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Abstract 

 
 

The rapid growth of the elderly population has underscored the importance of accurately 

recognizing Activities of Daily Living (ADLs) for effective health monitoring and timely 

interventions, particularly in regions such as Korea, where the aging demographic presents dis- 

tinct challenges. Traditional methods often struggle with processing complex sensor data and 

optimizing model performance, especially when dealing with varied activities captured from 

multiple body locations. To address these limitations, we propose an advanced deep learning 

framework that utilises Long Short-Term Memory (LSTM) networks to analyze time-series 

sensor data, enabling the model to capture temporal dependencies and patterns within the 

signals. Additionally, we transform these time-series signals into Short-Time Fourier Trans- 

form (STFT) spectrogram images, which are subsequently processed using Convolutional 

Neural Network (CNN), EfficientNet_B0, and Vision Transformer (ViT) models through 

transfer learning techniques. To mitigate the class imbalance inherent in the dataset, the 

Synthetic Minority Over-sampling Technique (SMOTE) is employed to generate synthetic 

samples for underrepresented classes. Furthermore, a Butterworth low-pass filter is applied to 

remove background noise, ensuring higher quality data for model training. The proposed models 

exhibited robust performance across multiple sensor placements, with the Efficient- Net_B0 

model demonstrating superior accuracy, achieving 99%, 98%, 99%, and 97% for sensor 

placements on the bag, belly, hand, and thigh, respectively. These results highlight the potential 

of our approach for enhancing ADL recognition in health monitoring systems. 

 

Keywords: Activities of daily living (ADLs), Activity recognition, Deep learning, Healthcare, 

Smartphone sensors data, Elderly people, Transfer Learning.
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   Chapter 1 

 

Introduction and Motivation 

 
Activity recognition is an advanced field that focuses on detecting daily activities performed 

by individuals using time series records of sensors. Significant progress has been made in 

technological connectivity over the last ten years, including cloud computing, edge 

computing, sensors, and the Internet of Things (IoT). Additionally, affordable and simple to 

integrate into mobile and immobile devices, sensors support current ADL analysis research. 

The swift rise of affordable smartphones, which are equipped with Inertial Measurement 

Units (IMU) like accelerometers and gyroscopes, has spurred the creation of various 

applications in areas such as healthcare, elder care, biometrics, sports analytics, personal 

fitness tracking, and security and surveillance [1]. 

The gyroscope and accelerometer sensors can capture detailed motion data. Accelerometers 

detect changes in velocity along three axes (X, Y, and Z). This allows the device to measure 

linear acceleration, such as the force of gravity or movement in a specific direction. Gyro- 

scopes measure the rate of rotation around three axes (pitch, roll, and yaw). This enables the 

detection of angular velocity and rotational changes [2]. Combined with accelerometer, 

gyroscope capture more accurate and precise motion sensing. The captured data is then fed 

into a specialized network known as the Smartphone Location Recognition (SLR) Network. 

This network processes the sensor data to recognize and interpret the smartphone location or 

the users daily activities i.e. walking, jumping, sitting, and hitting etc. 

ADL recognition encompasses two types of activities: simple and complex [3], [4]. Simple 

activities include sitting, walking, standing, running, etc. Difficult activities include specific 

activities and specific transitions, such as standing up, getting into a car, sitting still (for 10 
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seconds), and then walking out. There is little research on these two tasks. In machine 

learning, correctly identifying ADLs using field data is a multi-time, discrete challenge that 

falls within the scope of learning. Previous studies have focused on traditional methods such 

as support vector machine (SVM), random forests, and XGBoost. Traditional algorithms 

have a number of issues, not the least of which being their time-consuming manual 

implementation and need for complex architecture. Secondly, mostly studied had considered 

only one location data for processing e.g. waist or wrist. This work clipped to develop 

sophisticated DL models for accurately classifying both daily routine activities using time-

series data com- piled from built-in sensors in smartphones placed at multi-locations on the 

body (bag, belly, hand, and thigh). This work is conducted in collaboration with the Korea 

Bootcamp Co Ltd, where we have collected custom data from Korean elderly performing 

different ADLs. We have proposed a novel approach to convert signals into images using 

STFT technique and tackle the class imbalancing problem by using top-notch method 

SMOTE with detailed data augmentation. The proposed model achieves high accuracy in 

recognizing a diverse set of activities, thereby made contributions in the advancement of 

activity recognition technology and its applications in improving the well-being of elderly 

people. 

 

1.1 Goals and Objectives 

The primary goal of this study is to build an effective deep learning model for recognizing 

multi-locations smartphone-based ADLs of elderly people. The specific objectives are: 

• Develop and implement state-of-the-art deep learning models, to accurately identify 

Activities of Daily Life (ADLs) from smartphone sensor data collected from multiple 

locations using a custom dataset. 

• Create a comprehensive benchmark for smartphone-based activity recognition, 

evaluating model performance across diverse activities, sensor locations, and 

demographic groups, using standard metrics such as accuracy, precision, recall, F1-

score, and computational efficiency. 

• Explore and optimize deep learning models for computational efficiency and memory 
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usage, utilizing techniques such as model compression and efficient architecture de- 

sign to enable deployment on resource-constrained devices like smartphones without 

compromising performance. 

 

1.2 Motivation 

Smartphone-based activity recognition offers a non-intrusive, cost-effective solution that 

makes use of ubiquitous devices most people already own. Several factors drive this re- 

search: 

• The global increase in the elderly population of South Korea necessitates innovative 

solutions to support their independent living and health monitoring. 

• Accurate recognition of ADLs can help in timely detection of abnormal activities or 

health issues, allowing for prompt interventions. 

• Recent progress in deep learning and sensor technology provides an opportunity to 

develop sophisticated models capable of handling the variability and complexity of 

real-world sensor data. 

• Despite advancements in activity recognition, challenges such as signal noise, class 

imbalance, and the need for computationally efficient models persist. This study helps 

to address these gaps and contribute to the field with robust, high-performing solutions. 

 

1.3 Problem Statement 

The core problem addressed in this research is the accurate and efficient ADLs using time 

series custom data, especially for elderly people of South Korea. Our research uses a unique 

custom dataset that distinguishes itself from previous studies, as no prior deep learning work 

has been applied to it. While most existing research focuses on activity recognition using 

data from a single smartphone location, such as the waist or wrist, our dataset is more com- 

prehensive, encompassing multiple smartphone locations including the bag, belly, hand, and 
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thigh. This multi-location approach presents additional complexities, particularly the 

challenges of dealing with noise in raw sensor signals and the issues arising from imbalanced 

datasets. These factors can significantly impact the accuracy of activity recognition models. 

Therefore, to address these challenges and harness the full potential of our dataset, there is a 

pressing need to develop and optimize deep learning models that are specifically tailored to 

manage the intricacies of multi-location data and improve overall model performance. 

 

1.4 Thesis Structure 

The general layout of the thesis report is as follows: 

Chapter 2: This chapter offers a thorough analysis of the existing research on ADLs or HAR. 

It examines a number of studies, including their targeted problem, proposed solution, and 

results. The fundamental objective of literature review is to provide an overview and 

assessment of the currently suggested approaches related to HAR. 

Chapter 3: Discusses the proposed framework for reliable classification of daily living 

activities. 

Chapter 4: Explain the experimentation and results obtained and their discussion 

Chapter 5: concludes the study by making some suggestions for possible future research that 

is not included in this study but may be investigated in the future. 
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  Chapter 2  

 

Literature Review 

 

This section is a detailed but a crucial effort to review the existing methodologies and pin- 

point their limitations. The following is the literature which focused on different traditional 

machine learning & deep learning techniques, their challenges in HAR problem. According 

to the methodology used by the authors, the works in the literature can be classified into two 

types: 

1. Traditional Machine Learning Methods 

Decision Tree, Random Forest, K-Nearest Neighbors, Logistic regression, Support 

Vector Machine, Ensemble etc. 

2. Deep Learning based Methods 

Custom Convolutional Neural Networks, Plain Residual Neural Networks, transfer 

learning models like MobileNet, Inception etc. 

 

2.1 Traditional Methods 

Accurately recognizing activities of daily living (ADLs) in indoor environments is essential 

for smart homes, healthcare monitoring, and assistive technologies. It is highlighted how 

crucial feature selection and high-quality data are to enhancing model performance [5]. The 

dataset used is the CASAS Kyoto sensor dataset, collected from 20 volunteers performing 

five activities. Classification models tested include: Classification Via Regression, Random 
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SubSpace, Bagging, RF, J48, REP Tree, and IBK (Instance-Based Learning). These 

techniques were evaluated based on performance metrics like false positive rate (FPR), 

accuracy, recall, and ROC area. 

In [6] the new SNU-Ag-Fall&ADL used for classification of realistic fall scenarios in con- 

trolled environments. An inertial sensor on subjects’ waists measured two acceleration signals 

and one angular velocity signal during simulated falls and ADLs. Three machine learning 

classifiers were used: kNN, SVM, and ANN. Their performance was evaluated with metrics 

like ROC AUC Score, Accuracy, and MCC. The ANN achieved the highest classification 

rate, while the SVM was reliable even with unbalanced data, indicating its suitability for this 

task. 

The complexity of human activities, including concurrent activities, complicates accurate 

recognition. The study [7] propose an EDA method for HAR. Motion signal data is collected 

from smartphone sensors, preprocessed to reduce noies. A 0.3Hz low-pass filter isolates the 

gravity component. Data is divided into frames using a sliding window approach (1s or 

2.56s) with overlapping frames. Features extracted from these frames include time domain 

(mean, standard deviation) and frequency domain (information entropy, spectral energy). 

Stochastic Neighbor Embedding (SNE) is used for dimensionality reduction to visualize pat- 

terns. The feature vectors are classified using GridSearchCV and LinearSVC algorithms, 

achieving a high classification accuracy of 96.56%. 

With the growing elderly population, effective monitoring systems for independent living are 

needed. To improve care and safety, the study [8] propose a novel ensemble classification 

algorithm integrating ML & DL techniques, utilizing data from ubiquitous smartphones. The 

study employs various classifiers (RF, KNN, Logistic Regression, MLP, SVM, QDA, Deci- 

sion Trees, CNN, and LSTM) and three ensemble methods: Stacking, Blending, Bagging. 

Features like skew, minimum, maximum, and average percentile are used to train classifiers. 

Data is collected from smartphone sensors (e.g., accelerometer, gyroscope) during various 

activities. The ensemble algorithm achieved a 98% classification accuracy, outperforming 

traditional classifiers and effectively detecting multiple postures. 

The study [9] proposes a ML-based fall detection application that discriminates falls from 

random Activities of Daily Living (ADLs), ensuring high sensitivity to actual falls while 

minimizing false positives. The system is rotation-invariant, functioning effectively regard- 

less of the wearable device’s orientation (wrist or neck). They collected a large dataset over 
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400-days representing daily-life activities of older adults, including ambiguous ADLs and 

simulated falls. A preprocessing system extracts ambiguous ADLs from the recorded data. 

The study uses nine machine learning classifiers, including gradient boosting, random forest, 

and AdaBoost, implemented with the scikit-learn Python library. Classifiers are configured 

with default settings unless specified otherwise. Performance is evaluated based on 

sensitivity, specificity, accuracy, and the average number of false positives per day. The 

system achieved 100% sensitivity, successfully detecting all actual falls during the 

evaluation. 

The study [10] discusses challenges in human activity recognition for older adults, focusing 

on the potency of ML techniques in real-world contexts. The reliance on multiple sensors 

raises hardware costs and privacy concerns. The Aruba CASAS dataset, containing sensor 

events from a smart home, was used. Sixteen features were extracted from each 30-second 

time window. The dataset was shuffled, stratified, and split into training (70%) and testing 

(30%) sets, with under sampling and oversampling techniques applied for class balance. 

Various machine learning algorithms were evaluated, including SVM with RBF kernel, 

Naïve Bayes, RF, XGBoost, Logistic Regression, KNN, and MLP. Grid search optimized 

hyperparameters for KNN, SVM, and Random Forest. Specific RF parameters included 300 

trees, maximum depth of 30, two samples are needed in order to split an internal node, 

whereas one sample is needed in order to form a leaf node. The proposed techniques 

achieved 97% accuracy with the best model, surpassing other approaches using the same 

dataset. Under a realistic scenario with only ten motion sensors and an additional "Other" 

class for raw sensor events, the model achieved 89% accuracy. 

The study [11] proposes a robust solution to accurately predict a wide range of activities 

using a single wrist-worn accelerometer. They introduce a local weighted machine learning 

approach that combines local weighting with the RF algorithm to improve activity recogni-

tion accuracy by utilizing and locally weighting neighboring data points during prediction. 

The study uses the "PAAL ADL Accelerometry dataset," which includes single wrist-worn 

data from a accelerometer capturing 24 activities from 52 participants. A two-step approach 

for preprocessing reduces noise, including a sliding window technique to increase sample 

size. Time & frequency domain features are extracted to represent complex human motions. 

The local weighting scheme enhances prediction accuracy by considering nearby data points, 

achieving high accuracy in activity recognition and demon- 
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strating effectiveness in handling diverse activities. 

The local weighting mechanism mitigates dataset variation effects, making the model more 

robust, especially with limited samples. However, the authors note that the no. of neighbors 

(k value) requires parameter tuning, and the LWRF can become computationally complex 

with more samples and features. The study [12] proposes a combined conductive fabric- 

based suspender system integrating ML techniques for improved HAR, aiming to enhance 

wearability, reduce noise, and improve accuracy while addressing power consumption and 

washing durability. The data from three sensors was normalized and segmented. To extract 

time & frequency domain features dimensionality reduction techniques were applied. Eight 

classifiers, utilizing machine learning and deep learning techniques, were trained on a dataset 

split into training (70%) and testing (30%) subsets. The models were evaluated on unseen test 

data, effectively recognizing various activity patterns. Imbalanced datasets can hinder 

classification models, affecting sensitivity and specificity. A novel two-stage strategy for 

HAR is proposed by the paper [13], which involves coarse-level and fine-level categorization 

for free-style data gathering that represents real-world activities. A wearable accelerometer 

was used to record everyday activities through the free-form collection of data. Activities 

were categorized as "with exercise" or "without exercise" using a decision tree model that 

included the 5-top features. Correctly classified samples then used to train deep learning 

models for specific activities within these broad categories. Two deep learning models were 

proposed and evaluated using accuracy, sensitivity, and specificity metrics. Down sampling 

addressed data imbalance. The dataset, collected from a single participant over 795.86 hours, 

recorded activities realistically. The two-stage method showed re- markable performance with 

accuracies for specific activities: Desk-working: 93.53%, Driving: 93.52%, Walking: 

85.70%, Downstairs: 98.11%, and Upstairs: 85.91%. 

Accurate prediction of the Barthel Index (BI) is crucial for understanding changes in 

patients’ abilities to perform ADL after therapy. The study [14] uses data from 3419 patients 

(1575 neurological, 1844 orthopedic) at San Raffaele Hospital in Rome (2015-2018), 

focusing on individual, social, and clinical records to evaluate BI at admission and discharge. 

Machine learning models analyzed include RF, MLP, AdaBoost, SVR, DT, and NNR. Data 

features were transformed for compatibility, and 16 sets of features were selected for impact 

analysis on BI prediction. A leave-one-out cross-validation method validated model training 

outcomes. The Tree-structured Parzen Estimator (TPE) algorithm optimized hyperparame- 
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ters, i.e. the number and maximum depth of estimators for RF, the number of estimators for 

AdaBoost, and the batch size and number of iterations for MLP, preventing overfitting by 

halting training when loss increased. RF, MLP, and AdaBoost models had the lowest 

prediction errors, with MLP noted for its feasibility. 

Several authors used different signal processing and classification techniques. Processing the 

signals: The very-first step is to preprocess the signal by performing operations like reducing 

background noise, removing irregularly captured and poorly-captured signals etc. The 

downfall of all these previous methods is that informative and high-level features have to be 

extracted before feeding it into the model for classification purposes. As you can see, 

extraction of these types’ features requires working with a series of tools for feature selection 

and reduction is a time-consuming task. 

 

2.2 Deep Learning based Models 

Within the data science field, deep learning is a new trend for multi-classification and is a 

major step ahead of traditional machine learning methods in that it tries to learn important 

features from the image data on its own. Researches have proven that the implementation of 

deep learning is time saving and also enchances model performance. 

Whether deep learning models are gaining attention but focusing on accurate HAQ model to 

classify human activities for elderly are still a complex challenge. [15] integrate sensor- 

based dataset HAR70+ with active learning strategies to train deep Learning models. Re- 

cursive Feature Elimination and PCA is used for feature selection and extraction to increase 

model performance. Different algorithms including LSTM is tested on dataset. The LSTM 

architecture consisted of 64 units and two dense layers, with ’relu’ and ’softmax’ activation 

functions. The model is optimized with the ’Adam’ optimizer and ’categorical crossentropy’ 

loss function for multiclass classification problem, with accuracy monitored during training. 

For accurate model performance cross-validation techniques and standard evaluation met- 

rics are used. Across three tries of the experimentation, the models show different results of 

evaluation parameters. By comparing the results, the LSTM model performed the best, with 

an accuracy of 0.9845. 

Many deep learning models for HAR overlook behavioral patterns in different environments. 
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Using smartwatches, [16] suggests a deep neural network with convolutional layers, residual 

networks, and a squeeze-and-excite mechanism for HAR in older adults. The method makes 

use of three datasets that are separated into simple (SHA) and complicated (CHA) activities: 

WISM-HARB, UT-Smoke, and UT-complicated. Walking and sitting are examples of 

repetitive motions in SHA, whereas typing and clapping are examples of non-repetitive hand 

gestures in CHA. The framework uses both nonoverlapping and overlapping temporal frames 

for data collecting, preprocessing, feature representation, and model training and testing. 

A convolutional block, five residual-SE blocks, global average pooling, batch normalization, 

ReLU activation, and squeeze-and-excitation layers are all included in the ResNet-SE 

architecture. Categorical cross-entropy and the Adam optimizer are used to train the model, 

and early halting is implemented in case of validation loss. Based on the WISDM-HARB, 

UT-Smoke, and UT-Complex datasets, the ResNet-SE network achieved accuracy rates of 

94.91%, 98.75%, and 97.73%, respectively. 

Ground robot vision faces issues like occlusions and limited view compared to stationary 

cameras. [17] proposed solution is a real-time 1D LSTM model for multi-person activity 

recognition in elderly group exercise. Tested on 16 datasets, including a Routine Exercise 

Dataset (RED) with 14,440 samples, the model uses frames from video, feature extraction, 

and data cleaning. They split the data into 90% training and 10% testing. Validation was 

done using stratified K-Fold. The Adam optimizer with a learning rate set to 0.00003 and 

32-batch size, and a ’ReduceLROnPlateau’ scheduling strategy, were used. The model 

employs pose estimation, YOLOv3 with Darknet-53, and MOSSE tracker, feeding features 

into an MLSTM network. The system is designed for deployment on the Pepper robot using 

ROS. The method achieved accuracies of 99.27% to 99.90% on various daily activity datasets 

and 99.61% to 98.88% on exercise datasets, outperforming existing methods. 

Due to smartphones’ flexibility, sensor data acquisition is affected by position and 

orientation changes, reducing activity recognition accuracy. To address this, the Extended 

Kalman Filter (EKF) and Accelerometer Linear Gaussian Principal Component Analysis 

(ALGPCA) preprocessing methods are proposed in [18] for an efficient TCIANet model for 

human ac- tivity recognition. The time series data is divided into windows, split 7:3 for 

training and testing classifiers. The Adam Optimizer is used with a learning rate set to 0.001 

over 50 epochs. The dataset, collected using the Sensor Logger app on Xiaomi MIX4 and 

Huawei P20 smartphones, recorded at 100Hz with 50% overlap. 
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Experiments compared traditional machine learning methods and deep learning methods 

(e.g., DeepConvLSTM, AttnSense, HDL, DLSTM), using cross-validation to evaluate the 

algorithms’ generalization. TCIANet achieved the highest accuracy in activity recognition, 

with 93.25% using raw data and 98.93% after EKF-ALGPCA preprocessing. TCIANet also 

demonstrated high accuracy on public datasets, achieving 99.68% on UCL-HAR, 99.01% on 

WISDM, and 98.58% on MHEALTH. 

The 24-hour activity classification behaviors from raw accelerometer data is also challenging 

due to the variability in human movements. To address this, the AccNet24 framework was 

developed in [19], utilizing deep learning techniques to classify activities with high accuracy. 

Data was obtained from the Capture-24 dataset. The raw acceleration data was converted 

into signal images. Each signal image was resized to 224×224 pixels. Deep fea- tures were 

extracted using the ResNet101 model, using pre-trained ImageNet dataset. The output from 

the ResNet101 final pooling layer, a feature vector of size 2048, was changed into a 100-

dimensional feature space using Reconstruction ICA (RICA) and classified with a 

Bidirectional Long Short-Term Memory (BiLSTM) network. The dataset was divided into 

training, validation, and test sets, with AccNet24 achieving impressive accuracies of 96.9% 

on validation and 98.2% on test sets. 

In human activity recognition (HAR) in real-life environments there is also gap between 

theoretical data in HAR and its practical implication in everyday life [20]. The use of deep 

learning algorithms, specifically CNN and LSTM models can fill this gap for the 

classification of activities depends on data collected from smartphone sensors in real-life 

settings. Implementing deep learning algorithms, particularly DS-CNN and Bi-LSTM, and 

combining them into hybrid models. The real-life HAR dataset captured from four sensors: 

accelerometer, gyroscope, magnetometer, and GPS, collected from participants using their 

personal smartphones. The results obtained show that the hybrid models combining DS-

CNN and LSTM achieved a peak accuracy of 94.80% on the dataset used, which is an 

improvement over previous traditional machine learning techniques that had lower accuracy 

rates. 

Feature engineering is considered crucial in traditional human activity recognition methods 

[21], [22]. Post-stroke patients often struggle with daily activities due to motor impairments. 

A novel pipeline integrating Continuous Wavelet Transform (CWT) for fea- ture extraction 

with Transfer Learning (TL) models, specifically ResNet architectures, and 
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a fine-tuned SVM classifier. The dataset consisted of EEG signals from five healthy sub- 

jects, split into training, validation, and test sets in a 60:20:20 ratio. The SVM classifier was 

optimized using grid search and five-fold cross-validation, evaluating hyperparameters such 

as: Gamma: 0.01, 0.1, 1, 10, 100, Kernel Types: Linear, RBF, Polynomial, Sigmoid, 

Regularization (C): 0.01, 0.1, 1, 10, 100 and Degree: 2, 3. The best model used a polynomial 

kernel with a quadratic degree and gamma and regularization values of 0.01. The ResNet152 

V2-SVM pipeline achieved 100% classification accuracy across all datasets. 

The study [23] introduces "Eldo-care," a solution for elderly and disabled individuals with 

neurological conditions affecting emotional and cognitive processing. By integrating EEG 

signals and Kinect sensor data, the system monitors patients’ psycho-neurological states. 

EEG data, collected with the BrainTech Traveler using a 10–20 system, is cleaned with a 

6th order Chebyshev II filter. An autoencoder extracts features, and a CNN with transfer 

learning classifies the data, achieving over 95% accuracy. 

[24] propose a 1D-CNN model for time series data from smartphone sensors, focusing on 

accelerometer and gyroscope readings. The raw sensor data was preprocessed through normal- 

ization and segmentation. The 1D CNN, designed for time series, learns spatial hierarchies 

of features through convolutional layers. The models were trained with softmax activation 

and categorical cross-entropy loss, and evaluated on Recall, Precision, and F1 score. 

Recognizing activities involves understanding temporal relationships between frames, a chal- 

lenge not effectively captured by many methods. To address this, [25] proposes a deep 

learning approach with the use of video data from public sources and applied preprocess- ing 

techniques such as filtering, shrinking frames, and normalization. Benchmark datasets 

UCF50 (50 action categories) and HMDB51 (51 action categories) were employed. Various 

models, including CNN, LSTM, ConvLSTM, and LRCN, were trained, with a pre-trained 

CNN used for feature extraction and Fuzzy Logic to extract keyframes. The ConvLSTM 

model achieved 82.00% accuracy on UCF50 and 68.00% on HMDB51. 

The study [26] highlights the need to distinguish between various activities, including hand- 

oriented and general movements. Using the WISDM-HARB dataset from UCI, which 

includes data from 51 participants performing 18 activities with accelerometers and gyroscopes 

at 20Hz. The difficulty of effectively categorizing complex upper limb movements from 

pre-movement EEG signals is addressed in this work, which pertains to brain-computer 

interfaces (BCIs). A unique method combining spectral feature extraction with cutting-edge 
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machine learning techniques is proposed in the article [27]. To eliminate noise, they 

employed a 50Hz notch filter and a 4th-order zero-phase Butterworth filter (0.3Hz to 70Hz). 

To isolate EEG data from aberrations like eye blinks and muscle movements, sophisticated 

methods including Independent Component Analysis (ICA) and Second-Order Blind 

Identification (SOBI) were used. Spectral characteristics were extracted using STFT. 

Twelve healthy people’s EEG signals were included in the sample. A 64-channel device was 

used to record EEG data at a sampling rate of 512 Hz. A 3-second baseline and a 5-second 

pre- movement visualization phase preceded each trial. 

The paper addresses the decrease in HAR accuracy due to random changes in smartphone 

orientation and position. The authors in [28] used the UCL-HAR dataset and a custom 

dataset with varied orientations and positions during daily activities. They introduced EKF- 

ALGPCA (Extended Kalman Filter and Adaptive Linear Generalized Principal Component 

Analysis) to preprocess and align accelerometer data, mitigating orientation and position 

effects. Trained with the Adam Optimizer at a 0.001 learning rate over 50 epochs on a Py- 

Torch framework using an RTX3060 GPU, the model achieved a 99.68% accuracy on the 

UCL-HAR dataset. 

[29] proposes a dynamic active learning approach to address these challenges, tested on syn- 

thetic datasets generated using Gaussian Mixture Models (GMMs), the USC-HAD health- 

care dataset, and the UCI-HAR dataset. The approach focuses on activity discovery using 

novelty checks and affinity propagation-based clustering to identify new activities. It selects 

the most informative samples for manual annotation based on uncertainty, diversity, and 

representativeness. 

A windowing technique extracts activity indicators from raw sensor data, with a 15-dimensional 

feature set including both frequency and time domain features, like zero-crossings and mean 

values, showing superior activity recognition accuracy. 

The study [30] proposes a structured prediction strategy using probabilistic graphical models 

(PGMs) within a sequence-labeling framework to improve activity recognition. By modeling 

relationships between poses and actions, it enhances human activity understanding. Tested 

on the Florence 3-D, CAD-60, and UT-Kinect datasets, the approach efficiently handles 

variability in movements and performs well with smaller training data compared to LSTM 

models. 

To address temporal dynamics of human actions, [31] proposes a CNN architecture that pro- 
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cesses short video clips (approximately 2 seconds) to classify human activities. This 

architecture combines a 3D convolutional layer, which captures short-term spatial and 

temporal features from consecutive frames, with an LSTM layer, which learns long-term 

dependencies. The architecture was trained on the KARD, CAD-60, and MSR Daily Activity 

datasets. Performance was evaluated using confusion matrices, precision, and recall metrics. 

The de- sign minimizes network size and training time compared to other state-of-the-art 

methods, making it suitable for hardware-constrained environments. The KARD dataset 

achieved full recognition of all 18 classes, the CAD-60 dataset correctly classified all 12 

classes, and the MSR Daily Activity dataset yielded a classification accuracy of 95.6%. 

The study [32] introduces an unsupervised domain transfer method to adapt a pre-trained 

activity classifier for use at a new target body location. Using the PAMAP2 and MHEALTH 

datasets, they split the data into 30:20:50. Three experiments were conducted 1) Super- vised 

Source Model to evaluate the source-domain model’s performance 2) Unsupervised Target 

Model to assess the model adapted to the target domain without labeled data and 3) 

Comparison of Models to adapt the model’s performance against the original source model. 

Performance is measured using accuracy, precision, recall, and F1 scores, calculated for each 

activity class as a one-vs-rest problem. 

The study [33] introduces a novel method for classifying human activities based on 

movement features derived from changes in joint distances using the Euclidean distance 

formula and employing CNN. Two public datasets are utilized in the study 1) Florence 3D 

Action Dataset contains nine activities with 215 video segments captured using a Kinect 

camera, totaling 4016 frames. 2) UTKinect-Action3D Dataset. Various window sizes are 

tested, with a size of 16 yielding the best performance. These features are then formatted for 

the CNN model. The data is split using an 80/20 validation approach. The CNN processes 

the input with three-dimensional filters, and the model is trained through supervised learning. 

The model achieved 94.08% accuracy on the Florence 3D dataset and 93.18% accuracy with 

a loss value of 0.1964 on the UTKinect-Action3D dataset. 

The study [34] introduces the 19NonSens dataset, collected from 12 subjects using e-Shoes 

and a Samsung Gear G2 smartwatch, performing 19 activities. Data preprocessing included 

filtering, segmentation, and normalization. SensCapsNet, a Capsule Network for wearable 

sensor data, achieved 80% accurcay. 
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Table 2.1. Summary of Recent Work on Human Activity Recognition 
 

 

Ref. 

 

Year 

 

Dataset 

 

Activities 

 

Models 

 

Results 

 

Strengths 

 

Limitations 

[5] 2021 CASAS 

Kyoto 

Various 

daily 

activities 

Multiple classi- 

fiers 

High accuracy 

for regression 

models 

Robust experi- 

mental setup 

Potential over- 

fitting issues 

[6] 2022 SisFall 

open access 

dataset 

Falls and 

daily 

activities 

SVM, 

KNN, 

ANN 

Excellent 

performance 

with ANN 

Validation 

across diverse 

subjects 

Lack of analysis 

on misclassifi- 

cation cases 

[7] 2021 Postural 

Transi- tions 

from UCI 

Basic 

postural 

transitions 

SVM, Grid- 

SearchCV 

Strong ROC- 

AUC results 

Well-balanced 

data handling 

Potential data 

bias not fully 

addressed 

[8] 2021 Posture 

Detection 

dataset 

Basic postures QDA, SVM, 

CNN, Decision 

Tree 

High accuracy 

reported 

Use of hybrid 

feature selection 

techniques 

Limited details 

on performance 

metrics 

[9] 2021 FallAllD and 

RealAct 

Fall detection Multiple classi- 

fiers 

Moderate to 

high accuracy 

Device orien- 

tation invariant 

methodology 

Lack of clarity 

on achieving 

perfect accuracy 

[10] 2023 Aruba 

CASAS 

Daily 

home 

activities 

Various 

classi- fiers 

Good perfor- 

mance overall 

Realistic ex- 

perimental 

scenarios 

Short window 

extraction 

may overlook 

activity nuances 

[11] 2022 PAAL ADL 

Ac- 

celerome- try 

dataset 

Activities of 

daily living 

Multiple classi- 

fiers 

Satisfactory 

accuracy 

Comprehensive 

preprocessing 

and evaluation 

Manual feature 

extraction limits 

model flexibility 

[12] 2023 Body- worn 

suspender data 

Mixed daily 

activities 

Various 

classi- fiers 

including 

LSTM 

High sensitivity 

reported 

Enhanced fea- 

ture extraction 

techniques 

Focus on a spe- 

cific wearable 

limits generaliz- 

ability 

[13] 2023 Wearable ac- 

celerome- ter 

sensor 

Office and 

movement- 

related 

activities 

Decision Tree, 

ModelNEx 

High perfor- 

mance across 

models 

Effective imbal- 

ance handling 

Decision tree 

susceptible to 

overfitting 

[14] 2024 San Raffaele 

Hospital in 

Rome 

Healthcare- 

related activities 

Various 

models 

including 

stacking 

Strong accuracy 

for HAR 

Effective hy- 

perparameter 

optimization 

Lacks real- 

time prediction 

capability 
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  Chapter 3  

 

Methodology 

 

The proposed method for classifying activities of daily living consists of five phases: dataset 

collection, data segmentation, data preprocessing, classification models, and performance 

evaluation. The flow of these main processes are shown in fig 3.1. 

 

 

Figure 3.1: Proposed Framework 

 

 

 

3.1 Dataset Collection 

The dataset consists of total 19 South Korean subjects: 12 females and 7 males, with an 

average age of 60 years. Adults’ subjects (SA) age is between 18 and 60 years and elderly 



17 

 

 

subjects (SE) are older than 60 years. Subjects have an average height of 158.24 cm and an 

average weight of 58.26 kg. Data was collected at 100 Hz sampling rate from LM-G900N 

smartphone model placed at four different body locations: in-hand, in a thigh pocket, on the 

belly (inside a bag), and carrying a purse on hand as shown in Figure 3.2. 

 

 

Figure 3.2: Fig: (a) Smartphone placement locations (b) Classified ADLs 

 

The accelerometer sensor is designed to operate within a range of ±4g, which enables it 

to detect and measure acceleration forces that are up to four times greater than the force of 

gravity in both positive and negative directions. This broad range of detection is crucial for 

accurately capturing various intensities of movement, from subtle shifts to more vigorous 

motions. Meanwhile, the gyroscope sensor, with its measurement range of ±500 degrees per 

second, is adept at capturing angular velocity, detecting rotational movements in both 

clockwise and counterclockwise directions with precision. This capability is essential for 

tracking rapid rotational dynamics, such as those involved in sudden changes in orientation 

or quick spins. The combination of these signal readings ensures accurate and comprehensive 

data collection, capturing different types of human activities. The dataset includes a total of 

15 different activities, each carefully chosen to represent a diverse array of human motions, 

ranging from simple actions like walking and standing to more complex movements such as 

running and jumping. The detailed description of each activity mentioned in table 3.1. 
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Table 3.1. Summary of Activities of Daily Livings 
 

Signal ID Activities No. of Trials Total Duration 

D01 Walking - slowly/quickly 2 100s 

D02 Jogging - Slowly/Quickly 2 100s 

D03 Jumping on the same place 2 5s 

D04 Walk upstairs/downstairs - Slowly/Quickly 2 25s 

D05 Standing, bending/without bending knees and getting up 4 12s 

D06 Sit in a half height chair, wait a moment (5secs), and up 4 12s 
 slowly/quickly   

D07 Sitting a moment, trying to get up, and collapse into a chair 2 12s 

D08 Sit in a Sofa, wait a moment (5secs), and up slowly/quickly 4 12s 

D09 Sit on the ground, wait a moment (5secs), and up slowly/quickly 4 12s 

D10 Sitting a moment on the floor, lying slowly/quickly, wait a 4 12s 
 moment, and sit again   

D11 Being on one’s back, change to lateral position, wait a moment, 2 12s 
 and change to one’s back   

D12 Walking (4-5 steps), make a stop, bend down to pick up 2 12s 
 something and continue walking (4-5 steps)   

D13 SP/Person Touched or hit accidentally pole/another person 2 12s 

D14 Gently jump without falling (1 jump only) (trying to reach a 2 12s 
 high object)   

D15 Standing, get into a car, remain seated (10secs), and get out of 2 15s 

 the car   

 

3.2 Data Segmentation 

Data segmentation is a technique for dividing a dataset into smaller segments/chunks based 

on specific criteria or features. This technique is commonly used to improve the analysis, 

processing, and understanding of complex datasets. In this study, we have segmented our 

time-series data using MATLAB Signal Labeler tool. This tool facilitates the manual 

labeling of the sensor signals captured from four different locations on the body: Bag, Belly, 

Hand, and Thigh. The segmentation process is shown in figure 3.3 . 

Each signal is color-coded for clarity: blue for Bag, red for Belly, yellow for Hand, and purple 

for Thigh. The signals are plotted against the sample index, illustrating the variations in 

accelerometer readings (Accel_x, Accel_y, Accel_z) over time. The segments represent 

different activities (labeled from D01 to D05, including the specific activity instances) that 

were performed during data collection. The segmentation ensures that each activity is 

distinctly identified within the continuous time-series data, allowing for precise activity 

classification 
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during subsequent analysis. Next, we automated the extraction of these segments by loading 

the labeling information and identified all relevant signals files. For each file, read the data 

into a table and iterated through each labeled region of interest (ROI). This process ensured 

that each activity’s data was systematically separated, facilitating subsequent analysis and 

classification tasks. 
 

Figure 3.3: Time-series data segmentation using MATLAB Signal Labeller tool 

 

 

3.3 Data Pre-processing 

Preprocessing is an important step to clean and convert raw data into an appropriate format 

for model training. In this study, we used a Butterworth low-pass filter to preprocess time- 

series data from human activities. A Butterworth filter is a kind of electronic filter which per-

mits low-frequency signals to pass while decreasing the amplitude of high-frequency signals. 

We designed the filter with 6-Hz cutoff frequency and 100-Hz sampling frequency, using an 

8th-order filter. Each sensor 6-channel was individually filtered to reduce high-frequency 

noise and artifacts, ensuring the data retained the relevant low-frequency components as- 

sociated with different human activities. Along with noise removal we also normalize the 

filtered data using MinMaxScaler, which normalizes the datapoints to a particular range of 0 

to 1, improving the performance of subsequent analysis and learning models. This approach 
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enhances the signal-to-noise ratio and provides a clearer representation by removing noise 

from edges and within patterns, facilitating more accurate activity recognition as shown in 

figure 3.4. 

 

 

Figure 3.4: Butterworth Filter application on signal data 

 

 

3.3.1 Short-Time Fourier Transform (STFT) 

STFT is a technique widely used in signal processing that provides a qualitative 

representation of a signal based on frequency shift. Unlike the Fourier transform, which 

provides fixed- frequency analysis, STFT divides the signal into short periods and uses a 

Fourier transform on each section to create a series of spectrograms. This transformation 

from a time-domain signal to a frequency-domain spectrogram provides detailed information 

about how the frequency components evolve over time. This method involves the selection 

of certain parameters, such as the size of the imaging area and overlap, to ensure accuracy 

and consistency. In order to apply STFT on our data we have set some parameter according 

to our data. The sampling frequency (fs) has 100 Hz value, which is appropriate for the 

frequency range of our used SP. We used a Hamming window function to minimize spectral 

leakage, with the window size (nperseg) dynamically adjusted to be the smaller value 

between 256 samples and the length of the signal, ensuring the STFT was adaptable to varying 

signal lengths. The overlap between consecutive windows, denoted as noverlap, was set to 

half of the window size. This approach ensures a compromise between time and frequency 

resolution. By over-lapping windows, we reduce the risk of losing important transient 

information and improve 
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frequency resolution. This balance helps in capturing both temporal and spectral 

characteristics effectively. 

Additionally, we specified a number of FFT points as 256 to control the resolution of the 

frequency bins. We detrended each segment using a constant detrend method to remove any 

linear trend from the signals, making the frequency components more distinguishable. The 

STFT computation is set to return a one-sided spectrum, appropriate for real-valued signals. 

Boundary effects are managed by zero-padding the signals, ensuring the entire signal is 

analyzed without edge artifacts. The axis parameter is set to -1 to indicate that the STFT 

should be computed along the last axis of our input data. Using STFT technique, we have 

generated a total of 24,948 images for all locations. The generated spectrograms for different 

activities have been shown in Figure 3.5. 

 

 

(a) Spectrogram for Jogging 
 

 

(b) Spectrogram for Sitting on Floor 

(c) Spectrogram for Sitting on Sofa 
 

 

(d) Spectrogram for SP-Person Hit 

Figure 3.5: Generated Spectrograms using STFT for Different Activities 
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3.3.2 Synthetic Minority Over-sampling Technique (SMOTE) 

SMOTE is a method used to resolve class inequalities in data. Through interaction, it can 

construct a synthetic model of the minority class through the current minority sample, thus 

constructing the entire model of the minority class and improving the performance of the 

model. The issue of not handling imbalanced datasets is that mostly the learning methods 

ignore the minority class, leading to poor performance on it, even though performance on 

the minority class is often the most critical aspect. 

Our dataset contains activities with varying numbers of trials: some activities have 4 trials 

(e.g., signal ID D05 for Standing, Bending/Without Bending Knees, and Getting Up), while 

others have only 2 trials (e.g., signal ID D01 for Walking Slowly and Walking Quickly). The 

classes which have more trails contain more samples as compare to those classes with less 

trails. This results in class imbalance. To address this class imbalance issue, we employ the 

SMOTE approach on our dataset. 

Before application of SMOTE, we divided our images data into training, validation, and 

testing sets with ratio the 70:20:10. SMOTE is then applied on training set to transform 

images into feature vectors. SMOTE generated synthetic samples by interpolating between 

existing examples in feature space, which requires the data to be in numerical form. For 

SMOTE to function, we convert our textual image path into numerical format. This is done 

using a pretrained VGG16 model. VGG16 is a popular deep learning model trained on 

ImageNet, and we use it for feature extraction from images by removing the top classification 

layer and using the output from the average pooling layer. 

For the efficiency of SMOTE application images were resize into 224x224 pixels, 

normalized the pixel values, and then use the VGG16 model to extract features. It extracts low-

level features from initial convolutional layers. These features include simple structures such 

as edges, gradients, contours, simple texture patterns, temporal evolution and frequency 

characteristics of the signals in the spectrogram. Based on these extracted features it 

generates synthetic samples by interpolating between feature vectors of existing samples 

from the minority class. It chooses a sample image from the minority class, on the basis of 

its k-nearest neighbors, and originate new samples with the connected line segments to the 

original sample to its identified neighbors, corresponding to the labels. Unique filenames 

are generated for the synthetic images using UUIDs to avoid conflicts. 
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Data distribution changes before and after the application of SMOTE can be seen in Fig- ure 

3.6 
 

Figure 3.6: Data Balancing using SMOTE Technique 

 

 

3.4 Classification Models 

 
3.4.1 Long Short-Term Memory (LSTM) 

LSTM is a special kind of neural network built to handle sequences of data. They use deep 

mechanisms to learn important features over long periods and avoid issues that can cause 

learning problems in traditional models. Because of this, LSTMs are good choice for tasks 

for predicting future trends, classify object, and recognizing speech. 

In this study, we used LSTM deep learning model to classify activities from multi-location 

signals. To design LSTM model, we apply it directly on preprocessed MinMax scaled CSV 

files. In order to train the model, we converted our time-series data into sequences. This was 

the essential step because LSTM models are designed to handle sequential data, and 

converting the data into the appropriate format enables the model to learn from the temporal 

dependencies within the data. The sequence length is set to 50. For each data frame, a sliding 

window approach is used to create sequences: the function slides a window of sequence 

length over the time-series data, extracting sequences of consecutive time steps with the 

corresponding label. 

Next, we convert these sequenced data into 80:20 split for training LSTM. In order to handle 

the accurate labels, we use One-hot encoding to transforms the labels into a binary matrix 

representation. In our dataset, we have 15 activities (labels from 1, 2, 3, 4, 5,6, . . . , 15), 

each label is converted into a 15-element binary vector where the position corresponding to 
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the class index is marked with a 1, and all other positions are marked with 0. This step is 

beneficial because the Neural networks, particularly those used for classification tasks, often 

perform better with one-hot encoded labels as it helps in calculating the loss and optimizing 

the model more effectively. For building an LSTM neural network model we used Ten- 

sorFlow’s Keras API. The first layer consists of 50 units with backward processing, which 

allows the LSTM process to obtain all output sequences for each input. The input shape 

parameters are defined as (50, 6) for 50-time steps and 6 features. To avoid overfitting, we 

included a dropout layer with a 0.2 (20%) drop rate. Since it is the last LSTM layer in the 

stack, the second LSTM layer, which has 50 units as well, does not return sequences. To 

further reduce overfitting, another dropout layer with a 0.2 dropout rate is added. 

The last layer of the model is a dense layer that uses the softmax activation function and has 

15 classes, the result is converted into probability distributions for several categories, 

enabling the model to generate predictions using 32,365 parameters. The model is trained 

using the Adam optimizer with a learning rate of 0.001 and the categorical cross-entropy 

loss function. . We tried batch sizes of 16, 32, and 64 during training 30 times, and finally 

found that batch size 64 performed best. The suggested LSTM model’s overall architecture 

is shown in figure 3.7. 

 

 

Figure 3.7: Proposed architecture of LSTM model 
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3.4.2 Convolutional Neural Network (CNN) 

CNN is a network of deep neural networks created specially to handle grid-like input, like 

images. They are suitable for a variety of computational tasks, such as segmentation, object 

identification, and image classification, since they can learn hierarchical representations 

quickly and effectively. In this work, we present a CNN architecture for the classification 

of STFT-generated spectrogram images that define various ADLs. The proposed model is 

capable of learning and recognizing patterns in the displayed image, facilitating the proper 

classification of ADLs. 

Each layer in our suggested model has a specific function in the extraction and classification 

of features. Images with dimensions of (256, 256, 3)—with image height and width set to 

256, 256, and 3 channels—are accepted by the input layer. With 32 filters and a kernel size 

of (3, 3), the first convolutional layer uses the Rectified Linear Unit (ReLU) activation 

function to produce 32 feature maps from the input image, with an emphasis on low-level 

features. Max pooling layer (MaxPooling2D Layer 1) replaces this layer by using a pool 

size of (2, 2), which reduces the spatial dimensions (height and width) by a factor of 2 while 

maintaining the most noticeable features. 

Conv2D Layer 2, the second convolutional layer, uses 64 filters with a kernel size of (3, 3) 

in addition to the activation function of ReLU to extract 64 feature maps from the output of 

the prior layer, allowing for the capture of higher-level features. By summing the retrieved 

features, an extra max pooling layer (MaxPooling2D Layer 2) with a pool size of (2, 2) 

further decreases the spatial dimensions. 

Even higher-level characteristics are captured by the third convolutional layer (Conv2D 

Layer 3), which consists of 128 filters with a kernel size of (3, 3) and extracts 128 feature 

maps using the ReLU activation function. The third max pooling layer (MaxPooling2D Layer 

3) reduces the spatial dimensions and gets the feature maps ready for the fully connected 

layers by having a pool size of (2, 2). 

The convolutional and pooling layers’ 2D feature maps are modified into a 1D feature vector 

by the flatten layer. A fully connected layer (Dense Layer 1) with 128 units and a ReLU 

activation function comes next. The purpose of this layer is to facilitate the final classification 

by learning how to merge the characteristics retrieved into a compact representation. With a 

softmax activation function that provides the probabilities for each class, the output layer’s 
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fifteen units (matching to the number of classes in our dataset) allow for multi-classification. 

The dataset is split into three major parts: a training set (70% of the data: 4935 images), a 

validation set (20% of the data: 821 images), and a testing set (10% of the data: 456 images). 

Proposed model has total 14,840,911 trainable parameters. A 32-batch size on 20-epochs are 

used for training model. Training data have batches which are input into the model during 

each epoch, and the weights are adjusted depending on the gradients of the loss function 

Sparse Categorical Crossentropy relative to the model parameters. 

The Adam optimizer is used to assemble the model, and it adjusts the learning rate by 0.001 

during training to ensure effective convergence. The EarlyStopping callback, which ignores 

the validation loss and stops training if the loss has not improved for five consecutive epochs, 

is used to prevent overfitting. It also returns the optimal weights that were seen throughout 

training. 

Table 3.2. Detailed Summary of CNN Model 
 

Layer (type) Output Shape Param# 

conv2d_12 (Conv2D) (None, 254, 254, 32) 896 

max_pooling2d_12 (MaxPooling2D) (None, 127, 127, 32) 0 

conv2d_13 (Conv2D) (None, 125, 125, 64) 18,496 

max_pooling2d_13 (MaxPooling2D) (None, 62, 62, 64) 0 

conv2d_14 (Conv2D) (None, 60, 60, 128) 73,856 

max_pooling2d_14 (MaxPooling2D) (None, 30, 30, 128) 0 

flatten_4 (Flatten) (None, 115200) 0 

dense_8 (Dense) (None, 128) 14,745,728 

dense_9 (Dense) (None, 15) 1,935 

 

 

3.4.3 EfficientNet_B0 

EfficientNet is inherited from convolutional neural networks designed for image 

classification tasks. Introduced by Google Research, EfficientNet models works on a 

compound scaling method that uniformly scales the depth, width, and resolution of the 

network to achieve better performance with fewer parameters. 

The three scaling coefficients are: 
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Depth: d = αφ 

Width: w = βφ 

Resolution:  r = γφ 

Subject to: α · β 2 · γ2 ≈ 2 

α, β , γ ≥ 1 

Scale factor = Depth Scaling × Width Scaling × Resolution Scaling 

EfficientNet_B0 is the baseline model of the EfficientNet family, and it serves as the 

starting point for the larger EfficientNet models. We have proposed the EfficientNet_B0 

architecture with different layers. First Stem Layer is a single convolutional layer set a kernel 

size of 3x3 and a stride of 2. It has MBConv Blocks stands for Mobile Inverted Residual 

Bottleneck Convolution. Each MBConv block consists of Depth wise Separable 

Convolutions which reduces computational complexity by separating the convolution 

operation into depth wise and pointwise convolutions. We also set model with Squeeze-and-

Excitation Layers. It’s a lightweight mechanism to adapt recalibrating channel-wise feature 

responses. We have also created residual Connections that allow gradients to flow through the 

network more easily. There are two final layers: Global Average Pooling (GAP) which 

reduces the spatial dimensions of the feature map to a single value per channel and fully 

Connected dense Layer, which have 15 output neurons equal as per classes in our dataset. 

To propagate the data via the model, the images are preprocessed with a standard transform 

pipeline: resizing to 224x224 pixels, converting to tensor format, and normalizing using the 

mean and standard deviation of the pre-trained ImageNet. ImageNet is widely known for its 

annual competition, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 

which has significantly influenced the development of deep learning algorithms. The dataset 

split into 70:20:10 i.e. training, validation, and test sets. In order to load the data, we 

use PyTorch ImageFolder utility to automatically organizes images based on their directory 

structure. Data loaders is created for each dataset split with a batch size of 32, enabling 

efficient batch processing during training and evaluation. 

In order to get the best training model, we fine-tuned the EfficientNet_B0 model, which was 

pre-trained on the ImageNet dataset, by replacing its final classifier layer with a new fully 

connected layer fitted to the number of classes in our dataset i.e. 15. For the training process, 
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we use the cross-entropy loss function with the Adam optimizer, and tried different learning 

rates i.e. 0.1, 0.001, and 0.0001. Additionally, a learning rate scheduler is used to reduce the 

learning rate by a factor of 0.1 every seven epochs, helping in fine-tuning the model’s 

weights during later stages of training. We achieved the best results with 0.001 learning rate. 

The training procedure spanned multiple epochs. During the training phase, the model 

weights were updated based on the loss calculated from the training data. To reduce the 

overfitting, early stopping mechanism is used. The validation phase evaluated the model’s 

performance on unseen data, preventing overfitting and ensuring generalization. Key 

metrics such as training and validation losses, along with accuracy, were recorded and 

analyzed across epochs. The EfficientNet_B0 model demonstrated its capability by 

effectively learning and classifying the spectrogram images, with detailed monitoring of loss 

and accuracy metrics guiding the training process. 

 

3.4.4 ViT (Vision) Transformer 

The Vision Transformer (ViT) is another model for deep learning, which work for image 

classification that implements the transformer architecture, designed for natural language 

processing (NLP), to process and classify images [35]. In our proposed model, the input im- 

age is first resized to 224x224 pixels and divided into fixed-size patches (16x16 pixels), each 

of which is flattened into a one-dimensional vector. These vectors are then linearly projected 

into a higher-dimensional space, resulting in a sequence of embedded patch vectors akin to 

NLP tokens. To preserve spatial information lost during patch flattening, positional em- 

beddings are added to each patch, making sure the model maintains the spatial relationships 

within patches. This sequence of positionally-embedded patches is fed into a standard trans- 

former encoder composed of multiple layers of multi-head self-attention and feed-forward 

neural networks. The self-attention process enables the model to weigh the importance of 

each patch relative to others, capturing global dependencies and context across the entire 

image. A special classification token ([CLS]) is vision to the sequence of each patch embed- 

dings, and the output corresponding to this token is used as an aggregate representation of 

the input image. This representation is passed through a feed-forward neural network 

(classification head) to forecast the class label. 

We used the pre-trained ViT model with vit-base-patch16-224 from the Hugging Face Trans- 
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formers library, which is fine-tuned for our specific classification task with 15 output classes. 

Images undergo preprocessing steps including resizing, normalization, and tensor 

conversion. The datasets for training, validation, and testing are structured, and data loaders 

facilitate 32-batch processing. The model is trained using an Adam optimizer with a 0.0001 

learning rate and cross-entropy loss, fitted for multi-class classification tasks. During 

training, the model parameters are updated through backpropagation, and performance 

metrics such as loss and accuracy are tracked for both training and validation sets. This way 

the transformer architecture’s ability to model long-range dependencies and contextual 

information enables ViT to effectively learn and represent complex features in images. The 

overall flow of ViT Transformer is shown is fig 3.8 

 

 

 

Figure 3.8: Flow Diagram of ViT Transformer 

 

 

3.5 Model Evaluation 

To evaluate the trained model, four performance metrics are employed: accuracy, precision, 

recall and F1-score. Precision measures the proportion of positive predictions that are 

actually correct, while recall assesses the proportion of actual positives that were correctly 

identified. The F1-score, which is the harmonic mean of precision and recall, was used to 
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combine these metrics. The formulas for these metrics are as follows: 

Accuracy = 
TP + TN

 

TP + TN + FP + FN 

Where: 

• TP (True Positive) is the count of correctly predicted positive activities. 

• TN (True Negative) is the count of correctly predicted negative activities. 

• FP (False Positive) counts the number of negative examples incorrectly predicted as 

positive. 

• FN (False Negative) counts the number of positive examples incorrectly predicted as 

negative. 

Precision = 
TP

 

TP + FP 

Recall = 
TP

 

TP + FN 

 

F1-Score = 
2 × Precision × Recall 

Precision + Recall 

For model evaluation, we also analyze the results using learning curves, confusion matrices, 

and precision-recall curves. These plots give additional information into the model’s 

performance: 

• Learning Curves: These plots show how the performance of model (such as accuracy 

or loss) changes with training and validation over epochs. They help identify issues 

like overfitting or underfitting. 

• Confusion Matrix: It displays the number of true positives, true negatives, false posi- 

tives, and false negatives, providing a detailed performance of model across different 

classes. 

• Precision-Recall Curves: These curves plot precision against recall for various thresh- 

old values, offering a visualization of balance between precision & recall and high- 

lighting the functionality of model on different classification thresholds. 
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   Chapter 4  

 

Experimentation & Results 

 

4.1 Experimentation Setup 

For the model implementation we used Kaggle Notebooks with Keras and TensorFlow, 

utilising a GPU backend on Google Compute Engine, which provided 29 GB of RAM 

and 

147.4 GB of disk space. The code was developed in Python 3, using several packages such 

as NumPy, pandas, and scikit-learn etc. 

 

4.2 Classification Results 

This section presents our detailed results for the classification of smartphone-based time 

series data collected from four different locations: bag, belly, hand, and thigh. We have passed 

various preprocessing techniques, including filters, SMOTE, and Short-Time Fourier Trans- 

form (STFT), to reach to this stage for enhancing the data quality. Our proposed 

methodology was consisting of two different model applications: 

1. Direct Application of LSTM Models: We applied our proposed LSTM model directly 

to the signal’s CSV data segmented via signal labeler tool. 

2. Conversion and Application of CNN and Transfer Learning Models: We converted the 

signal data into STFT spectrograms and then applied CNN and transfer learning-based 

models. 
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4.2.1 Results on direct Application of LSTM Models 

This section describes the detailed output of applying the LSTM model to the signal data 

collected from four different locations: bag, belly, hand, and thigh. To see the performance 

of the model we used learning curves, confusion matrices, and key classification metrics. 

Each location’s results are analyzed in detail to understand the strength of the applied model 

and potential space for improvement. Below figures shows the learning curves for each 

location with training and validation accuracy and loss over epochs. 

 

 

Figure 4.1: LSTM model Learning curve on Bag Location 
 

 

 

 

Figure 4.2: LSTM model Learning curve on Belly Location 
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Figure 4.3: LSTM model Learning curve on Hand Location 
 
 

 

 

Figure 4.4: LSTM model Learning curve on Thigh Location 

 

The learning curves showing steady decrease in both training and validation losses, 

alongside an increase in accuracy, proving effective model learning over 30-epochs across 

four locations: Bag, Belly, Hand, and Thigh. Despite differences in signals data due to 

rotations and carrying positions, accuracy curves stabilize around 0.75 for Hand and Belly 

and 

0.85 for Bag and Thigh. Training loss converges near 0.2, while validation loss settles around 

0.4. To further assess model performance, confusion matrices for each location are shown in 

figure 4.5, with the 15-classification problem represented in a 15x15 (rowsxcolumns). In the 

matrix, TPi denotes the correctly classified samples for Class i, and FPij represents Class i 

incorrectly classified as Class j. 
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Table 4.1. Generic Confusion Matrix 
 

 
Predicted Class 1 Predicted Class 2 ... Predicted Class 15 

Actual Class 1 TP1 FP12 ... FP15 

Actual Class 2 FP21 TP2 ... FP25 

... ... ... ... ... 

Actual Class 15 FP151 FP152 ... TP15 

 

 

 

(a) Bag 
 

 

(b) Belly 

(c) Hand 
 

 

(d) Thigh 

 

Figure 4.5: LSTM Confusion Matrix Results on all locations 
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The confusion matrices represent the model achieves higher accuracy in distinguishing 

certain classes while facing challenges with others. The diagonal shows are correctly 

classified samples, the upper and the lower part shows the misclassified samples. The 

diagonal numbers are correctly classified activities, but there are certain activities on which 

model results misclassification. For example, in the bag location, the model shows confusion 

be- tween Class 1 (e.g., Walking -slowly/quickly) and Class 3 (e.g., Jumping on the same 

place), likely due to the similarity in signal patterns generated by these activities when the 

sensor is placed in the bag, which may also be subject to more movements. The results show 

that for the testing set, the classification performance varies across different locations. Our 

proposed model correctly classified 94% of the samples at bag location, 92% of the samples 

correctly classified at belly location, 93% correctly classified activities at hand and 94% at 

Thigh. A comparison across locations shows that this confusion is less evident in the bag 

and thigh location, where the sensor is more directly involved in capturing arm and leg 

movements, providing clearer distinctions between these activities. Conversely, in the belly 

location, the confusion matrix is less favorable, possibly due to the sensor’s position being 

less optimal for capturing different activity patterns, leading to more overlap between 

classes. For our 15-classification problem overall performance metrics is shown in table 4.2. 

Table 4.2. Performance Metrics of LSTM Model 
 

Location Accuracy Precision Recall F1-Score 

Bag 94% 0.92 0.91 0.92 

Belly 92% 0.92 0.91 0.91 

Hand 93% 0.92 0.91 0.91 

Thigh 94% 0.94 0.93 0.93 

 

For looking the model’s performance at a more granular level, we also find the values of 

the precision, recall, and F1-score for individual class across the four sensor locations. The 

plot at x-axis has number of classes and y-axis shows values as shown in figure 4.6. Based 

on our analysis, it is evident that the performance at Bag Location 7 is suboptimal compared 

to other locations. The model is experiencing a higher rate of misclassification with samples 

from this activity. Specifically, the model has incorrectly classified this activity as class 4 

on two occasions and as class 9 on three occasions. Additionally, there is an instance where 
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the model predicted class 8 as class 7. These misclassifications suggest that the model is 

struggling to accurately distinguish samples from Activity 7. 

 

(a) Individual Class Precision, recall, F1-score points 
 

(b) Individual Class Precision, recall, F1-score points 

 

(c) Individual Class Precision, recall, F1-score points 

 

(d) Individual Class Precision, recall, F1-score points 

 

Figure 4.6: LSTM model results (a) Bag, (b) Belly, (c) Hand, (d) Thigh 
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4.2.2 Results of CNN and Transfer Learning Models 

This section presents the results our CNN model and Transfer Learning models to STFT 

images. This approach provides a comparative perspective to our initial method, focusing 

on the effectiveness of these advanced models in handling image-based data across four 

different locations: bag, belly, hand, and thigh. We analyze the performance of these models 

through learning curves, confusion matrices, and accuracy metrics. 

 

 

Figure 4.7: CNN model Learning curve on Bag Location 
 

 

 

Figure 4.8: CNN model Learning curve on Belly Location 
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Figure 4.9: CNN model Learning curve on Hand Location 
 

 

 

 

Figure 4.10: CNN model Learning curve on Thigh Location 

 

The learning curves indicate that the CNN model is performing well on images data, with 

both training and testing losses consistently decreasing and accuracies increasing, suggesting 

convergence towards a well-optimized state. Notably, the gap between training accuracy and 

training loss is minimal, with their curves closely aligned in the bag, belly, and hand plots, 

reflecting high model accuracy. However, in the thigh position, while the accuracy graph 

converges at around 0.9, the gap between validation and training accuracy widens. Similarly, 

in the loss graph, convergence occurs at approximately 0.6 with an increased gap. This is due 
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to the different data distribution compared to other locations, leading to increased variability 

in validation performance. 

 

 

(a) Bag 
 

(b) Belly 

(c) Hand 
 

(d) Thigh 

 

Figure 4.11: CNN Confusion Matrix Results 

 

The confusion matrices show the distribution of misclassified and correctly classified 

classes by the CNN model. For the ’Bag,’ ’Belly,’ and ’Hand’ datasets, the model exhibits 

high accuracy, reflecting its strong performance on the testing data from these locations. 

However, the ’thigh’ dataset shows a few more misclassified classes due to variations in 

patterns, yet it still achieves commendable results on the testing images data. 
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Table 4.3. Performance Metrics of CNN Model 
 

Location Accuracy Precision Recall F1-Score 

Bag 98% 0.98 0.98 0.98 

Belly 98% 0.98 0.91 0.91 

Hand 98% 0.98 0.91 0.91 

Thigh 95% 0.94 0.93 0.93 

 

For the bag, belly, and hand locations, the model achieved high accuracies (98%) and 

strong precision, recall, and F1-scores. For the testing set of 821 samples, our proposed 

model correctly classified 98% of the sample images, for the Belly location, the accuracy is 

also high at 98%, with 2% of the samples being misclassified. Similarly, the Hand and Thigh 

location model correctly classified 98% and 95% sample images. Our results proved that the 

model is performing well on testing images of all locations. There are certain reasons, the 

bag, belly, and hand locations generally exhibit more stable and consistent movement pat- 

terns, which the model more easily learn and distinguished. But, comparing with the thigh 

location, it observed 3 points lower accuracy and performance metrics on our CNN-based 

smartphone activity recognition model. The reason is sensor placement on the thigh is likely 

to encounter greater variability in movement patterns compared to other locations. This in- 

creased variability introduces significant challenges for the model to distinguish between 

different activities accurately. Additionally, the signal quality from the thigh location can be 

compromised by factors such as loose attachment, clothing interference, or varying sensor 

positions, leading to degraded signal quality and subsequently lower accuracy. Also, certain 

activities may inherently produce less distinguishable patterns when recorded from the thigh, 

as subtle leg movements may not generate sufficiently distinctive signals. But overall the 

model has satisfactory results on spectrogram images. 

Upon reviewing the performance across various activities, we observe some issues. Activity 

7, which involves sitting for a moment, attempting to stand, and then collapsing into a chair, 

is misclassified three times. It is being incorrectly identified as "Sit on the ground, wait a 

moment (5 seconds), and get up slowly/quickly. Also, the model is encountering difficulties 

with accurately classifying the activity "Walking (4-5 steps), making a stop, bending down 

to pick up something, and then continuing to walk (4-5 steps)." It is frequently mis- classified 

as either "Walk upstairs/downstairs - Slowly/Quickly" or "SP/Person Touched or 
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hit accidentally by a pole/another person. The misclassifications likely stem from overlap- 

ping motion patterns between activities and inadequate feature differentiation. For example, 

sitting down and standing up might have motion patterns that closely resemble those of 

sitting on the ground and getting up. Similarly, walking with brief stops and bends might have 

overlapping features with walking upstairs/downstairs or accidental touches. 

 

(a) Individual Class Precision, recall, F1-score points 
 

(b) Individual Class Precision, recall, F1-score points 

 

(c) Individual Class Precision, recall, F1-score points 

 

(d) Individual Class Precision, recall, F1-score points 

 

Figure 4.12: CNN model results (a) Bag, (b) Belly, (c) Hand, (d) Thigh 
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4.2.3 Results of Transfer Learning Models 

Our proposed EfficientNet_B0 model shown a remarkable balance between accuracy and 

computational efficiency, making it an excellent choice for our activity recognition task. By 

integrating the potential of transfer learning, this model was trained on filtered images that 

were preprocessed using STFT to extract relevant features. Additionally, we used the 

SMOTE to handle class imbalance, ensuring that the model was subjected to a well-balanced 

dataset. The learning curves generated during the process of training proved the model’s 

robust learning capability. Below figures shows that the training and validation loss steadily 

decreased over time, indicating that the model capably captured the core patterns in the 

images due to applied preprocessing techniques. 

 

 

Figure 4.13: EfficientNet_B0 model Learning curve on Bag Location 
 

 

Figure 4.14: EfficientNet_B0 model Learning curve on Belly Location 
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Figure 4.15: EfficientNet_B0 model Learning curve on Hand Location 
 

 

 

Figure 4.16: EfficientNet_B0 model Learning curve on Thigh Location 

 

Although there is a slight fluctuation observed in both the training and validation curves 

at certain points, which is a common occurrence in deep learning training processes. As the 

model learns, it might encounter mini-batches with different characteristics or difficulty 

levels, causing temporary spikes or drops in loss and accuracy. Secondly, we used dynamic 

learning rate schedule, the fluctuations occur when the learning rate changes. For instance, 

when the learning rate decreases after a certain number of epochs, the model shows some 
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adjustment period where the loss or accuracy momentarily fluctuates before stabilizing. The 

confusion matrices, presented in figure 4.17, provide more detailed points of the 

classification outcomes of proposed model across all classes. The high diagonal values 

across the matrices suggest that the EfficientNet_B0 model accurately identified the majority 

of the activities, with only a few misclassifications in classes with overlapping features. This 

result underscores the model’s capacity to distinguish between complex activities, a critical 

aspect of smartphone-based activity recognition. 

 

 

(a) Bag 
 

(b) Belly 

(c) Hand 
 

 

(d) Thigh 

 

Figure 4.17: EfficientNet_B0 Confusion Matrix Results 

 

For a deeper analysis of the model’s classification results across different locations, below 

tables provides a comprehensive overview of the accuracies, precision, recall, and F1-scores 
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for each location, further illustrating each model’s ability to achieve high performance metrics, 

confirming its successful application to the datasets. 

 

(a) Individual Class Precision, recall, F1-score points 
 

(b) Individual Class Precision, recall, F1-score points 

 

(c) Individual Class Precision, recall, F1-score points 

 

(d) Individual Class Precision, recall, F1-score points 

 

Figure 4.18: EfficientNet_B0 model results (a) Bag, (b) Belly, (c) Hand, (d) Thigh 
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Although, there is a drastic drop in precision, recall, and F1-score for specific classes 

likely result from the model’s difficulty in distinguishing between activities with similar 

features, such as "walking" and "running." The reason can be some activities may naturally 

be more ambiguous or have edge cases where they are difficult to classify correctly. For 

instance, activities performed in unusual ways or combined with other activities could lead 

to such misclassifications. But those are less in number. 

Table 4.4. Performance Metrics of EfficientNet_B0 Model 
 

Location Accuracy Precision Recall F1-Score 

Bag 99% 0.99 0.99 0.99 

Belly 98% 0.98 0.98 0.98 

Hand 99% 0.99 0.99 0.99 

Thigh 97% 0.98 0.98 0.98 

 

EfficientNet_B0 achieved impressive accuracy and consistency across various sensor 

placements: 99% accuracy with excellent precision, recall, and F1-score (0.99) for Bag and 

Hand locations. The model performed slightly lower at the Belly (98%) and Thigh (97%) lo- 

cations, still maintaining strong precision and recall (0.98). These results show the model’s 

robust generalization due to a unique compound scaling method that adjusts the network’s 

width (total channels), depth (total layers), and input resolution simultaneously and 

proportionally. 

Our model employs a balanced scaling methodology that optimizes learning efficiency while 

mitigating the risks of overfitting and underfitting. Empirical evidence indicates that Effi- 

cientNet_B0 demonstrates superior feature extraction capabilities, effectively distinguishing 

between low-level textures and high-level semantics across diverse sensor data modalities, 

in contrast to traditional CNNs. The robust generalization performance of EfficientNet_B0 

across these variations underscores its suitability for Human Activity Recognition (HAR) 

applications. 
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4.2.4 Vision Transformer (ViT) 

The performance of the Vision Transformer (ViT) model was evaluated across multiple 

sensor locations, with the analysis focusing on the learning dynamics and predictive 

accuracy. The results, visualized through learning curves and precision-recall plots, provide 

a deep understanding of the model to learn and generalize across different tasks. The learning 

curves indicate a rapid decrease in loss during the initial epochs, with both training and 

validation losses stabilizing after around 4 epochs with some fluctuation like 

efficientNet_B0 model due to learning rate scheduler. This suggests that the model quickly 

adapts to the task. 

 

Figure 4.19: Learning curve on Bag Location 
 

 

Figure 4.20: Learning curve on Belly Location 
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Figure 4.21: Learning curve on Hand Location 
 

 

 

Figure 4.22: Learning curve on Thigh Location 

 

Furthermore, the precision, recall, and F1 scores for each class were analyzed to assess 

the performance of the Vision Transformer (ViT) model on the all four location. Overall the 

model performs well across most classes, maintaining high precision, recall, and F1 scores 

for the majority of activities. However, a notable decrease in performance is observed in 

thigh location for certain classes, particularly for classes 2 and 13. This is be due to the 

complexity or similarity of these activities with others, leading to misclassification. Despite 

this, the model still shows strong performance across most classes, indicating its robustness 

in recognizing a wide range of activities. 
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(a) Bag Location (b) Belly Location 

 

(c) Hand Location (d) Thigh Location 

Figure 4.23: Precision, Recall, and F1-Score Curves in ViT Transformer Evaluation 

 

Furthermore, to measure the performance of the Vision Transformer (ViT) model, he 

confusion matrix offers an in-depth analysis of the model’s predictions, showcasing both 

accurate classifications and instances where the model made errors in identifying activities. 

By analyzing the confusion matrix, we can gain deeper insights into the specific challenges 

faced by the model, such as identifying classes that are frequently confused with one another. 

In the thigh location, we are getting high misclassified classes as compare to other, that is 

the reason for comprising accuracy. The diagonal entries show the number of correct 

predictions for each class. For example, in confusion matrix at thigh location, class 1 has 22 

correct predictions, class 2 has 14, and so on. 

Off-Diagonal values represent misclassifications, where the model predicted an incorrect 

class. For example, 1 instance of class 1 was misclassified as class 5, and 8 instances of class 

2 were misclassified as class 10. Classes such as 6, 7, 8, 9, and 10 have high correct 

predictions (45, 23, 46, 45, 45 respectively), indicating strong performance in these 

categories. However, there are noticeable misclassifications in classes like 2, 11, 12, and 15. 

Same goes 
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for other locations, like in hand confusion matrix (c) class 1 has 21 correct predictions, class 

2 has 10, and so on. There are some misclassifications like class 2 was misclassified 5 times 

as class 1, 4 times as class 5, 3 times as class 10, and 1 time as class 12. Overall classes such 

as 5, 6, 7, 8, 9, and 10 performed well with 45, 45, 23, 46, 45, and 45 correct predictions 

respectively, indicating strong performance in these categories. 

 

 

(a) Bag 
 

(b) Belly 

(c) Hand 
 

(d) Thigh 

 

Figure 4.24: ViT Transformer Confusion Matrix Results 
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Table 4.5. Performance Metrics of ViT Transformer 
 

Location Accuracy Precision Recall F1-Score 

Bag 99% 0.99 0.99 0.99 

Belly 97% 0.97 0.97 0.97 

Hand 99% 0.99 0.99 0.99 

Thigh 94% 0.94 0.94 0.94 

 

Based on the performance tables for the LSTM, CNN, and transfer learning models 

applied to our custom activity recognition dataset, it is evident that the transfer learning 

models consistently outperform the other approaches across key metrics such as accuracy, 

precision, recall, and F1-score. It proved that the pre-trained models used in transfer learning 

are better at capturing the underlying patterns, enabling the data to generalize better to new 

and unseen data. Secondly, the feature extraction capabilities of transfer learning models are 

enhanced by integrating learned features from previous tasks. These features are more robust 

and transferable, leading to better performance in our activity recognition task. 

For further testing our proposed methodology, we also applied it to the publicly available 

Human Activity Recognition Trondheim (HARTH) dataset. This dataset is a profession- 

ally annotated collection featuring data from 22 subjects, each equipped with two 3-axial 

accelerometers worn on the right thigh and lower back for approximately 2 hours in a free- 

living environment. The dataset provides a rich resource for the development and bench- 

marking of machine learning models aimed at precise human activity recognition (HAR) in 

real-world settings. 

A prior study [36] utilized this dataset with traditional machine learning techniques, 

specifically Support Vector Machines (SVM), achieving an F1 Score of 0.81, Precision of 

0.79, and Recall of 0.85 when analyzing the data from the thigh sensor. To assess the 

effectiveness of our proposed methodology, we applied three advanced algorithms: Vision 

Transformer (ViT), EfficientNet_B0, and Convolutional Neural Networks (CNN). The ViT 

model achieved an impressive Accuracy of 98%, F1 Score of 0.9809, Precision of 0.9821, 

and Recall of 0.9808. The EfficientNet_B0 model outperformed with an Accuracy of 99%, 

F1 Score of 0.99, Precision of 0.99, and Recall of 0.99, while the CNN model demonstrated 
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robust performance with an Accuracy of 97%, F1 Score of 0.97, Precision of 0.97, and Re- 

call of 0.97. 

The superior performance of our models can be attributed to their ability to capture complex 

patterns and relationships within the data, which traditional models like SVM might 

overlook. By leveraging the power of deep learning architectures, particularly those designed 

for handling high-dimensional and sequential data, our methodology more accurately 

captures the nuances of human activity, leading to significantly improved accuracy and 

generalization in real-world scenarios. 

Table 4.6. Comparison of Performance Metrics 
 

Reference Location Models/Techniques Accuracy F1 Score Precision Recall 

Logacjov et al. [36] Thigh ML models SVM - 0.81 0.79 0.85 

  ViT Transformer 98% 0.98 0.98 0.98 

Proposed Models Thigh 
EfficientNet_B0 99% 0.99 0.99 0.99 

 CNN 97% 0.97 0.97 0.97 

 

Summarizing the overall results, the efficientNet_B0 and Vision Transformer (ViT) 

models performed well across different sensor locations in our custom dataset, though they 

struggled with certain activities, particularly at the thigh sensor. This performance drop may 

be due to the complexity or similarity of some activities, which the models found challenging 

to distinguish. Environmental factors were not considered, affecting classification accuracy 

for activities like D15, involving complex actions and interactions. Despite these issues, the 

models showed robustness, and the use of transfer learning reduced training time and re- 

sources, making them practical for real-time activity recognition systems. 

To further validate our methodology, we applied the same models to the HARTH dataset, a 

professionally annotated dataset featuring data from multiple subjects in a free-living 

environment. The results showed that both ViT and EfficientNet_B0 achieved impressive 

ac- curacy and F1 scores, outperforming traditional machine learning models like SVM. The 

EfficientNet_B0 model, in particular, achieved near-perfect performance, demonstrating the 

efficacy of transfer learning techniques in handling high-dimensional and sequential data. 
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   Chapter 5 

 

Conclusion & Future Work 

 
As the global population continues to age, with the number of individuals aged 60 and older 

projected to reach 1.4 billion by 2030 and 2.1 billion by 2050, the need for effective health 

monitoring and quality of life enhancement becomes increasingly critical. According to the 

World Health Organization (WHO), this demographic shift underscores the importance of 

innovative solutions for maintaining and improving the health of the elderly. Accurate activity 

recognition, facilitated by advances in technology, plays a pivotal role in achieving these 

goals. 

Prior studies have predominantly concentrated on activity recognition from single-body 

locations, such as the waist or wrist. This narrow focus leaves a significant gap in 

understanding how activity patterns vary across multiple body locations. Furthermore, there 

is a paucity of research exploring the application of transfer learning techniques in this 

domain. This over- sight limits the potential to use pre-trained models and adapt them to our 

specific dataset, which spans multiple smartphone locations and diverse activities. 

Smartphones, equipped with built-in sensors such as accelerometers and gyroscopes, have 

emerged as valuable tools for real-world data collection. Their widespread use provides a 

practical means of gathering activity-related data, which can be integrated to enhance health 

monitoring. Our study, in collaboration with Bootcamp Co Ltd, specifically targets the 

elderly population in South Korea due to increasing aging problem there. We have developed 

a custom dataset that encompasses activity data from multiple smartphone locations—Bag, 

Belly, Hand, and Thigh—addressing a notable research gap. Our custom dataset, which 

includes data recorded at 100 Hz, captures a diverse range of ADLs performed by 19 South 
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Korean participants. This dataset, featuring data from four distinct body locations and 

including 15 different ADLs, is unique in its comprehensive coverage and the absence of 

previous deep learning applications. 

The study introduces and evaluates deep learning models designed to classify these activities 

accurately. The proposed models, including LSTM, CNN, EfficientNet_B0 and Vision 

Transformer (ViT), demonstrate significant performance improvements over existing 

methods. The findings highlight that EfficientNet_B0 outperformed in classifying ADLs and 

offer a comprehensive benchmark for smartphone-based activity recognition. 

 

Looking ahead, future work will involve broadening the dataset to include younger age 

groups and integrating exercise activities alongside ADLs. This will help create a more 

comprehensive model and allow for a better understanding of how activity recognition 

patterns differ across various age demographics and improve the model’s performance in 

more diverse populations. Including exercise activities alongside the existing Activities of 

Daily Living (ADLs) in our dataset will provide a more holistic view of physical activity. 

Exercise activities often involve different movement patterns and intensities compared to 

routine ADLs. By integrating these activities, we can enhance the model’s ability to 

recognize and classify a broader spectrum of physical behaviors, leading to more accurate 

and useful in- sights for health monitoring. 
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