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ABSTRACT 

Motion planning is crucial for helping autonomous robots navigate complex 

environments efficiently. Recently, Augmented Reality (AR) has been 

introduced to improve Human-Robot Interaction (HRI) in mobile robot 

motion planning. However, AR gap-based reactive control systems often 

suffer from issues like sensor noise and inaccuracies, leading to higher levels 

of jerk and stress. On the other hand, Simultaneous Localization and Mapping 

(SLAM) provides a global understanding of the environment, ensuring robust 

navigation even in dynamic or unfamiliar areas. In this paper, we propose an 

AR-based Hector Simultaneous Localization and Mapping (SLAM) method 

for intuitive indoor mobile robot navigation that reduces jerk and stress. Our 

approach uses AR to set navigation goals and provide visual markers for the 

user, while SLAM ensures accurate real-time mapping for precise navigation 

and obstacle avoidance. For path planning, the robot uses Dijkstra's algorithm 

for global planning and Trajectory Rollout for local planning. We tested the 

effectiveness of our AR-based Hector SLAM in three different scenarios and 

compared the results with an admissible gap-based navigation algorithm. 

Experimental results showed that our method improved jerk and stress by 

11.63% and 11.39% respectively, leading to smoother and safer trajectories. 

Keywords: Motion planning, mobile robot navigation, Augmented Reality, Simultaneous 

Localization and Mapping (SLAM), Human-Robot Interaction (HRI) 
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CHAPTER 1. INTRODUCTION 

In recent years, the field of robotics has seen significant advancements, particularly in 

autonomous mobile robots. As these robots are increasingly deployed in environments 

shared with humans, the need for effective human-robot interaction (HRI) becomes crucial. 

Augmented Reality (AR) has emerged as a promising technology to bridge the gap between 

human operators and robotic systems, providing intuitive interfaces and real-time data 

visualization. This chapter introduces the motivation behind this research, outlines the key 

problems addressed, and presents the research objectives. It also discusses the limitations 

of existing navigation techniques and proposes a novel AR-based Simultaneous 

Localization and Mapping (SLAM) approach to enhance robot navigation in dynamic 

environments.  

1.1 Background and Motivation 

Environments where robots and humans work in a shared space are increasing rapidly, 

making human-robot interaction (HRI) a critical area of research and development. Robots 

are increasingly deployed in sectors such as e-commerce warehouses [1], transportation 

[2], [3] and medical care [4], [5].  

 

 

 

 

 

 

 

 

Figure 1.1: Warehouse robot [3] 
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Ensuring seamless communication and collaboration between robots and humans is 

critical. Autonomous mobile robots must navigate complex and dynamic surroundings, 

generating feasible trajectories that guarantee safe and efficient movement. Augmented 

Reality (AR) has emerged as a state-of-the-art technology that can significantly enhance 

HRI. By overlaying digital information in the real world, AR provides an intuitive and 

immersive interface for interacting with robots [6]. 

This capability is particularly beneficial for tasks that require precise coordination and real-

time feedback, such as object recognition or robot navigation. The concept of AR, situated 

within Milgram and Kishino’s Reality-Virtuality Continuum [7], bridges the gap between 

the real and virtual worlds, offering innovative methods for improving HRI.  

 

Figure 1.3: Milgram and Kishino’s Reality-Virtuality Continuum [7] 

Figure 1.2: Surgical robot [5] 
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By leveraging AR, robots can receive real-time instructions and data for performing tasks 

in a collaborative augmented space alongside humans, enhancing overall efficiency and 

safety.AR-based robotics has various applications, such as in collaborative tasks [8] and 

object recognition [9].  However, one of the most significant challenges is effective motion 

planning for autonomous mobile robots. 

Model-based, learning-based, and sensor-based motion planning algorithms have strengths 

and weaknesses. Early gap-based navigation methods, inspired by the Bug algorithm [10], 

have evolved to improve trajectory smoothness and obstacle avoidance. However, these 

methods often assume specific robot shapes and kinematic configurations, which restrict 

their applicability. The Admissible Gap-Based (AG) Navigation algorithm [11] introduced 

by Mujahed et al. addresses some of these limitations by considering the exact shape and 

kinematics of the robot. However, AG Navigation’s reliance on real-time analysis without 

environmental retention can lead to unstable and jerky motions, posing safety risks in 

dynamic settings. This highlights the need for more robust navigation methods that can 

adapt to changing environments and ensure smooth operation. 

SLAM (Simultaneous Localization and Mapping) presents a promising solution to the 

drawbacks of AG navigation. It continuously builds and updates a map of the environment 

while localizing the robot within that map, enabling real-time adaptability to environmental 

changes. We propose an AR-based SLAM approach to enhance indoor mobile robot 

navigation, leveraging the strengths of both AR and SLAM to overcome the limitations of 

traditional gap-based navigation methods. 

1.2 Human-Robot Interaction and Augmented Reality 

The concept of AR comes from Milgram and Kishino’s Reality-Virtuality Continuum [7], 

which defines a spectrum from the real world to a fully virtual world. AR falls in between 

this spectrum, allowing users to view augmented data and information on top of the real-

world environment [12]. 

According to Goodrich et al. [13], the interaction between robots and humans falls into one 

of four categories: speech and natural language, visual displays, haptics and physical 
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interactions, and gestures. AR interfaces fall within the second category, offering a new 

modality as a means of enhancing HRI in mobile robot navigation. By leveraging AR, 

robots can receive real-time instructions and data for performing tasks in a collaborative 

augmented space alongside a human.  

 

Figure 1.4: Using Magic Leap 2 AR headset for innovative problem-thinking [12] 

The integration of robotics and AR is an active research area, offering new technological 

innovations [14]. It presents new methods for enhancing HRI so that robots and humans 

can work collaboratively [15], [16]. AR enables robots to receive real-time instructions and 

feedback, enhancing their autonomy and adaptability in dynamic environments.  

Effective colocalization strategies are crucial for aligning the coordinate frames of AR 

devices, such as head-mounted displays (HMDs), with mobile robots. Traditional methods 
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often rely on fiducial markers [17] , [18] or natural landmarks [19] for spatial alignment, 

reducing the flexibility of the system. We propose a markerless approach by using 

mathematical transforms to establish precise relationships between AR-HMDs and robots, 

improving robustness in HRI applications. The integration of AR with robotics enhances 

HRI by providing user-friendly control interfaces [20], real-time spatial awareness [21], 

and visualization [22]. 

 

Figure 1.5: Marker-based AR [18] 

1.3 Gap-Based Navigation Techniques and Their Limitations 

Gap-based navigation originated with early methods like the Bug algorithm [10], which 

focused on reactive obstacle avoidance by navigating through open spaces (gaps) between 

obstacles. These methods provided initial solutions for robots to move in complex 

environments without detailed map information. The Nearness-Diagram (ND) [23] 

approach improved upon early techniques by optimizing motion paths through smoother 

trajectory planning and better obstacle avoidance. However, these methods often struggled 

with oscillations [24] and deviations, especially in complex environments or with dynamic 

obstacles. Enhancements such as tangential navigation [25] and the Follow the Gap Method 

(FGM) [26] integrated with the Dynamic Window Approach (DWA) [27] further refined 

gap-based navigation [28]. These approaches aimed to improve trajectory smoothness, 
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safety, and navigation efficiency by dynamically adjusting robot velocities and 

accelerations based on real-time sensor data. 

Traditional gap-based techniques have certain limitations as listed below: 

• Assumption of Robot Shape and Dynamics: Many gap-based methods assume a 

specific robot shape (often disc-shaped) and idealized kinematic properties. This 

assumption limits their applicability to robots with different physical configurations 

or non-holonomic constraints. 

• Real-Time Adaptability: Traditional gap-based methods focus on real-time 

analysis of immediate surroundings to navigate through admissible gaps. They may 

struggle in dynamic environments where obstacles appear suddenly or where the 

environment changes over time, leading to suboptimal path planning and increased 

collision risks. 

• Environmental Mapping and Memory: These methods typically do not build or 

update a comprehensive map of the environment. They rely solely on real-time 

sensor data to navigate, which can limit long-term spatial awareness and planning 

capabilities. 

To overcome the drawbacks of traditional gap-based techniques, Mujahed et al. [11] 

developed the Admissible Gap-Based (AG) Navigation algorithm. AG Navigation 

considers the exact shape and kinematics of the robot, allowing for more precise navigation 

through narrow passages and complex environments. It integrates robot-specific 

parameters into its path-planning process, enhancing adaptability and safety in dynamic 

scenarios. 

While AG Navigation has addressed several limitations of other gap-based algorithms, it 

has its own drawbacks. AG Navigation prioritizes real-time analysis to identify admissible 

gaps for navigation. It cannot retain information about the surroundings or construct a map 

and is computationally expensive [29]. Consequently, without comprehensive 

environmental retention, AG Navigation may induce higher levels of jerk and stress during 

robot motion. These factors contribute to unstable and jerky robot motion. AG Navigation 

also struggles with real-time adaptability. In dynamic environments where obstacles can 
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suddenly appear or change, AG Navigation's real-time analysis may not be sufficient to 

respond effectively, leading to decreased performance and increased collision risk.  

Chacón-Quesada et al. [30] developed a smart wheelchair using Microsoft's Hololens [31] 

and the AG Navigation method for motion planning. The wheelchair avoids obstacles by 

finding and navigating through gaps in the environment. However, as explained previously, 

AG Navigation depends on real-time gap detection, nor does it keep track of a global map. 

Additionally, it gives higher levels of jerk and stress, which can affect sensor accuracy and 

lead to incorrect navigation and obstacle avoidance.  

These limitations underscore the need for more robust methods that can dynamically 

update their understanding of the environment and adapt accordingly. 

1.4 Proposed AR-Based Hector SLAM Approach 

In contrast, Simultaneous Localization and Mapping (SLAM) offers a robust solution for 

real-time environment mapping, localization, and obstacle avoidance. SLAM continuously 

builds and updates a map of the environment while simultaneously determining the robot's 

location within that map. This allows SLAM to dynamically adapt to changes in the 

environment, making it highly effective in both static and dynamic settings. By leveraging 

sensor data to create a detailed and accurate representation of the surroundings, SLAM 

enables robots to plan paths and avoid obstacles efficiently. 

In this thesis, we propose an augmented reality (AR)-based Hector SLAM method for 

smooth motion planning of indoor mobile robots. Hector SLAM is a variant of the SLAM 

algorithm that is particularly well-suited for environments with limited computational 

resources or where rapid mapping is required. The AR system is utilized primarily for 

setting a goal location and providing spatial cues to the user, creating an intuitive and 

immersive interface for navigation tasks. Our proposed method leverages Dijkstra's 

algorithm for global path planning and Trajectory Rollout with Dynamic Window 

Approach (DWA) for local path planning. Dijkstra's algorithm is well-known for finding 

the shortest path in a graph with non-negative edge weights, making it reliable for global 

navigation. Trajectory Rollout with DWA provides a robust solution for local path 
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planning, ensuring that the robot can navigate around obstacles and adapt to dynamic 

changes in the environment. This combination of algorithms ensures both optimal path 

planning and real-time adaptability, addressing the limitations of AG Navigation.  

1.5 Problem Statement and Research Objectives 

1.5.1 Problem Statement 

AG navigation is the current state-of-the-art method for AR-based indoor mobile robot 

navigation. However, it focuses on real-time analysis to identify admissible gaps for 

navigation, which means it does not retain information about the environment or build a 

map. This lack of environmental retention can result in higher values of jerk and stress, 

leading to unstable and jerky motion for mobile robots.  

1.5.2 Research Objectives 

• Use Markerless AR Colocalization: Create a robust method to determine the 

relative transformations between an AR head-mounted display (AR-HMD) and a 

mobile robot, eliminating the need for fiducial markers or natural landmarks. 

• Implementation of proposed AR-based Hector SLAM: Implement the proposed 

AR-based Hector SLAM method on a mobile robot, leveraging high-frequency 

LIDAR data. 

• Enhance Environmental Adaptability: The system should be capable of retaining 

environmental information over time, ensuring robust and adaptable navigation in 

dynamic indoor environments. 

• Reduce Stress and Jerk in Navigation: Demonstrate that the AR-based Hector 

SLAM method significantly reduces stress and jerk in robot navigation compared 

to the Admissible Gap-Based (AG) navigation method. 

• Validate Through Experiments: Experimental evaluations in both simulated and 

real-world scenarios to validate the effectiveness of the proposed method. 
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1.6 Summary 

In summary, Chapter 1 has provided a comprehensive overview of the background and 

motivation behind this research. We highlight the importance of efficient and reliable 

human-robot interaction (HRI) and the role of augmented reality (AR) in enhancing this 

interaction. We observed the limitations of existing gap-based navigation methods and 

proposed an AR-based Hector SLAM approach for smooth motion planning of indoor 

mobile robots.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter highlights existing studies and advancements in the fields of AR, SLAM, and 

robot navigation. We will examine various colocalization methods, motion planning 

algorithms, and the integration of AR with robotics. By critically analyzing the current 

techniques and state-of-the-art algorithms, we aim to identify gaps in the existing literature.  

2.1 Colocalization Methods 

Colocalization of AR-HMDs in robotics is the process of accurately aligning the spatial 

coordinates of both systems. This allows robots and human operators using AR-HMDs to 

share a common understanding of their environment, facilitating more effective 

collaboration and interaction [6]. Colocalization is crucial for applications such as 

industrial automation, teleoperation, collaborative assembly, and remote maintenance, 

among others. Figure 2.1 shows common AR-colocalization methods.  

 

 

Figure 2.1: AR Colocalization Methods 

 

Colocalization 
Methods

Marker-based Marker-less

Feature-based Cloud anchors
Transformation 

matrices
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2.1.1 Marker-Based Colocalization 

Marker-based colocalization methods rely on visual markers strategically placed within the 

environment to serve as reference points for aligning the coordinate systems of AR-HMDs 

and robots. These markers can be simple patterns, such as QR codes, or more sophisticated 

fiducial markers like AprilTag [32], ArUco [33], and ARTAG [34]. The process begins 

with both systems detecting these markers within their respective fields of view. Each 

marker's unique pattern allows these systems to identify and determine the precise position 

and orientation of the markers relative to their cameras. 

 

Figure 2.2: (a) Apriltag [32] (b) ArUco [33] (c) ARTAG [34] 

Once the markers are detected, the systems calculate the transformation matrices required 

to map the marker positions to their own coordinate frames. By sharing the positions of 

these common markers, the AR-HMD and the robot can align their coordinate systems. 

This method is highly accurate because the markers provide well-defined points for 

calibration. However, it requires physical modifications to the environment, which may 

not be feasible in all scenarios. Additionally, the presence of visual clutter or dynamic 

changes in the environment can impede the detection and accuracy of marker-based 

systems. Marker-based AR has been used by many robotics systems such as UAVs [35] 

and manipulators [36]. 
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2.1.2 Markerless Colocalization 

Markerless colocalization methods do not rely on physical markers in the environment. 

Instead, they use various techniques to align the coordinate systems of the AR-HMD and 

the robot. These techniques include feature-based colocalization, location-based 

colocalization, cloud anchors, and transformation matrices. 

2.1.2.1 Feature-Based Colocalization 

Feature-based colocalization relies on detecting and tracking features within the 

environment, such as corners, edges, or textures, to build a shared map and align the 

coordinate systems. The process begins with the AR-HMD and the robot detecting and 

extracting features from their camera images. These features are then tracked across 

successive frames to estimate movement and build a map of the environment. The systems 

use the shared map to align their coordinate systems. 

The main advantages of feature-based colocalization are that it does not require 

modifications to the environment and is capable of operating in dynamic and unstructured 

environments. However, it is computationally intensive, requiring significant processing 

power, and its accuracy can be affected by lighting conditions and feature-poor 

environments. 

2.1.2.2 Cloud Anchors 

Cloud anchors use cloud-based services to store and retrieve anchor points in the 

environment, facilitating colocalization by providing a common reference frame [37]. The 

process begins with the AR-HMD and the robot creating and uploading anchor points to a 

cloud service. The systems can then retrieve these anchors from the cloud to align their 

coordinate systems. 

The advantages of cloud anchors are that they enable persistent and shared anchors across 

different sessions and devices, and they do not require physical markers. However, this 

method is dependent on network connectivity and cloud service reliability, and there are 

potential privacy and security concerns with data transmission. 
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Zolotas et. al [38] and Chacón-Quesada et. al [30] used the Hololens to place three virtual 

objects as spatial anchors in the environment, while [39] used landmark detection. Apple’s 

ARKit [40], Microsoft’s Azure Spatial Anchors (ASA) [41], and Google’s ARCore [42] 

are popular cloud-based services that allow you to create spatial anchors.  

2.1.2.3 Transformation Matrices 

Markerless colocalization using transformation matrices involves aligning the coordinate 

systems of AR-HMDs and robots without relying on physical markers or feature detection. 

Instead, this method uses an initial set of reference points to establish a common frame of 

reference, facilitating accurate and seamless coordination between the two systems. The 

process begins by acquiring the initial position of the robot as seen through the AR-HMD. 

These initial points are then transmitted to the robot. Upon receiving these points, the robot 

performs frame transformation to align its local coordinate system with that of the AR-

HMD.  

Once the initial alignment is completed, the AR-HMD can send goal positions or 

commands within its own coordinate system to the robot. The robot uses the established 

transformation matrix to interpret these commands correctly, ensuring that it follows the 

spatial coordinates accurately. This method allows for dynamic interaction and control, as 

the robot can adjust its movements in real-time based on inputs from the AR-HMD. 

The primary advantage of this markerless method is that it does not require any 

modifications to the environment, making it highly flexible and suitable for various 

applications, including those in dynamic or unstructured settings. It also simplifies the 

setup process by eliminating the need for physical markers or complex feature detection 

algorithms. However, the initial calibration step is critical, as any errors in the initial points 

or the transformation matrix can lead to misalignment and inaccuracies in subsequent 

operations.  

Each colocalization method for AR-HMDs and robots has its unique advantages and 

challenges. Marker-based methods offer high accuracy but require environmental 

modifications. Feature-based colocalization provides flexibility but demands significant 



14 

 

computational resources. Cloud anchors enable persistent and shared reference points but 

rely on network connectivity and cloud services. Among these methods, markerless 

colocalization using transformation matrices stands out as the most cost-effective and 

robust method. It eliminates the need for physical markers and simplifies the setup process, 

making it suitable for a wide range of applications, including those in dynamic and 

unstructured environments. By leveraging initial calibration and frame transformation, this 

method ensures accurate and seamless colocalization between AR-HMDs and robots, 

offering a practical and efficient solution for modern AR-robot integration. 

2.2 AR-based Motion Planning 

Motion planning for mobile robots is a critical aspect of robotics. It enables the robot to 

navigate from an initial to a goal position while avoiding obstacles. The fundamental goal 

of motion planning is to find a feasible path for a robot to follow within its operational 

environment. This involves understanding the robot's dynamics, the nature of the 

environment, and the potential obstacles that may hinder its movement. The complexity of 

motion planning arises from the need to balance computational efficiency with the 

accuracy and reliability of the planned paths. As a result, multiple types of motion planning 

algorithms have been developed, each with its own strengths and weaknesses. 

Despite the rapid advancements in motion planning algorithms, AR-based motion planning 

remains an area with limited comprehensive research. Much of the current research in AR 

and mobile robot navigation focuses on leveraging AR to visualize data and information. 

For instance, Walker et al. [43] have utilized AR to visualize a robot’s intended motion, 

providing operators with an intuitive understanding of the robot's planned path and actions. 

This visualization aids in decision-making and enhances the safety and efficiency of robot 

operation. Furthermore, Kastner et al. [44] evaluated the use of Microsoft HoloLens for 

visualizing navigation data of mobile robots in 3D. This approach allows users to perceive 

the robot’s environment and navigation data in a more immersive and interactive manner, 

improving situational awareness and facilitating better control and monitoring of the 

robot’s movements. [45] explored the use of AR in robot teleoperation to improve human-

robot interaction.  
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2.2.1 Graph-based Algorithms 

One of the earliest and most intuitive approaches to motion planning is through graph-

based algorithms. These algorithms represent the environment as a graph where nodes 

correspond to discrete positions and edges represent possible paths between these 

positions. The most well-known graph-based algorithms include Dijkstra's algorithm [46], 

A* [47], D* [48], and vector field histogram* (VFH*) [49] algorithms. Mostafa et.al [50] 

used Dijkstra's algorithm to find the shortest path in a graph with non-negative edge 

weights.  

2.2.2 Sampling-based Algorithms 

As environments and robotic tasks became more complex, the limitations of graph-based 

algorithms in high-dimensional spaces led to the development of sampling-based 

algorithms. These methods, such as Rapidly-exploring Random Tree (RRT) [51] , do not 

explicitly construct a graph of the entire environment. Instead, they randomly sample the 

space to build a roadmap or tree that captures feasible paths. RRT starts from the initial 

position and incrementally builds a tree towards the goal, making it particularly effective 

in real-time applications. Both methods are highly effective in dealing with complex, high-

dimensional environments where traditional graph-based methods would be 

computationally prohibitive. Christos et.al [52] used an aerial robot and AR for structural 

inspections, using RRT* for planning.   

2.2.3 Optimization-based Algorithms 

Another approach focuses on optimizing certain criteria along the path, such as minimizing 

travel time. These optimization-based algorithms include methods like Model Predictive 

Control (MPC) [53], [54]. These techniques use mathematical optimization to refine paths 

iteratively, considering the robot's dynamic constraints and environmental factors. 

Optimization-based algorithms are powerful for generating smooth and feasible 

trajectories that respect the physical limitations of the robot, though they often require 

significant computational resources and accurate models of the robot and environment. 
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2.2.4 Potential Field Methods 

Potential field methods [55] represent another category of motion planning algorithms, 

inspired by physical systems where robots are treated as particles moving under the 

influence of artificial potential fields. These fields are constructed such that the goal exerts 

an attractive force, while obstacles exert repulsive forces. The robot navigates by following 

the gradient of the resultant field. This approach is intuitive and computationally efficient, 

making it suitable for real-time applications. However, potential field methods can suffer 

from issues such as local minima, where the robot gets stuck in areas where the forces 

cancel each other out, preventing it from reaching the goal. 

2.2.5 Gap-based Algorithms 

Gap-based algorithms detect gaps between obstacles, creating a path from the start to the 

goal point. Artificial potential field (APF) [56] and Follow the Gap Method (FGM) [26] 

are popular examples of gap-based algorithms. This detection can be achieved through 

various sensing modalities such as laser range finders, sonar, or stereo vision systems, 

which provide information about the distances to nearby obstacles. The robot then 

identifies gaps—regions of the environment where the distance to obstacles on either side 

is sufficiently large to permit safe passage. Recently, Mujahed et. al [11] introduced the 

concept of Admissible gap-based navigation for mobile robots.  

The term "admissible" refers to gaps that meet predefined conditions ensuring the safety, 

efficiency, and effectiveness of navigation.  In admissible gap-based navigation, the robot 

continuously evaluates potential gaps based on factors such as width, distance to the goal, 

and the presence of obstacles. This evaluation helps the robot to prioritize gaps that are 

nearer to the goal. 

Chacón-Quesada et al. introduced an innovative concept that integrates dynamic signifiers 

in AR for robot navigation [30]. This approach combines AG navigation with AR to create 

a state-of-the-art method for reactive collision avoidance.  

Although Admissible Gap (AG) Navigation has addressed several limitations of traditional 

gap-based algorithms, it has its own drawbacks. One of the primary limitations of AG 
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Navigation is its lack of environmental retention; it does not build or maintain a map of the 

environment. Instead, AG Navigation focuses on real-time analysis to identify admissible 

gaps for navigation. While this approach allows for quick decision-making and reactive 

collision avoidance, it can result in higher values of jerk and stress, leading to unstable and 

jerky motion for mobile robots. This can be particularly problematic in scenarios requiring 

smooth and consistent movement. Moreover, AG Navigation struggles with real-time 

adaptability. In dynamic environments where obstacles can suddenly appear or change, AG 

Navigation's real-time analysis may not be sufficient to respond effectively. This can result 

in increased collision risk with high jerks. 

 

Figure 2.3: Motion planning methods 

In contrast, Simultaneous Localization and Mapping (SLAM) offers a robust solution for 

real-time environment mapping, localization, and obstacle avoidance. SLAM continuously 

builds and updates a map of the environment while simultaneously determining the robot's 

location within that map. SLAM can dynamically adapt to changes in the environment, 

making it highly effective in both static and dynamic settings. SLAM algorithms use sensor 

data to create a detailed and accurate representation of the surroundings, which the robot 

can use to plan its path and avoid obstacles efficiently.  
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2.3 Summary 

Chapter 2 gives a detailed review of existing colocalization methods and AR-based motion 

planning. We examined both marker-based and markerless colocalization techniques, 

highlighting their advantages and limitations. In AR-based motion planning, we explored 

various approaches, including graph-based, sampling-based, optimization-based, potential 

field methods, and gap-based algorithms. This comprehensive review of existing research 

helped us understand the gaps in the current work and formed the basis for developing our 

proposed AR-based Hector SLAM approach.   
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CHAPTER 3. METHODOLOGY 

The complete system architecture is shown in Figure 3.1. There are three major modules 

of our system. The first module is the AR-headset module, which is associated with the 

user. The surface detection node helps detect different surfaces when the user points with 

the controller. Once an initial or goal position is set, the coordinates are sent to the robot 

via ROSBridge [57]. The robot uses SLAM to map the environment in real-time and 

navigate to the goal position. A detailed explanation is given in the following sections. 

 

Figure 3.1: System Architecture 

3.1 AR-HMD Colocalization with Mobile Robot 

Colocalization is the process by which each device, such as an augmented reality head-

mounted display (AR-HMD) and a mobile robot, determines its position within a shared 

coordinate system. This process is crucial for enabling seamless interaction and 

coordination between the devices. In our research, we focus on calculating the relative 

transformations between an AR-HMD and a mobile robot. Given that both systems are 

dynamic and continuously moving, a robust and continuous localization method is 

necessary. 
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Our approach to colocalization does not rely on artificial landmarks, such as fiducial 

markers or spatial anchors, nor does it depend on natural landmarks like vision-based cues. 

This markerless method simplifies the calibration process significantly. Without 

predefined markers, the setup becomes easier and faster, reducing potential sources of error 

associated with marker placement. Additionally, our approach is more robust for real-time 

applications where both the robot and the AR device need to operate in coordination. 

For our research, we used a Magic Leap 1 (ML1) headset [58] and a 4-wheel differential 

drive mobile robot. Figure 3.2 illustrates that the robot and the AR headset follow different 

coordinate frame conventions. Initially, both the ML1 and the robot are oriented in their 

respective forward-facing directions. This discrepancy can lead to inaccuracies in spatial 

data interpretation and integration, as the x-axis of the ML1 and the robot may not be 

aligned. Such misalignment can cause problems when setting navigation goals, as the robot 

may misinterpret the positional data. 

The dynamic nature of both the AR-HMD and the robot introduces additional complexity. 

As both systems move, it is essential to maintain accurate localization through real-time 

updates. This continuous movement requires a robust transformation method to ensure 

precise alignment and coordination. To simplify the complexity associated with dynamic 

frames, we assume that the x-direction of both the ML1 and the robot are aligned, which 

helps reduce errors in interpreting the coordinate data. 

 

Figure 3.2: Frame Representation (a) Robot (b) ML1 (c) Sim 
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Figure 3.2 (c) presents the third frame, known as the Sim frame, which represents the 

position and orientation of the robot in the simulation software. This frame is crucial for 

Simultaneous Localization and Mapping (SLAM) navigation, as it provides a reference for 

the robot's real-world location. Even after correcting the orientation of both systems, we 

must account for the translation between the ML1 and the Robot. To address this, we 

introduce a Global G frame to find coordinates of the robot in the real world, with respect 

to Sim. This frame ensures that all spatial data is referenced correctly in the real-world 

coordinate system. Figure 3.3 shows the transformation between ML1 and Sim, which 

represents the robot’s pose. 

Once the coordinate frames are aligned, we can send the initial and goal poses to the robot 

for navigation. Using the controller, we detect the robot and establish its initial position. 

We then set a goal position in the environment using the same procedure. This process 

ensures that the coordinates received by the robot adhere to the real-world coordinates 

provided by the ML1. This alignment guarantees that the robot correctly interprets and 

follows the goal position sent from the AR-HMD, resulting in accurate navigation (Figure 

3.6). 

 

Figure 3.3: Transformation between ML1 and Sim 

ML1TSim = (Rx (90)) x (PSim) 

(PG) =  ML1TSim
-1

 x (PML1) 
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ML1TSim =  
𝐼 𝐺
0 1

 

GTSim = (ML1TG)-1 x (
ML1TSim) 

Both the robot and goal position are with respect to the ML1 frame, but for navigation, 

these frames must be with reference to the RVIZ frame. The final transformation is given 

in Figure 3.4. Once we have these transformations, we can send the coordinates via ROS, 

given by SimTRobot and SimTGoal. 

 

Figure 3.4: Final Transformation 

SimTROBOT = (GTRVIZ)-1
 x (

ML1TG)-1
 x (

ML1TROBOT) 

SimTGOAL = (MLTGOAL)-1
 x (

ML1TG)-1
 x (

ML1TGOAL) 

By implementing this colocalization method, the mobile robot and the AR-HMD can work 

in coordination. The accurate alignment of coordinate frames and the continuous updates 

ensure that the robot navigates effectively within the shared space, responding to dynamic 

changes and achieving the desired goals with precision. 
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3.2 AR-ROS Communication Framework 

Integrating the ML1 headset with the Robot Operating System (ROS) posed a significant 

challenge since the headset does not inherently support ROS communication, unlike other 

devices such as the Microsoft HoloLens [31]. To bridge this gap, we utilized the Unity 3D 

game engine  to design and develop a custom application for the ML1. Our application 

leverages ML1’s surface detection capabilities and the ML Web Real-Time 

Communication (MLWEBRTC) framework [59] to enable effective communication 

between the ML1 headset and ROS. 

The communication between the ML1 and MLWEBRTC is established through a signaling 

server, which acts as a mediator to facilitate data exchange. One of the key features of ML1 

that we utilized is plane detection, which allows the headset to identify horizontal and 

vertical surfaces in the environment. This feature is crucial for generating a spatial map, 

enabling the ML1 to recognize surfaces such as walls, tables, floors, ceilings, and 

undersides. We added functionality to detect our mobile robot based on its kinematic 

constraints to tailor this capability to our specific needs. 

In our system, we focused on detecting three types of surfaces: walls, floors, and the robot 

itself (Figure 3.5). The detection process involves checking the dot product of the surface 

normal to distinguish between vertical and horizontal surfaces. If the dot product is less 

than or equal to a specified wall threshold, the surface is classified as a wall. If not, the next 

step is to check if the dot product is negative, which would indicate a downward-facing 

surface, classifying it as a ceiling. For detecting the robot, we use the vertical range of a 

raycast to identify surfaces within the robot’s operational height above the floor. If the 

detected point falls within this range, the surface is classified as a robot. 

Robot initialization and setting goals for the robot are accomplished using a point-and-

click method with the ML1 controller. The user looks around the environment and points 

the controller at the mobile robot to set its initial position. Similarly, the user chooses a 

goal point by aiming the controller at the floor. Our framework includes a safety feature 

that allows navigation goals to be set only when the floor is detected by the ML1, 

preventing incorrect goal coordinates from being assigned to surfaces other than the floor. 
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Figure 3.5: Surface Detection 

. For this research, we conducted experiments in a non-cluttered environment to ensure 

accurate detection, considering only the mobile robot as the robot. 

The ML1’s ability to anchor virtual objects to detected planes ensures stability in their 

placement, maintaining consistency in sending data between coordinate systems. Once a 

surface is detected, a virtual object is created at the goal or initial position coordinates when 

the user pulls the controller’s trigger. These coordinates are then received by MLWEBRTC 

and transmitted to the ROS navigation stack via ROSBridge. 
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Figure 3.6: AR view for AR-based Hector SLAM (a) Detect Robot (b) Set goal 

ROSBridge enables the ML1 to communicate with the ROS navigation stack. The initial 

and goal coordinates sent from the ML1 are received by the robot, which then uses them 

for navigation. This seamless integration of the ML1 with ROS allows for accurate and 

efficient navigation of the mobile robot, leveraging the AR capabilities of the ML1 to 

enhance the overall user experience and operational efficiency. 

3.3 Hector SLAM with EKF sensor fusion 

Hector SLAM [60] is a technique that leverages high-frequency LIDAR data to create a 

detailed map of the robot's environment. It operates by aligning consecutive LIDAR scans 

through a process known as scan matching. In this method, Hector SLAM does scan 

matching based on the Gauss-Newton approach for aligning the new LIDAR scans with 

the previous ones.  The objective of the algorithm is to find the transformation that 

minimizes the error between the current scan and the existing map. This process involves 
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iteratively refining the transformation to update both the map and the robot's pose, resulting 

in a detailed occupancy grid map that is continuously published on the map topic. 

In addition to map generation, Hector SLAM provides transformations via the tf 

(transform) library, which describes the robot's movement relative to the map frame. This 

continuous stream of transformation data allows for accurate tracking of the robot's 

position and orientation over time. Once a map has been generated, the robot can utilize 

AMCL (Adaptive Monte Carlo Localization) [61] to localize itself within this map. AMCL 

subscribes to the map topic provided by Hector SLAM and uses incoming LIDAR scans 

to estimate the robot's pose through a particle filter. The resulting pose estimate is published 

to the tf tree, offering a real-time transformation between the map frame and the robot's 

base frame. 

To achieve more accurate and reliable state estimation, our system incorporates an 

Extended Kalman Filter (EKF) [62] for sensor fusion. The EKF node integrates data from 

multiple sources: odometry, IMU (Inertial Measurement Unit) data, and pose estimates 

from AMCL. By combining these inputs, the EKF produces a refined estimate of the robot's 

state. This step is crucial for mitigating issues such as laser drifts and inaccuracies in 

localization, which can occur due to the inherent noise and limitations of individual 

sensors. 

With a robust state estimate in place, the robot can effectively navigate toward its goal 

position using planners from the ROS navigation stack. This navigation process involves 

two key components: the global planner and the local planner. 

3.3.1 Global Planner 

For our global planner [63], we employed Dijkstra's algorithm [46]. This algorithm is well-

known for its reliability and optimal path-finding capabilities, as it always finds the shortest 

path in a weighted graph. In the context of our system, the global planner uses the costmap 

generated from sensor data. Each cell in the costmap corresponds to a vertex in the graph, 

and the movement cost between cells forms the edge weights. According to [64], the 

distance to the start node s is initialized to 0, i.e., d(s) = 0, while the distance to all other 
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nodes v is set to infinity, i.e., d(v) = ∞, for all 𝑣 ≠ 𝑠. The algorithm then iteratively selects 

an adjacent node u with the smallest distance d(u) and updates the distances to its neighbors 

v via the edge (u, v). 

This method ensures that the robot can plan a reliable and optimal path from its current 

position to the goal position, taking into account the layout and obstacles within the 

environment as represented by the costmap. 

3.3.2 Local Planner 

For local planning, we utilized the Trajectory Rollout algorithm [65] with the Dynamic 

Window Approach (DWA) [66]. It is specifically designed for real-time obstacle avoidance 

and navigation. The Trajectory Rollout algorithm evaluates possible trajectories by 

simulating the robot's motion over a short time period. It then selects the optimal path based 

on a cost function that balances three key criteria: progress toward the goal, distance from 

obstacles, and velocity. The DWA component further refines this process by limiting the 

search space to dynamically feasible trajectories.  

Vt = {(v,w)|vmin ≤ v ≤ vmax,wmin ≤ w ≤ wmax} 

where vmin, vmax are the minimum and maximum feasible linear velocities and wmin, wmax 

are the minimum and maximum feasible angular velocities. 

It also considers the robot's current velocity (v,w) and acceleration constraints (v̇ ,ẇ).  

Vd = {(v,w) | v ∈ [va − v˙ · t,va + v̇ · t], w ∈ [wa – ẇ · t,wa + ẇ · t]} 

where v̇ and ẇ represent the linear and angular accelerations applied at time t, and va and 

wa are the actual linear and angular velocities. 

This means that the local planner not only accounts for the desired movement but also 

respects the robot's physical limitations in terms of linear and angular acceleration. By 

doing so, the DWA ensures that the planned trajectories are not only optimal but also 

executable given the robot's capabilities. 
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In summary, the integration of Hector SLAM with EKF sensor fusion and the ROS 

navigation stack's global and local planners creates a comprehensive and robust system for 

indoor mobile robot navigation. The use of high-frequency LIDAR data for map 

generation, combined with advanced localization and state estimation techniques, ensures 

accurate and efficient navigation even in complex environments. The global and local 

planners work together to provide optimal and feasible paths, enabling the robot to reach 

its goals safely and reliably. 

This chapter outlined the methodology adopted for our proposed method. In the next 

chapter, we’ll highlight the results obtained with a detailed discussion. 

3.4 Summary 

Chapter 3 has outlined the methodology used in this research. We described the AR-HMD 

colocalization process with the mobile robot, ensuring accurate spatial alignment between 

the AR-HMD and the robot. The AR-ROS communication framework explains how data 

is transferred from the ML1 to the mobile robot. Additionally, we discussed the 

implementation of Hector SLAM with EKF sensor fusion, which combines LIDAR and 

IMU data to enhance the robot's localization and mapping capabilities. The chapter also 

covered the global and local planning strategies, specifically Dijkstra's algorithm and 

Trajectory Rollout, respectively, to ensure optimal pathfinding and obstacle avoidance. 

Highlighting our methodology sets the stage for the experimental results and analysis 

presented in the next chapter, validating the effectiveness of the proposed approach.  
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CHAPTER 4. EXPERIMENTAL RESULTS  

In this chapter, we present and discuss the results of our proposed method. We compare 

the performance of Hector SLAM and AG, explaining why Hector SLAM is the better 

approach. Next, we test our proposed AR-based Hector SLAM method for indoor mobile 

robot navigation.  

4.1 Experimental Setup 

We created custom environments in Gazebo for three experimental scenarios (S1, S2, S3), 

based on Mujahed et al.'s [11] experiments 1, 2, and 5. In each scenario, we evaluated the 

performance of robot navigation using both Hector SLAM and the AG navigation method. 

Figure 4.1 illustrates the simulation environment setup for each scenario. The robot creates 

a real-time map of the environment for Hector SLAM. Our simulation experiments utilized 

a Turtlebot 3 Burger model [67], which has a maximum translational velocity of 0.22 m/s 

and a maximum rotational velocity of 2.84 rad/s and is equipped with a laser and an IMU. 

 

Figure 4.1: Simulation environment view for the three scenarios 

After testing the effectiveness of Hector SLAM in our simulation experiments, we tested 

our proposed AR-based Hector SLAM in a real-world scenario. The setup is similar to the 

simulation environment. In Figure 4.3, Figure 4.5, and Figure 4.7, the pink lines surrounded 

by dark blue lines indicate obstacles in the local costmap as detected by the robot along its 

path. We used a four-wheeled mobile robot platform operating on a differential drive 
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model. This platform uses a Raspberry Pi 4B model (8GB RAM) and an MPU5060. An 

RPLIDAR A1 is mounted on top, with an angular resolution of 1o and a scanning range of 

0.15 to 12 meters. Magic Leap 1 (ML1) is used as the AR-HMD for this experiment. 

4.1.1 Scenario 1 

The robot must navigate through a sparse environment as seen in Figure 4.2.  

 

Figure 4.2: (a) Scenario 1 real-world set up (b) Path from initial to goal point. 

 

Figure 4.3: Scenario 1 Navigation 
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The primary objective is to reach the specified goal while detecting and avoiding these 

obstacles. This requires the robot to continuously update its path, ensuring it can navigate 

around the obstacles without collisions. The sparse nature of the environment means that 

the obstacles are not densely packed, but still present enough of a challenge to test the 

robot's navigation capabilities. Figure 4.3 shows the real-world navigation view of our 

mobile robot.  

4.1.2 Scenario 2 

The second scenario’s environment, as shown in Figure 4.4, is designed with a challenging 

U-shaped obstacle, creating a local minima that the robot must navigate around.  

The objective is to ensure the robot can successfully avoid getting trapped in this local 

minima while making its way towards the goal point. It must also navigate through a 

relatively narrow passage, labeled A and B, which lies outside the U-shaped obstacle. 

 

Figure 4.4: (a) Scenario 2 real-world set up (b) Path from initial to goal point, 

avoiding the local minima. Points A and B indicate the narrow passage that the 

robot must go through. 

This requires precise and accurate path planning to avoid collision with obstacles. Figure 

4.5 shows the real-world navigation view. 
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Figure 4.5: Scenario 2 navigation 

4.1.3 Scenario 3 

Scenario 3 involves a dynamic obstacle that is placed in the robot's path, as it is navigating 

towards the goal. The robot must find the shortest path to the goal position.  

 

Figure 4.6: (a) Scenario 3 real-world set up (b) Robot starts at the initial point, 

going to Goal via Path P1. (c) A dynamic obstacle is placed in its path when robot 

reaches line L3. (d) It starts to move back to its initial position. (e) The robot must 

take the shortest path to reach the goal, and so it chooses path P2. 
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It starts from path P1, navigating to the goal position after receiving the coordinates (Figure 

4.6 (a)). Upon reaching line L3, we introduce a dynamic obstacle in path P1 (Figure 4.6 

(b)). Now, there is only one path that the robot can follow, i.e., back to the initial position 

(Figure 4.6 (c)). As soon as it crosses the line L2, we remove obstacle O1. A new path P2 

opens up, and at the same time, the dynamic obstacle is removed from P1. Now the robot 

must choose between the new path and the original planned path for reaching the goal. It 

must choose the path with the shortest distance to the goal, so it chooses P2 (Figure 4.6 

(d)). Figure 4.7 shows the real-world navigation view. 

 

Figure 4.7: Scenario 3 navigation 

4.1.4 Evaluation Metrics 

The evaluation metrics [11] for calculating the performance and efficiency of our system 

are described below: 

1. Total execution time (Ttot): Total time needed by the robot to reach the goal. 

2. Path length (Plen): Total distance traveled from the robot’s initial position to the 

goal position:  

𝑃𝑙𝑒𝑛  =  ∫ (1 + (𝑓′(𝑥))
2

)
1/2

𝑑𝑥
𝑥𝑔

𝑥𝑖
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where xi and xg denote the coordinates of the initial and target locations. 

3. Accumulated linear and angular jerks (Jacc, ζacc): Sudden changes in acceleration 

are called jerks. It measures the smoothness of the robot’s movement along the 

trajectory: 

𝐽𝑎𝑐𝑐 =  
1

𝑇𝑡𝑜𝑡
∫ [ϋ(𝑡)]2𝑑𝑡

𝑇𝑡𝑜𝑡

0

 

ζ𝑎𝑐𝑐 =  
1

𝑇𝑡𝑜𝑡
∫ [�̈�(𝑡)]2𝑑𝑡

𝑇𝑡𝑜𝑡

0

 

4. Lateral stress (Slat): It tells us about the stability of the robot by measuring the 

centrifugal force acting upon it along the length of the trajectory.  

S𝑙𝑎𝑡 =  ∫  
𝑣(𝑡)2

𝑟(𝑡)

𝑇𝑡𝑜𝑡

0

 

5. Tangential stress (Stng): This metric tells us about sudden decelerations or 

accelerations that might cause the wheels to slip while turning:  

𝑆𝑡𝑛𝑔 =  ∫ |𝑣(𝑡)|𝑑𝑡̇

𝑇𝑡𝑜𝑡

0

 

Table 1 shows the mean results of our simulation-based experiments for both methods. We 

tested each scenario 15 times, for both Hector SLAM and AG, resulting in a total of 90 

experiments. In Hector SLAM, the robot does not depend upon the presence or absence of 

gaps for navigating to the goal position. It must choose the path with the shortest distance 

to the target location. 

4.2 Summary 

This chapter explains the experimental setup for both simulation and real-world 

experiments. We create three scenarios, replicating experiments 1, 2, and 5 of Mujahed’s 

[11] work. We first test the performance of Hector SLAM and AG in our simulation 
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environment, using evaluation metrics to check its effectiveness. Our real-world 

experiments are set up similarly like our simulation-based scenarios. We’ll discuss the 

results for both in the next chapter.   
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CHAPTER 5. DISCUSSION 

This chapter presents a discussion of the results obtained for each experiment. First, we 

evaluate its performance in a simulation environment, testing both Hector SLAM and AG 

navigation. Then we test our AR-based Hector SLAM method in a real-world set up. In 

Hector SLAM, the robot maps the environment while it navigates towards the goal 

position. In contrast, AG navigation does not map the environment, since it is a reactive 

collision avoidance method. It detects obstacles in real-time and navigates around them to 

avoid collision. This method may work well in smaller environments, but it can be difficult 

in larger or complex environments. The robot can quickly create a path to the goal point if 

it keeps track of obstacles or landmarks.  

For both simulation and real-world experiments, the robot uses Hector SLAM with EKF 

for sensor fusion to improve localization accuracy while mapping. There is no pre-built 

map of the environment. We used  Dijkstra’s algorithm for global path planning and the 

Trajectory rollout algorithm for local path planning.  

5.1 Jerk 

We analysed linear and angular jerks (Jacc, ζacc) for each scenario and presented the results 

in the following sections. 

5.1.1 Scenario 1 

AR-based Hector SLAM showed improvement in performance for both linear and angular 

jerks. From Table 1, the Jacc for Hector SLAM is 0.598, while for AG it is 0.929. SLAM 

has a significantly lower linear jerk than AG, indicating that it has a smoot movement with 

fewer abrupt changes in acceleration. The ζacc for Hector SLAM is 1.06, lower than AG’s 

1.25 showing that it has smoother rotational movement as well.  

Hector SLAM’s ability to map the environment in real-time is the reason why we get lower 

values of jerk in scenario 1. 
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Table 1: Comparison of AR-based Hector SLAM and AG Navigation 

Scenario Method 
Total 

time 

Path 

length 

Linear 

jerk 

Angular 

jerk 

Lateral 

stress 

Tangential 

stress 

1 

AR-based 

Hector 

SLAM 

10.5 3.32 0.598 1.06 0.801 0.915 

AG 10.6 3.398 0.929 1.25 1.015 1.052 

2 

AR-based 

Hector 

SLAM 

16.4 3.703 1.037 0.96 1.463 1.019 

AG 16.9 3.871 0.87 1.181 1.706 0.939 

3 

AR-based 

Hector 

SLAM 

25.97 4.865 1.386 1.385 2.675 2.414 

AG 29.774 4.839 1.522 1.547 3.235 2.719 

It can plan its path while avoiding obstacles, so it doesn’t produce abrupt jerks. This allows 

the robot to make planned and precise movements. In contrast, we get higher values of jerk 

with AG navigation because of its reactive nature. Its trajectory is less smooth since it 

makes adjustments in real-time when it detects an obstacle. 

On average, AR-based Hector SLAM decreased Jacc by 35.63% and ζacc by 15.20% in 

scenario 1. The jerk profile in Figure 5.1 shows a comparison of velocity, acceleration, and 

jerk for both methods.  
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Figure 5.1: Velocity, acceleration, jerk, and stress profiles for AR-based Hector 

SLAM (green) and AG navigation (red) for Scenario 1 

5.1.2 Scenario 2 

In Scenario 2, the environment includes a U-shaped obstacle creating a local minimum and 

a narrow passage that the robot must navigate to reach its goal. From Table 1, it is evident 

that AR-based Hector SLAM has a higher Jacc value of 1.037 compared to AG navigation’s 

0.87, indicating that AG navigation achieves smoother linear movements in this scenario. 

The reactive nature of AG navigation seems to be better suited for quickly adapting to the 

narrow passage, resulting in smoother linear motions. 

Conversely, AR-based Hector SLAM demonstrates a lower ζacc value of 0.96 compared to 

AG navigation’s 1.181, indicating smoother rotational movements. Effective navigation 

through the local minima and narrow passage requires precise control, which is facilitated 

by the global path planning and mapping capabilities of Hector SLAM. This helps avoid 

abrupt changes in angular acceleration. 
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AR-based Hector SLAM decreased ζacc by 18.71% on average in Scenario 2. The jerk 

profile for this scenario, shown in Figure 5.2 , presents a comparison of velocity, 

acceleration, and jerk for both methods.  

5.1.1 Scenario 3 

Scenario 3 presents the most complex environment, incorporating a dynamic obstacle in 

the robot's path. In this scenario, AR-based Hector SLAM records a Jacc value of 1.386 and 

a ζacc value of 1.385, whereas AG navigation shows values of 1.522 and 1.547, respectively. 

Even with increased complexity, SLAM performs better than AG navigation in terms of 

trajectory smoothness. 

 

Figure 5.2: Velocity, acceleration, jerk, and stress profiles for AR-based Hector 

SLAM (green) and AG navigation (red) for Scenario 2 
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The lower jerk values for Hector SLAM indicate its ability to handle dynamic obstacles 

while maintaining a smoother trajectory. Conversely, the higher jerk values for AG 

navigation suggest that its reactive nature leads to more abrupt and frequent changes in 

linear and angular acceleration. 

AG navigation’s strength lies in its reactive collision avoidance capability, allowing it to 

avoid dynamic obstacles as they appear. However, its lack of path planning can result in 

increased navigation time in larger environments or scenarios with multiple gaps. On 

average, Hector SLAM decreased Jacc by 8.94% and ζacc by 10.47% in scenario 3. The jerk 

profile for this scenario, as shown in Figure 5.3 , presents a comparison of velocity, 

acceleration, and jerk for both methods. 

 

Figure 5.3: Velocity, acceleration, jerk, and stress profiles for AR-based Hector 

SLAM (green) and AG navigation (red) for Scenario 3 
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5.2 Stress 

We analyzed lateral (Slat) and tangential stress (Stng) for each scenario and present the 

results in the following sections. 

5.2.1 Scenario 1 

In Scenario 1, which focuses on navigation in a sparse environment, AR-based Hector 

SLAM exhibited a lower Slat value of 0.801, in contrast to AG navigation’s value of 1.015. 

The reduced Slat suggests that Hector SLAM offers enhanced stability by minimizing the 

centrifugal forces acting on the robot. This reduction is critical for ensuring the robot's 

stability and preventing tipping, thereby maintaining a smoother and safer trajectory. 

The Stng for AR-based Hector SLAM is measured at 0.915, lower than AG navigation’s 

1.052. This indicates that Hector SLAM results in fewer abrupt accelerations or 

decelerations. The lower Stng implies that the robot’s speed transitions more gradually and 

in a controlled manner, thereby reducing the risk of wheel slippage and enhancing traction.  

On average, AR-based Hector SLAM demonstrates a 21.08% decrease in lateral stress (Slat) 

and a 13.02% improvement in tangential stress (Stng). Figure 5.1 shows the comparison of 

velocity, acceleration, and stress for Scenario 1 for both methods. 

5.2.2 Scenario 2 

Table 1 presents the stress values for Scenario 2. The Slat for AR-based Hector SLAM is 

1.463, which is lower than AG navigation’s 1.706. This reduced lateral stress suggests that 

Hector SLAM offers better stability while avoiding the local minima and navigating 

through the narrow passage. In environments with confined spaces, the robot must have 

lower lateral stress to prevent unstable motion. 

However, AR-based Hector SLAM has a higher Stng value at 1.019 as compared to AG 

navigation’s 0.939. This indicates that Hector SLAM may experience more sudden 

accelerations or decelerations. Increased tangential stress is because of the precise control 

required to navigate through the narrow passage, necessitating abrupt speed adjustments. 
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The risk of wheel slippage increases but the overall stability due to lower Slat indicates that 

Hector SLAM maintains controlled movement. 

On average, AR-based Hector SLAM shows a 14.24% decrease in Slat. The comparison of 

velocity, acceleration, and stress for Scenario 2, for both methods, is illustrated in Figure 

5.2.  

5.2.3 Scenario 3 

Scenario 3 presents a more complex environment with dynamic obstacles. AR-based 

Hector SLAM has a Slat of 2.675, lower than AG navigation’s 3.235. These values show 

that Hector SLAM maintains good stability even if there are moving obstacles within the 

environment. With a lower Slat, the robot will not be destabilized by the centrifugal forces 

that act upon it during dynamic obstacle avoidance. This helps the robot navigate safely 

through unpredictable environments with moving obstacles. 

AR-based Hector SLAM has a lower Stng at 2.414, compared to AG navigation’s 2.719. 

This shows that Hector SLAM handles sudden speed changes smoothly when avoiding 

dynamic obstacles. Lower Stng means that accelerations and decelerations are controlled, 

thus, reducing the risk of wheel slippage for better maneuverability and traction. 

Hector SLAM shows a 17.31% decrease in Slat and Stng by 11.22%, on average. The 

comparison of velocity, acceleration, and stress for scenario 3, in both methods, is shown 

in Figure 15c. 

5.3 Quantitative Performance Comparison 

In this section, we summarize the results of our experiments, highlighting the percentage 

decrease AR-based Hector SLAM has shown over AG navigation. 

5.3.1 Scenario 1 

In scenario 1, AR-based Hector SLAM decreased: 

• Linear jerk by 35.63% 
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• Angular jerk by 15.20% 

• Lateral stress by 21.08% 

• Tangential stress by 13.02% 

 

 

Figure 5.4: Scenario 1 mean decrease in jerk and stress 

A t-test for each evaluation metric gave us the following results: 

• Linear jerk: Comparing Hector SLAM (M=0.5984, SD=0.234) and AG 

(M=0.929, SD=0.327) yielded a p-value of 0.003, indicating that SLAM shows a 

significant decrease, as compared to AG. (t(14) = 2.145, p = 0.003). 

• Angular jerk: Comparing Hector SLAM (M=1.063, SD=0.218) and AG 

(M=1.255, SD=0.299) yielded a p-value of 0.05, indicating that SLAM shows a 

significant decrease, as compared to AG. (t(14) = 2.145, p = 0.05). 

• Lateral stress: Comparing Hector SLAM (M=0.801, SD=0.246) and AG 

(M=1.015, SD=0.124) yielded a p-value of 0.005, indicating that SLAM shows a 

significant decrease, as compared to AG. (t(14) = 2.145, p = 0.005). 

• Tangential stress: Comparing Hector SLAM (M=0.915, SD=0.17) and AG 

(M=1.052, SD=0.162) yielded a p-value of 0.03, indicating that SLAM shows a 

significant decrease, as compared to AG. (t(14) = 2.145, p = 0.03). 
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Table 2: Scenario 1 t-test 

Evaluation Metric Method Mean SD t-value p-value 

Linear jerk 

AR-based 

Hector SLAM 
0.5984 0.234 

2.145 0.003 

AG 0.929 0.327 

Angular jerk 

AR-based 

Hector SLAM 
1.063 0.218 

2.145 0.05 

AG 1.255 0.299 

Lateral stress 

AR-based 

Hector SLAM 
0.801 0.246 

2.145 0.005 

AG 1.015 0.124 

Tangential stress 

AR-based 

Hector SLAM 
0.915 0.17 

2.145 0.03 

AG 1.052 0.162 

5.3.2 Scenario 2 

In scenario 2, AR-based Hector SLAM decreased: 

• Angular jerk by 18.71% 

• Lateral stress by 14.24% 
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Figure 5.5: Scenario 2 mean decrease in jerk and stress  

A t-test for each evaluation metric gave us the following results: 

• Linear jerk: Comparing Hector SLAM (M=1.037, SD=0.281) and AG (M=0.877, 

SD=0.295) yielded a p-value of 0.13, indicating that SLAM shows an insignificant 

increase, as compared to AG. (t(14) = 2.145, p = 0.13). 

• Angular jerk: Comparing Hector SLAM (M=0.96, SD=0.236) and AG (M=1.181, 

SD=0.303) yielded a p-value of 0.03, indicating that SLAM shows a significant 

decrease, as compared to AG. (t(14) = 2.145, p = 0.03). 

• Lateral stress: Comparing Hector SLAM (M=1.463, SD=0.292) and AG 

(M=1.706, SD=0.169) yielded a p-value of 0.009, indicating that SLAM shows a 

significant decrease, as compared to AG. (t(14) = 2.145, p = 0.009). 

• Tangential stress: Comparing Hector SLAM (M=1.019, SD=0.371) and AG 

(M=0.939, SD=0.09) yielded a p-value of 0.42, indicating that SLAM shows an 

insignificant increase, as compared to AG. (t(14) = 2.145, p = 0.42). 

5.3.3 Scenario 3 

In S3, AR-based Hector SLAM decreased: 
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• Linear jerk by 8.94% 

• Angular jerk by 10.47% 

• Lateral stress by 17.31% 

• Tangential stress by 11.22% 

Table 3: Scenario 2 t-test 

Evaluation Metric Method Mean SD t-value p-value 

Linear jerk 

AR-based 

Hector SLAM 
1.037 0.281 

2.145 0.13 

AG 0.877 0.295 

Angular jerk 

AR-based 

Hector SLAM 
0.96 0.236 

2.145 0.03 

AG 1.181 0.303 

Lateral stress 

AR-based 

Hector SLAM 
1.463 0.292 

2.145 0.009 

AG 1.706 0.169 

Tangential stress 

AR-based 

Hector SLAM 
1.019 0.371 

2.145 0.42 

AG 0.939 0.09 
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Figure 5.6: Scenario 3 mean decrease in jerk and stress  

A t-test for each evaluation metric gave us the following results: 

• Linear jerk: Comparing Hector SLAM (M=1.386, SD=0.131) and AG (M=1.522, 

SD=0.125) yielded a p-value of 0.007, indicating that SLAM shows a significant 

decrease, as compared to AG. (t(14) = 2.145, p = 0.007). 

• Angular jerk: Comparing Hector SLAM (M=1.385, SD=0.24) and AG (M=1.547, 

SD=0.201) yielded a p-value of 0.05, indicating that SLAM shows a significant 

decrease, as compared to AG. (t(14) = 2.145, p = 0.03). 

• Lateral stress: Comparing Hector SLAM (M=2.675, SD=0.677) and AG 

(M=3.235, SD=0.749) yielded a p-value of 0.04, indicating that SLAM shows a 

significant decrease, as compared to AG. (t(14) = 2.145, p = 0.04). 

• Tangential stress: Comparing Hector SLAM (M=2.414, SD=0.295) and AG 

(M=2.719, SD=0.507) yielded a p-value of 0.05, indicating that SLAM shows a 

significant decrease, as compared to AG. (t(14) = 2.145, p = 0.05). 

5.3.4 Overall average improvement 

Figure 5.7 shows average improvement of AR-based Hector SLAM over AG navigation 

for Jacc, ζacc, Slat, and Stng.  
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Table 4: Scenario 3 t-test 

Evaluation Metric Method Mean SD t-value p-value 

Linear jerk 

AR-based 

Hector SLAM 
1.386 0.131 

2.145 0.007 

AG 1.522 0.125 

Angular jerk 

AR-based 

Hector SLAM 
1.385 0.24 

2.145 0.05 

AG 1.547 0.201 

Lateral stress 

AR-based 

Hector SLAM 
2.675 0.677 

2.145 0.04 

AG 3.235 0.749 

Tangential stress 

AR-based 

Hector SLAM 
2.414 0.295 

2.145 0.05 

AG 2.719 0.507 

If we look at the combined decrease for jerk and stress, we get improvement in: 

• Average jerk (combined) by: 11.63% 

• Average stress (combined) by: 11.39% 
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Figure 5.7: AR-based Hector SLAM average decrease in jerk and stress 

5.4 Summary 

In this chapter, we presented a detailed analysis for both our simulation experiments as 

well as the results obtained from our proposed method. AR-based Hector SLAM has shown 

significant improvement in mobile robot navigation over AG navigation. It has reduced 

jerk and stress which leads to safer and smoother robot motion.   
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CHAPTER 6. CONCLUSION 

This research contributes to the field of HRI, AR, and AR-based motion planning. 

Environments where robots and humans work together are becoming increasingly popular. 

AR interfaces are a new mode of communication that allow intuitive and immersive 

experiences. AR-based robotics is an active research area, leading to improved human-

robot collaboration and interactions. Autonomous robots should be able to navigate to 

target locations while avoiding obstacles in their path. The first step is to establish 

colocalization between the AR-HMD and the mobile robot. Current systems use fiducial 

markers, spatial anchors, or object features for colocalization. However, fiducial markers 

can be intrusive and require precise placement, spatial anchors may not be flexible in 

dynamic environments, and object features can be unreliable in cluttered or poorly lit areas. 

An alternative approach, using mathematical transform representation, offers a more robust 

solution. This method leverages precise geometric transformations, providing accurate and 

consistent colocalization across varying conditions and environments. 

AG navigation is the current state-of-the-art AR-based motion planning method; however, 

it has certain limitations. It is a reactive collision avoidance method that focuses on real-

time obstacle avoidance. It uses sensory information to detect obstacles and navigates 

around them to get to the goal point. The drawback of this method is that it does not retain 

environmental information such as the location of obstacles or create a map of the 

environment. It cannot plan a path from the initial to the goal position, decreasing its 

flexibility. Its reactive nature causes abrupt changes in acceleration when it detects 

obstacles, which leads to high values of jerk and stress. This can be unsafe, especially in 

situations where smooth robot motion is required.  

In contrast, SLAM creates a map of the environment in real time. It tracks the location of 

obstacles, improving localization accuracy. It can plan paths to the target location which 

gives smooth trajectories. Moreover, it can replan its path if the original path is blocked, 

saving time that would otherwise be spent searching for a new path. It makes the system 

robust and adaptable to changes in the environment.  
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Chapter 1 laid the groundwork by introducing the motivation behind this study, presenting 

the problem statement, and outlining the research objectives. It highlighted the limitations 

of existing gap-based navigation techniques and proposed an AR-based Hector SLAM 

approach for smooth motion planning of indoor mobile robots to address these challenges. 

Chapter 2 provided a comprehensive literature review, exploring various colocalization 

methods and AR-based motion planning algorithms.  Chapter 3 discussed the 

methodology, highlighting markerless colocalization between an AR-HMD and a mobile 

robot, the AR-ROS communication framework, and the integration of Hector SLAM with 

EKF sensor fusion. Chapter 4 presented the experimental results, in three test scenarios 

with both static and dynamic obstacles. Chapter 5 presents a detailed analysis, where we 

compared AR-based Hector SLAM with AG navigation, showing the reduced jerk and 

stress. We used a t-test to establish the significance of our results.  

6.1 Contributions  

The main contributions of this research are: 

• Markerless Colocalization Method: Developed a robust markerless 

colocalization technique for aligning AR-HMDs with mobile robots, enhancing the 

flexibility and reliability of HRI. 

• AR-Based Hector SLAM: Introduced an AR-based Hector SLAM method for 

smooth motion planning of indoor mobile robots. 

• AR-ROS Communication Framework: Created an effective communication 

framework between AR devices and the mobile robot operating ROS. 

• Experimental Validation: Experimental results showed the effectiveness of 

Hector SLAM over AG. AR-based  Hector SLAM improved jerk and stress by 

11.63% and 11.39% respectively. We validated these results with a t-test that 

showed significant change. Moreover, we implemented our proposed method for 

indoor mobile robot navigation.   
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6.2 Future Work 

We propose visual SLAM methods for better localization accuracy. Integrating visual 

SLAM with the existing system could improve the robot's ability to navigate in complex 

and dynamic environments, especially where LiDAR data alone might be insufficient. 

6.3 Research Publication 

The research carried out during this thesis has resulted in the following publication: 

I. Naveed, K.F. Iqbal, Y. Ayaz, S. Ali, K. Faraz, K.A. Ahmed, "Integration of Augmented 

Reality and Hector SLAM for Smooth Motion Planning of Indoor Mobile Robots", 

Knowledge-Based Systems. (submitted) (Q1, IF 7.2) 
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