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ABSTRACT 

This thesis has presented the implementation of machine learning algorithms for the 

detection of a class of ransomware that specifically targets Linux-based systems. Due to 

the increasing prevalence and complexity of such ransomware, traditional detection 

methods, which are primarily based on signature-based matching, are becoming 

obsolescent. This research endeavored to provide a fresh, novel, and effective way of 

combating malware that affects Linux operating systems in the form of a hybrid analysis 

novel methodology that combined static and dynamic analysis methods to extract 

maximum features from malware samples. The obtained features were then used to train 

four machine learning models, such as FNN, RF, LR and J48. The model’s effectiveness 

was verified using evaluation metrices such as accuracy, recall, F1-score, etc. The 

experimental results show the effectiveness of the applying machine learning techniques 

to improve malware detection and develop a robust means of enhancing cybersecurity in a 

world where threats are ever-growing 

Keywords: Machine Learning, Ransomware, Malware Analysis, Linux 
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CHAPTER 1: INTRODUCTION 

1.1. Overview 

Over the last few years, the threat landscape concerning Linux systems has significantly 

transformed, with a conspicuous hike in both quantity and complexity of malware 

targeting these platforms. Ransomware has emerged as the most common types of 

malwares among these threats, causing extensive damage on users. This section 

provides an overview of Linux malware, concentrating mainly on one type of Linux 

malware i.e., ransomware, and describes the significance of creating efficient detection 

systems based on machine learning techniques. 

 Linux is ranked more secure as an operating system alongside others. But recently 

cyber criminals have turned to malware attacks on Linux systems in personal as well 

as enterprise levels just because these systems have become popular among the 

computer users for both personal as well as enterprise use. There are different types of 

malwares in Linux, Among the malwares used are the ransomwares which can be 

defined as a form of malicious software that blocks access to data files by simply 

encrypting them and later demands for payment from the owner to grant him or her 

access to his or her own files. In the past few years, ransomware attacks have increased 

to a huge level. 

Cybersecurity professionals face an important challenge in relation to the growth of 

ransomware that is designed specifically for Linux. In many cases, the standard 

signature-based detection methods do not perform as fast as the variations in malware 

multiply rapidly. Therefore, there is a need for more sophisticated ways for identifying 
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when Linux machines are being attacked since the existing ones are not reliable. The 

primary objective of this study is to offer solutions that will help detect Linux-based 

malware using machine learning methodologies while focusing on Linux based 

ransomware and its different variants.  

1.2. Motivation 

The reason for doing this research is that there is a growing menace of malware that 

mainly targets Linux based systems, particularly ransomware. Linux has been 

traditionally seen as more secure than any other operating system. However, recent 

developments show an increase in Linux-specific malware which poses great danger 

for individual users as well as corporations. For one to detect and forestall these threats 

there is a need for new ways and means where machine learning can be highly effective 

as per practical solutions. 

Most of the traditional antivirus solutions’ ability to detect emerging Linux malware 

by means other than signature-based means is not effective. This is because they are 

not able to identify and handle malicious programs that are not available in their 

databases. Machine learning, however, offers a more effective and adaptable approach 

to malware detection. In fact, it is the use of machine learning algorithms that has 

enabled antivirus programs to detect malicious programs with an extremely high 

probability and without the need for regular updates. In other words, machine learning 

algorithms have enabled antivirus programs to detect common characteristics and 

patterns in the known viruses, hence the ability to detect unknown malware. 
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1.3. Problem Statement 

Cyber-security professionals have a big task when it comes to handling the growing 

number of Linux malware, specifically ransomware. It is not easy for conventional 

signature-based detection techniques to be effective in the face of malware whose types 

change fast. Linux systems also remain very prone to attacks due to inadequate strong 

and efficient detection systems. These issues will be resolved by this research endeavor 

using machine-learning methods to detect Linux based ransomware. Using machine 

learning algorithms that can specifically recognize ransomware on Linux, the goal of 

this effort is to remedy the problem. 

Ransomware attacks on Linux systems can have catastrophic effects on enterprises or 

people. Encrypting files while asking for money in exchange for decryption keys is one 

of the things ransomwares does; this can result in terrible consequences. Spreading to 

other computers within the same network through lateral movement, one ransomware 

attack can cause severe damage by infecting many systems apart from the intended 

target Computer-assisted detection is about finding and controlling such dangers, but 

old-fashioned antivirus programs cannot cope with them effectively. For detecting 

malware in particular Code written by computers that can learn from experience or find 

patterns within data on its own. 

1.4. Research Objectives 

The fundamental tenets for this research thesis are summarized in the following broad 

range of objectives: 
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• RO1: To study and analyze the Malware behavior specifically ransomware in 

Linux Operating system.  

• RO2: To propose an enhanced Machine Learning based mechanism to detect 

Malware in Linux  

• RO3: Comprehensive analysis of proposed methodology with existing solution 

available. 

1.5.  Relevance to National Needs 

Cybersecurity is a fundamental aspect of a country’s safety and survival in today’s 

digital age. Major government systems could be paralyzed, and strategic data lost to 

attacks by malicious software aimed at critical areas such as government operations or 

important facilities. Contributing machine learning algorithms for the detection of 

Linux malware can make a significant contribution towards global security 

mechanisms. 

As Linux is used widely in servers, IoT devices and other important systems, hackers 

are focusing on this platform. For our country’s digital infrastructure to be secured we 

must come up with state-of-the-art ways to figure out and resist these cyber threats. 

Disturbing the confidentiality of individuals may occur after a malware strikes against 

Linux systems due to data leaking. It is worth noting that this study aimed at protecting 

national intelligence and the personal life of citizens from unauthorized data access and 

leaking. 

To address this issue, there needs to be a collaboration of universities, government 

institutions, and private sector organizations dealing with cybersecurity issues. For 
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example, such collaboration can produce hacking tools for computer systems that are 

up to date 

1.6. Area of Application 

The usage of machine learning to detect Linux malware has multiple uses in different 

industries:  

• The government and defense - shielding sensitive information from cyber 

assaults. 

• Health care - securing electronic health information and devices against malware 

threats, while  

• Finance - at the same time guaranteeing that all financial transactions go on 

securely without being hindered by any extortion maneuver directed at the 

banking system. 

• Critical Infrastructure -To secure fundamental services like energy, transport, and 

telecommunications, from potential cyber threats. 

The cost of undesired and destructive cyber-attacks can be prevented, and such critical 

systems protected through the application of AI-based malware detection mechanisms 

for example. This works by closely scrutinizing vast repositories of pre-existing 

malware strains enabling machine-learning algorithms to spot shared attributes as well 

as recurrent trends; thus, enabling them to recognize novel malware types that were not 

present before in known antivirus software systems. 
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1.7. Advantages 

• The aim of malware detection research is to enhance cybersecurity practices and 

hearten computer systems and networks from cyber threats with greater effectiveness 

in developing detection technologies.  

• Enhanced cybersecurity practices come because of using better detection techniques by 

this, it is possible for experts to contrive more efficient detection techniques which 

would enable organizations protect themselves more effectively against viruses thus 

reducing possible damage after a hacking event. 

• The field of malware detection research helps in developing a good understanding of 

emerging cyber risks as well as methods used by cyber criminals in their activities 

hence more focus in this area is essential. Knowing the behavior and features that define 

several types of malwares will enable scholars to come up with mechanisms that are 

capable of accurately detecting these programs thereby ensuring computer security. 

• It is here that research projects in malware detection present themselves as excellent 

opportunities for students interested in pursuing careers in cybersecurity as well as for 

researchers. It is through solving actual problems that require practical solutions that 

students can get direct training thus acquiring skills necessary for conducting their job 

duties in this field. 

• Detection research on malware therefore has worldwide significance. By creating better 

means of detecting and sharing these findings with wider cyber security networks, 

scholars contribute towards the global efforts to eradicate e-crime and make internet 

less dangerous. 
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1.8.Thesis Organization 

The research work has been organized and distributed in the following chapters listed 

below. Also Fig. 1.1, represents the layout of this research which is described in detail in 

this section.  

• Chapter 1: A brief introduction is given in this chapter. Problem statement followed 

by research objectives, relevance to national need, area of application and its 

advantages are elaborated.  

• Chapter 2: This chapter describes related works carried out by different researchers 

on Linux in the malware field. Then we will see an overview Linux Malwares, and 

specially ransomware and its 10 types that we will use to perform our research on. At 

the end there is an attack chain of Linux based ransomwares.  

• Chapter 3: This chapter explains the proposed model in detail. It is covering the 

major research objectives of this research by explaining all phases of proposed model 

in detail and presenting how malware detection will be performed using proposed 

methodology 

• Chapter 4: This Chapters presents all the practical implementation of the modules 

discuss in chapter three and the results of our analysis 

• Chapter 5: This Chapter sums up the research with conclusions drawn and discusses 

the future aspects of the research.  
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Figure 1 Thesis Organization 
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CHAPTER 2: LITERATURE REVIEW AND BACKGROUND  

2.1 Introduction 

In this chapter a comprehensive summary of previous research on Linux malware detection 

and how different research has detected malware within Linux environment. It also 

presents background knowledge about Linux based malware, how these are increasing at a 

rapid rate, specifically Linux Ransomware and its variants.  

2.2  Literature Review 

For the literature we have studied different research work but the existing literature on 

Linux malware detection is very less as compared to windows malware detection. In one 

work [1] authors present a new system for identifying Linux malware from a without 

signature angle focusing on zero-day attack detection. They developed a system from the 

ground up, named ELF-Miner, that forensically analyzes the ELF header files. This 

generates and selects 383 specific uniquely curated features from the ELF header files that 

distinguish malware from benign files. The study demonstrates the features classification’s 

potential with a filtering algorithm known as information gain and removes many random 

and irrelevant features utilizing a pre-processing filter. It then utilizes 383 features in 

several classical and bio-inspired machine learning classifiers. From repeated testing on a 

pre-defined test set with 709 Linux malware samples, the ELF-Miner shows over 99% 

detection accuracy while maintaining a very low false alarm rate under 0.1%. The main 

breakthrough of the paper is this feature, as it provides a solid foundation for malware 

detection on Linux without relying on any known malware signatures, enabling it to 
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identify unknown threats in real-time. Given the rise of Linux systems in various fields, 

they are a prime target for cyber-attacks, making such an approach relevant. 

In another work, Author [2] proposes a method to accurately identify the presence of 

malware in Linux based IoT devices using static feature analysis methodology. The 

innovative thing about   this work lies in the method’s speed and accuracy in resource-

constraint IoT devices and a proposed solution to the same. The features are extracted from 

ELF executables, and then, using the chi-square method, the features are reduced 

drastically and retrained on a limited feature set to still achieve a high detection. This 

method allows this framework to run on such hardware. After feature reduction, the author 

trains six different model on machine-learning algorithm. All six classifiers were able to 

achieve above 99% accuracy and precision, with extremely low FPR and FNR ratios 

considered helpful for a software-based system searched for malicious software in an IoT 

device known for minimal computational power. This case is particularly relevant as 

Linux-based IoT devices grow in popularity in various fields and become a target for 

malware attacks.  

In this paper the author [3] suggests a new way to detect library functions in Linux 

malware, specifically in malware that is statically linked and deprived of information on 

function names and addresses. This method is interesting primarily because the 

modification mentioned above impedes traditional methods of function-level analysis. A 

more holistic approach was taken to the issue, and, as a result, pattern matching was used 

to detect library functions among 2,256 malware samples, the majority of which were 

designed with the help of Intel 80386 architecture. The authors claim that their strategy 
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was highly effective: Library functions have been found in over 90% in 97.7% of cases. 

The available data is the result of combining static analysis tools with pattern matching, 

and they can be seen as a new tool for similar studies on threats in Linux space. Therefore, 

this study is valuable both in terms of developing understanding of how Linux malware is 

built and increasing the quality of forensic studies. 

Authors [4] discuss a novel approach to machine learning enabled in detecting Linux 

malwares from the dynamical extraction of system calls. The new mechanism is a 

breakthrough because it enhances malware detection on the Linux platform, which is often 

less studied compared to malware entry into Windows environments. The Key 

Components include Dynamic Extraction of System Calls. The authors dynamically extract 

system calls using strace, a system call tracer. Such extraction is critical because it captures 

the semantics of the executables’ behavior which is essential in detecting malice. The 

authors used benign and malwares executables to determine the optimal set of features that 

would make the given model a classifier or not. The paper assesses the performance of 

classifiers such as SVM and NB in classifying a file as malware or benign based on the 

extracted feature. The proposed models will have exploited the dynamical nature of system 

calls to effectively make decisions regarding the classification. The approach led to a high 

classification accuracy of 97%, meaning the model is flexed and suitable for differentiating 

malware in Linux environments. - The authors used real malware in their experimentation, 

making the findings more application warrantable and robust.  

This work presented by authors, is a crucial addition to the field of cybersecurity research 

for several reasons. First and foremost, despite the increasing importance of embedded 
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devices and the Internet of Things, investigations into malware have historically been 

scarce and have focused primarily on Windows-based malware due to its market 

dominance. Thus, the decision to limit one’s study to Linux malware represents a 

significantly understudied topic, which is more than beneficial. The key insights and 

contributions of this work include: the diversity of targets; b the development of the 

malware analysis pipeline; see the overview of Linux-specific techniques; and d the 

empirical discovery described in the Conclusions. Furthermore, this work may serve as a 

valuable resource for your future thesis. By providing open-source tools and results of the 

conducted research, the authors suggest an effective way future scholars may address 

research questions. Therefore, it is reasonable to include this work into the dissertation 

structure since it provides a methodological framework based on real research experience.  

In another approach [5] authors used for identifying malware on Linus systems employing 

system tracers such as ftrace and strace. This paper is of high importance as Linux powers 

a vast number of diverse platforms, namely servers and connected IoT devices, and it is 

targeted increasingly often by malicious software due to these platforms’ connectivity and 

importance. Prominent points. Malware Detection Techniques. The primary approach 

mentions the drawbacks of signature-based detection and the necessity of dynamic analysis 

to find zero-day malware. This approach is feasible using a system tracer that is employed 

for monitoring system execution during the process. System Tracers and Sandboxing. The 

system tracer allows for collecting run-time data and is essential for understanding the 

malware’s relationship with the running system. Sandbox is discussed to safely test-run 

malware for dynamic analysis without risk to the host system. Machine Learning Models. 

The paper introduces machine learning models for categorizing the collected data into 
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malicious and benign. This approach was considerably successful in increasing the 

detection rates of signature systems facing a new type of sophisticated malware. Challenges 

and Recommendations. Various difficulties are tackled, such as sandboxing not being as 

bulletproof as advertised, the increase in computational costs due to the tracing, and the 

need for more high-quality datasets to train the models effectively. Future Research 

Directions. The paper outlines future research such as further refinement of tracing and 

sandboxing techniques, creating more adaptable models that require fewer false positives, 

and various ML models that can adapt to new forms of malware. In conclusion, the study’s 

authors demonstrate the urgency of utilizing modern technologies and methodologies 

against modern malware that interests Linus systems. It provides valuable data for 

increasing the resilience of the anti-malware systems and preventing most of the infections.  

Another [6] methodology combines machine learning methodology with tree-based 

classifiers to detect malware. In addition, the authors discuss the use of two analysis types: 

static and dynamic. This method helps to increase the precision of detection for unknown 

malware. Furthermore, it employs Gain Ratio and Symmetric Uncertainty for feature 

selection. As classifiers Random Forest, J48, and REPTree are used. This method has a 

high accuracy of 99.82% and a minimal false-positive rate of 0.002%. The researchers 

analyzed a large amount of data, 24,000 files, malware, and not facilitating research 

validation. As a result, it can be said that the use of a hybrid method in analyzing showed 

on Linux experimental that it is effective. It is recommended for future research to reduce 

the number of features and to expand the analysis to other file types. 
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Authors in research [7] aims to tackle ransomware detection through an approach that uses 

dynamic features and deep learning methods. In this paper, the scholars examine the 

various dynamic features such as API call sequences, DLL usage, enumerated directories, 

mutual exclusions, and registry key operations and how they affect ransomware detection 

accuracy. The methods used in dynamic analysis are as follows: API call sequences and 

the pattern that the executable program makes are investigated since the dynamic API call 

sequence often reveals a pattern of malicious use. DLLs and patterns of uses are also 

studied since some DLLs are frequently used by malware. Enumerated directories in which 

ransomware is repeated and tries to locate and encrypt the user’s files are simulated, as are 

the mutuality in which ransomware uses files to alternately encrypt and encrypt ransom 

files. Furthermore, mutual exclusions are determined by the analysis of mutual exclusions 

that ransomware may use to prevent files from being accessed simultaneously or maintain 

control of the system. SQL and how it interacts with system registry keys are analyzed, and 

the architecture of the design reveals intent with respect to persistence or configuration 

changes. As for the models, CNN and LSTMs were used, as well as simple MLP. In the 

experiment conducted to obtain the results, the scholars used three datasets that infected 

the system and one dataset that had not infected it. The results produced all the accuracies 

and were computed and analyzed using TPR and FPR, as showed in the results. Hence, the 

experiment concludes that API call sequences produce an excellent true-positive rate but 

at the cost of high false-positive rates. On the other hand, enumeration directories produce 

lower false positives and accurate results.DLL. This dynamic feature results in a high true 

positive rate, but it also causes a high false positive rate since it fails to classify benign 

behavior. However, mutual exclusions produce noble results, as do registry operations, 
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which remain to be adjusted but is the most revealing feature of ransomware. It is 

predetermined that the symbiosis of the dynamic features and deep learning models 

increase ransomware detection. Thus, further work is in the benefit to the highly adaptable 

framework with this integration. 

In paper [8] on which the authors list various components of their analysis, as well as the 

machine learning models, they used to detect ransomware. These are the detailed aspects 

based on the techniques and models they provided: Analysis Techniques: File and 

Network Monitoring: The system files are examined for susceptibility to attack after being 

introduced in the computer subunit. All packets are observed for traversing the network 

system to identify any packet that may be ransomware. Behavioral Analysis: The 

behavioral overview of files and packets into the computer system is recorded, and any 

piece of software or packet behaving strangely will trigger a red flag. Packet Assessment: 

All packets in the subunit are inspected heavily. The act is done at a micro-level that 

scrutinizes each network bit, and any anomaly of the ransomware piece is identified 

quickly. Random Forest: This was specified during the data training stage. Random Forest 

is an ensemble learning technique that involves multiple decision trees in making 

predictions. This technique balances an added advantage of accuracy and being immune to 

overfitting. 

Deep Learning Models: Deep learning models were not specified to include CNNs since 

the architectural framework was not elaborated in my initial brief. However, the deep 

learning models are used to sweep through high-level data aspects to quote any pattern that 

is likely to be challenging for other ML techniques. Feature Extraction with Python’s pefile 

Module: The decompile tool is used to extract features from executables for further training 
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of the model. This includes metadata from the header files and attributes of the binary. 

Feature Selection and Extraction: Features are selected by opportunistic teachers who 

review the data to select the most likely suspects to pick from the features that the 

researchers used to train the features selected. The magnitude of file rigging is identified 

in a lucrative technique. For example, a hashed value can be rough in a certain smart size 

square or a debug size, or an accurate major image version in the system files. The models 

are programmed in a labeled training dataset with both benign and malicious programs. 

The training is an iterative phase by which the developers inform the models of the normal 

and customary file behavior concerning the file characteristics given. The performance of 

the models analyzed against novel and incognito word ransomware to prove the system’s 

daily efficiency. The prototype of the software should maintain high detection of 

ransomware viruses. The integration of both machine learning models and the analyzing 

methodology propose the detection of ransomware viruses.  

2.3 Summary of Related Work 

Table 1 Summary of Literature  

Sr. 

No  

Research Paper Algorithm 

Used 

Technique Limitations 

1 ELF-miner: using 

structural 

knowledge and 

data mining 

methods to detect 

RIPPER, 

PART,  

J48 

Performed static 

analysis on ELF 

executable. 

Extracted features 

from elf header and 

Very small dataset 

used. Only static 

analysis is 

performed 
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new (Linux) 

malicious 

executable 

use ML for 

detection 

2 Malware detection 

through mining 

symbol table of 

ELF 

No machine 

learning used 

Symbol table is 

extracted from the 

elf executables and 

used for malware 

detection 

Static analysis is 

only done. 

3 A machine learning 

approach for Linux 

malware detection 

IBK-5, 

Random Forest 

and Ada boost 

Performed dynamic 

analysis and extract 

system calls and 

applied machine 

Less Files are used. 

Only dynamic 

analysis performed 

4 Integrated Static 

and Dynamic 

analysis for 

malware detection 

SVM, RBF and 

J48 

PSI is extracted as 

static feature and 

Api calls as 

dynamic feature to 

detect malware 

Small dataset used. 

Very less features 

5 In-execution 

dynamic malware 

analysis and 

detection by 

mining information 

J-RIP ad J48 Dynamic analysis is 

performed on PCB 

and extracted 

features are used to 

train ML model. 

Small and old 

dataset. Only 

dynamic analysis 
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in process control 

blocks of linux OS. 

6 Detection of 

Advance Linux 

Malware using ML 

technique 

LMT, Random 

Forest and NBT 

Hybrid analysis is 

done on ELF files 

for extracting 

features and then 

using features for 

machine learning 

Small dataset, 

which can affect 

accuracy of 

machine learning. 

7 Detection of 

Malicious 

Executable in 

Linux 

Environment 

Using Tree-Based 

Classifier 

J48 and 

Random Forest 

Both static and 

dynamic analysis is 

done to extract 

features. System 

calls and elf header 

is used as features 

Very Less features 

are used. 

8 Linux malware 

detection using 

extended-

symmetric 

Ada Boost and 

Random Forest 

System calls are 

used to extract 

feature and 

information gain 

method 

Small dataset. 

Only focus on 

system calls 
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2.4  Overview of Linux Malware  Ransomwares:  

Linux malware is malicious software created to target Linux-based operating systems. 

Although Linux is known for its exceptional security, it can still be vulnerable to malware. 

Linux malware may infect various systems, including servers, desktop computers, IoT 

equipment, embedded systems, and network appliances. Since Linux has gained great 

popularity for personal and industrial purposes, the frequency and acuteness of Linux 

malware assaults have risen significantly. According to a report published in [9] 55% 

attacks are observed within Linux environment beating out windows for the first time. In 

figure-1 we can see the attack ratio on different operating systems. 

 

Figure 2 Attack Ratio on Different OS 

As we started our research, we found a significant number of increases are reported in the 

attacks on Linux systems and maximum attacks are Ransomware attacks on Linux systems. 

Before getting into details, we must know what Ransomware is.  
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2.4.1. Ransomware: 

Malware known as "Ransomware" is capable of infecting computers running on Windows, 

Mac, Linux distributions, including Debian and Ubuntu. An attack of this kind would 

encrypt documents after infiltrating a network or device and finding the important ones. 

Frequently, a message requesting payment for the return of the encrypted files is the first 

indication that an attack has occurred. This may seem scary to an individual, but it might 

seriously harm a company's operations and reputation.  

2.4.2. Linux Ransomware:  

Ransomware attacks against Linux systems rose by 75% in 2022 compared to the previous 

year. [10] An increasing number of Linux variants have been released by ransomware 

gangs. In the figure below we can see the rising number of ransomware attacks in Linux 

environment:  

 

Figure 3 Timeline of Ransomware Attack 
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2.4.3. Variants of Linux Ransomware:  

There are many different variants of Linux Ransomware, however in our research we have 

include these 10 variants to understand the workflow of Linux ransomwares:  

2.4.3.1. AvosLocker:  

The sophisticated ransomware known as AvosLocker was first identified in June 2021 and 

became well-known for its twice extortion method. AvosLocker is intended to both steal 

and encrypt files from a victim's PC. After that, the attackers demand payment of a ransom 

before releasing the material to the public.  

2.4.3.2. Blackcat:  

The ransomware family ALPHV, commonly referred to as BlackCat, is used in 

ransomware as a service (RaaS) activity. Available on Linux-based operating systems 

(Debian, Ubuntu, Ready NAS, Synology), Windows, and VMware ESXi, ALPHV is built 

in the Rust programming language. 

2.4.3.3. Darkside:  

The DarkSide ransomware functioned as "ransomware-as-a-service". DarkSide demanded 

Bitcoin and other cryptocurrency ransoms after encrypting and stealing confidential data 

from large organizations. Like a legitimate company, they also set up a functional platform 

and provided real-time chat help.  
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2.4.3.4. Royal:  

Targeting VMware ESXi virtual machines, Royal Ransomware is the most recent 

ransomware operation that facilitates Linux device encryption. The Equinix Threat 

Analysis Center found it for the first time. Linux Royal Ransomware uses the command 

line to execute properly.  

2.4.3.5. Cylance:  

Cylance is also a Linux based ransomware which operates using command line argument. 

Its main target is VMware ESXi virtual machines. After getting access to the system, it 

encrypts all the files specified in the command line argument. And leaves a ransom note at 

the end.  

2.4.3.6. Cl0p:  

The deadly Clop ransomware, which is a member of the well-known Cryptomix 

ransomware family. It encrypts files by planting clop extension on infected systems and 

actively evading protection measures.  

2.4.3.7. Revil:  

With the first appearance of REvil in May 2019, the ransomware-as-a-service (RaaS) 

operation behind it has grown to become one of the most active and successful threat 

groups. Windows systems have been the main target of REvil. New samples, aimed at 

Linux systems, have been discovered, though. 
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2.4.3.8. RansomExx: 

 Ransomware like LockBit demands money to be paid to unlock the encrypted file. Rather 

than focusing primarily on consumers, it targets corporations and government bodies. The 

institutions who would be inconvenienced and have the resources to provide a sizable 

payment are its possible targets.  

2.4.3.9. IceFire:  

The ransomware IceFire, also referred to as iFire, encrypts files, appends the ". iFire" 

extension to filenames and generates a ransom letter called "iFire-readme. txt". Ice Fire’s 

mission is to lock down files until a ransom is paid.  

2.4.3.10. LockBit:  

Adopting the Ransomware-as-a-Service (RaaS) architecture, LockBit is an extremely 

persistent and intelligent ransomware program. The ransomware variant LockBit was most 

often used globally in 2022 and is still widely used in 2023. Figure 4 illustrates all the 

ransomware variants used in this research. 

 

Figure 4 Variants of Linux Ransomware 
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2.5 Attack Chain of Linux Ransomware: 

Attack chain is a process in which the attacker attacks a system. In other words, we can say 

the steps an attacker follows to attack the system. In figure-5 we have described the attack 

chain of Linux ransomware. It follows the steps given below: 

Step 1: Attack finds vulnerability in the system. 

Step 2: After finding vulnerability, he tries to gain access to the system. 

Step 3: Once he is successful in gaining access, he starts installing ransomware  

Step 4:  After successful installation of ransomware, he tests if the encryption is 

working.  

Step 5: Then he checks CMD line argument which is used to give path of files to 

encrypted. 

Step 6: Then he starts searching whether files are already encrypted or not. 

Step 7: If not, he drops the ransomware, and it encrypts all the files mentioned in the 

given path. 
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Figure 5 Ransomware Attack Chain 

2.6  Chapter Summary: 

In this chapter we discussed the existing literature on Linux malware and its detection 

systems. After that we presented the entire literature along with its limitations in tabular 

form. We have also discussed the increasing rate of attacks within Linux environment, 

Linux based ransomware and its different variants that we have covered in this research 

work. At the end we discussed the attack chain steps followed by Linux ransomware.  
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CHAPTER 3 PROPOSED METHODOLOGY 

3.1 Introduction 

In this chapter the proposed methodology for detecting Linux based ransomware using 

machine learning is explained. It describes the flow diagram of our framework, data 

collection, different analysis methods, feature extraction, steps for data preprocessing, 

importance of feature selection, different machine learning algorithms and evaluation 

metrics based on which we will decide our results. 

 

Figure 6 Proposed Methodology 

3.2 Data Collection 

To create a dataset, we need to collect data samples of both malicious files as well as benign 

files. On these samples we will perform different methods to get useful information from 
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these files and later it will help us in training the machine learning model. As we are doing 

our research on Linux malware, we need to collect ELF (Executable and Linkable Format) 

files. It [11] is a standard file format for executable files, shared libraries, and core dumps. 

The structure of ELF is shown in Figure 7. 

 

Figure 7 ELF Structure 

3.3 Malware Analysis Methods: 

To analyze the elf files, we need to perform different malware analysis techniques on our 

file samples to find the actual working of the file and whether it’s malicious or benign. 

Malware analysis is of three types [12]: 

• Static Analysis: It is the examination of the code and structure of the malware 

without its execution. Static analysis includes the examination of the file’s 

metadata, headers, strings, and embedded resources. Static analysis helps to 

identify the signatures of known malware, understand the structural peculiarities of 

the malware, and reveal potential indicators of compromise without executing the 
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code. A drawback of static analysis is that it is unable to detect behavior-based 

malware and threats, as well as polymorphic or obfuscated code. 

 

• Dynamic Analysis: Dynamic analysis is the process of running malware in a 

confined environment and tracking what the malware does to learn more about its 

behavior. Behavioral analysis, code emulations, and memory analysis are all 

involved in dynamic analysis. The behavior of malware in activities includes file 

system changes, registry alterations, network activity, and process behavior may all 

be detected in real-time. However, not all malware behavior is detectable, and it 

may go undetected if the system does not have enough telemetry or if the malware 

is developed to avoid detection. 

 

• Hybrid Analysis: Hybrid analysis combines both static and dynamic analysis to 

offer experts an in-depth perspective of malware. In this case, the approach 

integrates static analysis which helps to define and understand malware’s structure 

and code, as well as dynamic analysis to research its behavior upon execution. From 

this perspective, hybrid analysis helps experts achieve better understanding of 

malware’s attributes, behaviors, and impacts on a system. As such, it improves 

malware detection, analysis, and mitigation. 

In our work we will use Hybrid analysis, to get both static as well as dynamic features of 

the samples because now a days malwares are strong in functionality it gets hard to 

understand the actual working of a malware because of sophisticated techniques used by 
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malware. Therefore, only by using static or only dynamic analysis is not sufficient to build 

the detection system. 

3.4 Feature Extraction: 

The extraction of features [13] is a critical step of developing effective machine learning 

models to detect malware. By converting raw data into a subset of relevant features, one 

will lower the dimension of the data while retaining the essential information for detection. 

Not only can this approach improve the working of models by directing models to only 

relevant and discriminatory features, but it can also improve the ability to generalize from 

the training on new malware samples never previously seen by the model. In addition, 

feature extraction improves the interpretability of machine learning models by enabling 

one to understand which information may be essential for detection. In simple words we 

can say feature extraction steps can result in more accurate, efficient, and interpretable 

detection models which can lead to improved cybersecurity outcomes. There are several 

types of features which you can extract from the analysis report. In our work we will use 

static as well as dynamic features. 

3.5 Data Preprocessing: 

Once we have extracted the features our next step is to clean the data. Machine learning 

models cannot understand data without processing it. We must clean our dataset using 

different techniques, so it gets easy for the model to learn it. Data processing [14] can be 

done in following sequence: 

• Data Cleaning: In this step, we will check all the missing values in our dataset so we 

can perform the next steps. 
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• Fill missing values: First we will find all the NaN values then we will perform fill 

method to fill all those values. 

• Remove duplicated rows: After filling missing values we will check if there are any 

duplicated rows. If there are duplicated rows, we will remove them. 

• Checking datatype: Then we will check datatype of all the columns so that we can 

decide which encoding method we need to use 

• Performing encoding: Once we find all datatype, we need to make them all float 

integer so we will use different encoding methods. For instance, one-hot, label  and 

frequency encoding. 

• Normalize data: By applying scaling methods we will then normalize the dataset. 

 

Figure 8 Data Preprocessing 

3.6 Feature Selection 

The selection of relevant features is integral in the creation of good models for malware 

detection. By choosing the most informative features, the coders can decrease the 

dimensionality of the data, which helps to develop better and more efficient code. 
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Indeed, by selecting the features that are the most significant in developing the models, 

the coders contribute to better performance. It may reduce overfitting and assist in 

enhancing the ability to generalize. Furthermore, it may lead to a significant decline in 

the time necessary for the computation of predictive model development and use. It is 

especially vital for real-time malware defenses. Also, such a selection results in a 

greater interpretation of the model’s results. The logical predictions are to be based 

only on the key features that the security workers can easily grasp. It may benefit in 

quicker identifying of the malware features and characteristics. Thus, choosing relevant 

features is critical in the development of successful and interpretable malware detection 

models. 

In our work we are using we will use Information Gain. It is used for malware detection 

where we must identify discriminative features, the kind of features that help in 

classifying a malware file and any other benign file. Calculations of I.G help in 

understanding which feature is highly discriminative between the two. A higher 

information gain implies a better distinction. It is helpful in feature selection where 

many discriminative features will help in generating a more useful classifier model in 

malware detection. 

3.7 Classification 

      After performing all test steps, we need to decide which classifier we need to apply 

machine learning [15] on our dataset. Selecting classifier is a particularly crucial step, we 

must check our dataset depending on the data in the dataset and what type of work we want 
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to get done by the classifier we select our classifier. Following are some classifiers that we 

have selected to test our research work: 

• Random Forest: It is an ensemble learning method that builds a number of decision 

trees during training and reports the class, which is the mode of classes... 

• Decision Tree: This approach, which creates a tree-constructed structure by 

recursively dividing the dataset into subsets according to the highest-importance 

feature, is simple to comprehend and analyze. 

• Logistic Regression: It is a logistic function-based linear model for a binary 

classification issue that simulates the likelihood of a default class. 

• FNN: It is a neuro network model which is used to form networks. 

3.8 Evaluation Metrices: 

The metrics will help figure out whether the machine learning-based malware detection 

achieves optimal levels in detecting the malware and, at the same time, minimizing the 

false positives and false negatives. The evaluation metrics include:  

• Accuracy: Referring to the percentage of samples that are accurately identified in 

comparison to all samples. 

• Precision: the percentage of real positives in the samples that were given a 

positive classification. 

• Recall: The percentage of actual positive samples among those that are deemed 

positive, out of all positive samples. 
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• F1-score: It is a balanced metric between recall and precision since it is the 

harmonic mean of the two.  

3.9 Chapter Summary:  

This chapter presented a detailed proposed methodology which is used for the detection of 

Linux malware. Starting from collection of samples to malware analysis, data processing, 

feature extraction and selection. Training ML classifiers for detection the Linux based 

ransomware. All these modules are discussed in this chapter. 
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CHAPTER 4: IMPLEMENTATION AND EXPERIMENTAL 

TESTBED 

4.1 Introduction 

In this chapter we will practically perform the things we have described in chapter three. 

Our proposed architecture includes data collection analysis module, extraction of features, 

data preprocessing, selection of features and classification module. 

4.2 Experimental setup: 

For performing malware analysis, we have use virtual machine on local system. 

Whereas for the creation of dataset we collected malicious samples from malware 

bazar. Tasks related to feature extraction, feature selection and training ML classifiers 

we have used Google Colab platform. The programming language that is used for 

performing all the tasks is python. 

➢ Hardware Configuration: 

Lenovo laptop was used for the implementation of this research with following aspects:  

      Table 2 Hardware configuration 

Processor Intel(R) Core (TM) i5-4210U 

Memory 
8.00 GB 

OS 
Ubuntu 20.04 LTS 

➢  
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➢ Programming Language: 

• Python:  

Guido van Rossum first developed Python programming language in 1991 and released 

it to the public in the same year. Consequently, writing code in Python is both easy and 

understandable due to white spaces. Python is generally an interpreted programming 

language that was designed for general purposes. 

 

➢ Google Colab: 

A free cloud service provided by Google called Google Colaboratory offers users a 

simple means for writing and running Python code through Jupyter notebooks. It 

consists of a web accessible Jupyter Notebook that allows for running of Python code 

without any local installations or maintenance. All the work done from feature 

extraction, feature selection, data processing, train of model all the work is done in 

google colab. 

4.3 Collection of Dataset 

To create our dataset, we have collected malicious files and benign files. We have used 

malware bazaar [16] for mal files and for non-mal files we have used files from different 

directories of Linux which includes /user/ bin, /bin, /sbin. We have collected samples of 

10 types of Linux based ransomware. However, we were only able to find 70 samples of 

those types and 70 benign files. So, our dataset has a total of 140 samples. 
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Table 3 Dataset samples 

Sr. No File Type Category No. of samples 

1 ELF Malicious 70 

2 ELF Benign 70 

4.4 Perform Malware Analysis: 

In our method we have used hybrid analysis so that we can use both static and dynamic 

useful features.  

4.4.1. Static Analysis: 

To perform static analysis, we have used REMnux Operating System. It is specially 

designed for malware analysis and reverse engineering.  

4.4.1.1.REMnux: It is a Linux tool for figuring out and breaking down malignant 

programming[17]. Experts can use it to explore malware without finding, 

introducing, and arranging the devices. It has various apparatuses that can be used 

for both static and dynamic examination. On our dataset, we have utilized Readelf, 

Capa, and Peframe to extract useful static features from the files in our work.  

• Readelf: With Unix-like systems, readelf is a tool that shows different details about 

object files, much like obj dump. The GNU binutils include it. 
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• Capa: It is an open-source program called Capa is used to analyze malicious 

programs. Capa offers a platform that the community can use to exchange, 

identify, and codify behaviors that we've observed in malware. Capa analyses 

executable files to find their capabilities. 

Figure 9 Readelf Output 
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Figure 10 Capa Output                                                    

• Peframe: It is a free tool made for performing static analysis on dubious files and 

viruses that is portable. With its help, malware researchers can discover details 

about potentially harmful files, dubious sections and processes, packer, xor, digital 

signatures, mutex, anti-debug, anti-virtual machine, and much more.  
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4.4.2 Dynamic Analysis: 

To perform dynamic analysis, we have set up a sandbox to perform automated dynamic 

analysis. We have used Limon Sandbox.  

4.4.2.1 Limon Sandbox: 

With the help of Limon [18], we may execute an executable in a controlled, sandboxed 

environment and receive a report on its runtime behavior. 

of an executable.  A host computer that controls the guest computer is part of the 

configuration for the limon sandbox. Ubuntu 18.04 was utilized in this study as the host 

and guest operating systems, respectively. The file runs in the guest machine's full 

Figure 11 Peframe Output  
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privileged mode to provide a better understanding of a file. The path to the file in the Limon 

Sandbox is determined by doing a command line analysis of every file in a brand-new 

virtual computer. A current snapshot is taken during virtual machine setup so that limon 

can reverse after the le is executed. The entire trail of the network, system calls, and 

functions is saved in a text file called final report by the limon sandbox to the analysis 

report folder after execution is finished. 

 

                          

Figure 12 Limon File Execution 
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Extracting Features 

In this phase we extracted features from the data generated by different tools during the 

analysis. We have used Features from both static and dynamic analyses in this work which 

were good for the classifier explained in this section. 

4.5.1. Static Features:  

We have extracted static features from various fields of an ELF file. Most of the 

information is extracted from the ELF file header.  

• ELF header 

• File information 

Following table contains static features: 

Figure 13 Saving Dynamic Analysis Report 
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Table 4:List of static features 

Sr. No Name  Datatype Description 

1 file_size float Size of file 

2 Identification obj Special no to identify file 

3 Class String Elf class 

4 Version int Elf version 

5 Os/ABI String Operating system 

6 Machine String Machine name 

7 ent_add  int Entry point address 

8 start_prog_header int Start of program headers 

9 start_sec_header int Start of section headers 

10 number_flag int No of Flag 

11 size_header int Size of this header 

12 size_prog_header int Size of program headers 

13 num_ prog_header int Number of program headers 

14 num_ sec_header int Number of section headers 

15 sec_head_st_ind int Section header string table index 

16 file_ent float Entropy of whole file content 
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4.5.2. Dynamic Features: 

From dynamic analysis we have extracted: 

4.5.2.1.System calls frequency: 

After executing the files, we extracted all the system calls and then applied a python script 

to find the frequency of every system call. 

Table 5:List of some System calls 

Sr. No 
Name Description 

1 
access  check whether the calling program has access to a 

specified file 

2 
Bind associates an address with the socket descriptor 

3 
Clone  creates a new process 

4 
Exce to execute file 

5 
connect 

the socket that the file descriptor pointed to is connected.  

6 
chmod modifies the access rights of the file 

 

4.5.2.2.Encryption Method: 

Another feature that we have used is encryption method, as we have analyzed Linux based 

ransomwares, encryption is main feature of a ransomware. Since ransomware usually 
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encrypts files on the victim's machine, keeping an eye out for unusual encryption activity 

might be helpful in spotting possible ransomware attacks 

Table 6: List of some Encryption features 

Sr. No 
Name Datatype Description 

1 
Encryption Algorithm string Type of encryption algorithm used 

2 
Key size int Size of encryption key 

3 
extension string Extension used by ransomware 

after encryption 

 

4.5.2.3.Network Artifacts: 

In ransomware attacks there is a high chance of network activity because the binary must 

connect to its C2C server after getting access of the system. So, we have extracted some 

features from network activity  

Sr. No Name Datatype Description 

1 
Total Packets int No. of packets sent and receive 

2 
DNS Queries binary Did query, yes or no 

3 
HTTP Requests binary Did Request, yes or no 
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4 
HTTPS Traffic int Traffic captured 

5 
Unique Source IPs int Unique source Ip address 

6 
Unique Desti IPs int Unique destination Ip address 

7 
Protocol string Type of protocol used 

4.5 Feature Selection: 

For feature selection we have used the selection method: Information Gain [19]. It gives 

score to every feature based on the information that feature contains. Standard score ranges 

from 0 to 1. Features below 0 are considered useless. Features are calculated as follows: 

IG(X) = H(Y) - H(Y|X) 

Where: 

• IG(X): Information Gain of feature X is denoted by it. 

• H(Y): is the target variable Y's entropy prior to the split 

• H(Y|X): is, given feature X, the conditional entropy of Y. 

In the below graphs we can see the top 10 static and dynamic features selected by 

Information Gain. 
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Figure 14 Top 10 static features 

 

Figure 15 Top 10 Dynamic Features 

4.6 Perform Data Processing: 

Data processing can be done in following sequence: 
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Step 1: Fill missing values:  

First, we will find all the NaN values then we will perform fill method to fill all those 

values. 

 

Figure 16 Handle Missing Values 

Step 2: Remove duplicated rows:  

After filling missing values we will check if there any duplicated rows. If there 

are duplicated rows, we will remove them. 

 

Figure 17 Check Duplicated Rows 
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Step 3: Checking datatype:  

Next step is to check all the unique data types do we can perform encoding to 

make them all float datatype. In the figure below we can see we have 3 different 

data types: 

o Object 

o Float  

o Integer 

 

Figure 18 Check Datatype 

Step 4: Performing encoding:  

Once we find all datatype, we need to make them all float integer so we will 

use label encoding methods.  
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Figure 19 Before Label Encoding 

After performing label encoding, we can see we have only one data type left which is float. 

 

Figure 20 After Label Encoding 

 Step 5: Normalize data:  

By applying the standard scaling method, we normalize the dataset. 
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Figure 21 Standard Scaling 

4.7 Model Selection 

4.8.1. J48: 

J48, more popularly recognized as C4.5, is an ADT technique that is broadly employed in 

categorization systems. The following are the principal parameters of J48 algorithm: 

• Confidence Factor (CF): Specify the confidence threshold to control tree 

pruning. 

• The minimum number of instances: needed to divide a node is indicated by the 

Minimum Number of Instances per Leaf (M) field.  

• The minimal number of instances needed to split a node is indicated by the minimal 

Number of Instances per Split (L) parameter. 

• Binary Splits (B): Used to ascertain if binary divisions must be imposed divide a 

node  
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• Subtree Raising (S): It can be used to elevate useless sub trees and so improving 

tree performances  

4.8.2. Random forest: 

During training, several decision trees are built using the Random Forest ensemble learning 

technique, which yields the mean prediction (regression) or the mode of the classes 

(classification) for each individual tree. In comparison to a single decision tree classifier, 

it enhances performance and decreases overfitting.  It has some parameters: 

• Number of Trees (n_estimators):  how many decision trees are present in the 

forest. 

• Max depth of tree: The greatest depth of a decision tree. 

• minimum number of samples to split a node: the least amount of samples 

required to separate an internal node.  

• Min samples of leaf: which indicates how many samples are required in each leaf 

node: The minimal number of samples required at each leaf node.  

4.8.3. Logistic Regression: 

The afore-mentioned logistic regression model works on several parameters. The following 

are some of the parameters: 

• The maximum number of iterations the optimization technique can go through is 

indicated by the term max_iter.  
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• C is the inverse of regularization strength, meaning that higher regularization strengths 

are given for lower values.  

• class_weight=’balanced’ helps to pass class weights as they are assumed to be inverse 

class frequencies. This parameter is used to solve the problem related to the weight 

imbalance. 

4.8.4. FNN 

The last classifier that we used is a neural network, specifically a feedforward neural 

network (also known as a multi-layer perceptron, MLP) which is implemented using 

TensorFlow’s Kera’s API. It is designed for binary classification tasks. The key parameters 

of this neural network classifier are:  

• Epochs: Number of epochs for training.  

• Validation split: 20% of the training data is used for validation. 

• Verbose: Verbosity mode for training logs. 

4.8 Chapter Summary: 

This chapter gives a detailed approach that we have used to implement our proposed 

methodology. How we have created our own dataset. To perform malware analysis, we 

have used both static and dynamic analysis. For static we have used REMnux and for 

dynamic analysis we have used Limon sandbox. After performing feature extraction, we 

have selected a list of static and dynamic features. Then we applied an Information gain 

feature selection method to find which features are useful. At the end we selected 4 ML 

classifiers and their parameters to train our dataset. 
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CHAPTER 5: RESULT AND DISCUSSION 

5.1 Overview: 

In this chapter we will describe evaluation metrices based on which we will measure the 

performance of all the classifiers. The performance is measured by using accuracy, F1-

score, Recall and precision. At the end we will also perform a comparative analysis 

between the performance of all the 4 classifiers. 

5.2 Evaluation Metrices: 

 The metrics [20] will help figure out whether the machine learning-based malware 

detection achieves optimal levels in detecting the malware and, at the same time, 

minimizing the false positive and false negatives.  

Following are the metrics that we have used:  

• Accuracy: the proportion of accurately predicted cases to all instances in the dataset. 

    Accuracy =  
 (𝐓 𝐏 + 𝐓 𝐍)

(𝐓 𝐏 + 𝐓 𝐍 − 𝐅 𝐏 + 𝐅 𝐍) 
  

• Precision: the proportion of accurately predicted positive observations to all positive 

observations that were forecasted. 

    Precision =   
𝑇𝑃

 (𝐓 𝐏 + 𝐅 𝐏)
    

 • Recall: the proportion of all real positive observations to all accurately projected positive 

observations. 
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    Recall =  
𝑇𝑃

 (𝐓 𝐍 + 𝐅 𝐍)
    

• F1 Score: the Precision and Recall weighted average.  

    F1 Score = 2 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗ 𝐑𝐞𝐜𝐚𝐥𝐥) 

 (𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+ 𝐑𝐞𝐜𝐚𝐥𝐥) 
    

Where:  

TP = True Positives  

TN = True Negatives 

 FP = False Positives  

FN = False Negatives 

5.3 Performance: 

5.3.1. Performance of J48: 

Precision:  

• The precision for class 0 (94%) indicates that 94% of the time the model is right when 

it classifies an instance as such.  

• The precision for class 1 (93%) shows that 93% of the time, the model correctly predicts 

an instance to be class 1.  

Recall:  

• Class 0 recall (94%) indicates that 94% of real class 0 cases are correctly identified by 

the model.  
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• Class 1 recall (93%) indicates that the model accurately identified 93% of real class 1 

events.  

F1-Score:  

•  The class 0 F1-score of 94% indicates that recall and precision are well-balanced. 

• Class 1's F1-score (93%) is somewhat lower than class 0 but still shows a solid balance 

for the class. 

Accuracy: 

 With an overall accuracy of 94%, the model 94% of the time correctly predicts the class 

(whether 0 or 1). 

Table 7 Accuracy Result of J48 

Label  Precision  Recall  F1 score 

0 0.94 0.94 0.94 

1 0.93 0.93 0.93 

Accuracy 0.95 
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Figure 22 Performance Result of J48 

5.3.2. Performance of Random Forest: 

Precision:  

• For class 1, a precision of 1.00 indicates that all positive predictions were 

realized, which is outstanding.  

• The precision for class 0 is still rather acceptable, but it is significantly lower at 

0.89.  

Recall:  

•  A recall score of 1.00 for class 0 denotes flawless memory.  

• The recall for class 1 is 0.87, meaning that almost 13% of the real positives for 

this class were missed by the model.  
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F1-Score:  

• An F1-score near 1 is considered exceptional, and in this case, both classes have 

high F1-scores (0.94 for class 0 and 0.93 for class 1), indicating that recall and 

precision are well-balanced. 

Accuracy: 

• The overall accuracy of 0.9375 indicates that the model correctly predicted about 

93.75% of the total instances. This is generally considered a high accuracy rate. 

Table 8 Accuracy Result of RF 

Label  Precision  Recall  F1 score 

0 0.89 1.00  0.94 

1 1.00  0.87 0.93 

Accuracy 0.94 

 

 

                   Figure 23 Performance Result of RF 
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5.3.3.  Performance of Logistic Regression: 

Precision: 

• The precision for class 0 is 0.85. This indicates that 85% of cases that were 

expected to be class 0 are in fact class 0, which is better than ideal but still good.  

• The precision for class 1 is 1.00, which denotes complete precision; all 

occurrences that are anticipated to be class 1 are in fact class 1.  

Recall: 

• The recall for class 0 is 1.00, meaning that every real case of class 0 was 

accurately anticipated; this indicates flawless recall. 

• The recall for class 1 is 0.80. This indicates that 20% of real class 1 cases were 

missed by the model, indicating potential for improvement in class 

identification. 

F1-Score: 

• For class 0, the F1-scores are 0.92, and for class 1, they are 0.89. The strong 

ratings for both indicate that recall and precision are well-balanced, 

particularly for class 0. 

Accuracy: 

• Overall accuracy of 0.90625 (or 90.625%) is quite strong. This indicates that 

the model correctly predicted the class for about 90.625% of the cases in the 

dataset. 
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Table 9 Accuracy Result of LR 

Label  Precision  Recall  F1 score 

0 0.85  1.00  0.92 

1 1.00  0.80  0.89 

Accuracy 0.91 

 

Figure 24 Performance Result of LR 

5.3.4. Performance of FNN: 

Precision:  

• The precision for class 0 is 0.85. This indicates that 85% of cases that were 

expected to be class 0 are in fact class 0, which is better than ideal but still 

fairly good. 
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• The precision for class 1 is 1.00, which denotes complete precision; all 

occurrences that are anticipated to be class 1 are in fact class 1. 

Recall: 

• The recall for class 0 is 1.00, meaning that every real case of class 0 was 

accurately anticipated; this indicates flawless recall. 

• The recall for class 1 is 0.80. This indicates that 20% of real class 1 cases were 

missed by the model, indicating potential for improvement in class 

identification. 

F1-Score: 

• For class 0, the F1-scores are 0.92, and for class 1, they are 0.89. The strong 

ratings for both indicate that recall and precision are well-balanced, 

particularly for class 0. 

Accuracy: 

• As per overall accuracy of 0.97 (or 97%) is quite strong. This indicates that the 

model correctly predicted the class for about 90.625% of the cases in the 

dataset. 

Table 10 Accuracy Result of FNN 

Label  Precision  Recall  F1 score 

0  0.80  1.00  0.92 

1 1.00  0.80  0.89 

Accuracy 0.97 
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Figure 25 Performance Result of FNN 

5.4 Performance comparison between classifiers: 

Among all the 4 classifiers the best performance is FNN with 97% accuracy, after FNN 

classifier j48 has the best performance with 95% accuracy. Whereas RF has the 3rd highest 

accuracy, that is 94%. Logistic regression has 91% accuracy which is the lowest accuracy 

among all the classifiers. However, all the classifiers have accuracy above 90% which 

indicates that this research work presents a good detection system for Linux based 

malware.  
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5.5 Chapter Summary: 

We have used 4 different parameters to measure the performance of classifiers. According 

to accuracy FNN has the highest score 97% followed by j48 which has 2nd highest score 

95%. Random forest has the 3rd highest score 94%. Logistic regression has the lowest 

score among all the other classifiers, which is 91% 
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CHAPTER 6: CONCLUSION AND FUTURE RECOMMENDATIONS 

6.1.Overview 

In the last chapter we recommended some different future work aspects that can be helpful 

for future researchers. Other than that, we sum up our research work and provided a 

conclusion of the contribution this research has made in the world of cyber security, all this 

is covered in this chapter. 

6.2.   Advanced feature selection and extraction techniques. 

Further improvements in feature selection and extraction will be necessary to increase the 

efficiency of machine learning models in malware detection. The use of state-of-the-art 

algorithms such as deep learning, particularly CNNs and RNNs, may help to uncover the 

complex nonlinear patterns in the data that traditional models gloss over. Additionally, 

utilizing autoencoders for dimensionality reduction could optimize the feature set towards 

the most discriminative attributes, which would enable more accurate prediction and 

quicker processing. 

6.3.  Expansion to comprehensive malware detection frameworks 

Only ransomware, a tiny portion of the malware environment that targets Linux computers, 

is covered in the current study. It is critical to create a broader malware detection 

framework that can recognize a variety of malware threats, including zero-day exploits, 

spyware, and rootkits. This will necessitate the development of a scalable and adaptable 

architecture capable of accommodating new malware signatures and behaviors, which can 
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be accomplished via adaptive learning methods that update the models continuously 

without human intervention. 

6.4. Real-time detection and response systems.  

Implementing real-time detection and response systems is critical for reducing the 

consequences of malware on the infected systems. Future work might include integrating 

the developed machine learning models into existing IDS and IPS models for Linux, which 

would enable the automation of response measures such as quarantining the system, 

installing patches, and performing backups to avoid data loss. 

6.5. Joint research and development: 

The difficulty of contemporary cyber threats requires a collaborative effort in which 

diverse industries and disciplines work together. Future work will be essential, with 

collaboration with academic institutions, cybersecurity companies, and technology 

industry players providing access to a vast array of data and knowledge that can improve 

the research’s robustness and practicality. This collaboration would also facilitate the 

development of uniform Linux malware data models that are critical in the training and 

testing machine learning custom tools.  

6.6.Conclusion: 

The thesis has successfully constructed and tested a machine learning framework for 

detecting Linux systems ransomware, and carefully evaluated its efficacy in comparison to 

prior detection methods. The merits of using a blended analytical approach incorporating 

static and dynamic analyses are proven to be effective, with high ransom accuracy rate and 
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high recall rate and precision. This achievement is a significant advancement in 

cybersecurity, specifically on Linux systems which are less commonly researched in 

malware detection studies. In Conclusion, the thesis, regarding the research problem, 

contributes several factors: 

6.7.Methodological Contributions:  

This thesis has brought a distinctive method for malware detection that marries both static 

and dynamic analyses to strengthen the identification of various ransomware through the 

generation of an improved feature set that afforded to efficiently identify many ransomware 

types.  

Machine Learning Contributions: The paper shows a positive comparison between 

different ML classifiers which include, Logistic Regression, Random Forest and Decision 

Tree’s potential ability to address ransomware cybersecurity difficulties.  

6.7.1. Practical Contributions: I also lay down the basis for generating operational 

tools or systems to protect and enforce systems in the Linux ecosystem.  

6.7.2. Contributions to Cybersecurity: The method shortens the ransomware 

detection time and among the other benefits also retains the ransomware attack 

window at its worst, while the cost of ransomware hacking is increasing. 

Furthermore, the method is vulnerable to changes in techniques and tactics 

demonstrated by new ransomware, defending the method from change and 

needing another review. 
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6.8.Chapter Summary: 

This chapter presents future recommendations for this research and the existing literature 

which includes advance feature selection and extraction methods, using big dataset for 

better accuracy, and creation of real time detection system. Other than this it gives 

conclusion of this research work which explains the summary of this research. 
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