

To improve the Makespan of a Standard Job Shop Scheduling

problem incorporating GA by using Python

By

 SAMRA YOUSAF

 MS-DME’SMME

 (Reg No:400010)

 ADVISOR

 DR. SHAHID IKRAMULLAH BUTT

Department of Design and Manufacturing Engineering DME

School of Mechanical and Manufacturing Engineering SMME

National University of Sciences and Technology,

H-12 Islamabad, Pakistan

 (2024)

To improve the Makespan of a Standard Job Shop Scheduling problem

incorporating GA by using Python

By

Samra Yousaf

(Reg No: 400010)

Department of Design and Manufacturing

Engineering

A thesis submitted to National University of Science and

Technology, Islamabad, in partial fulfillment of the requirements

for the degree of

Master of Science in

Design and Manufacturing Engineering

 DR. SHAHID IKRAMULLAH BUTT

 Department of Design & Manufacturing Engineering

 School of Mechanical & Manufacturing Engineering (SMME)

 National University Of Sciences and Technology

H-12 Islamabad, Pakistan

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis written by Regn No. 00000400010 Samra Yousaf of

School of Mechanical & Manufacturing Engineering (SMME) has been vetted by undersigned,

found complete in all respects as per NUST Statues/Regulations, is free of plagiarism, errors, and

mistakes and is accepted as partial fulfillment for award of MS/MPhil degree. It is further certified

that necessary amendments as pointed out by GEC members of the scholar have also been

incorporated in the said thesis titled. To improve the makespan of a Standard Job Shop Scheduling

problem incorporating GA by using Python.

Signature:

Name of Supervisor: Dr. Shahid Ikramullah Butt

Date: 20 - Aug - 2024

Signature (HOD):

Date: 20 - Aug - 2024

Signature (Principal):

Date: 20 - Aug - 2024____

IV

Form TH-4

National University of Sciences & Technology (NUST)

MASTER’S THESIS WORK

We hereby recommend that the dissertation prepared under our supervision by: Samra

Yousaf (00000400010) Titled: To improve the makespan of a Standard Job Shop Scheduling

problem incorporating GA by using Python. be accepted in partial fulfillment of the

requirements for the award of MS in Design & Manufacturing Engineering degree.

Examination Committee Members

1. Name: Syed Hussain Imran Jaffery Signature:

 2. Name: Muhammad Rizwan Ul Haq Signature:

Supervisor: Shahid Ikram Ullah Butt Signature:

Date: 20 - Aug - 2024

20 - Aug - 2024

Head of Department Date

 COUNTERSINGED

20 - Aug - 2024

Date Dean/Principal

V

CERTIFICATE OF APPROVAL

This is to certify that the research work presented in this thesis, entitled “To Improve the Makespan

of A Standard Job Shop Scheduling Problem incorporating GA by using Python” was conducted

by Miss Samra Yousaf under the supervision of Dr Shahid Ikramullah.

No part of this thesis has been submitted anywhere else for any other degree. This thesis is

submitted to the Department of Design and Manufacturing Engineering in partial fulfillment of the

requirements for the degree of Master of Science in Field of Department of Design and

Manufacturing Engineering by Department of Design and Manufacturing Engineering, National

University of Sciences and Technology, Islamabad.

 Student Name: Samra Yousaf

 Signature:

Examination Committee:-

a) External Examiner 1: Dr. Hussain Imran

Signature:

(Asst Professor, DME SMME, NUST)

b) External Examiner 2: Dr. Muhammad Rizwan

 Signature:

(Asst Professor, DME SMME, NUST)

 Supervisor Name: Prof. Dr. Shahid Ikramullah Signature: ____________________

 Name of Dean/HOD: Prof. Dr. Shahid Ikramullah Signature: ____________________

VI

 AUTHOR’S DECLARATION

I Samra Yousaf hereby state that my MS thesis titled “To improve the Makespan of a Standard

JobShop Scheduling problem incorporating GA in Python” is my own work and has not been

submitted previously by me for taking any degree from National University of Sciences and

Technology, Islamabad or anywhere else in the country/ world.

 Name of Student: SAMRA YOUSAF

 Date: 20-August-2024

VII

Certificate for Plagiarism

It is certified that MS Thesis Titled “To Improve the Makespan of a Standard Job shop

Scheduling problem incorporating GA by using Python” by Samra Yousaf, Regn. No.

00000400010 has been examined by us. We undertake the follows:

a. Thesis has significant new work/knowledge as compared to already published or is under

consideration to be published elsewhere. No sentence, equation, diagram, table, paragraph or

section has been copied verbatim from previous work unless it is placed under quotation marks

and duly referenced.

b. The work presented is original and own work of the author (i.e. there is no plagiarism). No

ideas, processes, results or words of others have been presented as Author own work.

c. There is no fabrication of data or results which have been compiled/analyzed.

d. There is no falsification by manipulating research materials, equipment or processes, or

changing or omitting data or results such that the research is not accurately represented in the

research record.

e. The thesis has been checked using TURNITIN (copy of originality report attached) and found

within the limits as per HEC Plagiarism Policy and instructions issued from time to time.

 Signature of Supervisor__________________________

 Name of Supervisor: Dr. Shahid Ikramullah Butt___

VIII

Dedicated to my Parents, my sister and my teachers

whose tremendous support and cooperation led me to

this wonderful accomplishment.

IX

ACKNOWLEDGEMENTS

"In the name of Allah, the Magnificent, the Merciful.”

Research is a continuous quest, and I am blessed to have the support of my family

and friends. Along this journey, I've faced numerous challenges, but as Einstein

famously remarked, “Anyone who has never made a mistake has never tried

anything new.”

At each obstacle, Dr. Shahid Ikramullah has been a guiding light, illuminating my

path. I am profoundly grateful to Dr. Shahid Ikramullah, my research advisor, for

his unwavering support. Additionally, the encouragement and guidance from my

Guidance and Examination Committee have been invaluable.

I extend my deepest gratitude to my parents and siblings, whose relentless support

has been a cornerstone of my life. I am also thankful to my peers, whose insightful

feedback and camaraderie have greatly enriched my journey.

To all who have been part of this journey, thank you. I wish you all success in your

future

X

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... IX

TABLE OF CONTENTS .. X

LIST OF FIGURES ... XIII

LIST OF TABLES ... XIV

ABSTRACT ... 1

CHAPTER 1: INTRODUCTION ... 2

1.1 Problem Statement ... 2

1.2 Purpose of Research .. 3

1.3 Manufacturing Layouts.. 3

1.3.1. Project production.. 4

1.3.2. Job-shop production. ... 4

1.3.3. Batch production.. 4

1.3.4. Mass production. ... 4

1.3.5. Flow/Process production 4

1.4 General types of facility layouts .. 5

1.4.1. Fixed Position Layout. ... 5

1.4.2. Process Layout:.. 5

1.4.3. Cellular Layout ... 5

1.4.4. Product Layout .. 5

1.5 Machine Environments .. 5

1.6 Literature Review .. 7

CHAPTER 2: SCHEDULING .. 9

2.1 Classification of Job Scheduling ... 9

2.1.1 Single machine scheduling ... 9

2.1.2 Flow shop scheduling ... 11

2.1.3 Job shop scheduling ... 12

XI

2.2 Assumptions for JSSP ... 12

2.3 Scheduling Algorithms ... 13

2.3.1 Classification of Scheduling Algorithms .. 13

2.4 Evolutionary Algorithms .. 16

2.5 Scheduling Rules ... 17

2.6 Classification scheme for scheduling problems .. 18

2.7 Scheduling Criteria .. 18

CHAPTER # 3: Introduction to Genetic Algorithm - GA .. 20

3.1 Fundamental Models ... 21

3.2 A Simple GA ... 22

3.3.1. Crossover (Recombination) ... 23

3.3.2. Mutation... 25

3.4 Local Optima ... 27

3.5 Development of a Genetic Algorithm for Job Shop Scheduling 28

3.5.1 Genetic Operators ... 29

3.5.2 Local search method: .. 31

3.5.3 Evolutionary Process .. 31

3.5.4 Experimental Setup and benchmarks ... 32

3.5.5 Basic Flowchart for GA .. 35

3.6 Manual Example: ... 35

3.7 Initial Makespan Calculator.. 38

3.7.1 How it works? ... 39

Chapter # 04: Python Libraries and GUI Development for Scheduling Optimization 41

4.1 Python Libraries .. 41

4.1.1 Random ... 41

4.1.2.Matplotlib (including matplotlib.patches) .. 42

4.1.3.Tkinter (including simpledialog, messagebox, Toplevel, Scrollbar, Frame, Canvas) 42

4.1.4.Matplotlib.backends.backend_tkagg (FigureCanvasTkAgg) 42

4.2 Interactive Flow Chart: Navigating the GUI-User Experience 43

4.2.1 Main Menu: .. 43

4.2.2 Other Benchmarks .. 46

XII

4.3 Importance of Introducing Programming Languages like Python in Manufacturing 50

Chapter 5: GA performance Evaluation ... 52

5.1 Flowchart for GA working .. 52

5.2 Complete Python Pseudo Code ... 52

5.3 Results for Test problem .. 59

5.4 Test for MT06 .. 60

5. 5 Test for MT10 ... 62

5. 6 Test for MT20 ... 64

5.7 GA result for dataset instances from Muth and Thomson .. 65

5.8 GA result for dataset instances from (Lawrence, 1984) ... 65

5.8.1 LA01 .. 65

5.9 GA result for dataset instances from (Lawrence, 1984) .. 67

Chapter 6: Conclusion and Future Directions ... 68

6.1 Conclusion ... 68

6.2 Contributions ... 68

6.3 Implications ... 69

6.4 Future Directions ... 69

References .. 72

XIII

LIST OF FIGURES

Figure 1: Manufacturing Layouts ... 4

Figure 2:Flow Shop Layout .. 6

Figure 3: Open Shop Layout ... 6

Figure 4: Job Shop Layout .. 7

Figure 5: Classification of Scheduling Algorithms .. 13

Figure 6:Evolutionary Algorithms .. 17

Figure 7:Natural Evolution with GA .. 21

Figure 8:Simple GA search process .. 27

Figure 9: Initial Maespan Calc .. 37

Figure 10: Result Message .. 37

Figure 11: Visual Studio Code .. 41

Figure 12: Interactive Flow Chart: Navigating the GUI-User Experience 43

Figure 13: Main Menu for JSSP ... 44

Figure 14: Run Algorithm for MT06 .. 45

Figure 15: Other Benchmarks ... 46

Figure 16: Start Algorithm Button for others ... 49

Figure 17: Flowchart for Beckend (GA) ... 52

Figure 18: GANTT CHART for Test Problem ... 60

Figure 19: Fitness Graph for Test Problem... 60

Figure 20: GANTT CHART for MT06 .. 61

Figure 21: Fitness Graph for MT06 .. 62

Figure 22: GANTT CHART for MT10 .. 63

Figure 23: Fitness Graph for MT10 .. 63

Figure 24: GANTT CHART for MT20 .. 64

Figure 25: Fitness Graph for MT20 .. 65

Figure 26: LA01 Benchmark .. 66

Figure 27: GANTT CHART for LA01 ... 66

Figure 28: :Fitness Graph for LA01.. 67

XIV

LIST OF TABLES

Table 1:Contrast of Natural Evolution with Genetic Algorithm .. 21

Table 2:Experimental setup .. 32

Table 3:Processing Times for Manual Problem.. 35

Table 4:Initial Population: .. 36

Table 5:Start and Finish times for each job .. 36

Table 6:New Chromosomes After Crossover ... 37

Table 7:Mutation ... 38

Table 8:Test Problem .. 59

Table 9:MT06 problem ... 61

Table 10:MT10 problem ... 62

Table 11:MT20 problem ... 64

Table 12:GA Results for Muth and Thomson... 65

Table 13:GA Results for Lawrence Instances .. 67

1

ABSTRACT

Effective job scheduling is crucial in industrial manufacturing planning, where

each job, consisting of multiple operations, must be allocated to the machines that are

available machines for processing. Each job has a specific interval, and every machine

can only handle one operation at a time. Efficient job allocation is essential to minimise

the makespan and reduce machine idle time. In Job Shop Scheduling (JSS), job

operations follow a specified order. Genetic Algorithms (GA) have emerged as a

popular heuristic for tackling various scheduling problems. This study introduces a

Genetic Algorithm Integrating Python (GAIP) with feasibility-preserving solution

representation, initialization, and operators tailored for the JSS problem. The proposed

GAIP achieves the best-known results with high success rates on the Muth and

Thomson and Lawrence benchmark datasets. Experimental results demonstrate the

GA's rapid convergence towards optimal solutions. Incorporating GA with local search

and two selection methods at the same time is done to further enhance solution quality

and success rates.

Keywords: Job Shop Scheduling, Genetic Algorithm , Manufacturing Planning,

Makespan Optimization, Python, , Initialization, Lawrence Datasets, Local Search,

Hybrid Algorithms.

2

CHAPTER 1: INTRODUCTION

Effective scheduling is a cornerstone of operational success in various

industries, particularly in manufacturing, where precision and efficiency directly

impact productivity and profitability. The ability to optimise the allocation of

resources, minimise delays, and ensure the smooth flow of operations is crucial in

environments where a series of machines are available to process multiple jobs.

Advanced scheduling techniques are integral to addressing the complexities of

modern manufacturing processes. These techniques help to minimise downtime,

reduce operational costs, and improve overall throughput. In industries such as

automotive, aerospace, and electronics, the coordination of intricate tasks and the

synchronisation of machine operations are vital for maintaining competitive advantage

and meeting customer demands.

The continuous evolution of manufacturing technologies and the increasing

complexity of production processes have amplified the need for sophisticated

scheduling algorithms. Traditional heuristic methods often fall short when dealing with

the multifaceted nature of real-world scheduling problems. As a result, there is a

growing demand for innovative solutions that can handle the dynamic and complex

environment of modern manufacturing.

 1.1 Problem Statement

Job shop scheduling presents significant challenges, primarily due to its

combinatorial nature and the constraints involved in the sequencing and allocation of

jobs. One of the most critical aspects of JSS is the optimization of the makespan, which

is the whole time essential to complete all jobs.

The makespan is a crucial performance metric in manufacturing, as it directly

affects production efficiency, lead times, and overall operational costs. Traditional

methods for solving job shop scheduling problems, such as exact algorithms and

heuristic methods, often struggle with scalability and computational efficiency,

especially as the problem size increases. These methods could be computationally

expensive and may not provide optimal solutions within a reasonable time frame.

Hence, there is a need for more efficient and effective algorithms that can handle the

complexities of job shop scheduling and deliver optimised makespan solutions.

3

Hence, there is a need for more efficient and effective algorithms that can handle

the complexities of job shop scheduling and deliver optimised makespan solutions.

Also, there is a need to introduce python programming language in manufacturing so

that it can handle combinatorial problems in more efficient way and can also develop

a user friendly interface where user can test for vaious scheduling problems.

 1.2 Purpose of Research

o Main goal is to develop a robust and efficient genetic algorithm (GA)

incorporating Python (GAIP) to improve the makespan in job shop

scheduling problems. Specific aims include:

o Designing a GA using Python with customized solution representation,

initialization, and operators tailored for JSSP.

o Incorporating local methods to improve the performance of the GA and

ensure faster convergence towards optimal solutions.

o Validating the proposed GA against standard benchmark datasets, such as

the Muth and Thomson datasets and Lawrence datasets, to assess its

effectiveness and reliability. Also, there is an aim to design the system in

such a way that user can test custom bencharks also.

o Developing a user-friendly graphical user interface (GUI) in Python to

facilitate input, execution, and visualization of job shop scheduling results.

1.3 Manufacturing Layouts

"Manufacturing layouts" refer to the physical arrangement of machinery and

equipment within a factory or production area. This layout determines the movement

of materials and work through the production organisation. Effective layouts are

crucial for optimising manufacturing efficiency and can directly impact production

processes and their capacity, worker efficiency, and safety.

Production processes can be categorized into 5 in aspect of :

● continuousness,

● product diversity

● Volume of Production:

4

1.3.1. Project production (low volume,intricate process, , each project or

product has unique processing sequence,high customizationand fixed position

layout)..

1.3.2. Job-shop production (manufacturing a limited quantity of products,

characterized by low volume and high variety. Each job has distinct technical

requirements, necessitating highly expert operators and typically leading to the need

for substantial inventory levels).

1.3.3. Batch production (comparatively shorter production runs, flexible plants

and machines, lower manufacturing cost with lower lead compared to job-shop

production).

1.3.4. Mass production (comparatively briefer production runs, flexible plants

and machines, lesser manufacturing cost).

1.3.5. Flow/Process production (Manufacturing includes producing a huge

volume of products with slight variety, often concentrating on just one type. The

process uses specific machines organised in a fixed sequence).

 Figure 1: Manufacturing Layouts[2]

5

 1.4 General types of facility layouts

Following are the general types of facility layouts

1.4.1. Fixed Position Layout:A Fixed Position Layout is typically employed

when the product is too large, heavy, or difficult to move. This layout is common in

industries like construction, shipbuilding, and the manufacturing of large industrial

equipment. In this setup, the product remains in one location, while workers, materials,

and machinery are brought to it as needed. While this approach reduces the need to

move the product, it can result in higher costs and increased complexity in coordinating

the movement of labor and materials

 1.4.2. Process Layout: Also known as a job shop layout, it groups similar

processes in the same area. It's used for operations that produce a variety of products

in relatively low volumes. This layout is flexible and can handle a wide variety of work

items but can have higher material handling costs and longer processing times. Typical

applications include specialised machine shops, hospitals, and custom furniture

makers.

1.4.3. Cellular Layout: Organises the production floor into cells, each of which

is dedicated to a specific set of processes that are required to produce a family of similar

products or components. This layout aims to join the process layout's flexibility with a

product layout's efficiency . It's suitable for medium-volume production where families

of products can be grouped. This can lead to reduced work-in-process inventory and

shorter processing times.

 1.4.4. Product Layout: Used for mass production of standardized

products where the production volume is high enough to justify specialized

workstations laid out in a line. This layout is highly efficient for large runs of

production, reducing material handling and setup times but lacking flexibility for

product changes. It's commonly used in automotive assembly lines, food processing,

and electronics manufacturing.

 1.5 Machine Environments

The term "machine environments" typically refers to the specific configuration

and operational settings of machinery within a production process. This can involve

6

various types of machinery such as single machines, parallel machines, or a series of

machines that are part of a production line. In the context of scheduling and operations

research, different machine environments might have distinct characteristics or

constraints, such as:

o Single Machine: Tasks are processed on a single machine.

o Parallel Machines: Multiple tasks are processed simultaneously on different

machines that might have the same or varying capabilities.

o Flow Shop: A specific type of production process where tasks are processed

in the same sequence on multiple machines.

o Open Shop Layout: In open shop jobs must be processed for a certain amount

of time at each sets of defined work centres irrespective of the proper sequence.

No predetermined sequence is followed therefore jobs can be handled in any

sequence

o Job Shop: A job shop is a manufacturing setup designed to handle highly

customised, small to medium batch production, where each product may require

a distinct sequence of processes and operations. This type of environment is

characterised by its significant flexibility, allowing for the manufacture of a

diverse range of products. Machines in a job shop are typically organized by

function rather than by specific product lines, which contrasts with flow shops

where machinery is arranged in the order of the manufacturing process. This

Figure 2:Flow Shop Layout

 Figure 3: Open Shop Layout

7

functional grouping allows each job to take a unique route through the

workshop, depending on the specific operations required. However, this

flexibility comes at a cost, as job shops often face complex scheduling

challenges.

 Figure 4: Job Shop Layout

 1.6 Literature Review

The literature on Job Shop Scheduling (JSS) has seen significant contributions,

particularly in the application of Genetic Algorithms (GA) and other optimization

techniques.

Kalshetty et al. [1] introduced feasible operators in GA for solving JSS problems,

focusing on feasibility and efficiency. However, the study lacks comprehensive

hybridization with local search methods, which could enhance the optimization

process. My work incorporates a robust local search heuristic, which improves the

convergence rate and solution quality, filling this gap.

Ripon et al. [2] proposed an Improved Precedence Preservation Crossover

(IPPX) for multi-objective JSS problems, which showed promise in maintaining

solution integrity across multiple criteria. Nevertheless, the study did not fully explore

the potential of integrating IPPX with advanced local search methods for makespan

optimization. My research bridges this gap by integrating such methods, resulting in

better convergence and optimized solutions.

Ikramullah and Hou-Fang [3] applied GAs to flexible JSS, incorporating rule-

based approaches. Although effective, their method did not adequately address the

issue of scalability and the complexities associated with real-world job shops. My work

extends their approach by providing a more scalable solution that efficiently handles

8

larger, more complex scheduling problems through enhanced genetic operators and

local search techniques.

Chang et al. [4] utilized a hybrid Taguchi-GA to optimize makespan in flexible

JSS, achieving significant improvements. However, their approach may suffer from

convergence issues due to the deterministic nature of the Taguchi method. My research

mitigates this by employing stochastic elements in local search, ensuring a broader

exploration of the solution space and avoiding premature convergence.

Adams et al. [5] and Applegate and Cook [6] focused on local search heuristics

for JSS, which laid the foundation for subsequent research. However, these studies

primarily addressed static job shops and did not fully integrate modern heuristic

approaches. My work builds on their foundation by integrating advanced GA

techniques with dynamic local search heuristics, suitable for both static and dynamic

job shop environments.

Kundakcı and Kulak [7] explored hybrid GAs for dynamic JSS, focusing on

makespan minimization. While their approach demonstrated efficacy, it lacked

flexibility in handling diverse job shop configurations. My research introduces a more

adaptable framework that can accommodate various job shop layouts and

configurations, enhancing its applicability in real-world scenarios.

Barat’s thesis [10] on job scheduling using GA provided valuable insights but

was limited by its reliance on traditional GA operators without incorporating

hybridization with local search. My work addresses this limitation by implementing a

hybrid GA framework, which significantly improves solution quality and robustness.

9

 CHAPTER 2: SCHEDULING

Scheduling and planning are the two key activities carried out in industries for

manufacturing products. Planning involves estimating the necessary actions and

identifying any constraints on how these actions should be performed. Scheduling, on

the other hand, focuses on estimating the time and resources required for each activity

and allocating the optimal resources for task execution. Additionally, scheduling

determines the precedence relationships between activities and the associated

constraints. For a plan to be fully executed, tasks and activities must be assigned a

specific timeline. Effective scheduling offers several advantages.Improved on-time

delivery

• Reduced inventory

• Cut lead times

• Increased bottleneck means utilisation

However, due to the combinatorial nature of scheduling problems, finding the

optimal schedules can be challenging. Scheduling is considered NP-complete because

determining the best schedule for ‘a’ number of jobs on ‘b’ number of machines

requires optimal utilization of both resources and time. In the traditional Job Shop

Scheduling Problem (JSSP), jobs are treated as activities, while machines are regarded

as resources.

 2.1 Classification of Job Scheduling

Job scheduling can be categorized into three types: single machine scheduling,

flow shop scheduling, and job shop scheduling.

2.1.1 Single machine scheduling

In this type, several jobs are allocated to a single machine for processing. The

machines involved in this process can be classified into two categories: dependent and

independent. When the setup time for each job is not influenced by others, it is termed

a single-machine scheduling problem with independent jobs.Conversely, if the setup

time depends on the sequence of jobs, it is known as a single-machine scheduling

problem with dependent jobs. The function is measured using the following metrics.

10

• Mean Flow Time: The average time a job spends in the system from

arrival to completion.

• Maximum Lateness: The greatest delay of any job beyond its scheduled

due date.

• Total Tardiness: The cumulative delay of all jobs beyond their

respective due dates.

• Number of Tardy Jobs: The count of jobs completed after their due

dates.

In single machine scheduling, multiple jobs are assigned to a single machine for

execution. The machines used for job allocation can be classified into two types:

dependent and independent. If the setup time for each job is independent of others, the

problem is referred to as a single-machine scheduling problem with independent jobs.

Conversely, if the setup time depends on the sequence of jobs, it is known as a single-

machine scheduling problem with dependent jobs.[1].

1) Identical parallel machine scheduling problem: Here parallel machines

function at matching speeds, and jobs assigned to them need the same processing time.

A branch and bound algorithm is employed to lessen job tardiness within this

framework. After processing a specified number of jobs, each machine requires a

preventive preservation task.

2) Proportional parallel machine scheduling problem: Here parallel machines

operate at varying speeds, with the first machine being the slowest and the last the

fastest. This scheduling model addresses the challenge of scheduling jobs with similar

due dates and proportionate early and tardy disadvantages across identical parallel

machines. Sun & Wang analysed these issues and confirmed that the scheduling is an

NP-hard problem. Dynamic programming is subsequently used to address the

complexities involved in the scheduling process.

3) Unrelated parallel machine scheduling problem

In this scheduling model, the processing times of jobs on parallel machines are

independent, reflecting variations in technology due to factors like differing machine

capabilities and job characteristics. Abdelmaguid introduced an iterated greedy

11

algorithm for large-scale unrelated parallel machine scheduling. This algorithm

iteratively refines solutions through a cycle of destruction and construction phases,

offering optimal performance compared to traditional metaheuristics. Additionally,

Torabi developed a Multi-Objective Particle Swarm Optimization (MOPSO) to

estimate the optimal approximation of the Pareto frontier effectively. This approach

leverages selection regimes to identify the best personal and global solutions,

outperforming the conventional Multi-Objective Particle Swarm Optimization

(CMOPSO) in terms of quality, diversity, and spacing.

2.1.2 Flow shop scheduling

 In this scheduling approach, jobs are assigned to different machines, with each

job adhering to a specific process sequence. All jobs follow the same process

sequence. The effectiveness of flow shop scheduling is assessed using the following

metrics

● Maximum lateness

● Total hardiness

● Number of tardy jobs

● Makespan

A Memetic algorithm called Opposition-based Differential Evolution (ODDE)

is proposed to tackle the Permutation Flow Shop Problem (PFSSP). To adapt ODDE

for PFSSP, the Largest-Ranked Value (LRV) rule is applied, which transforms the

continuous positions generated by Differential Evolution (DE) into discrete job

permutations. The Nawaz-Enscore-Ham (NEH) method is integrated with random

population initialization to ensure a balance of quality and diversity. Additionally, the

crossover rate is adjusted by leveraging DE's global optimization capabilities.By

deploying the opposition based learning for the initialization and generation jumping

for the global optimum solution enhancement, the convergence rate of the DE is

enhanced. Individuals are improved with a certain probability through a rapid local

search process. A pairwise-based local search technique is employed to refine the

global optimum solution, helping to avoid the algorithm getting trapped in local

12

minima. To address the Distributed Permutation Flow-shop Scheduling Problem

(DPFSP), an effective estimation of a Distributed Algorithm (EDA) is proposed.

Optimal schedules are generated by applying completion factory rules, and the

probability distribution of the solution space is represented through a probability

model.

2.1.3 Job shop scheduling

Job shop scheduling (JSS) is a complex optimization problem within operations

research and computer science that focuses on effectively allocating jobs to machines.

The scheduling decisions in JSS are influenced by factors such as the routing sequence

of jobs and their respective processing times. The classical JSS problem, a cornerstone

in the study of operational strategies, involves planning the order in which jobs are

processed on various machines to optimize specific objectives, such as minimizing the

total completion time of all operations.

JSS can be classified into two types: static and dynamic. Static scheduling, which is

the focus of this thesis, involves scenarios where all information about the jobs

(including processing times and job sequences) is known in advance, and the schedule

is determined before execution begins. Conversely, dynamic scheduling adapts to

information that becomes available during the operations, such as machine breakdowns

or changes in job priorities, requiring real-time adjustments to the schedule. The static

approach is critical for environments where predictability and pre-planning mitigate

potential disruptions and optimize workflow efficiency.

 2.2 Assumptions for JSSP

Following are the assumptions [1], [17] that must be followed during static JSSP.

1. All jobs are ready to begin at time zero.

2. Each machine can handle only one operation at a time.

3. Every operation can be processed on only one machine at any given moment.

4. The operations for each job must be completed in a specified sequence.

5. All operations must be finished across the designated set of machines.

13

 The goal of the scheduling task is to optimize a specific criterion, which serves as a

performance measure for the schedule. One such criterion is the makespan, which

refers to the total time required to complete all the jobs.

 2.3 Scheduling Algorithms

An algorithm is a set of well-defined rules that are designed to perform a specific

task or solve a particular problem. It's a step-by-step procedure, typically used in

computing, to input data and produce a desired output or result. An Algorithm is

fundamental to all aspects of the field of computer science and are used to automate,

enhance, and streamline processes in various fields.

Scheduling Algorithms are a specific category of algorithms used to assign

resources to tasks over time, aiming to optimise certain objectives like minimising total

completion time, maximising resource utilisation, or balancing load among resources.

These algorithms are crucial in fields ranging from manufacturing and logistics to

computing and telecommunications. These algorithms help in completing tasks

properly in an efficient manner and resources are used effectively.

 2.3.1 Classification of Scheduling Algorithms

These algorithms can be classified as:

 Figure 5: Classification of Scheduling Algorithms[3]

14

To address scheduling challenges, a variety of methods are categorized broadly

into two types: Exact and Approximate methods.

Exact methods, though precise, are often impractical for large-scale Job Shop

Scheduling Problems (JSSP) due to their computational intensity and time-consuming

nature. As a result, heuristic methods, which provide approximate yet high-quality

solutions, are preferred, particularly when real-time execution and feasible solutions

are essential. These heuristic approaches are designed to approach optimal solutions

closely within a considerably shorter timeframe compared to exact methods.

In practice, achieving an absolute optimal solution is seldom possible, making a

robust approximate solution highly valuable. Heuristics are therefore a focal point for

researchers aiming to develop algorithms that can efficiently converge near-optimal

solutions under practical constraints. Approximate methods typically model

production scheduling problems through a series of equality or inequality constraints,

optimizing the target function within these defined parameters.

Hybrid methods [18], which combine two or more of the best-performing

heuristic rules, are prominent in contemporary research, enhancing the effectiveness of

traditional approaches. These methods are particularly useful not only in static but also

in dynamic JSSP, where the complexity escalates with the increasing number of

machines and job flows. As the complexity and the number of feasible solutions grow

exponentially, approximate methods offer a pragmatic means to achieve optimal

solutions within a reasonable timeframe. In smaller-scale industries, where job orders

often arrive unpredictably and each batch has distinct due dates, scheduling must

prioritise and complete jobs in alignment with these timelines. This necessitates a

strategy that integrates priority dispatching rules, which will be further explored and

detailed in subsequent sections, illustrating a practical JSSP scenario from a small-

scale industrial setting.

1.Constructive Algorithms (Exact)

• Johnson’s Rule: Efficient for two-machine sequencing problems where jobs

must be done on both machines in a specific order.

15

• Lawler’s Algorithm: Minimizes maximum lateness by sequencing jobs

based on their deadlines and processing times.

• Moore’s Algorithm: Focuses on minimizing the number of late jobs by

reordering tasks based on their due dates.

2. Enumerative Algorithms (Exact)

• Integer Programming: Uses mathematical formulations to find the

exact solution by exploring all possible combinations.

• Branch and Bound: Reduces the search space by logically eliminating

sequences that do not lead to an optimal solution.

3. Constructive Heuristics (Approximate)

• NEH (Nawaz-Enscore-Ham): Prioritizes jobs based on their total

processing times across all machines, building the schedule by adding

one job at a time.

4.Improvement Heuristics (Approximate)

• Shifting Bottleneck: Addresses the most critical part of the production

process first and sequentially adds other parts to improve the overall

schedule.

5. Metaheuristics (Approximate)

• Genetic Algorithm: Simulates natural selection processes to iteratively

evolve solutions to optimal or near-optimal levels.

• Simulated Annealing: Mimics the cooling process of materials,

allowing solutions to 'cool' and stabilize into a minimal energy state.

• Ant Colony Optimization: Models the behavior of ants searching for

food to find optimal paths through graphs, applicable to scheduling.

Metaheuristics and nature-inspired optimization algorithms have become

increasingly prominent in addressing the complexities of Job Shop Scheduling

Problems (JSSP). Extensive research has explored various methodologies that leverage

these advanced optimization techniques to enhance engineering problem-solving

capabilities. Among the notable approaches, alternative graph solution algorithms have

16

been tailored for general formulations of JSSP, accommodating unique constraints

such as blocking and no-wait scenarios. These algorithms are designed with flexibility,

allowing for easy modification to include new constraints and reconfiguration for

multi-objective cases.

Further innovations include the adaptation of the Ant Colony algorithm, which

has been refined to resolve JSSP efficiently within acceptable time frames. The

integration of fuzzy reliability functions also plays a crucial role in assessing system

reliability, particularly when faced with uncertain information. This approach

underscores the adaptability of metaheuristic algorithms in managing not only the

operational efficiency but also the reliability and robustness of systems.

Recent developments have seen the application of algorithms such as Grey Wolf

Optimization and Cuckoo Search Algorithm aimed at minimizing costs while

maximizing the availability and operational time of system components. These nature-

inspired techniques contribute significantly to enhancing system reliability,

productivity, and profitability.

Additionally, Particle Swarm Optimization (PSO) has gained recognition as one

of the most effective algorithms for solving JSSP. Efforts to augment PSO include the

introduction of hybrid methods that combine PSO with other optimization techniques,

demonstrating a potent capability for tackling both constrained and unconstrained

nonlinear optimization challenges.

These advancements highlight the efficacy of metaheuristic algorithms in

solving complex real-world problems, positioning them as invaluable tools in the

continuous evolution of optimization practices in job shop scheduling and beyond.

 2.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) are optimization approaches that draw inspiration

from the principles of natural selection and the survival of the fittest. Unlike traditional

optimization approaches, EAs work with a "population" of potential solutions rather

than just one. Each iteration of an EA includes a competitive selection process that

17

removes less effective solutions. A basic structure of evolutionary algorithms is

depicted in the figure.

 2.5 Scheduling Rules

In scheduling, specific strategies or rules(like FCFS, SJF, EDF) are used to

prioritise and manage tasks efficiently across various systems. These strategies are

fundamental to ensuring that tasks are completed in an optimal manner, respecting

constraints such as deadlines, resource availability, and operational efficiency. These

can be used within both exact and approximate frameworks to handle specific

scheduling needs in various systems [17].

• First-Come, First-Served (FCFS): Simple, treats all tasks with equal

priority as they come.

• Shortest Job First (SJF): Optimizes waiting time by handling the

shortest tasks first.

• Priority Scheduling: Manages tasks based on predefined priorities.

• Round Robin (RR): Ensures all tasks receive equal time slices,

commonly used in computing.

• Earliest Deadline First (EDF): Critical for systems where tasks must

meet deadlines.

• Least Slack Time First (LSTF): Prioritizes tasks with the least slack

time to avoid delays.

Figure 6:Evolutionary Algorithms[3]

18

2.6 Classification scheme for scheduling problems

Classification system for scheduling problems is as follows:

 1) Requirement Generation: Manufacturing shops are considered as either

closed or open founded on how they handle order contentment. In a closed shop, orders

are fulfilled using current inventory. In contrast, an open shop functions on a build-to-

order basis, meaning no inventory is kept in stock.

 2) Processing Complexity: It the number of steps of processing and the

machines or workstations related to production process.

The single-stage, single-processor and single-stage, multiple-processor scenarios

involve tasks that need to be completed using either one or several possessions,

respectively. In the multi-stage flow shop scenario, each job is composed of multiple

tasks that must be processed by different resources, following a standardized route for

all jobs. Conversely, in the multi-stage job shop environment, jobs may utilize

alternative sets of resources and follow different routes, enabling the manufacturing of

various part types

 2.7 Scheduling Criteria

 It tells the preferred objectives to be happened which can be many, intricate and

regularly differing. Some of the most common scheduling criteria contain the

following:

a. Lessen whole tardiness

b. Lessen the number of late jobs

c. Maximize system/resource use

d. Minimize in-process record

e. Balance resource usage

f. Maximize production rate

Parameter Variability: This term describes the level of uncertainty in

scheduling problem parameters. When uncertainty is minimal (for example, when the

19

variance in processing times is significantly smaller than the expected durations), the

scheduling is considered deterministic, such as when an expected processing time is

six hours with only a minute of variance. Conversely, if uncertainties are substantial,

the scheduling is deemed stochastic.

Scheduling Environment: Well-defined by whether the scheduling context is

static or dynamic. In static scheduling, all job information, including the number and

readiness of jobs, is predetermined. Dynamic scheduling, on the other hand, involves

fluctuating job numbers and characteristics over time. In many manufacturing settings,

scheduling is often manually conducted by experienced personnel using tools like

pencil, paper, Gantt charts, and possibly an industrial database, making it a complex

and challenging task, particularly in environments characterized by low volume and

high variety.

20

CHAPTER # 3: Introduction to Genetic Algorithm - GA

Methods of scheduling are discussed in detail in first and second chapters, so the

main emphasis in this chapter is on the selected technique of Genetic Algorithm (GA)

and its application to generate schedule.Genetic algorithms (GAs) is related to the class

of evolutionary algorithms and are inspired by the process of natural genetic evolution.

The original concept of natural evolution was proposed by Charles Darwin [14], who

introduced the idea that natural populations evolve through the natural selection

process and its basis is "survival of the fittest "principle. Darwin's theory has since

become a cornerstone in the field of biology, explaining how species adapt over

generations to their environments.Building on this, John Holland conducted pioneering

work on genetic algorithms in 1975, further extended by David Goldberg[15], who

contributed significantly to their development and practical applications.

The analogy of giraffes evolving longer necks to reach higher leaves examplifies

the principle of survival of the fittest. Giraffes with longer necks could access more

food, survive better, and pass on their advantageous traits to future generations.

Similarly, genetic algorithms mimic this natural process of evolution to solve complex

engineering problems. The elegance of GAs lies in their adaptive nature; they can

dynamically adjust to changing environments, making them highly versatile and robust

optimization tools.

At the core of a GA lies the concept of a gene, the fundamental unit of

information. Genes are combined to form a chromosome, which is a possible solution

of the scheduling problem. Each chromosome has a series of genes, and these genes

encapsulate the state data in a structured format.

A chromosome, also referred to as an individual, embodies a single candidate

solution within the search space. The collection of these individuals forms a

population, representing a diverse set of potential solutions. The diversity within the

population is crucial, as it provides a broad range of genetic material for the algorithm

to work with, enhancing the ability to explore various regions of the solution space.

21

3.1 Fundamental Models

Genetic Algorithms borrow terminology from natural genetics. A group of

individuals is referred to as a population. Each individual has two forms of

representation: genotype and phenotype. The following table provides a list of common

terms and their corresponding expressions used in genetics.

 Table 1:Contrast of Natural Evolution with Genetic Algorithm[3]

Natural Evolution Genetic Algorithm

Phenotype Uncoded point

Genotype Coded string

Gene String position

Fitness Objective function value

Allele Value at a certain position

Chromosome String

The phenotype straight represents a possible solution to the problem as it was

primarily defined. Conversely, the genotype suggests an encoded form of this solution,

designed as a chromosome. A chromosome consists of genes, which are linear

sequences of characters, each gene influencing the inheritance of specific traits or

features. In some literature, chromosomes are also called individuals. For example, a

chromosome might consist of a sequence of 0s and 1s (a bit string), where the value at

a specific position indicates whether a particular feature is active (value = 1) or inactive

 Figure 7:Natural Evolution with GA[3]

22

(value = 0). Depending on the target problem, more complex forms, such as sequences

of symbols or permutations of alphabets, may be used for chromosomes.

Each individual has a fitness level, which assesses how well it is modified to its

environment. In line with Darwinian [14] theory, the individual most suitable to its

environment within a population is more expected to last and reproduce, a concept

known as "survival of the fittest." Within this context, the objective function of the

optimization problem signifies the environment, while an individual's fitness reflects

how efficiently the matching potential solution meets the original optimization

standards.When the goal of optimization is to maximize the objective function, fitness

may be directly equivalent to the objective function value. F(x) = f (x), here x is the

individual in the existing population P (Set of individuals or possible solutions

 3.2 A Simple GA

The evolutionary process within a GA begins with an initial population, which

is typically generated randomly or through heuristic methods to ensure diversity. Every

individual in the population is assessed using a fitness function(i-e Makespan. Due

Date, Energy Consumption etc), which quantifies how fine it solves the problem at

hand. This fitness evaluation is pivotal, as it directly influences the selection process.

For reproduction, the individuals with higher fitness scores are more expected to be

selected, reflecting the principle of "survival of the fittest."

The selection process can employ various techniques, such as

• Roulette wheel selection,

• Tournament selection, or

• Rank-based selection,

to choose individuals that will contribute to the next generation.

23

Roulette Wheel Selection

Roulette wheel selection, or else fitness balanced selection, allocates each individual a

segment of a virtual roulette wheel proportional to their fitness score.

A random number determines which individual is selected based on their fitness proportion.

Advanced fitness individuals have a greater chance of being chosen. This method can lead to

dominance by the fittest individuals, reducing genetic diversity and risking premature

convergence.

Tournament Selection

Tournament selection includes randomly choosing a subset of individuals and selecting

the one with the highest fitness among them.

A predefined number of individuals (the tournament size) are randomly selected. The fittest

individual within this subset is chosen for the reproduction. This process is iterative until the

selection of desired individuals. Larger tournaments favour fitter individuals, while smaller

ones maintain more diversity.

Rank-Based Selection

Rank-based selection categories individuals by their suitability and assigns selection

probabilities based on their ranks instead of raw fitness scores.

Selection probabilities are assigned based on these ranks, ensuring a balanced and equitable

selection process. This prevents domination by highly fit individuals, maintaining genetic

diversity but requiring additional computational effort.

3.3 Genetic Operators (Crossover and Mutation)

Reproduction in Genetic Algorithms (GAs) is a crucial phase where genetic operators—

specifically crossover (recombination) and mutation play pivotal roles in generating new

candidate solutions from existing ones. Here's a more detailed explanation of each operator

3.3.1. Crossover (Recombination)

Crossover is known as a genetic operator used to generate new offspring by combining

the genetic information of two parent chromosomes. This process mimics biological

reproduction, where offspring inherit traits from both parents, thereby promoting genetic

diversity within the population. From the population pool, Two parent chromosomes get

selectedtypically based on their fitness. A position within the chromosome is randomly chosen

as the crossover point. The segments of the parent chromosomes beyond this point are

24

swapped to create two new offspring.

Consider two binary-encoded chromosomes:

• Parent 1: 11010

• Parent 2: 00101

If the crossover point is afterward the third gene, the new offspring generated would be:

• Offspring 1: 110|01

• Offspring 2: 001|10

 There are several types of crossover methods,

1. Single-Point Crossover

In single-point crossover, 1 crossover point is nominated on the parent chromosomes.

All data outside that point in either chromosome is exchanged between the 2 parent

chromosomes. This results in two offspring, each carrying genes from both parents.

Example:

• Parent 1: 110|110

• Parent 2: 001|001

Crossover point after the third gene.

• Offspring 1: 110|001

• Offspring 2: 001|110

2. Two-Point Crossover

Two-point crossover involves two places being chosen on the parent chromosomes. The

genes between these two points are exchanged between the parent creatures, creating more

diversity than single-point.

Example:

• Parent 1: 110|110|1

• Parent 2: 001|001|0

Crossover points between the third and sixth genes.

• Offspring 1: 110|001|1

• Offspring 2: 001|110|0

3. Uniform Crossover

In uniform crossover, each gene is considered separately. For each gene, a coin is flipped

to decide whether or not it will be swapped. This type of crossover does not rely on a specific

25

segment of the chromosome, but rather mixes the genes at a more granular level.

Example:

• Parent 1: 110110

• Parent 2: 001001

Offspring might have genes from either parent at each position based on a random coin flip.

3.3.2. Mutation

Mutation presents random deviations to individual genes of a chromosome, serving

prevent the genetic search from becoming too homogeneous and potentially trapped in local

optima. It ensures the investigation of the genetic search space by introducing new genetic

variations.

A chromosome is chosen, often randomly or based on a particular strategy.One or more

positions in the chromosome are selected randomly.The genes at these positions are altered.

In a binary encoding, this typically means flipping a bit (changing a 1 to a 0, or vice versa).

Consider a binary-encoded chromosome:

● Original: 11010

Suppose the mutation occurs at the second and fifth positions:

• Mutated: 10011 (the second gene is flipped from 1 to 0 and the fifth gene from 0

to 1)

There are several types of mutation techniques, each suitable for different kinds of

encoding and problem requirements.

1. Swap Mutation

This mutation type contains selecting two genes at random and exchange their locations.

It is commonly used in permutation-based encodings, such as those found in scheduling and

routing problems

Example:

• Original chromosome (sequence): [1, 2, 3, 4, 5]

• After mutation (swapping positions of 2 and 5): [1, 5, 3, 4, 2]

2. Bit Flip Mutation

This is the most common type of mutation used with binary encoded chromosomes. In

26

bit flip mutation, each bit in a chromosome has a small chance to be changed from 0 to 1 or

from 1 to 0).

Example:

• Original chromosome: 1011001

• After mutation (flipping the third and sixth bits): 1001000

3. Random Resetting

Random resetting is a mutation technique used for integer or real-valued chromosomes.

It involves selecting a gene at random and setting it to a random value inside the possible array

of values.

Example:

• Original chromosome: [4, 12, 7, 9]

• After mutation (resetting the second value): [4, 6, 7, 9]

Through these iterative processes of selection, crossover, and mutation, populations

evolve over successive generations. Each new generation ideally brings the population closer

to optimal or near-optimal solutions, as beneficial traits are propagated and refined. The series

of evaluation, selection, reproduction, and replacement continues till a end point already fixed

is met, such as achieving a satisfactory fitness level or reaching a predefined number of

generations.

This iterative and adaptive process allows genetic algorithms to effectively search

complex and vast solution spaces, ther are the powerful tools for solving many optimization

problems across various domains.

Conditions for Ending can be:

• A predetermined number of generations has been completed.

• An individual meets the minimum required criteria.

• The top individual's fitness has reached a level where further iterations no longer

yield improvements.

• Manual review or inspection.

• May require the ability to pause and resume

27

3.4 Local Optima

Local optima refer to solutions that are best within a definite neighbourhood of the

search space but might not be the globally best solution for the whole problem. These solutions

can appear when the algorithm converges prematurely to a suboptimal solution due to the

nature of the fitness landscape.

In genetic algorithms (GA), local optima typically arise when the selection pressures

and genetic operators (such as crossover and mutation) favor certain regions of the solution

space over others. As the algorithm progresses, individuals with advanced fitness in the

current population may dominate, leading to a concentration around these local optima and

reducing exploration of potentially better solutions elsewhere in the space.

Several strategies can help mitigate the issue of local optima in genetic algorithms:

• Diversity Maintenance: Introduce mechanisms to maintain genetic diversity

within the population. This can include using diverse selection methods (e.g.,

tournament selection with varied tournament sizes), promoting mutation rates,

or implementing elitism to preserve the best individuals across generations.

 Figure 8:Simple GA search process[1]

28

• Adaptive Parameters: Implement adaptive techniques for adjusting parameters

such as mutation rates, crossover probabilities, or population size dynamically

during the algorithm's execution. This helps to balance exploration

(diversification) and exploitation (intensification) of the solution space.

• Advanced Selection Mechanisms: Use advanced selection mechanisms like

niching methods or fitness sharing, which encourage exploration by penalizing

solutions in crowded regions of the search space. These methods promote the

discovery of diverse and potentially better solutions beyond local optima.

• Hybrid Approaches: Associate genetic algorithms with other optimization

methods, such as local search heuristics or metaheuristics like simulated

annealing or tabu search. Hybrid approaches can leverage the strengths of

different methods to overcome local optima and improve overall solution

quality.

 3.5 Development of a Genetic Algorithm for Job Shop Scheduling

The core of my thesis is centered on the development of an advanced genetic algorithm GA

incorporating Python (GAIP) specifically tailored to address the complexities inherent in job

shop scheduling problems. This algorithm seeks to optimize scheduling efficiency by

strategically minimizing the makespan.The makespan, defined as the whole time essential to

complete all jobs, serves as the fitness function for the genetic algorithm. This choice for this

fitness function ensures that the GA focuses on solutions that reduce the total operational time

or makespan, thereby enhancing overall productivity. The makespan serves as the fitness

function for the genetic algorithm, meaning that potential solutions are evaluated based on

how effectively they reduce this total operational time. The genetic algorithm get started by

generating a pool of the initial population of potential solutions, where each solution

represents a unique sequence of job operations across multiple machines.

To identify promising solutions, two selection methods (Tournament ans Roulette

wheel selection) are employed simultaneously. This method selects individuals from the

population based on their initial makespan, favoring those with shorter makespans. This

ensures that the most efficient solutions are retained and used to produce the next generation.

The genetic algorithm then applies genetic operators (crossover and mutation) to these

selected individuals. These genetic operations introduce variation and help explore new

29

potential solutions within the search space.

Over successive generations, the algorithm iteratively evaluates and selects the best-

performing individuals. By consistently focusing on solutions that minimize the makespan,

the GA gradually converges towards an optimal or near-optimal solution. This iterative

refinement process ensures that the algorithm continuously improves scheduling sequences,

enhancing overall productivity and operational efficiency.

Tournament selection and Roulette wheel selection (Selection methods) are crucial in

the genetic algorithm for choosing individuals for crossover. In this method, a subset of the

population (a tournament) is randomly selected, and the individual with the best fitness in this

subset is chosen. This is repeated until the desired number of individuals is selected.

In my implementation, the tournament size is set to 5. This size strikes a balance

between selecting the fittest individuals, which speeds up convergence, and maintaining

genetic diversity, which prevents premature convergence. Increasing the tournament size

would favor fitter individuals more, accelerating convergence but reducing diversity.

Decreasing the size would enhance diversity but slow down convergence. Setting the size to

5 ensures a balanced approach for effective optimization. If the selection probability is more

than 0.8, then a roulette wheel selection method will be applied.

3.5.1 Genetic Operators

For recombination, a two-point crossover method is employed. This technique involves

selecting two random points within the chromosome structure of the parents to define a

segment of genes that will be swapped between them, generating new offspring.

The decision to execute the crossover operation is governed by a probability Pc, which

is dynamically determined constructed on the fitness standards of the parents involved in the

mating process. Specifically, Pc is calculated as follows [3]:

where 𝑓1 is the higher fitness value of the two parents, and 𝑓𝑎𝑣 is the average fitness

value of the population. The constants 𝑘1 and 𝑘2 are parameters that can be tuned based on

experimental findings to optimize the algorithm's performance. In scenarios where the fitness

of a parent is above the population average, a higher probability 𝐾1 encourages the retention

30

of beneficial traits, while 𝑘2ensures diversity by facilitating crossover even when parent

fitness is below average.

In my implementation, the crossover probability was set to 0.8. This relatively high

probability was chosen to intensively explore the genetic landscape of the population by

frequently mixing genetic material, which is crucial for avoiding local optima and ensuring

diverse genetic combinations.

This selection of crossover rate is open but DeJong and Grefenstette have introduced

some guidelines for the selection of crossover rate as well as mutation rate.

Crossover rate = 0.6 (For large population size; 100)

Crossover rate = 0.9 (For small population size; 30)

Based on this guideline

Crossover rates 𝑘1 and 𝑘2were selected as follows:

Crossover Rate 𝑘1 = 0.90

Crossover Rate 𝑘2 = 0.85

Alongside crossover, swap mutation is implemented as the mutation strategy. In swap

mutation, two genes within a chromosome are selected randomly and their positions are

swapped. This mutation type is mainly suited for scheduling problems as it subtly alters the

sequence of operations, allowing the exploration of new schedules that might yield a shorter

makespan without drastically changing the overall structure of the solution.

Mutation occurs with a probability Pm [3], defined as:

where 𝑓2 is the fitness value of the mutating chromosome. The constants 𝑘3 and 𝑘4 are

used to modulate the mutation rate depending on whether the fitness of the chromosome is

above or below the population average, facilitating a balance between preserving beneficial

genetic material and introducing variability.

In my genetic algorithm, the mutation rate was set to a more moderate value of 0.1.

Setting the mutation rate at 0.1 strikes a balance between introducing necessary genetic

variations and maintaining the integrity of advantageous traits within the population. This

moderate rate ensures that the algorithm does not overly perturb the solution space, thus

31

allowing a more focused and effective convergence on optimal solutions. It serves to

occasionally escape local minima by subtle shifts in the genetic structure, thereby enriching

the search process without compromising the established good performance of existing

solutions.

Guidelines by DeJong and Grefenstette for the selection of mutation rate are as follows:

Mutation rate = 0.001 (For large population size; 100)

Mutation rate = 0.01 (For small population size; 30)

Based on this guideline Mutation rates 𝑘3 and 𝑘4 were selected as follows:

 Crossover Rate 𝑘3 = 0.2

Crossover Rate 𝑘4 = 0.1

 3.5.2 Local search method:

To enhance the refinement of solutions, a neighborhood search method is utilized. This

approach involves iterating over each job and machine pairing within the schedule, making

incremental adjustments to discover configurations that yield a reduced makespan. Unlike

Tabu search, which maintains a list of recently visited solutions to prevent cycling back to

them, the neighborhood search method focuses on exploring new areas in the solution space

without such a list. This method complements the genetic operations by providing an extra

layer of optimization, significantly improving the algorithm's overall effectiveness in finding

optimal solutions.

 3.5.3 Evolutionary Process

The evolutionary process of the GA involves iteratively applying the selection,

crossover, and mutation operations to evolve the population over multiple generations. The

fitness of the population is monitored in each generation, with the best solutions being carried

forward through elitism.

Elitism: This approach focuses on preserving number of the fittest chromosomes, while

the remainder of the population is produced using any of the chosen selection methods. This

technique guarantees that the best solutions persist in the population, while also promoting

diversity by selecting chromosomes from across the whole solution space. This guarantees

that the best solutions found so far are conserved and not lost in subsequent generations.

32

The parameters for the genetic algorithm are carefully chosen to balance exploration

and exploitation. The population size, number of generations, crossover probability, and

mutation probability are set to values that provide a decent trade-off among finding high-

quality solutions and computational effectiveness.

 3.5.4 Experimental Setup and benchmarks

The experimental setup for the genetic algorithm involves running the algorithm on

benchmark problems, such as MT06, MT10 and MT20, as well as custom scheduling

problems. The data for benchmarks was taken from OR Library In other words, the developed

genetic algorithm GA is tested against the benchmarks to test how accurate the genetic

algorithm is and how well genetic operators are doing their job. Everything is done in the

PYTHON (Programming language) and it is named as genetic algorithm incorporated Python

(GAIP) . Below is experimental setup:

 Table 2: Experimental setup

Operator/Parameter Name/Value

Population size 1000 (user can change)

Elitism 5

Selection operator Tournament/Roulette wheel

Tournament size 5

Crossover operator Two-point

Mutation operator swap

Iterations 100 (User can change)

Crossover probability 0.8

Mutation probability 0.1

Benchmark problems are standardized instances or datasets used to evaluate the

performance of algorithms, including genetic algorithms (GAs) in job shop scheduling.

These benchmarks serve several purposes:

• Standardization: They provide a common ground for comparing different algorithms

objectively. By using the same set of problems, researchers can assess which algorithm

performs better under similar conditions.

33

• Complexity Variation: Benchmarks come in various sizes and complexities, ranging from

small to large-scale problems with different numbers of jobs and machines. This variation

helps in understanding algorithm scalability and robustness.

• Real-world Relevance: Many benchmarks are derived from real-world scheduling

problems, ensuring that algorithmic solutions can be applied effectively in practical

scenarios.

• Algorithm Testing: They allow researchers to test algorithm efficiency, accuracy, and

scalability under controlled conditions, providing insights into strengths and weaknesses.

MT06, MT10 and MT20 are specific benchmark datasets commonly used in research

on job shop scheduling problems. They are designed to simulate different scheduling

scenarios with varying complexities:

MT06 (6 Jobs, 6 Machines):

• MT06 contains instances where there are 6 jobs and 6 machines.

• Respectively job requires processing on respectively machine in a predefined

sequence with specific processing times.

• The goal is to schedule these jobs on machines to lessen the makespan, which is the

total time mandatory to complete all jobs.

MT10 (10 Jobs, 10 Machines):

• MT10 involves instances with 10 jobs and 10 machines.

• Similar to MT06, each job needs to be handled on each machine following a given

sequence and processing times.

 Table 3:MT06 benchmark

34

• The objective remains the same: to find an best schedule that minimizes the makespan.

 MT20 (20 Jobs, 5 Machines)

• MT20 involves problems with 20 jobs and 5 machines.

• Similar to MT06 and MT10, apiece job needs to be processed on each machine

following a given sequence and processing times.

• The objective remains the same: to find an ideal schedule that minimizes the makespan

 Table 4: MT10 Benchmark

 Table 4: MT10 Benchmark

35

These benchmarks are widely used in the research community to assess the

effectiveness and efficiency of scheduling algorithms, including genetic algorithms.

Researchers often test their algorithms on these benchmarks to compare performance against

other methods and to demonstrate the scalability and robustness of their approaches in

handling different problem sizes and complexities.

 3.5.5 Basic Flowchart for GA

Figure 9:Basic Flowchart for GA[1]

 3.6 Manual Example

 Jobs (J): J0, J1, J2, J3

 Machines (M): M0, M1, M2, M3

 Processing Times Matrix:

Table 5:Processing Times for Manual Problem

36

 Step 1: Initialization

Generate an initial population of four chromosomes, each representing a different

machine order for the jobs.

 Table 6:Initial Population

 Step 2: Calculate Initial Makespan

The makespan for each chromosome is calculated by simulating the execution of the jobs

on the workstations according to the specified demand. Here, I will detail the makespan

calculation for Chromosome 1 (C1) as an example.

Makespan Calculation for Chromosome 1 (C1):

Using a table to show the start and finish times for each job at each machine

Table 7:Start and Finish times for each job

Lets proof whether this makespan is correct by using ‘initial makespan calculator”

which is designed to find the makespan for various problems.

37

Figure 9: Initial Maespan Calc

Result Message:

Figure 10: Result Message

So, it shows that the initial makespan is 39 and it's correct. Initial Makespan for C1: 39

 Step 3: Selection for Crossover

Select the two best chromosomes based on their makespans. Suppose C1 and C2 are

selected for their shorter makespans.

 Step 4: Crossover

Apply a two-point crossover between C1 and C2:

Crossover Point: After the first job.

Table 8:New Chromosomes After Crossover

38

Resulting Chromosome (C1’): The first job sequence was retained from C1, and the

sequences for the remaining jobs were taken from C2, resulting in a new chromosome: [[0,

1, 2, 3], [1, 0, 3, 2], [1, 2, 0, 3], [2, 0, 3, 1]].

Step 5: Mutation

Randomly mutate C1’ by swapping two machines in J2’s order:

 Table 9:Mutation

Post-Mutation Chromosome (C1’): [[0, 1, 2, 3], [1, 0, 3, 2], [1, 0, 2, 3], [2, 0, 3, 1]].

Step 6: Evaluate and Iterate

Calculate the new makespans for the mutated chromosomes. Assume that this leads to

an improved makespan of 35 for C1’.

Step 7: Convergence and Final Result

After repeated iterations and genetic operations, the algorithm converges to an

optimised solution:

• Optimized Makespan: 35

• Optimal Chromosome (Final C1’): [[0, 1, 2, 3], [1, 0, 3, 2], [1, 0, 2, 3], [2, 0, 3,

1]

 3.7 Initial Makespan Calculator

In the realm of Job Shop Scheduling (JSS), accurately determining the initial

makespan is crucial for benchmarking and comparing the efficacy of scheduling

algorithms. To facilitate this, I developed an "Initial Makespan Calculator"

implemented in Python using the Tkinter graphical user interface (GUI) framework.

This tool enables users to input the number of jobs and machines, along with specific

processing times, to calculate the initial makespan quickly and efficiently.

39

Once hitting run button the software starts, asking user to enter the total number

of jobs and machines involved in the scheduling process. Based on these inputs, a

dynamic input grid generated where the user can fill in the processing times for each

job on each machine. This approach not only ensures flexibility in handling different

job shop configurations but also simplifies data entry, making it user-friendly.

Once the data is inputted, the makespan calculation is triggered by a dedicated

button within the GUI. The calculation itself is executed through a function that iterates

over each job and machine, determining the earliest possible start time for each task

based on the readiness of the machine and the conclusion of the previous tasks. The

maximum end time across all machines, which represents the initial makespan, is then

displayed to the user in a message box. This immediate feedback is valuable for

operations managers and researchers who need to assess and optimize their production

schedules.

Moreover, the tool is equipped with error handling to ensure that only valid

integers are entered, enhancing its robustness and reliability. This calculator not only

serves as a standalone tool for quick makespan assessments but also as a

complementary utility for researchers and practitioners who are testing and comparing

different scheduling algorithms' performance.

Through this development, I aimed to provide a practical tool that bridges the

hole between hypothetical scheduling models and real applications, allowing for a

more interactive and accessible approach to understanding and improving job shop

scheduling outcomes.

3.7.1 How it works?

Step 1: Enter Job Equipment like Jobs and Machines numbers.

40

Step 2: Create a Matrix and add Job Info i.e Processing Times for each job

Step 3: Click “Calculate Makespan’ to get results.

41

Chapter # 04: Python Libraries and GUI Development for Scheduling Optimization

Using advanced programming languages like Python in manufacturing is

beneficial due to the increasing complication of production arrangements and the need

for greater efficiency and customization in manufacturing processes. I used Visual

studio code as a platform for Python.

Figure 11: Visual Studio Code

My Python code utilizes several powerful libraries, each playing a significant

part in the functioning of genetic algorithm for job shop scheduling optimization.

Here’s a breakdown of these libraries and their contributions to my project:

 4.1 Python Libraries

4.1.1 Random

The random library is essential for implementing stochastic processes within

your genetic algorithm. It enables the generation of random numbers, which are crucial

for initializing solutions, performing genetic operations like crossover and mutation,

and randomly selecting individuals for various genetic operations.

The use of randomness introduces variability and helps in exploring a broader

solution space, which is vital for avoiding local minima and enhancing the algorithm's

ability to find near-optimal solutions.

42

 4.1.2. Matplotlib (including matplotlib.patches)

Matplotlib is a Python library used for generating interactive visuals in Python.

Within your project, it is specifically employed to generate Gantt charts, which are

integral for visualizing the scheduling results. The Gantt charts clearly depict the start

and end times of different jobs on various machines, allowing for an intuitive

understanding of the scheduling efficiency and resource allocation. The

matplotlib.patches module is particularly useful for adding shapes (like rectangles for

each task in the Gantt chart), enhancing the visual appeal and readability of the charts.

4.1.3. Tkinter (including simpledialog, messagebox, Toplevel, Scrollbar,

Frame, Canvas)

Tkinter is Python's standard GUI toolkit and is used extensively in your project

to create a user-friendly interface. This toolkit allows you to build windows with

buttons, dialogs, and other graphical elements, making the algorithm accessible to

users who may not be familiar with command-line interactions. simpledialog is used

for inputting parameters like population size and number of iterations, messagebox for

displaying alerts and information, Toplevel for creating additional windows, Scrollbar

for adding scrolling capability, Frame for structuring the layout, and Canvas for more

complex graphical tasks like drawing the Gantt chart within the GUI.

 4.1.4.Matplotlib.backends.backend_tkagg (FigureCanvasTkAgg)

This module integrates Matplotlib with Tkinter by providing a specific backend

to handle rendering figures in a Tkinter canvas. FigureCanvasTkAgg takes a Matplotlib

figure and converts it into a format that can be used as a Tkinter widget. This

integration is crucial for embedding Matplotlib graphs (such as your Gantt charts)

directly into the graphical interface, providing a seamless user experience.

In this project, Python's versatile capabilities were leveraged to design a user-

friendly graphical user interface (GUI), allowing users to seamlessly interact with the

genetic algorithm for job shop scheduling. This interface provides intuitive controls

and visual feedback, making the complex process of scheduling optimization

accessible and manageable for users regardless of their technical expertise.

43

 4.2 Interactive Flow Chart: Navigating the GUI-User Experience

A flow chart is shown for better understanding of how users can interact with

algorithm.

 Figure 12: Interactive Flow Chart: Navigating the GUI-User Experience

 4.2.1 Main Menu:

The main menu of the job shop scheduling application serves as the central hub

for user interaction, providing a straightforward and intuitive interface that guides users

through various functionalities of the system.

When the application is launched, the main menu is the first screen presented to

the user. It serves as the gateway to all the functionalities of the application.

Step 1: The user clicks on the ‘Import Data’ button.

Step 2: A submenu appears, offering choices between MT06, MT10, and MT20

datasets. These benchmarks are already added in the code for user ease.

44

Figure 13: Main Menu for JSSP

Step 3: The user selects the desired dataset. A new window appears asking for

“Population Size”. Once Population is entered, it will lead to a new window asking

for “Number of Iterations”.

Note:The data will be entered only in numeric form. If a user tries to enter string

or alphabets, the system will generate an error to guide the user.

45

Step 4: Once all information is added, a message will appear saying “Data

Imported Successfully”. Which means that system has successfully imported

benchmarks and all parameters from the code.

Step 5: After this message, the user needs to hit the “Run genetic algorithm”

button to start the algorithm.

Figure 14: Run Algorithm for MT06

Step 6: After execution of algorithm, a window will appear with “Final

Makespan” which is an optimized makespan much smaller than initial makespan, a

Gantt chart representing the Job and machine schedule and fitness graph.

The Gantt chart is utilized to visualize the scheduling optimization performed

by the genetic algorithm. Each bar on the Gantt chart represents a specific job being

executed on a particular machine, the bar length showing the job duration.. The chart

46

effectively demonstrates how jobs are allocated to machines over time, helping identify

bottlenecks or inefficiencies in the schedule. It allows users to quickly assess the

makespan of the entire production process, which is crucial for optimizing operational

efficiency in manufacturing environments.

The fitness graph is used to display the improvement in the algorithm's

performance over time. Each point on the graph represents the fitness score of the best

solution found in that generation, allowing users to visually track how the solution

quality evolves as the algorithm runs. This is particularly important for diagnosing the

behavior of the genetic algorithm, such as determining if and when it has converged to

a solution or if it is stuck in a local optimum. The fitness graph helps in validating the

effectiveness of the algorithmic tweaks and settings adjustments made through the

GUI.

 4.2.2 Other Benchmarks

The 'Other Benchmark' feature in the graphical user interface (GUI) of the job

shop scheduling application is designed to enhance the flexibility and usability of the

system. Its primary purpose is to allow users to load custom datasets or benchmarks

that are not included in the predefined options (like MT06, MT10, or MT20). This

feature caters to users who need to test the algorithm with specific scheduling scenarios

or data reflective of their unique operational environments. It not only broadens the

application's applicability across different operational and educational contexts but

also empowers users by providing them the tools needed to customize their experience

and results. This feature is a critical component in ensuring that the application can

meet the evolving needs of end users, to foster a continous environment of learning

and improvement.

Figure 15: Other Benchmarks

Step 1: The first step is “base settings”.

47

 Once user hits this button, it will lead to a window asking for “Population

Size” and “Number of Iterations”.

Step 2: Once base setting is done, the next step is “Add Equipment” which

means setting the “Number of Jobs” and “Number of machines”.

This is very crucial step because on the basis of number of

workcentres/machines and number of jobs , the next window will be created where

user will have to give machine (IDs-processing time).

48

Note: If user fails to give input in numeric form, system will generate an error message.

49

Step 3: The next step is to “Set Job Info”.

Users need to add Machine IDs in front of Machine row and Times in front of Processing

times row below.

Step 4 : Hit “Start Genetic Algorithm” to get optimised makespan, gantt chart and fitness

graph.

 Figure 16: Start Algorithm Button for others

50

4.3 Importance of Introducing Modern Programming Languages like

Python in Manufacturing

My project exemplifies the best of what Python can offer in a manufacturing

context.Introducing modern programming languages like Python into manufacturing

is essential for several compelling reasons, all of which revolve around enhancing

efficiency, adaptability, and innovation within the sector:

Using Python in manufacturing, especially for complex scheduling tasks, brings

several advantages:

• Efficiency and Speed: Python's extensive libraries and simple syntax

allow for rapid development and testing of complex algorithms,

significantly speeding up the iterative process of solution enhancement.

• Frontend Integration

Python isn't just suitable for writing scripts and automating tasks—it's

also a robust language for developing complete applications, especially

when combined with various libraries and frameworks tailored to app

development.For applications requiring a graphical user interface,

Python's Tkinter library allows for the development of desktop-based

GUIs. For web-based applications, Python can serve data to frontend

technologies using templates or through APIs. Libraries like Jinja2 work

well with Flask and Django to generate HTML content dynamically. For

more interactive frontends, you can develop RESTful APIs using

frameworks like Django REST framework or Flask-RESTful, which

can serve data to frontends built with JavaScript frameworks like React

or Angular.

• Flexibility: Python can easily integrate with other systems and handle

various data formats, making it suitable for the heterogeneous

environments typically found in manufacturing.

51

• Scalability: Python's ability to scale with increased data sizes and

complexity makes it ideal for industrial applications where vast amounts

of data are processed.

• Accessibility: With its widespread use and supportive community,

Python offers extensive resources for troubleshooting and development,

reducing barriers to technology adoption in manufacturing settings.

52

Chapter 5: GA performance Evaluation

In this chapter, we delve into the detailed evaluation of the genetic algorithm's (GA)

performance as applied to job shop scheduling problems within our developed

application. The primary focus is on analyzing how effectively the GA optimizes

scheduling tasks, its efficiency in navigating all the solutions, and the solutions quality

it generates. This assessment is crucial not only for validating the effectiveness of the

algorithm but also for identifying potential areas for enhancement.

 5.1 Flowchart for GA working

 Figure 17: Flowchart for Beckend (GA)

 5.2 Complete Python Pseudo Code

#Import necessary libraries IMPORT random # For generating

random numbers

 IMPORT matplotlib.pyplot AS plt # For plotting charts

53

IMPORT matplotlib.patches AS patches # For drawing shapes

on charts

IMPORT tkinter AS tk # For creating the GUI window and

elements

FROM tkinter IMPORT Toplevel, Scrollbar, Frame, Canvas #

For advanced GUI elements FROM tkinter IMPORT simpledialog,

messagebox # For dialog boxes and message pop-ups

FROM matplotlib.backends.backend_tkagg IMPORT

FigureCanvasTkAgg # For embedding matplotlib charts in

tkinter

Define benchmark data for various job shop scheduling

problems INITIALIZE mt06_data AS 2D Array # Contains

processing times and machine assignments for MT06 benchmark

INITIALIZE mt10_data AS 2D Array # Contains processing

times and machine assignments for MT10 benchmark

INITIALIZE mt20_data AS 2D Array # Contains processing

times and machine assignments for MT20 benchmark

INITIALIZE la01_data AS 2D Array # Contains processing

times and machine assignments for LA01 benchmark

Function to prompt user for integer input through a

dialog box FUNCTION custom_askinteger(title, prompt,

parent=None):

 CREATE a new dialog window

 SET the title of the dialog window

 DISPLAY the prompt message in the dialog

 ALLOW the user to input an integer value

 VALIDATE the input; if invalid, show an error message

 RETURN the integer value entered by the user

Function to display an informational message to the user

54

FUNCTION custom_showinfo(title, message, parent=None):

 CREATE a new dialog window

 SET the title of the dialog window

 DISPLAY the message to the user

 WAIT for the user to acknowledge the message by

clicking 'OK'

Function to initialize a population of job schedules

FUNCTION initialize_population(population_size,

num_jobs,num_machines):

 CREATE an empty list to hold the population

 FOR each individual in the population:

 CREATE a random job schedule (sequence of machines

for each job) ADD the schedule to the population list

 RETURN the list of job schedules (population)

Function to calculate the makespan (total time) of a

given schedule FUNCTION calculate_makespan(schedule,

processing_times):

INITIALIZE machine_end_times AS a list of zeros (length

equals number of machines)

INITIALIZE job_end_times AS a list of zeros (length equals

number of jobs)

CREATE dictionaries to hold the job and machine schedules

 FOR each job in the schedule:

 FOR each machine in the job's route:

 DETERMINE the start time for the operation as the

maximum of the machine's available time and the job's

current time

 CALCULATE the end time by adding the processing time

55

 UPDATE machine_end_times and job_end_times with the

new end time RECORD the operation in job_schedule and

machine_schedule

RETURN the maximum value in job_end_times as the makespan,

along with the job_schedule and machine_schedule

Function to perform crossover between two parent

chromosomes FUNCTION crossover(parent1, parent2, rand_int,

rand_float, avg_fitness, max_fitness):

SELECT two random positions in the chromosome for

crossover points SWAP the segments between the two

parents to create two new child chromosomes

RETURN the two child chromosomes

Function to mutate chromosomes in the population

FUNCTION mutation(rand_int, rand_float, fitness,

population):

 CREATE an empty list to hold the mutated population

 FOR each chromosome in the population:

 IF a random number is less than the mutation rate:

 SELECT two random positions in the chromosome

 SWAP the genes at these positions

 ADD the (potentially) mutated chromosome to the new

population RETURN the mutated population

Function to improve a schedule through local search

FUNCTION local_search(schedule, processing_times):

 SET the best_schedule AS the current schedule

 CALCULATE the makespan for the current best_schedule

 FOR each job and machine in the schedule:

56

 MODIFY the schedule slightly by changing the

machine assignment CALCULATE the makespan for the

modified schedule

IF the modified schedule has a better makespan:

 UPDATE best_schedule to the modified schedule

RETURN the best_schedule found during the search

Function to perform tournament selection

FUNCTION tournament_selection(population, tournament_size,

processing_times):

RANDOMLY select a subset of chromosomes from the

population CALCULATE the fitness (makespan) for each

selected chromosome RETURN the chromosome with the best

fitness

Function to perform roulette wheel selection

FUNCTION roulette_wheel_selection(population,

fitness_values): CALCULATE the total fitness of the

population

PICK a random value between 0 and the total fitness

LOOP through the population, accumulating fitness, until

the random value is reached

RETURN the selected chromosome

Main function to run the genetic algorithm with custom

crossover FUNCTION

genetic_algorithm_with_custom_crossover(num_machines,

num_jobs, processing_times, population_size=1500,

elitism=20, iterations=100, tournament_size=10):

INITIALIZE the population using the initialize_population

function

57

 SET best_solution AS None and best_makespan AS

infinity

CREATE an empty list to store fitness over time

FOR each generation (iteration):

CALCULATE the fitness (makespan) for each chromosome in

the population

UPDATE the best_solution if a new best_makespan is found

STORE the current best makespan in the fitness_over_time

list

CREATE a new population using elitism (preserving the top

solutions) FILL the rest of the population using crossover

and mutation

APPLY local search to improve each chromosome in the new

population UPDATE the population with the new population

RETURN the best_solution, best_makespan, and

fitness_over_time

Function to plot a Gantt chart representing the job

schedule on machines

FUNCTION plot_gantt_chart(job_schedule, machine_schedule,

num_jobs, num_machines, master):

 CREATE a new figure and axis using matplotlib

 FOR each machine in machine_schedule:

 FOR each job operation on the machine:

 DRAW a rectangle representing the operation on the

Gantt chart LABEL the rectangle with the job and

operation number

SET axis limits and labels

58

DISPLAY the Gantt chart in the tkinter window

Function to plot fitness over generations

FUNCTION plot_fitness_over_time(fitness_over_time,

master):

 CREATE a new figure and axis using matplotlib

 PLOT the fitness values over time

 SET axis labels and title

 DISPLAY the plot in the tkinter window

Class to handle the graphical user interface (GUI) for

the genetic algorithm

CLASS GeneticAlgorithmGUI:

 FUNCTION __init__(self, master):

 SETUP the main tkinter window with a title and size

CREATE and layout buttons for importing data, running the

algorithm, and setting job information

 INITIALIZE variables to store job and machine

information

FUNCTION import_mt06_data(self):

 PROMPT the user for population size and generations

 SET the number of jobs and machines for MT06 benchmark

 LOAD the processing times from mt06_data

FUNCTION import_mt20_data(self):

 PROMPT the user for population size and generations

 SET the number of jobs and machines for MT20 benchmark

 LOAD the processing times from mt20_data

FUNCTION import_la01_data(self):

 PROMPT the user for population size and generations

59

 SET the number of jobs and machines for LA01 benchmark

 LOAD the processing times from la01_data

FUNCTION run_algorithm(self):

 IF job information is not set:

 DISPLAY an error message

ELSE:

 RUN the genetic algorithm using the specified

settings

 DISPLAY the results, including a Gantt chart and

fitness plot

Main program execution IF __name__ == "__main__":

CREATE a tkinter root window

CREATE an instance of GeneticAlgorithmGUI with the root

window START the tkinter main event loop

 5.3 Results for Test problem

 Example Problem

Let us consider an example problem with the following specifications,

assuming that set up times are included in the processing times:

 Table 10:Test Problem

▪ Best Obtained Makespan: 277

▪ Final Chromosome: [[1, 2, 3, 4], [3, 2, 4, 1], [2, 3, 1, 4], [1, 4, 2, 3]]

60

 Figure 18: GANTT CHART for Test Problem

Figure 19: Fitness Graph for Test Problem

 5.4 Test for MT06

Muth and Thompson Job Shop Problem - MT06

m= Machine ID

t= Processing time

61

 Table 11 :MT06 problem

For MT06 [24], the results are below. Also my benchmarks was the makespan

obtained by Ripon et al. [2]. I have tried to compare my results with their results fot

mt06, mt10 and mt20 and also with best results already available and calculated by

Muth and Thomson

• Result of Benchmark: 55

• Best Known Makespan: 55

• Best Obtained Makespan by GAIP: 47

• Final_Chromosome:[[1,2,4,5,6,3],[5,2,1,4,6,3],[4,1,2,6,3,5],[4,1,3,5,

6,2],[4,1,3,5,6,2],[3,5,4,1,2,6]]

Figure 20: GANTT CHART for MT06

62

 Figure 21: Fitness Graph for MT06

5. 5 Test for MT10

Muth and Thompson Job Shop Problem – MT10

 Table11:MT10 problem

• Result of Benchmark: 930

• Best Known Makespan: 930

• Best Obtained Makespan by GAIP: 996

63

Figure 22: GANTT CHART for MT10

Figure 23: Fitness Graph for MT10

64

5. 6 Test for MT20

Muth and Thompson Job Shop Problem – MT20

 Table 12:MT20 problem

• Result of Benchmarks: 1194

• Best Known Makespan: 1165

• Best Obtained Makespan by GAIP: 1131

Figure 24: GANTT CHART for MT20

65

Figure 25: Fitness Graph for MT20

5.7 GA result for dataset instances from Muth and Thomson

 Below are results for MT06, MT10 and MT20

 Table 13:GA Results for Muth and Thomson

Instance Ripon et al.

[2]

Best

Known

GAIP

Results

Difference Deviation

 (%)

Efficiency

(estimate)

MT06 55 55 47 -8 -14 100

MT10 930 930 996 66 7.10 95

MT20 1194 1165 1131 -34 -2.92 100

 5.8 GA result for dataset instances from (Lawrence, 1984)

 5.8.1 LA01

Number of Machines: 5

Number of Jobs: 10

This benchmark outlines the job shop scheduling configuration where each

66

entry corresponds to a Machine ID followed by its associated processing time. I used

Kalshetty et al. [1] as a benchmark to compare my results for Lawrence instances

 Figure 26: LA01 Benchmark

• Results obtained by benchmark: 1050

• Best Known Makespan: 666

• Best obtained Makespan GAIP: 640

• Final Chromosome: [[5,1,2,3,4], [2,5,3,4,1], [3,5,2,4,1], [1,4,2,5,3] [3,4,2,5,1], [

2,1,5,4,3], [1,4,3,2,5], [2,1,3,5,4], [2,4,3,5,1], [1,4,5,3,2]]

 Figure 27: GANTT CHART for LA01

67

 Figure 28: :Fitness Graph for LA01

5.9 GA result for dataset instances from (Lawrence, 1984)

Below are some of Lawrence [22] Instances which are tested by genetic algorithm

Table 14:GA Results for Lawrence Instances

Instance Kalshetty

et al. [1]

Best Known

Makespan

Best Obtained

By GAIP

Difference Deviation Efficiency

(Approx%)

LA01 666 666 650 -16 -2.40 100

LA10 958 958 876 -82 -8.56 100

LA15 1207 1207 1162 -45 -3.7 100

LA20 902 1046 1070 24 2.29 80

LA25 935 977 1270 293 29.99 60

68

Chapter 6: Conclusion and Future Directions

6.1 Conclusion

This thesis presented a detailed analysis of job shop scheduling problems, with

a particular focus on the application of genetic algorithms (GAs) incorporating Python

(GAIP) to optimize scheduling efficiency in various industrial settings. The study

utilized benchmark datasets from Muth and Thompson as well as extended instances

like LA benchmarks to assess the performance of the planned genetic algorithms. Also,

the project has facilitated the users to test custom benchmarks other than Muth and

Thomson and Lawrence by manually entering the data.

Key findings demonstrated that genetic algorithms, enhanced with customized

crossover and mutation strategies, significantly improve the scheduling effectiveness

by reducing makespan compared to traditional methods. For instance, the experimental

results on the MT06 instance showed an improvement over the best-known solutions,

highlighting the sturdiness and efficiency of the genetic approach in handling intricate

scheduling scenarios.

The application of genetic algorithms was further explored through the

integration with graphical user interfaces (GUIs), which facilitated the visualization of

scheduling outcomes, such as Gantt charts and fitness over generations. This not only

provided a user-friendly platform for observing the algorithm's performance but also

served as a tool for further analysis and refinement.

 6.2 Contributions

The thesis contributed to the field of operations research in several ways:

Implementation in Python: My research utilizes Python to develop GA for job

shop scheduling, addressing the gap in detailed programming implementations and

optimization within this popular language.

Combination of Selection Methods: By integrating both tournament and

roulette wheel selection methods, innovatively enhances the efficiency and

69

effectiveness of genetic algorithms, a combination not extensively explored in existing

literature.

Enhancement of Genetic Algorithms: By integrating advanced genetic

operators and local search techniques, the study advanced the understanding and

capabilities of GAs in solving job shop problems.

Benchmarking and Analysis: Extensive testing on well-known benchmarks

provided valued understandings into the strengths and limitations of the planned

methods, contributing to ongoing discussions in the academic community.

Practical Application and Tool Development: The development of a GUI for

the GA implementation offered a practical tool for researchers and practitioners to

simulate and modify scheduling parameters dynamically and to test not only specific

benchmarks but custom benchmarks also by using “Other Benchmarks” option.

6.3 Implications

The implications of this research are twofold. Practically, the findings support

the adoption of genetic algorithms in industries where job shop scheduling plays a

signifcant role, such as manufacturing and logistics.. Academically, the research fills

a gap in the study of hybrid genetic algorithms, presenting a new avenue for exploring

algorithmic interactions with user-driven interfaces.

6.4 Future Directions

Looking ahead, the scope for advancing this research is substantial and can be

directed along several promising avenues:

• Dynamic Scheduling Environments:

Future research could focus on dynamic versions of the JSSP where job arrivals,

processing times, and machine readiness are not acknowledged a preceding.

Incorporating real-time data and adaptive algorithms could potentially reduce wait

times and improve throughput in manufacturing systems.

70

• Advanced Machine Learning Models:

Exploring more complex machine learning models, such as deep learning and

reinforcement learning, could provide new ways to approach the non-linearity and high

dimensionality of advanced scheduling problems. These models could evolve from

learned experiences, improving their decision-making processes over time.

• Cross-Disciplinary Applications:

Applying findings from this research to other domains such as healthcare, where

scheduling of operating rooms and medical staff is crucial, could be explored. Similar

strategies could optimize logistics in transportation or streamline project management

in software development.

• Sustainability and Resource Optimization:

Future studies could incorporate sustainability metrics into the scheduling

algorithms to optimize energy consumption and minimize waste. This approach would

align industrial practices with global sustainability goals, offering economic and

environmental benefits.

• Quantum Computing:

Investigating the potential of quantum computing to solve complex JSSP could

break the barriers of computational times and solution quality. Early research into

quantum algorithms for optimization problems shows promising results that could be

pivotal for scheduling problems.

• Customization for Small to Medium Enterprises (SMEs):

Developing scalable and customizable solutions that can be easily implemented

in SMEs could democratize access to advanced scheduling tools, enabling smaller

manufacturers to compete more effectively on a global scale.

71

Creating interactive applications and simulation-based learning tools to train

personnel in optimization and scheduling could help bridge the gap between theoretical

research and practical, on-the-ground application.

Each of these areas not only extends the current research frontier but also invites

interdisciplinary collaboration and technological innovation, ensuring that the field of

scheduling remains responsive to the evolving industrial landscape and emerging

technological trends.

This comprehensive forward-looking view sets the stage for ongoing

contributions to the field of operations research and beyond, promising to address the

pressing challenges of efficiency and complexity in diverse scheduling environments.

This thesis not only enhances the existing body of knowledge on job shop

scheduling but also provides scalable, efficient solutions adaptable to various industrial

needs. The foundations laid by this research surface the method for innovative coming

studies, potentially revolutionizing the approaches to operational scheduling problems.

72

References

[1] Y. R. Kalshetty, A. C. Adamuthe, and S. Phani Kumar, "Genetic Algorithms with Feasible

Operators for Solving Job Shop Scheduling Problem," Dept. of CSE, GITAM University,

Hyderabad, India, and Dept. of CS & IT, RIT, Rajaramnagar, Sangli, MS, India.

[2] K. S. N. Ripon, N. H. Siddique, and J. Torresen, "Improved precedence preservation crossover

for multi-objective job shop scheduling problem," Journal of Intelligent Manufacturing, vol. 23,

no. 6, pp. 2065-2079, Dec. 2010. DOI: 10.1007/s10845-010-0475-0.

[3] S. Ikramullah and S. Hou-Fang, "Application of genetic algorithm and rules in the scheduling

of flexible job shop," 2007

[4] H. C. Chang, Y. P. Chen, T. K. Liu, and J. H. Chou, "Solving the flexible job shop scheduling

problem with makespan optimization by using a hybrid Taguchi-genetic algorithm," IEEE Access,

vol. 3, pp. 1740-1754, 2015.

[5] W. P. Adams, M. Balas, and H. W. Morton, "A local search heuristic for job shop scheduling,"

Operations Research, vol. 36, no. 2, pp. 258-272, 1988.

[6] D. Applegate and W. Cook, "A computational study of the job-shop scheduling problem,"

ORSA Journal on Computing, vol. 3, no. 2, pp. 149-156, 1991.

[7] N. Kundakcı and O. Kulak, "Hybrid genetic algorithms for minimizing makespan in dynamic

job shop scheduling problem," Department of Business Administration, Pamukkale University,

20070 Denizli, Turkey; Department of Industrial Engineering, Pamukkale University, 20070

Denizli, Turkey.

[8] OR Library, Available: http://mscmga.ms.ic.ac.uk. Accessed: Jul. 12, 2009.

[9] S. H. Niu, S. K. Ong, and A. Y. C. Nee, "An improved intelligent water drops algorithm for

solving multi-objective job shop scheduling," Mechanical Engineering Department, National

University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.

[10] D. Barat, "JOB SCHEDULING WITH GENETIC ALGORITHM," M.S. thesis, Dept.

Computer Science, North Dakota State Univ., Fargo, ND, January 2013.

[11] S. Verma, M. Jain, and D. Choudhary, "Solving the Job-Shop Scheduling Problem by using

Genetic Algorithm," Department of Applied Mathematics & Computational Science, S.G.S.

Institute of Technology & Science, Indore, M.P., India.

http://mscmga.ms.ic.ac.uk/

73

[12] P. Pongchairerks, "A two-level metaheuristic algorithm for the job-shop scheduling problem,"

Complexity, pp. 1-11, 2019.

[13] P. S. Narayanan et al., "Job Shop Scheduling Using Heuristics Through Python Programming

and Excel Interface," Department of Mechanical Engineering, Amrita School of Engineering,

Coimbatore, Amrita Vishwa Vidyapeetham, India and Maryland Health Benefit Exchange,

Baltimore, MD, USA.

[14] C. Darwin, On the Origin of Species by Means of Natural Selection, ed. J. Carroll, Toronto:

Broadview, 2003.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Boston,

MA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[16] M. A. Vonderembse and G. P. White, Operations Management: Concepts, Methods, and

Strategies.

[17] H. Fisher and G. L. Thompson, "Probabilistic learning combinations of local job-shop

scheduling rules," Industrial Scheduling, vol. 3, no. 2, pp. 225-251, 1963.

[18] Z. Wang et al., "A hybrid algorithm for order acceptance and scheduling problem in make-

to-stock/make-to-order industries," Computers & Industrial Engineering, vol. 127, no. 46, pp. 841-

852, 2019.

[19] P. Pongchairerks, "A two-level metaheuristic algorithm for the job-shop scheduling

problem," Complexity, pp. 1-11, 2019.

[20] Y. Gao et al., "Job-shop scheduling considering rescheduling in uncertain dynamic

environment," in Proceedings of the 16th International Conference on Management Science &

Engineering, Moscow, Russia, 2009, pp. 380–384.

[21] H. Ge et al., "A hybrid algorithm based on particle swarm optimization and simulated

annealing for job shop scheduling," in Proceedings of the 3rd International Conference on Natural

Computation, Haikou, China, 2007, pp. 715–719.

[22] S. Lawrence, "Resource constrained project scheduling: An experimental investigation of

heuristic scheduling techniques (Supplement)," Graduate School of Industrial Administration,

Carnegie-Mellon University, 1984.

[23] J. F. Muth and G. L. Thompson, Industrial Scheduling. Prentice-Hall, 1963.

