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Abstract

Low-light image enhancement (LLIE) is important for various practical uses, aiming to improve

their visual quality. Deep learning advances have been the driving force behind recent devel-

opment in this field. Modern techniques utilize sophisticated neural networks to boost image

brightness, contrast, and reduce noise, representing the cutting edge of image processing and

computer vision. A new approach An Improved Deep Learning Model (AIDLM) is introduced,

designed to tackle the challenges of LLIE. AIDLM consists of three main modules: a retinex de-

composition network, an enhancement attention network, and a denoising network. The retinex

decomposition network uses an explicit parametric regularized Retinex model tailored to in-

dividual pixels, while the enhancement attention network enhances the reflectance and illumi-

nance of the V-channel in the HSV color space through spatial and channel attention mech-

anisms added to the UNet-like architecture , thus preventing color distortion. The denoising

module further cleans the enhanced RGB image by eliminating noise from the H and S chan-

nels. Comprehensive experiments showed that AIDLM , greatly surpasses current baselines in

LLIE, providing higher image quality and robustness.

Keywords: computer vision, Low-light image enhancement (LLIE), spatial and channel atten-

tion, perceptual loss.
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CHAPTER 1

Introduction

1.1 Overview

In the realm of image processing, low light image enhancement (LLIE) has evolved as a critical

area of research due to its profound impact on various applications, including surveillance, med-

ical imaging, and autonomous driving. Low visibility, low contrast, noise, and colour deviation

[79, 89, 56] are just a few of the degradations that frequently occur in images taken in low-light

situations. These issues can significantly impact the effectiveness of advanced vision tasks such

as lane detection [62], image recognition[69], remote sensing [47], object detection [42] and

semantic segmentation [50].

LLIE is a crucial technique with significant effects for many high-stakes domains and appli-

cations. Enhancing these images improves visibility and detail, which is essential for security

and surveillance, enabling better identification and monitoring. In medical imaging, enhanced

low light images can lead to more accurate diagnoses and improved patient outcomes. For

photographers and videographers, it allows for high-quality captures without intrusive lighting,

preserving natural scenes. In the realm of autonomous vehicles [68], better low light imaging
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CHAPTER 1: INTRODUCTION

enhances safety and navigation. Additionally, fields such as astronomy and augmented reality

benefit from clearer, more detailed images. To counter these challenges developing advanced

techniques for LLIE is imperative, as it enhances the reliability and effectiveness of visual data

across numerous critical domains.

LLIE methods are generally fall ino two types: Traditional methods [4, 12, 7, 11, 8, 37] and

deep learning (DL) methods [44, 40, 75, 74, 67, 57]. Traditional methods to improve low-light

images primarily focused on improving image brightness and contrast through mathematical

transformations and heuristic techniques but its often produce unnatural images, noise amplifi-

cation and struggle with complex scenes. Color distortion and halo artifacts are common, mak-

ing images look unrealistic. Overall, these methods struggle to balance visibility enhancement

with maintaining a natural appearance. Nevertheless, new developments in deep learning (DL)

have brought forth more advanced, data-driven methods that take advantage of neural networks’

capabilities [52, 64] to learn intricate mappings from dimly lit to brightly illuminated pictures

and produce better enhancement outcomes. They often mitigate common artifacts such as color

distortion and noise, resulting in more natural-looking images. However deep learning (DL)

based methods often struggle with extremely dark areas, can suffer from color distortion, over

smoothing and loss of details. Overall, these methods can have issues with generalization, detail

preservation, and efficiency. Both approaches face challenges in balancing enhancement with

natural appearance and efficiency.

1.2 Problem Statement

• Many methods struggle with balancing the recovery of illumination, sharpness and texture

details, especially under severely degraded conditions

• Effectively suppressing noise and artifacts while enhancing image quality remains a sig-
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CHAPTER 1: INTRODUCTION

nificant hurdle

• Ensuring that enhancement techniques generalize well across diverse datasets is a persis-

tent challenge

1.3 Research Motivation

LLIE is crucial for improving visibility and detail in images captured under poor lighting condi-

tions. This improvement is essential for various high-stakes applications, including security and

surveillance, medical imaging, photography, autonomous vehicles, astronomy, and augmented

reality. Despite numerous advancements in the field, current methods face significant limitations

that impede their effectiveness and reliability. The need for a robust solution to these issues jus-

tifies the selection of this topic. Some of the core challenges analyzed through the literature

review are discussed below that laid the foundation of this thesis.

• Illumination and Texture Recovery: Many methods struggle with balancing the recovery

of illumination and texture details, especially under severely degraded conditions.

• Noise and Artifact Suppression: Effectively suppressing noise and artifacts while enhanc-

ing image quality remains a significant hurdle.

• Generalization and Adaptability: Ensuring that enhancement techniques generalize well

across diverse datasets and real-world conditions is a persistent challenge.

• Computational Efficiency: High computational demands and long inference times limit

the scalability and real-time applicability of advanced methods.

3



CHAPTER 1: INTRODUCTION

1.4 Research Contribution

This research proposes several contributions:

• Innovative network (AIDLM) for LLIE, incorporating three distinct modules: Retinex

decomposition network, enhancement attention network (EAInet and EARnet) and de-

noising network (Dnet).

• A multi-level attention mechanism (spatial and channel attention) within the enhancement

attention network (EAInet and EARnet) which can more effectively capture and empha-

size important features, improving overall image quality.

• Improved loss function by incorporation perceptual loss for denoising network (Dnet) for

better denoising.

• Numerous benchmark datasets are used in lengthy tests to demonstrate the efficiency of

the model. The findings demonstrate the superiority of the suggested model in LLIE by

outperforming cutting-edge techniques in both qualitative and quantitative measures.

1.5 Thesis Organization

This thesis is divided into seven chapters:

Chapter 1: This chapter includes the basic introduction, background,research motivation and

research contribution.

Chapter 2: This chapter provides an overview of relevant literature, encompassing articles

pertinent to the scope of this study.

Chapter 3: This chapter presents the proposed methodology.

4



CHAPTER 1: INTRODUCTION

Chapter 4: This chapter delivers the experimental environment of proposed approach.

Chapter 5: This chapter presents ablation study and Results.

Chapter 6: This chapter presents limitations, conclusion and future work.
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CHAPTER 2

Literature Review

Image enhancement is key for improving visual quality and extracting information. Research

in this field has developed along two main approaches: traditional image processing techniques

and advanced deep learning methods. Traditional techniques apply established algorithms to

refine images, while deep learning utilizes neural networks to achieve superior results. This

section reviews both approaches to highlight their contributions and advancements in the field.

2.1 Traditional LLIE Methods

Traditional methods for LLIE have relied on various techniques to adjust image properties and

improve visual quality. These methods can be broadly categorized into gray level transformation

[4, 12] , histogram equalization [7, 11] and retinex-based methods [8, 37].

2.1.1 Gray Level Transformation

Gray level transformation includes linear / non-linear transformations and piece-wise trans-

formation. Linear / Non-linear transformations adjust pixel values using linear or non-linear

functions to enhance brightness and contrast. Techniques such as logarithmic and gamma trans-
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formations [38, 66] are commonly used to expand dark pixel values and compress bright ones,

thereby improving overall image visibility. However, these methods can often lead to unnatural-

looking images and may fail to adequately enhance complex scenes. Where as piece-wise trans-

formation involves adjusting gray values based on predefined intervals [13], which is effective

for images with localized dark or bright areas. However, it can create abrupt transitions and halo

artifacts in the enhanced image.

2.1.2 Histogram Equalization

Global Histogram Equalisation (GHE) [29], Adaptive Histogram Equalisation (AHE) [14], and

Contrast Limited AHE (CLAHE) [7] are examples of Histogram Equalisation (HE) [5]. By bal-

ancing the histogram of pixel intensity values throughout the entire image, GHE improves con-

trast, especially in photos with concentrated grey values. However, GHE often amplifies noise

and can cause over-enhancement, leading to loss of image details. Whereas AHE and CLAHE

methods apply HE to localized regions of the image, improving local contrast and preventing

noise amplification, which is a common issue with GHE. Despite their improvements, AHE and

CLAHE can still introduce artifacts and may not work well on all types of low-light images.

2.1.3 Retinex-Based Methods

Single Scale Retinex (SSR)[10], Multi-Scale Retinex (MSR)[8], and Multi-Scale Retinex with

Colour Restoration (MSRCR) [9] are examples of retinex-based techniques[3, 41, 43, 66]. SSR

theory separates a picture into components related to illumination and reflectance. By enhanc-

ing the reflectance and reducing the effects of illumination, SSR improves image visibility under

low-light conditions. By merging enhancing outcomes at several scales and taking into account

both local and global information, MSR outperforms SSR. MSR preserves colour stability while

7
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boosting contrast and detail in images. Despite these improvements, MSR can still encounter

issues with color distortion and noise. MSRCR includes a color restoration function to address

the color distortion issues present in SSR and MSR. MSRCR further enhances the visual quality

of low-light images by preserving color fidelity. However, it can still suffer from halo effects

and over-saturation in certain areas of the image. The two main stages of retinex-based LLIE

techniques are enhancement and deconstruction. These techniques, which were first presented

by [3], break down a picture into its illumination and reflectance components. The illumination

component depicts the amount of light that strikes an object, whereas the reflectance compo-

nent records the object’s inherent characteristics. [17] introduced a Variational-based Frame-

work (VF) for retinex, assuming a smooth illumination field but lacking detailed information

about the reflectance. Subsequent approaches or variations [25, 22, 26, 41, 43, 66] expanded

on this, introducing the Total Variation Model (TVM) [6, 23] for retinex, which assumes spa-

tial smoothness in illumination and piecewise continuity in reflectance. This model ensures a

smooth illumination field while maintaining the continuity of the reflectance component.In the

enhancement phase, various techniques are applied to enhance the visual quality of decomposed

components, leveraging the regularities identified in the decomposition phase. These methods

strive to produce a more realistic and visually pleasing image by addressing the limitations of

previous approaches.

2.2 Deep Learning LLIE Methods

In the realm of picture improvement, deep learning has gained popularity, especially for low-

light photos. Improved visibility and quality of photos captured in low light has been demon-

strated using deep learning approaches [48, 53, 58, 75, 70, 77, 82, 78]. Unlike traditional

methods [4, 11, 8, 37] that often lead to issues such as noise amplification, detail loss, and

8
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color distortion, deep learning-based techniques leverage data-driven models to automatically

learn features from images under normal lighting. This enables the reduction of adverse ef-

fects caused by low light, resulting in significantly enhanced image quality. supervised learning

methods [48, 46, 49, 52, 65, 84, 91] and unsupervised learning methods are examples of deep

learning approaches for LLIE.

2.2.1 Supervised Learning Method

In supervised learning method we have end-to-end and decomposition-based learning methods.

By training a model directly on pairs of well-lit and low-light photos, end-to-end learning tech-

niques enable the model to learn the mapping from enhanced to low-light images in a single step.

This paper [56] proposed a hybrid network combining an encoder-decoder for global content

estimation and a spatially variant RNN for edge details, improving visibility and edge preser-

vation. In this paper [63] author introduced a multi-exposure fusion network that generates two

enhanced images using sub-networks and reduces noise through average fusion and refinement.

This paper [45] introduces a method utilizing deep Convolutional Neural Networks (CNNs) for

reconstructing High Dynamic Range (HDR) images from a single exposure image. This method

aims to address limitations in existing Inverse Tone-Mapping Operators (iTMOs) by enhancing

the reconstruction quality of saturated regions in HDR images. However, it faces difficulty in

reconstructing scenes with large saturated regions in all color channels, leading to the inability

to infer structures and details. In this paper [72] author introduced Progressive Enhancement

Network (PRIEN),that utilizes recursive units and a dual-attention model to efficiently extract

features from low-light images, leading to significant enhancement.

Decomposition-based learning methods [53, 58, 75] decompose the image enhancement task

into multiple sub-tasks, such as denoising and contrast adjustment, and address each sub-task

9
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separately using specialized models.Inspired by the comprehensive explanation of retinex theory

[1] numerous research efforts have been dedicated to image enhancement by integrating retinex

decomposition concepts with deep learning algorithms. This paper [76] introduced the KinD++

network, which improves LLIE by decomposing images into reflectance and illumination layers

and using a multi-scale illumination attention module to effectively restore the reflectance. The

deep learning method known as URetinex-Net was presented by [82] as a way to improve low-

light photos in practical settings. By framing the retinex decomposition problem as a model reg-

ularized with implicit priors and translating the optimization steps into a neural network, the au-

thors utilize learning-based techniques to adaptively estimate both reflectance and illumination.

The proposed methodology comprises three main modules: initialization, unfolding optimiza-

tion, and illumination adjustment.According to experimental results, URetinex-Net effectively

preserves features and reduces noise in low-light photos. However, learning-based methods

still face challenges, such as limited interpretability and loss of details in reflectance restora-

tion. This paper [86] proposed a illumination enhancement network, aiming to get better visual

quality and computational efficiency of images captured in dark scenes. This network operates

by effectively separating reflectance and illumination maps, resulting in significantly enhanced

visual quality and noise reduction in low-light images . Additionally, the utilization of weight

sharing and unsupervised training losses bolsters the model’s generalization capability, ensur-

ing robust performance across diverse datasets . However, the method’s enhancement capability

may become unbalanced when dealing with images that exhibit non-uniform illumination. This

can lead to challenges such as color distortion and the loss of image integrity, particularly man-

ifesting as a halo effect around brightly lit areas. This paper [91] proposed RFLLIE method

that addresses key challenges in LLIE through its innovative light-head, heavy-tail architecture,

which prioritizes feature reconstruction over extraction. This approach utilizes a decomposition-

guided restoration loss to enhance contrast and suppress noise, enabling RFLLIE to outperform
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existing methods both quantitatively and visually in image restoration tasks. The method’s

focus on feature reconstruction allows for superior performance in restoring fine details and

improving overall image quality. However, RFLLIE faces limitations in effectively restoring

background illumination and suppressing noise comprehensively. Additionally, its generaliza-

tion capacity to tasks beyond low-light image restoration remains limited, indicating a need for

further development to enhance its adaptability to a broader range of imaging challenges.A new

technique for improving low-light images (LLIE) using brightness-aware attention modelling

and residue quantisation was presented by [88]. This approach effectively enhances images

while preserving details and maintaining parameter efficiency. This method employs a multi-

stage framework, emphasizing hierarchical codebook construction, feature approximation, and

brightness-aware attention modeling to improve image quality and minimize artifacts in low-

light scenarios. Building on the strengths of VQ-based methods like VQ-VAE and VQ-GAN,

which excel in learning textures and details, the paper addresses the common issue of detail

loss and network instability caused by downsampling. The proposed LLIE method incorporates

a three-stage framework centered on hierarchical codebook construction, feature approxima-

tion, and detail preservation, enhanced by brightness-aware attention modeling. However, the

method primarily focuses on channel-wise self-attention and lacks spatial self-attention, which

may limit its ability to effectively capture and preserve spatial details across the image.

2.2.2 Unsupervised Learning Method

Unsupervised learning methods do not require paired datasets of low-light and well-lit images.

Instead, they use techniques such as adversarial training to learn the enhancement process from

unpaired datasets, making them more flexible and widely applicable. EnlightenGAN [70] is

a notable unsupervised learning method designed to tackle the LLIE problem, circumventing

the need for paired low/normal-light image data, which is often impractical to obtain. This
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innovative method leverages unpaired images for training, utilizing a global-local discriminator

to guide the enhancement process and a self-regularized perceptual loss fusion to regularize the

training based on the input data itself.

2.3 HSV Color Space

The HSV color space, representing hue, saturation, and value, is a pivotal color model in image

processing due to its alignment with human visual perception. Unlike the RGB color space,

HSV is designed to reflect how humans perceive colors, making it an intuitive and effective

model for various applications. The independence of these three components allows for pre-

cise adjustments of each attribute without influencing the others, offering significant flexibility

in image enhancement tasks. For instance, adjusting the value component can enhance bright-

ness without altering the hue or saturation, making HSV particularly suitable for tasks such

as retinex decomposition to improve low-light images. This flexibility and perceptual align-

ment make HSV a preferred choice for color adjustments in graphic design, video processing,

and advanced image enhancement techniques. This paper [28] introduced an improved retinex

algorithm for image enhancement, which converts images from RGB to HSV to leverage the

independent characteristics of hue, saturation, and value. Through value component use of the

retinex algorithm and using correlation coefficients to adjust saturation adaptively, they achieved

enhanced brightness and color restoration without altering the original hue. Their experimen-

tal results showed substantial improvement in maintaining color fidelity and enhancing detail,

especially useful for subsequent stripe information extraction and automatic coding. Similarly,

[61] addressed issues of color distortion in LLIE by also utilizing the HSV color space. Their

method enhances the brightness component, adjusts saturation based on brightness changes, and

sharpens edges using the Laplace algorithm. This approach effectively enhances image details,

12
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preserves the original color consistency, and improves visual quality.

Retinex decomposition in the RGB color space [58, 76, 75] often leads to significant color devia-

tions because it processes all three color channels simultaneously, which can disrupt the natural

balance of colors. This method can enhance brightness but may distort hues and saturations,

resulting in unnatural-looking images. The interdependence of RGB channels makes it chal-

lenging to preserve true color fidelity during enhancement. Applying retinex decomposition on

the V channel of the HSV color space [43, 66, 71] improves the illumination while preserving

original hue and saturation, thereby reducing color distortions. This method benefits from the in-

dependent nature of the HSV components, ensuring more natural enhancements. Consequently,

it produces images that maintain color fidelity and visual appeal. However, low-light images

often have noisy hue and saturation, unlike normal-light images. This noise can carry over into

the enhanced RGB images, resulting in visual artifacts. As a result, the enhancement process

can introduce unwanted noise, affecting the overall image quality. To address this issue, pro-

posed network performs retinex decomposition and enhancement on the V channel within the

HSV space. After enhancing brightness, we apply noise reduction techniques to further denoise

the image. This approach ensures clearer, more accurate image enhancements with minimized

noise.

2.4 Attention Mechanism

Enhancing neural networks’ performance, especially in LLIE tasks, requires attention methods.

The network can focus on important elements by using spatial and channel attention processes,

which improves the quality of the improved images. By directing focus to the most relevant

aspects, these mechanisms enhance the overall effectiveness of the image improvement process.

Spatial attention emphasizes significant spatial locations in the image, allowing the model to
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concentrate on essential areas, while channel attention highlights important feature channels,

enhancing the critical aspects of the image. Combining these mechanisms, either sequentially

or in a combined block, enables the network to adaptively focus on both spatial and channel

information simultaneously. This integration in LLIE models leads to improved feature rep-

resentation, adaptive enhancement, and enhanced visual quality. By dynamically adjusting its

focus based on the input image, the network can achieve superior performance, resulting in

clearer and more visually appealing enhanced images with better sharpness, contrast, brightness

and detail preservation.

The Convolutional Block Attention Module (CBAM) [54] introduces a novel approach to boost-

ing the representational power of CNNs. CBAM enhances network performance by sequentially

generating attention maps in both channel and spatial dimensions. These maps are then applied

to the input feature map through multiplication, facilitating a refined and adaptive feature extrac-

tion process. Due to its lightweight design, CBAM integrates seamlessly into any CNN architec-

ture, offering negligible computational overhead while being end-to-end trainable alongside the

base networks. The spatial attention component of CBAM focuses on identifying informative

regions within the feature map by leveraging inter-spatial relationships, while the channel atten-

tion component utilizes both max-pooled and average-pooled features to provide a finer level

of attention than previous methods like the Squeeze-and-Excitation (SE) network [51]. This

dual-attention mechanism allows CBAM to learn what features to emphasize or suppress, sig-

nificantly refining intermediate feature representations. Visualizations from these experiments

reveal that CBAM effectively directs the network’s focus towards target objects, underscoring

its potential as a critical component in future network architectures. However, a limitation of

this model is that the sequential attention mechanisms might introduce additional latency during

inference.
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The Cascaded Network with Multi-Level Sub-Networks (CNMS) [93] presents an innovative

method that integrates both localized modules and global networks. This approach enables

more comprehensive semantic feature extraction and improves spatial accuracy by leveraging

a hierarchical network structure. A key innovation in CNMS is the triple attention module

(TAM), which refines features by focusing on both channel and spatial dimensions, thereby

preserving detailed information. This module addresses the common issue of spatial information

loss in traditional attention mechanisms. Experiments on multiple underwater datasets show that

CNMS effectively reduces color deviation, increases contrast, and prevents over-enhancement,

outperforming state-of-the-art methods.

Generally the problems are over-enhancement, noise amplification, color distortion, high com-

putational complexity, and loss of natural image characteristics, leading to unnatural and artifact-

prone results. By introducing an improved deep learning-based low light image enhancement

model, this work attempts to overcome these drawbacks. This novel approach combines deep

learning techniques with well-established image enhancement theories, integrating deep neural

networks and retinex theory. By leveraging these cutting-edge techniques, it achieves high-

quality images with enhanced visibility, reduced artifacts, and improved color accuracy.
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Methodology

3.1 Proposed Network

Proposed network, named An Improved Deep Learning Model (AIDLM) integrates three core

components: retinex decomposition network, enhancement attention network and denoising

network as depicted in Figure. 1. Unlike traditional methods [73, 78, 82] that apply an implicit

regularized retinex framework, the retinex decomposition network adopts a distinct approach.

It uses an explicit parametric regularized retinex model, incorporating parameters specific to

individual pixels. Proposed enhancement attention module aims to enhance the V-channel’s

reflectance and illuminance through two distinct networks (EAR net and EAI net) that incor-

porate both channel and spatial attention mechanisms. To mitigate color distortion, the initial

two modules operate within the HSV color space thus effectively separating color information

from illuminance. This approach yields a preliminary enhanced RGB image ÊEE by merging the

adjusted reflectance and illuminance of the V channel with the original (unchanged) H and S

channels. Given that the H and S channels may introduce noise, the denoising module (D net) is

designed with addition of perceptual loss to eliminate this noise, ultimately producing a refined

final image EEE .
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Figure 1: An Improved Deep Learning Model (AIDLM) for LLIE.
17
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AIDLM model takes as input a low-light image PPPll along with its associated normal light image

PPPnl . It first converts the RGB image to its HSV color space, which is denoted by (HHH ll,SSSll,VVV ll)

for the low-light image and (HHHnl,SSSnl,VVV nl) for the normal light image. To prevent color dis-

tortion, we restrict the retinex decomposition process solely to the V channel. The reflectance

and illumination components of the low-light image are represented as (RRRll, IIIll), while those of

the normal light image are denoted as (RRRnl, IIInl). The Retinex Decomposition network is ex-

plained in Section 3.2 and shown in Figure. 2. RRRll and IIIll are the inputs to the enhance attention

reflectance network (EAR Net), whereas IIIll and IIIr are the inputs to the enhance attention illumi-

nation network (EAI Net) to produce the enhanced reflectance R̂RR and enhanced illumination ÎII,

respectively. The proposed EAR Net and EAI Net have the same structure, explained in Section

3.3 and shown in Figure. 3. EAR and EAI Net both incorporate spatial and channel attention

mechanisms, which are explained in Section 3.3.1 and shown in Figure. 4. EAI Net enhances

brightness by adjusting the illuminance, guided by the following formula:

IIIr = IIIll ⊘ (IIInl + ε) (1)

where ⊘ represents element-wise division and ε is a small positive number to prevent division

by zero. In contrast, EAR Net uses IIIll as a reference, since the luminance influences the noise

in the reflectance. By using the enhanced reflectance R̂RR and enhanced illumination ÎII, we can

obtain the enhanced V-channel V̂VV by doing element-wise multiplication ⊙ of R̂RR and ÎII,i.e.,

V̂VV = ÎII ⊙ R̂RR. (2)

As now we have the enhanced V-channel i-e V̂VV , we can get the HSV image by using (HHH ll,SSSll,V̂VV ).

Then this HSV image is converted into the enhanced RGB image (ÊEE). As few images are taken

under severe low light environment, the (HHH ll,SSSll, ÊEE) may contain perceivable noise. Therefore,
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Figure 2: The Retinex Decom Network

we use a noise map (NNN) and a denoising network (D net) to eliminate noise from the enhanced

RGB image (ÊEE) and produce the refined enhanced RGB image (EEE) using

EEE = D Net(ÊEE,NNN). (3)

3.2 Retinex Decomposition Network

In models that employ analytical Retinex decomposition [43, 66], there is a necessity for manual

parameter selection, where as regularizations are hindered by their limited data adaptability.

While learning-based methods [75, 70] are more adaptive, they frequently struggle with a lack

of interpretability. In this work, RDnet model [92] is used as retinex decom Net, its structure is

illustrated in Figure. 2. The model employs explicit parametric regularization with parameters

that vary for each pixel to execute Retinex decomposition on the V-channel, breaking it down

into reflectance and illumination components. For images captured in low light and normal light

conditions, the reflectance and illumination are denoted as (RRRll, IIIll) and (RRRnl, IIInl), respectively.
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The model parameters, denoted as ri, si, ti, will be predicted using corresponding modules where

i denotes iterations:

ri = fr(VVV ) (1)

si = fs(VVV ) (2)

ti = ft(VVV ) (3)

which employ a simple architecture consisting of convolution, batch normalization and sigmoid

(Conv+BN+Sigmoid) as shown in Figure. 2. In contrast, for the prediction of penalty parameters

µi, it uses the module

µi = fµ(VVV ) (4)

that utilizes two convolution and ReLU layers followed by a Conv+Softplus layer as shown

in Figure. 2. In explicit parametric Retinex decomposition model, VVV ll ∈ RN represents the V

channel of input low light image PPPll , and IIIll ∈RN denotes the illuminance of VVV ll . For simplicity,

the reflectance RRRll ∈ RN of VVV ll is computed as:

RRRll =VVV ll ⊘ IIIll (5)

The loss function for Retinex Decom Net LRET is the combination of distinct loss components:

the reconstruction loss Lrec, the reflectance consistency loss Lre f , and the illumination mutual

consistency loss Lill:

LRET = Lrec +λre f Lre f +λillLill (6)

where the reconstruction loss Lrec is given by:

Lrec = ∥VVV ll − IIIll ⊙RRRll∥1 +∥VVV nl − IIInl ⊙RRRnl∥1 (7)

The reflectance consistency loss Lre f is given by:

Lre f = ∥RRRll −RRRnl∥1 (8)
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The illumination mutual consistency loss Lill is given by :

Lill = |∇IIIll|+ |∇IIInl| (9)

where ∥·∥1 depict the l1 norm of vectors, λre f and λill are tuning parameters, and ∇ stands for

the gradient operator. According to Retinex theory [3], both VVV ll and VVV nl should share the same

reflectance. Therefore, Lre f aims to minimize the difference between RRRll and RRRnl . Additionally,

Lill , as introduced by KinD [58], ensures the structural consistency between low and normal

light illumination.

3.3 Enhancement Sub Network

The proposed enhancement networks, EAR net and EAI net, consists of UNet-like architecture

[40], skip connections and attention mechanism [90] as illustrated in Figure. 3. UNet-like archi-

tecture [40] is well-known for its success in image-to-image translation tasks, and is optimized

for efficient and rapid inference. Unlike the UNet [40] which uses concatenation, this approach

employs the addition operator for the skip connection. Skip connections boost the efficacy of

the UNet for LLIE by retaining crucial details, optimizing training processes, and facilitating

the integration of features across different scales. Inspired by spatio-channel attention (SCA)

mechanism used in [90], it is used as Attention mechanism in enhancement network. Attention

mechanism consist of spatial and channel attentions added to UNet-like architecture to enhance

the network’s power to capture fine details and contextual information.

IIIll and RRRll are the random patches of input image with the dimensions of 48x48x1 each, which

are first concatenated to produce a patch of dimension 48x48 x2 which is given as input to EAR

Net. The EAR net consist of encoder, latent space and decoder block, in which there are 2

blocks for encoder, 1 block of latent space or bottle neck and 2 blocks for decoder as illustrated

in Figure. 3. During encoding phase it gradually reduces spatial dimensions as 48, 24 and 12
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Figure 3: The architecture of proposed EAR/EAI Net.
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while the channels remains fixed as 64 in each layer and a fixed kernel size of 3 and padding of 1

is used. In Block1 the patch of 48x48x2 is passed through Layer1 where two convolution layers

(Conv) each followed by a ReLU activation is applied, which produces a patch of 48x48x64.

The Layer1’s output B is processed by the Attention1 , which employs spatial and channel

attention mechanisms(SCA) [90], to emphasize relevant features for image enhancement and

produces a patch of dimension 48x48x64. These spatial and channel attention modules help the

network concentrate on important spatial areas and specific channel information. The output

of Attention1 is used as a skip connection to Block5 in decoder as well as it is processed by

the Down1 layer in Block2 which uses Conv + ReLU layers. In Block2, Down1 layer reduces

its dimensions to 24x24x64. The Down1 layer’s output is processed by the Attention2, which

gives out a patch size of 24x24x64 which further will be passed through Layer2 which uses

Conv + ReLU. Layer2 output of dimension 24x24x64 will be again used as a skip connection

to Block4 in decoder as well as it is given as input to Down2 layer in Block3. In Block3,

Down2 layer uses Conv + ReLU to reduce its dimension to 12x12x64. At this bottle neck or

latent space the output of Down2 is given as input to Attention3. The output of Attention3

with a dimension of 12x12x64 will be given as input to Layer3 which apply Conv + ReLU to

produce the output of 12x12x64. The decoder then increases the spatial resolution of the feature

maps as 12, 24 and 48 while the channels remains fixed as 64 in each layer.In the decoder,

information from the encoder is combined through skip connections at each scale. Each Up

block in the decoder features a transposed convolution layer with a kernel size of 4, a stride of

2, and padding of 1 to enhance the resolution. This is followed by a ReLU activation function

to generate the patch. In Block5, at the Layer5, Conv is applied on the patch 48x48x64 and

produce a enhanced reflectance R̂RR with a dimension of 48x48x1. Similarly IIIll and IIIr are the

inputs for the EAI Net and it produces the enhanced illumination ÎII with the same architecture

as of EAR net.
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3.3.1 Attention Mechanism

CNNs have dramatically improved the effectiveness of vision tasks [19, 33] by autonomously

and hierarchically learning spatial feature hierarchies from data, thus minimizing the require-

ment for manual feature extraction and engineering. To further boost CNN performance, recent

research has concentrated on key factors: depth, width, and attention. Previous studies [31,

32, 34, 35] have thoroughly examined the importance of attention, highlighting its vital role in

human perception [15, 16]. A key characteristic of the human visual system is its capacity to

analyze scenes through a series of selective glimpses, concentrating on essential parts to better

comprehend visual structures [20]. Attention not only guides this focus but also enhances the

representation of key features.

Expanding upon recent developments in attention-based low-level vision methods [51, 54, 81,

59], we applied a dual attention unit called spatial and channel attention mechanisms (SCA)

[90]. This module extracts features from convolutional feature maps across various information

streams. As illustrated in Figure. 4, the SCA Module efficiently filters out less relevant features,

ensuring that only the most important features are transmitted to subsequent layers. Through

channel attention [51] and spatial attention [54] mechanisms, these features are recalibrated.

As illustrated in Figure. 3, the output from the Input Layer in Block1 is regarded as a feature

map B that contains 64 channels (48x48x64). This feature map B will then pass through At-

tention1 layer. In Attention1 layer as shown in Figure. 4, this feature map B will first passes

through a Covn+ ReLU+ Conv layer that extracts and enhances relevant features, generating an

enhanced feature map, B̂BB. A spatial attention map, denoted as f̂ff SA, is generated by analyzing

the spatial relationships between features. Spatial attention focuses on "where" the informative

regions are located in an image. To construct the spatial attention map f̂ff SA, the spatial attention

module first applies max pooling and global average pooling operations independently across
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Figure 4: The architecture of the Attention1 Module.

25



CHAPTER 3: METHODOLOGY

the channel dimensions of the feature map B̂BB.

The max pooling is given as :

Fmax
SA (i, j) = max

c
B̂(i, j,c) (1)

This operation which highlights the most prominent features in the spatial domain of an image.

The global average pooling is given as :

Favg
SA (i, j) =

1
C

C

∑
c=1

B̂(i, j,c) (2)

This operation providing a smoothed representation of spatial information of an image.

The feature descriptors Fmax
SA and Favg

SA correspond to the results of the max pooling and average

pooling operations, respectively. These descriptors are concatenated element-wise to form a

combined feature map, denoted as FSA. This resulting feature map has dimensions RH×W×2,

which is R48×48×2 in Attention1. This feature map FSA emphasizes important regions where

significant features or anomalies in the reflectance and illuminance may be present.

FSA = [ f avg
SA , f max

SA ] (3)

The feature descriptor FFFSA is then processed through a convolution operation, followed by a

sigmoid activation function. This procedure produces the spatial attention map f̂ff SA, which has

dimensions RH×W×1 specifically R48×48×1 in Attention1.

f̂SA = σ(Conv(FSA)) (4)

The final output, B̂S, from the spatial attention branch is achieved by performing element-wise

multiplication of the original feature map B̂BB with the spatial attention map f̂ff SA. This step ensures

that the refined spatial features are preserved and enhanced, making important regions of the
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reflectance and illuminance more prominent.

B̂S = f̂ff SA ⊙ B̂BB (5)

By applying this spatial attention mechanism, the neural network can focus on the most rele-

vant spatial regions, thereby enhancing the feature representation for subsequent layers. This

approach complements channel attention, which focuses on ’what’ features are important, by

addressing ’where’ these features are located within the spatial dimensions of the input.

Following this, a channel attention map f̂ff CA is created by analyzing interactions between differ-

ent channels in the feature maps. Each channel of a feature map B̂BB is treated as a distinct feature

detector. Primary objective of channel attention is to find and emphasize the most significant

information within the input image.

Channel attention [51] efficiently applied adaptive average pooling on the input feature map B̂BB,

resulting in a tensor FFFCA with dimensions R1×1×C that gathers global contextual details.

The global average pooling can be represented as:

FCA =
1

h×w

h

∑
i=1

w

∑
j=1

F̂(i, j,c) (6)

Next, FCA is passing through several convolutional layers followed by a sigmoid activation

function. This process generates channel attention map, denoted as f̂ff CA. This channel attention

map f̂ff CA emphasizes channels that carry more critical features for reflectance and illuminance.

This operation can be represented as:

f̂ff CA = σ(Conv(FCA)) (7)

Finally, the output B̂C from the channel attention branch is derived by applying element-wise

multiplication between the feature map B̂BB and channel attention map f̂ff CA, effectively scaling
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the feature map.

B̂C = f̂ff CA ⊙ B̂BB (8)

This step fine-tunes the feature map by focusing on the most informative channels, improving

the representation of essential features in the reflectance and illuminance data.

The output of the spatial attention branch B̂S and the channel attention branch B̂C are com-

bined through concatenation and then processed by a convolutional layer (Conv) to decrease the

number of channels, resulting in B̂O.

B̂O = Conv([B̂S, B̂C]) (9)

This step integrates both spatial and channel attention enhancements, creating a more compre-

hensive refined feature map that incorporates improvements from both mechanisms.

This B̂O is then added to a feature map B to get the final output of the attention module, which

is denoted as B̂F .

B̂F = B̂O +B (10)

This combination ensures that the final feature representation benefits from both spatial and

channel attention, leading to a more detailed and accurate enhancement of the reflectance and

illuminance.

The loss LEAR for EAR net is

LEAR = ∥R̂RR−RRRnl∥1 +∥VVV nl − IIInl ⊙ R̂RR∥1 +∥|∇R̂RR|− |∇RRRnl∥2
2. (11)

The first two terms represent fidelity measures between the enhanced reflectance R̂RR and the

reflectance from normal-light images RRRnl . The third term quantifies the difference between the

absolute gradients of R̂RR and RRRnl .

The loss LEAI for EAI net is

LEAI = ∥ÎII − IIInl∥1 +∥VVV nl − ÎII ⊙RRRnl∥1 +∥|∇ÎII|− |∇IIInl∥2
2. (12)
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Figure 5: The architecture of the D Net.

3.4 Denoising Network

The DRU Net [83], known for its advanced capabilities in image denoising, is improved by

adding perceptual loss and then utilized as D Net in AIDLM. Its structure is illustrated in

Figure. 5. The D Net architecture is a highly advanced denoising network that combines the

strengths of U-Net and ResNet architectures. This design is capable of managing a broad spec-

trum of noise levels, ensuring both robustness and adaptability.

E = D Net(Ê,N) (1)

In the above equation ÊEE is the coarsely enhanced RGB image and N is a noise map and E is the

denoised RGB image.

Although the DRUNet model achieves high PSNR and SSIM values, it often produces overly

smooth or blurry images that lack fine details and may fail to preserve the semantic content and

structure, particularly in complex regions. To address these issues, perceptual loss is incorpo-

rated. This results in more visually appealing images and enhances the overall performance of

denoising networks.

The loss LD for D Net is defined as
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LD = λMSE
(
∥E −Pnl∥2

2
)
+λSSIM (1−SSIM(E,Pnl))

+λPer (PerceptualLoss(E,Pnl)) .

(2)

Here, λMSE , λSSIM, and λPer are tuning parameters which are selected as 20, 1 and 0.5 respec-

tively.
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Experimental Environment of

Proposed Approach

This chapter offers a thorough rundown of the metrics used to assess the performance, the

datasets that were chosen, and the experimental setup of the suggested method. Proposed

method is constructed with various leading-edge learning-based approaches to showcase its

efficacy. The eight supervised learning models are used for evaluation all are trained on the

LOL dataset [53]. It includes RetinexNet [53], KinD [58], KinD++ [76], URetinex-Net [82],

LLFlow [80], Retinexformer [85], RQ-LLIE [87] and DPRED [92]. For the five unsupervised

learning methods, we evaluated EnlightenGAN [70], RUAS [73], SwinIR [71], Zero-DCE [60],

and Zero-DCE++ [77] using their respective provided models.

4.1 Dataset Selection

The datasets utilized in study are pivotal for assessing the effectiveness of proposed LLIE

method. We categorize them into two main types: reference datasets (with ground-truth) and

non-reference datasets (without ground-truth). These categories offer a thorough framework for
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evaluating the effectiveness of our method under various scenarios and lighting conditions.

Reference Datasets: Reference datasets are used as standards to assess how well algorithms and

models function. They offer a consistent basis for comparing results and maintaining uniformity

in research and development.The two ref datasets are as following :

• LOL Dataset: The LOL (Low-Light) dataset was created expressly for the purpose of

improving low-light photos [53]. It is composed of five hundred image pairs, each con-

taining an image taken in low light and a reference image taken in normal illumination.

Fifteen pairs are set up for testing, and the remaining four hundred and eighty-five are

designated for training. This dataset is particularly valuable for supervised learning mod-

els as it provides ground-truth images that allow for direct comparison and evaluation of

enhancement algorithms. The LOL dataset is structured to offer a diverse range of sce-

narios and lighting situations, making it an excellent resource for developing and testing

LLIE algorithms.

• MIT-Adobe Five K Dataset: The MIT-Adobe Five K dataset [21] is another significant

dataset used for evaluating image enhancement techniques. It contains 5000 images, each

paired with a reference image that has been retouched by professional photographers to

enhance its visual appeal. We took 500 low-light/reference image pairs at random from

this dataset for our analysis. This dataset is valuable for its high-quality reference images

and the variety of lighting conditions, providing a robust benchmark for enhancement

methods.

Non-Reference Datasets These datasets are important in evaluating the generalisation abilities

of LLIE methods even though they don’t contain ground-truth reference photos. They include a

wide range of real world low-light images, each with unique qualities:
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• LIME Dataset: The LIME (LLIE) dataset [41] has 10 images taken in poor light condi-

tions. Despite its small size, this dataset is frequently used for benchmarking due to its

challenging lighting conditions and diverse scenes.

• NPE Dataset: The NPE (Naturalness Preserved Enhancement) dataset [30] consists of

84 low-light images. This dataset is a valuable tool for assessing how well enhancement

algorithms maintain the aesthetics of photos because it concentrates on maintaining the

natural appearance of images while improving visibility.

• MEF Dataset: The MEF (Multi-Exposure Fusion) dataset [39] includes 17 images. This

dataset is used to evaluate methods that combine multiple exposure images to create a

single, well-exposed image.

• DICM Dataset: The DICM (Dark Image Contrast Enhancement) dataset [27] contains

64 images of low light. It is designed to evaluate contrast enhancement techniques and

includes a different types of scenes taken in low-light situations.

4.2 Evaluation Matrices

For quantitative comparison, we employ several metrics: peak signal-to-noise ratio (PSNR)

[24], structural similarity index measure (SSIM) [18], Learned Perceptual Image Patch Simi-

larity (LPIPS) [55], DeltaE [2], Lightness-Order-Error (LOE) [30] and Lightness-Order-Error-

Reference (LOEre f ) [58].

• PSNR and SSIM: Metrics like PSNR [24] and SSIM [18] are frequently used to evaluate

how closely enhanced images resemble ground-truth references. PSNR quantifies the

peak error between images, where higher values signify superior quality. SSIM, on the

other hand, compares structural information as seen by the human eye to evaluate image
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quality. Better structural similarity and overall image quality are reflected by higher SSIM

values.

• LPIPS: The LPIPS [55] metric measures the perceptual similarity of images. The dif-

ference between the images is assessed using deep neural network features; lower values

indicate stronger perceptual similarity and higher quality.

• DeltaE: The colour difference between the improved image and the ground truth is mea-

sured using a metric called DeltaE [2]. It quantifies the perceptual difference in color,

with lower values indicating a smaller color difference and better color accuracy.

• LOE and LOEre f : The LOE [30] metric was created specifically to evaluate methods

for improving low-light images. It uses the input low-light image as a reference. When

ground-truth photographs are available, a modified version known as LOEre f sets the

reference to the normal-light image [58]. Lower values of LOE [30] and LOEre f [58]

signify a more accurate preservation of lightness order, indicating superior enhancement

quality.

In other words, lower values for LPIPS, DeltaE, LOE, and LOEre f indicate better performance in

terms of perceptual similarity, colour accuracy, and lightness order preservation. Higher values

for PSNR and SSIM, on the other hand, indicate better picture quality.

4.3 Experimantal Setup

The retinex decomposition network, the enhancement attention network, and the denoising net-

work are the three separate networks that make up the suggested method. Training the entire

system from scratch provides substantial hurdles because to the overall sophisticated architec-

ture. As a result, we use a technique in which each sub-network is trained separately while the
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other networks remain unchanged. We utilise a batch size of 10 for the retinex decomposition

network, a patch size of 48×48, and a 10−4 learning rate that is modified every 10 epochs. In

order to minimise the loss function LRET as given in Equation 6, the network is trained for 100

epochs with the parameters λref and λill empirically fixed at 0.1. The enhancement attention

network training consists of 100 epochs with fixed learning rate of 10−4. The enhancement

networks, EARnet and EAInet, are trained by optimising the losses LEAR in Equation 11 and

LEAI in Equation 12, respectively. The batch size and patch size for the Enhancement Attention

Network stay at 10 and 48×48, respectively. The patch size for the denoising network (Dnet) is

48×48, the batch size is 10, and the learning rate is 10−5, which is fixed during training. Every

five epochs, the 140 epochs of training for this network are evaluated. Using the default parame-

ters, we employ the Adam optimiser [36]. We initialise the Denoising Network with pre-trained

parameters from DRU Net [83], which can handle different kinds of noise, given the unknown

noise distribution. Then, in order to better adapt to the dataset, we adjust the Dnet parameters

using the loss LD in Equation 2. The coarsely enhanced RGB image ÊEE and a manually adjusted

noise level map NNN make up Dnet’s input.The noise level is set to 15 during training. For the

non-reference datasets [41, 30, 39, 27], 15 for the LOL dataset [53], and 17 for the MIT-Adobe

Five K dataset [21], the noise level is empirically adjusted during the testing stage. Our method

is built in PyTorch and operates on an NVIDIA GeForce GTX 1660 Super GPU.
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Ablation Study and Results

5.1 Ablation Study

In this chapter we give ablation studies to assess the contributions of various model components.

First, we show why the enhancement module should include both spatial and channel attention.

We then evaluate the contributions of the EARnet and EAInet modules empirically. Finally,

we look into what the Dnet denoising module does. The LOL dataset [53] was used for these

studies, and Table 1 summarises the results. Table 1 indicates that the full AIDLM model

delivers the best performance, achieving a 26.551dB PSNR, 0.878 SSIM, 0.204 LPIPS, 7.546

DeltaE and 59.464 LOEre f . When spatial and channel attention mechanisms are excluded, there

is a decline in performance, with the 25.097dB PSNR, 0.861 SSIM, 0.248 LPIPS, 8.335 DeltaE

and 80.66 LOEre f , highlighting the importance of these components. Removing EARnet gives a

24.915dB PSNR, 0.873 SSIM, 0.213 LPIPS, 8.296 DeltaE and 220.81 LOEre f , while excluding

EAInet significantly reduces PSNR to 18.081dB, SSIM to 0.804, LPIPS to 0.288, DeltaE to

10.171 and LOEre f to 645.39. Finally, omitting Dnet decreases the PSNR to 23.681, causes a

substantial reduction in SSIM to 0.540, LPIPS to 0.409, DeltaE to 9.390 and LOEre f to 203.03,

highlighting the crucial role of each module in the enhancement network.
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Table 1: Metrics averaged across 15 test images from the LOL dataset. Bold text indicates the top results.

Method PSNR↑ SSIM↑ LPIPS↓ DeltaE↓ LOEre f ↓

AIDLM 26.551 0.878 0.204 7.546 59.464

AIDLM (without spatial 25.097 0.861 0.248 8.335 80.66

and channel attention)

AIDLM (without EARnet) 24.915 0.873 0.213 8.296 220.81

AIDLM (without EAInet) 18.081 0.804 0.288 10.171 645.39

AIDLM (without Dnet) 23.681 0.540 0.409 9.390 203.03

Advantages of the spatial and channel attention in the enhancement module.

Table 1 shows the average metrics of AIDLM with and without spatial and channel attention

in the improvement module in the first and second rows, respectively.The AIDLM achieves a

PSNR of 26.551 dB and an SSIM of 0.878 when spatial and channel attention are integrated

into the enhancement module, confirming its efficacy in enhancing image quality. However,

if spatial and channel attention are omitted, the PSNR drops to 25.097 dB and the SSIM to

0.861, underscoring their crucial role in the enhancement network. The images presented in

Figure 6 illustrate the performance of the AIDLM with and without the inclusion of spatial and

channel attention modules in its enhancement network (EAI and EAR net). These modules play

a important role in enhancing image quality, and their effectiveness is quantified using PSNR

and SSIM.In Figure 6a, the AIDLM model operates without the spatial and channel attention

modules, resulting in a PSNR of 24.2027 dB and an SSIM of 0.8907.Although the image’s

visual quality is enhanced by the improvement network, there are still certain locations where

it is inadequate. Specifically, textures in the shadowed regions appear somewhat blurred, and

the overall contrast is not as sharp. This is primarily due to the model’s inability to effectively
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Figure 6: Visual comparison of AIDLM. For better understanding, objects are zoomed in red and green

boxes.

highlight and enhance critical regions and features within the image, a function that the attention

modules would typically perform.

Conversely, Figure 6b demonstrates the AIDLM model with integrated spatial and channel at-

tention modules. This setup achieves a higher PSNR of 26.332 dB and an SSIM of 0.9094. The

attention modules enable the network to focus on significant areas and features, thereby enhanc-

ing the overall clarity and details. The textures in the darker regions are more distinct, and there

is a noticeable improvement in the contrast between different elements. This enhanced attention

mechanism allows for more precise adjustments in brightness and color, resulting in a more

visually appealing and accurately enhanced image. Overall, this ablation study underscores the

importance of incorporating spatial and channel attention modules in the AIDLM’s enhance-

ment network. These modules significantly enhance the model’s capability to improve image

quality, as evidenced by higher PSNR and SSIM metrics. By emphasizing and amplifying crit-

ical image features, the attention mechanisms enable more detailed and accurate enhancement

of low-light images, effectively preserving and improving visual details.
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Figure 7: Visual comparison of different components of AIDLM model.
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Effects of the enhancement modules EARnet and EAInet.

The analysis of the AIDLM with and without specific enhancement modules—EARnet and

EAInet—reveals their significant contributions to the network’s performance.The average PSNRs

and SSIMs over 15 test photos acquired using our network in two scenarios—one without

EARnet and the other without EAInet—are shown in the third and fourth rows of Table 1,

respectively. The AIDLM achieves a PSNR of 26.551dB and 0.878 SSIM when all modules are

included, highlighting the model’s capability to enhance image quality effectively. Removing

EARnet reduces the PSNR to 24.915 dB and 0.873 SSIM, demonstrating its essential role in the

enhancement network. Although the impact is not as severe as with other modules, it still sig-

nifies EARnet’s contribution to refining and detailing the image enhancement process. Notably,

the absence of EAInet results in a drastic reduction in metrics, with a PSNR of 18.081dB and

0.804 SSIM. This significant decline underscores the critical role of EAInet within the network.

EAInet is pivotal in preserving structural integrity and enhancing overall image quality, and its

removal severely degrades the network’s performance. The stark difference in metrics when

EAInet is excluded highlights its indispensable contribution to achieving high-quality enhance-

ments. In Figure 7, the visual comparison provides further insights into the impact of excluding

EARnet and EAInet. The input image (Figure 7a) and its ground truth (Figure 7b) set the

baseline for comparison. The full AIDLM model (Figure 7c) achieves superior enhancement,

reflected in a PSNR of 26.332dB and an SSIM of 0.9094. The exclusion of EARnet (Figure

7e) results in a PSNR of 23.5023 dB and 0.8734 SSIM, showing a noticeable decline in im-

age quality, though not as severe as without EAInet (Figure 7f), which plummets to a PSNR of

14.2070dB and 0.7861 SSIM. This significant degradation underscores EAInet’s crucial func-

tion in the enhancement process.

Effect of the Denoising Module Dnet.
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To understand the impact of the denoising module Dnet, we conducted tests on our AIDLM

model using 15 images from the LOL dataset, excluding Dnet. The average metrics are pre-

sented in the fifth row of Table 1. Without Dnet, the performance drops significantly, with

a 23.681dB PSNR and 0.540 SSIM, underscoring the importance of each component in the

AIDLM network. Fig.7 shows the improved colour image of a test image sample. The resultant

improved image without the denoising module has observable noise that reduces image quality,

as shown in Fig.7g. Our network efficiently reduces noise and performs better after integrating

the denoising module Dnet, proving the Dnet module’s importance in our enhancement network.

5.2 Evaluation of The Proposed Method

We present a comprehensive evaluation of our proposed method, primarily trained on the LOL

dataset [53], and extend its assessment to diverse datasets such as MIT-Adobe 5K, LIME,

DICM, NPE, and MEF. Despite being trained exclusively on the LOL dataset, our method is

evaluated for its generalization capability across these varied datasets. We rigorously compare

its performance against established benchmarks, examining both quantitative metrics and qual-

itative results. Additionally, we explore its applicability in unsupervised settings, assessing its

robustness and adaptability where labeled data may be limited or absent. Alongside performance

evaluations, we analyze the computational complexities of our approach, providing insights into

its efficiency and scalability relative to state-of-the-art methods.

5.2.1 Evaluation on LOL Dataset

The LOL dataset [53] includes 500 pairs of images taken in low and normal lighting condi-

tions. Out of these, we utilize 485 pairs for training purposes and reserve 15 pairs for testing.

The metrics for these tests are summarized in Table 1. Additionally, we offer a visual com-
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parison of one of the images in Fig. 8. Based on the outcomes, we can derive the following

insights. It also demonstrate the effectiveness of our AIDLM model. AIDLM achieves the high-

est SSIM (0.878), the lowest LPIPS (0.204), the lowest DeltaE (7.546), and the lowest LOEre f

(59.464), indicating superior image quality, color accuracy, and noise suppression. Our model,

AIDLM, achieves a PSNR of 26.551, surpassing DPRED [92] with its PSNR of 26.092. How-

ever, Retinexformer [85] leads with the highest PSNR of 27.182, closely followed by AIDLM.

LLFlow [80] achieves the second-best SSIM and LPIPS. DPRED ([92]) achieves the second-

best LOEre f . These results confirm that AIDLM provides a clear improvement over existing

methods in LLIE.

As shown in Fig.8, DPRED [92] produces slightly blurry images with muted colors and a lack

of sharpness. EnGAN [70] results in overly saturated colors and high contrast, leading to an

artificial appearance. Jiang’s [71] method is too dark overall, losing details in the shadows. KinD

[58] and KinD++ [76] both suffer from noise and unnatural tints, with KinD++ slightly improved

but still lacking in color fidelity and contrast. LLFlow [80] shows excessive sharpening and

unrealistic colors. Retinexformer [85] and RetinexNet [53] struggle with exposure, leading

to dark, dull images with significant noise and artifacts. RQ-LLIE [87] has uneven exposure,

making parts of the image overly bright and others too dark. RUAS [73] is too dark, losing

details in shadows, while URetinexNet [82] has uneven exposure and unnatural color balance.

Zero-DCE [60] and Zero-DCE++ [77] both produce noisy images, with Zero-DCE++ having

slightly better color correction but still struggling with exposure balance. The AIDLM method,

in contrast, excels in image enhancement by maintaining a perfect balance between brightness

and contrast, ensuring that details are clearly visible in both dark and light areas. The colors are

natural and well-balanced, providing a realistic and pleasing look. The image is sharp and clear

without any noticeable noise or artifacts. This method enhances the image effectively while

preserving the natural appearance and intricate details, making it superior to the other methods
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Figure 8: Visual comparison on LOL dataset. For better understanding, objects are zoomed in red box.
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Table 2: Metrics averaged across 15 test images from the LOL dataset [53]. Bold text indicates the top

results, while underlining indicates the second-best results.

Method PSNR SSIM LPIPS DeltaE LOE LOEre f

EnlightenGAN [70] 17.483 0.655 0.391 10.305 355.321 395.591

RUAS [73] 16.445 0.505 0.382 10.414 93.285 218.909

Jiang et al. [71] 16.863 0.483 0.399 10.399 328.191 405.255

Zero-DCE [60] 14.861 0.562 0.385 10.446 190.711 272.609

Zero-DCE++ [77] 15.142 0.565 0.387 10.461 168.308 256.581

RetinexNet [53] 16.775 0.429 0.465 10.500 475.029 460.169

KinD [58] 20.381 0.831 0.270 9.711 208.718 276.427

KinD++ [76] 21.812 0.836 0.288 9.563 228.423 280.479

URetinex-Net [82] 21.329 0.835 0.238 10.040 110.972 197.015

LLFlow [80] 24.999 0.873 0.224 8.861 277.611 309.147

Retinexformer [85] 27.182 0.850 0.252 7.855 122.065 162.853

RQ-LLIE [87] 23.161 0.851 0.232 9.696 148.115 177.847

DPRED [92] 26.092 0.852 0.367 8.172 214.776 88.150

AIDLM (Proposed) 26.551 0.878 0.204 7.546 225.095 59.464

evaluated. The enhanced images demonstrate a high level of detail, accurate color reproduction,

and a realistic appearance, showcasing the method’s ability to handle a wide range of scenes

and lighting conditions effectively.

5.2.2 Generalization

Without any further training or fine-tuning, we tested the suggested method’s generalisation

abilities on 500 photos taken from the MIT-Adobe Five K dataset [21]. The results, summarized
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Table 3: Metrics averaged across 500 test images from MIT-Adobe Five K dataset [21]. Bold text indi-

cates the top results, while underlining indicates the second-best results, and third best are with

@.

Method PSNR SSIM LPIPS DeltaE LOE LOEre f

EnlightenGAN [70] 15.6214 0.7403 0.2064 10.2969 552.1799 549.2273

RUAS [73] 7.7616 0.4675 0.4999 10.3984 825.8669 816.9359

Jiang et al. [71] 15.4296 0.7238 0.2246 10.0625 688.6929 689.0131

Zero-DCE [60] 15.4630 0.7011 0.2805 10.3984 365.0499 355.1534

Zero-DCE++ [77] 14.9995 0.6952 0.3107 10.5391 328.3433 333.8250

RetinexNet [53] 12.3053 0.6318 0.3027 10.1953 1377.3805 1352.7196

KinD [58] 21.2163 0.8042 0.2292 9.8203 212.8142 225.9808

KinD++ [76] 21.6492 0.8188 0.1994 9.8828 140.2021 154.8203

URetinex-Net [82] 13.6056 0.6876 0.2316 10.2344 355.6524 345.4250

LLFlow [80] 19.7882 0.7806 0.2016 10.0000 303.9430 318.0595

Retinexformer [85] 18.7697 0.7361 0.2404 10.1172 210.2383 223.9037

RQ-LLIE [87] 13.9310 0.7013 0.2290 10.2812 152.9560 161.1115

DPRED [92] 24.4446 0.8336 0.2317 @8.0859 118.7620 61.3503

AIDLM (Proposed) 24.4581 0.8573 @0.2047 7.9414 131.01 83.99

in Table 3, highlight the average metrics achieved by various methods, while Fig.9 offers a visual

comparison using a sample image. Our method AIDLM consistently outperforms previous

approaches as it is best in metrics like PSNR(24.4581), SSIM(0.8573), and DeltaE(7.9414)

where as it is second best in LOE(131.01) and LOEre f (83.99) and third best in LPIPS (0.2047).

The improved pictures of sample photos from the MIT-Adobe Five K dataset are displayed

in Fig.9 [21]. The analysis of supervised and unsupervised methods on MIT-Adobe Five K
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dataset [21] reveals distinct issues across various methods for LLIE. DPRED ([92]) introduces

minor color shifts and noise, whereas Jiang [71] enhances brightness but creates unnatural color

changes and artifacts. KinD++ [76] has minor halo effects and could benefit from sharper out-

put. LLFlow [80] maintains good color accuracy but does not sufficiently brighten the image.

Retinexformer [85] exhibits significant color distortions and artifacts, particularly around bal-

loons and the background. RetinexNet [53] results in color shifts and halo effects, producing

overly processed and unnatural images. RQ-LLIE [87] improves brightness but introduces slight

color shifts and artifacts, leading to some loss of detail. URetinexNet [82] performs fairly well

but still has some artifacts and noise. Both Zero-DCE++ [77] and Zero-DCE [60] show color

shifts, over-brightening, and unnatural appearances with visible artifacts and noise. EnGAN

[70] balances brightness and color well but causes noticeable unnatural color shifts, particularly

in skin tones. KinD [58] achieves good color accuracy and brightness but has minor artifacts.

Finally, RUAS [73] causes significant over-brightening, leading to washed-out images with se-

vere color distortion and loss of detail. RetinexNet [53] retains noise in the final enhanced

images, while KinD [58], KinD++ [76], URetinex-Net [82], LLFlow [80], Retinexformer [85],

RQ-LLIE [87], and our method AIDLM suppress noise well.

AIDLM excels in LLIE on MIT-Adobe Five K dataset [21] by maintaining excellent color accu-

racy and brightness levels. The method effectively illuminates low-light inputs while preserving

natural colors and reducing noise and artifacts. The overall sharpness and detail in the image are

well-preserved, and there are minimal visible artifacts. This balance of enhancement and accu-

racy makes AIDLM a strong performer among the evaluated models. The model demonstrates

natural color representation, significant noise reduction, crisp sharpness, and minimal artifacts,

ensuring high-quality image enhancement across diverse scenes and lighting conditions.

Using a few non-reference datasets, we test AIDLM in order to confirm the suggested method’s
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Figure 9: Visual comparison on MIT-Adobe Five K dataset [21]. For better understanding, objects are

zoomed in the red box.
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Table 4: All non-reference datasets [41, 30, 39, 27] have average LOE [41] metrics. Bold text indicates

the top results, while underlining indicates the second-best results.

Method
LIME

[41]

NPE

[30]

MEF

[39]

DICM

[27]

EnlightenGAN [70] 396.43 494.72 416.86 483.58

RUAS [73] 267.81 702.41 292.42 845.52

Jiang et al. [71] 512.49 707.47 479.45 644.28

Zero-DCE [60] 175.68 216.72 167.01 177.20

Zero-DCE++ [77] 126.01 212.63 125.40 195.12

RetinexNet [53] 542.64 700.57 615.53 447.46

KinD [58] 167.02 198.71 158.54 189.70

KinD++ [76] 353.73 457.67 358.43 337.19

URetinex-Net [82] 143.03 182.22 146.29 178.27

LLFlow [80] 193.17 239.41 253.55 300.53

Retinexformer [85] 112.51 242.16 145.11 524.20

RQ-LLIE [87] 125.45 195.81 136.03 238.77

DPRED [92] 103.64 129.17 111.13 164.42

AIDLM (Proposed) 80.41 126.67 84.78 174.49

generalisation performance [41, 30, 39, 27]. Table 4 presents the average LOE [30] metrics

for non-reference datasets [41, 30, 39, 27]. Proposed method AIDLM consistently outperforms

previous approaches as it is best in LOE metrics for three non reference datasets i-e LOE (80.41)

for LIME, LOE (126.67) for NPE and LOE (84.78) for MEF. It is second best in LOE (174.49)

for DICM dataset. The findings reveal that our proposed method outperforms others, highlight-

ing its significant potential in the realm of LLIE. Fig.9 and 13 depicts enhanced image from the
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datasets LIME [41], NPE [30], MEF [39] and DICM [27], respectively.

Fig.10 depicts enhanced image from the LIME[41] dataset. In the comparison of LLIE models,

AIDLM consistently shows its strengths. Compared to EnlightenGAN, AIDLM preserves fine

details and maintains natural color accuracy, avoiding reddish tint and uneven brightness. Over

RUAS, AIDLM avoids over-saturation and maintains realistic color balance, whereas RUAS

introduces excessive brightness and color distortion. AIDLM provides better noise reduction

and maintains intricate details than Jiang et al., which exhibit noise and detail loss. Against

Zero-DCE and Zero-DCE++, AIDLM offers superior brightness and contrast without artifacts,

avoiding excessive brightening and color inaccuracies. Compared to RetinexNet and URetinex-

Net, AIDLM preserves fine details, avoiding harsh contrasts, color shifts, and artifacts. AIDLM

excels in noise reduction and maintains color fidelity compared to KinD and KinD++, avoiding

color distortions and over-saturation. AIDLM provides a balanced enhancement over LLFlow,

which fails in brightness enhancement. Against RetinexFormer and RQ-LLIE, AIDLM main-

tains detail and color balance, avoiding unrealistic artifacts and over-enhancement. Compared to

DPRED, AIDLM offers better detail preservation and avoids over-saturation. Finally, AIDLM

excels over UretinexNet, Zero-DCE Plus, and RUAS in maintaining finer details, realistic color

balance, and avoiding over-enhancement.

Fig.11 depicts enhanced image from the NPE[30] dataset. In comparing AIDLM with other

models on the NPE dataset, AIDLM excels in preserving fine details, maintaining natural color

accuracy, and avoiding over-exposure. Unlike EnlightenGAN and RetinexNet, AIDLM avoids

graininess, harsh contrasts, and color shifts. It provides better noise reduction and intricate de-

tail maintenance compared to Jiang et al. and KinD. AIDLM offers superior brightness and

contrast without artifacts, outperforming Zero-DCE and Zero-DCE++. It also maintains a bal-

anced enhancement, avoiding over-saturation and unrealistic hues seen in RUAS and KinD++.
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Figure 10: Visual comparison on LIME dataset [41]. For better understanding, objects are zoomed in

red and green boxes.
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Figure 11: Visual comparison on NPE dataset [30]. For better understanding, objects are zoomed in red

and green boxes.
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Compared to LLFlow and RQ-LLIE, AIDLM provides superior brightness and color fidelity

without losing details. Lastly, AIDLM ensures realistic enhancement, avoiding artifacts and

inconsistencies present in Retinexformer and DPRED.

Figure 12: Visual comparison on MEF dataset [39]. For better understanding, objects are zoomed in red

box.

52



CHAPTER 5: ABLATION STUDY AND RESULTS

Fig.12 depicts enhanced image from the MEF [39] dataset. The comparative analysis of unsu-

pervised methods on MEF [39] dataset reveals distinct issues across various methods for LLIE.

DPRED exhibited excessive noise and over-enhancement, leading to unnatural colors and loss

of detail. EnGAN suffered from over-saturation and significant loss of detail in bright areas.

Jiang’s output had poor contrast and appeared washed out, losing details in shadows. KinD and

KinD++ had insufficient enhancement, with the former being too dark and the latter showing

over-saturation and uneven enhancement. LLFlow’s image was flat with low contrast, failing

to reveal details. Retinexformer introduced artifacts and uneven lighting, resulting in unnatural

colors. RetinexNet produced a dark image lacking detail enhancement. RQ-LLIE suffered from

over-enhancement, leading to unnatural colors and loss of detail. RUAS’s image was exces-

sively bright and over-saturated, causing detail loss. URetinexNet’s image was overly smooth,

losing fine details and appearing muted. Zero-DCE and Zero-DCE++ both failed to provide

adequate enhancement, resulting in images that were too dark with insufficient brightness and

detail. In contrast, AIDLM (proposed) demonstrated strong performance on MEF [39] dataset

by providing balanced enhancement. The images produced maintained natural colors and well-

preserved details in both dark and bright areas. The contrast and vibrancy were effectively

managed, resulting in realistic and visually appealing images. This method stands out for its

ability to enhance low-light images without introducing artifacts, excessive noise, or unnatural

coloration’s, highlighting its promising potential in LLIE applications.

Fig.13 depicts enhanced image from the DICM [27] dataset. In comparison to the other methods

analyzed, AIDLM (Ours) addresses several key issues effectively. AIDLM excels in preserv-

ing fine details and natural color accuracy over EnlightenGAN. Additionally, AIDLM outper-

forms Jiang in noise reduction and maintaining intricate details without introducing artifacts.

Moreover, compared to the Kind model, AIDLM shows better clarity and detail preservation,

especially in the intricate designs. AIDLM surpasses the Kind Plus model in retaining finer
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Figure 13: Visual comparison on DICM dataset [27]. For better understanding, objects are zoomed in

red box.
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details and avoiding over-saturation, providing a more realistic enhancement. Against LLFlow,

AIDLM maintains superior detail and color fidelity, ensuring a balanced and natural enhance-

ment. Furthermore, AIDLM outperforms RetinexFormer in providing a more consistent and

natural enhancement, avoiding unrealistic artifacts. AIDLM offers better detail preservation

and color accuracy compared to RetinexNet, ensuring a more realistic and visually pleasing re-

sult. In comparison to RQ-LLIE, AIDLM continues to excel in maintaining detail and achieving

natural color balance without over-enhancement. AIDLM outperforms RUAS in avoiding over-

exposure and maintaining a balanced enhancement that preserves both detail and natural colors.

Finally, AIDLM excels over UretinexNet, Zero-DCE, and Zero-DCE Plus in maintaining fine

details and realistic color balance without over-enhancement. However DPRED demonstrates

superior brightness, contrast, and color vibrancy compared to AIDLM.

5.3 Computational Complexity

Table 5 provides a detailed comparison of the computational complexity of our proposed model,

AIDLM, against various baseline methods. This comparison includes the number of trainable

parameters and floating point operations (FLOPs) for images sized 600× 400× 3. In terms

of FLOPs, AIDLM sits at a median level, balancing computational demand with performance

effectively. Our approach requires significantly fewer FLOPs than the supervised learning tech-

niques LLFlow [80] and KinD++ [76]. However, it has more parameters and FLOPs than other

models such as RetinexNet [53], URetinex-Net [82], KinD [58], DPRED [92], RQ-LLIE [87],

and Retinexformer [85]. Despite this, AIDLM delivers competitive enhancement results with

only a modest increase in computational cost. This highlights its ability to effectively balance

computational complexity and performance, making it a practical choice for image enhancement

tasks.
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Table 5: Comparing computational complexity quantitatively, showing number of trainable parameters

(#Parameters) in millions (M) as well as the floating-point operations per second (FLOPs) in

gigaflops (G) or teraflops (T).

Method #Parameters/M FLOPs

EnlightenGAN [70] 8.637 61.010G

Jiang et al. [71] 4.317 36.717G

RUAS [73] 0.003 0.784G

Zero-DCE++ [77] 0.011 2.418G

RetinexNet [53] 0.555 135.997G

Zero-DCE [60] 0.079 19.008G

KinD [58] 8.160 127.768G

URetinex-Net [82] 0.340 208.497G

KinD++ [76] 8.275 2.532T

LLFlow [80] 17.420 1.050T

Retinexformer [85] 1.606 62.323G

RQ-LLIE [87] 11.383 593.499G

DPRED [92] 33.355 599.249G

AIDLM (Proposed) 33.853 651.414G

The detailed computational complexity of the AIDLM model and its individual components is

outlined in Table 6. This table provides a breakdown of FLOPs and the number of trainable

parameters for each part of AIDLM. The total FLOPs and parameters of AIDLM are presented

alongside those of its constituent networks: Retinex Decom Net, EAI Net, EAR Net, and D Net.
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Table 6: Detailed computational complexity of AIDLM and its components in terms of the number of

trainable parameters (#Parameters) in millions (M), and FLOPs in gigaflops (G).

Method #Parameters/M FLOPs

AIDLM 33.853 651.414G

Retinex Decom Net 0.005 0.009G

EAI Net 0.604 62.686G

EAR Net 0.604 62.807G

D Net 32.641 525.911G

Total 33.853 651.414G
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Conclusion and Future Work

6.1 Conclusion

In this thesis, we propose a novel network, AIDLM, for LLIE. The proposed network consists of

three modules: Retinex decomposition, enhancement attention, and denoising. The Retinex de-

composition module combines the strengths of analytical models and learning methods, signif-

icantly improving illuminance and reflectance estimation. The enhancement networks, EArnet

and EAInet, were developed using a UNet-like architecture [40]. Additionally, inspired by the

SCA (spatio-channel attention) approach from [90], we integrated SCA into the UNet-like archi-

tecture. Our experimental results show that applying Retinex decomposition and enhancement

to the V-channel in the HSV color space effectively prevents color distortion. The inclusion

of SCA in the UNet-like architecture enhances the network’s capability to capture fine details

and contextual information. Furthermore, the denoising network efficiently reduces noise in the

enhanced RGB image. Extensive experiments demonstrate that our proposed method surpasses

state-of-the-art techniques and has strong generalization abilities.
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Figure 14: A visual comparison of an image for limitation case

6.2 Limitations

The primary drawback of proposed method is the extensive number of trainable parameters

and FLOPs, as detailed in Table 6. By removing the Denoising module (Dnet), the trainable

parameters and FLOPs are significantly reduced to 1.21207M and 125.50327G, respectively.

In Fig.14, we show an example where our method’s results may not be optimal. The AIDLM
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model, with 28.03dB PSNR and 0.8073 SSIM, performs reasonably well in reducing noise and

maintaining structural details but requires improvement. It is outshined in color enhancement

by models such as kind_plus (PSNR: 29.56, SSIM: 0.8686) [76], llflow (PSNR: 28.31, SSIM:

0.8558) [80], Retinexformer (PSNR: 28.27, SSIM: 0.8158) [85], rq_llie (PSNR: 28.71, SSIM:

0.8308) [87], and DPRED (PSNR: 29.64, SSIM: 0.8493) [92]. Although the AIDLM model

is competent in managing noise and preserving structural integrity, it falls short in effectively

retaining or improving colors. This results in less visually appealing images when compared to

these higher-performing models. This observation highlights the need for further enhancement

of the AIDLM model to improve color accuracy and overall visual quality.

6.3 Future Work

To advance low-light image enhancement, future work could focus on:

• Combining Vision Transformers (ViTs) and convolutional neural network (CNN) to lever-

age the strengths of both architectures for improved feature extraction and representation.

• Implementing advanced noise modeling tailored to extreme low-light conditions to reduce

noise artifacts and enhance image quality.
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