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ABSTRACT 

Effective job scheduling is crucial in industrial manufacturing planning, where 

each job, consisting of multiple operations, must be allocated to the machines that are 

available machines for processing. Each job has a specific interval, and every machine 

can only handle one operation at a time. Efficient job allocation is essential to minimise 

the makespan and reduce machine idle time. In Job Shop Scheduling (JSS), job 

operations follow a specified order. Genetic Algorithms (GA) have emerged as a 

popular heuristic for tackling various scheduling problems. This study introduces a 

Genetic Algorithm Integrating Python (GAIP) with feasibility-preserving solution 

representation, initialization, and operators tailored for the JSS problem. The proposed 

GAIP achieves the best-known results with high success rates on the Muth and 

Thomson and Lawrence benchmark datasets. Experimental results demonstrate the 

GA's rapid convergence towards optimal solutions. Incorporating GA with local search 

and two selection methods at the same time is done to further enhance solution quality 

and success rates. 

 

Keywords: Job Shop Scheduling, Genetic Algorithm , Manufacturing Planning, 

Makespan Optimization, Python, , Initialization, Lawrence Datasets, Local Search, 

Hybrid Algorithms. 
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CHAPTER 1:  INTRODUCTION 

Effective scheduling is a cornerstone of operational success in various 

industries, particularly in manufacturing, where precision and efficiency directly 

impact productivity and profitability. The ability to optimise the allocation of 

resources, minimise delays, and ensure the smooth flow of operations is crucial in 

environments where a series of machines are available to process multiple jobs. 

Advanced scheduling techniques are integral to addressing the complexities of 

modern manufacturing processes. These techniques help to minimise downtime, 

reduce operational costs, and improve overall throughput. In industries such as 

automotive, aerospace, and electronics, the coordination of intricate tasks and the 

synchronisation of machine operations are vital for maintaining competitive advantage 

and meeting customer demands. 

The continuous evolution of manufacturing technologies and the increasing 

complexity of production processes have amplified the need for sophisticated 

scheduling algorithms. Traditional heuristic methods often fall short when dealing with 

the multifaceted nature of real-world scheduling problems. As a result, there is a 

growing demand for innovative solutions that can handle the dynamic and complex 

environment of modern manufacturing. 

          1.1 Problem Statement 

Job shop scheduling presents significant challenges, primarily due to its 

combinatorial nature and the constraints involved in the sequencing and allocation of 

jobs. One of the most critical aspects of JSS is the optimization of the makespan, which 

is the whole time essential to complete all jobs.  

The makespan is a crucial performance metric in manufacturing, as it directly 

affects production efficiency, lead times, and overall operational costs. Traditional 

methods for solving job shop scheduling problems, such as exact algorithms and 

heuristic methods, often struggle with scalability and computational efficiency, 

especially as the problem size increases.  These methods could be computationally 

expensive and may not provide optimal solutions within a reasonable time frame. 

Hence, there is a need for more efficient and effective algorithms that can handle the 

complexities of job shop scheduling and deliver optimised makespan solutions. 
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Hence, there is a need for more efficient and effective algorithms that can handle 

the complexities of job shop scheduling and deliver optimised makespan solutions. 

Also, there is a need to introduce python programming language in manufacturing so 

that it can handle combinatorial problems in more efficient way and can also develop 

a user friendly interface where user can test for vaious scheduling problems. 

      1.2 Purpose of Research 

o Main goal is to develop a robust and efficient genetic algorithm (GA) 

incorporating Python (GAIP) to improve the makespan in job shop 

scheduling problems. Specific aims include: 

o Designing a GA using Python with customized solution representation, 

initialization, and operators tailored for JSSP. 

o Incorporating local methods to improve the performance of the GA and 

ensure faster convergence towards optimal solutions. 

o Validating the proposed GA against standard benchmark datasets, such as 

the Muth and Thomson datasets and Lawrence datasets, to assess its 

effectiveness and reliability. Also, there is an aim to design the system in 

such a way that user can test custom bencharks also. 

o Developing a user-friendly graphical user interface (GUI) in Python to 

facilitate input, execution, and visualization of job shop scheduling results.  

1.3 Manufacturing Layouts 

"Manufacturing layouts" refer to the physical arrangement of machinery and 

equipment within a factory or production area. This layout determines the movement 

of materials and work through the production organisation. Effective layouts are 

crucial for optimising manufacturing efficiency and can directly impact production 

processes and their capacity, worker efficiency, and safety.  

Production processes can be categorized into 5  in aspect of : 

● continuousness,  

● product diversity  

● Volume of Production:  
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1.3.1. Project production ( low volume,intricate process, , each project or 

product has unique processing sequence,high customizationand  fixed position 

layout).. 

1.3.2. Job-shop production (manufacturing a limited quantity of products, 

characterized by low volume and high variety. Each job has distinct technical 

requirements, necessitating highly expert operators and typically leading to the need 

for substantial inventory levels).  

1.3.3. Batch production (comparatively shorter production runs, flexible plants 

and machines, lower manufacturing cost with lower lead compared to job-shop 

production). 

1.3.4. Mass production (comparatively briefer production runs, flexible plants 

and machines, lesser manufacturing cost). 

1.3.5. Flow/Process production (Manufacturing includes producing a huge 

volume of products with slight variety, often concentrating on just one type. The 

process uses specific machines organised in a fixed sequence).  

 

 

                            Figure 1: Manufacturing Layouts[2] 
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         1.4 General types of facility layouts 

Following are the general types of facility layouts 

1.4.1. Fixed Position Layout:A Fixed Position Layout is typically employed 

when the product is too large, heavy, or difficult to move. This layout is common in 

industries like construction, shipbuilding, and the manufacturing of large industrial 

equipment. In this setup, the product remains in one location, while workers, materials, 

and machinery are brought to it as needed. While this approach reduces the need to 

move the product, it can result in higher costs and increased complexity in coordinating 

the movement of labor and materials         

       1.4.2. Process Layout: Also known as a job shop layout, it groups similar 

processes in the same area. It's used for operations that produce a variety of products 

in relatively low volumes. This layout is flexible and can handle a wide variety of work 

items but can have higher material handling costs and longer processing times. Typical 

applications include specialised machine shops, hospitals, and custom furniture 

makers. 

1.4.3.  Cellular Layout: Organises the production floor into cells, each of which 

is dedicated to a specific set of processes that are required to produce a family of similar 

products or components. This layout aims to join the process layout's flexibility with a 

product layout's efficiency . It's suitable for medium-volume production where families 

of products can be grouped. This can lead to reduced work-in-process inventory and 

shorter processing times. 

   1.4.4. Product Layout: Used for mass production of standardized 

products where the production volume is high enough to justify specialized 

workstations laid out in a line. This layout is highly efficient for large runs of 

production, reducing material handling and setup times but lacking flexibility for 

product changes. It's commonly used in automotive assembly lines, food processing, 

and electronics manufacturing. 

       1.5 Machine Environments 

The term "machine environments" typically refers to the specific configuration 

and operational settings of machinery within a production process. This can involve 
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various types of machinery such as single machines, parallel machines, or a series of 

machines that are part of a production line. In the context of scheduling and operations 

research, different machine environments might have distinct characteristics or 

constraints, such as: 

o Single Machine: Tasks are processed on a single machine. 

o Parallel Machines: Multiple tasks are processed simultaneously on different 

machines that might have the same or varying capabilities. 

o Flow Shop: A specific type of production process where tasks are processed 

in the same sequence on multiple machines. 

 

 

 

 

o Open Shop Layout: In open shop jobs must be processed for a certain amount 

of time at each sets of defined work centres irrespective of the proper sequence. 

No predetermined sequence is followed therefore jobs can be handled in any 

sequence 

 

o Job Shop: A job shop is a manufacturing setup designed to handle highly 

customised, small to medium batch production, where each product may require 

a distinct sequence of processes and operations. This type of environment is 

characterised by its significant flexibility, allowing for the manufacture of a 

diverse range of products. Machines in a job shop are typically organized by 

function rather than by specific product lines, which contrasts with flow shops 

where machinery is arranged in the order of the manufacturing process. This 

Figure 2:Flow Shop Layout 

                Figure 3: Open Shop Layout 
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functional grouping allows each job to take a unique route through the 

workshop, depending on the specific operations required. However, this 

flexibility comes at a cost, as job shops often face complex scheduling 

challenges. 

 

 
 

          Figure 4: Job Shop Layout 

 

     1.6 Literature Review 

The literature on Job Shop Scheduling (JSS) has seen significant contributions, 

particularly in the application of Genetic Algorithms (GA) and other optimization 

techniques. 

Kalshetty et al. [1] introduced feasible operators in GA for solving JSS problems, 

focusing on feasibility and efficiency. However, the study lacks comprehensive 

hybridization with local search methods, which could enhance the optimization 

process. My work incorporates a robust local search heuristic, which improves the 

convergence rate and solution quality, filling this gap. 

Ripon et al. [2] proposed an Improved Precedence Preservation Crossover 

(IPPX) for multi-objective JSS problems, which showed promise in maintaining 

solution integrity across multiple criteria. Nevertheless, the study did not fully explore 

the potential of integrating IPPX with advanced local search methods for makespan 

optimization. My research bridges this gap by integrating such methods, resulting in 

better convergence and optimized solutions. 

Ikramullah and Hou-Fang [3] applied GAs to flexible JSS, incorporating rule-

based approaches. Although effective, their method did not adequately address the 

issue of scalability and the complexities associated with real-world job shops. My work 

extends their approach by providing a more scalable solution that efficiently handles 
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larger, more complex scheduling problems through enhanced genetic operators and 

local search techniques. 

Chang et al. [4] utilized a hybrid Taguchi-GA to optimize makespan in flexible 

JSS, achieving significant improvements. However, their approach may suffer from 

convergence issues due to the deterministic nature of the Taguchi method. My research 

mitigates this by employing stochastic elements in local search, ensuring a broader 

exploration of the solution space and avoiding premature convergence. 

Adams et al. [5] and Applegate and Cook [6] focused on local search heuristics 

for JSS, which laid the foundation for subsequent research. However, these studies 

primarily addressed static job shops and did not fully integrate modern heuristic 

approaches. My work builds on their foundation by integrating advanced GA 

techniques with dynamic local search heuristics, suitable for both static and dynamic 

job shop environments. 

Kundakcı and Kulak [7] explored hybrid GAs for dynamic JSS, focusing on 

makespan minimization. While their approach demonstrated efficacy, it lacked 

flexibility in handling diverse job shop configurations. My research introduces a more 

adaptable framework that can accommodate various job shop layouts and 

configurations, enhancing its applicability in real-world scenarios. 

Barat’s thesis [10] on job scheduling using GA provided valuable insights but 

was limited by its reliance on traditional GA operators without incorporating 

hybridization with local search. My work addresses this limitation by implementing a 

hybrid GA framework, which significantly improves solution quality and robustness. 
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             CHAPTER 2:  SCHEDULING 

Scheduling and planning are the two key activities carried out in industries for 

manufacturing products. Planning involves estimating the necessary actions and 

identifying any constraints on how these actions should be performed. Scheduling, on 

the other hand, focuses on estimating the time and resources required for each activity 

and allocating the optimal resources for task execution. Additionally, scheduling 

determines the precedence relationships between activities and the associated 

constraints. For a plan to be fully executed, tasks and activities must be assigned a 

specific timeline. Effective scheduling offers several advantages.Improved on-time 

delivery  

• Reduced inventory   

• Cut lead times   

• Increased bottleneck means utilisation  

However, due to the combinatorial nature of scheduling problems, finding the 

optimal schedules can be challenging. Scheduling is considered NP-complete because 

determining the best schedule for ‘a’ number of jobs on ‘b’ number of machines 

requires optimal utilization of both resources and time. In the traditional Job Shop 

Scheduling Problem (JSSP), jobs are treated as activities, while machines are regarded 

as resources. 

           2.1 Classification of Job Scheduling 

Job scheduling can be categorized into three types: single machine scheduling, 

flow shop scheduling, and job shop scheduling. 

2.1.1 Single machine scheduling  

In this type, several jobs are allocated to a single machine for processing. The 

machines involved in this process can be classified into two categories: dependent and 

independent. When the setup time for each job is not influenced by others, it is termed 

a single-machine scheduling problem with independent jobs.Conversely, if the setup 

time depends on the sequence of jobs, it is known as a single-machine scheduling 

problem with dependent jobs. The function is measured using the following metrics. 
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• Mean Flow Time: The average time a job spends in the system from 

arrival to completion. 

• Maximum Lateness: The greatest delay of any job beyond its scheduled 

due date. 

• Total Tardiness: The cumulative delay of all jobs beyond their 

respective due dates. 

• Number of Tardy Jobs: The count of jobs completed after their due 

dates. 

In single machine scheduling, multiple jobs are assigned to a single machine for 

execution. The machines used for job allocation can be classified into two types: 

dependent and independent. If the setup time for each job is independent of others, the 

problem is referred to as a single-machine scheduling problem with independent jobs. 

Conversely, if the setup time depends on the sequence of jobs, it is known as a single-

machine scheduling problem with dependent jobs.[1]. 

1) Identical parallel machine scheduling problem: Here parallel machines 

function at matching speeds, and jobs assigned to them need the same processing time. 

A branch and bound algorithm is employed to lessen job tardiness within this 

framework. After processing a specified number of jobs, each machine requires a 

preventive preservation task. 

2) Proportional parallel machine scheduling problem: Here parallel machines 

operate at varying speeds, with the first machine being the slowest and the last the 

fastest. This scheduling model addresses the challenge of scheduling jobs with similar 

due dates and proportionate early and tardy disadvantages across identical parallel 

machines. Sun & Wang  analysed these issues and confirmed that the scheduling is an 

NP-hard problem. Dynamic programming is subsequently used to address the 

complexities involved in the scheduling process. 

3) Unrelated parallel machine scheduling problem 

In this scheduling model, the processing times of jobs on parallel machines are 

independent, reflecting variations in technology due to factors like differing machine 

capabilities and job characteristics. Abdelmaguid introduced an iterated greedy 
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algorithm for large-scale unrelated parallel machine scheduling. This algorithm 

iteratively refines solutions through a cycle of destruction and construction phases, 

offering optimal performance compared to traditional metaheuristics. Additionally, 

Torabi  developed a Multi-Objective Particle Swarm Optimization (MOPSO) to 

estimate the optimal approximation of the Pareto frontier effectively. This approach 

leverages selection regimes to identify the best personal and global solutions, 

outperforming the conventional Multi-Objective Particle Swarm Optimization 

(CMOPSO) in terms of quality, diversity, and spacing. 

2.1.2 Flow shop scheduling 

         In this scheduling approach, jobs are assigned to different machines, with each 

job adhering to a specific process sequence. All jobs follow the same process 

sequence. The effectiveness of flow shop scheduling is assessed using the following 

metrics  

● Maximum lateness   

● Total hardiness   

● Number of tardy jobs 

● Makespan  

A Memetic algorithm called Opposition-based Differential Evolution (ODDE) 

is proposed to tackle the Permutation Flow Shop Problem (PFSSP). To adapt ODDE 

for PFSSP, the Largest-Ranked Value (LRV) rule is applied, which transforms the 

continuous positions generated by Differential Evolution (DE) into discrete job 

permutations. The Nawaz-Enscore-Ham (NEH) method is integrated with random 

population initialization to ensure a balance of quality and diversity. Additionally, the 

crossover rate is adjusted by leveraging DE's global optimization capabilities.By 

deploying the opposition based learning for the initialization and generation jumping 

for the global optimum solution enhancement, the convergence rate of the DE is 

enhanced. Individuals are improved with a certain probability through a rapid local 

search process. A pairwise-based local search technique is employed to refine the 

global optimum solution, helping to avoid the algorithm getting trapped in local 



 

12 
 

minima. To address the Distributed Permutation Flow-shop Scheduling Problem 

(DPFSP), an effective estimation of a Distributed Algorithm (EDA) is proposed. 

Optimal schedules are generated by applying completion factory rules, and the 

probability distribution of the solution space is represented through a probability 

model. 

2.1.3  Job shop scheduling 

Job shop scheduling (JSS) is a complex optimization problem within operations 

research and computer science that focuses on effectively allocating jobs to machines. 

The scheduling decisions in JSS are influenced by factors such as the routing sequence 

of jobs and their respective processing times. The classical JSS problem, a cornerstone 

in the study of operational strategies, involves planning the order in which jobs are 

processed on various machines to optimize specific objectives, such as minimizing the 

total completion time of all operations. 

JSS can be classified into two types: static and dynamic. Static scheduling, which is 

the focus of this thesis, involves scenarios where all information about the jobs 

(including processing times and job sequences) is known in advance, and the schedule 

is determined before execution begins. Conversely, dynamic scheduling adapts to 

information that becomes available during the operations, such as machine breakdowns 

or changes in job priorities, requiring real-time adjustments to the schedule. The static 

approach is critical for environments where predictability and pre-planning mitigate 

potential disruptions and optimize workflow efficiency. 

   2.2 Assumptions for JSSP 

Following are the assumptions [1], [17] that must be followed during static JSSP. 

1. All jobs are ready to begin at time zero. 

2. Each machine can handle only one operation at a time. 

3. Every operation can be processed on only one machine at any given moment. 

4. The operations for each job must be completed in a specified sequence. 

5. All operations must be finished across the designated set of machines. 
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 The goal of the scheduling task is to optimize a specific criterion, which serves as a 

performance measure for the schedule. One such criterion is the makespan, which 

refers to the total time required to complete all the jobs. 

        2.3  Scheduling Algorithms 

An algorithm is a set of well-defined  rules that are designed to perform a specific 

task or solve a particular problem. It's a step-by-step procedure, typically used in 

computing, to input data and produce a desired output or result. An Algorithm is 

fundamental to all aspects of the field of computer science and are used to automate, 

enhance, and streamline processes in various fields. 

Scheduling Algorithms are a specific category of algorithms used to assign 

resources to tasks over time, aiming to optimise certain objectives like minimising total 

completion time, maximising resource utilisation, or balancing load among resources. 

These algorithms are crucial in fields ranging from manufacturing and logistics to 

computing and telecommunications. These algorithms help in completing tasks 

properly in an efficient manner and resources are used effectively. 

               2.3.1 Classification of Scheduling Algorithms 

These algorithms can be classified as: 

 

  Figure 5: Classification of Scheduling Algorithms[3] 
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To address scheduling challenges, a variety of methods are categorized broadly 

into two types: Exact and Approximate methods.  

Exact methods, though precise, are often impractical for large-scale Job Shop 

Scheduling Problems (JSSP) due to their computational intensity and time-consuming 

nature. As a result, heuristic methods, which provide approximate yet high-quality 

solutions, are preferred, particularly when real-time execution and feasible solutions 

are essential. These heuristic approaches are designed to approach optimal solutions 

closely within a considerably shorter timeframe compared to exact methods. 

In practice, achieving an absolute optimal solution is seldom possible, making a 

robust approximate solution highly valuable. Heuristics are therefore a focal point for 

researchers aiming to develop algorithms that can efficiently converge near-optimal 

solutions under practical constraints. Approximate methods typically model 

production scheduling problems through a series of equality or inequality constraints, 

optimizing the target function within these defined parameters. 

Hybrid methods [18], which combine two or more of the best-performing 

heuristic rules, are prominent in contemporary research, enhancing the effectiveness of 

traditional approaches. These methods are particularly useful not only in static but also 

in dynamic JSSP, where the complexity escalates with the increasing number of 

machines and job flows. As the complexity and the number of feasible solutions grow 

exponentially, approximate methods offer a pragmatic means to achieve optimal 

solutions within a reasonable timeframe. In smaller-scale industries, where job orders 

often arrive unpredictably and each batch has distinct due dates, scheduling must 

prioritise and complete jobs in alignment with these timelines. This necessitates a 

strategy that integrates priority dispatching rules, which will be further explored and 

detailed in subsequent sections, illustrating a practical JSSP scenario from a small-

scale industrial setting. 

1.Constructive Algorithms (Exact) 

• Johnson’s Rule: Efficient for two-machine sequencing problems where jobs 

must be done on both machines in a specific order. 
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• Lawler’s Algorithm: Minimizes maximum lateness by sequencing jobs 

based on their deadlines and processing times. 

• Moore’s Algorithm: Focuses on minimizing the number of late jobs by 

reordering tasks based on their due dates. 

2. Enumerative Algorithms (Exact) 

• Integer Programming: Uses mathematical formulations to find the 

exact solution by exploring all possible combinations. 

• Branch and Bound: Reduces the search space by logically eliminating 

sequences that do not lead to an optimal solution. 

3. Constructive Heuristics (Approximate) 

• NEH (Nawaz-Enscore-Ham): Prioritizes jobs based on their total 

processing times across all machines, building the schedule by adding 

one job at a time. 

4.Improvement Heuristics (Approximate) 

• Shifting Bottleneck: Addresses the most critical part of the production 

process first and sequentially adds other parts to improve the overall 

schedule. 

5. Metaheuristics (Approximate) 

• Genetic Algorithm: Simulates natural selection processes to iteratively 

evolve solutions to optimal or near-optimal levels. 

• Simulated Annealing: Mimics the cooling process of materials, 

allowing solutions to 'cool' and stabilize into a minimal energy state. 

• Ant Colony Optimization: Models the behavior of ants searching for 

food to find optimal paths through graphs, applicable to scheduling. 

Metaheuristics and nature-inspired optimization algorithms have become 

increasingly prominent in addressing the complexities of Job Shop Scheduling 

Problems (JSSP). Extensive research has explored various methodologies that leverage 

these advanced optimization techniques to enhance engineering problem-solving 

capabilities. Among the notable approaches, alternative graph solution algorithms have 
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been tailored for general formulations of JSSP, accommodating unique constraints 

such as blocking and no-wait scenarios. These algorithms are designed with flexibility, 

allowing for easy modification to include new constraints and reconfiguration for 

multi-objective cases. 

Further innovations include the adaptation of the Ant Colony algorithm, which 

has been refined to resolve JSSP efficiently within acceptable time frames. The 

integration of fuzzy reliability functions also plays a crucial role in assessing system 

reliability, particularly when faced with uncertain information. This approach 

underscores the adaptability of metaheuristic algorithms in managing not only the 

operational efficiency but also the reliability and robustness of systems. 

Recent developments have seen the application of algorithms such as Grey Wolf 

Optimization and Cuckoo Search Algorithm aimed at minimizing costs while 

maximizing the availability and operational time of system components. These nature-

inspired techniques contribute significantly to enhancing system reliability, 

productivity, and profitability. 

Additionally, Particle Swarm Optimization (PSO) has gained recognition as one 

of the most effective algorithms for solving JSSP. Efforts to augment PSO include the 

introduction of hybrid methods that combine PSO with other optimization techniques, 

demonstrating a potent capability for tackling both constrained and unconstrained 

nonlinear optimization challenges. 

These advancements highlight the efficacy of metaheuristic algorithms in 

solving complex real-world problems, positioning them as invaluable tools in the 

continuous evolution of optimization practices in job shop scheduling and beyond. 

         2.4  Evolutionary Algorithms  

Evolutionary algorithms (EAs) are optimization approaches that draw inspiration 

from the principles of natural selection and the survival of the fittest. Unlike traditional 

optimization approaches, EAs work with a "population" of potential solutions rather 

than just one. Each iteration of an EA includes a competitive selection process that 
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removes less effective solutions. A basic structure of evolutionary algorithms is 

depicted in the figure. 

 

       2.5 Scheduling Rules 

In scheduling, specific strategies or rules(like FCFS, SJF, EDF) are used to 

prioritise and manage tasks efficiently across various systems. These strategies are 

fundamental to ensuring that tasks are completed in an optimal manner, respecting 

constraints such as deadlines, resource availability, and operational efficiency. These 

can be used within both exact and approximate frameworks to handle specific 

scheduling needs in various systems [17]. 

• First-Come, First-Served (FCFS): Simple, treats all tasks with equal 

priority as they come. 

• Shortest Job First (SJF): Optimizes waiting time by handling the 

shortest tasks first. 

• Priority Scheduling: Manages tasks based on predefined priorities. 

• Round Robin (RR): Ensures all tasks receive equal time slices, 

commonly used in computing. 

• Earliest Deadline First (EDF): Critical for systems where tasks must 

meet deadlines. 

• Least Slack Time First (LSTF): Prioritizes tasks with the least slack 

time to avoid delays. 

 

Figure 6:Evolutionary Algorithms[3] 
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2.6 Classification scheme for scheduling problems  

Classification system for scheduling problems is as follows: 

 1) Requirement Generation: Manufacturing shops are considered as either 

closed or open founded on how they handle order contentment. In a closed shop, orders 

are fulfilled using current inventory. In contrast, an open shop functions on a build-to-

order basis, meaning no inventory is kept in stock. 

 2) Processing Complexity: It the number of steps of processing  and the 

machines or workstations related to production process.  

The single-stage, single-processor and single-stage, multiple-processor scenarios 

involve tasks that need to be completed using either one or several possessions, 

respectively. In the multi-stage flow shop scenario, each job is composed of multiple 

tasks that must be processed by different resources, following a standardized route for 

all jobs. Conversely, in the multi-stage job shop environment, jobs may utilize 

alternative sets of resources and follow different routes, enabling the manufacturing of 

various part types 

   2.7 Scheduling Criteria 

 It tells the preferred objectives to be happened which can be many, intricate and 

regularly differing. Some of the most common scheduling criteria contain the 

following:  

a. Lessen whole tardiness  

b. Lessen the number of late jobs  

c. Maximize system/resource use  

d. Minimize in-process record  

e. Balance resource usage  

f. Maximize production rate  

Parameter Variability: This term describes the level of uncertainty in 

scheduling problem parameters. When uncertainty is minimal (for example, when the 
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variance in processing times is significantly smaller than the expected durations), the 

scheduling is considered deterministic, such as when an expected processing time is 

six hours with only a minute of variance. Conversely, if uncertainties are substantial, 

the scheduling is deemed stochastic. 

Scheduling Environment: Well-defined by whether the scheduling context is 

static or dynamic. In static scheduling, all job information, including the number and 

readiness of jobs, is predetermined. Dynamic scheduling, on the other hand, involves 

fluctuating job numbers and characteristics over time. In many manufacturing settings, 

scheduling is often manually conducted by experienced personnel using tools like 

pencil, paper, Gantt charts, and possibly an industrial database, making it a complex 

and challenging task, particularly in environments characterized by low volume and 

high variety. 
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CHAPTER # 3: Introduction to Genetic Algorithm - GA 

Methods of scheduling are discussed in detail in first and second chapters, so the 

main emphasis in this chapter is on the selected technique of Genetic Algorithm (GA) 

and its application to generate schedule.Genetic algorithms (GAs) is related to the class 

of evolutionary algorithms and are inspired by the process of natural genetic evolution. 

The original concept of natural evolution was proposed by Charles Darwin [14], who 

introduced the idea that natural populations evolve through the natural selection 

process and its basis is "survival of the fittest "principle. Darwin's theory has since 

become a cornerstone in the field of biology, explaining how species adapt over 

generations to their environments.Building on this, John Holland conducted pioneering 

work on genetic algorithms in 1975, further extended by David Goldberg[15], who 

contributed significantly to their development and practical applications. 

The analogy of giraffes evolving longer necks to reach higher leaves examplifies 

the principle of survival of the fittest. Giraffes with longer necks could access more 

food, survive better, and pass on their advantageous traits to future generations. 

Similarly, genetic algorithms mimic this natural process of evolution to solve complex 

engineering problems. The elegance of GAs lies in their adaptive nature; they can 

dynamically adjust to changing environments, making them highly versatile and robust 

optimization tools. 

At the core of a GA lies the concept of a gene, the fundamental unit of 

information. Genes are combined to form a chromosome, which is a possible solution 

of the scheduling problem. Each chromosome has a series of genes, and these genes 

encapsulate the state data in a structured format. 

A chromosome, also referred to as an individual, embodies a single candidate 

solution within the search space. The collection of these individuals forms a 

population, representing a diverse set of potential solutions. The diversity within the 

population is crucial, as it provides a broad range of genetic material for the algorithm 

to work with, enhancing the ability to explore various regions of the solution space. 
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3.1 Fundamental Models 

Genetic Algorithms borrow terminology from natural genetics. A group of 

individuals is referred to as a population. Each individual has two forms of 

representation: genotype and phenotype. The following table provides a list of common 

terms and their corresponding expressions used in genetics. 

  Table 1:Contrast of Natural Evolution with Genetic Algorithm[3] 

Natural Evolution Genetic Algorithm 

Phenotype Uncoded point 

Genotype Coded string 

Gene String position 

Fitness Objective function value 

Allele Value at a certain position 

Chromosome String 

 

The phenotype straight represents a possible solution to the problem as it was 

primarily defined. Conversely, the genotype suggests an encoded form of this solution, 

designed as a chromosome. A chromosome consists of genes, which are linear 

sequences of characters, each gene influencing the inheritance of specific traits or 

features. In some literature, chromosomes are also called individuals. For example, a 

chromosome might consist of a sequence of 0s and 1s (a bit string), where the value at 

a specific position indicates whether a particular feature is active (value = 1) or inactive 

             Figure 7:Natural Evolution with GA[3] 
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(value = 0). Depending on the target problem, more complex forms, such as sequences 

of symbols or permutations of alphabets, may be used for chromosomes. 

Each individual has a fitness level, which assesses how well it is modified to its 

environment. In line with Darwinian [14] theory, the individual most suitable to its 

environment within a population is more expected to last and reproduce, a concept 

known as "survival of the fittest." Within this context, the objective function of the 

optimization problem signifies the environment, while an individual's fitness reflects 

how efficiently the matching potential solution meets the original optimization 

standards.When the goal of optimization is to maximize the objective function, fitness 

may be directly equivalent to the objective function value. F(x) = f (x), here x is the 

individual in the existing population P (Set of individuals or possible solutions 

 

         3.2 A Simple GA 

The evolutionary process within a GA begins with an initial population, which 

is typically generated randomly or through heuristic methods to ensure diversity. Every 

individual in the population is assessed using a fitness function(i-e Makespan. Due 

Date, Energy Consumption etc), which quantifies how fine it solves the problem at 

hand. This fitness evaluation is pivotal, as it directly influences the selection process. 

For reproduction, the individuals with higher fitness scores are more expected to be 

selected,  reflecting the principle of "survival of the fittest."  

The selection process can employ various techniques, such as  

• Roulette wheel selection,  

• Tournament selection, or 

• Rank-based selection,  

to choose individuals that will contribute to the next generation. 
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Roulette Wheel Selection 

Roulette wheel selection, or else fitness balanced selection, allocates each individual a 

segment of a virtual roulette wheel proportional to their fitness score. 

A random number determines which individual is selected based on their fitness proportion. 

Advanced fitness individuals have a greater chance of being chosen. This method can lead to 

dominance by the fittest individuals, reducing genetic diversity and risking premature 

convergence. 

Tournament Selection 

Tournament selection includes randomly choosing a subset of individuals and selecting 

the one with the highest fitness among them. 

A predefined number of individuals (the tournament size) are randomly selected. The fittest 

individual within this subset is chosen for the reproduction. This process is iterative until the 

selection of desired individuals. Larger tournaments favour fitter individuals, while smaller 

ones maintain more diversity. 

Rank-Based Selection 

Rank-based selection categories individuals by their suitability and assigns selection 

probabilities based on their ranks instead of raw fitness scores. 

Selection probabilities are assigned based on these ranks, ensuring a balanced and equitable 

selection process. This prevents domination by highly fit individuals, maintaining genetic 

diversity but requiring additional computational effort. 

 

3.3 Genetic Operators (Crossover and Mutation) 

Reproduction in Genetic Algorithms (GAs) is a crucial phase where genetic operators—

specifically crossover (recombination) and mutation play pivotal roles in generating new 

candidate solutions from existing ones. Here's a more detailed explanation of each operator 

3.3.1. Crossover (Recombination) 

Crossover is known as a genetic operator used to generate new offspring by combining 

the genetic information of two parent chromosomes. This process mimics biological 

reproduction, where offspring inherit traits from both parents, thereby promoting genetic 

diversity within the population. From the population pool, Two parent chromosomes get 

selectedtypically based on their fitness. A position within the chromosome is randomly chosen 

as the crossover point. The segments of the parent chromosomes beyond this point are 
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swapped to create two new offspring. 

Consider two binary-encoded chromosomes: 

• Parent 1: 11010 

• Parent 2: 00101 

If the crossover point is afterward the third gene, the new offspring generated would be: 

• Offspring 1: 110|01  

• Offspring 2: 001|10  

 There are several types of crossover methods, 

1. Single-Point Crossover 

In single-point crossover, 1 crossover point is nominated on the parent chromosomes. 

All data outside that point in either chromosome is exchanged between the 2 parent 

chromosomes. This results in two offspring, each carrying genes from both parents. 

Example: 

• Parent 1: 110|110 

• Parent 2: 001|001 

Crossover point after the third gene. 

• Offspring 1: 110|001 

• Offspring 2: 001|110 

2. Two-Point Crossover 

Two-point crossover involves two places being chosen on the parent chromosomes. The 

genes between these two points are exchanged between the parent creatures, creating more 

diversity than single-point. 

Example: 

• Parent 1: 110|110|1 

• Parent 2: 001|001|0 

Crossover points between the third and sixth genes. 

• Offspring 1: 110|001|1 

• Offspring 2: 001|110|0 

3. Uniform Crossover 

In uniform crossover, each gene is considered separately. For each gene, a coin is flipped 

to decide whether or not it will be swapped. This type of crossover does not rely on a specific 
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segment of the chromosome, but rather mixes the genes at a more granular level. 

Example: 

• Parent 1: 110110 

• Parent 2: 001001 

Offspring might have genes from either parent at each position based on a random coin flip. 

3.3.2. Mutation 

Mutation presents random deviations to individual genes of a chromosome, serving 

prevent the genetic search from becoming too homogeneous and potentially trapped in local 

optima. It ensures the investigation of the genetic search space by introducing new genetic 

variations. 

A chromosome is chosen, often randomly or based on a particular strategy.One or more 

positions in the chromosome are selected randomly.The genes at these positions are altered. 

In a binary encoding, this typically means flipping a bit (changing a 1 to a 0, or vice versa). 

Consider a binary-encoded chromosome: 

● Original: 11010 

Suppose the mutation occurs at the second and fifth positions: 

• Mutated: 10011 (the second gene is flipped from 1 to 0 and the fifth gene from   0 

to 1) 

There are several types of mutation techniques, each suitable for different kinds of 

encoding and problem requirements. 

1. Swap Mutation 

This mutation type contains selecting two genes at random and exchange their locations. 

It is commonly used in permutation-based encodings, such as those found in scheduling and 

routing problems 

Example: 

• Original chromosome (sequence): [1, 2, 3, 4, 5] 

• After mutation (swapping positions of 2 and 5): [1, 5, 3, 4, 2] 

2. Bit Flip Mutation 

This is the most common type of mutation used with binary encoded chromosomes. In 
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bit flip mutation, each bit in a chromosome has a small chance to be  changed from 0 to 1 or 

from 1 to 0). 

Example: 

• Original chromosome: 1011001 

• After mutation (flipping the third and sixth bits): 1001000 

3. Random Resetting 

Random resetting is a mutation technique used for integer or real-valued chromosomes. 

It involves selecting a gene at random and setting it to a random value inside the possible array 

of values. 

Example: 

• Original chromosome: [4, 12, 7, 9] 

• After mutation (resetting the second value): [4, 6, 7, 9] 

Through these iterative processes of selection, crossover, and mutation, populations 

evolve over successive generations. Each new generation ideally brings the population closer 

to optimal or near-optimal solutions, as beneficial traits are propagated and refined. The series 

of evaluation, selection, reproduction, and replacement continues till a end point already fixed 

is met, such as achieving a satisfactory fitness level or reaching a predefined number of 

generations. 

This iterative and adaptive process allows genetic algorithms to effectively search 

complex and vast solution spaces, ther are the  powerful tools for solving many  optimization 

problems across various domains. 

Conditions for Ending can be:  

• A predetermined number of generations has been completed. 

• An individual meets the minimum required criteria. 

• The top individual's fitness has reached a level where further iterations no longer 

yield improvements. 

• Manual review or inspection. 

• May require the ability to pause and resume 
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3.4 Local Optima 

Local optima refer to solutions that are best within a definite neighbourhood of the 

search space but might not be the globally best solution for the whole problem. These solutions 

can appear when the algorithm converges prematurely to a suboptimal solution due to the 

nature of the fitness landscape. 

In genetic algorithms (GA), local optima typically arise when the selection pressures 

and genetic operators (such as crossover and mutation) favor certain regions of the solution 

space over others. As the algorithm progresses, individuals with advanced fitness in the 

current population may dominate, leading to a concentration around these local optima and 

reducing exploration of potentially better solutions elsewhere in the space. 

Several strategies can help mitigate the issue of local optima in genetic algorithms: 

• Diversity Maintenance: Introduce mechanisms to maintain genetic diversity 

within the population. This can include using diverse selection methods (e.g., 

tournament selection with varied tournament sizes), promoting mutation rates, 

or implementing elitism to preserve the best individuals across generations. 

      Figure 8:Simple GA search process[1] 
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• Adaptive Parameters: Implement adaptive techniques for adjusting parameters 

such as mutation rates, crossover probabilities, or population size dynamically 

during the algorithm's execution. This helps to balance exploration 

(diversification) and exploitation (intensification) of the solution space. 

• Advanced Selection Mechanisms: Use advanced selection mechanisms like 

niching methods or fitness sharing, which encourage exploration by penalizing 

solutions in crowded regions of the search space. These methods promote the 

discovery of diverse and potentially better solutions beyond local optima. 

• Hybrid Approaches: Associate genetic algorithms with other optimization 

methods, such as local search heuristics or metaheuristics like simulated 

annealing or tabu search. Hybrid approaches can leverage the strengths of 

different methods to overcome local optima and improve overall solution 

quality. 

         3.5 Development of a Genetic Algorithm for Job Shop Scheduling 

The core of my thesis is centered on the development of an advanced genetic algorithm GA 

incorporating Python (GAIP) specifically tailored to address the complexities inherent in job 

shop scheduling problems. This algorithm seeks to optimize scheduling efficiency by 

strategically minimizing the makespan.The makespan, defined as the whole time essential to 

complete all jobs, serves as the fitness function for the genetic algorithm. This choice for this 

fitness function ensures that the GA focuses on solutions that reduce the total operational time 

or makespan, thereby enhancing overall productivity. The makespan serves as the fitness 

function for the genetic algorithm, meaning that potential solutions are evaluated based on 

how effectively they reduce this total operational time. The genetic algorithm get started by 

generating a pool of the initial population of potential solutions, where each solution 

represents a unique sequence of job operations across multiple machines. 

To identify promising solutions, two selection methods (Tournament ans Roulette 

wheel selection) are employed simultaneously. This method selects individuals from the 

population based on their initial makespan, favoring those with shorter makespans. This 

ensures that the most efficient solutions are retained and used to produce the next generation. 

The genetic algorithm then applies genetic operators (crossover and mutation)  to these 

selected individuals. These genetic operations introduce variation and help explore new 
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potential solutions within the search space. 

Over successive generations, the algorithm iteratively evaluates and selects the best-

performing individuals. By consistently focusing on solutions that minimize the makespan, 

the GA gradually converges towards an optimal or near-optimal solution. This iterative 

refinement process ensures that the algorithm continuously improves scheduling sequences, 

enhancing overall productivity and operational efficiency. 

Tournament selection and Roulette wheel selection  (Selection methods) are crucial in 

the genetic algorithm for choosing individuals for crossover. In this method, a subset of the 

population (a tournament) is randomly selected, and the individual with the best fitness in this 

subset is chosen. This is repeated until the desired number of individuals is selected. 

In my implementation, the tournament size is set to 5. This size strikes a balance 

between selecting the fittest individuals, which speeds up convergence, and maintaining 

genetic diversity, which prevents premature convergence. Increasing the tournament size 

would favor fitter individuals more, accelerating convergence but reducing diversity. 

Decreasing the size would enhance diversity but slow down convergence. Setting the size to 

5 ensures a balanced approach for effective optimization. If the selection probability is more 

than 0.8, then a roulette wheel selection method will be applied. 

3.5.1 Genetic Operators 

For recombination, a two-point crossover method is employed. This technique involves 

selecting two random points within the chromosome structure of the parents to define a 

segment of genes that will be swapped between them, generating new offspring. 

The decision to execute the crossover operation is governed by a probability Pc, which 

is dynamically determined constructed on the fitness standards of the parents involved in the 

mating process. Specifically, Pc is calculated as follows [3]: 

                            

where 𝑓1 is the higher fitness value of the two parents, and 𝑓𝑎𝑣 is the average fitness 

value of the population. The constants 𝑘1 and  𝑘2 are parameters that can be tuned based on 

experimental findings to optimize the algorithm's performance. In scenarios where the fitness 

of a parent is above the population average, a higher probability 𝐾1 encourages the retention 
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of beneficial traits, while 𝑘2ensures diversity by facilitating crossover even when parent 

fitness is below average. 

In my implementation, the crossover probability was set to 0.8. This relatively high 

probability was chosen to intensively explore the genetic landscape of the population by 

frequently mixing genetic material, which is crucial for avoiding local optima and ensuring 

diverse genetic combinations. 

This selection of crossover rate is open but DeJong and Grefenstette  have introduced 

some guidelines for the selection of crossover rate as well as mutation rate.  

Crossover rate = 0.6 (For large population size; 100)  

Crossover rate = 0.9 (For small population size; 30)  

Based on this guideline  

Crossover rates 𝑘1 and 𝑘2were selected as follows:  

Crossover Rate 𝑘1 = 0.90  

Crossover Rate 𝑘2 = 0.85 

Alongside crossover, swap mutation is implemented as the mutation strategy. In swap 

mutation, two genes within a chromosome are selected randomly and their positions are 

swapped. This mutation type is mainly suited for scheduling problems as it subtly alters the 

sequence of operations, allowing the exploration of new schedules that might yield a shorter 

makespan without drastically changing the overall structure of the solution. 

Mutation occurs with a probability Pm [3], defined as: 

                  

where 𝑓2 is the fitness value of the mutating chromosome. The constants 𝑘3 and 𝑘4 are 

used to modulate the mutation rate depending on whether the fitness of the chromosome is 

above or below the population average, facilitating a balance between preserving beneficial 

genetic material and introducing variability. 

In my genetic algorithm, the mutation rate was set to a more moderate value of 0.1. 

Setting the mutation rate at 0.1 strikes a balance between introducing necessary genetic 

variations and maintaining the integrity of advantageous traits within the population. This 

moderate rate ensures that the algorithm does not overly perturb the solution space, thus 
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allowing a more focused and effective convergence on optimal solutions. It serves to 

occasionally escape local minima by subtle shifts in the genetic structure, thereby enriching 

the search process without compromising the established good performance of existing 

solutions. 

Guidelines by DeJong and Grefenstette for the selection of mutation rate are as follows:  

Mutation rate = 0.001 (For large population size; 100)  

Mutation rate = 0.01 (For small population size; 30)  

Based on this guideline Mutation rates  𝑘3 and 𝑘4 were selected as follows: 

 Crossover Rate  𝑘3 = 0.2  

Crossover Rate 𝑘4 = 0.1 

                   3.5.2 Local search method: 

To enhance the refinement of solutions, a neighborhood search method is utilized. This 

approach involves iterating over each job and machine pairing within the schedule, making 

incremental adjustments to discover configurations that yield a reduced makespan. Unlike 

Tabu search, which maintains a list of recently visited solutions to prevent cycling back to 

them, the neighborhood search method focuses on exploring new areas in the solution space 

without such a list. This method complements the genetic operations by providing an extra 

layer of optimization, significantly improving the algorithm's overall effectiveness in finding 

optimal solutions. 

                     3.5.3 Evolutionary Process 

The evolutionary process of the GA involves iteratively applying the selection, 

crossover, and mutation operations to evolve the population over multiple generations. The 

fitness of the population is monitored in each generation, with the best solutions being carried 

forward through elitism. 

Elitism: This approach focuses on preserving  number of the fittest chromosomes, while 

the remainder of the population is produced using any of the chosen selection methods. This 

technique guarantees that the best solutions persist in the population, while also promoting 

diversity by selecting chromosomes from across the whole solution space. This guarantees 

that the best solutions found so far are conserved and not lost in subsequent generations. 
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The parameters for the genetic algorithm are carefully chosen to balance exploration 

and exploitation. The population size, number of generations, crossover probability, and 

mutation probability are set to values that provide a decent trade-off among finding high-

quality solutions and computational effectiveness. 

                   3.5.4 Experimental Setup and benchmarks 

The experimental setup for the genetic algorithm involves running the algorithm on 

benchmark problems, such as MT06, MT10 and MT20, as well as custom scheduling 

problems. The data for benchmarks was taken from OR Library In other words, the developed 

genetic algorithm GA is tested against the benchmarks to test how accurate the genetic 

algorithm is and how well genetic operators are doing their job. Everything is done in the 

PYTHON (Programming language) and it is named as genetic algorithm incorporated Python 

(GAIP) . Below is experimental setup: 

                                                                      Table 2: Experimental setup 

Operator/Parameter Name/Value 

Population size 1000 (user can change) 

Elitism 5 

Selection operator Tournament/Roulette wheel 

Tournament size 5 

Crossover operator Two-point 

Mutation operator swap 

Iterations 100 (User can change) 

Crossover probability 0.8 

Mutation probability 0.1 

 

Benchmark problems are standardized instances or datasets used to evaluate the 

performance of algorithms, including genetic algorithms (GAs) in job shop scheduling. 

These benchmarks serve several purposes: 

• Standardization: They provide a common ground for comparing different algorithms 

objectively. By using the same set of problems, researchers can assess which algorithm 

performs better under similar conditions. 
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• Complexity Variation: Benchmarks come in various sizes and complexities, ranging from 

small to large-scale problems with different numbers of jobs and machines. This variation 

helps in understanding algorithm scalability and robustness. 

• Real-world Relevance: Many benchmarks are derived from real-world scheduling 

problems, ensuring that algorithmic solutions can be applied effectively in practical 

scenarios. 

• Algorithm Testing: They allow researchers to test algorithm efficiency, accuracy, and 

scalability under controlled conditions, providing insights into strengths and weaknesses. 

MT06, MT10 and MT20 are specific benchmark datasets commonly used in research 

on job shop scheduling problems. They are designed to simulate different scheduling 

scenarios with varying complexities: 

MT06 (6 Jobs, 6 Machines): 

• MT06 contains instances where there are 6 jobs and 6 machines. 

• Respectively job requires processing on respectively machine in a predefined 

sequence with specific processing times. 

• The goal is to schedule these jobs on machines to lessen the makespan, which is the 

total time mandatory to complete all jobs. 

 

  
 

MT10 (10 Jobs, 10 Machines): 

• MT10 involves instances with 10 jobs and 10 machines. 

• Similar to MT06, each job needs to be handled on each machine following a      given 

sequence and processing times. 

                           Table 3:MT06 benchmark 
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• The objective remains the same: to find an best schedule that minimizes the makespan. 

                                                  

 

                MT20 (20 Jobs, 5 Machines) 

• MT20 involves problems with 20 jobs and 5 machines. 

• Similar to MT06 and MT10, apiece job needs to be processed on each machine 

following a given sequence and processing times. 

• The objective remains the same: to find an ideal schedule that minimizes the makespan 

                                                           Table 4: MT10 Benchmark 

 
 

                               Table 4: MT10 Benchmark 
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These benchmarks are widely used in the research community to assess the 

effectiveness and efficiency of scheduling algorithms, including genetic algorithms. 

Researchers often test their algorithms on these benchmarks to compare performance against 

other methods and to demonstrate the scalability and robustness of their approaches in 

handling different problem sizes and complexities. 

    3.5.5 Basic Flowchart for GA 

 

Figure 9:Basic Flowchart for GA[1] 

  3.6 Manual Example 

       Jobs (J): J0, J1, J2, J3 

      Machines (M): M0, M1, M2, M3 

      Processing Times Matrix:  

Table 5:Processing Times for Manual Problem
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      Step 1: Initialization 

Generate an initial population of four chromosomes, each representing a different 

machine order for the jobs. 

                                                                  Table 6:Initial Population 

 
 

      Step 2: Calculate Initial Makespan 

The makespan for each chromosome is calculated by simulating the execution of the jobs   

on the workstations according to the specified demand. Here, I will detail the makespan 

calculation for Chromosome 1 (C1) as an example. 

Makespan Calculation for Chromosome 1 (C1): 

Using a table to show the start and finish times for each job at each machine 

 

Table 7:Start and Finish times for each job 

 
 

Lets proof whether this makespan is correct by using ‘initial makespan calculator” 

which is designed to find the makespan for various problems. 
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Figure 9: Initial Maespan Calc 

Result Message: 

 

Figure 10: Result Message 

So, it shows that the initial makespan is 39 and it's correct. Initial Makespan for C1: 39 

       Step 3: Selection for Crossover 

Select the two best chromosomes based on their makespans. Suppose C1 and C2 are 

selected for their shorter makespans. 

       Step 4: Crossover 

Apply a two-point crossover between C1 and C2: 

Crossover Point: After the first job. 

Table 8:New Chromosomes After Crossover 
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Resulting Chromosome (C1’): The first job sequence was retained from C1, and the 

sequences for the remaining jobs were taken from C2, resulting in a new chromosome: [[0, 

1, 2, 3], [1, 0, 3, 2], [1, 2, 0, 3], [2, 0, 3, 1]]. 

Step 5: Mutation 

Randomly mutate C1’ by swapping two machines in J2’s order: 

 

                                                                 Table 9:Mutation 

 
 

Post-Mutation Chromosome (C1’): [[0, 1, 2, 3], [1, 0, 3, 2], [1, 0, 2, 3], [2, 0, 3, 1]]. 

Step 6: Evaluate and Iterate 

Calculate the new makespans for the mutated chromosomes. Assume that this leads to 

an improved makespan of 35 for C1’. 

Step 7: Convergence and Final Result 

After repeated iterations and genetic operations, the algorithm converges to an 

optimised solution: 

• Optimized Makespan: 35 

• Optimal Chromosome (Final C1’): [[0, 1, 2, 3], [1, 0, 3, 2], [1, 0, 2, 3], [2, 0, 3, 

1] 

        3.7  Initial Makespan Calculator 

In the realm of Job Shop Scheduling (JSS), accurately determining the initial 

makespan is crucial for benchmarking and comparing the efficacy of scheduling 

algorithms. To facilitate this, I developed an "Initial Makespan Calculator" 

implemented in Python using the Tkinter graphical user interface (GUI) framework. 

This tool enables users to input the number of jobs and machines, along with specific 

processing times, to calculate the initial makespan quickly and efficiently. 
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Once hitting run button the software starts, asking user to enter the total number 

of jobs and machines involved in the scheduling process. Based on these inputs, a 

dynamic input grid generated where the user can fill in the processing times for each 

job on each machine. This approach not only ensures flexibility in handling different 

job shop configurations but also simplifies data entry, making it user-friendly. 

Once the data is inputted, the makespan calculation is triggered by a dedicated 

button within the GUI. The calculation itself is executed through a function that iterates 

over each job and machine, determining the earliest possible start time for each task 

based on the readiness of the machine and the conclusion of the previous tasks. The 

maximum end time across all machines, which represents the initial makespan, is then 

displayed to the user in a message box. This immediate feedback is valuable for 

operations managers and researchers who need to assess and optimize their production 

schedules. 

Moreover, the tool is equipped with error handling to ensure that only valid 

integers are entered, enhancing its robustness and reliability. This calculator not only 

serves as a standalone tool for quick makespan assessments but also as a 

complementary utility for researchers and practitioners who are testing and comparing 

different scheduling algorithms' performance. 

Through this development, I aimed to provide a practical tool that bridges the 

hole between hypothetical scheduling models and real applications, allowing for a 

more interactive and accessible approach to understanding and improving job shop 

scheduling outcomes. 

3.7.1 How it works? 

Step 1: Enter Job Equipment like Jobs and Machines numbers. 
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Step 2: Create a Matrix and add Job Info i.e Processing Times for each job 

 
 

Step 3: Click “Calculate Makespan’ to get results.  
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Chapter # 04: Python Libraries and GUI Development for Scheduling Optimization 

Using advanced programming languages like Python in manufacturing is 

beneficial due to the increasing complication of production arrangements and the need 

for greater efficiency and customization in manufacturing processes. I used Visual 

studio code as a platform for Python. 

 

Figure 11: Visual Studio Code 

My  Python code utilizes several powerful libraries, each playing a significant 

part in the functioning of genetic algorithm for job shop scheduling optimization. 

Here’s a breakdown of these libraries and their contributions to my project: 

         4.1 Python Libraries 

4.1.1 Random 

The random library is essential for implementing stochastic processes within 

your genetic algorithm. It enables the generation of random numbers, which are crucial 

for initializing solutions, performing genetic operations like crossover and mutation, 

and randomly selecting individuals for various genetic operations.  

The use of randomness introduces variability and helps in exploring a broader 

solution space, which is vital for avoiding local minima and enhancing the algorithm's 

ability to find near-optimal solutions. 
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 4.1.2. Matplotlib (including matplotlib.patches) 

Matplotlib is a Python library used for generating interactive visuals in Python. 

Within your project, it is specifically employed to generate Gantt charts, which are 

integral for visualizing the scheduling results. The Gantt charts clearly depict the start 

and end times of different jobs on various machines, allowing for an intuitive 

understanding of the scheduling efficiency and resource allocation. The 

matplotlib.patches module is particularly useful for adding shapes (like rectangles for 

each task in the Gantt chart), enhancing the visual appeal and readability of the charts. 

4.1.3. Tkinter (including simpledialog, messagebox, Toplevel, Scrollbar,     

Frame, Canvas) 

Tkinter is Python's standard GUI toolkit and is used extensively in your project 

to create a user-friendly interface. This toolkit allows you to build windows with 

buttons, dialogs, and other graphical elements, making the algorithm accessible to 

users who may not be familiar with command-line interactions. simpledialog is used 

for inputting parameters like population size and number of iterations, messagebox for 

displaying alerts and information, Toplevel for creating additional windows, Scrollbar 

for adding scrolling capability, Frame for structuring the layout, and Canvas for more 

complex graphical tasks like drawing the Gantt chart within the GUI. 

                       4.1.4.Matplotlib.backends.backend_tkagg (FigureCanvasTkAgg) 

This module integrates Matplotlib with Tkinter by providing a specific backend 

to handle rendering figures in a Tkinter canvas. FigureCanvasTkAgg takes a Matplotlib 

figure and converts it into a format that can be used as a Tkinter widget. This 

integration is crucial for embedding Matplotlib graphs (such as your Gantt charts) 

directly into the graphical interface, providing a seamless user experience. 

In this project, Python's versatile capabilities were leveraged to design a user-

friendly graphical user interface (GUI), allowing users to seamlessly interact with the 

genetic algorithm for job shop scheduling. This interface provides intuitive controls 

and visual feedback, making the complex process of scheduling optimization 

accessible and manageable for users regardless of their technical expertise.  
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           4.2 Interactive Flow Chart: Navigating the GUI-User Experience 

A flow chart is shown for better understanding of how users can interact with 

algorithm. 

 

 

       Figure 12: Interactive Flow Chart: Navigating the GUI-User Experience    

                          

           4.2.1 Main Menu: 

The main menu of the job shop scheduling application serves as the central hub 

for user interaction, providing a straightforward and intuitive interface that guides users 

through various functionalities of the system. 

When the application is launched, the main menu is the first screen presented to 

the user. It serves as the gateway to all the functionalities of the application. 

Step 1: The user clicks on the ‘Import Data’ button. 

Step 2: A submenu appears, offering choices between MT06, MT10, and MT20 

datasets. These benchmarks are already added in the code for user ease. 
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Figure 13: Main Menu for JSSP 

Step 3: The user selects the desired dataset. A new window appears asking for 

“Population Size”. Once Population is entered, it will lead to a new window asking 

for “Number of Iterations”.  

 
 

 
 

 

 

Note:The data will be entered only in numeric form. If a user tries to enter string 

or alphabets, the system will generate an error to guide the user. 
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Step 4: Once all information is added, a message will appear saying “Data 

Imported Successfully”. Which means that system has successfully imported 

benchmarks and all parameters from the code. 

 

 

Step 5: After this message, the user needs to hit the “Run genetic algorithm”   

button to start the algorithm. 

 

Figure 14: Run Algorithm for MT06 

Step 6: After execution of algorithm, a window will appear with “Final 

Makespan” which is an optimized makespan much smaller than initial makespan, a 

Gantt chart representing the Job and machine schedule and fitness graph. 

The Gantt chart is utilized to visualize the scheduling optimization performed 

by the genetic algorithm. Each bar on the Gantt chart represents a specific job being 

executed on a particular machine, the bar length showing the job duration.. The chart 
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effectively demonstrates how jobs are allocated to machines over time, helping identify 

bottlenecks or inefficiencies in the schedule. It allows users to quickly assess the 

makespan of the entire production process, which is crucial for optimizing operational 

efficiency in manufacturing environments. 

The fitness graph is used to display the improvement in the algorithm's 

performance over time. Each point on the graph represents the fitness score of the best 

solution found in that generation, allowing users to visually track how the solution 

quality evolves as the algorithm runs. This is particularly important for diagnosing the 

behavior of the genetic algorithm, such as determining if and when it has converged to 

a solution or if it is stuck in a local optimum. The fitness graph helps in validating the 

effectiveness of the algorithmic tweaks and settings adjustments made through the 

GUI. 

                       4.2.2 Other Benchmarks 

The 'Other Benchmark' feature in the graphical user interface (GUI) of the job 

shop scheduling application is designed to enhance the flexibility and usability of the 

system. Its primary purpose is to allow users to load custom datasets or benchmarks 

that are not included in the predefined options (like MT06, MT10, or MT20). This 

feature caters to users who need to test the algorithm with specific scheduling scenarios 

or data reflective of their unique operational environments. It not only broadens the 

application's applicability across different operational and educational contexts but 

also empowers users by providing them the tools needed to customize their experience 

and results. This feature is a critical component in ensuring that the application can 

meet the evolving needs  of end users, to foster a continous environment of  learning 

and improvement. 

 
Figure 15: Other Benchmarks 

Step 1: The first step is  “base settings”. 
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 Once user hits this button, it will lead to a window asking for “Population 

Size” and “Number of Iterations”. 

 
                  

 
              

Step 2: Once base setting is done, the next step is “Add Equipment” which 

means setting the “Number of Jobs” and “Number of machines”.  

 
                  

This is very crucial step because on the basis of number of 

workcentres/machines and number of jobs , the next window will be created where 

user will have to give machine (IDs-processing time). 
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Note: If user fails to give input in numeric form, system will generate an error message. 
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Step 3: The next step is to “Set Job Info”.  

 

Users need to add Machine IDs in front of Machine row and Times in front of Processing 

times row below. 

 
                                                    

Step 4 : Hit “Start Genetic Algorithm” to get optimised makespan, gantt chart and fitness 

graph. 

 
                 Figure 16: Start Algorithm Button for others 
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4.3 Importance of Introducing Modern Programming Languages like 

Python in Manufacturing 

 

My project exemplifies the best of what Python can offer in a manufacturing 

context.Introducing modern programming languages like Python into manufacturing 

is essential for several compelling reasons, all of which revolve around enhancing 

efficiency, adaptability, and innovation within the sector: 

Using Python in manufacturing, especially for complex scheduling tasks, brings 

several advantages: 

 

• Efficiency and Speed: Python's extensive libraries and simple syntax 

allow for rapid development and testing of complex algorithms, 

significantly speeding up the iterative process of solution enhancement. 

 

• Frontend Integration 

Python isn't just suitable for writing scripts and automating tasks—it's 

also a robust language for developing complete applications, especially 

when combined with various libraries and frameworks tailored to app 

development.For applications requiring a graphical user interface, 

Python's Tkinter library allows for the development of desktop-based 

GUIs. For web-based applications, Python can serve data to frontend 

technologies using templates or through APIs. Libraries like Jinja2 work 

well with Flask and Django to generate HTML content dynamically. For 

more interactive frontends, you can develop RESTful APIs using 

frameworks like Django REST framework or Flask-RESTful, which 

can serve data to frontends built with JavaScript frameworks like React 

or Angular. 

 

• Flexibility: Python can easily integrate with other systems and handle 

various data formats, making it suitable for the heterogeneous 

environments typically found in manufacturing. 
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• Scalability: Python's ability to scale with increased data sizes and 

complexity makes it ideal for industrial applications where vast amounts 

of data are processed. 

 

• Accessibility: With its widespread use and supportive community, 

Python offers extensive resources for troubleshooting and development, 

reducing barriers to technology adoption in manufacturing settings. 
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Chapter 5:  GA performance Evaluation 

In this chapter, we delve into the detailed evaluation of the genetic algorithm's (GA) 

performance as applied to job shop scheduling problems within our developed 

application. The primary focus is on analyzing how effectively the GA optimizes 

scheduling tasks, its efficiency in navigating all the solutions, and the solutions quality 

it generates. This assessment is crucial not only for validating the effectiveness of the 

algorithm but also for identifying potential areas for enhancement. 

           5.1 Flowchart for GA working 

 

                                          Figure 17: Flowchart for Beckend (GA) 

       5.2 Complete Python Pseudo Code 

#Import necessary libraries IMPORT random # For generating    

random numbers  

   IMPORT matplotlib.pyplot AS plt # For plotting charts  



 

53 
 

IMPORT matplotlib.patches AS patches # For drawing shapes 

on charts 

IMPORT tkinter AS tk # For creating the GUI window and 

elements  

FROM tkinter IMPORT Toplevel, Scrollbar, Frame, Canvas # 

For advanced GUI elements FROM tkinter IMPORT simpledialog, 

messagebox # For dialog boxes and message pop-ups  

FROM matplotlib.backends.backend_tkagg IMPORT 

FigureCanvasTkAgg # For embedding matplotlib charts in 

tkinter 

 

# Define benchmark data for various job shop scheduling 

problems INITIALIZE mt06_data AS 2D Array # Contains 

processing times and machine assignments for MT06 benchmark  

INITIALIZE mt10_data AS 2D Array # Contains processing 

times and machine assignments for MT10 benchmark  

INITIALIZE mt20_data AS 2D Array # Contains processing 

times and machine assignments for MT20 benchmark  

INITIALIZE la01_data AS 2D Array # Contains processing 

times and machine assignments for LA01 benchmark 

 

# Function to prompt user for integer input through a 

dialog box FUNCTION custom_askinteger(title, prompt, 

parent=None):  

   CREATE a new dialog window  

   SET the title of the dialog window  

   DISPLAY the prompt message in the dialog  

   ALLOW the user to input an integer value  

   VALIDATE the input; if invalid, show an error message  

   RETURN the integer value entered by the user 

 

# Function to display an informational message to the user  
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FUNCTION custom_showinfo(title, message, parent=None):  

    CREATE a new dialog window  

    SET the title of the dialog window  

    DISPLAY the message to the user  

    WAIT for the user to acknowledge the message by 

clicking 'OK' 

 

# Function to initialize a population of job schedules  

FUNCTION initialize_population(population_size, 

num_jobs,num_machines):  

   CREATE an empty list to hold the population  

   FOR each individual in the population:  

     CREATE a random job schedule (sequence of machines 

for each job)       ADD the schedule to the population list  

   RETURN the list of job schedules (population) 

 

# Function to calculate the makespan (total time) of a 

given schedule FUNCTION calculate_makespan(schedule, 

processing_times):  

INITIALIZE machine_end_times AS a list of zeros (length 

equals number of machines)  

INITIALIZE job_end_times AS a list of zeros (length equals 

number of jobs)  

CREATE dictionaries to hold the job and machine schedules 

 

 FOR each job in the schedule:  

   FOR each machine in the job's route:  

      DETERMINE the start time for the operation as the 

maximum of the    machine's available time and the job's 

current time  

      CALCULATE the end time by adding the processing time  
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      UPDATE machine_end_times and job_end_times with the 

new end time    RECORD the operation in job_schedule and 

machine_schedule  

RETURN the maximum value in job_end_times as the makespan, 

along with the job_schedule and machine_schedule 

 

# Function to perform crossover between two parent 

chromosomes FUNCTION crossover(parent1, parent2, rand_int, 

rand_float, avg_fitness, max_fitness):  

SELECT two random positions in the chromosome for 

crossover points    SWAP the segments between the two 

parents to create two new child chromosomes  

RETURN the two child chromosomes 

 

# Function to mutate chromosomes in the population  

FUNCTION mutation(rand_int, rand_float, fitness, 

population):  

    CREATE an empty list to hold the mutated population  

    FOR each chromosome in the population:  

      IF a random number is less than the mutation rate:  

         SELECT two random positions in the chromosome  

         SWAP the genes at these positions  

   ADD the (potentially) mutated chromosome to the new 

population RETURN the mutated population 

 

# Function to improve a schedule through local search  

FUNCTION local_search(schedule, processing_times):  

    SET the best_schedule AS the current schedule  

    CALCULATE the makespan for the current best_schedule  

    FOR each job and machine in the schedule:  
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       MODIFY the schedule slightly by changing the 

machine assignment   CALCULATE the makespan for the 

modified schedule  

IF the modified schedule has a better makespan:  

         UPDATE best_schedule to the modified schedule  

RETURN the best_schedule found during the search 

 

# Function to perform tournament selection  

FUNCTION tournament_selection(population, tournament_size, 

processing_times):  

RANDOMLY select a subset of chromosomes from the 

population   CALCULATE the fitness (makespan) for each 

selected chromosome RETURN the chromosome with the best 

fitness 

 

# Function to perform roulette wheel selection  

FUNCTION roulette_wheel_selection(population, 

fitness_values):    CALCULATE the total fitness of the 

population  

PICK a random value between 0 and the total fitness  

LOOP through the population, accumulating fitness, until 

the random value is reached  

RETURN the selected chromosome 

 

# Main function to run the genetic algorithm with custom 

crossover FUNCTION 

genetic_algorithm_with_custom_crossover(num_machines, 

num_jobs, processing_times, population_size=1500, 

elitism=20, iterations=100, tournament_size=10):  

INITIALIZE the population using the initialize_population   

function  
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     SET best_solution AS None and best_makespan AS 

infinity  

CREATE an empty list to store fitness over time 

 

FOR each generation (iteration):  

CALCULATE the fitness (makespan) for each chromosome in 

the population  

UPDATE the best_solution if a new best_makespan is found  

STORE the current best makespan in the fitness_over_time 

list 

 

CREATE a new population using elitism (preserving the top 

solutions) FILL the rest of the population using crossover 

and mutation 

 

APPLY local search to improve each chromosome in the new 

population UPDATE the population with the new population 

 

RETURN the best_solution, best_makespan, and 

fitness_over_time 

 

# Function to plot a Gantt chart representing the job 

schedule on machines  

FUNCTION plot_gantt_chart(job_schedule, machine_schedule, 

num_jobs, num_machines, master):  

   CREATE a new figure and axis using matplotlib  

   FOR each machine in machine_schedule:  

      FOR each job operation on the machine:  

      DRAW a rectangle representing the operation on the 

Gantt chart     LABEL the rectangle with the job and 

operation number  

SET axis limits and labels  
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DISPLAY the Gantt chart in the tkinter window 

 

# Function to plot fitness over generations  

FUNCTION plot_fitness_over_time(fitness_over_time, 

master):  

   CREATE a new figure and axis using matplotlib  

   PLOT the fitness values over time  

   SET axis labels and title  

   DISPLAY the plot in the tkinter window 

 

# Class to handle the graphical user interface (GUI) for 

the genetic algorithm  

CLASS GeneticAlgorithmGUI:  

    FUNCTION __init__(self, master):  

    SETUP the main tkinter window with a title and size  

CREATE and layout buttons for importing data, running the 

algorithm, and setting job information  

     INITIALIZE variables to store job and machine 

information 

 

FUNCTION import_mt06_data(self):  

   PROMPT the user for population size and generations  

   SET the number of jobs and machines for MT06 benchmark  

   LOAD the processing times from mt06_data 

 

FUNCTION import_mt20_data(self):  

    PROMPT the user for population size and generations  

    SET the number of jobs and machines for MT20 benchmark  

    LOAD the processing times from mt20_data 

 

FUNCTION import_la01_data(self):  

    PROMPT the user for population size and generations  
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    SET the number of jobs and machines for LA01 benchmark  

    LOAD the processing times from la01_data 

 

FUNCTION run_algorithm(self):  

    IF job information is not set:  

        DISPLAY an error message  

ELSE:  

        RUN the genetic algorithm using the specified 

settings  

        DISPLAY the results, including a Gantt chart and 

fitness plot 

 

# Main program execution IF __name__ == "__main__":  

CREATE a tkinter root window  

CREATE an instance of GeneticAlgorithmGUI with the root 

window    START the tkinter main event loop 

          5.3 Results for Test problem 

                      Example Problem 

Let us consider an example problem with the following specifications, 

assuming that set up times are included in the processing times: 

                                                                               Table 10:Test Problem 

 

▪ Best Obtained Makespan: 277 

▪ Final Chromosome: [[1, 2, 3, 4], [3, 2, 4, 1], [2, 3, 1, 4], [1, 4, 2, 3]] 
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    Figure 18: GANTT CHART for Test Problem 

              

 

Figure 19: Fitness Graph for Test Problem 

           5.4 Test for MT06 

Muth and Thompson Job Shop Problem - MT06  

m= Machine ID 

t= Processing time 
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                                                           Table 11 :MT06 problem 

 
 

For MT06 [24], the results are below. Also my benchmarks was the makespan 

obtained by Ripon et al. [2]. I have tried to compare my results with their results fot 

mt06, mt10 and mt20 and also with best results already available and calculated by 

Muth and Thomson  

• Result of Benchmark: 55 

• Best Known Makespan: 55 

• Best Obtained Makespan by GAIP: 47 

• Final_Chromosome:[[1,2,4,5,6,3],[5,2,1,4,6,3],[4,1,2,6,3,5],[4,1,3,5,

6,2],[4,1,3,5,6,2],[3,5,4,1,2,6]] 

 

 

Figure 20: GANTT CHART for MT06                           
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                     Figure 21: Fitness Graph for MT06                

5. 5 Test for MT10 

Muth and Thompson Job Shop Problem – MT10 

 

                                                   Table11:MT10 problem 

 
 

• Result of Benchmark: 930 

• Best Known Makespan: 930 

• Best Obtained Makespan by GAIP: 996 
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Figure 22: GANTT CHART for MT10              

           

 

Figure 23: Fitness Graph for MT10     
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5. 6 Test for MT20 

Muth and Thompson Job Shop Problem – MT20 

 

                                                             Table 12:MT20 problem 

 

 

• Result of Benchmarks: 1194 

• Best Known Makespan: 1165 

• Best Obtained Makespan by GAIP: 1131 

 

Figure 24: GANTT CHART for MT20               
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Figure 25: Fitness Graph for MT20           

5.7  GA result for dataset instances from Muth and Thomson 

  Below are results for MT06, MT10 and MT20 

                                       Table 13:GA Results for Muth and Thomson 

Instance Ripon et al. 

[2] 

Best 

Known 

GAIP 

Results 

Difference Deviation 

    (%) 

Efficiency 

(estimate) 

MT06 55 55 47 -8 -14 100 

MT10 930 930 996 66 7.10 95 

MT20 1194 1165 1131 -34 -2.92 100 

 

              5.8  GA result for dataset instances from (Lawrence, 1984)  

 5.8.1  LA01 

Number of Machines: 5 

Number of Jobs: 10 

This benchmark outlines the job shop scheduling configuration where each 
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entry corresponds to a Machine ID followed by its associated processing time. I used 

Kalshetty et al. [1] as a benchmark to compare my results for Lawrence instances 

  
    Figure 26: LA01 Benchmark 

 

 

 

• Results obtained by benchmark: 1050 

• Best Known Makespan: 666  

• Best obtained Makespan GAIP: 640 

• Final Chromosome: [[5,1,2,3,4], [2,5,3,4,1], [3,5,2,4,1], [1,4,2,5,3] [3,4,2,5,1], [ 

2,1,5,4,3], [ 1,4,3,2,5], [2,1,3,5,4], [2,4,3,5,1], [1,4,5,3,2]]  

 

                      Figure 27: GANTT CHART for LA01 
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                         Figure 28: :Fitness Graph for LA01 

5.9 GA result for dataset instances from (Lawrence, 1984) 

Below are some of Lawrence [22] Instances which are tested by genetic algorithm 

 

Table 14:GA Results for Lawrence Instances 

Instance Kalshetty 

et al. [1] 

Best Known 

Makespan 

Best Obtained 

By GAIP 

Difference Deviation Efficiency 

(Approx%) 

LA01 666 666 650 -16 -2.40 100 

LA10 958 958 876 -82 -8.56 100 

LA15 1207 1207 1162 -45 -3.7 100 

LA20 902 1046 1070 24 2.29 80 

LA25 935 977 1270 293 29.99 60 
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Chapter 6: Conclusion and Future Directions 

6.1 Conclusion 

This thesis presented a detailed analysis of job shop scheduling problems, with 

a particular focus on the application of genetic algorithms (GAs) incorporating Python 

(GAIP) to optimize scheduling efficiency in various industrial settings. The study 

utilized benchmark datasets from Muth and Thompson as well as extended instances 

like LA benchmarks to assess the performance of the planned genetic algorithms. Also, 

the project has facilitated the users to test custom benchmarks other than Muth and 

Thomson and Lawrence by manually entering the data. 

Key findings demonstrated that genetic algorithms, enhanced with customized 

crossover and mutation strategies, significantly improve the scheduling effectiveness 

by reducing makespan compared to traditional methods. For instance, the experimental 

results on the MT06 instance showed an improvement over the best-known solutions, 

highlighting the sturdiness and efficiency of the genetic approach in handling intricate 

scheduling scenarios. 

The application of genetic algorithms was further explored through the 

integration with graphical user interfaces (GUIs), which facilitated the visualization of 

scheduling outcomes, such as Gantt charts and fitness over generations. This not only 

provided a user-friendly platform for observing the algorithm's performance but also 

served as a tool for further analysis and refinement. 

 6.2 Contributions 

The thesis contributed to the field of operations research in several ways: 

Implementation in Python: My research utilizes Python to develop GA for job 

shop scheduling, addressing the gap in detailed programming implementations and 

optimization within this popular language. 

Combination of Selection Methods: By integrating both tournament and 

roulette wheel selection methods, innovatively enhances the efficiency and 
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effectiveness of genetic algorithms, a combination not extensively explored in existing 

literature. 

Enhancement of Genetic Algorithms: By integrating advanced genetic 

operators and local search techniques, the study advanced the understanding and 

capabilities of GAs in solving job shop problems. 

Benchmarking and Analysis: Extensive testing on well-known benchmarks 

provided valued understandings into the strengths and limitations of the planned 

methods, contributing to ongoing discussions in the academic community. 

Practical Application and Tool Development: The development of a GUI for 

the GA implementation offered a practical tool for researchers and practitioners to 

simulate and modify scheduling parameters dynamically and to test not only specific 

benchmarks but custom benchmarks also by using “Other Benchmarks” option. 

6.3 Implications 

The implications of this research are twofold. Practically, the findings support 

the adoption of genetic algorithms in industries where job shop scheduling plays a 

signifcant role, such as manufacturing and logistics.. Academically, the research fills 

a gap in the study of hybrid genetic algorithms, presenting a new avenue for exploring 

algorithmic interactions with user-driven interfaces. 

6.4 Future Directions 

Looking ahead, the scope for advancing this research is substantial and can be 

directed along several promising avenues: 

• Dynamic Scheduling Environments: 

Future research could focus on dynamic versions of the JSSP where job arrivals, 

processing times, and machine readiness are not acknowledged a preceding. 

Incorporating real-time data and adaptive algorithms could potentially reduce wait 

times and improve throughput in manufacturing systems. 
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• Advanced Machine Learning Models: 

Exploring more complex machine learning models, such as deep learning and 

reinforcement learning, could provide new ways to approach the non-linearity and high 

dimensionality of advanced scheduling problems. These models could evolve from 

learned experiences, improving their decision-making processes over time. 

• Cross-Disciplinary Applications: 

Applying findings from this research to other domains such as healthcare, where 

scheduling of operating rooms and medical staff is crucial, could be explored. Similar 

strategies could optimize logistics in transportation or streamline project management 

in software development. 

• Sustainability and Resource Optimization: 

Future studies could incorporate sustainability metrics into the scheduling 

algorithms to optimize energy consumption and minimize waste. This approach would 

align industrial practices with global sustainability goals, offering economic and 

environmental benefits. 

• Quantum Computing: 

Investigating the potential of quantum computing to solve complex JSSP could 

break the barriers of computational times and solution quality. Early research into 

quantum algorithms for optimization problems shows promising results that could be 

pivotal for scheduling problems. 

• Customization for Small to Medium Enterprises (SMEs): 

Developing scalable and customizable solutions that can be easily implemented 

in SMEs could democratize access to advanced scheduling tools, enabling smaller 

manufacturers to compete more effectively on a global scale. 
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Creating interactive applications and simulation-based learning tools to train 

personnel in optimization and scheduling could help bridge the gap between theoretical 

research and practical, on-the-ground application. 

Each of these areas not only extends the current research frontier but also invites 

interdisciplinary collaboration and technological innovation, ensuring that the field of 

scheduling remains responsive to the evolving industrial landscape and emerging 

technological trends. 

This comprehensive forward-looking view sets the stage for ongoing 

contributions to the field of operations research and beyond, promising to address the 

pressing challenges of efficiency and complexity in diverse scheduling environments. 

This thesis not only enhances the existing body of knowledge on job shop 

scheduling but also provides scalable, efficient solutions adaptable to various industrial 

needs. The foundations laid by this research surface the method for innovative coming 

studies, potentially revolutionizing the approaches to operational scheduling problems. 
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