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ABSTRACT 

 

Breast Cancer, particularly Triple-Negative Breast Cancer (TNBC), remains a formidable 

challenge due to its aggressive nature, lack of targeted therapies, and poor prognosis. This 

research addresses the critical need for more accurate prognostic markers by integrating spatial 

transcriptomics with artificial intelligence (AI) to explore the spatial heterogeneity of gene 

expression within TNBC tumors. Spatial transcriptomics offers a high-resolution view of the 

tumor microenvironment, preserving the spatial context of gene expression, while single-cell 

RNA sequencing (scRNA-seq) provides detailed insights into the cellular composition of the 

tumors. By identifying and analyzing differentially expressed genes (DEGs) across spatial and 

single-cell datasets, this study aims to uncover key biomarkers that could serve as therapeutic 

targets and improve patient outcomes. Machine learning models, including XGBoost and 

Support Vector Machines (SVM), were employed to develop predictive models for cancer 

classification, disease staging, and prognosis. These models demonstrated high accuracy, 

enhancing the understanding of TNBC's complex molecular landscape and supporting the 

development of personalized treatment strategies. The findings highlight the potential of 

integrating spatial transcriptomics with AI to revolutionize cancer research, offering new 

avenues for precision medicine in TNBC. 
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CHAPTER 1: INTRODUCTION 

                This chapter includes an overview of breast cancer, with particular attention to Triple 

Negative Breast Cancer (TNBC), an aggressive subtype, its statistics, and contributing 

variables. It examines the shortcomings of the existing therapy modalities and emphasizes the 

necessity for creative fixes. This chapter will describe the issue in more detail and go over 

possible fixes that could make use of cutting-edge methods like artificial intelligence and 

spatial transcriptomics.  

1.1 Breast Cancer 

               Breast cancer is the most prevalent cancer diagnosis for women worldwide. It is also 

the leading cause of cancer-related deaths in humans [1]. Breast cancer is caused by aberrant 

breast cells that proliferate and develop into tumors. Tumors have the potential to grow 

throughout the body and become lethal if ignored [2]. 

1.1.1 Epidemiology  

In 2022, 2.3 million women worldwide were diagnosed with breast cancer, resulting in 

670,000 deaths. Breast cancer affects women in every country, at any age post-puberty, with 

incidence rates increasing with age. Global data highlight significant disparities based on 

human development[2]. In countries with a very high Human Development Index (HDI), 1 in 

12 women are diagnosed with breast cancer, and 1 in 71 women dies from it. Conversely, in 

countries with a low HDI, 1 in 27 women are diagnosed with breast cancer, but 1 in 48 women 

dies from the disease [2] 

1.1.2 Risk Factors  

The latest research has provided deeper insights into the various demographic, genetic, 

reproductive, hormonal, metabolic, and lifestyle factors that can influence an individual's breast 

cancer risk. 

One important non-modifiable risk factor is age, with the incidence of breast cancer rising 

sharply beyond the age of 50 [3]. Gene mutations such as those in BRCA1 or BRCA2 

significantly increase the risk of breast cancer. Additionally, a family history of breast or 

ovarian cancer in first-degree relatives is a significant risk factor [4]. Lifetime hormonal 
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exposure, which is increased by early menarche, late menopause, nulliparity, and the use of 

hormone replacement therapy or contraception, also elevates breast cancer risk. Lifestyle and 

environmental factors play a role as well; inactivity, obesity (particularly after menopause), 

alcohol use, and exposure to certain chemicals are all associated with a higher risk of 

developing breast cancer [5]. (Figure 1.1) illustrates some of the most critical risk factors for 

breast cancer as identified by the Pink Ribbon organization [6].  

 

Figure 1.1: Risk factors of breast cancer 

1.2 Triple Negative Breast Cancer  

            Breast cancer encompasses several types, each with distinct characteristics and 

treatment approaches [7]. The two most common forms are HER2-positive breast cancer, 

which has an excess of the HER2 protein that promotes cancer cell proliferation, and hormone 

receptor-positive breast cancer, where cancer cells grow in response to hormones like 

progesterone or estrogen [8]. Among these, a particularly challenging type is triple-negative 

breast cancer (TNBC). It is defined by the lack of the three most often targeted biomarkers 

considered for breast cancer treatment: the human epidermal growth factor receptor (HER2), 

progesterone receptor (PR), and estrogen receptor (ER). TNBC is more common in younger 

women and in certain racial groups like African Americans, Hispanics, and Indians [9]. 15% 

to 20% of cases of breast cancer are TNBC, and these cases typically have a more aggressive 

clinical course, with poorer evolution occurring within the first 3 to 5 years following 

diagnosis, early and higher rates of distant recurrences, mainly visceral, and poor survival [10], 

[11], [12].  



11 

 

    1.2.1 Tumour Microenvironment 

The tumor microenvironment (TME) has a major impact on the onset, development, 

proliferation, immune system suppression, angiogenesis, invasion/cell migration, and adverse 

prognosis of TNBC [13]. The TME is very heterogeneous, with a variety of cellular 

compositions controlled by several signalling pathways. Cell populations with diverse 

phenotypic features contribute to the complexity of the TME, and cellular plasticity often 

facilitates cellular survival and proliferation even in the aftermath of chemotherapy. The TME 

carves out a space between tumor cells and the surrounding tissues using immune cells and the 

endothelial system [14].  

The complex TME may also trigger the epithelial to mesenchymal transition (EMT), 

which is the process that leads to the creation of cancer stem cells. Consequently, the 

development of specific treatment techniques and a knowledge of the TME's intricacy may 

function as target hallmarks for tumor regression and elimination. Numerous prognostic 

markers for TME that show immune system suppression have been identified through 

extensive clinical-pathological reporting. These markers include tumor-infiltrating 

lymphocytes (TILs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts 

(CAFs), and cancer-associated adipocytes (CAAs). These tumor-associated markers have a 

connection to the immune/tumor interactions in TNBC, which support the chemoresistance 

development process as shown in the (figure 1.2) [15]. 

 

Figure 1.2: Tumor cell interactions with the tumor microenvironment. 
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The various tumor microenvironments are associated with the development of 

treatment resistance, immune suppression, metabolic alterations (adaptation to low nutrition), 

cell differentiation, promotion of hypoxia, and angiogenesis, the formation of new blood 

vessels. Several variables have been connected to cancer, including transforming growth factor 

beta (TGF-beta), VEGF, stromal cell-derived factor 1 (SDF-1), tumor-infiltrating lymphocytes 

(TILs), and tumor-associated macrophages (TAMs). 

1.2.2 Treatment and Therapeutic targets 

            TNBC is a concern for medical professionals and patients alike because, in comparison 

to other breast cancer subtypes, it has a higher death rate, a worse prognosis, and less available 

treatment choices [16]. The lack of receptors makes it unresponsive to hormonal and HER2-

targeted therapies, posing significant treatment challenges. Consequently, a multifaceted 

approach is required to manage TNBC effectively [17]. The following paragraphs outline the 

various treatment options currently available, each tailored to address the unique aspects of this 

challenging disease. Surgery is a primary treatment option for TNBC, involving procedures 

such as lumpectomy, which removes the tumor and some surrounding tissue, and mastectomy, 

which involves the partial or complete removal of one or both breasts [18]. Radiation therapy 

is another critical component, using high-energy rays to target and kill cancer cells. External 

beam radiation is the most common form, while brachytherapy, or internal radiation, involves 

placing radioactive seeds near the tumor site [19]. 

Chemotherapy remains a cornerstone in the treatment of TNBC due to the lack of 

specific hormonal or HER2 targets [20]. The conventional chemotherapy regimen typically 

includes a combination of taxanes and anthracyclines, which are known for their efficacy in 

inhibiting cancer cell proliferation. Additionally, combinations such as cyclophosphamide, 

methotrexate, and 5-fluorouracil are employed to target the rapidly dividing cancer cells 

through various mechanisms. Another effective regimen includes epirubicin and 

cyclophosphamide followed by paclitaxel, which helps in managing the disease by attacking 

cancer cells at different phases of their growth cycle [21]. Moreover, platinum-based 

chemotherapies, specifically carboplatin and cisplatin, have shown significant promise, 

particularly in patients with BRCA1/2 mutations, due to their ability to induce DNA damage 

and apoptosis in cancer cells [22]. 
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Figure 1.3: Treatment strategies for triple-negative breast cancer 

The advent of targeted therapy has provided new avenues for treating TNBC, focusing 

on specific molecular abnormalities within the cancer cells [21]. PARP inhibitors, for instance, 

are particularly effective in patients with BRCA mutations, as they exploit the defective DNA 

repair mechanisms in these cancer cells, leading to cell death [23]. The PI3K/AKT/mTOR 

pathway, which plays a crucial role in cell growth and survival, is another target, with inhibitors 

designed to disrupt these signaling processes and curb cancer progression [24]. Additionally, 

androgen receptor (AR) antagonists are being explored as a potential treatment, given the 

presence of AR in a subset of TNBC cases. Advanced therapeutic strategies also include 

antibody-drug conjugates that deliver cytotoxic agents directly to cancer cells, thereby 

minimizing systemic toxicity[25]. Immunotherapy, particularly anti-PD-L1 agents, has 

emerged as a promising approach by harnessing the patient’s immune system to recognize and 

destroy cancer cells, offering a new beacon of hope for those battling this aggressive cancer 

subtype [20].  

  

1.3 Sequencing Techniques 

                 The first technique for sequencing DNA was published over twenty-five years after 

the structure of DNA was known [26]Sanger sequencing was the first technique which 

determined the nucleotide sequence of DNA by using chain-terminating dideoxynucleotides 

[27]. The main limitation of the Sanger Sequencing was low-quality sequences within the first 
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15–40 bp, and the method's inability to identify single base pair differences in longer segments 

(e.g., > 900 bp) [28]. One innovative high-throughput technique for thorough transcriptome 

analysis is RNA sequencing, or RNA-Seq. It can concurrently assess the expression levels of 

hundreds of genes, offering information on the rules and functional pathways governing 

biological processes [29]. RNA sequencing is limited by biases introduced during library 

preparation and amplification, which can affect the accuracy of gene expression measurements. 

Additionally, the short read lengths can complicate the assembly and quantification of 

transcripts, particularly for genes with repetitive or complex structures [30].  

Then came the Next Generation Sequencing. NGS technologies were released between 

2004 and 2006, revolutionizing biomedical research and leading to a significant increase in 

sequencing data output [31]. But NGS was limited by their short read lengths, which 

complicates the accurate reconstruction of long DNA sequences and the detection of structural 

variations. Additionally, the labor-intensive preparation process and challenges in mapping 

repetitive genomic regions further hinder their efficiency and accuracy [32].  

 

 

Figure 1.4: Sequencing technologies 

Single cell RNA sequencing is a new-generation sequencing technology based on nanopore 

equipment after second-generation sequencing [33]. Using scRNA-seq, it has been possible to 
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demonstrate in recent years the heterogeneity of cells, cell dynamic differentiation processes, 

tumor prognosis, treatment, and other aspects of cancer [34] Accurately characterizing the 

expression of genes in the microenvironment and the tumor, as well as knowing the degree of 

transcriptome heterogeneity within the tumor entity, may assist determine more effective 

molecular targets for prognosis and treatment [35]. scRNA-seq also helps with personalized 

therapy because of its ability to identify cell subsets and biomarkers with potential 

treatments[36]. Precisely single-cell RNA sequencing (scRNA-Seq) allows for the detailed 

examination of the cellular composition and heterogeneity within tumors by profiling gene 

expression in thousands of individual cells. Building on this, spatial transcriptomics maps these 

cellular profiles within their original tissue context, revealing how different cell types are 

organized and interact spatially within the tumor microenvironment [36]. 

      1.3.1  Spatial Transcriptomics 

In recent years, transcriptome research has revolutionized cancer diagnosis and treatment 

[37]. Novel developments in single-cell RNA sequencing (scRNA-seq) technology have 

yielded a wealth of information regarding the cellular makeup of malignancies [38]. scRNA-

seq analysis of cell transcriptomes can be done at high throughput, however tissue processing 

eliminates the transcriptomes' spatial context. On the other hand, techniques such as 

immunohistochemistry (IHC) and in situ hybridization yield excellent spatial resolution, but 

they often need pre-selection of targets, which limits their suitability for high-throughput 

exploratory studies. Subsequent investigations have demonstrated that most tumor-associated 

cell states are intricate and challenging to define using a small number of surface receptors or 

marker genes [39][39], which presents both a technical and financial challenge to targeted 

spatial methods [40]. Here comes spatial trancriptomics, a cutting-edge technology that allows 

for the comprehensive analysis of gene expression patterns while preserving the spatial context 

within tissue samples. It provides an intricate window into how tissue microenvironments relate 

to or influence gene expression [41]. With spatial transcriptomics, we can now profile averaged 

transcriptomes in complex cellular soups or in relative isolation using Sc RNA-seq, both of 

which obliterate geographical information. Instead, by completing the picture of how the 

position of a cell inside a tissue can impact its gene expression, we can close the gaps 

concerning complex biological problems [42].  
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 1.3.1.1 Methodologies of Spatial Transcriptomics 

Spatial transcriptomics encompasses several methodologies, each with its own 

unique approach to preserving and analyzing spatial gene expression. The first 

method, Sequencing-based, involves placing tissue sections on spatially barcoded 

arrays to capture mRNA, constructing libraries, and sequencing the captured RNA 

to map spatial gene expression, exemplified by 10X Genomics Visium. The second 

method, Probe-based, uses barcoded RNA probes or RNA scope probes for tissue 

staining, followed by imaging and selection of regions of interest (ROIs). UV 

cleavage is then used to collect barcodes for each ROI, leading to data analysis and 

visualization, as seen with GeoMx. The third method, Imaging-based, involves 

immunostaining or probe hybridization/labeling, microscopic imaging, and 

visualization of the tissue, followed by data analysis, illustrated by CosMx SMI. 

The fourth method, Image-guided spatially resolved, includes immunostaining, 

microscopic imaging and visualization, and photo-selection of target cells or ROIs, 

followed by single-cell sorting and sequencing. This comprehensive approach 

allows for detailed data analysis and visualization, demonstrated by Spatially 

annotated FUNseq. 

 

Figure 1.5: (A) Sequencing-based, (B) Probe-based, (C) Imaging-based, and (D) Image-guided 

methods. 
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Each type of spatial transcriptomics method offers unique advantages and is suited for 

different applications, depending on the required resolution, throughput, and specific research 

goals. These methodologies collectively enhance our ability to understand the spatial 

organization of gene expression within complex tissues, providing critical insights into cellular 

function and disease mechanisms [43]. 

         1.3.1.2 Computational Tools and Softwares  

Scanpy and Squidpy are essential computational tools for analyzing spatial 

transcriptomics data, offering powerful capabilities to researchers [44]. Scanpy, a Python-

based package, is widely used for processing and visualizing single-cell gene expression data, 

including spatial transcriptomics. It provides a comprehensive range of functions, from basic 

preprocessing and normalization to advanced tasks like clustering and differential expression 

analysis. This tool is particularly useful for integrating spatial information with gene expression 

data, allowing researchers to visualize and interpret complex patterns within tissues [45]. 

Squidpy, built on top of Scanpy, extends these capabilities specifically for spatial 

transcriptomics. It incorporates spatial statistics and image processing techniques to analyze 

spatial dependencies and cellular interactions within tissues. Squidpy enables spatially aware 

clustering, neighborhood analysis, and integration of high-resolution tissue images with gene 

expression data, providing a detailed view of tissue architecture and cellular 

microenvironments. Together, these tools enhance the analytical power of spatial 

transcriptomics studies, helping researchers uncover the biological mechanisms underlying 

tissue function and disease [46]. 

In recent years, machine learning and deep learning techniques have become popular 

for analyzing spatial transcriptomics data due to their ability to handle large and complex 

datasets [47]. By integrating spatial transcriptomics with genomic, proteomic, and clinical data, 

machine learning models create a comprehensive view of the tumor microenvironment [48]. 

This approach helps identify new biomarkers and therapeutic targets, improves our 

understanding of tumor heterogeneity, and enhances the precision of personalized medicine. 

Despite these advancements, there is still a challenge in cancer research, particularly for triple-

negative breast cancer (TNBC). Traditional bulk or single-cell studies often overlook the 

spatial expression patterns within tissues, ignoring the gene expression variations within the 

tumor microenvironment. This oversight highlights the need for research that considers these 

spatial patterns to develop more effective and personalized treatment strategies. 
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  1.4 Problem Statement 

Previous research on prognostic markers for TNBC has predominantly focused on bulk 

or single-cell analyses, neglecting the crucial spatial distribution of gene expression within 

tumor tissues. This significant research gap fails to account for the inherent heterogeneity of 

gene expression, which is vital for accurate prognostication. As a result, current prognostic 

markers lack the necessary consistency across different regions of the tumor, leading to 

potential unreliability in clinical applications. 

 

 1.5 Proposed Solution 

To address the research gap in prognostic markers for TNBC, we propose an integrated 

approach combining scRNA-seq and spatial transcriptomics to capture the spatial 

heterogeneity of gene expression within tumors. This will enable the identification of key 

marker genes that reflect the tumor's complexity. Using these markers, we will develop a 

predictive machine learning model for TNBC disease staging and a prognostic model for 

survival outcomes. These models will leverage algorithms such as Random Forest, K-Nearest 

Neighbors, Multi-Layer Perceptron, and Support Vector Machine, ensuring robustness and 

accuracy. These models will account for the tumor's spatial heterogeneity, leading to more 

accurate and reliable prognostication and aiding in the personalized treatment of TNBC 

patients. 

  1.6 Objectives 

•  Conduct single-cell analysis and spatial transcriptomics to identify marker genes in 

Triple-Negative Breast Cancer.  

•  Develop and validate a predictive machine learning model for disease staging in 

TNBC. 

•  Create a prognostic model for survival outcomes in TNBC patients.                                                                                                                                                                                                                                                                                                                                                                                          
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CHAPTER 2: REVIEW OF LITERATURE  

2.1 Overview  

 In this chapter, we will explore significant advancements in breast cancer research, 

covering genomic and transcriptomic studies, as well as proteomics and metabolomics 

approaches. We will discuss the integration of these fields through comprehensive omics 

analysis. Additionally, we will examine the impact of AI and machine learning in cancer 

research, focusing on predictive and classification models and their role in multi-omics 

analysis. Finally, we will address the challenges and current solutions in integrating spatial 

transcriptomics with AI, highlighting its potential in enhancing breast cancer research. 

2.2 Advances in Breast Cancer Research 

In recent years, the field of breast cancer research and treatment has seen remarkable 

advancements, driven by cutting-edge technologies and innovative approaches. Researchers 

have made significant strides in understanding the molecular underpinnings of breast cancer, 

utilizing genomic, proteomics and transcriptomic studies to uncover critical insights. 

       2.2.1  Proteomics and Genomics Studies 

Functional biological parameters do not always match gene expression characteristics 

because there can be differences between RNA levels and protein levels. Functional proteomics 

analysis is therefore employed as additional information, and the combination of transcriptome 

and genomic data facilitates the identification of novel targets [49]. Proteomics research has 

revealed differentially expressed proteins that may be targets for therapy and prognostic 

indicators, greatly advancing our understanding of TNBC. The sensitivity and accuracy of 

protein detection have been improved by recent developments in mass spectrometry-based 

proteomics, such as tandem mass tag (TMT) labeling and isobaric tags for relative and absolute 

quantitation (iTRAQ), which allow for thorough comparative analyses of protein expression 

across TNBC samples. Additionally, new molecular targets and important regulatory networks 

involved in TNBC have been identified through the integration of proteomics with 

transcriptomics and genomes data using cutting-edge bioinformatics methods. The field of 

functional proteomics has yielded valuable insights into protein-protein interactions and post-
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translational changes, emphasizing their involvement in the progression of tumor necrosis 

factor-α and resistance to treatment. However, significant limitations exist within proteomics 

studies, particularly in the context of TNBC. One major challenge is detecting low-abundance 

proteins, which may play critical roles in cancer progression but are often overshadowed by 

more abundant proteins. Additionally, the complexity of the proteome, with its vast dynamic 

range and extensive post-translational modifications, poses difficulties in comprehensive 

protein analysis [50], [51]. 

  

It is well known that genomic mutations and genetic heterogeneity are more prevalent in 

breast cancer and other malignancies. A long-term solution has not been possible with 

traditional oncology techniques. The use of targeted therapies has proven crucial in managing 

the intricacy and resistance linked to breast cancer. But as genomic technology has advanced, 

our knowledge of the genetic makeup of breast cancer has changed, creating new opportunities 

for the development of more effective anti-cancer treatments [52]. Studies utilizing genomic 

technologies have identified key driver genes for breast cancer, including TP53, PIK3CA, 

MYC, PTEN, and BRCA1/2. In the context of TNBC, particular emphasis has been placed on 

mutations in BRCA1/2 and other significant genes. These findings underscore the genetic 

diversity and complexity inherent in TNBC. However, there are notable limitations in current 

genomic approaches, including difficulties in interpreting the clinical significance of numerous 

mutations and the necessity for more comprehensive, integrated analyses. Such integrative 

efforts are essential to fully elucidate the genomic intricacies and heterogeneity of breast cancer 

[50]. 

 

      2.2.2  Multi-Omics Approaches in Breast Cancer Research 

High-throughput technologies have rapidly advanced over the past few decades, 

enabling a variety of genetic investigations at the cellular and tissue levels. Furthermore, the 

extensive gathering of gene expression data and DNA methylation profiles has been made 

possible by highly developed genome screening technologies like whole exome sequencing 

(WES) and whole genome sequencing (WGS) [53] Single-cell technology allows for new 

scientific insights into cytological characteristics and gene activity at the cellular level [54]. 

Furthermore, the development of mass spectrometry techniques has allowed for the highly 

accurate detection of vast quantities of proteins and metabolites. Proteomics technologies are 
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moving approaching single-cell resolution and can detect nearly all human proteins. Still, a 

single platform is not enough to uncover a strong correlation with cancer driver mutations or 

to unravel the intricacy that underlies cancer genomes. As a result, there is a growing endeavour 

to create data-driven computational and mathematical techniques for analysing high-

dimensional datasets that come from various innovative analytical platform [55].  

 

              Figure 2.1: The integration of multiple omics datasets—Mutations/CNVs, Gene 

Expression, Methylation, and Proteomics—into a comprehensive analysis platform.  

 Multi-omics approaches have been developed to combine various patient-generated 

omics datasets to identify consistent and maintained genetic or clinical features across multiple 

datasets (Figure 2.1). Multi-omics research aims to uncover patient subgroups and biological 

aspects underpinning cancer pathophysiology to overcome the present complications generated 

by genetic and phenotypic heterogeneity that hamper our understanding of cancer genesis and 

progression [56].   

 RNA sequencing (RNA-seq) is a pivotal component of multi-omics approaches in 

studying TNBC. This technology allows for the comprehensive analysis of the transcriptome, 

enabling researchers to identify differentially expressed genes, alternative splicing events, and 

novel transcripts that may play critical roles in TNBC development and progression. In TNBC 

studies, RNA-seq has been employed to compare the gene expression profiles of TNBC tumors 
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with adjacent normal tissues and other breast cancer subtypes, such as estrogen receptor-

positive (ER+) and HER2-positive (HER2+) tumors. This comparison helps to pinpoint TNBC-

specific genes and pathways that are significantly dysregulated, providing insights into the 

unique molecular characteristics of TNBC. For instance, RNA-seq data integration from 

multiple cohorts, including The Cancer Genome Atlas (TCGA), has led to the identification of 

key genes involved in mammary gland morphogenesis and hormone-related pathways, which 

are crucial for understanding the aggressive nature of TNBC and its poor prognosis [57], [58], 

[59], [60]. Despite its powerful capabilities, RNA sequencing in TNBC research faces several 

limitations [61]. One of the primary challenges is the inherent complexity and heterogeneity of 

TNBC tumors, which can lead to variability in gene expression profiles and complicate the 

interpretation of RNA-seq data [62]. Additionally, the high cost and technical demands of 

RNA-seq limit its widespread application, particularly in large-scale clinical studies [63]. 

Another significant limitation is the potential for technical biases during sample preparation, 

sequencing, and data analysis, which can affect the accuracy and reproducibility of the results 

[64]. 

 Advancements in single-cell analysis have greatly improved our understanding of 

TNBC, offering solutions to the limitations of traditional RNA sequencing. This technique 

involves isolating individual cells from a tumor sample and examining their gene expression. 

This allows scientists to identify different cell types within the tumor, such as cancer stem cells, 

immune cells, and stromal cells, all of which play unique roles in tumor growth and 

progression. By mapping these cellular landscapes, researchers can pinpoint specific cell 

populations that drive malignancy and resistance to treatment. Studies have shown that scRNA-

seq can reveal the detailed structure of tumor subclones, track changes during disease 

progression, and uncover new biomarkers for targeted therapies. However, despite its 

significant impact, single-cell analysis in TNBC has limitations like high costs, extensive 

computational needs, and technical challenges related to separating and integrating data from 

individual cells. Additionally, while scRNA-seq is excellent at capturing the diversity of gene 

expression, it may miss important spatial context and protein-level variations essential for a 

complete tumor profile. Overcoming these challenges will require continued innovation and 

collaborative efforts to fully harness single-cell technologies in the fight against TNBC [62], 

[63], [64].  
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 Spatial transcriptomics is an advanced molecular technique that allows the mapping of 

gene expression in tissue sections while preserving the spatial context [65] . This approach 

overcomes the limitations of traditional bulk and single-cell RNA sequencing by maintaining 

the physical location of each cell within the tissue architecture. By integrating spatial 

information with transcriptomic data, spatial transcriptomics provides a comprehensive 

understanding of the cellular microenvironment, cell-to-cell interactions, and the spatial 

organization of gene expression patterns within complex tissues [66]. This technique is 

particularly valuable in cancer research, where the spatial heterogeneity of tumors plays a 

critical role in disease progression, metastasis, and therapeutic response. In TNBC, spatial 

transcriptomics has provided pivotal insights into the tumor's complex cellular landscape and 

its interaction with the surrounding microenvironment. TNBC is characterized by a lack of 

hormone receptors and HER2 expression, making it more challenging to treat with 

conventional therapies. Spatial transcriptomics has revealed the presence of distinct cellular 

niches within TNBC, including areas of high immune infiltration and regions dominated by 

cancer stem-like cells [67]. 

 

Figure 2.2: Outline of the spatial transcriptomics workflow, beginning with tissue sampling and 

pathological annotation, followed by spatial mapping and sequencing, and concluding with 

bioinformatics analysis for cellular composition and gene expression profiling. 

 The image (Figure 2.2) illustrates the workflow of spatial transcriptomics applied to 

breast cancer research. It begins with the collection and sectioning of a breast cancer tissue 

sample. Pathologists then annotate the tissue sections to identify regions of interest. The 

annotated tissue is placed onto a specialized spatial transcriptomics microarray, which captures 
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spatial gene expression data. This data undergoes bioinformatics analysis, generating visual 

representations such as t-SNE plots, heatmaps of the top genes, and spatial plots that map gene 

expression back onto the tissue sections. This process provides a detailed view of the spatial 

distribution of gene expression within the tumor, revealing its molecular landscape and 

heterogeneity [68]. These insights have highlighted potential therapeutic targets and 

biomarkers specific to certain tumor regions. Furthermore, spatial transcriptomics has been 

used to study the spatial dynamics of immune evasion mechanisms in TNBC, offering new 

avenues for immunotherapy [69]. Spatial transcriptomics is a relatively new and emerging 

technique in the field of molecular biology, and consequently, there is still a paucity of research 

utilizing this method. Previous research on prognostic markers for TNBC has predominantly 

focused on bulk or single-cell analyses, neglecting the crucial spatial distribution of gene 

expression within tumor tissues. This significant research gap fails to account for the inherent 

heterogeneity of gene expression, which is vital for accurate prognostication. As a result, 

current prognostic markers lack the necessary consistency across different regions of the tumor, 

leading to potential unreliability in clinical applications. To address these limitations, further 

studies and explorations employing spatial transcriptomics are imperative. This approach can 

provide a more comprehensive understanding of TNBC's complex cellular landscape, 

uncovering spatial patterns of gene expression that are essential for developing reliable 

prognostic markers and effective targeted therapies. 

2.3 Artificial Intelligence and Machine Learning in Breast Cancer Research 

Artificial Intelligence (AI) is transforming various fields, from finance and 

transportation to education and healthcare. Its ability to analyze large datasets, recognize 

patterns, and make predictions has made it an invaluable tool in many domains [70]. In 

biomedical research, AI has brought significant advancements, helping scientists understand 

complex biological systems and discover new treatments. AI techniques, such as machine 

learning and deep learning, are used to analyze genetic data, identify disease markers, and 

develop personalized medicine approaches. These technologies have accelerated drug 

discovery, improved diagnostic accuracy, and optimized clinical trials, making biomedical 

research more efficient and effective. In cancer research, AI has been particularly impactful. 

By analyzing vast amounts of genomic, transcriptomic, and proteomic data, AI can uncover 

patterns and correlations that traditional methods might lack. This has led to better 

understanding of cancer progression, metastasis, and treatment resistance [71]. TNBC, a 
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challenging subtype lacking hormone receptors and HER2 expression, AI has been crucial. AI-

powered imaging techniques enhance early diagnosis, while machine learning models predict 

disease outcomes and response to treatments [72]. Additionally, AI-driven analyses of gene 

expression and mutation data have identified new biomarkers and therapeutic targets, offering 

hope for more effective and personalized treatments for TNBC [73]. 

 2.3.1  Machine Learning Models for Cancer Classification and Prediction 

Machine learning models are transforming many aspects of our lives, from everyday 

tasks like personalized movie recommendations to complex ones like autonomous 

vehicles navigating city streets. These models excel at analyzing large amounts of data, 

finding patterns, and making accurate predictions, proving their versatility in many real-

time applications.  

           2.3.1.1  Classification Models 

Classification models are essential in machine learning for sorting data into 

specific categories. In single-cell and spatial transcriptomics, these models help classify 

different cell types based on their gene expression profiles. Common techniques include 

support vector machines (SVMs) and decision trees. SVMs find the best boundary that 

separates different classes in high-dimensional space [74], while decision trees split the 

data into branches to make decisions based on certain features. These models are crucial 

for identifying cell states and subpopulations within tissues, helping to understand 

cellular diversity and disease mechanisms [75].  

          2.3.1.2  Prediction Models 

Prediction models are used to forecast future outcomes based on past data. In 

cancer research, these models can predict disease progression, treatment responses, and 

patient survival. Techniques like regression analysis and ensemble methods, such as 

random forests, are used. Regression models predict continuous outcomes, such as the 

expression levels of specific genes, while ensemble methods combine multiple models 

to improve prediction accuracy and reliability. These prediction models integrate 

genetic, proteomic, and clinical data to provide comprehensive insights into disease 

dynamics, aiding personalized medicine approaches [76], [77] . 



26 

 

 

2.3.1.3  Neural Networks 

Neural networks, especially deep learning models, have revolutionized the 

analysis of complex biological data. Convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs) are widely used in spatial transcriptomics. CNNs are 

effective for image-based data, capturing spatial details in tissue samples to identify 

gene expression patterns. RNNs are suitable for sequential data and can capture changes 

in gene expression over time. Deep learning models handle high-dimensional data well, 

automatically learning important features without manual input. This makes them 

invaluable for tasks like cell type identification, spatial pattern recognition, and 

integrating multi-omics data [78][79]. 

2.3.1.4  Integration and Impact 

By combining classification models, prediction models, and neural networks, 

researchers can analyze single-cell and spatial transcriptomics data with great precision. 

These machine learning techniques provide a complete view of the tumor environment, 

uncovering new biomarkers and therapeutic targets. This integrated approach enhances 

the understanding of tumor diversity and improves the precision of personalized 

medicine. The growing capabilities of AI and machine learning continue to expand 

what is possible in spatial transcriptomics, offering new insights into diseases like 

breast cancer and paving the way for innovative treatments.  

 

2.4 Integration of Spatial Transcriptomics and Artificial Intelligence   

The integration of spatial transcriptomics and artificial intelligence (AI) represents a 

groundbreaking advancement in biomedical research. By combining high-resolution spatial 

gene expression data with powerful AI algorithms, researchers can analyze and interpret 

complex biological patterns with unprecedented precision.  
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2.4.1  Current Approaches and Solution 

A very recent study applied spatial transcriptomics to investigate the heterogeneity of 

triple-negative breast cancer (TNBC) tumors. Utilizing a spatial transcriptomics platform, 

researchers captured spatially resolved gene expression patterns within tumor tissues, 

complemented by digital pathology tools for histomorphological analysis. Open-source 

libraries and proprietary software facilitated image processing and feature extraction. The study 

employed clustering algorithms to identify distinct TNBC ecotypes based on gene expression 

profiles, which were validated using external datasets. Predictive models incorporating 

supervised learning algorithms were developed to correlate spatial and molecular features with 

clinical outcomes. The results delineated multiple TNBC ecotypes, each associated with 

specific clinical outcomes and therapeutic responses, underscoring the heterogeneity of TNBC 

and its implications for personalized treatment strategies. This integration of spatial 

transcriptomics and machine learning offers promising avenues for enhancing precision 

medicine in cancer care [80]. 

 Another study leveraged digital image analysis and machine learning to predict the 

response to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) 

patients. The researchers utilized whole-slide imaging (WSI) combined with machine learning 

techniques to classify histological components of the tumor microenvironment (TME). They 

processed and analyzed the images using software such as QuPath for digital pathology and 

Python libraries including OpenCV and scikit-image for image preprocessing. Feature 

extraction was performed using techniques like gray-level co-occurrence matrix (GLCM), 

Gabor filters, and local binary patterns (LBP). The machine learning models used for 

classification included linear support vector machine (SVM), radial basis function SVM 

(rbfSVM), and ensemble tree methods implemented with the RUSBoost algorithm. The study 

employed a stratified eightfold cross-validation strategy to ensure robust model performance 

and reliability. The researchers further modeled spatial relationships within the TME using 

graph-based approaches to characterize tissue states and interactions. 

 

 The results revealed that the machine learning models effectively predicted NAC 

response by analyzing spatial and histological features of the TME. This approach 

demonstrated the potential of combining digital pathology with advanced machine learning 
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techniques to improve predictive accuracy and guide personalized treatment strategies in 

TNBC. This study underscores the value of integrating digital image analysis and machine 

learning to enhance predictive modeling in cancer treatment [81]. 

2.4.2  Challenges 

 Spatial transcriptomics technologies face several significant challenges, particularly 

regarding resolution and sensitivity. Achieving high spatial resolution while maintaining the 

sensitivity required for accurate gene expression detection is difficult, which can result in the 

loss of critical spatial information necessary for mapping gene expression patterns within the 

tumor microenvironment [82]. Additionally, the data generated by spatial transcriptomics are 

highly complex, combining high-dimensional gene expression data with spatial coordinates. 

This complexity necessitates sophisticated computational tools and expertise, making the 

integration of spatial data with transcriptomic profiles to extract meaningful biological insights 

a formidable task[83]. The relatively small size of spatial transcriptomics datasets due to the 

high cost and technical demands also poses a significant challenge. Small datasets can lead to 

overfitting in machine learning models and reduce the statistical power of findings, 

complicating the generalization of results across larger populations [84]. 

 Integrating AI and machine learning with spatial transcriptomics adds another layer of 

complexity. One major challenge is the interpretability of machine learning models, 

particularly deep learning approaches, which often function as "black boxes" where the 

decision-making process is not transparent. This lack of interpretability can be a barrier in 

clinical applications where understanding the rationale behind predictions is crucial for gaining 

trust and ensuring patient safety [85]. Effective integration also requires combining 

computational predictions with existing biological knowledge, necessitating interdisciplinary 

collaboration between data scientists, biologists, and clinicians to ensure that AI models are 

biologically plausible and clinically relevant. Moreover, integration demands substantial 

computational resources and infrastructure, posing a barrier for many research institutions. 

Standardizing data formats and analysis pipelines to facilitate data sharing and reproducibility 

across different studies and platforms is another significant challenge, as variability in data 

processing methods can lead to inconsistent results [86]. 
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2.4.3  Further Direction and Innovation 

 The future of integrating spatial transcriptomics and AI in TNBC research is set to 

transform personalized medicine and treatment strategies. One key innovation is combining 

spatial transcriptomics with other types of data, like proteomics and metabolomics, to gain a 

comprehensive understanding of the tumor environment and molecular interactions. Advanced 

AI models, especially those using deep learning and graph-based methods, will enhance the 

resolution and interpretation of spatial data, aiding in the precise identification of tumor 

subtypes and treatment targets. Improvements in data standardization and sharing will facilitate 

collaboration, leading to larger, more diverse datasets that improve the reliability of AI models. 

Innovations in single-cell analysis and spatially resolved transcriptomics will further refine our 

ability to map cellular diversity and dynamics within TNBC tumors, paving the way for 

targeted treatments and early diagnosis. By addressing current challenges and utilizing these 

advancements, researchers aim to significantly enhance TNBC patient outcomes through more 

personalized and effective therapies.  
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CHAPTER 3: METHODOLOGY 

In this chapter, a detailed methodology was employed to integrate spatial 

transcriptomics with artificial intelligence for breast cancer analysis. The study began with data 

acquisition, including spatial transcriptomics, imaging, and clinical data. Single-cell analysis 

was then performed to explore gene expression patterns, followed by differential expression 

analysis. Machine learning models were developed to predict patient outcomes. This 

comprehensive approach yielded profound insights into the complex landscape of tumor 

heterogeneity and the cellular patterns that contribute to breast cancer progression. 

Furthermore, the analysis identified potential therapeutic targets, offering valuable directions 

for personalized treatment strategies. 

 

Figure3.1: General workflow from spatial transcriptomics to machine learning 

3.1 Data Description and Acquisition 

The data of TNBC for spatial transcriptomics analysis was retrieved from GEO datasets 

under the accession number GSE210616. This dataset consisted of 22 patients out of which 15 

were African-American and 7 who were Caucasian. 2 sections from each patient were taken 

(except for patient 19) which made them 43 samples. 28 tissue sections representing 14 primary 

TNBC tumors were subject to spatial transcriptomics using the 10x Genomics Visium platform, 

followed by high throughput sequencing.  
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Table 3.1: Dataset for spatial transcriptomics analysis 

Database Gene Expression Omnibus 

Platform 10X Genomics Visium 

Accession Number GSE210616 

Cancer Type Triple Negative 

No. of Patients 22 

Tissue Section per Patient  2 

No. of Samples 43 

Ethnicity African-American 

Country USA 

 

 For the single-cell analysis of normal breast tissue, Data was sourced from two primary 

databases. First, data was retrieved from the Genotype Tissue Expression (GTEx) database, 

focusing on breast tissue samples from three individuals without breast cancer. 

 

Figure 3.2: Dataset for single cell analysis of healthy individuals 

  Second, data was accessed from the GEO database under accession number 

GSE161529. This dataset included various types of breast cancer as well as samples from 

healthy individuals without breast cancer. From this dataset, 13 normal breast tissue samples 

were specifically selected for analysis. 
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3.2 Spatial Transcriptomics Analysis 

For the spatial transcriptomics analysis, the process began by downloading the 

processed files, which included both the normalized gene expression data and the 

corresponding image files with mapped spatial spots. These files provided a comprehensive 

dataset that integrated spatial information with gene expression profiles, essential for 

understanding the spatial organization of the tissue. 

3.2.1  Data Collection and Processing: 

For the spatial transcriptomics data, a tool called the Loupe Browser, provided by 10x 

Genomics, was used. Processed data files for each sample were first downloaded in a format 

called cloupe, which is compatible with the Loupe Browser. These files contained important 

information, such as the locations of different spots on the tissue images, clusters of these spots, 

and the associated gene expression data. 

3.2.2  Visualization 

Each sample was opened in the Loupe Browser to view the tissue images with overlaid 

spots. These spots represent specific regions of the tissue that were analyzed during sequencing. 

The browser also allowed us to see clusters of these spots using UMAP projections, which 

helped us understand the differences in gene expression across different regions of the tissue. 

3.2.3  Extracting Gene Expression Data 

For each sample, the gene expression data linked to the spatial spots was downloaded. 

This data was saved in CSV files, which were later used for further analysis. By doing this, 

specific regions of the tissue were connected with their gene expression profiles, facilitating 

easier analysis and interpretation of the biological information. 

 

3.2.4  Differentially Expressed Genes (DEG) Analysis 

For the analysis of differentially expressed genes (DEGs), Python was used within the 

Visual Studio Code (VS Code) environment. To begin, the data was organized by creating a 
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dedicated directory named gene_expression_data, where all 43 CSV files containing the gene 

expression data for each sample were stored. 

 Next, differential expression analysis was performed using a Python script that iterated 

through each of the 43 files. The analysis identified genes that were differentially expressed 

between conditions, applying a p-value threshold of less than 0.05 and a log2 fold change 

threshold of greater than 1 (or less than -1) to determine significance. Only genes meeting this 

criterion were considered differentially expressed, ensuring that the results were both 

statistically and biologically meaningful and reliable. After identifying these DEGs, the results 

were saved into new CSV files, which were stored in a separate directory called DEG_results. 

Each file was named according to its corresponding sample, making it easy to track and 

reference the results. 

3.2.5  Selection and Consolidation of Top DEG’s 

Following the initial differential expression analysis, the next step was to identify the 

most significant genes across all clusters and samples. Utilizing the DEG_results directory, the 

top 20 differentially expressed genes from each cluster within each sample were selected. For 

these selected genes, key metrics including their log2 fold change values, p-values, and 

adjusted p-values were extracted, which are essential for understanding both the significance 

and the extent of gene expression changes. 

To accomplish this, a Python script was employed that systematically processed each file 

within the DEG_results directory. The script first filtered the genes based on a p-value 

threshold of less than 0.05, ensuring that only statistically significant genes were considered. 

It then sorted the remaining genes by their adjusted p-values, prioritizing those with the 

smallest values, which typically indicate higher statistical significance after correcting for 

multiple comparisons. From this sorted list, the top 20 genes were selected for each cluster 

within each sample and saved in a file.  

3.2.6  Identification of Common DEG’s Across Samples 

After compiling the significant genes from each sample into a file, the focus shifted to 

identifying the most consistently significant genes across all samples. The top 20 genes that 

were common across all samples were identified by selecting those that consistently appeared 

and demonstrated significant differential expression. This resulted in a file containing the top 
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20 common genes identified across all samples. These 20 common genes, highlighted for their 

consistency and significance, were recognized as key biomarkers or potential therapeutic 

targets, offering valuable insights for further biological interpretation and exploration. 

3.3 Single Cell Analysis 

Single-cell RNA sequencing (scRNA-seq) data was obtained from the Gene Expression 

Omnibus (GEO) for 13 healthy individual’s samples and from the Genotype-Tissue Expression 

(GTEx) project for 3 normal samples. The data included features, barcodes, and matrix files, 

which were used to construct the gene expression matrices necessary for downstream analysis. 

The Scanpy library was used for the analysis of single cell.  

3.3.1  Preprocessing 

The data was loaded into an AnnData object, which is a standard format for handling 

large single-cell datasets. For each dataset, we wrote a function to read the matrix, genes, and 

barcodes files, and subsequently construct the AnnData object. Specifically, the matrix file was 

loaded and transposed to ensure that the rows corresponded to cells and the columns to genes. 

The genes and barcodes were then assigned as variable names (var_names) and observation 

names (obs_names) in the AnnData object, respectively. This process was repeated separately 

for the GEO and GTEx samples, resulting in two distinct AnnData objects: one for the GEO 

samples and one for the GTEx samples. 

Once both datasets were loaded, they were concatenated into a single AnnData object 

to facilitate joint analysis. During this concatenation, a new key was introduced to distinguish 

between the two datasets, enabling subsequent analyses to account for potential batch effects. 

To make sure that the variable (feature) names are unique, Scanpy uses the 

"adata.var_names_make_unique()" function. If required, it updates the variable names to 

make them unique after determining whether there are any duplicates. 

3.3.2  Quality Control 

After loading the single-cell RNA sequencing (scRNA-seq) data, a quality control (QC) 

process was performed to ensure the integrity and reliability of the data. This step is crucial for 

filtering out low-quality cells that could skew the results of downstream analyses. 
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Mitochondrial genes, identified by their "MT-" prefix, were analyzed to calculate their 

expression as a percentage of total cellular RNA, with high levels indicating potentially 

stressed or apoptotic cells suitable for exclusion. Ribosomal genes, marked by "RPS" and 

"RPL" prefixes, were quantified to assess the translational state of cells, as abnormal 

expression might signal cellular stress or technical artifacts. Additionally, hemoglobin genes 

were identified by specific naming patterns to detect possible contamination from blood cells, 

with elevated expression in non-erythroid cells flagged for further investigation. 

In this analysis, we utilized the `sc.pp.calculate_qc_metrics` function to compute 

quality control metrics for each cell. The `log1p=True` parameter was employed to apply a 

log-transformation to these metrics, which helps stabilize variance and improve the 

interpretability of the data. The results were directly stored in the `AnnData` object, allowing 

us to flag cells with abnormal gene expression patterns for further scrutiny. 

3.3.3  Visualization of Quality Control Metrics 

After calculating the quality control (QC) metrics, visualization of these metrics was 

done to gain insights into the distribution and variability of the data across all cells. 

Visualization plays a crucial role in the QC process as it allows us to identify potential outliers 

and anomalies that might indicate issues such as low-quality cells, doublets, or other technical 

artifacts. Specifically, the focused was on three key metrics: the number of genes expressed 

per cell (`n_genes_by_counts`), the total counts per cell (`total_counts`), and the percentage 

of counts in mitochondrial genes (`pct_counts_mt`). Each of these metrics provides critical 

information about cell quality. 

To visualize these QC metrics, violin plots using the `sc.pl.violin` function from the 

Scanpy library were employed. Violin plots were chosen because they effectively display both 

the distribution and density of the data, making it easier to spot trends and outliers.  

 A scatter plot using ‘sc.pl.scatter’ was made to examine the relationship between total 

RNA counts per cell (`total_counts`) and the number of genes expressed per cell 

(`n_genes_by_counts`). This plot helped identify potential doublets and low-quality cells. 

Additionally, we colored the points based on the percentage of mitochondrial gene expression 

(`pct_counts_mt`), allowing us to visually assess cells with high mitochondrial content. 
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3.3.4  Filtering Cells and Genes 

As part of quality control workflow, filtering criteria was applied to both cells and genes 

to enhance the overall quality of our dataset. The first step was to filter out cells with fewer 

than 100 detected genes (min_genes=100), a step designed to exclude low-quality cells. 

Following this, the genes that were not expressed in at least 3 cells (min_cells=3) were filtered 

out, thereby removing genes with sparse expression that are likely to contribute more noise 

than meaningful biological insight.  

3.3.5  Normalization 

After filtering cells and genes to ensure that our dataset included only high-quality data 

points, with the crucial step was of normalization. Normalization was necessary to account for 

variations in sequencing depth across individual cells, which could otherwise introduce 

technical biases into our analysis. To preserve the original data for potential downstream 

comparisons, the data was saved in the raw count data in a separate layer of the AnnData object. 

Following this, a logarithmic transformation to the scaled data was applied using the 

log1p method, which adds one to each expression value before applying the logarithms. The 

normalization and log transformation were carried out using the Scanpy library's 

sc.pp.normalize_total and sc.pp.log1p functions, respectively.  

3.3.6  Identification of Highly Variable Genes 

Highly variable gene (HVGs) discovery using single-cell RNA sequencing (scRNA-

seq) enables the identification of genes that significantly influence cell-to-cell variation in a 

homogeneous cell population, like a population of embryonic stem. This step deals with the 

top 2000 genes that were present in each sample and performs further analysis using the 

function sc.pp.highly_variable_genes(). To display the mean relationship and gene expression 

dispersion, an illustration was created for each sample to highlight the genes that demonstrated 

greater variability among cells. 

3.3.7  Dimensionality Reduction 

  After highly variable genes were identified, PCA was first applied to the normalized 

data using the ̀ sc.tl.pca` function from the Scanpy library. This function computes the principal 

components and orders them according to the amount of variance they explain. To determine 
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how many PCs to retain for further analysis, the variance explained by each component was 

examined using the `sc.pl.pca_variance_ratio` function. This plot helps in deciding the 

appropriate number of PCs to use in downstream analysis, ensuring that enough components 

are included to capture the essential structure of the data while avoiding overfitting by 

including too many.  

3.3.8  Nearest neighbor graph construction and visualization 

 Following dimensionality reduction, the next step was to construct the nearest neighbor 

graph, which is crucial for understanding the relationships between cells in the dataset. In the 

analysis, the `sc.pp.neighbors` function from the Scanpy library was utilized to construct the 

neighborhood graph. To visualize the high-dimensional data in a more interpretable form, 

Uniform Manifold Approximation and Projection (UMAP) was then applied using the 

`sc.tl.umap` function. UMAP is a widely used technique that projects high-dimensional data 

into a two-dimensional space, preserving the local and global structure of the data as much as 

possible. The resulting UMAP plot was colored based on specific metadata, such as sample 

origin, to visually assess the distribution and separation of different cell populations.  

3.3.9  Clustering 

In the final stage of analysis, the focus was on identifying distinct cell populations 

within the dataset by performing clustering, which is a key step in single-cell RNA sequencing 

(scRNA-seq) analysis. Leiden clustering was implemented using the `sc.tl.leiden` function 

from the Scanpy library. This function operates on the nearest neighbor graph constructed in 

the previous step, grouping cells into clusters based on their local neighborhood structure. The 

"igraph" implementation was specified, and the number of iterations was set to 2 to ensure a 

robust clustering solution. After clustering, the results were visualized using UMAP, with each 

cell colored according to its assigned cluster. 

3.3.10  Differential Gene Expression Analysis 

Following the clustering step, the focus shifted to identifying differentially expressed 

genes (DEGs) within each cluster. To accomplish this, differential expression analysis was 

performed using the Wilcoxon rank-sum test, a non-parametric test that compares gene 

expression between each cluster and all other clusters in the dataset. 
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This analysis was implemented using the `sc.tl.rank_genes_groups` function from the 

Scanpy library. This function ranks genes by their differential expression across clusters, aiding 

in the identification of the most distinct and biologically relevant markers for each group. By 

specifying the clustering result (`leiden_res_0.50`) as the grouping variable, DEGs were 

identified in the context of the previously determined clusters. The Wilcoxon test was chosen 

for its robustness in handling the typically non-normal distribution of gene expression data in 

single-cell RNA sequencing. 

3.3.11  Identification and Cross-Analysis of Common Genes Between Spatial 

Transcriptomics and Single-Cell Data 

From the spatial transcriptomics analysis, the top 20 genes that were consistently 

expressed across all samples were identified. To further explore the significance of these genes, 

their expression was analyzed within the differentially expressed gene set from the single-cell 

RNA sequencing (scRNA-seq) data.  

3.4 Machine Learning  

In this study, machine learning was applied to integrate spatial transcriptomics and 

single-cell RNA sequencing data by identifying key differentially expressed genes (DEGs) 

associated with breast cancer progression. Spatial transcriptomics data provided spatially 

resolved gene expression profiles, while single-cell RNA-seq data offered high-resolution 

insights into individual cellular phenotypes within the tumor microenvironment. Various 

machine learning models, including Xtreme Gradient Boosting and Support Vector Machines, 

were trained using DEGs and spatial features to predict breast cancer outcomes. The models 

were evaluated using accuracy, AUC-ROC, and confusion matrix, revealing critical genes and 

spatial patterns linked to disease progression.  

3.4.1  Normal vs Cancer Classification Model 

 For the first model, classification was performed to differentiate between healthy 

individuals and cancerous patients. 

              3.4.1.1: Data Preparation 

The initial step in the process involved preparing the data. For the cancer 

samples, the gene expression data from the Top_20_Common_Genes.csv file, derived 
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from the spatial transcriptomics analysis, was utilized. For the normal samples, data 

from the common_genes_expression_scRNAseq.csv file, obtained from the single-cell 

RNA sequencing analysis, was incorporated. The gene expression data from both files 

was then combined into a single comprehensive dataset. This combined dataset was 

saved in a file named Combined_Genes_Data_Normal_vs_Cancer.csv, which was 

subsequently used for training the classification model. 

              3.4.1.2: Data Splitting 

After compiling the gene expression data into the 

Combined_Genes_Data_Normal_vs_Cancer.csv file, the next step involved splitting 

the dataset into training and testing subsets. This split was performed to ensure that the 

model could be trained on one portion of the data while being evaluated on a separate, 

unseen portion. Typically, 80% of the data was allocated for training, while the 

remaining 20% was reserved for testing. This approach helped to assess the model's 

ability to generalize to new, unseen data.  

              3.4.1.3 Feature Selection: 

Before training the classification model, it was crucial to select the most relevant 

features (gene expression values) to ensure they contributed effectively to the 

classification process. Feature selection involved choosing the most informative genes, 

particularly those with significant Log2 fold changes, to serve as predictors in the 

model. This step was essential for improving the model's performance by focusing on 

the most critical variables and reducing the complexity of the data. 

In addition to selecting the features, a new column named Type was added to 

the dataset to label each sample as either "normal" or "cancer." This column served as 

the target variable (y) for the model. The selected features, represented by their gene 

names and corresponding Log2 fold change values, were used as the predictor variables 

(x). 
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              3.4.1.4 Model Training 

Following feature selection and data preparation, the Xtreme Gradient Boosting 

(XGBoost) classification model was employed to train on the cancer and normal gene 

expression data. XGBoost was chosen for its effectiveness in handling complex 

datasets, particularly in the context of distinguishing between cancerous and non-

cancerous samples. The model was configured with key hyperparameters to optimize 

performance: n_estimators=100 determined the number of boosting rounds, 

learning_rate=0.1 controlled the step size to prevent overfitting, max_depth=5 set the 

maximum depth of each tree to capture feature interactions, subsample=0.8 and 

colsample_bytree=0.8 introduced randomness to reduce overfitting, and 

objective='binary:logistic' specified the binary classification nature of the task. 

              3.4.1.5 Cross Validation 

For the XGBoost model, a cross-validation process combined with grid search 

was applied to fine-tune the model and ensure its effectiveness in predicting cancer 

stages. The data was split into five folds, with the model being trained on four folds and 

validated on the fifth. This 5-fold cross-validation process was repeated across 16 

different candidate configurations, leading to a total of 80 fits. 

              3.4.1.6 Model Evaluation 

After training, the model’s performance was evaluated using the testing subset. 

Key performance metrics, including accuracy, precision, recall, F1-score, and the area 

under the receiver operating characteristic curve (AUC-ROC), were calculated to assess 

the model’s effectiveness in correctly classifying the samples. 

 

3.4.2:  Stage Prediction Model 

          3.4.2.1: Data Preparation 

For the stage prediction model, the process began by creating a comprehensive 

metadata file using cancer data. This involved merging two key datasets: the first was 
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the file containing expression data for the top 20 common genes identified across all 

cancer patients, and the second was a supplementary file from a published study [87] 

that used the same dataset. The supplementary file included vital survival analysis data 

for the cancer patients, such as disease progression and survival times. By merging 

these two files, a unified metadata file was creasted that combined both molecular and 

clinical data, forming the basis for training the stage prediction model. 

           3.4.2.2: Data Splitting 

After preparing the metadata file, the next step involved splitting the dataset into 

training and testing sets to ensure the model's performance could be properly evaluated. 

The data was typically split into two parts: 80% of the data was allocated for training 

the model, while the remaining 20% was set aside for testing. This split allowed the 

model to learn from most of the data while being tested on an unseen portion, providing 

a reliable measure of its ability to generalize to new, unseen data. 

           3.4.2.3: Feature Selection 

For the feature selection process in the stage prediction model, a combination 

of molecular and clinical features was carefully selected to optimize the model's 

predictive power. The features included gene names and their corresponding Log2 fold 

change values, which provided insights into the differential expression of genes. In 

addition to these molecular features, several key clinical variables were incorporated: 

days to recurrence, days to death, days to maximum encounter, relapse-free survival, 

and overall survival days. These clinical metrics were chosen for their relevance in 

capturing the progression and outcomes of cancer in patients. The target variable (y) in 

our model was the cancer stage, which the model aimed to predict based on the selected 

features. 

           3.4.2.4: Model Training 

Following feature selection, the stage prediction model was trained using a 

Support Vector Machine (SVM) classifier. The SVM model was implemented within a 

pipeline that included two key components: a StandardScaler for feature scaling and 

the SVC (Support Vector Classification) algorithm. The StandardScaler was applied 
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first to standardize the feature data, ensuring that all features had a mean of zero and a 

standard deviation of one. This step was crucial for the SVM, as it is sensitive to the 

scale of input features. 

The SVM classifier was configured with a radial basis function (RBF) kernel, 

which is effective for capturing non-linear relationships in the data. Hyperparameter 

tuning was performed to optimize the model's performance. The parameters tuned 

included the regularization parameter C, which controls the trade-off between 

maximizing the margin and minimizing classification errors, with values tested at 0.1, 

1, 10, and 100. Additionally, the gamma parameter, which defines the influence of a 

single training example, was tuned with values of 1, 0.1, 0.01, and 0.001. These 

hyperparameters were explored in combination to identify the best configuration for the 

SVM model. 

           3.4.2.5: Cross Validation 

After the initial model training, cross-validation combined with grid search was 

performed to fine-tune the stage prediction model and ensure its robustness. 

Specifically, for the SVM model, we conducted a 5-fold cross-validation, where the 

data was split into five folds. The model was trained on four folds and validated on the 

fifth, with this process repeated five times so that each fold served as the validation set 

once. We explored 12 different candidate configurations for the SVM model, resulting 

in a total of 60 fits. 

           3.4.2.6: Model Evaluation 

After training, the model’s performance was evaluated using the testing subset. 

Key performance metrics, including accuracy, precision, recall, F1-score, and the area 

under the receiver operating characteristic curve (AUC-ROC), were calculated to assess 

the model’s effectiveness in correctly classifying the samples. 
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3.4.3  Prognosis Prediction Model 

          3.4.2.1 Data Preparation 

For the prognosis prediction model, the same metadata file used in the stage 

prediction model was utilized. A new column named Prognosis was introduced to 

categorize the patients based on their survival time. Patients with a survival time of 0 

to 5 years were labeled as 0, indicating a poor prognosis. Those with a survival time of 

5 to 10 years were categorized as 1, indicating a poor prognosis. Finally, patients with 

a survival time of over 10 years were labeled as 2, indicating a good prognosis. This 

categorization allowed us to stratify the patients based on their long-term outcomes, 

providing a foundation for the prognosis prediction model. 

           3.4.2.2: Data Splitting 

After preparing the metadata file, the next step involved splitting the dataset into 

training and testing sets to ensure the model's performance could be properly evaluated. 

The data was typically split into two parts: 80% of the data was allocated for training 

the model, while the remaining 20% was set aside for testing. This split allowed the 

model to learn from most of the data while being tested on an unseen portion, providing 

a reliable measure of its ability to generalize to new, unseen data. 

           3.4.2.3: Feature Selection: 

For the feature selection process in the prognosis prediction model, a 

combination of molecular and clinical features was carefully selected to optimize the 

model's predictive power. The features included gene names and their corresponding 

Log2 fold change values, which provided insights into the differential expression of 

genes. In addition to these molecular features, several key clinical variables were 

incorporated: days to recurrence, days to death, days to maximum encounter, relapse-

free survival, stage, and overall survival days. These clinical metrics were chosen for 

their relevance in capturing the progression and outcomes of cancer in patients. The 

target variable (y) in our model was the cancer progression, which the model aimed to 

predict based on the selected features. 
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           3.4.2.4: Model Training 

For training the prognosis prediction model, the Support Vector Regression 

(SVR) technique was applied from the SVM family. The SVR model was implemented 

within a pipeline that included two main components: a StandardScaler for feature 

scaling and the SVR algorithm as the regressor. The StandardScaler was applied to 

standardize the feature data, ensuring that all features had a consistent scale, which is 

crucial for the performance of SVR. 

           3.4.2.5: Cross Validation 

After the initial model training, cross-validation combined with grid search was 

performed to fine-tune the stage prediction model and ensure its robustness. 

Specifically, for the Support Vector Regression (SVR) model, a 5-fold cross-validation 

was conducted, where the data was split into five folds. The model was trained on four 

folds and validated on the fifth, with this process repeated five times so that each fold 

served as the validation set once. We explored 12 different candidate configurations for 

the SVRmodel, resulting in a total of 80 fits. 

           3.4.2.6: Model Evaluation 

Following the training of the Support Vector Regression (SVR) model for 

prognosis prediction, its performance was evaluated using key metrics: Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and the R² score. MSE and MAE were used 

to measure the accuracy of the model's predictions by quantifying the average error 

magnitude, with lower values indicating better performance. The R^2 score assessed 

how well the model captured the variance in the survival time data, with scores closer 

to 1 reflecting a strong predictive capability.  

In this methodology, spatial transcriptomics was integrated with artificial intelligence to 

analyze TNBC. The approach began with the acquisition of data from GEO datasets and single-

cell RNA sequencing, followed by the application of the 10x Genomics Visium platform to 

map gene expression across tissue sections. Differential expression analysis was conducted, 

and highly variable genes were identified and visualized using advanced techniques like 
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UMAP. Subsequently, machine learning models, including XGBoost and SVM, were 

developed to classify cancer stages, predict patient prognosis, and identify key genes associated 

with cancer progression, offering insights for personalized treatment strategies. 
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CHAPTER 4: RESULTS AND DISCUSSION 

In this chapter, the findings deduced from an extensive evaluation of spatial transcriptomics, 

scRNA-seq, and machine learning approaches will be discussed. The findings of the study will 

be analyzed and discussed in reference to the available literature, with the aim of establishing 

how the current study relates to the existing literature on breast cancer. The results are 

compared with previous works to emphasize the advancements made using spatially resolved 

measurements of gene expression and cellular heterogeneity for breast cancer progression. 

Additionally, future trends of machine learning models will be described, with a special focus 

on their abilities to find biomarkers for prognosis and enhance patients’ lives. 

 

4.1 Spatial Transcriptomics Analysis 

The processed files were opened using the Loupe Browser, enabling us to visualize 

the tissue samples with overlaid spots representing regions of gene expression analysis. 

         4.1.1  Visualization 

The images were visualized in the Loupe Browser, where the tissue sections were 

overlaid with spots corresponding to regions analyzed for gene expression. The browser 

provided a spatial projection that revealed distinct clusters within these spots, each represented 

by different colors. These clusters reflect the spatial heterogeneity of gene expression across 

the tissue sample. The spatial projection image for sample 1 is shown in figure 4.1.  
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Figure 4.1: Tumor microenvironment clusters representing different cell types. 

The clear separation of clusters indicates the presence of different microenvironments 

within the tissue, each potentially representing various cell types or biological states. This kind 

of spatial resolution is crucial for understanding the complex architecture of breast cancer 

tissues, as it helps identify regions with specific gene expression profiles that may be linked to 

distinct functional roles within the tumor microenvironment [88] each sample, the gene 

expression data associated with the spatial spots was downloaded and saved in CSV files. This 

data included the gene names, their corresponding log2 fold-change values, and p-values. After 

identifying these DEGs, we saved the results into new CSV files, which were stored in a 

separate directory called DEG_results. Each file was named according to its corresponding 

sample, making it easy to track and reference the results. Utilizing the DEG_results directory, 

the top 20 differentially expressed genes from each cluster within each sample were selected. 

From this sorted list, the top 20 genes were selected for each cluster within each sample. 

Finally, all the selected genes from each sample were compiled into a single comprehensive 

file named Top_DEGs_Summary.csv. The top 20 genes that were common across all samples 

were then identified, selecting those that consistently appeared and demonstrated significant 

differential expression. The file containing the top 20 common genes identified across all 

samples was named Top_20_Common_Genes.csv. 
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         4.1.2  Top 20 common Genes 

The 20 commonly identified genes were MALAT1, IGKC, ACTB, B2M, EEF1A1, 

FTH1, FTL, GAPDH, HLA-, MT-ATP6, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND3, 

MT-ND4, RPL13, RPL37, RPL41, RPLP1. These genes represent a mix of housekeeping 

genes, ribosomal proteins, and mitochondrial genes, which are typically involved in 

fundamental cellular processes such as protein synthesis, energy production, and immune 

responses. The consistent expression of these genes across various spatial spots suggests their 

essential role in maintaining basic cellular functions within the breast cancer tissue 

microenvironment. For instance, genes like GAPDH and ACTB are well-known housekeeping 

genes that serve as critical controls in gene expression studies due to their stable expression 

[89]. The identification of these genes reinforces their role in the fundamental cellular 

architecture of both malignant and non-malignant cells within the tissue [90].  

The significance of mitochondrial genes in breast cancer is further highlighted by 

studies[91], [92]  showing that mutations or dysregulation of these genes can lead to increased 

reactive oxygen species (ROS) production, which contributes to genetic instability, promoting 

tumor progression and metastasis. Furthermore, mitochondrial DNA (mtDNA) mutations, 

particularly in genes like MT-CO1 and MT-ATP6, have been associated with more aggressive 

forms of breast cancer and poorer patient outcomes [93].  

The ribosomal genes identified in common genes, including RPL13, RPL37, RPL41, 

and RPLP1, play a significant role in breast cancer progression by enhancing the translational 

capacity of cancer cells[94]. Ribosomal proteins are not merely structural components of the 

ribosome but are actively involved in regulating cell proliferation, apoptosis, and stress 

responses—processes that are often hijacked during oncogenesis[95]. Overexpression of 

ribosomal genes like RPL13 and RPLP1 has been associated with increased protein synthesis, 

which supports the rapid growth and survival of tumor cells[96]. Additionally, studies have 

shown that alterations in these ribosomal proteins can influence oncogenic pathways, such as 

the PI3K/AKT/mTOR pathway, further promoting tumorigenesis [97].  

         4.1.3 Marker Genes 

In this study, MALAT1 and IGKC acted as significant marker genes which have 

important functions in breast cancer cells. In breast cancer, MALAT1 is overexpressed and is 

involved in several oncogenous functions such as leading to the change in the type of splicing 
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pattern, transcription and cell migration. Research has revealed that MALAT1 can bind to 

splicing factors including SRSF1 that directly promotes production of pro-tumorigenic splice 

variants that in sprout cancer cells promote mere survival and invasion [98]. Moreover, 

growing evidence has shown that MALAT1 mRNA can activate pathways such as mTOR, 

which is just as well in line with the ability of MALAT1 in enhancing the malignancy of breast 

cancer cells [99]. Since the upregulation of MALAT1 levels has been linked with poor 

prognosis, the authors suggest that it can be used as prognostic biomarker and that it can be 

targeted for treatment of breast cancer [100]. 

TILs are associated with the immunoglobulin produced by B cells and known as IGKC 

[101]. IGKC has been identified to be overexpressed in various cancers and its high expression 

has been used to predict better prognosis in breast cancer presumably because of efficient anti-

tumor immunity. Research has shown that there is a positive relationship between IGKC 

expression and survival rates in woman with breast cancer, especially those forms of the disease 

in which immune activity plays a key role in treatment and containment [102]. 

4.2 Single Cell Analysis 

For the single-cell analysis, the features, barcodes, and matrix files from both datasets were 

stored into an AnnData variable. This AnnData object contained the key data elements, 

including the number of observations (cells) and the number of variables (genes). In this 

section, the focus will be on explaining the results derived from the analysis using one 

representative sample from the dataset. 

4.2.1  Preprocessing 

The genes and barcodes were then assigned as variable names (var_names) and 

observation names (obs_names) in the AnnData object, respectively. In case of 1 sample that 

is named as N-253 the adata is given as 

Table 4.1: Number of variables and observation in anndata object 

Sample n_obs n_var 

N_253 4966 33538 
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4.2.2  Quality Control 

After the data was stored in the AnnData object, quality control was performed, during which 

the mitochondrial genes count was identified for N-253. 

     Table 4.2: Total counts and pct_counts_mt for N-253 

total_counts pct_counts_mt 

3587 8.001115 

1628 2.641278 

7536 2.295648 

10366 3.935944 

 

In the analysis, the `sc.pp.calculate_qc_metrics` function was used to compute quality 

control metrics for each cell. A log-transformation was applied to these metrics by setting the 

`log1p=True` parameter. The results were stored directly in the ̀ AnnData` object, enabling the 

identification and flagging of cells with abnormal gene expression patterns for further 

investigation. To visualize the distribution of these metrics, a histogram was plotted for sample 

N-253. 

 

Figure 4.2: Histogram of pct_counts_mt 
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 The histogram for sample N-253 shows a sharp peak at very low pct_counts_mt (around 

0-20%) values, indicating that most cells in this sample have a low mitochondrial gene 

expression, with the frequency rapidly decreasing as the pct_counts_mt increases. The 

histogram suggests that most cells are likely healthy, with minimal mitochondrial gene 

expression.  

4.2.3  Filtering 

    As part of the quality control workflow, filtering criteria were applied to both cells and 

genes to improve the overall quality of the dataset. The filtered genes were visualized using a 

violin plot. For sample N_253, the violin plot before filtering shows a total of 4,966 cells. 

 

Figure 4.3: Violin Plot before filtering 

 After filtering, the number of cells was reduced to 3,407. Violin plots were used to 

visualize these changes, providing a clear comparison of the cell distributions before and after 

filtering. This visualization aids in assessing the effectiveness of the filtering process and 

ensuring that the dataset's quality is improved by removing cells with abnormal gene 

expression patterns. 
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Figure 4.4: Violin Plot after filtering 

 Scatter plot visualization of sample N-253 was also performed, providing important 

insights into the quality and distribution of the cells within this sample. The plot revealed that 

most cells in N-253 clustered within a range of high total gene counts and a substantial number 

of detected genes, with low levels of mitochondrial gene expression (pct_counts_mt). This 

pattern suggests that the cells in this sample are predominantly healthy and exhibit high data 

quality. 

 

Figure 4.5: Scatter plot after filtering 

4.2.4  Normalization 
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After filtering for high-quality cells and genes, normalization was performed to account 

for variations in sequencing depth using the `sc.pp.normalize_total` function, followed by a 

logarithmic transformation with `sc.pp.log1p`. To preserve the original data, the raw counts 

were saved in a separate layer of the AnnData object. The results of these transformations were 

stored in the `adata` variable for further analysis. 

4.2.5  Highly Variable Genes 

Highly variable genes with a threshold of the top 2000 genes were identified and then 

visualized using the `sc.pp.highly_variable_genes()` function. These genes, which 

demonstrated greater variability among cells, were then visualized to display the relationship 

between mean expression and gene dispersion for each sample. 

 

Figure 4.6: Scatter plot of highly variable genes 

The two graphs illustrate the identification of highly variable genes (HVGs) by 

comparing mean gene expression with gene expression dispersion, both before and after 

normalization. The left graph shows the normalized data, where black dots represent HVGs 

with high dispersion relative to their mean expression, highlighting genes with significant 

variability across cells. In contrast, the right graph presents the same analysis on non-

normalized data, displaying a similar pattern but without the preprocessing adjustments. 

Together, these graphs validate the selection of HVGs, demonstrating consistent gene 

variability patterns regardless of normalization, thereby ensuring the robustness of the 

identified HVGs for downstream analyses. 
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4.2.6  Dimensionality Reduction 

After highly variable genes were identified, PCA was first applied to the normalized 

data using the ̀ sc.tl.pca` function from the Scanpy library. This function computes the principal 

components and orders them according to the amount of variance they explain. To determine 

how many PCs to retain for further analysis, the variance explained by each component was 

examined using the `sc.pl.pca_variance_ratio` function. 

 

Figure 4.7: Scree plot for PCA  

The scree plot visualizes the explained variance ratio for the principal components 

(PCs) from a Principal Component Analysis (PCA). The x-axis ranks the PCs, while the y-axis 

shows the variance ratio, likely log transformed. The plot reveals that the first few PCs, 

particularly PC1 and PC2, capture the most significant variance in the dataset, with the variance 

ratio steadily decreasing as the ranking increases. An "elbow" is observed around PC6 to PC10, 

suggesting that these initial components contain the most meaningful variation, while 

subsequent components contribute less. This helps determine the optimal number of PCs to 

retain for further analysis, balancing dimensionality reduction with information preservation. 

Moreover, the scatter plot was made to provide a detailed visualization of cell 

distribution across the first four principal components (PC1-PC4) obtained through Principal 

Component Analysis (PCA), with additional insights into the influence of mitochondrial gene 

expression (`pct_counts_mt`). 
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Figure 4.8: PCA plots of cells colored by sample and mitochondrial gene expression 

(pct_counts_mt). 

  The top two plots (PC1 vs. PC2 and PC3 vs. PC4) illustrate the main sources of 

variability in the dataset, highlighting how cells cluster based on shared features. The bottom 

plots integrate a color gradient representing `pct_counts_mt`, revealing how mitochondrial 

content correlates with these principal components. This combined analysis helps identify 

patterns or clusters in the data, offering a comprehensive understanding of both the structural 

variation within the dataset and the potential impact of mitochondrial gene expression on this 

variability. 

4.2.7  Nearest neighbour graph construction and visualization 

After performing dimensionality reduction, the nearest neighbor graph was constructed 

to better understand the relationships between cells in the dataset. The sc.pp.neighbors  

function from the Scanpy library was used to build this neighborhood graph.  To make the 

high-dimensional data more interpretable, Uniform Manifold Approximation and Projection 

(UMAP) was applied using the `sc.tl.umap` function for visualization. 
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Figure 4.9: UMAP plot of cells colored by sample 

The UMAP plot for sample N-253 reveals distinct clusters of cells, indicating the 

presence of multiple cell populations within the sample. These clusters represent groups of 

cells with similar gene expression profiles, suggesting potential biological heterogeneity or 

different cell types. The clear separation between clusters highlights the effectiveness of 

UMAP in capturing and visualizing the underlying structure of the data, providing valuable 

insights into the cellular diversity present in the dataset. 

4.2.8  Clustering 

For the final stages of this analysis clustering was done for all the samples. The UMAP 

plot for sample N-253 displayed, labeled "leiden," illustrates the clustering of cells based on 

the Leiden algorithm, a community detection method used to identify distinct groups within 

the dataset.  
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Figure 4.10:  UMAP plot of N-253 cells showing distinct clusters labelled by colour. 

Each colour represents a different cluster, with the numbers corresponding to specific 

clusters identified by the algorithm. The plot shows that the cells in N-253 are organized into 

several well-defined clusters, suggesting the presence of multiple distinct cell populations or 

states within the sample. 

 

Figure 4.11: UMAP Plot showing clustering of all samples. 

 The anndata was then concatenated for all the samples and clustering was done. The 

presence of multiple, well-separated clusters indicates the existence of distinct cell populations 

or subtypes within the sample, which have been effectively captured and distinguished by the 
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Leiden clustering method. This visualization is crucial in the context of your results, as it 

demonstrates the cellular heterogeneity within the dataset and provides a clear overview of the 

different cell types or states present, which can be further analysed for biological insights. 

4.2.9  Differential Gene Expression Analysis 

After identifying the differentially expressed genes (DEGs), the next step was to store 

these results for further analysis and interpretation. To facilitate this, the DEG results from all 

16 samples were stored into a single CSV file named differential_expression_results.csv. 

These differentially expressed genes were used in comparison with spatial analysis and for 

machine learning. 

4.2.10   Cross-Analysis of Common Genes between ST and Single-Cell Data 

The top 20 common genes identified from the spatial transcriptomics data were then 

extracted within the single-cell data, along with their expression values. This information was 

compiled into a file named `common_genes_expression_scRNAseq.csv`, which serves as a 

crucial dataset for subsequent machine learning applications. By ensuring consistency across 

both data modalities, this file enables us to investigate the roles these genes play in various 

contexts. This file was further analysed in the machine learning model.  

 4.3 Machine Learning 

In machine learning analysis, three models were employed for the classification and 

prediction of Triple-Negative Breast Cancer (TNBC). The results of these models are detailed 

below, providing insights into their performance and predictive accuracy in identifying TNBC. 

4.3.1  Normal vs Cancer Classification Model 

For the classification of normal versus cancer patients, the XGBoost classification 

model was applied. XGBoost is a highly effective machine learning algorithm used in cancer 

data analysis for its ability to handle complex, high-dimensional data, such as gene expression 

and mutation profiles[98]. It excels in making accurate predictions for cancer outcomes, like 

patient survival or treatment response, by capturing intricate patterns in the data. XGBoost's 

robustness against overfitting and efficiency in processing large datasets make it a valuable 

tool in developing personalized cancer treatments and improving diagnostic accuracy [99]. The 

model's performance was evaluated using various metrics, including accuracy, precision, 
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recall, F1-score, and AUC-ROC, to confirm its effectiveness in correctly classifying the 

samples. 

Table 4.3: Classification report of XGBoost 

Model: XGBoost 0 1 

Accuracy 0.85 0.85 

Precision 0.84 0.86 

Recall 0.86 0.84 

F1 Score 0.85 0.85 

 

The classification report for the XGBoost model indicates a balanced performance 

across both classes, with an overall accuracy of 85%. The precision and recall for both classes 

are closely matched, each at 0.84 or 0.86, resulting in an F1-score of 0.85 for both classes, 

suggesting the model is equally effective at minimizing false positives and false negatives. 
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   Figure 4.12: Confusion matrix of Extreme gradient Boosting 

The confusion matrix shows that the XGBoost model correctly identified 67 out of 78 

instances for class 0 and 70 out of 83 instances for class 1, with 11 false positives and 13 false 

negatives. The high number of true positives and true negatives indicates that the model 

effectively distinguishes between the two classes, though there is some room for improvement 

in minimizing the 11 false positives and 13 false negatives. Overall, the matrix reflects a strong 

classification performance with balanced accuracy across both classes. 

 

Figure 4.13: ROC curve of Extreme Gradient Boosting 

The ROC curve for the XGBoost model shows an AUC of 0.95, indicating excellent 

classification performance. The curve’s proximity to the top left corner reflects a high true 

positive rate and a low false positive rate, demonstrating the model’s strong ability to accurately 

distinguish between the two classes. 

4.3.2  Stage Prediction Model 

The same procedure was followed to prepare the stage prediction model, where a single 

metadata file was prepared combining molecular and clinical data; the data was divided into 

training and test dataset; relevant molecular and clinical features were then selected and an 

SVM classifier was trained. Support Vector Classification (SVC) is an algorithm of the 
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supervised machine learning type mainly used in classification problems. It is based on Support 

Vector Machines (SVMs) which aims at finding the perfect hyperplane that can adequately 

take in high number of classes for data points [100]. Because of this, SVC is particularly 

effective in problems with high dimensions, for example, gene expression data in cancer study. 

SVC has been extensively applied in recent studies for the prediction and classification 

of breast cancer, underlining its effectiveness in this domain. For instance, a study by Zheng et 

al. demonstrated that an SVM-based model, using an RBF kernel, outperformed other machine 

learning models in predicting breast cancer stages with high accuracy and robustness [100]. 

Similarly, Chen et al. employed an SVC model to classify breast cancer subtypes, finding that 

it provided superior predictive performance due to its ability to handle the high-dimensional 

gene expression data effectively [101].  

Hyperparameter tuning and cross validation was done to fine-tune the SVC model, and 

evaluated its performance using accuracy, precision, recall, F1-score, and AUC-ROC. 

Table 4.4: Classification report of SVC 

Model: SVC 0 1 2 3 

Accuracy 0.83 0.83 0.83 0.83 

Precision 0.86 0.77 0.83 0.92 

Recall 0.89 0.88 0.62 0.75 

F1 Score 0.88 0.82 0.71 0.83 

 

The SVC model's performance across four different classes, labeled 0 through 3, 

demonstrates consistent accuracy of 83% across all classes, indicating that the model correctly 

classified 83% of the instances overall. Precision values vary, with class 3 achieving the highest 

precision at 92%, suggesting that most of the positive predictions for this class were correct. 

However, class 1 has the lowest precision at 77%, indicating a higher rate of false positives for 

this class. Recall, which measures the model's ability to correctly identify actual positives, is 

highest for class 0 at 89%, showing the model's effectiveness in detecting true positives for this 

class. In contrast, recall is lowest for class 2 at 62%, indicating some difficulty in correctly 
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identifying all true positives in this class. The F1 Score, which balances precision and recall, 

is relatively high for most classes, with class 0 achieving the highest F1 Score of 88%, 

reflecting the model's strong overall performance in this category. Class 2, however, has the 

lowest F1 Score at 71%, suggesting that while the model is generally effective, it has room for 

improvement in balancing precision and recall for this class. 

 

Figure 4.14: Confusion Matrix for Support Vector Classifier 

The confusion matrix for the SVM model demonstrates strong performance in 

classifying instances of classes 0 and 1, with 25 and 23 correct classifications, respectively, 

though there is some confusion between these two classes, with a few instances of class 0 being 

misclassified as class 1 and vice versa. Class 2 has the fewest correct classifications (5) and 

shows some misclassification as class 1, indicating a challenge in distinguishing between these 

classes. Class 3 is generally well classified with 12 correct predictions, but a few instances 

were incorrectly classified as class 0, suggesting some feature overlap. Overall, the SVM model 

performs well, but there is room for improvement in differentiating between certain closely 

related classes. 

4.3.3  Prognosis Prediction Model 
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The prognosis prediction model was developed using the same comprehensive 

metadata file as the stage prediction model, with an additional column introduced to categorize 

patients based on their survival times into three prognosis categories: bad (0-5 years), poor (5-

10 years), and good (over 10 years).  For prognosis prediction Support Vector Regression 

was chosen. Like SVM, SVR operates by finding a hyperplane in a high-dimensional space 

that best fits the data while maintaining the margin of tolerance (epsilon) around the 

hyperplane. The objective of SVR was to minimize the error by ensuring that as many data 

points as possible lie within this margin, while also controlling model complexity to avoid 

overfitting through a regularization parameter C [100]. Recent studies have demonstrated the 

effectiveness of SVR in predicting breast cancer outcomes. For example, researchers have used 

SVR to predict survival rates based on gene expression data, demonstrating superior 

performance compared to traditional statistical methods[101]. Other studies have applied SVR 

to predict the likelihood of metastasis and response to therapy, highlighting its robustness in 

handling complex biological data [102]. 

Table 4.5: Evaluation metric of SVR 

Mean Squared Error: 0.014836081926522578 

Mean Absolute Error: 0.09239555821271597 

R^2 Score 0.9765976866888868 

 

The evaluation metrics for the Support Vector Machine (SVM) model indicate strong 

predictive performance. The Mean Squared Error (MSE) of 0.0148 reflects a very low average 

squared difference between the predicted and actual values, suggesting high accuracy. The 

Mean Absolute Error (MAE) of 0.0924 further supports this by indicating that the average 

magnitude of errors in the predictions is small, reinforcing the model's precision. Additionally, 

the R-squared (R²) score of 0.9766 demonstrates that approximately 97.66% of the variance in 

the data is explained by the model, underscoring its robustness and reliability in capturing the 

underlying patterns in the dataset. 
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Figure 4.15: Scatter plot of Support Vector Regressor   

The plot shows the actual versus predicted values for an SVM model, with most points 

closely aligning along the diagonal line, indicating high prediction accuracy. Points on the line 

represent perfect predictions, while deviations indicate errors. Overall, the model performs 

well, with only minor discrepancies between actual and predicted values. This visual aligns 

with the strong R² score previously mentioned. 

In this chapter, the results obtained from the analysis of spatial transcriptomics, single-cell 

RNA sequencing (scRNA-seq), and machine learning approaches were thoroughly evaluated 

and discussed. The findings were compared with existing literature to contextualize the 

advancements made in understanding breast cancer progression, particularly using spatially 

resolved gene expression and cellular heterogeneity. The visualization of tumor 

microenvironments, identification of top differentially expressed genes, and the roles of key 

marker genes were explored. Additionally, machine learning models, including XGBoost for 

cancer classification and Support Vector Machines for stage and prognosis prediction, were 

developed and assessed for their predictive accuracy. 
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CHAPTER 5: CONCLUSION AND FUTURE RECOMMENDATIONS 

Breast cancer is the most common but also one of the most lethal diseases affecting 

women worldwide. Many researchers have focused on understanding its molecular 

underpinnings and developing therapeutic strategies. Traditional approaches, including 

genomics, proteomics, and transcriptomics, have provided valuable insights into the disease's 

complexity. However, due to advancements in technology, spatial transcriptomics is emerging 

as a powerful new tool in the field, and very little work has been done on it compared to other 

techniques.  

This study provides a comprehensive integration of spatial transcriptomics and artificial 

intelligence to unravel the complexity of triple-negative breast cancer (TNBC). By combining 

single-cell RNA sequencing with spatial transcriptomics, we were able to capture the spatial 

heterogeneity of gene expression within TNBC tumors, which is crucial for identifying reliable 

prognostic markers and therapeutic targets. Notably, we identified two marker genes that show 

promise for use in personalized medicine and as therapeutic targets, potentially improving the 

precision and effectiveness of treatment strategies. The machine learning models we developed 

for cancer classification, disease staging, and prognosis prediction demonstrate the potential of 

spatially resolved data in improving patient outcomes. These models predict outcomes with a 

high degree of accuracy, which could be highly beneficial in real-life applications, offering 

clinicians better tools for decision-making in treatment planning. 

This study also has limitations that should be acknowledged. Firstly, the dataset we 

used is relatively small, which may introduce bias and affect the generalizability of our 

findings. Additionally, we focused exclusively on one type of breast cancer, namely triple-

negative breast cancer (TNBC), which limits the broader applicability of our results to other 

breast cancer subtypes. The machine learning models we developed, while promising, may 

lack robustness due to the limited data and could benefit from further validation. Cross-

validating our models' performance on larger and more diverse datasets would be essential to 

ensure their reliability and effectiveness. 

 

For future research, it is recommended to expand the study to include a larger and more 

diverse dataset encompassing multiple breast cancer subtypes, which would enhance the 
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robustness and generalizability of the machine learning models. Moreover, integrating 

additional omics data, such as proteomics and metabolomics, with spatial transcriptomics could 

provide a more comprehensive understanding of the tumor microenvironment and its impact 

on disease progression. Finally, collaboration with clinical experts to apply and test these 

models in real-world settings could bridge the gap between research and clinical application, 

ultimately leading to more effective and personalized treatment strategies for breast cancer 

patients.  
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