simplest form of transport equation with source term is as follows:

∂ f

∂ t
+ U

∂ f

∂ x
− D

∂2f

∂ x2
− δ = 0 (7.75)
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Fig. 7.16 The grid points applied to solve Eq. (7.75)

The domain of solution (0 ≤ x ≤ L and t ≥ 0) is covered by grid points as in
the finite difference method. The mesh having dimensions �x×�t is presented in
Fig. 7.16.

A constant flow velocity U between cross-section xj and xj+1 is assumed. Let us
assume that the concentration f is known at all time levels preceding t. It is known
at the points x1, x2, . . ., xj at time level t+ �t as well. The aim is to calculate the
concentration f at point (xj+1, t+ �t). According to Eqs. (7.62) and (7.63) in each
time step the following equations should be solved:

∂ f ((1)

∂ t
+ U

∂ f (1)

∂ x
− D

∂2f (1)

∂ x2
= 0 (7.76)

with f (1)(t) = f(t) and

∂ f (2)

∂ t
= δ (7.77)

with f (2)(t) = f (1)(t + �t).
In the first stage the value of concentration at node (xi+1, t + �t) resulting

from advection and diffusion processes is calculated. For this purpose the following
equation is used:

f (1)
j+1(t +�t) =

pj∫

0

wj(τ )fj(t − τ )dτ (7.78)

This integration can be carried out as previously by the trapezoidal rule with
the integration step equal to �τ . For the time between the time levels, fj(t – τ ) is
calculated using linear interpolation.

To cover the distance between the cross-section xj and xj+1 a particle of dissolved
matter needs time equal to

�T = �x

U
(7.79)
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During this time the pollutant decays and the effect of this process must be taken
into account in the second step of calculation. Namely Eq. (7.77) should be solved.
To this end the trapezoidal rule is applied:

f (2)
j+1(t +�t) = f (1)

j+1(t +�t) + �T

2
(ϕ(1)

j+1(t +�t) + ϕ
(2)
j+1(t +�t)) (7.80)

where:

j– index of cross-section,
�T– time of particle travelling from cross-section j to j + 1,
�t–mesh dimension in t direction.

As the source term is dependent on the concentration f, Eq. (7.80) usually is
non-linear. Consequently an iterative method must be applied to solve it.

7.5.5 Solution of the Advective-Diffusive Equation in an Open
Channel Network

The convolution approach can be also applied to solve the transport equation in a
channel network, with variable coefficients U and D and lateral inflow. Similarly to
the steady gradually varied flow in a network, considered in Chapter 4, the transport
equation must be discretized for each branch of the network and additional condi-
tions, resulting from conservation principles, must be imposed at junctions. For a
junction of two channels showed in Fig. 7.17a they are:

fk = fi Qi + fj Qj

Qi + Qj
, (7.81)

whereas for a bifurcation of a channel as in Fig. 7.17b, the following relations are
valid:

fk = fi and (7.82a)

a) b)

j
k

i i

k

j

Fig. 7.17 Junction (a) and bifurcation (b) of the channels (arrows indicate positive flow direction)
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fk = fj (7.82b)

Equations (7.81), (7.82a) and (7.82b) allow us to solve the advective-diffusive
transport equation for the entire network.
Example 7.11 The SGVF is considered in the looped channel network showed
in Fig. 7.18. It consists of 10 branches having trapezoidal cross-sections. The
characteristics of the considered network are following:

– bed width 5.0 m;
– side slope 1:1.5;
– bed slope 0.0005;
– Manning coefficient nM = 0.035;
– length: channels no 1,2,3,8,9,10 – L = 500 m, channels no 4,5,6,7 – L = 1,000 m.

Each channel is divided into intervals of constant length �x = 50 m. The total
number of nodes is equal to 159. The bed elevation at the upstream end (point a)
is 7,000 m, whereas at the downstream end (point d) it is equal to 8,500 m. The
boundary conditions are specified in terms of water levels at the upstream end (point
a) and at the downstream end (point d) of network. They are as follows: Ha = 7,750
m, Hd = 7,500 m.

The results of calculations for the network shown in Fig. 7.18 are presented in
Table 7.1.

Now let us apply the convolution approach to solve the advective-diffusive trans-
port equation for a steady uniform flow in considered channel network. The flow
velocity U(x) and cross-sectional areas A(x) are known since they were calculated
previously using the SGVF equation. The initial concentration is assumed equal to
zero along all branches of the network. At the beginning of the channel number 1
i.e. at point a (Fig. 7.18), the following function fa(t) is imposed:

1

2
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4
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6

7

8

9

10a

b c

d

Fig. 7.18 Looped channel network
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Table 7. 1 Results of solution for network in Fig. 7.18

Channel Discharge [m3/s]
Upstream water
level [m]

Downstream
water level [m]

1
2
3
4
5
6
7
8
9
10

9,706
4,853
4,853
2,427
2,427
2,427
2,427
4,853
4,853
9,706

7,750
7,575
7,575
7,544
7,544
7,544
7,544
7,536
7,536
7,526

7,575
7,544
7,544
7,536
7,536
7,536
7,536
7,526
7,526
7,500

f1(t) =
⎧
⎨

⎩

0 for t < 0.5 h
Fm for 0.5 h ≤ t ≤ 1.5 h

0 for t > 1.5 h

It means that a rectangular distribution of concentration is assumed (Fig. 7.19,
point a).

The functions f(t) at the points b, c and d were calculated for the value of diffusion
coefficient equal to D = 0.00005 m2 s−1. The source term in the following simplest
formula is used:

δ = κ · f (7.83)

where κ =0.00005 s−1 is the constant of decay.
In Fig. 7.19 the time distribution of concentration at the selected points of the

network displayed in Fig. 7.18 is presented. The travelling rectangular distribution
of concentration is simultaneously subjected to smoothing caused by diffusion and
reduction of its height caused by the source term. Since the value of diffusion coef-
ficient is very low, one can expect that imposed at the upstream end the rectangular

0 2 4 6 81 3 5 7
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0.6

0.8

1

t [h]

  f F/  m..

node a

node b

node c

node d

Fig. 7.19 Advective-diffusive transport of rectangular distribution of concentration in the looped
network at its selected points computed with D = 0.00005 m2/s and κ = 0.00005 s−1
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distribution of concentration will be smoothed insignificantly. Indeed, in the con-
centration distributions calculated at points b, c and d one can notice, that only the
corners are rounded off although the imposed distribution of concentration travels
more than 6 h. It can be also seen that the error generated by the implicit trapezoidal
method used to integrate a convolution is very low. The calculations were carried
out for �τ = 0.1 s and �t = 100 s. In the considered example the Peclet number
(Eq. 7.2) is greater than 750,000. It indicates that advection dominates in the trans-
port process. Note that in the calculated distributions no oscillations, typical for the
finite difference or finite element method, are observed.

The obtained solution presented in Fig. 7.19 seems to be close to the exact one,
since in this case the source term has the linear form. Consequently the splitting
technique, applied for solution of the transport equation, does not generate any
additional error.
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Chapter 8
Numerical Integration of the System
of Saint Venant Equations

8.1 Introduction

While the equations describing unsteady flow in open channels were derived by
Barré de Saint Venant as early as in 1871 (Chanson 2004), for a long time they could
not be used successfully in engineering practice. The reasons for such situation
were both mathematical complexity of the equations and specific properties of open
channels. To overcome these difficulties the hydrologists were looking for simpler
equations describing unsteady flow. The simplifications of Saint Venant equations
led to the well known models of kinematic wave and diffusive wave. These equa-
tions require less data and they can be solved using simpler methods, sometimes
even analytical ones. It is important to note that both simplified equations are still
widely applied in hydraulic engineering.

The equations of unsteady flow, being a system of quasi-linear partial differen-
tial hyperbolic equations, need initial and boundary conditions, which in practice
can be given in numerical form only. On the other hand the data characterizing the
natural open channels are given numerically as well. These circumstances cause
that the equations of unsteady flow can be solved only using the numerical meth-
ods. Thus it is obvious that wide and effective application of the system of Saint
Venant equations in hydraulic engineering was closely connected with the progress
in informatics and computer technique. Simply, the numerical approach indispens-
able in open channel flow modeling was possible because of wide availability of the
computers.

At the very beginning the method of characteristics was used for solving the
system of Saint Venant equations. Its detailed description for the flows with free
surface is given by Abbott (1979). However, because of some difficulties caused by
nonlinearity of equations as well as for required non-equally spaced nodes typical
for rivers this method was practically gave up. Currently in open channel modeling
the finite difference method dominates. During the last 50 years many difference
schemes were proposed. For instance Cunge et al. (1980) present the following list
of the numerical schemes possible for solving the system of Saint Venant equations:
Lax scheme, leap-frog scheme, Abbot-Ionescu scheme, Delf Hydraulic Laboratory
scheme, Vasiliev scheme, Gunaratman-Perkins scheme, Preissmann scheme. The

301R. Szymkiewicz, Numerical Modeling in Open Channel Hydraulics, Water Science
and Technology Library 83, DOI 10.1007/978-90-481-3674-2_8,
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302 8 Numerical Integration of the System of Saint Venant Equations

first two schemes are explicit, the others are implicit. Except the Abbot-Ionecu
scheme working on so called staggered grid, all of them use the non-staggered grid.
This means that in each node the values of both functions Q and h are calculated.

It is commonly accepted that the most robust scheme is the four point implicit
difference scheme or more precisely – the Preissmann scheme (Abbott and Basco
1989, Cunge et al. 1980). Its alternative name is the box scheme. After Cunge et al.
(1980) the reasons of its widespread use are follows:

– it works on non-staggered grid, which allows us to calculate both unknowns in the
same nodes. This is important in natural rivers.

– it relates the variables coming from neighboring nodes only, what allows us using
variable space interval �x without affecting the accuracy of approximation.

– it ensures approximation of 1st order of accuracy and for particular case of 2nd
order.

– it gives exact solution of the linear wave equations for properly chosen values of
�x and �t, making possible the comparison of exact and numerical solutions.

– it is implicit and absolutely stable so it does not require limiting of the value of
time step, whereas the imposed boundary conditions are introduced readily.

Fascinating history of the box scheme is given by Abbott and Basco (1989). Note,
that the box scheme was used in Section 6.1 to solve the pure advection equation.

As it was mentioned previously, the dominating method for solving of the
unsteady flow equations is the finite difference method. The finite element method,
very effective for 2D and 3D flow problems, is rather seldom applied in open chan-
nel hydraulics. Some attempts (Cooley and Moin 1976) seemed to suggest that
this method has no distinct advantages compared to the finite difference method,
which did encourage its application. However, modifying the standard finite ele-
ment method one can obtain a numerical solver for the Saint Venant equations as
effective as the Preissmann scheme (Szymkiewicz 1991, 1995). It has the form of an
implicit two level six point scheme, which for properly chosen weighting parameters
represents even 3rd order of accuracy (Szymkiewicz 1995).

In the next sections we will present the solution of unsteady flow equations using
both mentioned approaches, i.e. the implicit four point difference scheme and the
modified finite element method.

8.2 Solution of the Saint Venant Equations Using the Box Scheme

8.2.1 Approximation of Equations

Consider the system of Saint Venant equations in the form of Eqs. (1.87) and (1.88):

∂Q

∂t
+ ∂

∂x

(
β · Q2

A

)
+ g · A

∂h

∂x
+ g · n2

M

R4/3
|Q| Q

A
= 0, (8.1)



8.2 Solution of the Saint Venant Equations Using the Box Scheme 303

∂h

∂t
+ 1

B

∂Q

∂x
= q

B
. (8.2)

This system is solved for 0≤ x≤ L and t ≥ 0. Let us assume subcritical flow
in the considered channel reach. In such a case the following initial and boundary
conditions must be prescribed: h(x,t = 0) = hi(t) and Q(x,t = 0) = Qi(t) for 0 ≤
x ≤ L, h(x = 0,t) = h0(t) or Q(x = 0,t) = Q0(t) and h(x = L,t) = hL(t) or Q(x =
L,t) = QL(t) for t ≥ 0.

The solution domain is covered with a grid of dimensions �xi×�t (i = 1, 2,
. . ., M) as presented in Fig. 4.11. Let us consider a single mesh as in Fig. 8.1,
containing 4 nodes (j − 1, n), (j, n), (j − 1, n + 1) and (j, n + 1).

Approximation of the derivative is carried out at point P, which is located in the
middle of the interval�xi. Note that the Preissmann scheme corresponds to the box
scheme with ψ = 0.5, so point P can move along t axis only, in a way controlled by
the weighting parameter θ .

The value of an arbitrary function fP (x, t) at point P is approximated as follows
(Cunge et al. 1980):

fp ≈ 1

2

(
θ · f n+1

j + (1 − θ )f n
j

)
+ 1

2

(
θ · f n+1

j+1 + (1 − θ )f n
j+1

)
, (8.3)

where:

θ – weighting parameter ranging from 0 to 1,
j – index of cross-section,
n – index of time level.

n +1

Δx

θΔt
Δt

(1 )− θ Δt

Δx/2 Δx/2

P

t

n

j                                       j +1

x

Fig. 8.1 Grid point for the Preissmann scheme
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Appropriate approximating formulas for the derivatives coincide with those given
by Eqs. (6.2) and (6.3) for ψ = 0.5:

∂f

∂t

∣∣∣∣
p

≈ 1

2

(
f n+1
j − f n

j

�t
+ f n+1

j+1 − f n
j+1

�t

)

, (8.4)

∂f

∂x

∣∣∣∣
p

≈ (1 − θ )
f n
j − f n

j+1

�xj
+ θ

f n+1
j − f n+1

j+1

�xj
, (8.5)

Let us apply these formulas to Eqs. (8.1) and (8.2). The dynamic equation
becomes:

1

2

Qn+1
j − Qn

j

�t
+ 1

2

Qn+1
j+1 − Qn

j+1

�t
+ (1 − θ )

�xj

((
β · Q2

A

)n

j+1
−
(
β · Q2

A

)n

j

)

+ θ

�x j

((
Q2

A

)n+1

j+1
−
(

Q2

A

)n+1

j

)

+

+ g · Ap

(

(1 − θ )
hn

j+1 − hn
j

�xj
+ θ

hn+1
j+1 − hn+1

j

�xj

)

+
(

g · n2
M

R4/3
|Q| Q

A

)

P

= 0

.

(8.6a)
The continuity equation (8.2) is approximated in a similar way:

1

2

hn+1
j − hn

j

�t
+1

2

hn+1
j+1 − hn

j+1

�t
+ 1

BP

(

(1 − θ )
Qn

j+1 − Qn
j

�xj
+ θ

Qn+1
j+1 − Qn+1

j

�xj

)

= qP

BP
.

(8.6b)

In both equations index P means that a function or algebraic expression is
approximated accordingly to the formula (8.3). Therefore we have:

Ap = 1

2

(
θ · An+1

j + (1 − θ )An
j

)
+ 1

2

(
θ · An+1

j+1 + (1 − θ )An
j+1

)
, (8.7a)

qp = 1

2

(
θ · qn+1

j + (1 − θ )qn
j

)
+ 1

2

(
θ · qn+1

j+1 + (1 − θ )qn
j+1

)
, (8.7b)

Bp = 1

2

(
θ · Bn+1

j + (1 − θ )Bn
j

)
+ 1

2

(
θ · Bn+1

j+1 + (1 − θ )Bn
j+1

)
, (8.7c)

(
g · n2

M

R4/3
|Q|Q

A

)

P

= 1

2

⎡

⎣θ

(
g · n2

M

R4/3
|Q| Q

A

)n+1

j

+ (1 − θ )

(
g · n2

M

R4/3
|Q|Q

A

)n

j

⎤

⎦+

+1

2

⎡

⎣θ

(
g · n2

M

R4/3
|Q| Q

A

)n+1

j+1

+ (1 − θ )

(
g · n2

M

R4/3
|Q| Q

A

)n

j+1

⎤

⎦ = 0

.

(8.7d)
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In Eqs. (8.6a) and (8.6b) the nodal values of the water levels hn+1
j and hn+1

j+1 as

well as the flow rates Qn+1
j and Qn+1

j+1 are unknowns. Such a pair of equations can
be written for each space interval i.e. for j=1, 2, 3, . . ., M − 1. Then we obtain a set
of 2(M − 1) algebraic equations with 2M unknowns, representing the nodal values
of function h and Q. Two boundary conditions allow us to complete the system:

– for node j = 1:

δ0 · hn+1
1 + (1 − δ0)Qn+1

1 = δ0 · h0(tn+1) + (1 − δ0)Q0(tn+1), (8.8)

– for node j = M:

δL · hn+1
M + (1 − δL)Qn+1

M = δL · hL(tn+1) + (1 − δL)QL(tn+1). (8.9)

In the above equations δ0 and δL are integer numbers that can take the value of
0 or 1. The value of 1 designates the boundary condition imposed in the form of
water stage (function h0(t) or hL(t)), whereas the value of 0 corresponds to the flow
discharge (function Q0(t) or QL(t)).

Finally, the system of non-linear algebraic equations of dimension (2M × 2M) is
obtained. This system can be presented in more compact matrix form:

F(X) = 0, (8.10)

where:

X=(h1, Q1, . . ., hj, Qj, . . ., hM, QM)T – vector of unknowns,
F=(F1, F2, . . ., Fj, Fj+1, . . ., F2M−1, F2M)T– vector of equations.

The equations of his system are as follows:

F1(hn+1
1 ,Qn+1

1 ) = δ · hn+1
1 + (1 − δ)Qn+1

1 − δ · h0(tn+1) − (1 − δ)Q0(tn+1) = 0,
...

(8.11a)

F2j−1

(
hn+1

j , Qn+1
j , hn+1

j+1 , Qn+1
j+1

)
= 0

F2j

(
hn+1

j , Qn+1
j , hn+1

j+1 , Qn+1
j+1

)
= 0

⎫
⎪⎪⎬

⎪⎪⎭
j = 1, . . . , M − 1,

...

(8.11b, c)

F2M

(
hn+1

M ,Qn+1
M

)
= δhn+1

M + (1 − δ)Qn+1
M − δh L (tn+1)− (1 − δ)QL (tn+1) = 0.

(8.11d)
The first and the last equation result from the boundary conditions, whereas the

other ones represent Eqs. (8.6a) and (8.6b) discretized using the Preissmann scheme.
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The system (8.10) must be solved using an iterative method. For this purpose one
can use the Newton method presented in Section 2.3.2. The iteration process has the
following form:

J(k) ·�X(k+1) = −F(k), (8.12)

where

�X(k+1) = X(k+1) − X(k) – correction vector,
J(k) – Jacobian matrix,
k – index of iteration.

The Jacobian matrix is given as:

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂F1

∂x1

∂F1

∂x2
. . .

∂F1

∂xi
. . .

∂F1

∂xN

∂F2

∂x1

∂F2

∂x2
. . .

∂F2

∂xi
. . .

∂F2

∂xN
...

...
...

...
∂Fi

∂x1

∂Fi

∂x2
. . .

∂Fi

∂xi
. . .

∂Fi

∂xN
...

...
...

...
∂FN

∂x1

∂FN

∂x2
. . .

∂FN

∂xi
. . .

∂FN

∂xN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (8.13)

where N = 2M is the dimension of considered system of equations.
One can notice that Eqs. (8.6a) and (8.6b) include the unknown values from

neighboring nodes only. Therefore in each algebraic equation only 4 unknowns
exist. This means that the coefficients related to other unknowns are equal to
zero and consequently the Jacobian matrix is banded. Its structure depends on the
imposed boundary conditions as shown in Fig. 8.2.

J = J =

a) b)

Fig. 8.2 Structure of matrix J for the system (8.10) corresponding to M = 5 for various boundary
conditions: (a) δ0= 1 and δL= 0; (b) δ0= 0 and δL= 1
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One can see that the bandwidth of the Jacobian matrix is equal to 5.
The following two issues are related to the numercal solution of the nonlinear

system (8.10):

– initial evaluation of solution,
– criterion for convergence.

As the first approximation of searched solution X(k=0)at the time level n + 1
usually the solution obtained for previous level n is assumed, i.e.:

(Qn+1
j )(k=0) = Qn

j and (hn+1
j )(k=0) = hn

j for j = 1, 2, . . . . . . , M. (8.14)

As a criterion for convergence one can use the following ones:

∣∣∣Q(k+1)
j − Q(k)j

∣∣∣ � εQ and
∣∣∣h(k+1)

j − h(k)j

∣∣∣ � εh for j = 1, 2, . . . , M,

(8.15)

where εQ is the assumed tolerance for the flow discharge Q and εh is the assumed
tolerance for the water stage h. Numerical experiments show that usually it is enough
to perform 2 ÷ 3 iterations to obtain the accuracy satisfying for practical purposes.

The Newton method requires that the system of linear algebraic equations is
solved in each iteration. To this purpose a modified Gauss elimination or LU
decomposition algorithm should be used, which takes advantage of the banded
matrix.

The Preissmann scheme involves the weighting parameter θ , which generally
ranges from 0 to 1. To recognize the influence of this parameter on the scheme
properties a stability analysis is carried out. Since the system of Saint Venant equa-
tions is non-linear, then such analysis using Neumann approach is performed for the
following linearized system of wave equations:

∂H

∂t
+ H

∂U

∂x
= 0, (8.16)

∂U

∂t
+ g

∂H

∂x
= 0, (8.17)

where H is a constant (average) depth. Such an analysis was carried out previously
in Section 6.1.2 for the pure advection equation solved using the box scheme. In this
case the stability analysis, although very similar, is slightly more difficult, because
it deals with the system of equations. On the other hand, this analysis has been pre-
sented by others authors, e.g. Liggett and Cunge (1975), Cunge et al. (1980), Abbott
and Basco (1989). For this reason only the final conclusions are presented here. The
Preissmann scheme applied for solving the Saint Venant equations is stable for any
Courant number defined as:

Cr = (g · H)1/2�t

�x
, (8.18)
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on condition that

θ ≥ 1

2
. (8.19)

Since this scheme is stable for any Courant number, relation (8.19) constitutes
the condition of absolute stability.

In the afore-mentioned publications one can find analysis of the amplitude and
phase errors as well. In next section we will take up an accuracy analysis using the
modified equation approach. As we will see this approach can be consider as an
alternative way of investigation of the numerical schemes.

8.2.2 Accuracy Analysis Using the Modified Equation Approach

Accuracy analysis is performed for the linear equations (8.16) and (8.17).
Approximation of these equations using the Preissmann scheme with uniformly
spaced nodes leads to the following algebraic equations:

1

2

Hn+1
j − Hn

j

�t
+ 1

2

Hn+1
j+1 − Hn

j+1

�t
+ H(1 − θ )

Un
j+1 − Un

j

�x
+ H · θ Un+1

j+1 − Un+1
j

�x
= 0,

(8.20)

1

2

Un+1
j − Un

j

�t
+ 1

2

Un+1
j+1 − Un

j+1

�t
+ g(1 − θ )

Hn
j+1 − Hn

j

�x
+ g · θ Hn+1

j+1 − Hn+1
j

�x
= 0.

(8.21)

Using the Taylor series expansion the nodal values of function H and U are
expressed in terms of their values at node (j + 1, n + 1) (Fig. 8.1). Taking into
account the terms up to 3rd order one obtains:

Hn+1
j ≈ Hn+1

j+1 −�x
∂H

∂x

∣∣∣∣

n+1

j+1
+ �x2

2

∂2H

∂x2

∣∣∣∣

n+1

j+1
− �x3

6

∂H

∂x3

∣∣∣∣

n+1

j+1
, (8.22a)

Hn
j ≈Hn+1

j+1 −�x
∂H

∂x

∣∣∣∣

n+1

j+1
+�t

∂H

∂t

∣∣∣∣

n+1

j+1
+ �x2

2

∂2H

∂x2

∣∣∣∣

n+1

j+1
+

+�x�t
∂2H

∂x∂t

∣∣∣∣

n+1

j+1
+ �t2

2

∂2H

∂t2

∣∣∣∣

n+1

j+1
− �x3

6

∂3H

∂x3

∣∣∣∣

n+1

j+1
− �t3

6

∂3H

∂t3

∣∣∣∣

n+1

j+1
+

− �x2�t

2

∂3H

∂x2∂t

∣∣∣∣

n+1

j+1
− �x�t2

2

∂3H

∂x∂t2

∣∣∣∣

n+1

j+1
(8.22b)
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Hn
j+1 ≈ Hn+1

j+1 −�t
∂H

∂t

∣∣∣∣

n+1

j+1
+ �t2

2

∂2H

∂t2

∣∣∣∣

n+1

j+1
− �t3

6

∂3H

∂t3

∣∣∣∣

n+1

j+1
. (8.22c)

Similar formulas can be written for the nodal values of function U. Substitution
in Eqs. (8.20) and (8.21) and regrouping yields the following modified equations:

∂H

∂t
+ H

∂U

∂x
= �t

2

∂2H

∂t2
− �t2

6

∂3H

∂t3
+ �x

2

∂2H

∂x∂t
+

−�x2

4

∂3H

∂x2∂t
− �x�t

4

∂3H

∂x∂t2
+ H

�x

2

∂2U

∂x2
− H

�x2

6

∂3U

∂x3
+

−H(1 − θ )�t
∂2U

∂x∂t
− H(1 − θ )

�x�t

2

∂3U

∂x2∂t
− H(1 − θ )

�t2

2

∂3U

∂x∂t2

(8.23)

∂U

∂t
+ g

∂H

∂x
= �t

2

∂2U

∂t2
− �t2

6

∂3U

∂t3
+ �x

2

∂2U

∂x∂t
− �x2

4

∂3U

∂x2∂t
+

−�x ·�t

4

∂3U

∂x∂t2
+ g

�x

2

∂2H

∂x2
− g

�x2

6

∂3H

∂x3
+ g(1 − θ )�t

∂2H

∂x∂t
+

−g(1 − θ )
�x ·�t

2

∂3H

∂x2∂t
− g(1 − θ )

�t2

2

∂3H

∂x∂t2

(8.24)

In these equations written for node (j + 1, n + 1), the node indices were omitted
for simplicity. From wave equations (8.16) and (8.17) the following relations are
derived:

∂2H

∂x∂t
= −H

∂2U

∂x2
, (8.25)

∂2H

∂t2
= g · H

∂2H

∂x2
, (8.26)

∂2U

∂x ∂t
= −g

∂2H

∂x2
, (8.27)

∂2U

∂t2
= g · H

∂ 2U

∂ x2
, (8.28)

∂3H

∂x2∂t
= −H

∂3U

∂x3
, (8.29)

∂3H

∂t3
= −g · H

2 ∂
3U

∂x3
, (8.30)



310 8 Numerical Integration of the System of Saint Venant Equations

∂3H

∂x∂t2
= g · H

∂3H

∂x3
, (8.31)

∂3U

∂x2∂t
= −g

∂3H

∂x3
, (8.32)

∂3U

∂t3
= −g2 · H

∂3H

∂x3
, (8.33)

∂3U

∂x∂t2
= g · H

∂3U

∂x3
, (8.34)

These relations allow us to eliminate the time-derivatives of the order higher than
one from Eqs. (8.23) and (8.24) and the modified equations take the final form:

∂H

∂t
+ H

∂U

∂x
= Dn

∂2H

∂x2
+ En1

∂3H

∂x3
+ En2

∂3U

∂x3
. . . , (8.35)

∂U

∂t
+ g

∂H

∂x
= Dn

∂2U

∂x2
+ En1

∂3U

∂x3
+ En3

∂3H

∂x3
+ . . . , (8.36)

where the coefficient of numerical diffusion Dn and the coefficients of numerical
dispersion En1, En2 and En3 are given as follows:

Dn =
(
θ − 1

2

)
g · H ·�t, (8.37)

En1 = g · H ·�x ·�t

2

(
1

2
− θ

)
, (8.38)

En2 = H ·�x2

6

(
(3θ − 2)C2

r + 1

2

)
. (8.39)

En3 = g ·�x2

6

(
(3θ − 2)C2

r + 1

2

)
. (8.40)

The Courant number Cr is defined by Eq. (8.18).
The modified equations (8.35) and (8.36) allow us to draw some conclusions on

the numerical properties of the Preissmann scheme:

1. This scheme applied for solving the unsteady flow equations leads to the system
of algebraic equations which satisfies the consistency condition. We can see that
for �x, �t →0 all terms at the right handside of Eqs. (8.35) and (8.36) tend
to zero. Consequently in the limit the modified equations at each node of the
numerical grid become the original wave equation.

2. The initial-boundary value problem for the modified system of equations limited
to the terms of second order (parabolic ones):
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∂H

∂t
+ H

∂U

∂x
= Dn

∂2H

∂x2
, (8.41)

∂U

∂t
+ g

∂H

∂x
= Dn

∂2U

∂x2
, (8.42)

is ill posed for Dn<0 i.e. for θ < 1/2. The solution does not exist, which means
that the scheme is unstable. The solution problem is well posed if Dn ≥ 0. This
happens for θ ≥ 0.5 only. Therefore in such a case the Preissman scheme is
absolutely stable. Since at the same time it is consistent, then for θ ≥ 0.5 the
scheme is convergent. Note, that this conclusion on stability condition coincides
with the conclusion presented previously using the stability analysis.

3. The diffusive term disappears for θ = 0.5. In such a case the scheme becomes an
approximation of 2nd order and consequently it is dissipation free. Therefore
in the modified equations at its right side hand the terms of 3rd order, con-
nected with dispersion, dominate. Indeed, for θ = 0.5 we obtain Dn = 0 and
simultaneously

En1 = 0, (8.43a)

En2 = g ·�x2

12
(1−C2

r ). (8.43b)

Consequently we can expect unphysical oscillations in the numerical solution.
Note that for Cr= 1 both dispersive terms disappear and the modified equations
becomes the original equation. In such a case the Preissmann scheme is non-
dissipative and non-dispersive, producing an exact solution of the wave equations
(8.16) and (8.17).

4. The numerical diffusion will occur for θ > 0.5 giving Dn > 0. It means that
the initial-boundary value problem for Eqs. (8.41) and (8.42) is well posed and
its solution exists always. Therefore the scheme is absolutely stable regardless
of the assumed mesh dimensions and average depth H. However this scheme,
being an approximation of 1st order, generates the numerical diffusion which
will affect the numerical solution. Its magnitude depends on the values of mesh
dimensions and the weighting parameter θ . Therefore the scheme is dissipative.
It eliminates the oscillations caused by dispersivity, but at the same time it gives
rise to unphysical smoothing, especially significant when strong gradients occur
in the solution.

These conclusions are confirmed by the following numerical example.

Example 8.1 Assume a straight horizontal channel in which the water stays initially
at rest with constant depth H(x, t) = 0.85 m. At the boundary x = 0 the following
function is imposed:
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H(x = 0, t) =
{

0.85 m
0.95 m

for
for

t ≤ 0
t > 0

This boundary condition generates a jump of depth propagating along the chan-
nel. The second boundary condition imposed far away from upstream end (L =
200 m) is: H(x = L, t) = 0.85 m. Additionally, it is assumed that H = 0.90 m and
g = 10 m/s2 . For these data the wave celerity is (g·H)1/2= 3 m/s. A uniform grid
with �x = 1.50 m is used. The results of computations carried out for various val-
ues of the Courant number and for various values of the weighting parameter θ are
displayed in Figs. 8.3, 8.4 and 8.5.

They agree with the conclusions resulting from the accuracy analysis. The
Preissmann scheme provides exact solution for Cr=1 and θ = 0.5. For other Courant
numbers oscillations appear in both H(x, t) and U(x, t) (Figs. 8.3 and 8.4). Such
results could be expected, since for θ = 0.5 and Cr 
= 1 the scheme, being dissipation
free, becomes dispersive.

0.0 40.0 80.0 120.0

0.80

0.85

0.90

0.95

x [m]

H [m]

Cr =1.00

Cr =0.50

Cr =1.50

Fig. 8.3 Depth H(x) at t = 15 s calculated using the Preissmann scheme for θ = 0.50
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Cr =1.00
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Cr =1.50

Fig. 8.4 Flow velocity U(x)
at t = 15 s calculated using
the Preissmann scheme for
θ = 0.50



8.3 Solution of the Saint Venant Equations Using the Modified Finite Element Method 313

0.0 40.0 80.0 120.0
0.80

0.85

0.90

0.95

x [m]

H [m]

exact

Θ = 1.00Θ = 0.65

Fig. 8.5 Depth H(x) at t = 15 s calculated using the Preissmann scheme for Cr = 0.5

To eliminate the effect of dispersivity some numerical diffusion can be intro-
duced into the solution. Indeed, as it is shown in Fig. 8.5, taking θ = 0.65 we
significantly reduce the oscillations, whereas θ = 1.0 eliminates them completely.
Obviously, due to this diffusion the sharp discontinuity in H and U gradually
disappears.

The results of calculations should be rather smooth, however without to strong
smoothing. The experiences of many authors (for instance Cunge et al. 1980) sug-
gest that the best results are given by the weighting parameter θ close to 0.67, which
ensures smooth solution in the case of gentle flood waves.

8.3 Solution of the Saint Venant Equations Using the Modified
Finite Element Method

8.3.1 Spatial and Temporal Discretization of the Saint Venant
Equations

Although the finite difference method is dominating in modelling of 1D open chan-
nel flow, the finite element method can be applied as well. Moreover, it appears that
this method can yield a scheme representing higher accuracy comparing with well
known difference schemes. This approach previously used to solve the 1D transport
equations in open channel (Szymkiewicz, 1995) can be applied to solve the unsteady
flow equations as well. The modification deals with the process of integration and
leads to a more general form of algebraic equations approximating the governing
equations.

In Section 6.4 the finite element method was used to solve the advection equa-
tion. However to obtain satisfying results the standard version of the finite element
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method had to be modified. This approach yields a six-point implicit scheme with
two weighting parameters. Its particular cases are the standard finite element method
and the well-known finite difference schemes. An accuracy analysis carried out
using the modified equation approach shows that by proper choice of the values
of two weighting parameters an accuracy of 3rd order can be obtained. For bet-
ter understanding the method let us remember some basic information presented
previously in Section 6.4.

Assume a channel reach of length L, which using M nodes is divided into
M − 1 elements. According to the Galerkin procedure, described in details by
Zienkiewicz (1972) and previously presented in Section 6.4, solution of considered
partial differential equation has to satisfy the following condition:

L∫

0

�(fa, . . .)N (x) dx =
M−1∑

j=1

xj+1∫

xj

�(fa, . . .)N (x) dx = 0 (8.44)

where:

Φ – symbolic representation of solved equation,
fa – approximation of any function f(x, t) occurring in equation,
N(x) – vector of linear basis functions,
L – length of channel reach,
j – index of node,
M – number of grid points.

For the system of Saint Venant equations the condition (8.44) reads:

M−1∑

j=1

xj+1∫

xj

(
∂Q

∂t
+ ∂

∂x

(
β · Q2

A

)
+ g · A

∂h

∂x
+ g · (nM)

2 |Q| Q

R4/3 · A

)
N (x) dx = 0,

(8.45a)

M−1∑

j=1

xj+1∫

xj

(
∂h

∂t
+ 1

B

∂Q

∂x
− q

B

)
N (x) dx = 0. (8.45b)

In the standard approach the function f(x, t) is approximated as follows:

fa(x,t) =
M∑

j=1

Nj(x)fj(t), (8.46)

where fj(t) represents nodal value of function f(x, t). When linear basis functions are
applied in each element only two following integrals in Eq. (8.44) exist:
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xj+1∫

xj

fa(x,t )Nj(x)dx =
(

2

3
fj(t) + 1

3
fj+1(t)

)
�xj

2
, (8.47a)

xj+1∫

xj

fa(x,t )Nj+1(x)dx =
(

1

3
fj(t) + 2

3
fj+1(t)

)
�xj

2
, (8.47b)

where �xj is the distance between nodes. Integration of Eqs. (8.45a) and (8.45b)
term by term gives a system of ordinary differential equations over time. This pro-
cedure has been described in details for the advection equation in Section 6.4. As
we remember, such approach appears ineffective. The same is for the Saint Venant
equations as well. The standard version of the finite element method does not ensure
satisfactory results. Spatial oscillations of the type “2�x” are usually observed in
the water level and discharge. In Fig. 8.6 an example of oscillating results is dis-
played. This is a longitudinal profile of the water stages calculated using the standard
form of the finite element method. The same can be observed for the discharges as
well. Such oscillations are typical for approximation of the advective term using the
central difference when the diffusion, physical or numerical, is too weak to coun-
teract local convective instabilities. They should not be regarded as instability in the
Neumann sense (Abbott and Basco 1989). The reason of these oscillations is the
applied approximation, which for the non-linear terms generates a large number of
products of the nodal values of dependent variable (Fletcher 1991). To eliminate
the oscillations usually some numerical dissipativity is introduced (see Katopodes
1984).

As it was shown in Section 6.4, the standard approach can be modified when the
linear trial functions are assumed. Namely the integral of the product of approxi-
mation of function and basis function in an element can be expressed as a product

h [m]

x [km]

12

8

4

0 10 20 30 40 50

Fig. 8.6 Oscillating water level along channel computed using the standard finite element method
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of certain average value of the function in the element and the integral of the basis
function in this element. Therefore we have:

xj+1∫

xj

fa(x, t)Nj(x)dx = fc(t)

xj+1∫

xj

Nj(x), (8.48a)

xj+1∫

xj

fa(x, t)Nj+1(x)dx = fc(t)

xj+1∫

xj

Nj+1(x). (8.48b)

The weighted average values of function f(t) in element j are defined as follows:

fc (t) = ω · fj (t)+ (1 − ω) fj+1 (t) for Eq. (8.48a) (8.49a)

fc (t) = (1 − ω) fj (t)+ ω · fj+1 (t) for Eq. (8.48b) (8.49b)

where ω is weighting parameter ranging from 0 to 1. Note that assuming ω = 2/3
one obtains the standard finite element method (Eqs. 8.47a and 8.47b), whereas
ω = 1/2 corresponds to approximation using the algebraic average taken from the
nodal values in an element. This concept applied for open channel unsteady flow
and transport equations (Szymkiewicz 1995) appeared effective, since it leads to
the scheme having the numerical properties comparable with the finite difference
Preissmann scheme.

Calculation of one integral in expression (8.45a) over an element of length
�xj = xj+1–xj is carried out in the following way:

Xj+1∫

Xj

(
∂Qc

∂t
+ ∂

∂x

(
β · Q2

A

)

a
+ g · Ac

∂ha

∂x
+
(

g · n2
M

Q |Q|
R4/3 · A

)

c

)
Nj(x)dx =

=
(
ω

dQj

dt
+ (1 − ω)

dQj+1

dt

)
�xj

2
+
(

−
(
β · Q2

A

)

j
+
(
β · Q2

A

)

j+1

)

+

+g
(
ω · Aj + (1 − ω)Aj+1

) (−hj + hj+1
)+

+
(

ω ·
(

g · n2
M

Q |Q|
R4/3 · A

)

j
+ (1 − ω)

(
g · n2

M
Q |Q|

R4/3 · A

)

j+1

)
�xj

2
(8.50a)
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xj+1∫

xj

(
∂hc

∂t
+ 1

Bc

∂Qa

∂x
− qc

Bc

)
Nj(x)dx =

=
(
ω

dhj

dt
+ (1 − ω)

dhj+1

dt

)
�xj

2

+ −Qj + Qj+1

ω · Bj + (1 − ω)Bj+1
− ω · qj + (1 − ω) qj+1

ω · Bj + (1 − ω)Bj+1

�xj

2

(8.50b)

xj+1∫

xj

(
∂Qc

∂t
+ ∂

∂x

(
Q2

A

)

a
+ g · Ac

∂ha

∂x
+
(

g · n2
M

Q |Q|
R4/3 · A

)

c

)
Nj+1(x)dx =

=
(
(1 − ω)

dQj

dt
+ ω

dQj+1

dt

)
�xj

2
+
(

−
(
β · Q2

A

)

j
+
(
β · Q2

A

)

j+1

)

+
+ g

(
(1 − ω)Aj + ω · Aj+1

) (−hj + hj+1
)+

+
(

(1 − ω)

(
g · n2

M
Q |Q|

R4/3 · A

)

j
+ ω ·

(
g · n2

M
Q |Q|

R4/3 · A

)

j+1

)
�xj

2
(8.51a)

xj+1∫

xj

(
∂hc

∂t
+ 1

Bc

∂Qa

∂x
− qc

Bc

)
Nj+1(x)dx =

=
(
(1 − ω)

dhj

dt
+ ω

dhj+1

dt

)
�xj

2
+ −Qj + Qj+1

(1 − ω)Bj + ω · Bj+1

− (1 − ω) qj + ω · qj+1

(1 − ω)Bj + ω · Bj+1

�xj

2

(8.51b)

In these expressions the subscript a denotes approximation according to formula
(8.46) while the subscript c denotes approximation by Eqs. (8.49a) and (8.49b). It
can be seen that the proposed modification does not concern the derivatives with
regard to x, which are approximated using the standard approach.

When all integrals in each element are summed up according to Eq. (8.44), the
global system of ordinary differential equations over time is obtained:

– for j = 1

ω
�xj

2

dQj

dt
+ (1 − ω)

�xj

2

dQj+1

dt
−
(
β · Q2

A

)

j
+
(
β · Q2

A

)

j+1
+

+g
(
ω · Aj + (1 − ω)Aj+1

) (−hj + hj+1
)+

+ω · �xj
2

(
g · n2

M
Q |Q|

R4/3 · A

)

j
+ (1 − ω)

�xj
2

(
g · n2

M
Q |Q|

R4/3 · A

)

j+1
= 0

(8.52a)
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ω
�xj

2

dhj

dt
+ (1 − ω)

�xj

2

dhj+1

dt
+ −Qj + Qj+1

ω · Bj + (1 − ω)Bj+1

− ω · qj + (1 − ω) qj+1

ω · Bj + (1 − ω)Bj+1

�xj

2
= 0

(8.52b)

– for j = 2, . . ., M − 1

(1 − ω)
�xj−1

2

dQj−1

dt
+ ω

(
�xj−1

2
+ �xj

2

)
dQj

dt
+ (1 − ω)

�xj

2

dQj+1

dt
+

−
(
β · Q2

A

)

j−1
+
(
β · Q2

A

)

j+1
+ g

(
ω · Aj−1 + (1 − ω)Aj

) (−hj−1 + hj
)+

+g
(
ω · Aj +(1 − ω)Aj+1

) (−hj + hj+1
)+ (1 − ω)

�xj−1

2

(
g · n2

M
Q |Q|

R4/3 · A

)

j−1
+

+ω
(
�xj−1

2
+ �xj

2

)(
g · n2

M
Q |Q|

R4/3 · A

)

j
+(1 − ω)

�xj

2

(
g · n2

M
Q |Q|

R4/3 · A

)

j+1
= 0

(8.52c)

(1 − ω)
�xj−1

2

dhj−1

dt
+ ω

(
�xj−1

2
+ �xj

2

)
dhj

dt
+ (1 − ω)

�xj

2

dhj+1

dt
+

+ −Qj−1 + Qj

ω · Bj−1 + (1 − ω)Bj
+ −Qj + Qj+1

ω · Bj + (1 − ω)Bj+1
+

− ω · qj−1 + (1 − ω) qj

ω · Bj−1 + (1 − ω)Bj

�xj−1

2
− ω · qj + (1 − ω) qj+1

ω · Bj + (1 − ω)Bj+1

�xj

2
= 0

(8.52d)

– for j = M

(1 − ω)
�xj−1

2

dQj−1

dt
+ ω

�xj−1

2

dQj

dt
+

−
(
β · Q2

A

)

j−1
+
(
β · Q2

A

)

j
+ g

(
(1 − ω)Aj−1 + ω · Aj

) (−hj−1 + hj
)+

+ (1 − ω)
�xj−1

2

(
g · n2

M
Q |Q|

R4/3 · A

)

j−1
+ ω

�xj−1

2

(
g · n2

M
Q |Q|

R4/3 · A

)

j
= 0

(8.52e)
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(1 − ω)
�xj−1

2

dhj−1

dt
+ ω

�xj−1

2

dhj

dt
+

+ −Qj−1 + Qj

(1 − ω)Bj−1 + ω · Bj
− (1 − ω) qj−1 + ω · qj

(1 − ω)Bj−1 + ω · Bj

�xj−1

2
= 0

(8.52f).

It can be rewritten in the matrix form, typical for the finite element method:

S
dX
dt

+ C · X = 0 (8.53)

where:

X=(Q1(t), h1(t), . . ., QM(t), hM(t))T – vector of unknowns set up from nodal
values of Q and h,

dX
dt

=
(

dQ1

dt
,
dh1

dt
, . . . ,

dQM

dt
,
dhM

dt

)T

– vector of time derivatives,

T– symbol of transposition
S – constant matrix, symmetrical and banded,
C – variable matrix, asymmetrical and banded.

The matrices S and C have dimensions of (2M) × (2M) with bandwidth equal
to 8.

The system (8.53) is integrated over time using the method (3.71):

Xn+1 = Xn +�t

(
θ

dXn+1

dt
+ (1 − θ )

dXn

dt

)
(8.54)

where:

θ – weighting parameter ranging from 0 to 1,
�t – time step,
n – index of time level.

This leads to the system of non-linear algebraic equations:

(S +�t · θ · Cn+1)Xn+1 = (S −�t(1 − θ )Cn)Xn (8.55)

The system (8.55) has to be completed by the boundary conditions. They are as
follows:

• at the upstream end of a channel (j = 1) the water level h1(t) or the flow discharge
Q1(t) for t > 0 are imposed,

• at the downstream end of a channel (j = M) the water level hM(t) or the flow
discharge QM(t) for t > 0 are imposed.
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The system (8.55) has dimensions of (2M) × (2M), whereas its matrix of coef-
ficients is banded with bandwidth equal to 8. To solve this non-linear system an
iterative method like the Newton method has to be used.

8.3.2 Stability Analysis of the Modified Finite Element Method

Stability analysis is carried out for the simplified linear form of the governing equa-
tions, i.e. for the wave equations (8.16) and (8.17). Approximation of this system
for the equally spaced nodes (�x = const.) yields the following system of algebraic
equations:

1 − ω

2

Hn+1
j−1 − Hn

j−1

�t
+ ω

Hn+1
j − Hn

j

�t
+ 1 − ω

2

Hn+1
j+1 − Hn

j+1

�t
+

+θ H

2�x

(
−Un+1

j−1 + Un+1
j+1

)
+ (1 − θ)

H

2�x

(
−Un

j−1 + Un
j+1

)
= 0

(8.56a)

1 − ω

2

Un+1
j−1 − Un

j−1

�t
+ ω

Un+1
j − Un

j

�t
+ 1 − ω

2

Un+1
j+1 − Un

j+1

�t
+

+θ g

2�x

(
−Hn+1

j−1 + Hn+1
j+1

)
+ (1 − θ)

g

2�x

(
−Hn

j−1 + Hn
j+1

)
= 0

(8.56b)

for j = 2, 3, . . ., M − 1

Note that the considered method corresponds to the mesh presented in Fig. 8.7.
The presented method involves two weighting parameters ω and θ . Taking ω =

2/3 the finite element method in its standard form is obtained, whereas for ω= 1 this
method coincides with the finite difference one. When θ = 1/2 the method becomes

Δt

Δx Δx

t

t

tn

n+ 1

xx                          x                           xj−1                             j                                  j+1

(1  )   − θ Δt

θΔt

1 − ω 1 − ω 
2 2ω

Fig. 8.7 Numerical grid for the modified finite element method
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the Crank-Nicolson scheme (equivalent to the implicit trapezoidal rule), whereas
with θ = 1, it is the implicit Euler scheme.

The stability analysis is carried out by the Neumann method (Potter 1973). As we
know from Section 5.4.3, this approach requires expanding the unknown functions
H(x, t) and U(x, t) in Fourier series and examining the behaviour of its components.
Since the system of equations (8.52a) and (8.52b) is linear, then one can examine a
single kth component only. According to Eqs. (5.157) and (5.161), this component
for both functions U and H are given as:

Un
j = un

k · ei·k·m·j·�x = un · ei·ϕ·j, (8.57)

Hn
j = hn

k · ei·k·m·j·�x = hn · ei·ϕ·j, (8.58)

where:

i = (−1)1/2,
m – wave number,
ϕ = m ·�x – dimensionless wave number,
j – index of node,
�x – spatial mesh dimension.

The variables un
k and hn

k are the coefficients of kth components at time level n.
Since we assumed that only a single component is examined, then index k can be
omitted as it was done in Eqs. (8.57) and (8.58).

Let us multiply both sides of Eqs. (8.56a) and (8.56b) by 2�t and rewrite them
gathering the values from time level n + 1 at left side and from time level n at right
side:

(1 − ω)Hn+1
j−1 + 2ω · Hn+1

j + (1 − ω)Hn+1
j+1 + θ

�t · H

�x

(
−Un+1

j−1 + Un+1
j+1

)
=

=(1 − ω)Hn
j−1 + 2ω · Hn

j + (1 − ω)Hn
j+1 − (1 − θ)

�t · H

�x

(
−Un

j−1 + Un
j+1

)

(8.59a)

(1 − ω)Un+1
j−1 + 2ω · Un+1

j + (1 − ω)Un+1
j+1 + θ

�t · g

�x

(
−Hn+1

j−1 + Hn+1
j+1

)
=

=(1 − ω)Un
j−1 + 2ω · Un

j + (1 − ω)Un
j+1 − (1 − θ)

�t · g

�x

(
−Hn

j−1 + Hn
j+1

) .

(8.59b)
Substitution of Eqs. (8.57) and (8.58) in Eqs. (8.59a) and (8.59b) yields:
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(1 − ω) hn+1 · ei·ϕ(j−1) + 2ω · hn+1 · ei·ϕ·j + (1 − ω) hn+1 · ei·ϕ(j+1)+
+θ �t · H

�x

(−un+1 · ei·ϕ(j−1) + un+1 · ei·ϕ(j+1)
) =

=(1 − ω) hn · ei·ϕ(j−1) + 2ω · hn · ei·ϕ·j + (1 − ω) hn · ei·ϕ(j+1)+
− (1 − θ)

�t · H

�x

(−un · ei·ϕ(j−1) + un · ei·ϕ(j+1)
)

(8.60a)

(1 − ω) un+1 · ei·ϕ(j−1) + 2ω · un+1 · ei·ϕ·j + (1 − ω) un+1 · ei·ϕ(j+1)+
+θ �t · g

�x

(−hn+1 · ei·ϕ(j−1) + hn+1 · ei·ϕ(j+1)
) =

=(1 − ω) un · ei·ϕ(j−1) + 2ω · un · ei·ϕ·j + (1 − ω) un · ei·ϕ(j+1)+
− (1 − θ)

�t · g

�x

(−hn · ei·ϕ(j−1) + hn · ei·ϕ(j+1)
)

(8.60b)

After dividing both equations by the factor ei·ϕ and appropriate transformations
one obtains:

(
(1 − ω) e−i·ϕ + 2ω + (1 − ω) ei·ϕ) hn+1 + θ �t·H

�x

(−e−i·ϕ + ei·ϕ) un+1 =
=
(
(1 − ω) e−i·ϕ + 2ω + (1 − ω) ei·ϕ) hn − (1 − θ) �t·H

�x

(−e−i·ϕ + ei·ϕ) un

(8.61a)

(
(1 − ω) e−i·ϕ + 2ω + (1 − ω) ei·ϕ) un+1 + θ

�t · g

�x

(−e−i·ϕ + ei·ϕ) hn+1 =
=
(
(1 − ω) e−i·ϕ + 2ω + (1 − ω) ei·ϕ) un − (1 − θ)

�t · g

�x

(−e−i·ϕ + ei·ϕ) hn

(8.61b)
Using the following Euler relations (Korn and Korn 1968):

sin (ϕ) = ei·ϕ − e−i·ϕ

2i
and (8.62)

cos (ϕ) = ei·ϕ + e−i·ϕ

2
(8.63)

Equations (8.61a) and (8.61b) are rewritten as:

(ω + (1 − ω) cos (ϕ)) hn+1 + i · θ �t · H

�x
sin (ϕ) un+1 =

= (ω + (1 − ω) cos (ϕ)) hn − i · (1 − θ)
�t · H

�x
sin (ϕ) un

(8.64a)

(ω + (1 − ω) cos (ϕ)) un+1 + i · θ �t · g

�x
sin (ϕ) hn+1 =

= (ω + (1 − ω) cos (ϕ)) un − i · (1 − θ)
�t · g

�x
sin (ϕ) hn

(8.64b)

In matrix notation this system of equations can be written as follows:
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A · Fn+1 = B · Fn (8.65)

where:

Fn+1 =
(

hn+1

un+1

)
, (8.66a)

Fn =
(

hn

un

)
, (8.66b)

A =
⎡

⎣
(ω + (1 − ω) cos (ϕ)) i · θ �t·H

�x sin (ϕ)

i · θ �t·g
�x sin (ϕ) (ω + (1 − ω) cos (ϕ))

⎤

⎦ , (8.66c)

B =
⎡

⎣
(ω + (1 − ω) cos (ϕ)) −i · (1 − θ) �t·H

�x sin (ϕ)

−i · (1 − θ)
�t·g
�x sin (ϕ) (ω + (1 − ω) cos (ϕ))

⎤

⎦ (8.66d)

or in alternative form as:

Fn+1 = G · Fn. (8.67)

The amplification matrix G is given by:

G = A−1 · B =
[

g11 g12
g21 g22

]
. (8.68)

To find this matrix at first let us calculate the inverse matrix A−1, which is defined
as follows:

A−1 = 1

D

[
a22 −a12

−a21 a11

]
(8.69)

where a11, a12, a21 and a22 are the elements of matrix A, whereas D = a11 · a22 −
a12 · a21 is its determinant. Using the Courant number defined by Eq. (8.18) this
determinant is written as follows:

D = (ω + (1 − ω) cos (ϕ))2 + θ2�t2 · g · H

�x2
sin2 (ϕ) =

= (ω + (1 − ω) cos (ϕ))2 + θ2 · C2
r · sin2 (ϕ)

(8.70)

The matrix A−1 is given

A−1 = 1

D

⎡

⎢
⎣
(ω + (1 − ω) cos (ϕ)) −i · θ �t · H

�x
sin (ϕ)

−i · θ �t · g

�x
sin (ϕ) (ω + (1 − ω) cos (ϕ))

⎤

⎥
⎦ (8.71)

Multiplication A−1·B yields the following elements of matrix G:
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g11 = g22 = (ω + (1 − ω) cos (ϕ))2 − θ (1 − θ)C2
r · sin2 (ϕ)

D
(8.72a)

g12 = −
(ω + (1 − ω) cos (ϕ)) θ

�t · H

�x
sin (ϕ)

D
i (8.72b)

g11 = −
(ω + (1 − ω) cos (ϕ)) θ

�t · g

�x
sin (ϕ)

D
i (8.72c)

The numerical scheme written in general form (8.67) will be stable if the modulus
of the greatest eigenvalue of the amplification matrix G is not greater than unity. The
eigenvalue of matrix G can be found directly from its definition (Potter 1973):

det(G − λ · I) = 0 (8.73)

where:

λ – eigenvalue
I – identity matrix.

Condition (8.73) rewritten as:

∣∣∣∣
g11 − λ g12

g21 g11 − λ

∣∣∣∣ = 0 (8.74)

leads to the following equation:

(g11 − λ)2 − g12 · g21 = 0. (8.75)

This equation has two roots:

λ1,2 = g11 ± (g12 · g21)
1/2 . (8.76)

Substitution of the appropriate expressions into Eq. (8.76) shows that both
eigenvalues being complex numbers are identical:

λ = (ω + (1 − ω) cos (ϕ))2 − θ (1 − θ)C2
r · sin2 (ϕ)

(ω + (1 − ω) cos (ϕ))2 + θ2 · C2
r · sin2 (ϕ)

+

+ (ω + (1 − ω) cos (ϕ))Cr · sin (ϕ)

(ω + (1 − ω) cos (ϕ))2 + θ2 · C2
r · sin2 (ϕ)

i

(8.77)

To rewrite Eq. (8.77) in a more compact form let us introduce a new variable r
defined as follows:
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r = Cr · sin (ϕ)

ω + (1 − ω) cos (ϕ)
=

Cr · 2 sin
(ϕ

2

)
cos
(ϕ

2

)

ω + (1 − ω)
(

cos2
(ϕ

2

)
− sin2

(ϕ
2

)) =

=
Cr · 2 sin

(ϕ
2

)
cos
(ϕ

2

)

cos2
(ϕ

2

)
+ (2ω − 1) sin2

(ϕ
2

) =
2Cr · tan

(ϕ
2

)

1 + (2ω − 1) tan2
(ϕ

2

)

(8.78)
Using this relation, after some appropriate manipulations the eigenvalue (8.77)

can be reformed to the following form:

λ = 1 − r2 · θ
r2 · θ2 + 1

+ r

r2 · θ2 + 1
i (8.79)

The numerical stability requires (Potter 1972):

|λ| ≤ 1. (8.80)

Since λ is a complex number, then the relation (8.80) takes the following form:

|λ| =
(

1 − 2θ − 1

θ2 + 1
/

r2

)1/2

≤ 1 (8.81)

Note that condition (8.81) will be satisfied if only we assume θ ≥ 0.5. On the
other hand one can see, that the factor r given by Eq. (8.78) will have the denom-
inator always different from zero for any dimensionless wave number (0 ≤ ϕ ≤
π ), if only ω ≥ 0.5. Summarizing, one can find out that the modified finite element
method applied for solution of the linear wave equations is stable for:

θ ≥ 0.5 and (8.82)

ω ≥ 0.5 (8.83)

As the relations (8.82) and (8.83) are satisfied for any Courant number, these
conditions ensure unconditional stability. The amplitude and phase portraits for the
method will be presented in the next subsection.

8.3.3 Numerical Errors Generated by the Modified Finite
Element Method

To examine more exactly the considered numerical method the modified equation
approach is used. To carry out an accuracy analysis using this approach all nodal val-
ues of functions U and H in the algebraic equations (8.57a) and (8.57b) are replaced
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by Taylor series expansions around the node (n, j + 1) (Fig. 8.7). Next, the obtained
relations are rearranged so that they contain only spatial derivatives. Finally the
following system of equations is obtained:

∂U

∂t
+ g

∂H

∂x
= Dn

∂2U

∂x2
+ En1

∂3H

∂x3
+ · · · (8.84)

∂H

∂t
+ H

∂U

∂x
= Dn

∂2H

∂x2
+ En2

∂3U

∂x3
+ · · · (8.85)

In Eqs. (8.84) and (8.85) the coefficient of numerical diffusion Dn is given by the
expression:

Dn =
(
θ − 1

2

)
g · H ·�t (8.86)

whereas the coefficients of numerical dispersion En1 and En2 are defined as follows:

En1 = g ·�x2

6
((2 − 3ω) − (2 − 3θ )Cr) (8.87a)

En2 = H ·�x2

6
((2 − 3ω) − (2 − 3θ )Cr) (8.87b)

The modified equations can be used to deduce practically full information on the
numerical properties of the considered method, including consistency and the order
of accuracy.

From relations (8.84), (8.85), (8.86) and (8.87) results that the finite element
method does not generate any numerical diffusion for θ = 0.5, i.e. when it repre-
sents an approximation of the 2nd order with regard to t. It can be shown that for
ω=0.5 and Cr = 1 all terms of 3rd and higher order disappear. In this case the
method ensures an exact solution. For Cr 
= 1 unphysical oscillations can appear in
the solution because of dispersivity (Dn = 0 and En1, En2 
= 0). The method is unsta-
ble for θ < 0.5. In this case we have Dn< 0. It means that the initial-value problem for
the system of Eqs. (8.84) and (8.85) limited to the terms of 2nd order is ill-posed and
consequently its numerical solution does not exist. Modified finite element method
ensures a stable solution for θ > 0.5, because with Dn> 0 the initial-boundary prob-
lem for Eqs. (8.84) and (8.85) is well posed and its solution exists always. However,
it contains a dissipation error because in this case the method produces a numerical
diffusion. It increases with the increase in �t giving rise to smoothing solution and
reduction of the pressure gradients.

As it was shown before, the finite element method represents 2nd order of accu-
racy with regard to x as well as with regard to t for θ = 0.5 only. For other values of
θ this method is only of 1st order of accuracy with regard to t. However the order of
accuracy can be further increased. For θ = 0.5 the numerical diffusion is cancelled
(Dn = 0), while the dispersion coefficients are:
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En1 = g ·�x2

6

(
2 − 3ω − Cr

2

)
, (8.88a)

En2 = H ·�x2

6

(
2 − 3ω − Cr

2

)
(8.88b)

Note that assuming:

ω = 2

3
− C2

r

6
(8.89)

we obtain En1 = 0 and En2 = 0 as well. Therefore with θ = 0.5 and ω given by Eq.
(8.89) the terms of 2nd and 3rd order in the system of modified equations (8.84) and
(8.85) are cancelled. In this case the proposed version of the finite element method
ensures 3rd order accuracy with regard to both x and t. This holds for Cr ≤ 1 only
because of the condition of stability (8.82).

The conclusions presented above can be illustrated by plotting of the eigen-
value modulus of amplification matrix (8.81), which is also known as the amplitude
portrait (Abbott and Basco 1989). Since ϕ = m�x = 2π

/
N(N = number of com-

putational intervals �x per wavelength corresponding to the considered component
of Fourier series – see Section 5.4.3), the modulus of eigenvalue is a function of N:
|λ| = f(N). In Fig. 8.8 the moduli of eigenvalues of amplification matrix calculated
for ω = 1/2, Cr= 1 and for various values of θ are shown. One can notice that for θ
= 0.5 we obtain |λ| = 1. It means that the considered scheme does not change the
wave amplitude. It is neither damped nor amplified. For θ < 0.5 one obtains |λ| > 1.
In this case the wave amplitude is amplified and consequently the scheme becomes
unstable. Note that this situation corresponds to negative values of the coefficient of
numerical diffusion Dn. The consequences of this fact were discussed earlier. For θ
> 0.5 we obtain |λ| < 1, what means that the amplitude of the propagating wave is
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Fig. 8.8 Amplitude portrait for different θ
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damped. Therefore the scheme ensures stable solution. However, at the same time it
generates numerical diffusion, which affects the propagating wave. As one can see
the shorter waves (small value of N) are more affected than the longer ones.

The advantages of the proposed approach are better illustrated by the second
coefficient of convergence R(N) called the phase portrait, which represents the dis-
persive properties of the scheme. For the considered modified finite element method
the phase celerity of considered kth Fourier component is expressed by the following
equation:

tan(φ) = Imλ

Reλ
= r

r2 · θ (θ − 1) + 1
. (8.90)

Therefore we can find φ as:

φ = arctan

(
r

r2 · θ (θ − 1) + 1

)
. (8.91)

On the other hand, this component propagates with the following exact celerity:

φexact = Cr · ϕ = 2Cr · π/N. (8.92)

Then the coefficient of convergence R2 defined as the ratio of the two celerities,
is:

φ

φexact =
arctan

(
r

r2 · θ (θ − 1) + 1

)

2Cr · π/N . (8.93)

The factor r given by formula (8.78) expressed in terms of the number of space
intervals per wavelength is given as follows:

r =
2Cr · tan

(π
N

)

1 + (2ω − 1) tan2
(π

N

) (8.94)

Let us calculate the value of tan (φ) given by Eq. (8.90) for θ = 0.5, ω = 0.5 and
Cr= 1. One obtains:

tan(φ) =
2tan

(ϕ
2

)

1 − tan2
(ϕ

2

) = tan(ϕ). (8.95)

Since the dimensionless wave number is ϕ =m��x then one can write that:

φ = ϕ = m ·�x. (8.96)
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This relation indicates that each Fourier component propagates with con-
stant speed because the product m·�x is constant for the considered component.
Therefore for this case no variation of the wave speed occurs. In other words, the
scheme is not dispersive. As for θ = 0.5 it is dissipation free as well, then the
assumed set of the parameters: θ =0.5, ω =0.5 and Cr= 1 ensures exact solution of
the system of equations (8.16) and (8.17). For other values of ω and Cr the scheme
becomes dispersive.

The plots presenting dispersive properties are shown in Fig. 8.9. First of all one
can see that indeed for θ = 0.5, ω = 0.5 and Cr= 1 the coefficient of convergence
R2 is equal to unity for any wave length. The graphs indicate that modification of
the finite element method significantly improves its numerical properties. One can
notice, that for ω defined by Eq. (8.89) the wave speed of the shortest waves are
affected only. There is a remarkable difference comparing with ω = 2/3 (corre-
sponding to the standard version of the finite element method) and with ω = 1
(corresponding to the finite difference method). This is obvious, because the six-
point implicit scheme with two weighting parameters ensures an approximation
of 3rd order with regard to x and to t for Cr ≤ 1. Therefore one can expect that
this scheme is able to ensure higher accuracy of the solution, especially when large
gradients occur.

The analysis of numerical properties was carried out for a system of linear equa-
tions, while the Saint-Venant equations are nonlinear. Nevertheless, such an analysis
seems very useful, since it provides some indications with regard to the stability,
dissipation and dispersion of the nonlinear problem. In principle, it is recommended
to perform the analysis of the linearized versions of equations to demonstrate the
stability of numerical scheme (Fletcher 1991). In practice, the final verification of
stability and accuracy can be carried out only by means of numerical experiments.
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8.4 Some Aspects of Practical Application of the Saint
Venant Equations

8.4.1 Formal Requirements and Actual Possibilities

When we undertake an attempt to apply the system of Saint Venant equations to
model a real flow phenomenon in a river, it is immediately noticed that some require-
ments resulting from the formal analysis usually cannot be fulfilled directly. For
instance, for subcritical flow at the downstream end of a channel the flow discharge
or the water stage must be proscribed as boundary condition. However, if we con-
sider a typical river reach this requirement can be fulfilled rather seldom. More
often we must find some formulas relating both mentioned functions to use them
as equivalent form of required boundary condition. On the other hand, except for
artificial prismatic channels, we can have some difficulties with accurate and effec-
tive calculation of the cross-sectional parameters especially when they have complex
forms and composite roughness. Another problem appears when we try to extrapo-
late the Saint Venant equations validity applying them beyond the acceptable limits.
This happens for instance, when these equations are used to model the river flow,
which is actually two dimensional or which is one-dimensional, but rapidly varied.
Yet another challenge appear, when we consider unsteady flow in an open channel
network with different hydraulic structures inside. One can say generally, that suc-
cessful implementation of the Saint Venant equations for actual cases of river flow
requires overcoming many various difficulties resulting from the difference between
real physical worlds and idealized one, assumed during their derivation and solution.

Many valuable information and recommendations dealing with practical aspects
are coming from experiences owing to long time of application of the Saint Veneant
equations in hydraulic engineering. For instance, comprehensive explanations and
discussions of many practical aspects are given by Cunge et al. (1980). Similar
helpful practical recommendations can be found in many chapters of the book edited
by Mahmood and Yevjewich (1975). These publications covering practically whole
area of the problem, although they were edited years ago, are still valid and valuable
for engineers. Some practical advises are available in other publications as well.

For these reasons below we only briefly discuss some practical questions con-
nected with the implementation of the unsteady flow equations in form of the
computer codes supporting hydraulic engineering practice.

8.4.2 Representation of the Channel Cross-Section

Let us consider the simplest case of unsteady flow, which takes place in a single
channel reach as shown in Fig. 8.10a. A natural feature of rivers is their irregular
longitudinal and transversal shape. The cross-sections geometry can be measured in
the field only at selected, suitable locations. Consequently, the computational cross-
sections are non-uniformly spaced along the channel axis (Fig. 8.10a). From this
point of view both previously described numerical solution methods are suitable,
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Fig. 8.10 Discretization of channel reach (a) and numerical representation of a cross-section (b)

since they work on non-uniform grids. The river cross sections are defined numer-
ically by sets of coordinate pairs (Yi, Zi) related to a local coordinate system as
presented in Fig. 8.10b.

Numerical solution of the Saint Venant equations requires that the wetted cross
sectional area A, wetted perimeter P and top width B are specified as functions of
the water stage h. A convenient approach is to tabulate the parameters in each cross-
section for h ranging from Zmin to Zmaxwith appropriate an interval �h. During the
computations the actual values of parameters are calculated via linear interpolation:

f (h) = hi + fi+1 − fi
hi+1 − hi

(h − hi) for hi ≤ h < hi+1 (8.97)

where f represents A, P, or B. Sometimes, when the cross-sections are relatively
regular, one can approximate them using the standard shapes such as trapezoidal or
triangular. Another possible approach is to fit an analytical formula to the tabulated
data using the least-square method. In such a situation we have:

A = F1(h), P = F2(h), B = F3(h)
for Zmin ≤ h ≤ Zmax
where F1, F2, F3 are given functions.

(8.98)

Very often in hydraulic practice compound channel cross-sections are encoun-
tered, for example if the river has flood plains as presented in Fig. 8.11. When
the water stage exceeds the level of flood plain, the flow process becomes more
complicated, since it takes place in parts of the channel having different hydraulic
properties. If 1D Saint Venant equations are used to model the unsteady flow they
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Fig. 8.11 Channel of compound section

should be modified and special treatment of the cross-section is needed. Such mod-
ification proposed by Abbott and Ionescu (1967) bases on distinction of two parts
of channel cross-section playing different roles in flow process. The first one called
active, is connected with the main channel and it is involved in the dynamic equa-
tion. The second part of section is called inactive, since it serves as a reservoir, which
stocks the water only. This part which together with the active part constitutes the
whole area of section, is involved in the continuity equation.

The original Saint Venant equations are modified as follows:

∂Q

∂t
+ ∂

∂x

(
β · Q2

A

)
+ g · A

∂h

∂x
+ g · n2

M

R4/3
|Q| Q

A
= 0, (8.99)

∂h

∂t
+ 1

B0

∂Q

∂x
= q

B0
. (8.100)

It seems that nowadays such approaches for solving the unsteady flow in channel
with flood plain became less interesting. Actually, such case of flow should be con-
sidered rather as a 2D process with the river bed being partially and temporarily dry.
It can be modelled with one of the widely available computer codes for 2D unsteady
flow.

Very often the Saint Venant equations are solved for a storm sewer network.
Such system is constituted by closed conduits where the flow is usually free-surface
(Fig. 8.12a). However, every now and then, after heavy rain, the conduits are filled

datum

h

h

a) b)

Fig. 8.12 Flow in closed conduit: (a) with free surface, (b) pressurized
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Fig. 8.13 The “Abbott slot”
in a channel with dry bed

to the top and pressurized flow occurs. Since it happens only temporarily one can
apply so called “Preissmann slot” (Cunge et al. 1980) shown in Fig. 8.12b. Owing
to this concept it is possible to continue the computation using the same mathe-
matical model, i.e. the system of Saint Venant equations. When the water level in
conduit reaches its top, then further increasing of pressure does not cause increas-
ing of the cross-section parameters. They are still constant, corresponding to the
conduit entirely filled. Assumed width of slot should be relatively small (after
Cunge et al. (1980) – of the order of 0.01 m) so that the mass balance remains not
affected.

A similar idea can be also applied in open channels with temporary dry bed.
This can arise in the channels of watering systems or in the vicinity of a pump
station removing water from the polder. We have to remember that the equations of
unsteady flow are valid for positive values of depth. In such a case one can apply a
concept opposite to the “Preissmann slot”, called “Abbott slot” (Abbott and Basco
1984). The slot goes down from the level of bottom as presented in Fig. 8.13. This
technique allows us to continue the computations even if a channel bed becomes
temporarily dry.

8.4.3 Initial and Boundary Conditions

As explained previously the uniqueness of solution of the system of Saint Venant
equations requires us to impose appropriate initial conditions and boundary condi-
tions.

The initial conditions give information on the state of channel flow at the begin-
ning of the considered time interval, in which the equations will be solved. Their
actual form can be different, depending on the considered situation:

1. In the case of nearly horizontal channel (e.g. in the lower part of a river), one
can assume the hydrostatic state. The water is at rest, so the water stages over
the entire channel reach are constant, whereas the flow discharge is equal to zero.
The flow starts due to the imposed boundary conditions. Such an initial condition
is rather unrealistic, but its influence disappears after some time, depending of
the celerity of the propagating wave.

2. If the considered channel is prismatic, then the required water levels can be
obtained via solution of the equation for steady uniform flow. For instance for
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given flow discharge the Manning formulae is solved with regard to the normal
depth. Alternatively, for given depth using the same formulae one can calculate
the flow discharge.

3. For channels with variable cross-sections the water levels are found via solution
of the equations of steady gradually varied flow. This is carried out for flow
discharge given at one end of the considered reach.

4. The initial conditions can be given as the results of computation of unsteady flow
carried out previously and stopped at the chosen moment to restart later.

As far as the boundary conditions are considered, for subcritical flow in a single
channel at each end either Q(t) or h(t) must be specified. It should be remember that
specification of the same type of function (Q or h) at both ends is not recommended,
since in such a case the solution strongly depends of the initial conditions (Cunge
et al. 1980).

At the end through which the water enters the channel reach one function Q(t) or
h(t) must be imposed. They are obtained as the result of observation or as the effect
of hydrological forecast for given time period. At the downstream end, through
which the water leaves the channel reach, the situation is more complicated. There
are only particular cases when the required functions QL(t) or hL(t) are available.

If the considered river flows into the sea then at its downstream end one can
specify the function hL(t) (Fig. 8.14). The water level in the sea is not determined
by the river flow but rather by other factors acting on the sea surface, so hL(t) is
independent information. In a particular case this condition can take the form hL(t)
= const.

If a dam is located at the downstream end (Fig. 8.15) then in this section neither
flow rate QL(t) nor the water stage hL(t) are known.

However we know discharge equation for the spillway, which relates both
functions:

QL = K · LS ·√2g · (hL − hS)
3/2 (8.101)

where:

QL – discharge,
K – flow coefficient of the spillway,

h (t )L

x L = sea

Q  t( )L

datum

Fig. 8.14 Schematic of river flowing into the sea
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hS

datum

h0

hL

Fig. 8.15 Flow over spillway of a dam

LS – length of the spillway,
hL – water level with respect to assumed datum,
hS – elevation of spillway crest above datum.

Such relation is an appropriate boundary condition, since it closes the final sys-
tem of algebraic equations, which must be solved to obtain the searched values at
the next time level.

Sometimes the river flows into a lake or reservoir having relatively small dimen-
sions, so the inflow has a significant effect on the water stage in the recipient
(Fig. 8.16). In such a case one can use the storage equation, which relates the
unknown functions (see Section 1.7):

dhL

dt
= 1

F(hL)
(QL(t) + q(t) + P(t) − E(t) + · · ·) (8.102)

where:

hL – water level in recipient above assumed datum,
F – area of recipient at the water level,
QL – inflow coming from river,
q – runoff from catchment,

Q  t( )

P t( )

L

h(t )
datum

V h( )

F h( )
q t( )

E t( )

Fig. 8.16 River flowing into the lake
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E – evaporation from water surface,
P – rainfall at surface of recipient.

Note, that in this case the additional relation has form of an ordinary differential
equation. This equation, together with an appropriate initial condition of the type
hL(t = 0) = hL0 (hL0 is given) must be solved simultaneously with the final sys-
tem of algebraic equations given by the Preissmann difference scheme or by the
finite element method. In the latter case this ordinary differential equation is simply
incorporated into the system of ordinary differential equations obtained after spatial
discretization of the governing equations.

In most cases, however, the downstream end of the considered channel reach is
an ordinary cross-section in which is impossible to know the required function QL(t)
or hL(t). In such a case one can use relation between both mentioned functions in
the form of rating curve

QL = f (hL) (8.103)

However, such an approach gives rise to some problems. Relation (8.103) is
available as single valued function, whereas during the unsteady flow the hystere-
sis of this function is generated. Therefore introducing of Eq. (8.103) as boundary
condition at the downstream end x = L must be considered as a false independent
information. To decrease or even to eliminate influence of inappropriate condition,
the considered channel reach is artificially extended as in Fig. 8.17).

Therefore the boundary condition in the form of rating curve instead of x = L is
imposed at x = L1 > L. Singh et al. (1997) examined influence of the new position
of downstream end on results computed at x = L. They related the required distance
L1 – L (Fig. 8.17) with the channel properties.

Alternative relation, which can be used, is the Manning formulae:

QL = 1

nM
S1/2 · R2/3 · A (8.104)

However, this implies the same problems as the previously used rating curve.
Then Eq. (8.103) should be rather imposed at the end of extended channel reach.
If we set this condition at x = L, variation of the energy line slope should be
taken into account. This can be done accordingly to the recommendation given
by Fread (1993). It is suggested to compute S using an approximate form of the
dynamic equation (8.1). With the finite difference approximation this equation can

x x L x L= 0 = =

QL1(hL1 )

1

control

Fig. 8.17 Extending of river reach
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be expressed as:

S ≈ −Qn
M − Qn−1

M

g · An
M ·�t

−
(
Q2/A

)n
M − (Q2/A

)n−1
M

g · An
M ·�xM−1

− hn
M − hn−1

M

�xM−1
(8.105)

where:

n – index of time level,
M – index of last node,
�t – time step,
�x – spatial interval.

This approach accounts for the hysteresis of the relation Q(h) existing in the
unsteady flow, since in Eq. (8.105) the terms responsible for this phenomenon are
included.

8.4.4 Unsteady Flow in Open Channel Network

Very often in engineering practice we face more complex problem dealing with flow
through a channel network. The problem is similar to the one presented in Section
4.4 for the gradually varied flow. As an elementary example let us consider the
simplest case of network presented in Fig. 8.18. It consists of 3 branches (a, b and
c) and one junction.

Assume that all branches have the same number of nodes which are numbered as
presented. The total number of nodes is 15.

In such a case, using the finite difference or finite element method, we can set
up appropriate systems of algebraic equations for each branch, as it was done pre-
viously for a single channel. Next we have to specify the boundary conditions at all
ends of the pendant branches of considered network (node 1, 6 and 15). However
to obtain the global system for the whole network, which will be solvable, we must
introduce additional equations for the channel junction (Fig. 8.19):

1
2

6
7

8
9

3
4

10

5

11 12 13 14 15

a

b

c

Fig. 8.18 Channel network
containing three arms



338 8 Numerical Integration of the System of Saint Venant Equations

j

k
i

Fig. 8.19 Junction of three
channels

a

b

c

Fig. 8.20 Structure of matrix
for system of equations for
network presented in
Fig. 8.18

Qi = Qj + Qk, (8.106a)

hi = hj, (8.106b)

hi = hk (8.106c)

The first relation is the continuity equation, whereas latter ones represent a sim-
plified form of energy equation written for junction with the assumption that the
head velocities and the local loses are neglected.

These additional equations close the global system of algebraic equations. For
the Preissmann scheme the matrix of coefficients is shown in Fig. 8.20.

The matrix contains three blocks corresponding to consecutive braches a, b and c,
which are linked by additional relations written for junction. Consequently it is very
sparse and banded, however its bandwidth is much larger than the one obtained for
a single channel (see Fig. 8.2). Note that the bandwidth depends on the numbering
of nodes.
Example 8.2 This example deals with unsteady flow through the network of channels
shown in Fig. 8.21 (Szymkiewicz 1991). This network is composed of:
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Fig. 8.21 Channel network considered in example (Szymkiewicz 1991)

1. The Elblag River of length 18.7 km, of width 35–64 m (at the water level) and of
depth 2.0–4.25 m, connecting the Vistula Lagoon with Lake Druzno.

2. The Nogat River of length 22.7 km, of width ∼125 m and depth ∼2.5 m, being
regulated cut-off arm of the Vistula River.

3. The Jagiellonski Channel of length 5.73 km, width 36 m and depth 2.70 m
connecting both mentioned rivers.

Unsteady flow in the network is generated mainly by the changes of water level in
Vistula Lagoon. These changes caused by wind acting on water surface and having
amplitudes of ∼3 m (±1.5 m from the mean sea level) give rise to the flow in
variable directions: in or out the lake Druzno.

The initial condition corresponds to the hydrostatic state of the channel system.
For t = 0, h(x, t) = h0= const. and Q(x, t) = 0 are assumed. The boundary conditions
are specified as follows:

– At points A and B the function hL(t) representing the water level elevation in the
Vistula Lagoon is imposed: hA(t) = hB(t) = hL(t);

– At point C a lock practically cuts off the flow, so QC(t)∼0;
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– At point D the Elblag River falls into Lake Druzno. At this point neither the func-
tion hD(t) nor QD(t) is known. However, for the lake one can assume equation
relating both mentioned functions in the form of the storage equation (8.102).
Neglecting the influence of evaporation and rainfall on the lake’s surface, this
equation is rewritten as:

dhD

dt
= 1

F(hD)
(QD(t) + q(t)) (8.107)

where:

hD – water level in recipient above assumed datum,
F – area of Lake Druzno at the water level hD,
QD – inflow coming from Elblag River,
q – runoff from catchment’s area,

For Eq. (8.107) the following initial condition is imposed: hD(t = 0) = h0.
Lake Druzno is very shallow (mean depth ∼1.20 m) and surrounded by flood

banks. Its water surface area varies with water level accordingly to the following
function:

F(h) =
⎧
⎨

⎩

13.0 [km2] for
13.0 + 200 · h2

D [km2] for
27.0 [km2] for

hD ≤ 0
0 ≤ hD ≤ 0.3 m

hD > 0.3 m

The largest area of the water surface occurs, when the water level in the lake
reaches the foot of flood banks. This takes place for hD = 0.30 m.

The results of calculations for the set of hydrological data coming from time
period 11.10.1985 to 18.10.1985 are displayed in Fig. 8.22. The system of Saint
Venent equations was solved using the modified finite element method for the
following numerical data: �x = 0.700 ÷ 1.000 km, �t = 1,800s.

Example 8.3 This example deals with unsteady flow through the network of channels
existing at a real polder in the delta of Vistula River. The considered network is
composed of 5 channels as shown in Fig. 8.23. The channels are fed by many small
drainage ditches. Next, the water gravitationally flows towards the end of channel
number 5. At this point the pump station, equipped with 4 pump units, each of
discharge 0.4 m3/s, removes the water out of polder. The pump station is controlled
automatically When the pumps are working it sometimes happens that the water
can be completely removed from some reaches of channels so their beds become
partially dry. In such a situation it is necessary to use the “Abbott slot”. This afore
mentioned technique allows us to continue the calculations even in the case when
the water level temporarily is dropped below the channel bed.

The initial condition is given by the hydrostatic state of the channel system. It
is assumed that at t = 0 the water is in rest with h(x, t) = 4.75 m = const. and
Q(x, t) = 0. The boundary conditions are specified as follows:

– At the upstream ends of all pendant branches the condition Q(t) = 0 for t ≥ 0 is
imposed.
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Fig. 8.22 Observed and calculated water surface level (Szymkiewicz 1991)

– At the downstream end of channel number 5 the flow discharge is forced by the
pump station, then at this node Q(t)=Qpump(t) is specified. This function can
change with a jump equal to 0.40 m3/s ranging from 0 to 1.6 m3/s.

– All channels are fed by lateral inflow caused by rainfall.

The system of Saint Venent equations was solved using the finite element method
for the following numerical data: �x=0.700 ÷ 1.000 km, �t = 360 s.
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1

2

3

4

5
Fig. 8.23 Polder’s open
channel network

The result of calculations displayed in Figs. 8.24 and 8.25 show the flow profiles
in channels 2 and 4 plotted for selected times. One can see that working pumps
remove systematically the water from polder so the water level is decreased. After
12 h the lower part of channel 4 becomes dry. The length of this part is increasing.
The same is observed in the upper part of channel 2. However the computations are
continued successfully thanks to the applied “Abbott slot”.
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Fig. 8.24 The water profiles in channel 2
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Fig. 8.25 The water profiles in channel 4
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8.5 Solution of the Saint Venant Equations with Movable
Channel Bed

8.5.1 Full System of Equations for the Sediment Transport

In preceding sections of this chapter we considered unsteady flow in open channel
assuming that the channel bed is fixed. In fact there is mutual relation between
the flowing water and the bed. Since in alluvial stream its bed is built of mineral
grains then sufficiently large flow velocity forces their movement. They are washed
away and, depending of their dimensions and the flow characteristics, they move as
suspended in the water or they are transported along the bed in direction of flow
(Fig. 8.26). The first kind of solid transport is called suspended-load, whereas the
second one is called bed-load (Yalin and da Silva 2001). The motion of each kind
of sediment is governed by different transport mechanisms.

When the bed material is washed it is said the erosion takes place. If the forces
which cause movement of the grains are decreasing, then they settle. In such a case
it is said that deposition takes place. Both processes change the flow conditions in
a stream influencing the sediment transport as well. This suggests that taking into
account the sediment transport we improve description of the flow process in open
channel. However as a matter of fact the problem of sediment transport is one of
the most complicated and challenging tasks for both scientists and engineers. This
is caused by 3D spatially and random character of main factors determining solid
transport. The readers who are interested in this problem can find many important
publications presenting theoretical and practical aspects of problem (Yalin and da
Silva 2001, Chanson 2004 among others). Some software packages, sometimes very
sophisticated, supporting engineering practice, are available as well. In this section
we will present some basic aspects of computation unsteady flow in channels with
moving bed. These considerations will be limited to the 1D case only.

The modeling is based on the sediment transport continuity equation. In its gen-
eral form this equation is derived from the mass conservation principle applied for
control volume limited by control surface during two phase unsteady motion. The

z

0
x

q

a

suspended load

bed load

H

s

qb

Fig. 8.26 Schematic
representation of sediment
transport zones: from 0 to a –
bed load, from a to H –
suspended load
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one-dimensional form of this equation can be expressed as follows:

(1 − p)
∂Z

∂t
+ ∂q

∂x
= 0 (8.108)

where:

x – space co-ordinate,
t – time,
Z – bed elevation above the assumed datum,
q – total (suspended and bed load) specific volumetric rate,
p – porosity.

For the first time this equation was derived by Exner (Cunge et al. 1980, Yalin
and da Silva 2001) as a result of investigation of the bed forms. Equation (8.108)
allows us to describe the evolution of the longitudinal bed profile in time, Z(x, t). The
variable q represents the sediment discharge rate and depends on the bed material
and flow parameters. In the derivation of Eq. (8.108) the following assumptions
were made:

• Lateral inflow of sediment does not exist,
• Distribution of the flow velocity and sediment concentration is uniform over the

cross-section (Fig. 8.27),
• sediment travels in the direction of x axis (q > 0) and sediment transport per unit

channel width is uniform

q = C · U · H (8.109)

where U, C are averaged flow velocity and concentration over cross-section,

Q x t( , )

q x t( , )

H x t( , )

Z x t( , )

u z( )

z z
a) b) c)

x u

c z( )

z

c

( )1 p−

Fig. 8.27 Sketch of open channel reach: (a) longitudinal profile, (b) velocity distribution,
(c) concentration distribution
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• total specific volumetric rate represents the combined effect of the suspended
load qs and the bed load qb

q = qs + qb (8.110)

Generally this equation takes into account both suspended load and bed load
although the time derivative of the suspended load was neglected (see for instance
Yalin and da Silva 2001).

There are many formulas for determining the bed load rate qb (see for example:
Chanson 2004). One of the most frequently used is the empirical formula of Meyer-
Peter and Muller, based on the results of field experiments:

qb = 8

√

g
γs − γw

γw
d3

m

[(
kb

ks

)3/2
γw · R · S

(γs − γw) dm
− 0.047

]3/2

(8.111)

where:

qb – specific volumetric bed-load per 1 m of channel width [m3/s·m],
γs, γw – specific weight of sediment and water respectively [N/m3],
R – hydraulic radius ,
S – energy grade line slope,
dm – typical grain size (usually d50),
kd – Strickler coefficient being the inverse of Manning coefficient nM :

kd = 1

nM
(8.112)

ks – granular roughness of bed surface given by:

ks = 21

d1/6
50

(8.113)

Let us integrate the Exner equation (8.108) over a channel reach of length L:

d

dt

L∫

0

(1 − p) Z (x,t)dx = q (x = 0,t)− q (x = L,t) (8.114)

Note that the net flux of sediment material through the endpoints x = 0 and
x = L which bound channel reach causes changes of bed position (Fig. 8.28).
Erosion will occur when the flux through the upstream end is less than one through
the downstream end, i.e.

q(x = 0, t) < q(x = L, t) thus ∂q
/
∂x > 0. (8.115)
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Fig. 8.28 Erosion and
deposition caused by the net
sediment material flux

Conversely, deposition will take place when:

q(x = 0, t) > q(x = L, t) thus ∂q
/
∂x < 0. (8.116)

Assume that the solution of the Exner equation is a continuous function. This
allows us to express Eq. (8.108) as follows:

∂Z

∂t
+ 1

1 − p

∂q

∂Z

∂Z

∂x
= 0 (8.117)

Introduction of a new variable:

C(Z) = 1

1 − p

∂q

∂Z
(8.118)

gives an alternate form of Eq. (8.117):

∂Z

∂t
+ C(Z)

∂Z

∂x
= 0 (8.119)

One can see that the Exner equation is a nonlinear advection equation with
advective velocity C(Z). This velocity defines how quickly any disturbance of bed
elevation propagates. Since the advection velocity is positive then each disturbance
will propagate towards the downstream end. Of course for constant C any bed form
will travel without shape deformation.

In the Exner equation the specific volumetric bed-load q or the advective veloc-
ity C depend on the hydraulic parameters of flowing stream, i.e. discharge rate and
depth. These parameters are available from the solution of unsteady flow equa-
tions. For this purpose we must use the Saint Venant equations discussed previously.
Neglecting the lateral inflow and introducing the depth H(x, t) as dependent variable
we obtain from Eqs. (1.87) and (1.88):
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∂Q

∂yt
+ ∂

∂x

(
β · Q2

A

)
+ g · A

∂H

∂x
+ g · A

∂Z

∂x
+ g · A · S = 0, (8.120)

∂H

∂t
+ 1

B

∂Q

∂x
= 0. (8.121)

Note that in this case the bed elevation above the assumed datum Z, being a
function of x co-ordinate and time t, is an additional dependent variable. Therefore
the system of Saint Venant equation must be completed with additional equation, i.e.
with the previously presented Exner equation. In such a way one obtains a system
of three partial differential equations. Simplified forms of the sediment transport
model were also proposed – see e.g. Cunge et al. (1980).

8.5.2 Initial and Boundary Conditions for the Sediment
Transport Equations

The equations describing the unsteady sediment transport should be solved for
appropriately imposed auxiliary conditions on the limits of the following domain
of integration: 0 ≤ x ≤ L and t ≥ 0. The auxiliary conditions for the sediment trans-
port model can be properly specified on condition that the structure of characteristics
of considered system is well recognized. To this end let us consider the system of
Saint Venant equations in the form of Eqs. (1.77) and (1.78) completed by the Exner
equation written in the form of Eq. (8.119). Then we have:

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
+ g

∂Z

∂x
= −g · S, (8.122a)

∂H

∂t
+ ∂

∂x
(U · H) = 0, (8.122b)

∂Z

∂t
+ C

∂Z

∂x
= 0. (8.122c)

A similar analysis was presented by Cunge et al. (1980). These authors used the
Exner equation in the form of Eq. (8.108). We apply a slightly different approach,
which will allow us to provide the equations of characteristic directions explicitly.

To find of the characteristics it is required at first to rewrite the system (8.122) in
matrix notation. This system should be presented in the form of Eq. (5.14). Next the
condition (5.15) is used. For the system (8.122) this condition takes the following
form:

det

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 U g g
0 1 0 H U 0
0 0 1 0 0 C
dt 0 0 dx 0 0
0 dt 0 0 dx 0
0 0 dt 0 0 dx

⎤

⎥⎥⎥⎥⎥⎥
⎦

= 0. (8.123)
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Equation (8.123) leads to equation which determines the characteristics of
system. Expanding the determinant (8.123) yields:

(
dx

dt

)3

+(2U + C)

(
dx

dt

)2

+
(

2U · C +U2 −g · H
)(dx

dt

)
−
(

U2 · C−g · H · C
)
=0

(8.124)
This equation is of third degree with regard to dx/dt. Its roots determine the

characteristics of system (8.122). To find all roots it is helpful to notice that the
polynomial (8.124) has, among others, the following real root:

dx

dt
= C. (8.125)

Thus Eq. (8.124) can be expressed as a product of two polynomials of lower
degrees. Dividing this polynomial by the following one:

(
dx

dt
− C

)
(8.126)

yields its equivalent form:

(
dx

dt
− C

)((
dx

dt

)2

− 2U

(
dx

dt

)
+
(

U2 − g · H
))

= 0. (8.127)

The obtained polynomial of 2nd degree is well known. It has been obtained pre-
viously (Eq. 5.24), while analyzing the characteristics of the Saint Venant equations.
Its two real roots are given by Eqs. (5.26a) and (5.26b). Therefore Eq. (8.127) can
be rewritten in the following form:

(
dx

dt
− C

)(
dx

dt
−
(

U +√g · H
))(dx

dt
−
(

U −√g · H
))

= 0 (8.128)

From this equation results that polynomial (8.124) has three following roots:

dx

dt

∣∣∣∣
1

= C, (8.129a)

dx

dt

∣∣∣∣
2

= U +√g · H, (8.129b)

dx

dt

∣∣∣∣
3

= U −√g · H (8.129c)

These roots determine three families of characteristics of the considered system
(8.122). Since all of them are real, the system is of hyperbolic type.

The problem of solution of the system (8.122) will be well posed if appropriate
initial and boundary conditions on the limits of solution domain are prescribed. In
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Chapter 5 we found out, that for the hyperbolic equations the following rule is valid:
at every boundary of the considered solution domain it is necessary to impose as
many additional conditions as many characteristics enter the solution domain from
this boundary. Taking into account this rule and Eqs. (8.129a), (8.129b) and (8.129c)
for subcritical flow

(
U <

√
g · H

)
we must impose:

• The initial conditions in the form of three functions: H(x, t = 0) = Hi(x),
Q(x, t = 0) = Qi(x) and Z(x, t = 0) = Zi(x) for 0 ≤x ≤L, since three characteristics
are going through the time boundary t = 0;

• The boundary conditions in the form of two functions (one for flow and one for
sediment transport) at the upstream channel end and one function (for flow only)
at the downstream end.

For supercritical flow
(
U <

√
g · H

)
the same initial conditions must be pre-

scribed, whereas the boundary conditions are defined in another way. At the
upstream end all three functions must be imposed while at the downstream end
the boundary condition is not specified at all.

If the sediment transport in open channel network is considered then additional
equations have to be introduced for the junctions of channels. They are analogous
to those presented in Section 4.4.2.

8.5.3 Numerical Solution of the Sediment Transport Equations

There are two main ways of numerical treatment of the system of sediment trans-
port equations (Cunge et al. 1980). In the first approach the system constituted by the
Saint Venant equations (Eqs. 8.120 and 8.121) and the Exner equation (Eq. 8.119)
is solved as three coupled equations, with imposed initial and boundary conditions.
All three equations are approximated using the finite difference or element tech-
nique leading to the global system of algebraic equations. Usually the difference
box scheme is applied. This scheme is particularly suitable for this purpose as it
works well for both the Saint Venant equations (Preissmann scheme – see Section
8.2) and the pure advection equation (see Chapter 6). Of course the final system
of algebraic equation given by this approach is larger than the one obtained for the
Saint Venant equations.

Another possible approach, allows us to decrease the computational effort by
splitting the considered problem in each time step into two smaller problems. The
governing system of equations is uncoupled and in each time step the equations for
unsteady flow and one for the sediment transport are solved separately but simul-
taneously. Then we have to use directly the solution techniques presented in the
preceding sections of this chapter for the unsteady flow as well as those for the pure
advection equations described in Chapter 6. Usually for both problems the same
grid points should be used. In such a way in each time step instead of one relatively
large system of algebraic equations two much smaller systems are solved.
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Fig. 8.29 Possible distribution of settled sediment over trapezoidal cross-section: deposition of
sediment on the bottom only (a) and on the bottom and sides (b)

The problem of great importance is the relation between the volumetric sediment
rate which gives rise to erosion or deposition and time deformation of the shape of
channel’s cross-sections. Various approaches are possible (Cunge et al. 1980). For
the simplest case as in prismatic channel one can assume that the whole sediment is
eroded from or deposed at the bottom only (Fig. 8.29a) or it is distributed over the
bottom as well as over the channel sides (Fig. 8.29a). The problem of sediment dis-
tribution becomes more complex for an arbitrary shape of the channel cross-section.

Example 8.4 A channel reach of length L = 50 km and of bed slope s = 0.4·10−3is
ended by a dam. Assuming that the channel is rectangular of width B = 50 m and of
Manning roughness coefficient nM = 0.025, compute the time evolution of the bed
elevation Z(x,t) in the reservoir caused by the transported sediment.

The sediment flow rate is calculated using the Meyer-Peter formulae (8.111) for
sand characterized by typical grain size dm = 1 mm, whereas the porosity is assumed
to be p = 0.4. The system of Saint Venant equations (8.120) and (8.121) and the
Exner equation (8.108), are solved uncoupled using the Preissmann scheme.

The initial conditions at t = 0 are determined assuming steady gradually varied
flow with constant discharge Qi(x) = 330 m3/s for 0 ≤ x ≤ L. The flow profile h
(x, t = 0) is found from the solution of the steady gradually varied flow equation
(Eq. 4.2) with the initial condition h(x = L) = 10 m being the water level close to a
dam. It enables us to define the initial flow depth H(x, t = 0) for the assumed initial
bed profile Zi(x, t = 0).

At x = 0 two following boundary conditions are assumed:

– flow rate given by the formulae

Q0(t) = Qi + Qm

(
t

tm

)2

exp

(

1 −
(

t

tm

)2
)

(8.130)

with Qm= 1,150 m3/s andtm= 25 days is imposed.
– bed elevation during the transition of the flood wave given by
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Fig. 8.30 Evolution of the bed elevation in reservoir due to transported sediment

Z0(t) = Zi + Zm

(
t

tm

)2

exp

(

1 −
(

t

tm

)2
)

(8.131)

where the assumed peak value Zm = 0.5 m corresponds to time tm.

At the downstream end x = L, where a dam exists, a constant water level h(x =
L, t) = 10 m is imposed.

The channel reach is divided into intervals of constant length �x = 1,000 m.
The computations are performed for the time step �t = 2,200 s with the value of
weighting parameter θ = 0.65 (see Sections 6.2 and 8.2). The computed results are
displayed in Fig. 8.30.

Note that the obtained results represent qualitative agreement with observed
effects of grains settlement in the reservoir. Systematical decrease of the flow veloc-
ity in the reservoir towards a dam increases deposition of solid material transported
by the river. Consequently the reservoir is loosing its usable storage with time, since
it is continuously fulfilled by entering sediment.

8.6 Application of the Saint Venant Equations for Steep Waves

8.6.1 Problem Presentation

The system of Saint Venant equations was derived with the assumption that the flow
is gradually varied. However in many cases we face another type of flow. Sometimes
the flow profile in open channel varies locally so rapidly that in fact a discontinuity
occurs. Such very steep wave in the form of surge can occur in many circumstances.
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For instance, the wave of surge type can be generated by the operation of hydro–
power plant, when the turbines are started or stopped suddenly. Another reason of
surges can be sudden opening or closing of a gate. The water waves arising in such
situations can be idealized as in Fig. 8.31.

Similarly, very steep wave in the form of surge can occur when a tide enters
the river mouth. Usually the surge generated by tide is termed a bore (Chanson
2004). The difference in nomenclature does not mean the differences in principles
of propagation of bores and surges. Another type of shock wave occurs when a
dam separating different water levels is suddenly removed. Analytical analysis of
idealized propagation of bore and dam-break wave is given by Billingham and King
(2000).

For those types of steep waves the system of Saint Venant equations is formally
not valid, since in its derivation the vertical acceleration has been omitted. Note
that not every wave caused by dam-break has to be considered as strictly unsteady
flow with discontinuities. Since the formation of the breach (the opening in a dam
which forms as a dam fails) needs some time, the outflow from reservoir is more
evenly distributed in time (French 1985). This fact makes reasonable using even
such a simple model as the storage equation (1.120). Such approach was proposed
and developed by Fread (1993).

On the other hand, in hydraulic engineering when the main subject of inter-
est is flow considered in large scale, the local untypical phenomena can be less
important and their internal structure may be neglected. For instance, although the
internal structure of the hydraulic jump can be effectively reproduced by solving
the Reynolds averaged Navier-Stokes equations and continuity equation completed
with the appropriate model of turbulence (Cippada et al. 1994), such approach is
not applied in open channel flow modeling. As the length of the hydraulic jump is
small comparing with the spatial dimension of practically applied grid, it is spatially
reduced to a point, in which the water surface is discontinuous. It appears that with
such approach the Saint Venant equations can be used as an effective model of flow.
However some additional conditions are required.

First of all the system of unsteady flow equations must be expressed in particular,
so called conservative form. This means that the form of equations have to satisfy the
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integral form of conservation principles, from which they were derived. Note that the
system of Saint Venant equations can be written in integral form as well as in differ-
ential form (Chanson 2004, Cunge et al. 1980). Both representations are equivalent
as long as smooth solutions are considered. The difference becomes noticeable when
discontinuities occur. In Chapter 1 the Saint Venant equations have been derived
directly from the fundamental differential equations of the fluid mechanics and we
used them in the differential form. However one can expect that the differential
equation does not hold near discontinuity in the solution (LeVeque 2002).

The second condition concerns the applied numerical method. It is assumed that
standard finite difference methods based on the Taylor series expansion, can break
down near discontinuity arising in the solution (LeVeque 2002). An appropriate
method should ensure required solution accuracy. Particularly it is expected that
the considered conservation principles will be satisfied on the numerical grid. This
requirement is satisfied particularly exactly by the finite volume method based on
the equations written in integral form. However, to solve successfully some flow
problems of shock wave type one can use the finite difference methods as well. The
flow of shock wave type means that we consider flow with large gradients rather
than containing pure discontinuity.

8.6.2 Conservative Form of the Saint Venant Equations

Let us remember the system of the Saint Venant equations (1.77) and (1.78) obtained
for a wide rectangular channel and written per unit width:

∂H

∂t
+ U

∂H

∂x
+ H

∂U

∂x
= 0, (8.132)

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
= g(s − S), (8.133)

where:

x – space co-ordinate,
t – time,
U – cross-sectional average flow velocity,
H – flow depth,
s – bed slope,
S – energy grade line slope’
g – acceleration due to gravity.

Equations (8.132) and (8.133) represent the mass and momentum conservation
laws respectively. These so called the 1D shallow water equations with source term
are written in the non-conservative form. It means that these equations do not satisfy
the integral form of conservation law from which they were derived.
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By a simple transformation the equations (8.132) and (8.133) can be reformed to
the following equivalent conservative form:

∂H

∂t
+ ∂ (U · H)

∂x
= 0 (8.134)

∂ (U · H)

∂t
+ ∂

(
U2 · H

)

∂x
+ 1

2
g
∂H2

∂x
= g · H(s − S). (8.135)

To show the difference between both forms of the Saint Venant equations let us
integrate the continuity equation (8.132) with regard to x over considered channel
reach of length L. Integration performed by parts leads to the following expression:

∂

∂t

L∫

0
H · dx = [U · H]0 − [H · U]L+

+
(

[U · H]0 − [H · U]L +
L∫

0
H · ∂U

∂x
· dx +

L∫

0
U · ∂H

∂x
· dx

) (8.136)

Similar integration of Eq. (8.134) over considered channel reach this time gives:

∂

∂t

L∫

0

H · dx = [U · H]0 − [H · U]L (8.137)

Comparing Eq. (8.136) with Eq. (8.137) we notice that although in both cases the
continuity equation was integrated the obtained results differ significantly. Equation
(8.137) expresses strictly the law of mass conservation, since it shows that time vari-
ation of water capacity stored by a channel reach of length L is caused by the net
flux through its endpoints only. We conclude that the continuity equation (8.134)
is written in the conservative form. Conversely, Eq. (8.132) is not written in the
conservative form since Eq. (8.136) obtained by its integration does not represent
the mass conservation principle. Besides the first two terms at right hand side rep-
resenting net flux through the channel endpoints, we have additional terms written
in brackets. The same is for the dynamic equation. Consequently, if we integrate
numerically the system (8.132) and (8.133) the errors in the mass and momentum
balances can occur. These errors, being insignificant for smooth solution, can be
appreciable when strong gradients occur, particularly when the discontinuities in
solution arise.

A rough evaluation of the difference between conservative and non-conservative
forms of the 1-D shallow water equations can be carried on the example of the
numerical solution of the dam break problem. We shall consider an idealized case of
dam break when the vertical wall separating two different water levels in a channel
is suddenly removed. For simplicity we will solve the homogeneous version of the
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systems (8.132) and (8.133) as well as of (8.134) and (8.135). It means that the
unsteady flow will take place in a horizontal and frictionless channel.

Example 8.5 Let us solve subsequently the following systems of equations:

∂H

∂t
+ U

∂H

∂x
+ H

∂U

∂x
= 0 (8.138)

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
= 0 (8.139)

and

∂H

∂t
+ ∂q

∂x
= 0 (8.140)

∂q

∂t
+ ∂

∂x

(
q2

H

)
+ 1

2
g
∂H2

∂x
= 0 (8.141)

where q = U/H is the flow rate per unit channel width. A wide rectangular channel
reach of length L is divided into two parts by the dam located at its mid-length
x = L/2 (Fig. 8.32).

Both systems will be solved for the same initial and boundary conditions
corresponding to the dam-break problem. They are specified as follows:

– at t = 0 the water is at rest filling the channel up to Hu= 3.0 m above the bottom
at the left side of the dam (0 ≤ x ≤ L/2) and up to Hd = 0.5 m above the bottom
at its right side (L/2 < x ≤ L);

– at the upstream end x = 0 the flow depth is constant and corresponds to the initially
imposed value: H(x = 0, t) = 3.0 m for t ≥ 0;

LL / 2

Hd

Hu

0

dam

Fig. 8.32 Initial water levels at both sides of the dam
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– at the downstream end x = L a constant depth corresponding to the initial one Hd

is imposed: H(x = L, t) = 0.5 m for t ≥ 0 (L is assumed large enough that the
downstream end will not be reached by propagating wave).

Both systems of equations are solved using the difference Preissmann scheme,
which in Section 8.2 was applied for solving the system of Saint Venant equa-
tions for non-prismatic channel. The computations carried out for L = 1,250 m,
�x = 0.5 m, �t = 0.10 s and θ = 0.67 confirmed that appreciable difference
between the conservative and non-conservative forms of solved equations exists.
Evaluation of this difference is performed in terms of the balance of the water
volume stored in considered channel, which must be constant during the flow pro-
cess. After very short time t = 120 s the system written in the non-conservative
form generates the balance error of magnitude ∼0.18%, whereas for the system in
conservative form this error practically does not exist.

The mass and momentum balance errors can be avoided on condition that the
non-linear equations of unsteady flow will be written in proper conservative form.
This is true for all non-linear transport equations. Comprehensive discussion on
the solution of non-linear hyperbilic equations is presented for instance by LeVeque
(2002), Gresho and Sani (2000) and by others. We will continue this issue in Chapter
9, while discussing the simplified forms of the unsteady flow equations.

8.6.3 Solution of the Saint Venant Equations with Shock Wave

When in the considered case of flow discontinuities appear, the computation should
be carried out very carefully. First of all, as it was stated previously, the Saint Venant
equations must be expressed in the conservative form. Secondly, their solution
needs a particular numerical approach. Cunge et al. (1980) present three possible
techniques.

The first approach, called the shock fitting method, treats the problem of discon-
tinuity propagation and the unsteady flow between the discontinuities separately.
Positions of the traveling discontinuities are calculated using the method of charac-
teristics, whereas the Saint Venant equations which hold in the regions limited by
discontinuities, are solved using the standard methods.

The second possible approach, called pseudoviscosity method, requires intro-
duction of a diffusive term into the dynamic equation. This term, having smoothing
properties, allows us to control the solution near discontinuity. Its particular form
relating intensity of generated diffusion with the wave steepness ensures that this
extra term acts strongly only locally, being insignificant far away from the discon-
tinuity. This approach is applicable for non-dissipative schemes. More information
on the pseudoviscosity method is given by Potter (1973) and Cunge et al. (1980).

The last possible approach listed by Cunge et al. (1980) bases on the solu-
tion using the dissipative methods. In this approach is assumed that the process of
smoothing is ensured by the numerical diffusion generated by the applied scheme.
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Controlling artificial diffusion one can obtain an acceptable solution. Such tech-
nique was applied in Example 8.5 in which the problem of propagation of the shock
wave caused by the dam break has been solved using the Preissmann scheme.

The disadvantage of the presented approaches is that they base on the differen-
tial equations. This can be avoided by using the finite volume method. The finite
volume method has two important features. Firstly, it ensures very good conserva-
tion of the transported quantity since it uses the flow equations in the integral form.
Secondly, it ensures a relatively simple discretization of complex domain of solu-
tion. Of course, in the 1D problem as considered here the last mentioned advantage
is not appreciable, whereas it arises distinctly in 2D and 3D problems.

The finite volume method appears effective tool for solving the propaga-
tion of shock waves particularly for extreme auxiliary conditions. However it
deals with rather idealized situation, when the homogenous equations are solved.
Unfortunately the method cannot be simply implemented for more realistic cases.
Presence of the source terms in form of the bed and grade line energy slope requires
applying of non-trivial approaches to overcome occurring difficulties. Interesting
discussion on the finite volume method is presented by Gresho and Sani (2000).
Detailed description of the method and its implementation for solution of the 1D
shallow water equations is given by LeVeque (2002) among others. This rather
complicated algorithm is not presented here, but at the end of this section an exam-
ple of solution of the dam break problem using the finite volume method will be
presented.

The results presented in the last example were obtained using the Preissmann
scheme. We know that this classical scheme is a reliable tool for solution of the
Saint Venant equations when they are applied for unsteady gradually varied flow.
On the other hand, as it was mentioned previously, the differential representation of
the flow problem is not valid near a discontinuity. Nevertheless, the Saint Venant
equations solved by the classical dissipative schemes are frequently applied (Cunge
et al. 1980). As a consequence of this discrepancy the standard schemes appear less
reliable than for gradually varied flow. Some computational aspects are illustrated
by the presented example.

Example 8.6 Solve the system of equations (8.140) and (8.141) in a wide rectangular
channel of length L for the initial and boundary conditions corresponding to surge
propagation. They are specified as follows:

– at t = 0 the water is at rest filling the channel up to H0 = 0.75 m above the bottom;
– at the upstream end x = 0 the flow rate is suddenly increased from 0 to 5 m3/s/m:

q (x = 0,t) =
{

0 for t ≤ 0
5.0 m3/s/m for t > 0

– at the downstream end x = L a time constant depth corresponding to the initial
one H0 is imposed: H(x = L, t) = H0 for t ≥ 0 (L is assumed large enough that
this end will not be reached by the propagating surge).
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Fig. 8.33 Flow profiles during a surge propagation in horizontal frictionless channel

The system of equations is solved using the difference Preissmann scheme, (see
Section 8.2). The computations carried out for L = 50 km, �x = 100 m, �t = 20 s
and θ = 0.67 furnished the results shown in Fig. 8.33.

As far as the Preissmann scheme is considered, it can be successfully used for
computation of the surge propagation in some circumstances only. First of all, the
scheme cannot handle initially dry bed. Conversely, the initial depth should be
enough large to avoid the failure of computations. Next the scheme does not accept
too large and too sudden increase of the boundary condition at the upstream end.
Increasing of the flow rate per unit width should not be forced immediately but dur-
ing approximately (4 ÷ 6)�t. This gives rise to some smearing of the steep front of
wave. Elimination of the wiggles connected with scheme’s dispersivity requires that
some numerical diffusion is introduced. This is performed by choosing of an appro-
priate value of the weighting parameter θ . If the mentioned conditions are satisfied,
the Preissmann scheme is capable to provide quite reasonable results as presented
in Fig. 8.33.

Slightly better numerical properties characterize the modified finite element
method with upwind effect. To show this approach let us reconsider the system
of Saint Venant equations in conservative and homogenous form

∂H

∂t
+ ∂q

∂x
= 0 (8.142)

∂q

∂t
+ ∂

∂x

(
q2

H

)
+ 1

2
g
∂H2

∂x
= 0 (8.143)

Approximation of these equations on a uniform grid is carried out as follows:

– At first the advective term in the momentum equation is approximated using
difference formulae (5.104):
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∂

∂x

(
q2

H

)∣∣∣∣
j
= 1

�x

(

−η q2
j−1

Hj−1
+ (2η − 1)

q2
j

Hj
+ (1 − η)

q2
j+1

Hj+1

)

(8.144)

where η = 0 corresponds to the forward difference, η = 0.5 corresponds to the
centred difference, whereas η = 1 gives the backward difference.

– Next other terms of both equations are approximated with regard to x using the dif-
ference scheme basing on the modified finite element method (see Section 8.3.1).
This yields the system of ordinary differential equations with regard to time:

• for j = 1

ω
dHj

dt
+ (1 − ω)

dHj+1

dt
+ −qj + qj+1

�x
= 0 (8.145a)

ω
dqj

dt
+(1 − ω)

dqj+1

dt
+ 1

�x

(

−
(
qj
)2

Hj
+
(
qj+1

)2

Hj+1

)

+ g

2

− (Hj
)2 − (Hj+1

)2

�x
=0

(8.145b)
• for j = 2, 3, . . ., M − 1

1 − ω

2

dHj−1

dt
+ ω

dHj
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+ 1 − ω

2
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• for j = M

(1 − ω)
dHj−1

dt
+ ω

dHj

dt
+ −qj−1 + qj

�x
= 0 (8.145e)
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⎟
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(
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(

Hj

)2

�x
=0

(8.145f)
where M is total number of nodes.
– The system of Eq. (8.145) is integrated over time using the formulae (8.54).

Finally one obtains the following system of algebraic equations:
• for j = 1

ω
Hn+1

j −Hn
j

�t
+(1−ω) Hn+1

j+1 −Hn
j+1

�t
+(1−θ)−qn

j + qn
j+1

�x
+ θ

−qn+1
j +qn+1

j+1

�x
=0

(8.146a)
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8.6 Application of the Saint Venant Equations for Steep Waves 361

This non-linear system of algebraic equations completed by the appropriate
boundary conditions is solved using the Newton method.

The properties of the presented method can be examined on the example of the
linear wave equations (8.16) and (8.17), using the modified equation approach for
accuracy analysis. Following this way finally we obtain the system of modified wave
equations corresponding to the solved linear wave equations:

∂U

∂t
+ g

∂H

∂x
= Dn

∂2U

∂x2
+ En1

∂3H

∂x3
+ · · · (8.147)

∂H

∂t
+ H

∂U

∂x
= Dn

∂2H

∂x2
+ En2

∂3U

∂x3
+ · · · . (8.148)

In Eqs. (8.147) and (8.148) the coefficient of numerical diffusion Dn is given by
the expression:

Dn = c ·�x

2
((2θ − 1)Cr + (2η − 1)) , (8.149)

whereas the coefficients of numerical dispersion En1 and En2 are defined as follows:

En1 = g ·�x2

2

(
2

3
− ω + Cr (2η − 1) (1 − θ)+ C2

r

(
θ − 2

3

))
(8.150)

En2 = H ·�x2

2

(
2

3
− ω + Cr (2η − 1) (1 − θ)+ C2

r

(
θ − 2

3

))
(8.151)

where Cr is the Courant number defined by Eq. (8.18). Note that in this case the
numerical diffusivity is controlled by two parameters: θ and η. The first one is
related to the time integration, whereas the second one is related to the approxi-
mation of the convective term only. The latter parameter allows us to introduce into
solution the upwind effect.

Performing similar stability analysis as presented in Section 8.3.2, one can show
that the following conditions:

ω ≥ 0.5, (8.152a)

θ ≥ 0.5, (8.152b)

η ≥ 0.5 (8.152c)

ensure absolute stability of the method.
The numerical experiments dealing with propagation of a surge show that the

described method seems more effective than the difference Preissmann scheme. It
is possible to increase the flow rate at the boundary immediately from zero to a
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relatively large amount. Two weighting parameters allow us to control the numer-
ical diffusivity needed for suppressing the wiggles appearing at the steep front.
Usually 3–5 iterations should be applied to obtain satisfying results. The mass bal-
ance error generated by the method is very low and usually it does not exceed
0.001%. Although the method is absolutely stable for linear problems, in the case
of non-linear equations the assumed time step must be limited. Acceptable values
of the Courant number varies depending on the circumstances, however it should
not exceed 0.6–0.8. The main disadvantage of the method is that it fails for initially
shallow water in considered channel, i.e. for dry bed.

To show an example of solution let us apply the described method to solve the
dam break problem.

Example 8.7 Equations (8.142) and (8.143) are solved in a wide rectangular channel
of length L = 3,000 m for a discontinuous initial conditions caused by the dam
as presented in Fig. 8.31. At the downstream the initial depth is Hd = 0.50 m,
whereas the upstream depth is Hu = 10.0 m. At both channel ends the initially
imposed depths are kept in time. Suddenly the dam is removed and the water from
the reservoir is released. For the assumed auxiliary conditions the system of Eqs.
(8.142) and (8.143) has analytical solution given by Wu et al. (1999). This solu-
tion is represented in Fig. 8.34 by the dotted line. The solid line represents the
results of numerical solution obtained at t = 120 s for �x = 2.0 m and �t = 0.1 s
with the following values of the weighting parameters: ω = 0.67, θ = 0.70 and
η = 0.67.

Both plots are in perfect agreement. Note that ω = 0.67 corresponds to the
standard finite element method. Therefore one can suppose that this method gives
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Fig. 8.34 Flow profiles in the channel at t = 120 s after removing the dam calculated numerically
(solid line) and analytically (dotted line)
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satisfactory results, when some additional dissipation is introduced into solution. In
this case it was achieved with θ = 0.70 and η = 0.67.

Although both discussed methods, i.e. the difference Preissmann scheme and the
modified finite element method, appear effective for solving some cases of unsteady
flow with discontinuities, they are not reliable for all possible forms of such kind
of flow, particularly those corresponding to extreme situations. In such a situation it
seems to be better to use the finite volume method, especially suitable for solving
the hyperbolic equations with discontinuities.

We will end this section by presentation of the results of dam break prob-
lem computed with the finite volume method. Equations (8.142) and (8.143) are
solved in a wide horizontal channel described in Example 8.5 for the same data
except the initial and boundary conditions down of the dam. A dry state is assumed
(Hd ≈ 0.0 m). For assumed auxiliary conditions, when flow resistance is neglected
the system of Eqs. (8.142) and (8.143) has analytical solution given by Ritter (Wu
et al. 1999, Chanson 2004). This solution is represented in Fig. 8.35 by the dotted
line. In the same figure the solid line represents the results of numerical solution at
t = 70 s given by the finite volume method.

Comparing both graphs one can find out their perfect agreement. In contrast to
the finite difference and element methods this takes place even in the vicinity of
channel bed.

Next solution deals with the dry state but taking into account the flow resistance.
The results obtained for exactly the same data as assumed previously and for the
Manning coefficient assumed to be equal nM = 0.025 are displayed in Fig. 8.36. For
comparison they are contrasted with solution from Fig. 8.35 for frictionless flow.
Although in this case no exact solution exists, the computed flow profile qualita-
tively similar to the ones observed in the physical experiments (see Chanson 2004).
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Fig. 8.35 Flow profiles in frictionless channel at t = 70 s after removing the dam calculated
numerically (solid line) and analytically (dotted line)
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Fig. 8.36 Comparison of the flow profiles in considered channel at t = 70 s after removing the
dam calculated using the finite volume method without friction and including friction
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Chapter 9
Simplified Equations of the Unsteady Flow
in Open Channel

9.1 Simplified Forms of the Saint Venant Equations

The system of Saint Venant equations derived in Chapter 1 in the form of Eqs.
(1.77) and (1.78) or Eqs. (1.79) and (1.80) is called the dynamic wave model or
the complete dynamic model. This model of unsteady open channel flow gives reli-
able results if the underlying assumptions are satisfied. On the other hand, the Saint
Venant model requires rather complex methods of solution and relatively large num-
ber of data characterizing both the channel and the flow conditions. For this reasons
hydrologists tried to simplify the system of Saint Venant equations to obtain models,
which require less input information.

Consider the dynamic equation (1.77):

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
= g(s − S), (9.1)

where:
t – time,
x – longitudinal coordinate,
H– water depth,
U– flow velocity,
g – gravitational acceleration,
s – channel bottom slope,
S – slope of energy line.

One can notice that its terms have different orders of magnitude. Henderson
(1966) showed, that even for a river with considerable longitudinal bed slope, for
steep flood waves, i.e. when the inertial force should play relatively significant role,
the values of the consecutive terms of Eq. (9.1) differ by about two orders of mag-
nitude. Similar conclusions were presented by Cunge et al. (1980). Evaluation of
subsequent terms of Eq. (9.1) carried out for flow with significant variability of its

367R. Szymkiewicz, Numerical Modeling in Open Channel Hydraulics, Water Science
and Technology Library 83, DOI 10.1007/978-90-481-3674-2_9,
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parameters both in time and in space, showed that the first and second terms of the
left hand side are of the order of ∼1.0·10−4 and ∼1.5·10−4 respectively. At the
same time the bed slope, being in this case of the order of 10−3 causes, that the first
term of the right side hand of Eq. (9.1) is of the order ∼10−2. If the differences in
depth along the channel axis are small then the third term is relatively small compar-
ing with g·s. Consequently, the term representing the friction force will be of order
of the bed slope, i.e. s = S. This means that in the dynamic equation the friction
force and the gravitational force dominate. In some cases the differences in orders
of magnitude can be even greater than presented above. Thus, it is reasonable to
neglect the terms of lesser importance. As a result, one obtains the equations in sim-
pler forms. Simplified equations are still interesting for hydrological practice, since
they can be more easily applied to the flood routing problem. There are two simpli-
fied forms of the system of Saint Venant equations: the kinematic wave model and
the diffusive wave model. Both models base on the original continuity equation and
on the appropriately simplified dynamic equation. The theory of the kinematic wave
was given by Lighthill and Whitham (1955) whereas the diffusive wave theory was
presented by Hayami (1951). The properties and applicability of both mentioned
models have been discussed by many authors, e.g. Miller and Cunge (1975), Ponce,
Li and Simmons (1978) and Ponce (1990). A comprehensive review is given by
Singh (1996). Although not generally appropriate to adequately reproduce the real
flood routing process, the linearized forms of the simplified models are applied very
often.

Let us recall the system of Saint-Venant equations, which with flow rate and
depth as dependent variables, can be written as follows:

B
∂H

∂t
+ ∂Q

∂x
= 0, (9.2)

k

(
∂Q

∂t
+ ∂

∂x

(
Q2

A

))
+ l

(
g · A

∂H

∂x

)
− g · A · s + g · A · S = 0 (9.3)

where:

Q – flow discharge,
A – cross-sectional area of flow,
B – channel width at water surface,
k, l – constants taking the values 1 or 0.

The slope friction S is expressed using the Manning formula:

S = n2
M |Q| Q

R4/3 · A2
(9.4)

where:
nM – Manning roughness coefficient,
R – hydraulic radius.
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The integer constants k and l can take the values of either 0 or 1. For k = 1 and
l = 1 we have full momentum equation which corresponds to the dynamic wave,
whereas for k = 0 and l = 1 Eqs. (9.2) and (9.3) become the diffusive wave model.
The kinematic wave model is obtained when k = 0 and l = 0.

First, let us consider the kinematic wave model. This model is derived when in
the momentum equation only the gravitational and friction forces are taken into
account. In such a case Eq. (9.3) becomes the equation for steady uniform flow:
s = S.

Then the kinematic wave model is constituted by the differential continuity
equation (9.2) and the Manning equation (9.4), i.e.:

∂H

∂t
+ 1

B

∂Q

∂x
= 0, (9.5)

Q = 1

nM
R1/2 · s 1/2 · A, (9.6)

The momentum equation (9.3) can be simplified in another way leading to the
second simpler form of the unsteady flow equations. If apart from the friction and
gravitational forces, as previously, we take into account the hydrostatic force as well,
then the diffusive wave model will be obtained. It is constituted by the continuity
equation (9.2) and simplified momentum equation (9.3):

∂H

∂t
+ 1

B

∂Q

∂x
= 0, (9.7)

∂H

∂x
+ S − s = 0, (9.8)

The meaning of the introduced assumptions can be illustrated using the so-called
rating curve. This curve represents the relation between the water level (or depth)
and the discharge rate in the considered channel cross-section. These variables are
related via the Manning formula:

Q = 1

nM
R1/2 · S1/2 · A. (9.9)

In a particular case when the bed slope coincides with the energy line slope, i.e.
for the uniform flow, Eq. (9.9) becomes Eq. (9.6). If we calculate the energy line
slope S from Eq. (9.1) and substitute in Eq. (9.9), we obtain (Chow et al. 1988):

Q = 1

nM
R2/3 · A

(
s − k

(
1

g · A

∂Q

∂t
+ 1

g · A

∂

∂x

(
Q2

A

))
− l
∂H

∂x

)1/2

(9.10)

In a general case of unsteady flow the relation Q(H) is non-unique, because it
depends on ∂Q/∂t, ∂Q/∂x, and ∂H/∂x, Due to this non-uniqueness thewell-known
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Fig. 9.1 Hysteresis of the function Q(H) during the unsteady flow

phenomenon of the rating curve hysteresis is observed during the passage of a flood
wave. At the rising limb of flood wave (Fig. 9.1), where we have ∂H/∂x < 0 and
∂Q/∂x < 0, the flow rate for given depth H0 is greater comparing with the discharge
for steady flow: Q1 > Q0. Conversely, at the failing limb, when ∂H/∂x > 0 and
∂Q/∂x > 0, the corresponding flow rate will be less than one for the steady flow.
A unique relation between Q and H is possible only for steady uniform flow, when
the derivatives over x and t disappear and Eq. (9.10) coincides with Eq. (9.6). The
diffusive wave model obtained for k = 0 and l = 1 is able to reproduce to some extent
the non-uniqueness of Q-H relation, since it takes into account the non-uniformity
of flow, expressed by ∂H/∂x. On the other hand, the kinematic wave model with
k = l = 0 predicts the same relation Q(H), corresponding to the steady uniform
flow, regardless of the actual flow conditions.

In the following example are presented the relations Q(H) obtained for the
complete system of Saint Venant equations and its both simplified forms.

Example 9.1 In rectangular open channel of length L = 80 km the unsteady flow is
considered. Assume the following data:

– bed width of channel is b = 30 m,
– bed slope is s = 0.0005,
– Manning coefficient is nM = 0.035,
– initial condition:

at t = 0 is determined by the steady uniform flow with Q0 = 20 m3/s,

– boundary conditions:

at x = 0 the following hydrograph is imposed:
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Q(x,t) = Q0 + (Qmax − Q0)

(
t

tmax

)α
exp

(
1 −

(
t

tmax

)α)
(9.11)

where:

Q0 – baseflow discharge of the inflow,
Qmax – peak discharge of the inflow,
tmax – time of the peak flow,
α – parameter,

at x = L the depth H(x, t) = Hn = const. (Hn is normal depth corresponding to Q0)
is imposed.

The rating curve is computed at the control cross-section located at mid-length
of the channel.

All the systems of equations (i.e. the dynamic, diffusive and kinematic wave
models) are solved by the modified finite element method described in Chapter 8.
The computations were performed for: �t = 60 s, �x = 400 m, Q0 = 20 m3/s,
Qmax = 200 m3/s, tmax = 2 h and α = 1.5.

In Fig. 9.2 the relation Q(H) generated by the system of Saint Venant equation is
displayed. The obtained curve has a loop of hysteresis typical for unsteady flow.

The rating curves generated by the simplified forms of the unsteady flow equa-
tions are shown in Fig. 9.3. One can see that in the considered case the relation Q(H)
for the diffusive wave differs slightly from the one obtained for the complete system
of equations. For the kinematic wave the loop of hysteresis disappears and the rating
curve becomes a unique relation as it is expected.
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Fig. 9.2 Hysteresis of the function Q(H) for the dynamic wave
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Fig. 9.3 Hysteresis of the function Q(H) for the diffusive wave model (a) and for the kinematic
wave model (b)

9.2 Simplified Flood Routing Models in the Form of Transport
Equations

9.2.1 Kinematic Wave Equation

The kinematic wave model in the form of system of equations (9.5) and (9.6) can be
reduced to one differential equation with regard to a single unknown function only.
The equation for steady flow is rearranged to the following form:

A = α · Qm. (9.12)

For the Chezy formula one obtains:

α = 1
(

CC ·s1/2

p1/2

)2/3
, (9.13a)

m = 2

3
(9.13b)

whereas for the Manning formula we have:

α = 1
(

s1/2

nM ·p2/3

)3/5
, (9.14a)

m = 3

5
(9.14b)
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If instead of the depth H(x, t) the wetted flow area A(x, t) is introduced as the
dependent variable, then the system of equations describing the kinematic wave
model takes the following form:

∂A

∂t
+ ∂Q

∂x
= 0, (9.15)

A = a · Qm (9.16)

Let us assume a wide and shallow channel for which the wetted perimeter can be
considered constant. Differentiation of Eq. (9.16) with these assumptions yields:

∂A

∂t
= a · m · Qm−1 ∂Q

∂t
. (9.17)

Substitution of Eq. (9.17) in Eq. (9.15) gives the following equation:

∂Q

∂t
+ 1

a · m · Qm−1

∂Q

∂x
= 0, (9.18)

Equation (9.18) can be rewritten in a more compact form:

∂Q

∂t
+ C

∂Q

∂x
= 0, (9.19)

where:

C = 1

a · m · Qm−1
(9.20)

is the kinematic wave celerity. Substitution of the coefficients a and m given by Eqs.
(9.14a) and (9.14b), in Eq. (9.20) yields:

C =
(

s1/2

nM · p2/3

)3/5
5

3
Q2/5 = 5

3
U. (9.21)

This means, that the kinematic wave moves faster than the water flows in the
channel.

9.2.2 Diffusive Wave Equation

Using a similar approach, the diffusive wave model in the form of system of equa-
tions (9.7) and (9.8) can be reduced to a single differential equation as well. For
different assumptions one obtains various forms of the final equation where the
dependent variable can be the depth H(x, t), the water stage h(x, t) or the flow rate
Q(x, t). We will derive the classical form of the diffusive wave equation with regard
to flow rate. To this end the Manning equation (9.9) is rewritten as
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Q = K
√

S, (9.22)

where:

K = 1

nM
R2/3 · A (9.23)

The coefficient K, called conveyance, is a function of the cross-sectional param-
eters only. Substitution of Eq. (9.22) in Eq. (9.8) allows us to rewrite the diffusive
wave model (9.7) and (9.8) as follows:

∂H

∂t
+ 1

B

∂Q

∂x
= 0, (9.24)

∂H

∂x
+ |Q| Q

K2
− s = 0, (9.25)

In the next step the continuity equation is differentiated with regard to x, whereas
the dynamic equation is differentiated with regard to t. Assuming constant width of
the channel (B = const.), one obtains:

∂2H

∂t · ∂x
+ 1

B

∂2Q

∂x2
= 0, (9.26)

∂2H

∂x · ∂t
+ 2 |Q|

K 2

∂Q

∂t
− 2 Q |Q|

K 3

∂K

∂t
= 0. (9.27)

Subtraction of Eq. (9.26) from Eq. (9.27) eliminates the cross derivatives of
function H(x, t), yielding:

2 |Q|
K 2

∂Q

∂t
− 1

B

∂2Q

∂ x2
− 2 Q |Q|

K 3

∂K

∂t
= 0. (9.28)

Since the conveyance K is a function of the depth H, then one can write:

∂K

∂t
= ∂K

∂H

∂H

∂t
. (9.29)

With the continuity equation (9.24) the above equation becomes:

∂K

∂t
= − ∂K

∂H

1

B

∂Q

∂x
. (9.30)

Substitution of Eq. (9.30) in Eq. (9.28) yields:

∂Q

∂t
+
(

Q

K · B

∂K

∂H

)
∂Q

∂x
− K2

2B |Q|
∂2Q

∂x2
= 0. (9.31)
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Introducing new variables:

C = Q

K · B

∂K

∂h
, (9.32)

D = K 2

2B |Q| (9.33)

Equation (9.31) is rewritten in the following final form:

∂Q

∂t
+ C

∂Q

∂x
− D

∂2Q

∂x2
= 0, (9.34)

Equation (9.34) is the diffusive wave model in the form of advection-diffusion
transport equation in which C is the kinematic wave celerity and D is the coefficient
of hydraulic diffusivity.

The most popular form of the diffusive wave model, proposed by Hyami in 1951
(Eagleson 1970), is a particular case of equation (9.30). It is obtained from Eq.
(9.30) on condition that:

• the slope of energy line is replaced by the bed slope (S = s),
• the considered channel is wide and shallow so one can assume constant wetted

perimeter (p = const.).

Taking these assumptions into account one obtains:

D = K2

2B · Q
= 1

2B · Q

Q2

s
= Q

2B · s
(9.35)

C = Q

B · K

∂K

∂H
= n M · Q

B · R2/3 · A
· ∂

∂H

(
1

nM
R2/3 · A

)
= Q

B · R2/3 · A

∂

∂H

(
A5/3

p2/3

)

=

= Q

B · R2/3 · A
· 1

p2/3
5

3
A2/3 ∂A

∂H
= 5

3

Q

A
= 5

3
U, (9.36)

Equation (9.36) represents the kinematic wave celerity, previously derived for
the kinematic wave equation (9.19). The diffusive wave model in the form of Eq.
(9.34) in which the coefficients are given by Eqs. (9.35) and (9.36) is frequently
used.

To show the difference between the kinematic and diffusive wave models, i.e. to
notice role of the diffusive term in Eq. (9.34), let us rout the same flood wave using
both models.

Example 9.2 In a rectangular straight channel of length L = 100 km the propagation
of the flood wave is considered. The auxiliary conditions are following:
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– initial condition at t = 0 is determined by the steady uniform flow with flow
discharge Q0,

– boundary conditions:

at x = 0 a hydrograph in the form of Eq. (9.11) is imposed:

Q(x,t) = Q0 + (Qmax − Q0)

(
t

tmax

)α
exp

(
1 −

(
t

tmax

)α)

for the diffusive wave equation at the downstream end x = L, additionally
is imposed the function H(x, t) = H0 = const., where H0 is normal depth
corresponding to Q0.

Assume the following data:

– bed width of channel is b = 25 m,
– bed slope is s = 0.0005,
– Manning coefficient is nM = 0.030,
– baseflow Q0 = 5 m3/s,
– peak flow Qmax = 100 m3/s,
– time to peak tmax = 4 h,
– α = 1.0.

Solve the linear kinematic and diffusive wave models to compare the results at the
control cross-section located at x = 75 km of the considered channel. Note that the
boundary condition imposed at the downstream end for the diffusive wave equation
does not disturb the flow in assumed control.

Since the solved equations are non-linear ones then their linearization is needed.
Linearization of Eq. (9.37) is carried out assuming constant values of the parameters
C and D. They can be calculated accordingly to Eqs. (9.38) and (9.39) for a constant
value of the flow rate taken as arithmetic average from its lowest and highest values
i.e. Q = QC = (Q0+Qmax)/2. For Qc = 52.5 m3/s one obtains C = 1.88 m/s and
D = 2100.0 m2/s. The kinematic wave equation is solved using the box scheme
applied in Chapter 6 for solving the advection equation, whereas the diffusive wave
equation is solved with the modified finite element method applied for solving the
advection-diffusion equation in Chapter 7.

The computations performed for �x = 1,000 m and �t = 600 s i.e. with the
advective Courant number equal to Ca = 1.13 gave the results displayed in Fig. 9.4.
They represent typical solutions of the pure advection equation and the advection-
diffusion equation with constant parameters.

Note that the kinematic wave model produces practically exact solution ensuring
nearly pure translation of the flood wave. On the other hand, as it could be expected,
the diffusive term present in the diffusive wave equation attenuates the propagating
wave giving rise to decreasing of its peak and to widening of its base.
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Fig. 9.4 Results of wave routing by the linear kinematic (QK(x = 75 km, t)) and diffusive
(QD(x = 75 km, t)) wave equations

9.2.3 Linear and Non-linear Forms of the Kinematic and Diffusive
Wave Equations

In the preceding section it was shown that neglecting the inertial terms the system of
Saint Venant equations (9.2) and (9.3) can be transformed into the following advec-
tive – diffusive transport equation with the function Q(x, t) as dependent variable:

∂Q

∂t
+ C (Q)

∂Q

∂x
− D (Q)

∂2Q

∂x2
= 0 (9.37)

where:

C(Q) – advective velocity,
D(Q) – hydraulic diffusivity.

For a wide and rectangular channel with the slope of energy line equal to the
slope of the channel bottom C(Q)) becomes the kinematic wave speed. In such a
case the parameters of Eq. (9.37) are expressed as follows:

C = 1

m · α · Qm−1
, (9.38)

D = Q

2 B · s
(9.39)
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where m is the kinematic wave ratio (m = 3/5 for the Manning law friction).
Equation (9.37) represents the diffusive wave – the kinematic wave is obtained for
D = 0. Parameter α is given by Eq. (9.13). Both equations are non-linear since their
parameters C and D depend on Q. However, linearized versions of Eq. (9.37) with
constant C and D are usually applied, for the sake of simplicity. To show the dif-
ference between linear and non-linear forms of this equation, let us consider the
following example.

Example 9.3 In the same channel and for the same data as assumed previously in
Example 9.2, the flood wave propagation is considered. However, conversely to the
preceding example, now the non-linear forms of the kinematic and diffusive waves
are solved.

The kinematic wave equation is solved using the box scheme, whereas the diffu-
sive wave equation is solved with the modified finite element method. However, as
the approximation of solved equation (9.37) leads to the non-linear systems of alge-
braic equations the iterative method must be used for its solution. For both models
the Newton method generating convergent solution is applied.

In Fig. 9.5 the results of solution of linear and non-linear forms of the kinematic
wave equation are shown. The results for linear model are coming from Example 2.
One can notice the effect typical for a non-linear equation. The front of the propa-
gating wave becomes steeper, whereas its tail becomes longer. This property results
from Eq. (9.38). The advection velocity C increases with the flow rate Q so the wave
peak moves faster than the lower parts of the wave. Finally, the propagating wave
can break down. More detailed analysis of this phenomenon, based on the theory of
characteristics, is given for example by Abbott (1979).

Similar, but less significant effects (see Fig. 9.6) are observed in the solution of
the non-linear diffusive wave equation as well. However in this case the propagating
wave is simultaneously damped due to the hydraulic diffusion, so its breakdown is
rather impossible. Still, the differences between the linear and non-linear versions
of the diffusive wave equation cannot be neglected. Therefore, we have to be aware
that linearization of Eq. (9.37) while simplifying its numerical solution, changes
significantly the results.

While solving the non-linear partial differential equations representing transport
of any scalar quantity, the form of solved equation is a problem of great importance.
The equation must be written in conservative form. Otherwise one can expect errors
in the balance of transported quantity in the numerical solution. As far as Eq. (9.37)
is considered, it is a non-linear advection-diffusion transport equation written in the
non-conservative form. Therefore one can expect that the presented numerical solu-
tions should be affected by the errors. Indeed, if we thoroughly examine the function
Q(t) obtained with non-linear models at the control cross-section, we will notice that
the total volume of the water leaving the considered channel reach differs from that
entering the reach, the difference exceeding 8 and 6% for the kinematic and diffu-
sive waves, respectively. On the other hand, the numerical solutions of the linear
equations satisfy the law of mass conservation perfectly for the non-linear diffu-
sive and kinematic wave equations considered in Example 9.2. Then the numerical
solution of Eq. (9.37) seems to be a non-trivial problem.
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Fig. 9.5 Results of wave routing by the linear (QL(x = 75 km, t)) and non-linear (QN(x = 75 km, t))
kinematic wave equations

0 12 24 36 48 60 t [h]
0

20

40

60

80

100

Q [m3/s] Q (x = 0,t )

QL (x = L,t )

QN (x = L,t )

Fig. 9.6 Result of wave routing by the linear (QL(x = 75 km, t)) and non-linear (QN(x = 75 km, t))
diffusive wave equations
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9.3 Mass and Momentum Conservation in the Simplified Flood
Routing Models in the Form of Transport Equations

9.3.1 The Mass and Momentum Balance Errors

The system of Saint-Venant equations comprises the continuity and dynamic equa-
tions which are derived from the mass and momentum conservation principles,
respectively. To avoid the mass and momentum balance errors in the numerical
solution, both equations have to be written in conservative forms. This problem has
been shortly discussed in Chapter 8. As we showed in the preceding section, the lin-
earized forms of simplified models perfectly ensure mass conservation, whereas the
non-linear forms of these models may give rise to mass balance error. The numerical
calculations presented in Example 9.2 show that this error can be of order of 8%,
but even 20% difference in volumes between upstream and downstream hydrograph
may be obtained (Cappelaere 1997).

Originally, all simplified models are written in the form of a system of differ-
ential equations (i.e. a continuity equation and a simplified momentum equation).
Consequently, there are no doubts which quantities are the conservative ones.
However the situation is changed at the moment when both equations are combined
to obtain a single transport equation. It appears that similarly to other flow problems,
the final form of the non-linear simplified models has a fundamental meaning for the
mass and momentum conservation in their numerical solutions. On the other hand,
one can expect that the non-linear simplified equations, derived from the continuity
and dynamic equations, should also fulfil both mass and momentum conservation
principles at the same time. For this reason the following question seems to be rel-
evant: how should the simplified models be interpreted from the point of view of
the conservation laws? To explain this question let us follow the idea presented by
Gasiorowski and Szymkiewicz (2007).

Let us consider a channel reach of length L. Assuming that the flow takes place in
a time interval T, which is long enough (after the passing of the flood wave the dis-
charge comes back to its initial value), the mass balance for constant water density
takes the following form:

T∫

0

(Q(0,t) − Q(L,t))dt = 0 (9.40)

It means that the total volumes passing through the two ends of the channel reach
given by the formulas:

m0 =
T∫

0

Q (0,t) dt, (9.41a)
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mL =
T∫

0

Q (L,t) dt (9.41b)

should be equal. The relative mass balance error can be defined as follows:

�Em = mL − m0

m0
· 100% (9.42)

where:

�Em– he mass error expressed in %,
m0, mL– olume of inflow and outflow respectively, within the time period of T.

The momentum balance can be represented similarly. The total variation of
momentum over a channel reach of length L in time interval T must be equal to the
difference of the momentum transported at upstream end x = 0 and at the down-
stream end x = L respectively. If constant water density is assumed, the losses
caused by friction, gravitation and pressure are neglected and the time interval T
is long enough, this balance will take the following simplified form:

T∫

0

(
Q2(0,t)

A(0,t)
− Q2(L,t)

A(L,t)

)
dt = 0 (9.43)

The total momentum of inflow and outflow is given by the formulas:

M0 =
T∫

0

U (0,t)Q (0,t) dt =
T∫

0

Q2 (0,t)

A (0,t)
dt, (9.44a)

ML =
T∫

0

U (L,t)Q (L,t) dt =
T∫

0

Q2 (L,t)

A (L,t)
dt (9.44b)

where:

M0, ML – total momentum of inflow and outflow, respectively, within the time
period of T, divided by water density,

U – flow velocity,
A – cross-sectional area of flow.

The relative momentum balance error can be calculated as follows:

�EM = ML − M0

M0
· 100% (9.45)
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where: �EM – the momentum error expressed in %.
Equations (9.43), (9.44a) and (9.44b) hold for the system of Saint Venant equa-

tions when both functions Q(x, t) and A(x, t) are known. In the case of kinematic
and diffusive wave equation the momentum balance can be rearranged using the
Manning formula written in the form of Eq. (9.16). Consequently Eq. (9.43) can be
rewritten as follows:

T∫

0

(
Q2−m(0,t) − Q2−m(L,t)

)
dt = 0 (9.46)

Note that for the linear kinematic wave model with U(x, t) = const., the momen-
tum balance expressed by Eq. (9.43) takes the form of Eq. (9.40), which represents
the mass balance.

Numerical tests confirm that the mass balance error �Em calculated for all con-
sidered models written in the form of the systems of conservative equations is very
low (of the order of ∼10−2%), whereas the total momentum of the outflow appears
to be less than the momentum of the inflow. It is reasonable, because the effects of
friction, gravitation and pressure have been neglected in the momentum balance.

As far as the linear kinematic and diffusive wave models in form of the advection
and advection – diffusion equation are considered, one can find out that the mass
and momentum principles are satisfied perfectly regardless of the flow conditions.
Numerical test confirm that both errors �Em and �EM do not exceed the value of
0.01%.

Comparison of the momentum balance errors in simplified models with those cal-
culated for the full system of Saint-Venant equations reveals an interesting fact. The
error �EM ,which for the Saint-Venant system is of the order of a couple per cents,
practically disappears for both linear advection and advection-diffusion transport
equations. The way of derivation of the simplified equations changes the character
of the momentum conservation law. This is due to an additional important hypoth-
esis on the flow process, which is implicitly introduced when the simplified system
of Saint Venant equations is transformed into the advection and advection-diffusion
equations. The differentiation of the simplified momentum equation with respect to
time means that the sum of all forces taken into account in the simplified model
is assumed to be constant during the flow process. The value of this sum is deter-
mined by the boundary condition imposed at the upstream end of the channel reach.
In other words the differentiation of Eq. (9.25) gives rise to an essential modifica-
tion of the final equation. No losses of the momentum are represented in Eq. (9.37),
since during the differentiation the friction force represented by the source term was
replaced by a diffusive one.

For the non-linear equations the total mass at the downstream end is not equal
to those entering the channel reach. The balance errors �Em and �EM are usually
of the order of several per cents. As it was afore-mentioned, Cappelaere (1997)
reported this error can reach even about 20%.
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9.3.2 Conservative and Non-conservative Forms of the Non-linear
Advection-Diffusion Equation

To explain the problem of mass and momentum balance errors which appear for
the non-linear flow routing models, let us begin with recalling the basic information
on the conservative or non-conservative form in which the solved equations can be
written.

The 1-D advective or advective-diffusive transport equation without the
source/sink term has the following form:

∂f

∂t
+ ∂

∂x
(φA + φD) = 0 (9.47)

in which

φA = U · f , (9.48a)

φD = −D
∂f

∂x
(9.48b)

where:

φA – advective flux,
φD – diffusive flux,
f – scalar function,
U – advective velocity,
D – coefficient of diffusion.

Equation (9.47) has so-called divergence or conservative form because its inte-
gration over the domain of solution (0 ≤ x ≤ L) gives directly the following global
conservation law:

∂

∂t

L∫

0

f · dx =
[

U · f − D
∂f

∂x

]

0
−
[

U · f − D
∂f

∂x

]

L
(9.49)

The total energy (if f represents temperature) or mass (if f represents concentra-
tion of dissolved substance) changes only by the net flux of f out the domain through
the boundary x = 0 and x = L. It should be mentioned that only the divergence form
of transport equation assures global conservation (Gresho and Sani 2000).

Comparing Eqs. (9.37) and (9.47) one can notice that Eq. (9.37) is written in
a non-conservative form since this equation cannot be transformed into the global
conservation law in form of Eq. (9.49). To show the consequences of this difference
let us consider the non-linear advection equation of type of Eq. (9.37) with D = 0:
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∂f

∂t
+ a · f b · ∂f

∂x
= 0 (9.50)

where: a, b – constant parameters.
Integration by parts of Eq. (9.50) with regard to x over a channel reach

(0 ≤ x ≤ L) leads to the following expression:

∂

∂t

L∫

0

f · dx = [a · f b · f ]0 − [a · f b · f ]L + RA (9.51)

where

RA =
L∫

0

f · ∂(a · f b)

∂x
· dx. (9.52)

The extra term RA results from the non-linearity of the advective term. Equation
(9.52) does not represent a global conservation law, because the total quantity rep-
resented by function f is changed not only by the net advective flux through the
boundaries, as in Eq. (9.49), but by the additional term RA as well. This term can
be considered as the conservation error in the numerical solution. It can be avoided
on condition that proper conservative form of the non-linear equation is applied.
Obviously, if a constant kinematic speed is assumed (a · f b = const.), Eq. (9.50)
will become conservative and consequently RA will disappear.

While discussing the conservative properties of the diffusive wave model it is
worth to recall the way of its derivation. Let us assume that f represents some con-
servative quantity as the mass of dissolved matter or energy. The governing equation
(Eq. 9.47) for the transport of f by the flowing stream, obtained via balance of
conservative quantity for control volume, has the conservative form. Conversely
to this equation, Eq. (9.37) was not derived directly from the mass or momen-
tum conservation principle. It was obtained by manipulation on the continuity
and momentum equations derived for unsteady open channel flow. Consequently
Eq. (9.37) represents a non-conservative form. Equation (9.47) is consistent with Eq.
(9.37) only when the advective velocity and the coefficient of diffusion are constant.
Unfortunately we can never obtain Eq. (9.47) from Eq. (9.37) and consequently one
can expect that Eq. (9.37) will never satisfy the global conservation law.

9.3.3 Possible Forms of the Non-linear Kinematic Wave Equation

In order to emphasize the essential difference between conservative and non-
conservative forms of the transport equation in the case of flood routing models,
let us consider Eq. (9.37) with D = 0:
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∂Q

∂t
+ 1

α · m
· Q1−m ∂Q

∂x
= 0 (9.53)

It represents a non-conservative form of the non-linear kinematic wave equation.
Equation (9.53) can be integrated over a channel reach of length L:

L∫

0

∂Q

∂t
dx + 1

α · m

L∫

0

Q1−m ∂Q

∂x
dx = 0 (9.54)

In the first term of the above expression the order of integration and differentia-
tion is inversed, whereas the second term is integrated by parts. Consequently Eq.
(9.54) is rewritten as follows:

∂

∂t

L∫

0

Q· dx = 1

α · m

(
Q1−m

0 · Q0 − Q1−m
L · QL

)
+ RA (9.55)

where:

Q0 – discharge at the upstream end,
QL – discharge at the downstream end.

The term RA is defined by the following formula:

RA = 1

α · m

L∫

0

Q
∂Q1−m

∂x
dx (9.56)

Now let us consider again non-linear Eq. (9.53), but rewritten in another form:

∂Q

∂t
+ 1

α · m · (2 − m)
· ∂Q2−m

∂x
= 0 (9.57)

One can see that the coefficient in Eq. (9.57) is constant, because α, m = const.,
whereas the function Q(x, t) is inserted into derivative. In this way Eq. (9.53), which
represents a non-conservative form of non-linear kinematic wave, was transformed
into a conservative form. As previously, Eq. (9.57) can be integrated over a channel
reach:

L∫

0

∂Q

∂t
dx +

L∫

0

1

α · m · (2 − m)

∂Q2−m

∂x
dx = 0 (9.58)
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which leads to:

∂

∂t

L∫

0

Q · dx = 1

α · m · (2 − m)
(Q2−m

0 − Q2−m
L ) (9.59)

From Eq. (9.59) results that the time-variation of the total quantity Q inside the
channel reach of length L is caused only by net flux of Q2–m through upstream and
downstream ends of channel, whereas in Eq. (9.55) it depends not only on the net
flux of Q2–m through channel boundaries x = 0 and x = L, but also on the extra term
RA. It means that the global conservation of the quantity represented by function
Q(x, t) is not fulfilled.

Equation (9.59) is not the only possible conservative form of the kinematic wave
equation. Another one can be derived directly from Eqs. (9.2) and (9.3) with k = 0
and l = 0. Combining these equations with earlier accepted assumption that α =
const., one obtains:

∂Qm

∂t
+ 1

α

∂Q

∂x
= 0 (9.60)

An integration of Eq. (9.60) over a channel reach yields the following final result:

α · ∂
∂t

L∫

0

Qm · dx = Q0(t) − QL(t) (9.61)

Having three different forms of the non-linear kinematic wave equation one can
compare their properties. First of all, it should be explained which conservative
quantity they preserve. Since all equations were derived using the continuity and
momentum equations for open channel flow, it is reasonable to expect that both
conservation laws should be satisfied. To answer this question Eqs. (9.55), (9.59)
and (9.61) must be integrated over time.

The integration of Eq. (9.55) over the time interval 〈0, T 〉:

α · m ·
T∫

0

∂

∂t
·

L∫

0

Q · dx · dt =
T∫

0

(Q2−m
0 (t) − Q2−m

L (t))dt +
T∫

0

RA · dt (9.62)

yields:

α · m ·
L∫

0

(Q(x,T) − Q(x,0)) · dx =
T∫

0

(Q2−m
0 (t) − Q2−m

L (t))dt +
T∫

0

RA · dt (9.63)
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Making use of the assumption about the time interval T, the integral over channel
reach disappears and Eq. (9.63) becomes as follows:

T∫

0

(Q2−m
0 (t) − Q2−m

L (t))dt = −
T∫

0

RA · dt (9.64)

Following a similar way for the conservative forms of the kinematic wave
equation one obtains:

• for Eq. (9.59)

T∫

0

(Q2−m
0 (t) − Q2−m

L (t))dt = 0 (9.65)

• for Eq. (9.61)

T∫

0

(Q0(t) − QL(t))dt = 0 (9.66)

The presented balance formulas allow us to suppose that:

• Equation (9.60) represents the mass conservation principle since Eq. (9.66)
coincides with Eq. (9.40);

• Equation (9.57) represents the momentum conservation principle since Eq. (9.65)
coincides with Eq. (9.46);

• Equation (9.53) satisfies neither the mass conservation law nor the momentum
conservation law since Eq. (9.64) contains an extra term.

All possible forms of the kinematic wave equation are listed in Table 9.1.

Table 9.1 Forms of the kinematic wave equation

Possible form of equation Conservation of mass Conservation of momentum

∂Q

∂t
+ C · ∂Q

∂x
= 0 ( C = const.) + +

∂Q

∂t
+ Q1−m

α · m
· ∂Q

∂x
= 0 – –

∂Q

∂t
+ 1

α · m · (2 − m)
· ∂Q2−m

∂x
= 0 – +

α
∂Qm

∂t
+ ∂Q

∂x
= 0 + –
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One can conclude that among the possible forms of the kinematic wave model
only the linear one respects both conservation laws, whereas the conservative forms
of the non-linear equation represent either the mass or momentum conservation
principle.

The last considered form of the kinematic wave model (Eq. 9.60) seems suitable
with regard to the mass conservation. The global conservation law (Eq. 9.66), corre-
sponding to this equation, is identical with the one for the linear kinematic wave and
consequently the mass balance error is always equal to zero. However this equation
does not satisfy the momentum conservation principle.

9.3.4 Possible Forms of the Non-linear Diffusive Wave Equation

The diffusive wave model in form of Eq. (9.37):

∂Q

∂t
+ Q1−m

α · m

∂Q

∂x
− Q

2 · B · s
· ∂

2Q

∂x2
= 0 (9.67)

is a non-linear advection-diffusion equation written in a non-conservative form. As
it was shown earlier, such form of equation generates a significant mass error. To
avoid this error it seems reasonable to transform Eq. (9.67) into a conservative form.
For this purpose the following relations are used:

Q1−m

α · m

∂Q

∂x
= 1

α · m(2 − m)

∂Q2−m

∂x
(9.68a)

Q · ∂
2Q

∂x2
= 1

2

∂2Q2

∂x2
−
(
∂Q

∂x

)2

(9.68b)

Equation (9.67) becomes as follows:

∂Q

∂t
+ 1

α · m(2 − m)

∂Q2−m

∂x
− 1

2B · s

[
1

2

∂2Q2

∂x2
−
(
∂Q

∂x

)2
]

= 0 (9.69)

Its integration over channel reach yields:

∂

∂t

L∫

0

Q · dx =
[

C

2 − m
· Q − D

∂Q

∂x

]

0
−
[

C

2 − m
· Q − D · ∂Q

∂x

]

L
+ RD (9.70)

where RD is an additional term defined as follows:

RD = − 1

2 · B · s

L∫

0

(
∂Q

∂x

)2

· dx (9.71)
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Since (∂Q /∂x)2 ≥ 0 the term RD will decrease the transported quantity monoton-
ically. The only reason of appearance of this term is diffusion. The term RD acts as a
sink and consequently one can expect that the function Q will not be preserved dur-
ing the advection-diffusion transport process. Consequently, an error in the balance
of the transported quantity can be expected.

The second form of the non-linear diffusive wave equation derived from
Eq. (9.67) using Eq. (9.68b) is as follows:

α
∂Qm

∂t
+ ∂Q

∂x
− α · m

2 · B · s

[
∂

∂x

(
Qm ∂Qm+1

∂x

)
− ∂Qm

∂x
· ∂Q

∂x

]
= 0 (9.72)

Integration of this equation with regard to x yields:

α · ∂
∂t

L∫

0

Qm · dx =
[

Q − D

C
· ∂Q

∂x

]

L
−
[

Q − D

C
· ∂Q

∂x

]

0
+ RD (9.73)

In this case the additional term RD is as follows:

RD = − α · m

2 · B · s

L∫

0

∂Qm

∂x

∂Q

∂x
· dx (9.74)

Comparing both forms of the non-linear diffusive wave equation one can notice
that in the corresponding balance formula the additional terms are always present.
The integration of the non-conservative forms (Eqs. 9.69 and 9.72) with regard to x,
apart from the net flux through boundary, yields additional term RD described by Eq.
(9.71) or (9.74), respectively. Transformation of Eq. (9.67) into a conservative form
eliminates only the effect resulting from the integration of the advective term. The
additional term RD resulting from the integration of the diffusive part of equation
is always present. This explains the mass balance error observed in the numerical
solutions. Taking into account these facts we can conclude that it is impossible to
find a suitable form of the non-linear diffusive wave equation, which could satisfy
the mass conservation principle. The reason for this is the way of derivation of the
governing equation. Since the non-linear diffusive wave equation is obtained as a
combination of the continuity and momentum equation, it cannot be written in a
divergent form. The diffusive term in the form:

D(Q)
∂2Q

∂x2

existing in Eq. (9.67) cannot be converted into a term of the type:

∂

∂x

(
D(Q)

∂Q

∂x

)
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i.e. into a divergent form of the diffusive flux. Consequently the global mass
conservation will be always affected.

Equations (9.71) and (9.74) show that the balance errors depend on the deriva-
tives of the flow discharge with regard to x (∂Q/∂x and ∂Qm/∂x ). Therefore one can
expect that the generated error will be greater for a steep wave than for a smooth one.

9.4 Lumped Flood Routing Models

9.4.1 Standard Derivation of the Muskingum Equation

Apart from the previously presented distributed models (i.e. the dynamic, diffusive
and kinematic wave equations), a flood routing can be also carried out using lumped
models. This family of models is obtained by elimination of the spatial variable x, so
they have the form of ordinary differential equations with regard to time. The stan-
dard way of derivation is based on spatial integration of the differential continuity
equation (9.15):

∂A

∂t
+ ∂Q

∂x
= 0. (9.75)

Let us consider a channel reach of length �x as presented in Fig. 9.7. This
segment is bounded by two cross-sections located at xj–1 and xj. Equation (9.75)
integrated over the reach:

xj∫

xj−1

∂A

∂t
dx +

xj∫

xj−1

∂Q

∂x
dx = 0 (9.76)

gives:

∂

∂t

xj∫

xj−1

A · dx + Q|xj
xj−1 = 0. (9.77)

The first term of Eq. (9.77) represents the variation in time of the water volume
S stored by the channel reach of length �x since

xj∫

xj−1

A · dx = S. (9.78)

The second term of Eq. (9.77) represents the difference between the flow rates at
the ends of the reach:
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Fig. 9.7 Channel reach of length �x considered as reservoir

Q|xj
xj−1 = Qj(t) − Qj−1(t). (9.79)

Substitution of Eqs. (9.78) and (9.79) in Eq. (9.77) yields the well known storage
equation:

dS

dt
= Qj−1(t) − Qj(t) (9.80)

where:

S – volume of water stored by channel reach of length �x,
Qj–1(t) – discharge entering a channel reach through end xj–1,
Qj(t) – discharge leaving a channel reach through end xj.

In the next step one function from storage equation is eliminated. For this purpose
an additional equation relating storage, inflow and outflow is introduced. The most
commonly used formula is (Chow 1959, 1964, Chow et al. 1988):

S = K
(
ψ · Qj−1(t) + (1 − ψ)Qj(t)

)
(9.81)

where:

K – constant parameter expressed in time units,
ψ – weighting parameter ranging from 0 to 1.

The parameter K is interpreted as the time of traveling of the flood wave over the
channel reach between the cross-sections xj–1 and xj. As the length of the reach is
�x = xj – xj–1, and the wave propagates with celerity C, then the constant K may be
expressed as follows:
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K = �x

C
(9.82)

Conversely to the parameter K, the parameter ψ has no physical interpretation.
Equation (9.81) is differentiated with regard to time and next the obtained

result is substituted in the storage equation. Finally one obtains the well known
Muskingum model:

ψ
d Qj−1

d t
+ (1 − ψ)

d Qj

d t
= 1

K

(
Qj−1(t) − Qj(t)

)
(9.83)

Setting ψ = 0 one obtains another very popular hydrological lumped model –
the linear reservoir model:

dQj

dt
= 1

K
(Qj−1(t) − Qj(t)). (9.84)

Rather than being represented by a single reservoir, the channel reach is usu-
ally conceptualized as a cascade of N reservoirs as shown in Fig. 9.8. The water
leaving the preceding reservoir enters the next one. Each reservoir operates accord-
ing to Eq. (9.83), so in this equation the index of cross-section takes the values
j = 1, 2, 3, . . ., N.

9.4.2 Numerical Solution of the Muskingum Equation

Equation (9.83) is an ordinary differential equation, which must be integrated using
a numerical method. Since the considered channel reach is divided into N reservoirs
we obtain a system of N such equations describing each reservoir. The input to the
first reservoir Q0(t) for 0 ≤ t ≤ T represents the flood wave to be routed. Equation

x x x x x x x x x1

1

2

2

3

3

i −1 i

i

i+1

i +1

N −1 N

N

I I I I I1 2 i 1− i N 1−

Q Q Q Q Q Q

1 2 i 1− i N 1−

Fig. 9.8 Channel reach represented as a cascade of reservoirs
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(9.83) is approximated using the implicit trapezoidal rule (3.21). This yields the
following system of algebraic equations:

ψ
Qn+1

j−1 −Qn
j−1

�t + (1 − ψ)
Qn+1

j −Qn
j

�t = 1
K

(
Qn+1

j−1 +Qn
j−1

2 − Qn+1
j +Qn

j
2

)
= 0

for j = 1,2, · · · N
(9.85)

where:

�t – time step,
n – index of time level,
j – index of cross-section.

Since in Eq. (9.85) only one unknown exists, then it can be split into separate
equations, from which corresponding unknowns are calculated directly:

Qn+1
j = α · Qn

j−1 + β · Qn
j + γ · Qn+1

j−1 for j = 1,2,3, . . . , N. (9.86)

The coefficients α, β and γ are given by the following formulas:

α = K · ψ + 0,5�t

K(1 − ψ) + 0,5�t
, (9.87a)

β = K(1 − ψ) − 0,5�t

K(1 − ψ) + 0,5�t
, (9.87b)

γ = −K · ψ + 0,5�t

K(1 − ψ) + 0,5�t
(9.87c)

The flood wave Q0(t) specified as the input to the system is transformed using
Eq. (9.86) with assumed values of the parameter K and ψ over the time interval 〈0,
T〉. The output from the last reservoir is the solution of the considered flood routing
problem.

Example 9.4 The flood wave given by the following formula:

Q(x = 0,t) = Q0 + (Qmax − Q0)

(
t

tmax

)α
exp

(
1 −

(
t

tmax

)α)

where Q0 = 10 m3/s, Qmax = 75 m3/s, tmax = 4 h and α = 0.85, propagates in an
open channel. Using the Muskingum model with the following data: N = 4, K =
4 h, �t = 0.5 h, let us examine the influence of the value of weighting parameter ψ
on the shape of hydrograph leaving the considered channel reach.

The calculations were performed for a couple of values of the weighting param-
eter Ψ . The results displayed in Fig. 9.9 show that they strongly depend on this
parameter. Using the Muskingum model it is possible to obtain oscillating solution,
even with negative discharge during the initial phase of wave.
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Fig. 9.9 Results of routing of the wave Q0(t) by the Muskingum model for various values of the
parameter ψ

Note that for �t = K and for ψ = 0.5 the coefficients of Eq. (9.86) take the
following values: α = 1, β = 0, γ = 0. Therefore this equation is reduced to a very
simple relation:

Qn+1
j = Qn

j−1 for j = 1, 2, 3,..., N (9.88)

Let us remember that this formula coincides with the formula (6.117) given
by the numerical solution of the linear advection equation using the method of
characteristics or using the finite difference up-wind scheme (Eq. 5.108) with the
advective Courant number equal to unity. Equation (9.88) ensures exact solution to
the problem. Numerical tests confirm this conclusion. In Fig. 9.10 one can see pure
translation of flood wave without any deformation of its shape. This property of the
Muskingum model gives some insights into its nature.

9.4.3 The Muskingum–Cunge Model

Comparing the Muskingum equation solved by the implicit trapezoidal rule
(Eq. 9.85) and the pure advection equation solved by the difference box scheme
one can notice their similarity. Equation (6.4) with θ = 1/2 becomes:
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Fig. 9.10 Pure translation of flood wave Q0(t) produced by the Muskingum model for ψ = 0.5
and �t = K

ψ
Qn+1

j−1 − Qn
j−1

�t
+ (1 − ψ)

Qn+1
j − Qn

j

�t
= C

�x

(
Qn

j − Qn
j−1

2
+ Qn+1

j − Qn+1
j−1

2

)

= 0

(9.89)
Taking into account the relation (9.82) we can see that Eq. (9.89) coincides with

Eq. (9.85). For the first time this similarity was noticed by Cunge (1969), who
concluded on the kinematic character of the Muskingum model and the numeri-
cal nature of the wave attenuation process. The accuracy analysis carried out for
Eq. (9.89) using the modified equation approach shows that the applied approxima-
tion modifies the kinematic wave model to the form of advection-diffusion equation,
known from Chapter 7:

∂Q

∂t
+ C

∂Q

∂x
− Dn

∂2Q

∂x2
= 0 (9.90)

where Dn is the coefficient of numerical diffusion defined as follows:

Dn =
(

1

2
− ψ

)
C ·�x (9.91)

Equation (9.90) indicates that the wave attenuation given by the Muskingum
model has the same numerical roots as the kinematic wave equation. Simply, this
effect is caused by the numerical diffusion. Cunge (1969) suggested to use such a
value of the parameter Ψ which ensures the numerical diffusivity (Eq. 9.91) equal
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to the hydraulic one present in the diffusive wave equation and given by Eq. (9.39),
i.e. D = Dn. This condition implies that:

ψ = 1

2
− Q

2 · B · s · C ·�x
(9.92)

or with the relation (9.82):

ψ = 1

2
− Q

2 · B · s · K · C 2
(9.93)

where:

Q – flow rate,
B – channel width,
s – bottom slope,
K – constant parameter,
C – kinematic celerity.

In such a way Cunge related the value of weighting parameter ψ not only to
the flow rate and the kinematic celerity but to the channel parameters as well.
Consequently the Muskingum model becomes capable to reproduce the solution
of the linear diffusive wave model. This version of the Muskingum equation is
commonly called Muskingum–Cunge model (see for instance Chow et al. 1988).
However it should be remembered that Cunge’s approach does not change the
character of the Muskingum model. The wave attenuation is not caused by the phys-
ical process but by the numerical error, although its intensity is determined by the
parameter ψ dependent on the channel parameters.

Equivalence of the numerical solutions of the diffusive wave model and the
Muskingum model is illustrated by the example presented below.

Example 9.5 Consider a rectangular channel of length L = 70 km, width B = 50 m,
bottom slope s = 0.0004 and the Manning coefficient nM = 0.040. The flood wave
entering the upstream end is given by the following formula:

Q(x = 0,t) = Q0 + (Qmax − Q0)

(
t

tmax

)α
exp

(
1 −

(
t

tmax

)α)

where Q0 = 5 m3/s, Qmax = 50 m3/s, tmax = 6 h and α = 1.0. Let us compare
the form of hydrographs leaving the considered channel reach, calculated using the
diffusive wave equation and the Muskingum–Cunge model.

Assuming that the propagation is described by Eq. (9.34) with C = const. and
D = const., the values of both parameters are calculated for the algebraic average
values of flow discharge: Q = (Q0 + Qmax)/2. For the assumed data these parameters
are as follows:
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C = 5

3
· 27.51−3/5

3

5
·
(

0.04·502/3

0.00041/2

) = 0.87 m/s,

D = 27.5

2 · 50 · 0.0004
= 687.5 m2/s

The auxiliary conditions are:

– initial condition: Q(x, t = 0) = Q0 for 0 ≤ x ≤ L,

– boundary conditions: Q(x = 0, t) = Q0 for t ≥ 0 and ∂Q
∂x

∣∣∣
x=L

= 0 for t ≥ 0

Equation (9.34) is solved using the modified finite element method.
Computations are performed for �x = 2,000 m and �t = 1,200 s. The obtained
results Q(L = 75 km, t) are shown in Fig. 9.11.

The same wave propagation problem is next solved using the Muskingum–Cunge
model (9.83). Equation (9.83) is solved using the implicit trapezoidal rule for the
constant parameters K and Ψ given by Eqs. (9.82) and (9.93). As previously their
values are calculated for the average flow discharge Q:

K = �x

C
= 2000

0.87
= 2299 s

� = 1

2
− Q

2 · B · s · C ·�x
= 1

2
− 27.5

2 · 50 · 0.0004 · 0.87 · 2000
= 0.105

The hydrographs calculated at the downstream end for�t = 1200 s are displayed
in Fig. 9.11.
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Fig. 9.11 Comparison of the results given by the diffusive wave equation (solid line) and the
Muskingum–Cunge model (dotted line)
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Note that both models indeed produce equivalent numerical solutions. Thus
instead of the diffusive wave equation one can use the Muskingum–Cunge equation
which is simpler to solve numerically

9.4.4 Relation Between the Lumped and Simplified
Distributed Models

The similarity of the approximated forms of the kinematic wave equation and the
Muskingum equation presented in the preceding section allows us to deduce on the
nature of the lumped models. In fact the Muskingum model should be regarded as
a semi-discrete form of the kinematic wave equation. Moreover we can estimate
directly from Eq. (9.83) the numerical diffusion generated by this model. To this
end let us consider the linear kinematic wave model (Eq. 9.37 with C = const. and
D = 0). This equation can be discretized in space only. The approximation carried
out at point P located between the nodes j – 1 and j (Fig. 9.12 and 9.13) gives:

d Q p

d t
+ C

Q j − Q j−1

�x
= 0 (9.94)

where Qp represents the discharge at the point P.
The value of Qp can be calculated by the linear interpolation between the nodes

j – 1 and j:

QP = Qj−1 + Qj − Qj−1

xj − xj−1

(
x − xj−1

)
for xj−1 ≤ x ≤ xj (9.95)
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Fig. 9.12 Discretization of the x axis for numerical solution of the kinematic wave equation
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Δx
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Fig. 9.13 Linear
interpolation between
neighboring nodes applied for
the kinematic wave equation
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Equation (9.95) can be rewritten in the following form:

Q p = ψ · Q j−1 + (1 − ψ) Q j (9.96)

where ψ is defined as:

ψ = xj − x

xj − xj−1
For xj − 1 ≤ x ≤ xj (9.97)

Note that ψ can be considered as a weighting parameter ranging from 0 to 1.
Substituting Eq. (9.96) in Eq. (9.94) and including Eq. (9.82) yields the

Muskingum model in the form of Eq. (9.83):

ψ
d Qj−1

d t
+ (1 − ψ)

d Qj

d t
= 1

K

(
Qj−1(t) − Qj(t)

)
(9.98)

The performed spatial discretisation of the kinematic wave equation introduces a
numerical error caused by the truncation of the Taylor series. In order to estimate this
error one can carry out the consistency analysis. The nodal values of Q in Eq. (9.98)
are replaced by the Taylor series expansion around point P:

Qj−1 = Qp − (1 − ψ)�x
∂Qp

∂x
+ (1 − ψ)2(�x)2

2

∂2Qp

∂x2
+ · · · (9.99)

Qj = Qp + ψ ·�x
∂Qp

∂x
+ ψ2(�x)2

2

∂2Qp

∂x2
+ · · · (9.100)

Substitution of Eqs. (9.99) and (9.100) in Eq. (9.98), including the terms of 2nd
order, yields the modified equation in the form:

∂Q

∂t
+ �x

K

∂Q

∂x
−
(

1

2
− ψ

)
�x2

K

∂2Q

∂x2
= 0 (9.101)

According to the condition of consistency, which must be satisfied by any
approximation of the partial differential equation, the modified equation should tend
to the governing equation for�x → 0 (Fletcher 1991). For�x → 0 the time of wave
translation along the channel reach of the length �x simultaneously tends to zero
(K → 0). Therefore we have

lim
�x→0
K→0

� x

K
= C (9.102)

and consequently for �x → 0 Eq. (9.101) tends to the kinematic wave equation.
This fact proves that the Muskingum model is an approximation of the kinematic
wave. This approximation introduces a numerical diffusion. Its coefficient is:
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Dn =
(

1

2
− ψ

)
�x2

K
(9.103)

This expression coincides with Eq. (9.91) proposed by Cunge (1969). One can
add that the numerical diffusion is caused by the spatial approximation only. An
additional diffusion can be generated while integrating Eq. (9.98) over time by
a method of the order lower than two. Usually the implicit trapezoidal rule is
applied. It ensures an accuracy of 2nd order with regard to t and consequently this
approximation is dissipation free.

Summarizing, one can say that the numerical solution of the Muskingum model
is in fact equivalent to the numerical solution of the kinematic wave model by the
method of lines. In this approach a solution of the partial differential equation is
made in two stages. At first it is discretised in space leading to a system of ordi-
nary differential equations over time. Next, this system is integrated using any well
known method of the numerical solution of an initial problem for the ordinary
differential equations.

The classical derivation of the Muskingum model bases on the storage equation
(9.80) completed by the relationship (9.81). Therefore it is interesting to show how
numerical diffusion is introduced into this model. To explain this problem let us
consider the Muskingum model (Eq. 9.98) rewritten in more general form:

K
dQp

dt
= Qj−1 − Qj (9.104)

with Qp defined by Eq. (9.96).
We can show that this equation can be derived directly from the storage equa-

tion (9.80) without any additional formula relating storage, inflow and outflow
(Szymkiewicz 2002). To do this we have to assume the following:

– the storage S is calculated numerically,
– the equation for uniform steady flow is applied.

Using both above assumptions one can transform Eq. (9.80) into (9.104).
The storage S can be calculated as follows:

S =
�x∫

0

A · dx ≈ Ap ·�x (9.105)

where Ap, being a cross-sectional area at the point P (Fig. 9.12), can be expressed
as a function of Qp using the Manning (or Chézy) formula:

Ap = α · (Qp)m (9.106)

with α and m given by Eqs. (9.14a) and (9.14b), respectively. Therefore the left hand
side of Eq. (9.80) can be rewritten as follows:
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dS

d t
= d

dt

(
� x · Ap

) = � x
dAp

dt
= � x

d

dt
(α · (Qp)m) (9.107)

After differentiating with α = const. one obtains:

� x
d

d t
(α · (Qp)m) = � x

dAp

dQp

dQp

dt
= � x · α · m · (Qp)m−1 dQp

dt
(9.108)

Because the kinematic wave celerity at the point P is defined as

dQp

dAp
= Cp = 1

α · m · (Qp)m−1
(9.109)

the right side of Eq. (9.107) takes the form:

� xαm(Qp)m−1 dQp

dt
= � x

Cp

dQp

dt
= K

dQp

dt
(9.110)

Finally the left hand side of Eq. (9.104) was obtained from the left hand side of
Eq. (9.80). Therefore it seems reasonable to accept that an additional formula (9.81)
used to derive the lumped models from the storage equation has double meaning.
It can be interpreted as a result of the numerical integration of storage and of the
application of the steady uniform flow equation. A numerical diffusion is introduced
by the numerical calculation of the storage S. Note that the kinematic wave model
is based on the same equations i.e. the equation of continuity and the steady flow
equation.

As far as the conservative properties of the Muskingum model are considered, its
linear version satisfies both mass and momentum conservation principles. However,
sometimes the variable parameters K and ψ are introduced into the model. After
Tang et al. (1999) this approach generates the mass balance error. Such error can
be expected if the governing equation is not written in the appropriate conservative
form. As it was shown earlier, the Muskingum model can be considered as the semi-
discrete form of the kinematic wave equation. Consequently both models should
have similar properties.

9.5 Convolution Integral in Open Channel Hydraulics

9.5.1 Open Channel Reach as a Dynamic System

An open channel reach of length L can be considered as a dynamic system, which
is able to transform a flood wave appearing at the upstream end to the one observed
at the downstream end (Fig. 9.14).

In other words, an input to the system is turned into an output leaving this system,
as it is shown in Fig. 9.15. Our goal is to identify the physical mechanism, which
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Fig. 9.15 Symbolic representation of the dynamic system

determines the way of transformation, what means that we are looking for the oper-
ator � representing this process. This operator allows us to compute the output of
the system for any input I(t) entering this system, i.e.:

Q (t) = �(I (t)) (9.111)

The mechanism of transformation can be deduced via the analysis of flow process
using the appropriate principles of conservation. Such an approach has been applied
in the preceding chapters, in which various mathematical models of unsteady flow
were derived. Then the operator � took the forms of differential equations as the
system of Saint Venant equations, the diffusive wave equation, the kinematic wave
equation etc.

In the case of lumped linear systems it is possible to describe their dynamic
behavior using either the differential flow equations or an impulse response func-
tion, which is the reaction of the system to the input in form of unit quantity entering
instantaneously. Both approaches are equivalent. If we consider the open channel
flow as a linear process, then it can be described by the previously presented differ-
ential equations in linear forms or by an impulse response function. Application of
the impulse response function has two advantages. Firstly, such an approach does
not require physical analysis of the flow. Secondly, knowing an impulse response
function one can compute an output for any input in a simple way, without the
difficulties related to the numerical integration of differential equations.

The system’s linearity means that the principles of proportionality and superpo-
sition are valid. Therefore, if input I1(t) causes output Q1(t), whereas I2(t) gives
rise to reaction Q2(t), then input in the form I(t) = C1·I1(t)+C2·I2(t) will cause
the following output Q(t) = C1·Q1(t)+C2·Q2(t), where C1 and C2 are arbitrary
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constants. These principles allow us to decompose a complex input into simpler
components, compute the outputs corresponding to the subsequent components and
add the results of computations to obtain the final output.

Any lumped linear system can be described by the following ordinary differential
equation of mth order (Chow et al. 1988):

Am(t)
dmQ

dtm
+ . . . + A1(t)

dQ

dt
+ Ao(t) · Q =

= Bm
dmI

dt
+ . . . + B1(t)

dI

dt
+ Bo(t) · I

(9.112)

where:

I(t) – function entering the system,
Q(t) – function leaving the system,
Ai(t), Bi(t) (i = 0,1, . . ., m) – time-variable coefficients describing dynamic

properties of the system.

Usually the scale of the time variation of the dynamic properties is incomparable
with the one related to the flow process. In such a case one can assume that the
coefficients Ai and Bi are constant in time. Then Eq. (9.112) takes the form:

Am
dmQ

dtm
+ . . . + A1

dQ

dt
+ A0 · Q = Bm

dmI

dtm
+ . . . + B1

dI

dt
+ B0 · I. (9.113)

Equation (9.113) describes the time-invariant system, in which the way of trans-
formation of I(t) into Q(t) is still the same. This means that the same flood wave at
the upstream channel end will produce the same wave at the downstream end at any
time. In other words, the dynamic properties of channel reach are constant in time.

For the following initial conditions: I(t = 0) = 0 and Q(t = 0) = 0, Eq. (9.113)
has the following solution (Korn and Korn 1968):

Q(t) =
t∫

o

w(t − τ ) · I(τ )dτ , (9.114)

where:

w(t) – impulse response function,
τ – dummy parameter.

The integral in Eq. (9.114) is called convolution integral. The function w(t–τ )
represents globally the dynamic properties of the considered system, since it deter-
mines the way of transformation an input into an output. This function is a reaction
of the system to an input in the form of unit impulse. The unit impulse is a signal
of short duration having unit magnitude: X·�t = 1. In the limit, when �t tends to
zero, X tends to infinity and the impulse becomes the Dirac delta function given by
the following expression (McQuarrie 2003):
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δ(t − τ ) =
{∞ for t = τ

0 for t 
= τ
, (9.115)

The Dirac delta function has the following properties:

+∞∫

−∞
δ(t) · dt = 1. (9.116)

+∞∫

−∞
f (t) δ(t − τ ) dt = f (τ ), (9.117)

where f(t) is an arbitrary function. An essential feature of this function is that instead
of any value of f(t) it is capable to introduce the value of f(τ ): f(t)→ f(τ ). The
function w(t–τ ), being the response of system to a unit impulse, is defined as follows
(Fig. 9.16):

q Q

t p t

I(t ) = δ (t −τ) Q(t  ) = h (t −τ)

ττ

Fig. 9.16 Interpretation of the response function

If

I (t) = δ (t) (9.118)

then
Q (t) = w (t) (9.119)

Therefore, the response function is an output of the system when an input has the
form of Dirac delta function. If the system conserves the mass:

+∞∫

0

I (t) · d t =
+∞∫

0

Q(t) · d t, (9.120)

then the function w(t) satisfies the following condition:

+∞∫

0

w(t)d t = 1. (9.121)
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Moreover this function:

– has non-negative values only: w(t) ≥ 0 for t ≥ 0,
– has one extreme point (maximum),
– is equal to zero for negative argument: w(t) = 0 for t ≤ 0,
– tends to zero as time tends to infinity: w(t)→ 0 for t→ ∞.

If the functions I(t) and Q(t) represent the same quantity and they have the same
dimension, the function w(t) is expressed in the inverted time units as s−1, h−1 etc.

In hydrology the function w(t) is called Instantaneous Unit Hydrograph (IUH).
This term was introduced in the 1960 s as a generalization of the unit hydrograph
theory proposed by Sherman in 1932 for direct runoff from catchments (Chow et al.
1988).

For the convolution integral the principle of symmetry is valid. Accordingly to
this rule, Eq. (9.114) can be rewritten as:

Q(t) =
t∫

0

w(τ ) · I(t − τ ) · d τ . (9.122)

Since an input from distant past does not influence the current output, then we
can introduce the parameter p representing “the system memory”. This is a time
interval in which the ordinates of IUH differ significantly from zero (Fig. 9.17).

As w(t) tends to zero for t→∞, then the following condition will be satisfied:

w(t) ≤ ε for t ≥ p, (9.123)

where ε is a small positive number. One can notice, that for t > p the product under
the integral (9.122) is close to zero. Then in Eq. (9.122) the upper integral limit can
be changed as follows:

w

t
ε

p

Fig. 9.17 Illustration of the system memory
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Q(t) =
p∫

o

w(τ ) · I(t − τ ) · d τ . (9.124)

where p is the system memory. Therefore, if we want to compute the function Q at
any moment t, we must known the function I(t) not only at this moment, but also in
the time interval 〈t–p, t〉.

As the value of p is determined by the parameter ε, then it is obvious that w(t)
does not satisfy the condition (9.121). We have:

p∫

0

w(t)dt 
= 1 (9.125)

and consequently the mass balance error will be generated because:

T∫

0

Q(t)dt 
=
T∫

0

I(t)dt (9.126)

where T is time of flood wave duration. To eliminate this incompatibility, the
ordinates of function w(t) should be rescaled. This can be done in the following
way:

– integrate numerically the function w(t) in interval 〈0, p〉

a =
P−1∑

j=1

�t

(
wj + wj+1

2

)
(9.127)

where �t is time step, whereas P = p/�t+1 is discrete memory;

– calculate the value of correction corresponding to a unit ordinate of function w(t):

� = 1 − a
P∑

j=1
wj

(9.128)

– correct the ordinates of the function w(t) proportionally to their values:

w∗
j = wj +� · wj for j = 1,2, · · · P (9.129)

where w∗
j is corrected value of wj.
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9.5.2 IUH for Hydrological Models

Determination of the function h(t) for the considered system can be performed using
two approaches. The first approach bases on the observed functions I(t) and Q(t)
only. No additional information on the system is used. When the function I(t) and
Q(t) are known, Eq. (9.124) is the Volterra integral equation of the first type with w(t)
as a kernel function (Korn and Korn 1968). Solution of this equation gives the func-
tion w(t). There are many techniques to solve this problem. Some of them, oriented
to model the direct runoff processes, were proposed by O’Donnell (1960), Chow
(1964), Nash (1957), Rodriguez-Iturbe and Valdes (1979) among others. Since these
methods are rather less useful for open channel flow modeling they will not be
considered here. For the flood routing more suitable is the second possible way of
determination of the function w(t). This approach can be applied on condition that
the linear differential equation describing the considered system is known. In such
a case one can solve this equation for such auxiliary conditions, which ensure solu-
tion in the form of impulse response function w(t). This approach is very popular
and frequently used.

The first example concerns the diffusive wave equation (9.34) derived in Section
9.2.2:

∂Q

∂t
+ C

∂Q

∂x
− D

∂2C

∂x2
= 0. (9.130)

With constant wave icelerity C, constant hydraulic diffusivity D and for some
specified initial-boundary conditions Eq. (9.130) may be solved analytically. For
instance assuming that:

– Q(x, t = 0) = 0 for x ≥ 0,
– Q( x = 0, t) = δ(t),
– Q(x = L, t) = 0 for L→∞,

one obtains the following exact solution:

Q(x,t) = 1

2
√
π · D

· x

t3/2
· exp

(
− (C · t − x)2

4 · D · t

)
(9.131)

Equation (9.131) holds for t > 0 and for x ≥ 0. This equation has been obtained by
Hayami (Eagleson 1970). Since the assumed conditions correspond to the definition
of the IUH, then Eq. (9.131) can be considered as the instantaneous unit hydrograph
of a channel reach of length L. Consequently one can write:

w(t) = 1

2
√
π · D

· L

t3/2
· exp

(
− (C · t − L)2

4 · D · t

)
for t > 0 and L > 0 (9.132)

Let us consider the second simplified model, i.e. the kinematic wave equation
(9.19). It is well known that the linear advection equation
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∂Q

∂t
+ C

∂Q

∂x
= 0 (9.133)

implies that the flood wave occurring at the upstream end propagates along chan-
nel axis without any shape deformation. Taking into account Eq. (9.117) one can find
out, that for the linear kinematic wave equation (9.133) implemented for a channel
reach of length L, IUH has the form of Dirac delta function:

w(t) = δ(t − L/C) (9.134)

where L is length of channel reach and C is kinematic wave speed. The ratio L/C
represents the lag time between the upstream end and considered cross-section. Note
that the same result is obtained from Eq. (9.132). For D = 0, IUH of the diffusive
wave equation becomes the Dirac delta function, which is IUH of the kinematic
wave equation.

The flood routing can be carried out with hydrological lumped models as well.
They were discussed in the preceding section. One of the most popular of them is
the Muskingum equation:

ψ
dI

dt
+ (1 − ψ)

dQ

dt
= 1

K
( I − Q) (9.135)

where:

I(t) – inflow,
Q(t) – outflow,
ψ – weighting parameter,
K – time of wave translation between the considered cross-sections.

The IUH for the Muskingum model was proposed by Venetis (1969). This equa-
tion, obtained by the solution of Eq. (9.135) using the Laplace transformation
approach, is following:

w(t) = 1

K(1 − ψ)2
exp

(
− t

K(1 − ψ)

)
− ψ

1 − ψ
δ(t) (9.136)

The next example of determination of appropriate IUH concerns the linear
reservoir described by Eq. (9.135) with ψ = 0, i.e. by:

dQ

dt
= 1

K
(I(t) − Q(t)). (9.137)

Comparing this equation with Eq. (9.113), one can notice that they coincide,
since A1 = 1, A0 = 1/K, B0 = 1/K, and other coefficients are equal to zero. Then the
convolution integral is the solution of Eq. (9.137) as well. The IUH for this equation
can be determined by its time integration performed for the following conditions:
Q(t) = 0 for t ≤ 0 and I(t) = δ(t). Following the developments presented for instance
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Fig. 9.18 Graph of the function (9.138) for K = 5 h

by Chow et al. (1988), one obtains:

w(t) = 1

K
exp

(
− t

K

)
(9.138)

An example of the function w(t) given by Eq. (9.138) is show in Fig. 9.18.
Note that Eq. (9.136) with ψ = 0 coincides with Eq. (9.138).
Usually to obtain satisfying results it is necessary to apply multiple linear reser-

voirs in a cascade. The first reservoir is analysed as a single one, so its output is
following:

Q1(t) = 1

K
exp

(
− t

K

)
(9.139)

The second reservoir, having IUH in the form of Eq. (9.138), transforms Q1(t)
into Q2(t) according to the convolution integral (9.122), i.e.:

Q2(t) =
t∫

0

1

K
· e−τ /K · 1

K
· e−(t−τ )/K · dτ = t

K2
· e−t/K (9.140)

This function is transformed by 3rd reservoir etc. Application of the same
procedure for consecutive reservoirs in series gives (Nash 1957):

w(t) = 1

K · �(N)

( t

K

)N−1
exp

(
− t

K

)
(9.141)

where N is a number of the reservoirs in series, whereas Γ (N) is the gamma Euler
function. This IUH was proposed by Nash (1957) and is called the Nash model
(Chow et al. 1988). In Figs. 9.19 and 9.20 are displayed the graphs of function
(9.141) calculated for various values of its parameters K and N.

Unfortunately the IUHs in form of Eqs. (9.136) and (9.141) have some disad-
vantages which limit their application. Namely it is impossible to achieve satisfying
agreement between the results of calculation and experimental data when the time
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Fig. 9.20 Function w(t) with K = 2 h for various values of N

lag of the output is considerable. Both IUHs are unable to reproduce the effect of
pure translation. For this reason very often the linear reservoir model is used jointly
with the model of linear channel (Dooge 1959, Chow 1964). Moreover the IUH for
Muskingum model can produce the negative ordinates. This is caused by the second
term of Eq. (9.136) (Strupczewski et al. 1989). This feature disagrees with the def-
inition of the instantaneous unit hydrograph which has to be always non–negative:
w(t) ≥ 0 for t ≥ 0. Consequently it can produce some unrealistic effects in form of
the initial oscillations in the hydrograph calculated at the downstream end. Similar
problems can be observed in the numerical solution of the Muskingum model in
form of Eq. (9.135).

It is well known that the Muskingum equation integrated in time by the method,
which does not produce any numerical diffusion, is capable to ensure a pure trans-
lation of flood wave for ψ = 0.5. For this reason it seems reasonable to expect the
similar effect while using the IUH in form of Eq. (9.136). Therefore this equation
should become the Dirac delta function for ψ = 0.5. Unfortunately Eq. (9.136) does
not fulfil this condition. The discrepancy is caused by the nature of Eq. (9.135). In
fact this equation is a semi-discrete form of the kinematic wave equation obtained
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by its spatial discretization. For this reason it contains a numerical error introduced
during the approximation. Because the IUH in form of Eq. (9.136) was derived by
an analytical integration of Eq. (9.135) it contains implicitly this error as well. It
has the form of numerical diffusion which disappears for ψ = 0.5 i.e. when the
approximation of spatial derivative is made by centred difference.

9.5.3 An Alternative IUH for Hydrological Lumped Models

It is possible to derive a general instantaneous unit hydrograph for all lumped mod-
els which is free from the mentioned disadvantages (Szymkiewicz 2002). To this end
the IUH for the diffusive wave (Eq. 9.132) can be applied. As it was obtained by an
analytical solution of Eq. (9.130) then it does not contain any numerical error. On
the other hand it is known, that the results given by the lumped models are similar
to the ones given by the diffusive wave model due to the numerical diffusion.

As it was showed in Section 9.4.4 the Muskingum model is an approximation
of the kinematic wave. This approximation introduces a numerical error. The accu-
racy analysis carried out for the Muskingum equation showed that it modifies the
kinematic wave model to the form similar to the diffusive wave model (9.130):

∂Q

∂t
+ C

∂Q

∂x
− Dn

∂2Q

∂x2
= 0 (9.142)

where Dn is the coefficient of numerical diffusion defined as follows:

Dn =
(

1

2
− ψ

)
C ·�x (9.143)

Let us remember that the kinematic character of the Muskingum model as well as
the numerical nature of the wave attenuation process was noticed by Cunge (1969),
who suggested such value of the parameter Ψ which ensures the numerical dif-
fusivity (Eq. 9.143) equal to the hydraulic one given by Eq. (9.35) i.e. D = Dn.
Owing to this assumption the Muskingum model can reproduce the solution of the
linear diffusive wave model. This version of the Muskingum model is known as
Muskingum–Cunge one (Chow et al. 1988).

If the lumped models, being semi-discrete forms of the kinematic wave model,
are able to reproduce the solution of the diffusive wave, then one can expect that
the reproduction of this solution using the instantaneous unit hydrograph will be
possible as well. Therefore one can apply the IUH of the diffusive wave model for
the lumped systems. For this purpose let us introduce the parameters typical for the
lumped models into Eq. (9.132). The hydraulic diffusivity, the kinematic speed and
the length of a channel can be replaced by the following expressions:

C = �x

K
, (9.144a)
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Dn =
(

1

2
− ψ

)
�x2

K
, (9.144b)

L = N ·�x (9.144c)

where N corresponds to the number of reservoirs. Substitution of Eq. (9.144) in
Eq. (9.132) yields :

w(t) = 1

(2π (1 − 2ψ))1/2
N

K

(
K

t

)3/2
· exp

(
− (t − N · K)2

2(1 − 2ψ)K · t

)
(9.145)

This equation can be considered as an instantaneous unit hydrograph of the
Muskingum model for a channel reach of length L. With the parameter ψ defined
by Eq. (9.92) the formula (9.145) can be considered as an instantaneous unit hydro-
graph of the Muskingum – Cunge model. Of course, this will take place on condition
that ψ is assumed to be constant.

The function (9.145) has the following properties:

– it holds for ψ ≤ 1/2 only, including the negative values as well;
– for ψ → 1/2 w(t) → δ (t – N·K);
– w(t) ≥ 0 for t > 0;
– the parameter N can be any positive number, not necessarily an integer.

Some of the properties listed above are illustrated in the figures. In Fig. 9.21 the
IUHs for N = 2, ψ = 0.4 and for various values of K are plotted. In Fig. 9.22 the
graphs of the IUHs for K = 3 h, ψ = 0 and for various values of parameter N are
plotted.
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Fig. 9.21 Instantaneous unit hydrographs of the Muskingum model for N = 2, ψ = 0.40 and for
various values of K
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Fig. 9.22 Instantaneous unit hydrographs of the Muskingum model for K = 3 h, ψ = 0 and for
various values of N
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Fig. 9.23 Instantaneous unit hydrographs of the Muskingum model for N = 3, K = 4 h and for
various values of ψ

The shape of w(t) is mainly determined by parameter ψ , whereas its position
along the axis t depends on the parameters N and K. With increasing ψ the IUH
becomes more and more steep (see Fig. 9.23). For the extreme case when ψ = 0.5
its value tends to infinity at the point t = N · K = 18. It becomes the Dirac delta
function.

Implementation of the IUH requires determining the values of the parameters K,
N and ψ . They can be computed using the method of moments or the method of
optimisation. Both approaches need the hydrographs observed at the upstream and
downstream ends of a channel. The subsequent moments are given by Szymkiewicz
(2002):

For ψ = 0 Eq. (9.145) becomes an alternative IUH for a cascade of the linear
reservoirs:
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w(t) =
√

K√
2π

N

t3/2
exp

(
− (t − N · K)2

2 K · t

)
, (9.146)

whereas for N = 1 it becomes an alternative IUH for a single reservoir:

w (t) =
√

K√
2π

1

t3/2
exp

(
− (t − K)2

2 K · t

)
(9.147)

Both hydrographs presented above differ from the classical ones given by Eqs.
(9.138) and (9.141). This difference results from the manner of derivation of both
types of IUHs. Classical IUH for the linear reservoir was obtained by integra-
tion of Eq. (9.137) resulting from a spatial discretisation of the kinematic wave
model. Consequently a mechanism of numerical diffusion was included implicitly.
Conversely, Eq. (9.132) represents an analytical solution of the diffusive wave model
with regard to both variables x and t. It is interesting that although the classical IUH
for a cascade of linear reservoirs in series and the IUH in form of Eq. (9.146) are
different, they have the same first and second moments (Szymkiewicz 2002).

Example 9.6 Using the Muskingum model solved by both the finite difference
approximation (Eq. 9.86) and the convolution approach with the IUH given by Eq.
(9.145), let us carry out flood routing of the following wave imposed at the upstream:

q(t) = qb + (qm − qb)

(
t

tm

)
exp

(
1 − t

tm

)
(9.148)

with qb = 5 m3/s, qm = 75 m3/s, tm = 6 h.
In Fig. 9.24 the results of flood routing using the convolution integral are pre-

sented. They are obtained for K = 6 h and N = 3 and for various values of the
parameter ψ . Note that the wave attenuation depends on the value of ψ . The
wave damping becomes more pronounced for decreasing ψ . On the other hand, for
increasing value of ψ the attenuation of the calculated output is reduced. For ψ =
0.49 damping is so small that practically pure translation of the wave is obtained. In
this case the lag time of wave centres of gravity is equal to N · K = 18 h. Regardless
of the assumed set of data smooth solution is obtained always.

Conversely, while solving numerically the Muskingum model physically unreal-
istic results can be very often obtained. Such a situation is presented in Fig. 9.25.
For the same flood wave impose at the upstream end the Muskingum model with
N = 3, K = 6 h and ψ = 0.40 solved numerically using the classical scheme of the
finite difference method (Eq. 9.86) produces the discharge lower than one imposed
at upstream end. It takes even negative values.

The examples presented above show considerable flexibility of the IUH in the
form of Eq. (9.145). An appropriate set of the parameters K, N and ψ ensure both
required effects, i.e. the wave translation and its attenuation. Note that the param-
eter ψ can take a negative value as well. On the other hand, the parameter N does
not have to be an integer. Using IUH and the convolution approach one can avoid
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Fig. 9.24 An example of food routing by the Muskingum model using the convolution integral
for N = 3, K = 6 h and for various values of the parameter ψ
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and by the convolution integral with the IUH for N = 3, K = 6 h and ψ = 0.40

all negative numerical effects arising while solution of the ordinary differential
equations.
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Discharge, 3
Dissolved oxygen, 287
Donea approach, 244

E
Error of approximation, 99
Euler-Cauchy method, 95
Exner equation, 344
Explicit Euler method, 89, 91, 250

F
False position method, 56
Fick’s Ist law of diffusion, 35
Finite difference method, 183, 219, 265
Finite differences, 87
Finite element method, 197, 239
Flow area, 2
Forward difference, 88
Froude number, 7
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G
Galerkin method, 199
Gauss elimination method, 72
Gradually varied flow, 9

H
Holly-Preissmann method, 256
Hybrid methods, 66
Hydraulic depth, 2
Hydraulic radius, 3
Hyperbolic equations, 160, 162, 165

I
Implicit Euler method, 90, 92, 250
Implicit trapezoidal rule, 90, 93
Improved Euler method, 95
Initial conditions, 169, 333, 349
Initial-value problem, 85, 104, 116
Instantaneous Unit Hydrograph, 405

K
Kinematic wave equation, 369, 372
Kinematic wave celerity, 373

L
Longitudinal bed slope, 2
LU decomposition method, 76
Lumped models, 392

M
Manning equation, 8
Manning roughness coefficient, 8
Mass conservation law, 10
Mass transport equation, 33
Method of characteristics, 253
Mild slope, 8
Modified equation approach, 231, 242,

308, 399
Modified finite element method, 246, 279,

313, 358
Momentum conservation law, 10
Muskingum equation, 392
Muskingum-Cunge model, 394

N
Navier-Stokes equations, 11
Newton method, 58, 80, 135, 139, 306
Non-linear algebraic equations, 53, 305
Non-uniform flow, 8
Numerical diffusion, 236, 272, 395
Numerical dispersion, 225, 235
Numerical dissipation, 225, 235
Numerical stability, 102, 222

O
One dimensional continuity equation, 20
One dimensional dynamic equation, 12
Open channel, 1
Open channel network, 147, 297, 337
Ordinary differential equations, 27–28, 50, 85

P
Parabolic equations, 160, 162, 165, 172
Partial differential equations, 50, 159
Peclet number, 263, 272
Phase error, 225
Picard method, 82, 141
Preissmann scheme, 303

Q
QUICKEST scheme, 277

R
Rapidly varied flow, 9
Rating curve, 336, 370
Region of stability, 103
Reynolds equations, 11
Reynolds number, 264
Ridders method, 66
Riemann invariants, 169
Runge-Kutta methods, 93

S
Saint Venant equations, 23, 165, 301, 353, 356
Secant method, 61
Sediment transport, 343
Shape functions, 201
Shooting method, 108, 144
Simple fixed-point iteration, 62
Slope of energy grad line, 7, 9
Specific energy, 5
Spline function, 258
Splitting technique, 283
Stability analysis, 212, 222, 250, 320
Steady flow, 7
Steady flow in ice-covered channel, 131
Steady gradually varied flow, 9, 24
Steady gradually varied flow equation, 26, 111,

118, 147
Steep slope, 8
Steep wave, 351
Steffensen method, 67
Step method, 114
Storage equation, 30, 97, 391
Subcritical flow, 7
Sudden change of cross-section, 128
Supercritical flow, 7
Systems of non-linear equations, 79
Systems of linear algebraic equations, 69
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T
Thermal energy transport equation, 43
Thomas method, 79
Top width, 2
Total energy, 5
Total load of dissolved matter, 33
Triangular matrix, 70–71
Tri-diagonal matrix, 77
Truncation error, 88, 232
Turbulent diffusion, 12, 36, 37

U
Uniform flow, 8
Unsteady flow, 7, 21, 301, 367

Unsteady gradually varied flow, 9, 21
Up-winding effect, 265, 358
Upwind scheme, 195, 222

V
Velocity head, 5
Volume flux, 5

W
Water stage, 1
Wave equation, 167, 174, 177
Wave number, 214
Wetted perimeter, 3
Wind-generated stresses, 19
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