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ABSTRACT  

Optimisation of Excavation Design Using Artificial Intelligence (AI) 

  

Reinforcement learning (RL), considered a section of machine learning, incorporating 

human-level control, is attracting considerable interests in many fields. Currently, there is 

a transition from academia to real-world prototypes, with RL-examples like the 

optimization of a manufacturing process, for real-time steering of hydrocarbon drilling, in 

optimization of power grids and control systems in general, for UAVs, and in robotics and 

other autonomous vehicles becoming common. However, there is very little published 

application of RL to geotechnics in general. Therefore, in this study will present a novel 

RL-based framework for construction process optimization whereby displacements would 

be optimized by application of Hoeke-Brown criterion and GSI system to excavation 

design. Such models can act as decision support for the geotechnical engineer, engineering 

geologist, geotechnician etc. (design choices, progress-planning) and in the long run such 

models work towards full automation in underground construction. Hence, the model is 

one of the first attempt to automate decisions made by the geotechnician in excavation 

design for underground construction.    

Keywords: Reinforcement Learning; Artificial Intelligence; Excavation Design; Tunnels; 

Geological Strength Index; DQN.  
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CHAPTER 1: INTRODUCTION 

Artificial Intelligence has gained wide traction in daily-use and is now being 

considered an integral part of transforming the way humans live, work and interact with 

the digital world. Its impact on human lives is profound, with its vast use in the fields of 

healthcare, manufacturing, retail, finance, sustainability, human resources, security and 

social media, to name a few. 

 

1.1 Artificial Intelligence (AI) in Construction Automation  

Artificial Intelligence (AI) is revolutionizing how humans perceive and relate to the 

construction industry. AI is incorporating advanced technological innovations into 

construction and building processes. It is refining, enhancing and simplifying how 

structures are buildings were once designed, built and maintained. This is proliferating 

major benefits in the industry, which has led substantial updates and progress safety, 

accuracy, precision, performance, economy and productivity. This profound impact on 

construction industry can be categorized into many categories 

 1.1.1 Efficiently Tackling Complex Construction Projects  

With construction automation increasingly being categorized by AI, sophisticated 

and challenging construction projects can now be dealt with enormous speed and 

predictability, simultaneously catering to the difficulties of material and labor scarcities, 
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while considerably increasing output and performance. It was noted (Sacks & Pikas, 2013) 

that these breakthroughs are reinventing how humans perceive the construction industry. 

 1.1.2  Improving Safety in Construction Projects  

Autonomous systems are growingly making headways in making construction 

projects safer for the clients, customers and the intermediaries, alike. These autonomous 

systems are risingly being assigned hazardous tasks, involving many risks and hazards, that 

would otherwise have to be performed by human workers. This shift to give more 

independence to AI in the industry is creating safer environments to work more securely 

and harmlessly (Bock & Linner, 2015). 

 1.1.3  Resources and Waste Reduction  

As AI makes the construction processes more streamlined, reduction in materials is 

leading to significant declines in costs spread over time (Akinradewo et al., 2021). This is 

how reductions in resources is bringing in economies of scale in construction processes. 

 1.1.4  High Precision in Measurements  

Advances in technologies are making sure  measurements in construction industry 

are accurate to the best possible effort, reducing and minimizing oversights and 

misjudgements, scalping the need of cost-intensive reworks (Josephson P E et. al., 1999). 

Hence, project quality of construction results are enhanced. 

Figure 1 shows the opportunities, trends, difficulties and open research challenges of 

AI in construction industry. 
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Figure 1. Opportunities, trends, difficulties and open research issues of AI in construction 

industry 

 

1.2 Artificial Intelligence (AI) in Tunnelling  

Artificial Intelligence (AI) is also playing a crucial role in optimization of tunnelling 

operations. Not only are the productivity and performance of tunnelling procedures 

upgraded, but the overall accuracy of underground construction processes enhanced. 

For instance, managing and catering to geological variability has been a complex 

procedure that has been a stiff task in underground construction. AI processes are now 

increasingly being utilized to manage these challenges (Ebrahim and Ewan 2021). 
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Secondly, system complexities in construction projects are being simplified by 

Artificial Intelligence. More accurate decision-making is being carried out, allowing 

greater level of confidence in controlling intricacies of tunnelling. 

Next, budgeting and cost management, is also contributing to a substantial influence 

on construction procedures (Cheng 2009). Streamlining of resource allocation and fiscal 

planning helps to keep the construction projects meeting expectations financially. 

Figure 2 shows the main research clusters of AI in construction industry 

 

Figure 2. Main research clusters of Artificial Intelligence in construction industry 
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Some of the other key application of Artificial Intelligence in tunnelling include: 

 1.2.1  Optimization of Drill and Blast Criteria  

While proactively adjusting the drill and blast specifications based on real-time 

environment, AI algorithms can also be used to optimize factors such as timing and quality 

of explosive materials. This has added to facilitating effectiveness and efficiency of drilling 

and blasting performance. (Gao, Zhang, and Liu 2022; Zhou, Chen, and Yang 2019) 

1.2.2 Analyses of Geological Conditions  

Another major impact that AI is making on tunnelling operations is the provision of 

precise prediction in handling ground condition challenges. (Lin, Yang, and Zhang, 2018) 

1.2.3 Mitigating Operational Complexities  

As AI optimizes resource allocation, project supervision is improved by refining 

project timelines and saving costs. (Sun and Liu, 2021) 

1.2.4 Scheduling and Project Management  

Prospective cost, budget & time overruns are increasingly being identified by AI 

algorithms, helping to manage scheduling and project management complexities in 

construction projects. (Zheng, Chen, and Guo, 2020) 
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1.3 Introduction to Reinforcement Learning (RL)  

Reinforcement Learning (RL) is a growingly popular section of Machine Learning, 

in which a software agent learns to maximize preferred reward, by interacting with the 

environment to take actions (Sutton and Barto, 2018). Multiple variety of feedbacks 

regulate the methodology of an RL-loop. 

Figure 3. shows the difference between supervised, unsupervised and reinforcement 

learning. It can be seen from Figure 3 that supervised learning uses inputs to trace functions 

to targeted output. However, in reinforcement learning, no target outputs are required; only 

inputs are fed in. 

 

Figure 3. Difference between Supervised, Unsupervised and Reinforcement Leaning  

(Fourati et al. 2021) 
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Nonetheless, the overarching aim of RL algorithm is achieving balance between 

Exploration, that is learning on fresh data elements, and Exploitation, that is utilizing data 

captured in exploration. Framework for an RL algorithm is shown in Figure 4. 

 

Figure 4. Basic framework for a Reinforcement Learning algorithm 

 

It can be observed in Figure 4, that a Reinforcement Learning problem has three 

main constituents:  

1.3.1 Agent  

Agent is the constituent which takes actions in the state it is currently in. 
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1.3.2 Environment  

Environment reacts to actions committed by the agent, given new input to it at each 

step. 

1.3.3 Reward  

Reward is the response given by the environment, measuring achievement of 

actions committed by agent. 

1.3.4 Other Important Components of Reinforcement Learning Algorithm 

Some other important components of an RL algorithm are as follows: 

1.3.4.1 State 

  State is the at-present condition exhibited by the environment. 

 

1.3.4.2 Action 

  Choices or the possible decisions that the agent can take which in turn influence the 

environment. 

 

1.3.4.3 Policy 

  Rules that govern the decisions taken by the agent. 

 

1.3.4.4 Value Function 

  It estimates the prospective reward / incentive for actions or states, which in effect guide 

the decisions taken by the agent. 
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CHAPTER 2: LITERATURE REVIEW  

The research work relevant to the project and limitations which highlight the gaps 

in these research works will be covered in this Chapter. Although, these research papers 

supplement our comprehension of advances in studies carried out in geotechnical 

engineering, specifically tunnelling operations, but the research also highlights the 

opportunities wherein further investigations have been carried out. The below mentioned 

research studies are utilized to justify the gaps, which necessitate the objectives and aims 

to carry out research work on optimization of excavation design using artificial intelligence 

(AI). 

2.1  Jia, G. et al., 2023  

 This study aims to investigate medium-stiff and stiff soils for unsupported 

excavations of 9m, where adjacent structures are absent. The methodology of the research 

work is based on predictive modelling (data-based) to classify geology and manage Tunnel 

Boring Machine (TBM) attitude. As a result of this study, precision and effectiveness of 

TBM in real-time tunnelling is enhanced. However, the need for adaption to live and 

variable conditions. 

2.2  Ren-Peng Chen et al., 2020  

The objective of this research paper is to combine RL based Deep Q-Learning 

(DQN) and Particle Swarm Optimization (PSO), enhancing Extreme Learning Machine 

(ELM) anchored settlement forecasting model induced from tunnelling operations. 

Distinguished improvements are observed over proven (analytical, numerical and 
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empirical) models for enhancing precision and computation cost, nonetheless, further 

research is required to establish its usefulness under variable tunnelling environments. 

2.3  Huang, Z. et al., 2023  

The third research focuses on optimization of design of adaptive ground support, 

using Reinforcement Learning. Performance improvement is notable across varied 

environments. However, the model depends heavily on real-time information and data. 

2.4  Hang-Lo, L. et al., 2021  

The investigation explores creating a real-time prediction forecasting methodology 

for metrics of TBM operations, and utilizes an ARIMAX model, to fulfill this objective. To 

execute Walk Forward (WF) forecasting, the ARIMAX model is intermixed with variable 

geological specifications, and it has been found that the ARIMAX is significantly more 

impressive that Ordinary Least Squares (OLS) in transient TBM thrust projections in less 

than or equal to 8 rings. However, these predictions are only served to short-term, and do 

not cater to long-term forecasting. 
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CHAPTER 3: PROBLEM STATEMENT  

To relate this research with the investigations highlighted in previous Chapter, this 

section will build-up problem definitions. 

3.1 Produce Unplanned Geological Data for Effective RL Modelling 

 Random Walk will be used to produce random geological data, to address the 

shortcomings of the first paper, which called for developing the necessity to create 

adaptable models for varied conditions. As a result, sturdier RL-model will be developed 

to adapt to a multitude of geological environments. 

3.2 Translating Geological Strength Index (GSI) Metrics 

 Data will be normalized and mapped to GSI values. This will address the 

shortcomings for second research paper, which necessitated the need for adaptation across 

multiple situations. As a result,  a more accurate geological profile will be developed, when 

real-life geological strength divisions are streamlined with data that is simulated. 

3.3  Upgrading Model of Tunnel 

 When GSI values will be used to upgrade the tunnel profile, computation intensity 

and dependency on real-time data, as pointed out in the third paper, will be tackled. 

Necessity for recalibration again and again may be foregone, resultantly, as present 

geological conditions are reflected. 
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3.4  Visualization of Results 

 The data simulated in the problem will be replicated to reflect actual tunnel profile 

and random walk information. Hence, inclusive outlook of geological understanding may 

be used to enhance and improve decision-making in long-term. 
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CHAPTER 4: OBJECTIVES  

This Chapter will define the aims of the research that is carried out. The research 

has been divided into three main parts, which will define the objectives of the investigation. 

4.1 Objective 1: Optimization of Excavation Design 

 This research study will aim to optimize the excavation design. This will be the 

primary objective of the thesis. Machine Learning techniques, specifically Reinforcement 

Learning, shall be used to refine excavation design. By integrating GSI empirical design 

approach into the program, through normalization of random WF, this data will be 

transformed to simulate geological site conditions into representative rock types. 

4.2 Objective 2: Simulating Excavation Series 

 The second objective of this study is to the usual sequence of excavation and 

tunnelling, and frame it as an RL-loop. In this reinforcement learning algorithm, the model 

will self-sufficiently learn optimal strategies by the help of feedback iteratively. This will, 

in turn, tend to the necessity of creating, precise models, that will adapt to the environment 

on its own. 

4.3 Objective 3: Reducing Cost Time and Contractual Intricacies 

 Lastly, by using reinforcement learning AI technique, along with GSI design 

approach, the next goal of this study is to minimize the liabilities during tunnelling and 

excavation construction processes, which result in extensive delays and cost overruns. In 

essence, the program will not only improve decision-making on part of geotechnical 
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engineering and contract administration teams, but also provide greater control in 

efficiently dealing with all the conflicts that may arise during construction processes. 
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CHAPTER 5: METHODOLOGY  

In this Chapter the focus of the research will be on the methodology that is adopted 

to execute this research. As noted in the previous Chapters, the interdisciplinary nature of 

this project, at the crossroads of digital technologies and civil engineering, a comprehensive 

programming the RL-loop and, subsequently, training the agent has been adopted in an 

extremely delicate way. This has ensured that the results obtained (to be discussed in 

Chapter 6) are accurate and precise to the best possible degree. 

The methodology will first discuss the typical drill / blast procedure, followed by 

simplifications made in the Loop, the components and decision-making policy adopted, 

simulation criteria, and then, finally, the training of the reinforcement learning program 

made. 

5.1 Typical Drill and Blast Procedure 

 In a typical drill and blast procedure, several sequential, iterative and cyclical 

procedures are followed which make up the bulk of the tunnel construction process. This 

typical cycle in presented in Figure 4. It can be seen in Figure 4, that the process usually 

consists of various iterative processes: blasting, mucking and, followed by, installing of 

supports, performance assessment and refinement of design. Naturally, this process exists 

as a closed loop, which fulfills the criteria of reinforcement learning technique and may be 

modeled efficiently according to this procedure. 
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Figure 5. Typical Drill / Blast Cycle for Construction of Tunnels. 

 

The loop has been found to be of significant importance, particularly in 

conventional tunneling construction process This procedure has also been verified by 

International Tunnelling Association in 2009 (ITA, 2009). Hence, the process of decision-

making can be optimized by following this procedure, step by step, leading to increase in 

safety and productivity 
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5.2 Decision-Making Process in RL-Loop 

Excavation sequence is modeled as a simplified reinforcement learning loop, to 

represent the sequence of excavation outlined in the previous section. The decision-making 

loop is characterized in Figure 6 below: 

 

Representation of every component of the schema adopted in the research study is 

given below: 

a) The Agent: The decision-making agent is classified as the geotechnician, 

b) The Actions: Construction processes, such as “excavation of top heading”, 

“excavation of bench” and “installing face support” etc. are classified as the 

actions. 

Construction Site 

Excavation, heading etc. GSI, Rock 

Mass etc. 

Geotechnician 

Σ (Delays, 

instabilities etc.) 

Figure 6 RL-Loop Schema Adopted in Research Work 
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c) The Environment: The GSI empirical design, including the site conditions 

representative of all construction processes, are the environment. 

d) The Reward: The unplanned and planned delays, with issues that are 

encountered throughout the tunnelling / excavation process are the reward. 

These are the results of the actions of the geotechnician. 

e) The State: Data and information of forgone and current rockmass situation, 

inclusive of supports that are installed, are the state. 

5.2.1 Markov Decision Process (MDP) 

The application of Reinforcement Learning problem, and all the elements, will 

undertake the Markov property (Sutton and Barto, 2018). Resultantly, each point in the 

decision will be taken as a distinctive state in the MDP, as the process of excavation will 

be broken up into a sequence of choices. The program will then oscillate or transition 

between the states, rooted in the actions taken by the agent (the geotechnician), which then 

affects the upcoming states. 

Use of MDP enables the simulation of dynamic excavation conditions, where 

decisions are constantly changing and so must adapt to the changing environment. 

Eventually, this process optimizes the effectiveness of productivity and safety during 

construction, as the agent is now the master of managing its own luck, reducing randomness 

in the rewards of the state that it is in. 
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5.3 Simplifications Made in the Research Study 

Some important simplifications were made in the study to reduce the complexity of 

operations, computation time and make it as close to the real-time scenario as possible 

(adapted from Erharter GH, 2021): 

a) Only two partial excavation techniques are available: top heading and bench 

and invert, assigned with a specific tunnel geometry. 

b) Stability is considered okay for parts where excavation has already taken 

place, and the construction process does not include tunnel lining 

installation, 

c) Other type of supports for rocks (shotcrete or radial bolts) are not taken into 

consideration in this study, 

d) To evaluate the conditions of stability in the excavated area, face pressure 

equation (Vermeer PA, 2002) for tunnelling with open face is used. This is 

an effective solution (analytically) as the stability assessment provided by 

the equation is computationally stable. The equation is given below: 

𝜌𝑓 = 𝛾𝑟𝐷
∗ +

(

 
2 + 3∗ (

𝑑
𝐷)

6∗ tan∅′

18∗𝑡𝑎𝑛∅∗
− 0.05

)

 − 
𝑐′

tan ∅′
 

  Where, 

𝜌𝑓: Required pressure, 𝜌𝑓 < 0 indicates stable condition 

and 𝜌 ≥ 0 indicates unstable conditions, 
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γr  Unit weight of the rock mass, 

D: Equivalent diameter of the tunnel, 

d: Unsupported advance length, 

c’: Effective cohesion, 

φ’: Effective friction angle. 

e) Only X-sectional area is taken in the study and the assessment does not 

account longitudinal changes, 

f) Only two advance lengths are applicable (2m and 4m) for one blasting round 

per round of excavation. 

5.4 Simulation in the Research Study 

The objective of the simulation is to train RL-agents to conduct tunnelling 

construction sequence as efficiently as possible. To simulate the longitudinal sectional of 

the specific length (tl), different ground conditions may ensue. The agent is oblivious to the 

ground types before it commits or takes an action. It is only alerted of the ground type when 

it proceeds ahead with excavation, step by step. The ground types are based on the GSI 

empirical design approach. 

Therefore, the primary goal of the agent is that the reward is to be maximized. This 

is achieved when top heading and bench excavation of tunnel is accomplished.  



21  

  

5.4.1 Geotechnical Case 

The geotechnical scenario of the research is as based on the tunnel cross-section in 

Figure 7 (adapted from Erharter GH, 2021 for simplification). 

 

Figure 7. X-Section of the Tunnel Used in Research (Erharter GH, 2021) 

 

 The agent can take multiple actions during the excavation process, like excavation 

of top heading of 2m length, excavation of bench with 4m advance length etc. A penalty is 

also given if distance between top heading and bench face is larger than 50m. 

 Ground type is defined by the Geological Strength Index (GSI) Empirical Design 

Approach, based on following surface conditions and rock mass structure as shown in Table 

1. 
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Table 1. Rock Mass Structure and Surface Conditions Simulated in the Program. 

 

For every WF, rock mass structure and surface conditions are randomly selected, 

followed by calculation of values of GSI derived from chosen criteria and normalized WF 

value. Purpose of normalized WF value is to include variability in GSI value so that real-

world changes in geological conditions may be simulated.  

Based on these principles, GSI can be adjusted more precisely. Thus, the 

aforementioned methodology outlines the geotechnical scenario, which is working behind 

the scenes in this RL-simulation, in together with the environment and the agent. 

5.4.2 Agent 

In this section, shift is made to function of geotechnician as agent. In real-world 

scenarios, the geotechnicians themselves observe the geotechnical parameters of rock mass 

behaviors, which in turn impact the critical decisions taken. However, in the methodology 

adopted in this research, this role of geotechnical engineers making decisions on site, is 

taken on by the ‘RL agent,’ which uses Deep Q-Learning Network (DQN) to make 

decisions. 
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5.4.2.1 Deep Q-Learning Network 

DQN is a deep RL technique, whereby, classical Q-Learning competencies are 

enhanced by replacement of function approximator of deep ANN in the Q-table. The neural 

network is called Q-Network, whereas the estimated value function is called Q-value. By 

constantly learning and reinforcing from the environment, the RL-agent keeps on updating 

the decisions taken as the construction proceeds ahead, to enhance safety. Basic working is 

based on the basis that the initial stage is inserted into the neural network, which returns 

output as Q-value of every action taken. Therefore, DQN can manage multi-dimensional 

spaces of states, as is usually faced in tunnelling processes.  

Since correlation of RL with environment is highly dependent, therefore issues are 

caused during the training process. To mitigate these correlations Experience Replay is 

used which separates the correlations in samples used in training, thereby encouraging 

faster convergence with better quality. The agent is enabled to learn from various transitions 

using past stored data or ‘experiences,’ enhancing efficiency. 

In light of the aforementioned discussion on experience replay, DQN may be 

considered as a method using ‘off-policy,’ grounded upon Bellman’s Equation given below: 

𝑄∗(𝑠, 𝑎) =  𝔼𝑠′[𝑟 + 𝛾max𝑎′
𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎] 

Where, 

 Q*(s,a):  State ‘s’, after an Action ‘a’ is taken, 
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 r + 𝛾Q*(s’, a’): maximum value of best possible expected value, 

 s’:   state at next stage, 

 a’:   action at next stage. 

 

5.4.2.2 ε-Greedy Action Selection Criteria 

ε-Greedy balances the contest between exploration and exploitation, as it randomly 

chooses between both. ε = 0 refers to the RL-agent acting randomly, whereas when it tends 

towards 0, it starts to take greedy actions. Hence, a balance between both is necessary. 

Exploration is the process which enables the RL-agent to improve the knowledge it has 

stored currently about each action, leading to long-term reward by allowing the RL-agent 

to make more informed decisions. Exploitation, conversely, maximizes rewards through 

exploitation of RL-agent’s estimates of present action values, by selecting greedy actions.  

𝑄(𝑆𝑡 , 𝐴𝑡) ←  𝑄(𝑆𝑡 , 𝐴𝑡)+ ∝ [𝑅𝑡+1 + 𝛾max
𝑎
𝑄 (𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)] 

In this research, ε is set to 0 initially. Then r (a number) is randomly drawn from a 

normal distribution ranging from 0 to 1. If (if r ≤ ε), the action taken by the RL-agent is 

random, if r > ε action is committed on prior action of the RL-agent.  
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To maintain a balance between exploration and exploitation, a decay function is 

also included in the training of the program: 

𝜀𝑖+1 = 𝜀𝑖 ∗  𝜀𝑑 

Where, 

 𝜀𝑖+1:  Epsilon for upcoming episode 

 𝜀𝑖:  Epsilon for at-present episode 

 𝜀𝑑:  Epsilon decay rate 

Therefore, the ε-Greedy Action Selection Criteria ensures that full exploration of 

the environment is made by the RL-agent in the beginning, and the knowledge stored is 

then exploited towards the end of the training regime. 

5.4.3 Environment 

The rockmass conditions and construction processes (the state), along with 

feedback from iteration of excavation productivity (reward), is the representation of 

environment. The RL-agent simulates the role of real-world geotechnician in this 

environment. 

5.4.4 System of Reward 

Rewards are used to convey to the RL-agent if its actions are maximizing the return 

(cumulative reward over the entire episode), which in this case is excavating the whole 
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tunnel. A negative reward or penalty is also given if the agent does not perform according 

to criteria defined. 

The reward system in this research is based on a pre-listed condition in the code. 

The agent gives a reward if all pre-defined conditions are met, and a breakthrough is 

achieved. This reward system is based on engineering experience from field knowledge.  

5.5 Training of the Reinforcement Learning Problem 

In real-life situation, a geotechnical engineer will be knowledgeable of all the action 

it has to take, based on safety, logistical and technical parameters to execute the tunnel 

construction operations with best possible strategy. However, in reinforcement learning, an 

untrained RL-agent is oblivious to all the metrics. Therefore, training on predefined schema 

or methodology (mentioned previously has to be carried out) 

Resultantly, the problem was coded in Python programming language (with all its 

associated libraries) on Visual Studio (VS) Code source-code editor. Training was done on 

a cluster of NVIDIA A100 GPU to optimize computational performance and obtain results 

with more speed. Figure 8 below shows screenshots of computer screens, when training of 

reinforcement learning problem was in progress. 
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Figure 8. Screenshot of Screen Containing Code Written in Python Programming Language, on 

Visual Studio (VS) Source-Code Editor. 
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Figure 9. Screen Showing Python Code and Its Training In Progress. 

 

 

 

 

 



29  

  

 

 

 

 

Figure 10. Screen Showing the Python Code Under Training for 100,000 Episodes. 
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CHAPTER 6: RESULTS AND DISCUSSIONS 

This Chapter will present the results obtained from training of RL-agent on the 

methodology fixed in Chapter 5. 

6.1 Log of RL-Agent’s Training Regime 

The figures below show the recordings of training of Agents for 2,000, 30,000 and 

100,000 episodes. An episode is referred to as the recordings of actions and states that an 

RL-agent achieves from beginning state to final state. 

 

Figure 11. Log for RL-Agent's Training (2,000 Episodes) 
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Figure 12. Log for RL-Agent's Training (30,000 Episodes) 
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Figure 13. Log for RL-Agent's Training (100,000 Episodes) 

 

6.1.1 Discussion on Results 

For Figures 11,12 and 13 above, the first row shows rewards / episode and epsilons; 

the second row shows action codes; the third row shows average loss and accuracy per 
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episode; the fourth row shows average number of blasts and instabilities per episode; the 

fifth row shows breakthroughs and timeouts per episode. 

It can be seen from the first row in Figure 11, that the number of rewards per episode 

a fairly constant trend, whereas the epsilon decays to a value of 0.942. However, in Figure 

12, it can be seen that the reward shows a increasing trend and then reaches a fairly constant 

value; likewise, the epsilon also decays dramatically to a value of 0.410. In Figure 13, that 

maximum reward of 400 is achieved by the RL-agent on 100,000 episodes, whereas epsilon 

also balances and reaches a value close to 0, showing high levels of convergence. 

For the second row, It can be seen in Figures 11, 12 and 13, that as the training 

progress to 100,000 episodes, the RL-agent becomes more clear in the decision-making 

process. It becomes aware of the action-state-environment loop, and is taking clearer 

actions, with greater control and consistency. 

In the third row of Figure 11, that the average accuracy of the training remains fairly 

high, which shows a downward trend in Figure 12 for 30,000 episodes but increases again 

significantly in Figure 13 for 100,000 episodes. The average loss per episode is also 

observed to be less than 0.5 for Figures of 30,000 and 100,000 episodes. 

Fourth row of Figure 12 shows that the average number of blasts per episode 

remains fairly constant for 2,000 episodes. However, as the training progresses and the 

agents learns on the RL-loop, the number of blasts decreases significantly (less than 5 for 

100,000 episodes). Moreover, it can also be observed that the average number of 

instabilities per episode is very much closer to zero, for all three Figures of 2,000, 30,000 

and 100,000 training episodes. This has shown that the agent has learnt to economize the 
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drill and blast design, tending towards achieving economies of scale and reducing the time 

required to execute and blasting intensive design. 

For the fifth rows, it can be seen that breakthroughs are achieved for all episodes 

and there have been no timeouts for all three Figures 11, 12 and 13. 

6.2 Histogram for RL-Agents Performance for Random Moves  

The figures below show the histograms for RL-Agents performance for completely 

random moves for checkpoints at 30,000 and 100,000 episodes. recordings of training of 

Agents for 2,000, 30,000 and 100,000 episodes. A fixed ε of greater than zero was chosen 

to enable RL-Agent to deal with unexpected situations during training.  

 

Figure 14. Performance of RL Agent for 30,000 Episode Training Regime, with Completely 

Random Moves (ε = 1). 
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Figure 15. Performance of RL Agent for 100,000 Episode Training Regime, with Completely 

Random Moves (ε = 1) 

 

6.2.1 Discussion on Results 

Figures 14 and 15 shows that the cumulative reward for every episode increases as 

the training progresses. It can also be seen that face instabilities are nearly zero for all 

episodes. Furthermore, the required number of blasts also reduce as training proceeds ahead 

to the required number of episodes. 

The histograms of Figure 14 and Figure 15 reinforce and confirm the results 

obtained in the previous section, showing that the RL-Agent has learnt to reduce the 

number of blasts and face instabilities per episode, as it efficiently trains on the 

methodology outlined in Chapter 5 producing excellent results. 
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Additionally, when compared to histograms quoted in previous research (Erharter 

GH, 2021), the performance of this program is significantly better, as the previous research 

are based on isotropic, continuous and homogenous formations of soil / rock, whereas this 

study properly investigates the action-state-environment loop using empirical design 

approaches.  

6.3 Boxplot of Actions Committed by the RL-Agent Throughout the Specified Episodes   

The figures below show the Boxplots that RL-Agent uses for each action throughout 

the specified number of episodes.  

 

Figure 16. Boxplot for Each Action Committed by RL-Agent During 30,000 Episodes. 
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Figure 17. Boxplot for Each Action Committed by RL-Agent During 100,000 Episodes. 

 

6.3.1 Discussion on Results 

Figures 16 and 17 show that the RL-Agent prefers long advance lengths, that too 

without any face support in all excavation types. This shows that the RL-agent is preventing 

support measures that may be too much for the sustenance of excavation required. 

Further, it can also be seen that advance lengths of smaller size are also used 

sometimes, choosing actions with no supports on face. This means that the RL-agent is 

now aware that advance lengths of shorter magnitude, in underlying geological conditions, 

do not result to face instabilities. 
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CHAPTER 7: SUMMARY OF RESEARCH WORK 

This research has demonstrated how reinforcement learning could be effectively 

applied to tunnel construction process. RL may require an initial experience in 

programming language, but its utility overshadows the initial knowledge capital 

investment. RL is a growing field of machine learning, and will have lots of opportunities 

in construction automation, specifically in the field of geotechnical engineering in the 

future. 

This research has shown that reinforcement learning can be efficiently used to 

simulate a tunnel construction site. The training carried out by the program and resultant 

outcomes portray that significant economies of scale in terms of cost, time and contractual 

intricacies can be achieved if this methodology is used. 

The research simulates real-world geological conditions effectively and proves 

outcomes that are comparable to real life tunnel construction process, by simulating the 

decision-making ability of a geotechnical engineer. The processes are also comparable to 

models that are currently in widespread use in construction of tunnels and underground 

spaces. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

This Chapter will present the conclusion, and recommendations of the 

investigations carried out in this research work.  

8.1  Conclusions 

This research study has strongly demonstrated that reinforcement learning can not 

only be utilized to create a working simulation, but that the RL-agent is also able to connect 

with the environment, realistically, to model conventional tunnel construction processes. 

Further, the policy establish by the RL-agent tends to align with real-world 

tunnelling applications, reducing the blasting amount required, preferring long advance 

lengths, face support minimization and reducing difference between bench excavation and 

top headings. 

By working economically, in an efficient way, the reality that RL-agents can find 

construction strategies comparable to tunnelling in real life, shows that reinforcement 

learning may be applied successfully to problems of this nature. 

Lastly, parallels are also observed with models, such as NATM, which minimizes 

excavation support by use of partial excavation techniques.  
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8.2  Recommendations 

As noted in previous section, the main aim of this research is fulfilled, however, 

improvements can be made to develop an advance programming code, with advance 

geological and geotechnical parameter, that is able to model the complete construction site.\ 

Finally, the code could be optimized to reduce the the computational complexity, 

so the power required and time to complete the training may be minimized. 
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