

A Robust Machine Learning Approach for Malware Detection

in Linux

By

Rabbiya Tariq

(Registration No: 00000399879)

A thesis submitted to the National University of Sciences and Technology, Islamabad,

in partial fulfillment of the requirements for the degree of

Master of Science in

Information Security

Supervisor: Dr. Waseem Iqbal

Military College of Signals

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2024)

THESIS ACCEPTANCE CERTIFICATE

CERTIFICATE OF APPROVAL

AUTHOR’S DECLARATION

PLAGIARISM UNDERTAKING

DEDICATION

To my parents, whose love, encouragement, and sacrifices have paved the

way for all my achievements. Your unwavering belief in me has been a

constant source of strength and inspiration. This thesis is dedicated to you.

To my brothers, who have been my guiding lights and steadfast supporters

throughout my academic journey. Your support has been invaluable.

To my mentor and advisor, Dr. Mian Muhammad Waseem Iqbal, for his

profound wisdom, guidance, and faith in my abilities. Your mentorship has

been instrumental in shaping my path as a researcher.

To my friends, who have been the pillars of strength and a source of joy

throughout this academic endeavor. Your friendship has made this journey

not only bearable but also profoundly enjoyable.

 viii

ACKNOWLEDGEMENTS

Primarily, I am profoundly grateful to Almighty Allah, the most gracious and

the most merciful, who bestowed upon me health, wisdom, knowledge, and

the power of communication. I owe a great deal of gratitude to my supervisor,

whose valuable guidance, encouragement, and supervision made it possible for

me to undertake this project and complete my training in this area. I am deeply

thankful for the support of my colleagues, especially Syed Sohaib Karim,

Major Amara Riaz and Madiha Hassan whose cooperation was instrumental

in the completion of my thesis. I am also immensely grateful to my parents,

brother and sisters for their motivation, sacrifice, cooperation, love, and

affection, which have helped me overcome my difficulties and enabled me to

complete this research work.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS VIII

TABLE OF CONTENTS IX

LIST OF TABLES XI

LIST OF FIGURES XII

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS XIV

ABSTRACT XV

CHAPTER 1: INTRODUCTION 1
1.1. Overview 1
1.2. Motivation 2
1.3. Problem Statement 3
1.4. Research Objectives 3
1.5. Relevance to National Needs 4
1.6. Area of Application 5
1.7. Advantages 6
1.8. Thesis Organization 7

CHAPTER 2: LITERATURE REVIEW AND BACKGROUND 9
2.1 Introduction 9
2.2 Literature Review 9
2.3 Summary of Related Work 16
2.4 Overview of Linux Malware Ransomwares: 19

2.4.1. Ransomware: 20
2.4.2. Linux Ransomware: 20
2.4.3. Variants of Linux Ransomware: 21

2.5 Attack Chain of Linux Ransomware: 24
2.6 Chapter Summary: 25

CHAPTER 3 PROPOSED METHODOLOGY 26
3.1 Introduction 26
3.2 Data Collection 26
3.3 Malware Analysis Methods: 27
3.4 Feature Extraction: 29
3.5 Data Preprocessing: 29
3.6 Feature Selection 30
3.7 Classification 31
3.8 Evaluation Metrices: 32
3.9 Chapter Summary: 33

x

CHAPTER 4: IMPLEMENTATION AND EXPERIMENTAL TESTBED 34
4.1 Introduction 34
4.2 Experimental setup: 34
4.3 Collection of Dataset 35
4.4 Perform Malware Analysis: 36

4.4.1. Static Analysis: 36
4.4.2. Dynamic Analysis: 39

4.4.2.1. Limon Sandbox: 39
4.5 Extracting Features 41

4.5.1. Static Features: 41
4.5.2. Dynamic Features: 43

4.8 Model Selection 50
4.8.1. J48 50
4.8.2. Random forest: 51
4.8.3. Logistic Regression: 51
4.8.4. FNN 52

4.9 Chapter Summary: 52

CHAPTER 5: RESULT AND DISCUSSION 53
5.1 Overview: 53
5.2 Evaluation Metrices: 53
5.3 Performance: 54

5.3.1. Performance of J48: 54
5.3.2. Performance of Random Forest: 56
5.3.3. Performance of Logistic Regression: 58
5.3.4. Performance of FNN: 59

5.4 Performance comparison between classifiers: 61
5.5 Chapter Summary: 62

CHAPTER 6: CONCLUSION AND FUTURE RECOMMENDATIONS 63
6.1. Overview 63
6.2. Advanced feature selection and extraction techniques. 63
6.3. Expansion to comprehensive malware detection frameworks 63
6.4. Real-time detection and response systems. 64
6.5. Joint research and development: 64
6.6. Conclusion: 64
6.7. Methodological Contributions: 65

6.7.1. Practical Contributions: 65
6.7.2. Contributions to Cybersecurity 65

6.8. Chapter Summary: 66

REFERENCES 67

xi

LIST OF TABLES

Page No.

Table 1 Summary of Literature ... 16

Table 2 Hardware configuration ... 34

Table 3 Dataset samples.. 36

Table 4:List of static features .. 42

Table 5:List of some System calls .. 43

Table 6: List of some Encryption features .. 44

Table 7 Accuracy Result of J48 .. 55

Table 8 Accuracy Result of RF ... 57

Table 9 Accuracy Result of LR .. 59

Table 10 Accuracy Result of FNN.. 60

xii

LIST OF FIGURES

Page No.

Figure 1 Thesis Organization .. 8

Figure 2 Attack Ratio on Different OS ... 19

Figure 3 Timeline of Ransomware Attack .. 20

Figure 4 Variants of Linux Ransomware .. 23

Figure 5 Ransomware Attack Chain ... 25

Figure 6 Proposed Methodology ... 26

Figure 7 ELF Structure ... 27

Figure 8 Data Preprocessing ... 30

Figure 9 Readelf Output.. 37

Figure 10 Capa Output .. 38

Figure 11 Peframe Output ... 39

Figure 12 Limon File Execution ... 40

Figure 13 Saving Dynamic Analysis Report .. 41

Figure 14 Top 10 static features.. 46

Figure 15 Top 10 Dynamic Features .. 46

Figure 16 Handle Missing Values... 47

Figure 17 Check Duplicated Rows ... 47

Figure 18 Check Datatype .. 48

Figure 19 Before Label Encoding ... 49

Figure 20 After Label Encoding ... 49

xiii

Figure 21 Standard Scaling ... 50

Figure 22 Performance Result of J48.. 56

Figure 23 Performance Result of RF .. 57

Figure 24 Performance Result of LR .. 59

Figure 25 Performance Result of FNN ... 61

xiv

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ML Machine Learning

RF Random Forest

LR Logistic Regression

FNN Feedforward Neuro Network

OS Operating System

xv

ABSTRACT

This thesis has presented the implementation of machine learning algorithms for the

detection of a class of ransomware that specifically targets Linux-based systems. Due to

the increasing prevalence and complexity of such ransomware, traditional detection

methods, which are primarily based on signature-based matching, are becoming

obsolescent. This research endeavored to provide a fresh, novel, and effective way of

combating malware that affects Linux operating systems in the form of a hybrid analysis

novel methodology that combined static and dynamic analysis methods to extract

maximum features from malware samples. The obtained features were then used to train

four machine learning models, such as FNN, RF, LR and J48. The model’s effectiveness

was verified using evaluation metrices such as accuracy, recall, F1-score, etc. The

experimental results show the effectiveness of the applying machine learning techniques

to improve malware detection and develop a robust means of enhancing cybersecurity in a

world where threats are ever-growing

Keywords: Machine Learning, Ransomware, Malware Analysis, Linux

1

CHAPTER 1: INTRODUCTION

1.1. Overview

Over the last few years, the threat landscape concerning Linux systems has significantly

transformed, with a conspicuous hike in both quantity and complexity of malware

targeting these platforms. Ransomware has emerged as the most common types of

malwares among these threats, causing extensive damage on users. This section

provides an overview of Linux malware, concentrating mainly on one type of Linux

malware i.e., ransomware, and describes the significance of creating efficient detection

systems based on machine learning techniques.

 Linux is ranked more secure as an operating system alongside others. But recently

cyber criminals have turned to malware attacks on Linux systems in personal as well

as enterprise levels just because these systems have become popular among the

computer users for both personal as well as enterprise use. There are different types of

malwares in Linux, Among the malwares used are the ransomwares which can be

defined as a form of malicious software that blocks access to data files by simply

encrypting them and later demands for payment from the owner to grant him or her

access to his or her own files. In the past few years, ransomware attacks have increased

to a huge level.

Cybersecurity professionals face an important challenge in relation to the growth of

ransomware that is designed specifically for Linux. In many cases, the standard

signature-based detection methods do not perform as fast as the variations in malware

multiply rapidly. Therefore, there is a need for more sophisticated ways for identifying

2

when Linux machines are being attacked since the existing ones are not reliable. The

primary objective of this study is to offer solutions that will help detect Linux-based

malware using machine learning methodologies while focusing on Linux based

ransomware and its different variants.

1.2. Motivation

The reason for doing this research is that there is a growing menace of malware that

mainly targets Linux based systems, particularly ransomware. Linux has been

traditionally seen as more secure than any other operating system. However, recent

developments show an increase in Linux-specific malware which poses great danger

for individual users as well as corporations. For one to detect and forestall these threats

there is a need for new ways and means where machine learning can be highly effective

as per practical solutions.

Most of the traditional antivirus solutions’ ability to detect emerging Linux malware

by means other than signature-based means is not effective. This is because they are

not able to identify and handle malicious programs that are not available in their

databases. Machine learning, however, offers a more effective and adaptable approach

to malware detection. In fact, it is the use of machine learning algorithms that has

enabled antivirus programs to detect malicious programs with an extremely high

probability and without the need for regular updates. In other words, machine learning

algorithms have enabled antivirus programs to detect common characteristics and

patterns in the known viruses, hence the ability to detect unknown malware.

3

1.3. Problem Statement

Cyber-security professionals have a big task when it comes to handling the growing

number of Linux malware, specifically ransomware. It is not easy for conventional

signature-based detection techniques to be effective in the face of malware whose types

change fast. Linux systems also remain very prone to attacks due to inadequate strong

and efficient detection systems. These issues will be resolved by this research endeavor

using machine-learning methods to detect Linux based ransomware. Using machine

learning algorithms that can specifically recognize ransomware on Linux, the goal of

this effort is to remedy the problem.

Ransomware attacks on Linux systems can have catastrophic effects on enterprises or

people. Encrypting files while asking for money in exchange for decryption keys is one

of the things ransomwares does; this can result in terrible consequences. Spreading to

other computers within the same network through lateral movement, one ransomware

attack can cause severe damage by infecting many systems apart from the intended

target Computer-assisted detection is about finding and controlling such dangers, but

old-fashioned antivirus programs cannot cope with them effectively. For detecting

malware in particular Code written by computers that can learn from experience or find

patterns within data on its own.

1.4. Research Objectives

The fundamental tenets for this research thesis are summarized in the following broad

range of objectives:

4

• RO1: To study and analyze the Malware behavior specifically ransomware in

Linux Operating system.

• RO2: To propose an enhanced Machine Learning based mechanism to detect

Malware in Linux

• RO3: Comprehensive analysis of proposed methodology with existing solution

available.

1.5. Relevance to National Needs

Cybersecurity is a fundamental aspect of a country’s safety and survival in today’s

digital age. Major government systems could be paralyzed, and strategic data lost to

attacks by malicious software aimed at critical areas such as government operations or

important facilities. Contributing machine learning algorithms for the detection of

Linux malware can make a significant contribution towards global security

mechanisms.

As Linux is used widely in servers, IoT devices and other important systems, hackers

are focusing on this platform. For our country’s digital infrastructure to be secured we

must come up with state-of-the-art ways to figure out and resist these cyber threats.

Disturbing the confidentiality of individuals may occur after a malware strikes against

Linux systems due to data leaking. It is worth noting that this study aimed at protecting

national intelligence and the personal life of citizens from unauthorized data access and

leaking.

To address this issue, there needs to be a collaboration of universities, government

institutions, and private sector organizations dealing with cybersecurity issues. For

5

example, such collaboration can produce hacking tools for computer systems that are

up to date

1.6. Area of Application

The usage of machine learning to detect Linux malware has multiple uses in different

industries:

• The government and defense - shielding sensitive information from cyber

assaults.

• Health care - securing electronic health information and devices against malware

threats, while

• Finance - at the same time guaranteeing that all financial transactions go on

securely without being hindered by any extortion maneuver directed at the

banking system.

• Critical Infrastructure -To secure fundamental services like energy, transport, and

telecommunications, from potential cyber threats.

The cost of undesired and destructive cyber-attacks can be prevented, and such critical

systems protected through the application of AI-based malware detection mechanisms

for example. This works by closely scrutinizing vast repositories of pre-existing

malware strains enabling machine-learning algorithms to spot shared attributes as well

as recurrent trends; thus, enabling them to recognize novel malware types that were not

present before in known antivirus software systems.

6

1.7. Advantages

• The aim of malware detection research is to enhance cybersecurity practices and

hearten computer systems and networks from cyber threats with greater effectiveness

in developing detection technologies.

• Enhanced cybersecurity practices come because of using better detection techniques by

this, it is possible for experts to contrive more efficient detection techniques which

would enable organizations protect themselves more effectively against viruses thus

reducing possible damage after a hacking event.

• The field of malware detection research helps in developing a good understanding of

emerging cyber risks as well as methods used by cyber criminals in their activities

hence more focus in this area is essential. Knowing the behavior and features that define

several types of malwares will enable scholars to come up with mechanisms that are

capable of accurately detecting these programs thereby ensuring computer security.

• It is here that research projects in malware detection present themselves as excellent

opportunities for students interested in pursuing careers in cybersecurity as well as for

researchers. It is through solving actual problems that require practical solutions that

students can get direct training thus acquiring skills necessary for conducting their job

duties in this field.

• Detection research on malware therefore has worldwide significance. By creating better

means of detecting and sharing these findings with wider cyber security networks,

scholars contribute towards the global efforts to eradicate e-crime and make internet

less dangerous.

7

1.8.Thesis Organization

The research work has been organized and distributed in the following chapters listed

below. Also Fig. 1.1, represents the layout of this research which is described in detail in

this section.

• Chapter 1: A brief introduction is given in this chapter. Problem statement followed

by research objectives, relevance to national need, area of application and its

advantages are elaborated.

• Chapter 2: This chapter describes related works carried out by different researchers

on Linux in the malware field. Then we will see an overview Linux Malwares, and

specially ransomware and its 10 types that we will use to perform our research on. At

the end there is an attack chain of Linux based ransomwares.

• Chapter 3: This chapter explains the proposed model in detail. It is covering the

major research objectives of this research by explaining all phases of proposed model

in detail and presenting how malware detection will be performed using proposed

methodology

• Chapter 4: This Chapters presents all the practical implementation of the modules

discuss in chapter three and the results of our analysis

• Chapter 5: This Chapter sums up the research with conclusions drawn and discusses

the future aspects of the research.

8

Figure 1 Thesis Organization

9

CHAPTER 2: LITERATURE REVIEW AND BACKGROUND

2.1 Introduction

In this chapter a comprehensive summary of previous research on Linux malware detection

and how different research has detected malware within Linux environment. It also

presents background knowledge about Linux based malware, how these are increasing at a

rapid rate, specifically Linux Ransomware and its variants.

2.2 Literature Review

For the literature we have studied different research work but the existing literature on

Linux malware detection is very less as compared to windows malware detection. In one

work [1] authors present a new system for identifying Linux malware from a without

signature angle focusing on zero-day attack detection. They developed a system from the

ground up, named ELF-Miner, that forensically analyzes the ELF header files. This

generates and selects 383 specific uniquely curated features from the ELF header files that

distinguish malware from benign files. The study demonstrates the features classification’s

potential with a filtering algorithm known as information gain and removes many random

and irrelevant features utilizing a pre-processing filter. It then utilizes 383 features in

several classical and bio-inspired machine learning classifiers. From repeated testing on a

pre-defined test set with 709 Linux malware samples, the ELF-Miner shows over 99%

detection accuracy while maintaining a very low false alarm rate under 0.1%. The main

breakthrough of the paper is this feature, as it provides a solid foundation for malware

detection on Linux without relying on any known malware signatures, enabling it to

10

identify unknown threats in real-time. Given the rise of Linux systems in various fields,

they are a prime target for cyber-attacks, making such an approach relevant.

In another work, Author [2] proposes a method to accurately identify the presence of

malware in Linux based IoT devices using static feature analysis methodology. The

innovative thing about this work lies in the method’s speed and accuracy in resource-

constraint IoT devices and a proposed solution to the same. The features are extracted from

ELF executables, and then, using the chi-square method, the features are reduced

drastically and retrained on a limited feature set to still achieve a high detection. This

method allows this framework to run on such hardware. After feature reduction, the author

trains six different model on machine-learning algorithm. All six classifiers were able to

achieve above 99% accuracy and precision, with extremely low FPR and FNR ratios

considered helpful for a software-based system searched for malicious software in an IoT

device known for minimal computational power. This case is particularly relevant as

Linux-based IoT devices grow in popularity in various fields and become a target for

malware attacks.

In this paper the author [3] suggests a new way to detect library functions in Linux

malware, specifically in malware that is statically linked and deprived of information on

function names and addresses. This method is interesting primarily because the

modification mentioned above impedes traditional methods of function-level analysis. A

more holistic approach was taken to the issue, and, as a result, pattern matching was used

to detect library functions among 2,256 malware samples, the majority of which were

designed with the help of Intel 80386 architecture. The authors claim that their strategy

11

was highly effective: Library functions have been found in over 90% in 97.7% of cases.

The available data is the result of combining static analysis tools with pattern matching,

and they can be seen as a new tool for similar studies on threats in Linux space. Therefore,

this study is valuable both in terms of developing understanding of how Linux malware is

built and increasing the quality of forensic studies.

Authors [4] discuss a novel approach to machine learning enabled in detecting Linux

malwares from the dynamical extraction of system calls. The new mechanism is a

breakthrough because it enhances malware detection on the Linux platform, which is often

less studied compared to malware entry into Windows environments. The Key

Components include Dynamic Extraction of System Calls. The authors dynamically extract

system calls using strace, a system call tracer. Such extraction is critical because it captures

the semantics of the executables’ behavior which is essential in detecting malice. The

authors used benign and malwares executables to determine the optimal set of features that

would make the given model a classifier or not. The paper assesses the performance of

classifiers such as SVM and NB in classifying a file as malware or benign based on the

extracted feature. The proposed models will have exploited the dynamical nature of system

calls to effectively make decisions regarding the classification. The approach led to a high

classification accuracy of 97%, meaning the model is flexed and suitable for differentiating

malware in Linux environments. - The authors used real malware in their experimentation,

making the findings more application warrantable and robust.

This work presented by authors, is a crucial addition to the field of cybersecurity research

for several reasons. First and foremost, despite the increasing importance of embedded

12

devices and the Internet of Things, investigations into malware have historically been

scarce and have focused primarily on Windows-based malware due to its market

dominance. Thus, the decision to limit one’s study to Linux malware represents a

significantly understudied topic, which is more than beneficial. The key insights and

contributions of this work include: the diversity of targets; b the development of the

malware analysis pipeline; see the overview of Linux-specific techniques; and d the

empirical discovery described in the Conclusions. Furthermore, this work may serve as a

valuable resource for your future thesis. By providing open-source tools and results of the

conducted research, the authors suggest an effective way future scholars may address

research questions. Therefore, it is reasonable to include this work into the dissertation

structure since it provides a methodological framework based on real research experience.

In another approach [5] authors used for identifying malware on Linus systems employing

system tracers such as ftrace and strace. This paper is of high importance as Linux powers

a vast number of diverse platforms, namely servers and connected IoT devices, and it is

targeted increasingly often by malicious software due to these platforms’ connectivity and

importance. Prominent points. Malware Detection Techniques. The primary approach

mentions the drawbacks of signature-based detection and the necessity of dynamic analysis

to find zero-day malware. This approach is feasible using a system tracer that is employed

for monitoring system execution during the process. System Tracers and Sandboxing. The

system tracer allows for collecting run-time data and is essential for understanding the

malware’s relationship with the running system. Sandbox is discussed to safely test-run

malware for dynamic analysis without risk to the host system. Machine Learning Models.

The paper introduces machine learning models for categorizing the collected data into

13

malicious and benign. This approach was considerably successful in increasing the

detection rates of signature systems facing a new type of sophisticated malware. Challenges

and Recommendations. Various difficulties are tackled, such as sandboxing not being as

bulletproof as advertised, the increase in computational costs due to the tracing, and the

need for more high-quality datasets to train the models effectively. Future Research

Directions. The paper outlines future research such as further refinement of tracing and

sandboxing techniques, creating more adaptable models that require fewer false positives,

and various ML models that can adapt to new forms of malware. In conclusion, the study’s

authors demonstrate the urgency of utilizing modern technologies and methodologies

against modern malware that interests Linus systems. It provides valuable data for

increasing the resilience of the anti-malware systems and preventing most of the infections.

Another [6] methodology combines machine learning methodology with tree-based

classifiers to detect malware. In addition, the authors discuss the use of two analysis types:

static and dynamic. This method helps to increase the precision of detection for unknown

malware. Furthermore, it employs Gain Ratio and Symmetric Uncertainty for feature

selection. As classifiers Random Forest, J48, and REPTree are used. This method has a

high accuracy of 99.82% and a minimal false-positive rate of 0.002%. The researchers

analyzed a large amount of data, 24,000 files, malware, and not facilitating research

validation. As a result, it can be said that the use of a hybrid method in analyzing showed

on Linux experimental that it is effective. It is recommended for future research to reduce

the number of features and to expand the analysis to other file types.

14

Authors in research [7] aims to tackle ransomware detection through an approach that uses

dynamic features and deep learning methods. In this paper, the scholars examine the

various dynamic features such as API call sequences, DLL usage, enumerated directories,

mutual exclusions, and registry key operations and how they affect ransomware detection

accuracy. The methods used in dynamic analysis are as follows: API call sequences and

the pattern that the executable program makes are investigated since the dynamic API call

sequence often reveals a pattern of malicious use. DLLs and patterns of uses are also

studied since some DLLs are frequently used by malware. Enumerated directories in which

ransomware is repeated and tries to locate and encrypt the user’s files are simulated, as are

the mutuality in which ransomware uses files to alternately encrypt and encrypt ransom

files. Furthermore, mutual exclusions are determined by the analysis of mutual exclusions

that ransomware may use to prevent files from being accessed simultaneously or maintain

control of the system. SQL and how it interacts with system registry keys are analyzed, and

the architecture of the design reveals intent with respect to persistence or configuration

changes. As for the models, CNN and LSTMs were used, as well as simple MLP. In the

experiment conducted to obtain the results, the scholars used three datasets that infected

the system and one dataset that had not infected it. The results produced all the accuracies

and were computed and analyzed using TPR and FPR, as showed in the results. Hence, the

experiment concludes that API call sequences produce an excellent true-positive rate but

at the cost of high false-positive rates. On the other hand, enumeration directories produce

lower false positives and accurate results.DLL. This dynamic feature results in a high true

positive rate, but it also causes a high false positive rate since it fails to classify benign

behavior. However, mutual exclusions produce noble results, as do registry operations,

15

which remain to be adjusted but is the most revealing feature of ransomware. It is

predetermined that the symbiosis of the dynamic features and deep learning models

increase ransomware detection. Thus, further work is in the benefit to the highly adaptable

framework with this integration.

In paper [8] on which the authors list various components of their analysis, as well as the

machine learning models, they used to detect ransomware. These are the detailed aspects

based on the techniques and models they provided: Analysis Techniques: File and

Network Monitoring: The system files are examined for susceptibility to attack after being

introduced in the computer subunit. All packets are observed for traversing the network

system to identify any packet that may be ransomware. Behavioral Analysis: The

behavioral overview of files and packets into the computer system is recorded, and any

piece of software or packet behaving strangely will trigger a red flag. Packet Assessment:

All packets in the subunit are inspected heavily. The act is done at a micro-level that

scrutinizes each network bit, and any anomaly of the ransomware piece is identified

quickly. Random Forest: This was specified during the data training stage. Random Forest

is an ensemble learning technique that involves multiple decision trees in making

predictions. This technique balances an added advantage of accuracy and being immune to

overfitting.

Deep Learning Models: Deep learning models were not specified to include CNNs since

the architectural framework was not elaborated in my initial brief. However, the deep

learning models are used to sweep through high-level data aspects to quote any pattern that

is likely to be challenging for other ML techniques. Feature Extraction with Python’s pefile

Module: The decompile tool is used to extract features from executables for further training

16

of the model. This includes metadata from the header files and attributes of the binary.

Feature Selection and Extraction: Features are selected by opportunistic teachers who

review the data to select the most likely suspects to pick from the features that the

researchers used to train the features selected. The magnitude of file rigging is identified

in a lucrative technique. For example, a hashed value can be rough in a certain smart size

square or a debug size, or an accurate major image version in the system files. The models

are programmed in a labeled training dataset with both benign and malicious programs.

The training is an iterative phase by which the developers inform the models of the normal

and customary file behavior concerning the file characteristics given. The performance of

the models analyzed against novel and incognito word ransomware to prove the system’s

daily efficiency. The prototype of the software should maintain high detection of

ransomware viruses. The integration of both machine learning models and the analyzing

methodology propose the detection of ransomware viruses.

2.3 Summary of Related Work

Table 1 Summary of Literature

Sr.

No

Research Paper Algorithm

Used

Technique Limitations

1 ELF-miner: using

structural

knowledge and

data mining

methods to detect

RIPPER,

PART,

J48

Performed static

analysis on ELF

executable.

Extracted features

from elf header and

Very small dataset

used. Only static

analysis is

performed

17

new (Linux)

malicious

executable

use ML for

detection

2 Malware detection

through mining

symbol table of

ELF

No machine

learning used

Symbol table is

extracted from the

elf executables and

used for malware

detection

Static analysis is

only done.

3 A machine learning

approach for Linux

malware detection

IBK-5,

Random Forest

and Ada boost

Performed dynamic

analysis and extract

system calls and

applied machine

Less Files are used.

Only dynamic

analysis performed

4 Integrated Static

and Dynamic

analysis for

malware detection

SVM, RBF and

J48

PSI is extracted as

static feature and

Api calls as

dynamic feature to

detect malware

Small dataset used.

Very less features

5 In-execution

dynamic malware

analysis and

detection by

mining information

J-RIP ad J48 Dynamic analysis is

performed on PCB

and extracted

features are used to

train ML model.

Small and old

dataset. Only

dynamic analysis

18

in process control

blocks of linux OS.

6 Detection of

Advance Linux

Malware using ML

technique

LMT, Random

Forest and NBT

Hybrid analysis is

done on ELF files

for extracting

features and then

using features for

machine learning

Small dataset,

which can affect

accuracy of

machine learning.

7 Detection of

Malicious

Executable in

Linux

Environment

Using Tree-Based

Classifier

J48 and

Random Forest

Both static and

dynamic analysis is

done to extract

features. System

calls and elf header

is used as features

Very Less features

are used.

8 Linux malware

detection using

extended-

symmetric

Ada Boost and

Random Forest

System calls are

used to extract

feature and

information gain

method

Small dataset.

Only focus on

system calls

19

2.4 Overview of Linux Malware Ransomwares:

Linux malware is malicious software created to target Linux-based operating systems.

Although Linux is known for its exceptional security, it can still be vulnerable to malware.

Linux malware may infect various systems, including servers, desktop computers, IoT

equipment, embedded systems, and network appliances. Since Linux has gained great

popularity for personal and industrial purposes, the frequency and acuteness of Linux

malware assaults have risen significantly. According to a report published in [9] 55%

attacks are observed within Linux environment beating out windows for the first time. In

figure-1 we can see the attack ratio on different operating systems.

Figure 2 Attack Ratio on Different OS

As we started our research, we found a significant number of increases are reported in the

attacks on Linux systems and maximum attacks are Ransomware attacks on Linux systems.

Before getting into details, we must know what Ransomware is.

20

2.4.1. Ransomware:

Malware known as "Ransomware" is capable of infecting computers running on Windows,

Mac, Linux distributions, including Debian and Ubuntu. An attack of this kind would

encrypt documents after infiltrating a network or device and finding the important ones.

Frequently, a message requesting payment for the return of the encrypted files is the first

indication that an attack has occurred. This may seem scary to an individual, but it might

seriously harm a company's operations and reputation.

2.4.2. Linux Ransomware:

Ransomware attacks against Linux systems rose by 75% in 2022 compared to the previous

year. [10] An increasing number of Linux variants have been released by ransomware

gangs. In the figure below we can see the rising number of ransomware attacks in Linux

environment:

Figure 3 Timeline of Ransomware Attack

21

2.4.3. Variants of Linux Ransomware:

There are many different variants of Linux Ransomware, however in our research we have

include these 10 variants to understand the workflow of Linux ransomwares:

2.4.3.1. AvosLocker:

The sophisticated ransomware known as AvosLocker was first identified in June 2021 and

became well-known for its twice extortion method. AvosLocker is intended to both steal

and encrypt files from a victim's PC. After that, the attackers demand payment of a ransom

before releasing the material to the public.

2.4.3.2. Blackcat:

The ransomware family ALPHV, commonly referred to as BlackCat, is used in

ransomware as a service (RaaS) activity. Available on Linux-based operating systems

(Debian, Ubuntu, Ready NAS, Synology), Windows, and VMware ESXi, ALPHV is built

in the Rust programming language.

2.4.3.3. Darkside:

The DarkSide ransomware functioned as "ransomware-as-a-service". DarkSide demanded

Bitcoin and other cryptocurrency ransoms after encrypting and stealing confidential data

from large organizations. Like a legitimate company, they also set up a functional platform

and provided real-time chat help.

22

2.4.3.4. Royal:

Targeting VMware ESXi virtual machines, Royal Ransomware is the most recent

ransomware operation that facilitates Linux device encryption. The Equinix Threat

Analysis Center found it for the first time. Linux Royal Ransomware uses the command

line to execute properly.

2.4.3.5. Cylance:

Cylance is also a Linux based ransomware which operates using command line argument.

Its main target is VMware ESXi virtual machines. After getting access to the system, it

encrypts all the files specified in the command line argument. And leaves a ransom note at

the end.

2.4.3.6. Cl0p:

The deadly Clop ransomware, which is a member of the well-known Cryptomix

ransomware family. It encrypts files by planting clop extension on infected systems and

actively evading protection measures.

2.4.3.7. Revil:

With the first appearance of REvil in May 2019, the ransomware-as-a-service (RaaS)

operation behind it has grown to become one of the most active and successful threat

groups. Windows systems have been the main target of REvil. New samples, aimed at

Linux systems, have been discovered, though.

23

2.4.3.8. RansomExx:

 Ransomware like LockBit demands money to be paid to unlock the encrypted file. Rather

than focusing primarily on consumers, it targets corporations and government bodies. The

institutions who would be inconvenienced and have the resources to provide a sizable

payment are its possible targets.

2.4.3.9. IceFire:

The ransomware IceFire, also referred to as iFire, encrypts files, appends the ". iFire"

extension to filenames and generates a ransom letter called "iFire-readme. txt". Ice Fire’s

mission is to lock down files until a ransom is paid.

2.4.3.10. LockBit:

Adopting the Ransomware-as-a-Service (RaaS) architecture, LockBit is an extremely

persistent and intelligent ransomware program. The ransomware variant LockBit was most

often used globally in 2022 and is still widely used in 2023. Figure 4 illustrates all the

ransomware variants used in this research.

Figure 4 Variants of Linux Ransomware

24

2.5 Attack Chain of Linux Ransomware:

Attack chain is a process in which the attacker attacks a system. In other words, we can say

the steps an attacker follows to attack the system. In figure-5 we have described the attack

chain of Linux ransomware. It follows the steps given below:

Step 1: Attack finds vulnerability in the system.

Step 2: After finding vulnerability, he tries to gain access to the system.

Step 3: Once he is successful in gaining access, he starts installing ransomware

Step 4: After successful installation of ransomware, he tests if the encryption is

working.

Step 5: Then he checks CMD line argument which is used to give path of files to

encrypted.

Step 6: Then he starts searching whether files are already encrypted or not.

Step 7: If not, he drops the ransomware, and it encrypts all the files mentioned in the

given path.

25

Figure 5 Ransomware Attack Chain

2.6 Chapter Summary:

In this chapter we discussed the existing literature on Linux malware and its detection

systems. After that we presented the entire literature along with its limitations in tabular

form. We have also discussed the increasing rate of attacks within Linux environment,

Linux based ransomware and its different variants that we have covered in this research

work. At the end we discussed the attack chain steps followed by Linux ransomware.

26

CHAPTER 3 PROPOSED METHODOLOGY

3.1 Introduction

In this chapter the proposed methodology for detecting Linux based ransomware using

machine learning is explained. It describes the flow diagram of our framework, data

collection, different analysis methods, feature extraction, steps for data preprocessing,

importance of feature selection, different machine learning algorithms and evaluation

metrics based on which we will decide our results.

Figure 6 Proposed Methodology

3.2 Data Collection

To create a dataset, we need to collect data samples of both malicious files as well as benign

files. On these samples we will perform different methods to get useful information from

27

these files and later it will help us in training the machine learning model. As we are doing

our research on Linux malware, we need to collect ELF (Executable and Linkable Format)

files. It [11] is a standard file format for executable files, shared libraries, and core dumps.

The structure of ELF is shown in Figure 7.

Figure 7 ELF Structure

3.3 Malware Analysis Methods:

To analyze the elf files, we need to perform different malware analysis techniques on our

file samples to find the actual working of the file and whether it’s malicious or benign.

Malware analysis is of three types [12]:

• Static Analysis: It is the examination of the code and structure of the malware

without its execution. Static analysis includes the examination of the file’s

metadata, headers, strings, and embedded resources. Static analysis helps to

identify the signatures of known malware, understand the structural peculiarities of

the malware, and reveal potential indicators of compromise without executing the

28

code. A drawback of static analysis is that it is unable to detect behavior-based

malware and threats, as well as polymorphic or obfuscated code.

• Dynamic Analysis: Dynamic analysis is the process of running malware in a

confined environment and tracking what the malware does to learn more about its

behavior. Behavioral analysis, code emulations, and memory analysis are all

involved in dynamic analysis. The behavior of malware in activities includes file

system changes, registry alterations, network activity, and process behavior may all

be detected in real-time. However, not all malware behavior is detectable, and it

may go undetected if the system does not have enough telemetry or if the malware

is developed to avoid detection.

• Hybrid Analysis: Hybrid analysis combines both static and dynamic analysis to

offer experts an in-depth perspective of malware. In this case, the approach

integrates static analysis which helps to define and understand malware’s structure

and code, as well as dynamic analysis to research its behavior upon execution. From

this perspective, hybrid analysis helps experts achieve better understanding of

malware’s attributes, behaviors, and impacts on a system. As such, it improves

malware detection, analysis, and mitigation.

In our work we will use Hybrid analysis, to get both static as well as dynamic features of

the samples because now a days malwares are strong in functionality it gets hard to

understand the actual working of a malware because of sophisticated techniques used by

29

malware. Therefore, only by using static or only dynamic analysis is not sufficient to build

the detection system.

3.4 Feature Extraction:

The extraction of features [13] is a critical step of developing effective machine learning

models to detect malware. By converting raw data into a subset of relevant features, one

will lower the dimension of the data while retaining the essential information for detection.

Not only can this approach improve the working of models by directing models to only

relevant and discriminatory features, but it can also improve the ability to generalize from

the training on new malware samples never previously seen by the model. In addition,

feature extraction improves the interpretability of machine learning models by enabling

one to understand which information may be essential for detection. In simple words we

can say feature extraction steps can result in more accurate, efficient, and interpretable

detection models which can lead to improved cybersecurity outcomes. There are several

types of features which you can extract from the analysis report. In our work we will use

static as well as dynamic features.

3.5 Data Preprocessing:

Once we have extracted the features our next step is to clean the data. Machine learning

models cannot understand data without processing it. We must clean our dataset using

different techniques, so it gets easy for the model to learn it. Data processing [14] can be

done in following sequence:

• Data Cleaning: In this step, we will check all the missing values in our dataset so we

can perform the next steps.

30

• Fill missing values: First we will find all the NaN values then we will perform fill

method to fill all those values.

• Remove duplicated rows: After filling missing values we will check if there are any

duplicated rows. If there are duplicated rows, we will remove them.

• Checking datatype: Then we will check datatype of all the columns so that we can

decide which encoding method we need to use

• Performing encoding: Once we find all datatype, we need to make them all float

integer so we will use different encoding methods. For instance, one-hot, label and

frequency encoding.

• Normalize data: By applying scaling methods we will then normalize the dataset.

Figure 8 Data Preprocessing

3.6 Feature Selection

The selection of relevant features is integral in the creation of good models for malware

detection. By choosing the most informative features, the coders can decrease the

dimensionality of the data, which helps to develop better and more efficient code.

31

Indeed, by selecting the features that are the most significant in developing the models,

the coders contribute to better performance. It may reduce overfitting and assist in

enhancing the ability to generalize. Furthermore, it may lead to a significant decline in

the time necessary for the computation of predictive model development and use. It is

especially vital for real-time malware defenses. Also, such a selection results in a

greater interpretation of the model’s results. The logical predictions are to be based

only on the key features that the security workers can easily grasp. It may benefit in

quicker identifying of the malware features and characteristics. Thus, choosing relevant

features is critical in the development of successful and interpretable malware detection

models.

In our work we are using we will use Information Gain. It is used for malware detection

where we must identify discriminative features, the kind of features that help in

classifying a malware file and any other benign file. Calculations of I.G help in

understanding which feature is highly discriminative between the two. A higher

information gain implies a better distinction. It is helpful in feature selection where

many discriminative features will help in generating a more useful classifier model in

malware detection.

3.7 Classification

 After performing all test steps, we need to decide which classifier we need to apply

machine learning [15] on our dataset. Selecting classifier is a particularly crucial step, we

must check our dataset depending on the data in the dataset and what type of work we want

32

to get done by the classifier we select our classifier. Following are some classifiers that we

have selected to test our research work:

• Random Forest: It is an ensemble learning method that builds a number of decision

trees during training and reports the class, which is the mode of classes...

• Decision Tree: This approach, which creates a tree-constructed structure by

recursively dividing the dataset into subsets according to the highest-importance

feature, is simple to comprehend and analyze.

• Logistic Regression: It is a logistic function-based linear model for a binary

classification issue that simulates the likelihood of a default class.

• FNN: It is a neuro network model which is used to form networks.

3.8 Evaluation Metrices:

The metrics will help figure out whether the machine learning-based malware detection

achieves optimal levels in detecting the malware and, at the same time, minimizing the

false positives and false negatives. The evaluation metrics include:

• Accuracy: Referring to the percentage of samples that are accurately identified in

comparison to all samples.

• Precision: the percentage of real positives in the samples that were given a

positive classification.

• Recall: The percentage of actual positive samples among those that are deemed

positive, out of all positive samples.

33

• F1-score: It is a balanced metric between recall and precision since it is the

harmonic mean of the two.

3.9 Chapter Summary:

This chapter presented a detailed proposed methodology which is used for the detection of

Linux malware. Starting from collection of samples to malware analysis, data processing,

feature extraction and selection. Training ML classifiers for detection the Linux based

ransomware. All these modules are discussed in this chapter.

34

CHAPTER 4: IMPLEMENTATION AND EXPERIMENTAL

TESTBED

4.1 Introduction

In this chapter we will practically perform the things we have described in chapter three.

Our proposed architecture includes data collection analysis module, extraction of features,

data preprocessing, selection of features and classification module.

4.2 Experimental setup:

For performing malware analysis, we have use virtual machine on local system.

Whereas for the creation of dataset we collected malicious samples from malware

bazar. Tasks related to feature extraction, feature selection and training ML classifiers

we have used Google Colab platform. The programming language that is used for

performing all the tasks is python.

➢ Hardware Configuration:

Lenovo laptop was used for the implementation of this research with following aspects:

 Table 2 Hardware configuration

Processor Intel(R) Core (TM) i5-4210U

Memory
8.00 GB

OS
Ubuntu 20.04 LTS

➢

35

➢ Programming Language:

• Python:

Guido van Rossum first developed Python programming language in 1991 and released

it to the public in the same year. Consequently, writing code in Python is both easy and

understandable due to white spaces. Python is generally an interpreted programming

language that was designed for general purposes.

➢ Google Colab:

A free cloud service provided by Google called Google Colaboratory offers users a

simple means for writing and running Python code through Jupyter notebooks. It

consists of a web accessible Jupyter Notebook that allows for running of Python code

without any local installations or maintenance. All the work done from feature

extraction, feature selection, data processing, train of model all the work is done in

google colab.

4.3 Collection of Dataset

To create our dataset, we have collected malicious files and benign files. We have used

malware bazaar [16] for mal files and for non-mal files we have used files from different

directories of Linux which includes /user/ bin, /bin, /sbin. We have collected samples of

10 types of Linux based ransomware. However, we were only able to find 70 samples of

those types and 70 benign files. So, our dataset has a total of 140 samples.

36

Table 3 Dataset samples

Sr. No File Type Category No. of samples

1 ELF Malicious 70

2 ELF Benign 70

4.4 Perform Malware Analysis:

In our method we have used hybrid analysis so that we can use both static and dynamic

useful features.

4.4.1. Static Analysis:

To perform static analysis, we have used REMnux Operating System. It is specially

designed for malware analysis and reverse engineering.

4.4.1.1.REMnux: It is a Linux tool for figuring out and breaking down malignant

programming[17]. Experts can use it to explore malware without finding,

introducing, and arranging the devices. It has various apparatuses that can be used

for both static and dynamic examination. On our dataset, we have utilized Readelf,

Capa, and Peframe to extract useful static features from the files in our work.

• Readelf: With Unix-like systems, readelf is a tool that shows different details about

object files, much like obj dump. The GNU binutils include it.

37

• Capa: It is an open-source program called Capa is used to analyze malicious

programs. Capa offers a platform that the community can use to exchange,

identify, and codify behaviors that we've observed in malware. Capa analyses

executable files to find their capabilities.

Figure 9 Readelf Output

38

Figure 10 Capa Output

• Peframe: It is a free tool made for performing static analysis on dubious files and

viruses that is portable. With its help, malware researchers can discover details

about potentially harmful files, dubious sections and processes, packer, xor, digital

signatures, mutex, anti-debug, anti-virtual machine, and much more.

39

4.4.2 Dynamic Analysis:

To perform dynamic analysis, we have set up a sandbox to perform automated dynamic

analysis. We have used Limon Sandbox.

4.4.2.1 Limon Sandbox:

With the help of Limon [18], we may execute an executable in a controlled, sandboxed

environment and receive a report on its runtime behavior.

of an executable. A host computer that controls the guest computer is part of the

configuration for the limon sandbox. Ubuntu 18.04 was utilized in this study as the host

and guest operating systems, respectively. The file runs in the guest machine's full

Figure 11 Peframe Output

40

privileged mode to provide a better understanding of a file. The path to the file in the Limon

Sandbox is determined by doing a command line analysis of every file in a brand-new

virtual computer. A current snapshot is taken during virtual machine setup so that limon

can reverse after the le is executed. The entire trail of the network, system calls, and

functions is saved in a text file called final report by the limon sandbox to the analysis

report folder after execution is finished.

Figure 12 Limon File Execution

41

Extracting Features

In this phase we extracted features from the data generated by different tools during the

analysis. We have used Features from both static and dynamic analyses in this work which

were good for the classifier explained in this section.

4.5.1. Static Features:

We have extracted static features from various fields of an ELF file. Most of the

information is extracted from the ELF file header.

• ELF header

• File information

Following table contains static features:

Figure 13 Saving Dynamic Analysis Report

42

Table 4:List of static features

Sr. No Name Datatype Description

1 file_size float Size of file

2 Identification obj Special no to identify file

3 Class String Elf class

4 Version int Elf version

5 Os/ABI String Operating system

6 Machine String Machine name

7 ent_add int Entry point address

8 start_prog_header int Start of program headers

9 start_sec_header int Start of section headers

10 number_flag int No of Flag

11 size_header int Size of this header

12 size_prog_header int Size of program headers

13 num_ prog_header int Number of program headers

14 num_ sec_header int Number of section headers

15 sec_head_st_ind int Section header string table index

16 file_ent float Entropy of whole file content

43

4.5.2. Dynamic Features:

From dynamic analysis we have extracted:

4.5.2.1.System calls frequency:

After executing the files, we extracted all the system calls and then applied a python script

to find the frequency of every system call.

Table 5:List of some System calls

Sr. No
Name Description

1
access check whether the calling program has access to a

specified file

2
Bind associates an address with the socket descriptor

3
Clone creates a new process

4
Exce to execute file

5
connect

the socket that the file descriptor pointed to is connected.

6
chmod modifies the access rights of the file

4.5.2.2.Encryption Method:

Another feature that we have used is encryption method, as we have analyzed Linux based

ransomwares, encryption is main feature of a ransomware. Since ransomware usually

44

encrypts files on the victim's machine, keeping an eye out for unusual encryption activity

might be helpful in spotting possible ransomware attacks

Table 6: List of some Encryption features

Sr. No
Name Datatype Description

1
Encryption Algorithm string Type of encryption algorithm used

2
Key size int Size of encryption key

3
extension string Extension used by ransomware

after encryption

4.5.2.3.Network Artifacts:

In ransomware attacks there is a high chance of network activity because the binary must

connect to its C2C server after getting access of the system. So, we have extracted some

features from network activity

Sr. No Name Datatype Description

1
Total Packets int No. of packets sent and receive

2
DNS Queries binary Did query, yes or no

3
HTTP Requests binary Did Request, yes or no

45

4
HTTPS Traffic int Traffic captured

5
Unique Source IPs int Unique source Ip address

6
Unique Desti IPs int Unique destination Ip address

7
Protocol string Type of protocol used

4.5 Feature Selection:

For feature selection we have used the selection method: Information Gain [19]. It gives

score to every feature based on the information that feature contains. Standard score ranges

from 0 to 1. Features below 0 are considered useless. Features are calculated as follows:

IG(X) = H(Y) - H(Y|X)

Where:

• IG(X): Information Gain of feature X is denoted by it.

• H(Y): is the target variable Y's entropy prior to the split

• H(Y|X): is, given feature X, the conditional entropy of Y.

In the below graphs we can see the top 10 static and dynamic features selected by

Information Gain.

46

Figure 14 Top 10 static features

Figure 15 Top 10 Dynamic Features

4.6 Perform Data Processing:

Data processing can be done in following sequence:

47

Step 1: Fill missing values:

First, we will find all the NaN values then we will perform fill method to fill all those

values.

Figure 16 Handle Missing Values

Step 2: Remove duplicated rows:

After filling missing values we will check if there any duplicated rows. If there

are duplicated rows, we will remove them.

Figure 17 Check Duplicated Rows

48

Step 3: Checking datatype:

Next step is to check all the unique data types do we can perform encoding to

make them all float datatype. In the figure below we can see we have 3 different

data types:

o Object

o Float

o Integer

Figure 18 Check Datatype

Step 4: Performing encoding:

Once we find all datatype, we need to make them all float integer so we will

use label encoding methods.

49

Figure 19 Before Label Encoding

After performing label encoding, we can see we have only one data type left which is float.

Figure 20 After Label Encoding

 Step 5: Normalize data:

By applying the standard scaling method, we normalize the dataset.

50

Figure 21 Standard Scaling

4.7 Model Selection

4.8.1. J48:

J48, more popularly recognized as C4.5, is an ADT technique that is broadly employed in

categorization systems. The following are the principal parameters of J48 algorithm:

• Confidence Factor (CF): Specify the confidence threshold to control tree

pruning.

• The minimum number of instances: needed to divide a node is indicated by the

Minimum Number of Instances per Leaf (M) field.

• The minimal number of instances needed to split a node is indicated by the minimal

Number of Instances per Split (L) parameter.

• Binary Splits (B): Used to ascertain if binary divisions must be imposed divide a

node

51

• Subtree Raising (S): It can be used to elevate useless sub trees and so improving

tree performances

4.8.2. Random forest:

During training, several decision trees are built using the Random Forest ensemble learning

technique, which yields the mean prediction (regression) or the mode of the classes

(classification) for each individual tree. In comparison to a single decision tree classifier,

it enhances performance and decreases overfitting. It has some parameters:

• Number of Trees (n_estimators): how many decision trees are present in the

forest.

• Max depth of tree: The greatest depth of a decision tree.

• minimum number of samples to split a node: the least amount of samples

required to separate an internal node.

• Min samples of leaf: which indicates how many samples are required in each leaf

node: The minimal number of samples required at each leaf node.

4.8.3. Logistic Regression:

The afore-mentioned logistic regression model works on several parameters. The following

are some of the parameters:

• The maximum number of iterations the optimization technique can go through is

indicated by the term max_iter.

52

• C is the inverse of regularization strength, meaning that higher regularization strengths

are given for lower values.

• class_weight=’balanced’ helps to pass class weights as they are assumed to be inverse

class frequencies. This parameter is used to solve the problem related to the weight

imbalance.

4.8.4. FNN

The last classifier that we used is a neural network, specifically a feedforward neural

network (also known as a multi-layer perceptron, MLP) which is implemented using

TensorFlow’s Kera’s API. It is designed for binary classification tasks. The key parameters

of this neural network classifier are:

• Epochs: Number of epochs for training.

• Validation split: 20% of the training data is used for validation.

• Verbose: Verbosity mode for training logs.

4.8 Chapter Summary:

This chapter gives a detailed approach that we have used to implement our proposed

methodology. How we have created our own dataset. To perform malware analysis, we

have used both static and dynamic analysis. For static we have used REMnux and for

dynamic analysis we have used Limon sandbox. After performing feature extraction, we

have selected a list of static and dynamic features. Then we applied an Information gain

feature selection method to find which features are useful. At the end we selected 4 ML

classifiers and their parameters to train our dataset.

53

CHAPTER 5: RESULT AND DISCUSSION

5.1 Overview:

In this chapter we will describe evaluation metrices based on which we will measure the

performance of all the classifiers. The performance is measured by using accuracy, F1-

score, Recall and precision. At the end we will also perform a comparative analysis

between the performance of all the 4 classifiers.

5.2 Evaluation Metrices:

 The metrics [20] will help figure out whether the machine learning-based malware

detection achieves optimal levels in detecting the malware and, at the same time,

minimizing the false positive and false negatives.

Following are the metrics that we have used:

• Accuracy: the proportion of accurately predicted cases to all instances in the dataset.

 Accuracy =
 (𝐓 𝐏 + 𝐓 𝐍)

(𝐓 𝐏 + 𝐓 𝐍 − 𝐅 𝐏 + 𝐅 𝐍)

• Precision: the proportion of accurately predicted positive observations to all positive

observations that were forecasted.

 Precision =
𝑇𝑃

 (𝐓 𝐏 + 𝐅 𝐏)

 • Recall: the proportion of all real positive observations to all accurately projected positive

observations.

54

 Recall =
𝑇𝑃

 (𝐓 𝐍 + 𝐅 𝐍)

• F1 Score: the Precision and Recall weighted average.

 F1 Score = 2
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗ 𝐑𝐞𝐜𝐚𝐥𝐥)

 (𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+ 𝐑𝐞𝐜𝐚𝐥𝐥)

Where:

TP = True Positives

TN = True Negatives

 FP = False Positives

FN = False Negatives

5.3 Performance:

5.3.1. Performance of J48:

Precision:

• The precision for class 0 (94%) indicates that 94% of the time the model is right when

it classifies an instance as such.

• The precision for class 1 (93%) shows that 93% of the time, the model correctly predicts

an instance to be class 1.

Recall:

• Class 0 recall (94%) indicates that 94% of real class 0 cases are correctly identified by

the model.

55

• Class 1 recall (93%) indicates that the model accurately identified 93% of real class 1

events.

F1-Score:

• The class 0 F1-score of 94% indicates that recall and precision are well-balanced.

• Class 1's F1-score (93%) is somewhat lower than class 0 but still shows a solid balance

for the class.

Accuracy:

 With an overall accuracy of 94%, the model 94% of the time correctly predicts the class

(whether 0 or 1).

Table 7 Accuracy Result of J48

Label Precision Recall F1 score

0 0.94 0.94 0.94

1 0.93 0.93 0.93

Accuracy 0.95

56

Figure 22 Performance Result of J48

5.3.2. Performance of Random Forest:

Precision:

• For class 1, a precision of 1.00 indicates that all positive predictions were

realized, which is outstanding.

• The precision for class 0 is still rather acceptable, but it is significantly lower at

0.89.

Recall:

• A recall score of 1.00 for class 0 denotes flawless memory.

• The recall for class 1 is 0.87, meaning that almost 13% of the real positives for

this class were missed by the model.

57

F1-Score:

• An F1-score near 1 is considered exceptional, and in this case, both classes have

high F1-scores (0.94 for class 0 and 0.93 for class 1), indicating that recall and

precision are well-balanced.

Accuracy:

• The overall accuracy of 0.9375 indicates that the model correctly predicted about

93.75% of the total instances. This is generally considered a high accuracy rate.

Table 8 Accuracy Result of RF

Label Precision Recall F1 score

0 0.89 1.00 0.94

1 1.00 0.87 0.93

Accuracy 0.94

 Figure 23 Performance Result of RF

58

5.3.3. Performance of Logistic Regression:

Precision:

• The precision for class 0 is 0.85. This indicates that 85% of cases that were

expected to be class 0 are in fact class 0, which is better than ideal but still good.

• The precision for class 1 is 1.00, which denotes complete precision; all

occurrences that are anticipated to be class 1 are in fact class 1.

Recall:

• The recall for class 0 is 1.00, meaning that every real case of class 0 was

accurately anticipated; this indicates flawless recall.

• The recall for class 1 is 0.80. This indicates that 20% of real class 1 cases were

missed by the model, indicating potential for improvement in class

identification.

F1-Score:

• For class 0, the F1-scores are 0.92, and for class 1, they are 0.89. The strong

ratings for both indicate that recall and precision are well-balanced,

particularly for class 0.

Accuracy:

• Overall accuracy of 0.90625 (or 90.625%) is quite strong. This indicates that

the model correctly predicted the class for about 90.625% of the cases in the

dataset.

59

Table 9 Accuracy Result of LR

Label Precision Recall F1 score

0 0.85 1.00 0.92

1 1.00 0.80 0.89

Accuracy 0.91

Figure 24 Performance Result of LR

5.3.4. Performance of FNN:

Precision:

• The precision for class 0 is 0.85. This indicates that 85% of cases that were

expected to be class 0 are in fact class 0, which is better than ideal but still

fairly good.

60

• The precision for class 1 is 1.00, which denotes complete precision; all

occurrences that are anticipated to be class 1 are in fact class 1.

Recall:

• The recall for class 0 is 1.00, meaning that every real case of class 0 was

accurately anticipated; this indicates flawless recall.

• The recall for class 1 is 0.80. This indicates that 20% of real class 1 cases were

missed by the model, indicating potential for improvement in class

identification.

F1-Score:

• For class 0, the F1-scores are 0.92, and for class 1, they are 0.89. The strong

ratings for both indicate that recall and precision are well-balanced,

particularly for class 0.

Accuracy:

• As per overall accuracy of 0.97 (or 97%) is quite strong. This indicates that the

model correctly predicted the class for about 90.625% of the cases in the

dataset.

Table 10 Accuracy Result of FNN

Label Precision Recall F1 score

0 0.80 1.00 0.92

1 1.00 0.80 0.89

Accuracy 0.97

61

Figure 25 Performance Result of FNN

5.4 Performance comparison between classifiers:

Among all the 4 classifiers the best performance is FNN with 97% accuracy, after FNN

classifier j48 has the best performance with 95% accuracy. Whereas RF has the 3rd highest

accuracy, that is 94%. Logistic regression has 91% accuracy which is the lowest accuracy

among all the classifiers. However, all the classifiers have accuracy above 90% which

indicates that this research work presents a good detection system for Linux based

malware.

62

5.5 Chapter Summary:

We have used 4 different parameters to measure the performance of classifiers. According

to accuracy FNN has the highest score 97% followed by j48 which has 2nd highest score

95%. Random forest has the 3rd highest score 94%. Logistic regression has the lowest

score among all the other classifiers, which is 91%

63

CHAPTER 6: CONCLUSION AND FUTURE RECOMMENDATIONS

6.1.Overview

In the last chapter we recommended some different future work aspects that can be helpful

for future researchers. Other than that, we sum up our research work and provided a

conclusion of the contribution this research has made in the world of cyber security, all this

is covered in this chapter.

6.2. Advanced feature selection and extraction techniques.

Further improvements in feature selection and extraction will be necessary to increase the

efficiency of machine learning models in malware detection. The use of state-of-the-art

algorithms such as deep learning, particularly CNNs and RNNs, may help to uncover the

complex nonlinear patterns in the data that traditional models gloss over. Additionally,

utilizing autoencoders for dimensionality reduction could optimize the feature set towards

the most discriminative attributes, which would enable more accurate prediction and

quicker processing.

6.3. Expansion to comprehensive malware detection frameworks

Only ransomware, a tiny portion of the malware environment that targets Linux computers,

is covered in the current study. It is critical to create a broader malware detection

framework that can recognize a variety of malware threats, including zero-day exploits,

spyware, and rootkits. This will necessitate the development of a scalable and adaptable

architecture capable of accommodating new malware signatures and behaviors, which can

64

be accomplished via adaptive learning methods that update the models continuously

without human intervention.

6.4. Real-time detection and response systems.

Implementing real-time detection and response systems is critical for reducing the

consequences of malware on the infected systems. Future work might include integrating

the developed machine learning models into existing IDS and IPS models for Linux, which

would enable the automation of response measures such as quarantining the system,

installing patches, and performing backups to avoid data loss.

6.5. Joint research and development:

The difficulty of contemporary cyber threats requires a collaborative effort in which

diverse industries and disciplines work together. Future work will be essential, with

collaboration with academic institutions, cybersecurity companies, and technology

industry players providing access to a vast array of data and knowledge that can improve

the research’s robustness and practicality. This collaboration would also facilitate the

development of uniform Linux malware data models that are critical in the training and

testing machine learning custom tools.

6.6.Conclusion:

The thesis has successfully constructed and tested a machine learning framework for

detecting Linux systems ransomware, and carefully evaluated its efficacy in comparison to

prior detection methods. The merits of using a blended analytical approach incorporating

static and dynamic analyses are proven to be effective, with high ransom accuracy rate and

65

high recall rate and precision. This achievement is a significant advancement in

cybersecurity, specifically on Linux systems which are less commonly researched in

malware detection studies. In Conclusion, the thesis, regarding the research problem,

contributes several factors:

6.7.Methodological Contributions:

This thesis has brought a distinctive method for malware detection that marries both static

and dynamic analyses to strengthen the identification of various ransomware through the

generation of an improved feature set that afforded to efficiently identify many ransomware

types.

Machine Learning Contributions: The paper shows a positive comparison between

different ML classifiers which include, Logistic Regression, Random Forest and Decision

Tree’s potential ability to address ransomware cybersecurity difficulties.

6.7.1. Practical Contributions: I also lay down the basis for generating operational

tools or systems to protect and enforce systems in the Linux ecosystem.

6.7.2. Contributions to Cybersecurity: The method shortens the ransomware

detection time and among the other benefits also retains the ransomware attack

window at its worst, while the cost of ransomware hacking is increasing.

Furthermore, the method is vulnerable to changes in techniques and tactics

demonstrated by new ransomware, defending the method from change and

needing another review.

66

6.8.Chapter Summary:

This chapter presents future recommendations for this research and the existing literature

which includes advance feature selection and extraction methods, using big dataset for

better accuracy, and creation of real time detection system. Other than this it gives

conclusion of this research work which explains the summary of this research.

67

REFERENCES

[1] Asmitha K A, V. P. (2014). A machine learning approach for linux malware

detection. International Congress on Information and Communication

Technology.

[2] Asmitha, K. V. (2014). Linux malware detection using extended–symmetric

uncertainty. IEEE.

[3] Azhagusundari, B. a. (2013). Feature selection based on information gain.

International Journal of Innovative Technology and Exploring Engineering

(IJITEE), 2, 18--21.

[4] C. R. K. S. S. Vaishali. (2021). Detection of Malicious Executable in Linux

Environment Using Tree-Based Classifer. Springer.

[5] Dark reading. (n.d.). Retrieved from

https://www.darkreading.com/vulnerabilities-threats/linux-ransomware-poses-

significant-threat-to-critical-infrastructure

[6] Handa, N. K. (2020). Detection of Advanced Linux Malware. India: Springer.

[7] Huang, D.-S. a.-D. (1995). Linear and nonlinear feedforward neural network

classifiers: a comprehensive understanding. Journal of Intelligent Systems, 9, 1-

38.

[8] Limon sandbox. (n.d.). Retrieved from https://github.com/monnappa22/Limon

68

[9] Lin, C.-T. a.-J. (2015). Feature selection and extraction for malware classification.

J. Inf. Sci. Eng., 21.

[10] Malware Bazar. (n.d.). Retrieved September 12, 2023, from

https://bazaar.abuse.ch/

[11] Miller, J. (2023, 7 18). Linux Ransomware Poses Significant Threat to Critical

Infrastructure. (Dark Reading) Retrieved from

https://www.darkreading.com/vulnerabilities-threats/linux-ransomware-poses-

significant-threat-to-critical-infrastructure

[12] others, V. a. (2021). Classification model evaluation metrics. International

Journal of Advanced Computer Science and Applications, 12, 599--606.

[13] REMnux: A Linux Toolkit for Malware Analysis. (n.d.). Retrieved from

https://remnux.org/

[14] Riadi, I. (2015). Implementation of malware analysis using static and dynamic

analysis method. International Journal of Computer Applications.

[15] Salvador and Galar, M. a. (2018). Data level preprocessing methods. Learning

from Imbalanced Data Sets.

[16] Sanjay Sharma, R. K. (2020). Detection of Advanced Malware by Machine

Learning Techniques. Springer.

[17] Shahzad, F. F. (2011). ELF-miner: using structural knowledge and data mining

methods to detect new . IEEE.

69

[18] Shahzad, F. S. (2015). In-execution dynamic malware analysis and detection by

mining information in process control blocks of linux OS.

[19] T. I. Standard. Executable and Linking Format (ELF) Specification Version 1.1.

(1993).

[20] Ucci, D. a. (2019). Survey of machine learning techniques for malware analysis.

Elsiver Computers & Security.

