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ABSTRACT 

Effective drug combination prediction is crucial for the achievement of drug discovery, but it is a 

challenging task due to drug drug interactions and potential adverse drug reactions. This study 

presents an innovative technique named DDI-KGAT, which employs attention mechanisms to 

identify crucial characteristics and interrelationships between drugs and various entities, including 

targets and genes, using a knowledge graph-based strategy. By leveraging associated relations in 

the knowledge graph, our model adeptly captures drugs and their potential surroundings, thus 

extracting semantic relations and higher order structures of graph. The KEGG dataset is utilized 

in evaluating the model's effectiveness, and is compared to other state of the art techniques. The 

outcomes demonstrate that KGAT outperforms these methods. Additionally, our approach has 

several advantages, including simplicity, interpretability, and low-dimensional complexity, 

making it a favorable tool for accelerating the drug discovery and development. By identifying 

novel drug combinations with improved efficacy and safety profiles, our approach has the 

capability to improve the patient outcomes and support safer drug development. Our study 

highlights the potential of attention mechanisms in knowledge graph-based drug combination 

prediction, and we believe that KGAT framework has the potential to be a valuable foundation for 

future research in this field. 

Key words: Artificial Intelligence, Attention Mechanisms, Drug-Drug Interactions, Graph 

Neural Networks, Knowledge Graphs.   



iv 
 

TABLE OF CONTENTS 

DEDICATION ................................................................................................................................. i 

ACKNOWLEDGEMENTS ............................................................................................................ ii 

ABSTRACT ................................................................................................................................... iii 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF ABBREVIATIONS ........................................................................................................ ix 

CHAPTER 1: ANALYSIS AND EVALUATION OF THE SUGGESTED FRAMEWORK....... 1 

1.1. Background .......................................................................................................................... 2 

1.1.1. Graph Neural Networks ................................................................................................ 2 

1.1.2. Graph Attention Networks............................................................................................ 2 

1.1.3. Knowledge Graphs ....................................................................................................... 3 

1.1.4. Drug-Drug Interactions ................................................................................................. 4 

1.1.5. Hyper-parameter ........................................................................................................... 4 

1.1.6. Evaluation parameter .................................................................................................... 6 

1.2. Introduction .......................................................................................................................... 7 

1.3. Block Diagram ..................................................................................................................... 9 

1.4. Problem Statement ............................................................................................................. 10 

1.5. Objectives .......................................................................................................................... 11 

1.6. Resources Used .................................................................................................................. 12 

1.7. Applications and National Need ........................................................................................ 13 

CHAPTER 2:  LITERATURE REVIEW ..................................................................................... 14 

2.1. Related Work ..................................................................................................................... 15 

2.1.1. Similarity-Based ......................................................................................................... 15 

2.1.2. Classification-Based ................................................................................................... 16 



v 
 

2.1.3. Literature-Based ......................................................................................................... 16 

2.1.4. Link Prediction / Random Walk ................................................................................. 17 

2.1.5. Neural Network .......................................................................................................... 18 

2.1.6. Ensemble-Based ......................................................................................................... 19 

2.1.7. Matrix Factorization ................................................................................................... 19 

2.1.8. Graph Embedding ....................................................................................................... 21 

2.1.9. Knowledge Graph-DDI .............................................................................................. 21 

2.1.10. KGAT (GENERAL) ................................................................................................... 23 

2.2. Research Gaps .................................................................................................................... 26 

CHAPTER 3: EXPERIMENTAL PIPELINE .............................................................................. 27 

3.1. Experimental Work ................................................................................................................ 28 

3.1.1. Pseudocode ...................................................................................................................... 28 

3.1.2. Block diagram of experimental work .............................................................................. 29 

3.2. Data Collection and Preprocessing ........................................................................................ 30 

3.2.1. DDI Extraction ................................................................................................................ 30 

3.2.2. KG Construction ............................................................................................................. 30 

3.3. Feature Extraction .................................................................................................................. 31 

3.4. Model Development............................................................................................................... 32 

3.5. Model Training and Evaluation ............................................................................................. 33 

CHAPTER 4: METHODOLOGICAL FRAMEWORK ............................................................... 34 

4.1. Methodology .......................................................................................................................... 35 

4.1.1. Input Layer ...................................................................................................................... 35 

4.1.2. Graph Embedding Layer ................................................................................................. 35 

4.1.3. Graph Attention Layer .................................................................................................... 35 

4.1.4. Graph Convolution Layer................................................................................................ 36 



vi 
 

4.1.4.1. Sum Aggregation Layer ............................................................................................ 37 

4.1.4.2. Mean Aggregation Layer .......................................................................................... 38 

4.1.4.3. Max Aggregation Layer ............................................................................................ 38 

4.1.5. Output Layer ................................................................................................................... 38 

4.1.6. Loss Function .................................................................................................................. 39 

4.2. Experimental Setup ................................................................................................................ 40 

4.2.1. KEGG Database .............................................................................................................. 40 

4.2.2. Hyper-Parameter Settings ............................................................................................... 41 

CHAPTER 5: RESULTS AND DISCUSSIONS ......................................................................... 42 

5.1. Results .................................................................................................................................... 43 

5.2. Discussion .............................................................................................................................. 45 

5.2.1. Comparison with similar work on predicting DDIs using knowledge graph neural network 

(KGNN) on KEGG dataset. ...................................................................................................... 46 

5.2.2. Comparison with state-of-the-art techniques using knowledge graph for predicting DDIs.

 ................................................................................................................................................... 48 

5.2.3. Case Study ....................................................................................................................... 50 

SUMMARY .................................................................................................................................. 51 

CONCLUSIONS........................................................................................................................... 53 

REFERENCES .................................................................................................................................  

 



vii 
 

LIST OF FIGURES 
 

 

FIGURE 1: BLOCK DIAGRAM ................................................................................................... 9 

FIGURE 2:  BLOCK DIAGRAM OF THE EXPERIMENTAL WORKFLOW ......................... 29 

FIGURE 3: OVERVIEW OF OUR TECHNIQUE ...................................................................... 32 

FIGURE 4: STRUCTURE OF GRAPH CONVOLUTION LAYER........................................... 37 

FIGURE 5: RESULTS OF OUR MODEL USING SUM AGGREGATOR ............................... 43 

FIGURE 6: RESULTS OF OUR MODEL USING MEAN AGGREGATOR ............................ 43 

FIGURE 7: RESULTS OF OUR MODEL USING MAX AGGREGATOR ............................... 44 

FIGURE 8: OVERALL COMPARISON OF OUR MODEL RESULTS .................................... 44 

FIGURE 9: OUR TECHNIQUE CONTRAST TO THE 2ND BEST TECHNIQUE UNTIL 

NOW ............................................................................................................................................. 46 

FIGURE 10: COMPARISON OF OUR KGATx TECHNIQUE VS KGNNx ............................ 47 

FIGURE 11: COMPARISON OF DDI-KGAT VS STATE-OF-THE-ART TECHNIQUES ..... 48 

  



viii 
 

LIST OF TABLES 

 

 

Table 1: Literature Review of DDIs ............................................................................................. 24 

Table 2: Basic statistics of the used KEGG dataset. ..................................................................... 40 

Table 3: Hyper-parameter settings. ............................................................................................... 41 

Table 4: Comparison of DDI-KGATX vs KGNNX technique. ................................................... 46 

Table 5: Comparison of DDI-KGAT vs state-of-the-art techniques ............................................ 49 

Table 6: Performance overview of DDI-KGAT vs state-of-the-art techniques ............................ 50 

 

  

file:///C:/Users/Iqra%20Naseer%20Kundi/Desktop/New%20folder%20(3)/Iqra%20Thesis.docx%23_Toc175729436


ix 
 

LIST OF ABBREVIATIONS 

 

ACC Accuracy 

ADR Adverse Drug Reaction 

AI Artificial Intelligence 

AUC-ROC Area Under The Receiver Operating Characteristic Curve  

AUPR Area Under The Precision-Recall Curve 

CNN Convolutional Neural Network 

DDI Drug-Drug Interaction 

FCNN Fully Convolutional Neural Network 

GAT Graph Attention Networks 

GNN Graph Neural Network 

KEGG Kyoto Encyclopedia Of Genes And Genomes 

KG Knowledge Graph 

KGAT Knowledge Graph Attention Network  

KGNN Knowledge Graph Neural Network  

ML Machine Learning  

NLP Natural Language Processing 

RDF Resource Description Framework 

RNN Recurrent Neural Network 

RSL Recursive Least Squares  

SPARQL SPARQL Protocol And RDF Query Language 

SVM Support Vector Machine  

SWA Stochastic Weight Averaging 

URLs Universal Resource Locator 

XML  Extensible Markup Language 

 

 

 

 



1 
 

 

CHAPTER 1: ANALYSIS AND EVALUATION OF THE 

SUGGESTED FRAMEWORK 

This chapter offers a thorough description and analysis of the suggested system. A Neural Network 

on Biomedical Knowledge Graph for Drug-Drug Interaction Prediction called DDI-KGAT. The 

background section of the chapter covers the fundamentals of knowledge graphs, drug-drug 

interactions, hyper-parameters, evaluation parameters, and graph neural networks and graph 

attention networks. 

 

The goal, scope, and introduction of the suggested system are outlined in this section. While the 

problem description part outlines the issue that the proposed system is intended to address, the 

block diagram section offers a visual depiction of the architecture of the proposed system. The 

particular aims of the research study are outlined in the objectives section. 

 

The datasets and software tools used in the research project are listed in the resources used part, 

and the suggested system's importance in the biomedical area is highlighted in the applications and 

national need section. 

 

In general, this chapter provides readers with a comprehensive overview of the origin, purpose, 

and relevance of the proposed system. 
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1.1. Background 

1.1.1. Graph Neural Networks 

 In the discipline of deep learning, Graph Neural Networks (GNNs) have revolutionized 

the processing of graph-structured data. GNNs, in contrast to typical neural networks, are capable 

of handling non-Euclidean data, such as knowledge graphs, protein structures, and social networks, 

with different sizes, connectedness, and edge weights. GNNs are well-suited for tasks such as node 

classification, link prediction, and graph classification because they can learn a low-dimensional 

vector representation for each node in the graph, enabling them to capture intricate structural 

connections between nodes. GNNs take the place of older neural networks in these tasks because 

they produce predictions that are more comprehensible and accurate than those of classic neural 

networks.  

 Generally, GNNs are constructed with multiple layers that iteratively improve node 

representations. A message-passing method is used for this refinement process, in which each node 

sends and receives messages according to its own local features as well as the features of its 

neighbors. Activation functions and neural network layers are examples of non-linear changes that 

come after message aggregation in GNN computations. Each node's vector representation, which 

is the output of a GNN, can be utilized for a variety of downstream tasks, including graph-level 

prediction, link prediction, and node categorization. Overall, GNNs have demonstrated significant 

potential in numerous domains such as bioinformatics, social networks, and recommender 

systems, rendering them an effective and adaptable instrument for handling data with a graph 

structure. The ability of GNNs to handle non-Euclidean data and capture complex structural 

dependencies between nodes makes them a valuable addition to the deep learning toolbox. 

1.1.2. Graph Attention Networks 

 During the message-passing process, Graph Attention Networks (GATs), a class of 

GNNs, use attention processes to determine the relevance of surrounding nodes. In traditional 

GNNs, the importance of each neighboring node is considered to be equal, regardless of its 

relevance to the target node. This can lead to suboptimal performance when dealing with large and 

complex graphs. GATs address this limitation by allowing each node to attend to its neighbors 
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selectively, based on the similarity of their features. An attention mechanism that learns a weight 

for each neighbor based on their feature vectors and the feature vector of the target node is used to 

do this. Then, using the attention weights, a weighted sum of the neighbor representations is 

calculated and added to the representation of the target node to create a new representation for the 

node. 

 The architecture of GATs is made up of several attention heads that are trained on 

distinct attention functions, giving each node's neighbors a variety of ways to receive attention. As 

a result, the model is able to learn more expressive representations and capture many facets of the 

graph structure. Each node's vector representation is the GAT's output, and it can be utilized for a 

number of downstream activities, including graph-level prediction, link prediction, and node 

classification. 

 In a number of applications, such as social networks, bioinformatics, and 

recommendation systems, GATs have demonstrated notable gains over conventional GNNs. 

Large-scale graph processing activities might benefit from their computational efficiency and 

capacity to capture intricate structural relationships between nodes. All things considered, GATs 

are a potent extension of GNNs that allow for more accurate and expressive modeling of graph-

structured data. 

1.1.3. Knowledge Graphs  

One kind of structured graph data that depicts the relationships between things in a 

domain is called a knowledge graph (KG). They are built using a blend of expert curation and 

machine learning approaches, producing a carefully curated and superior knowledge base. 

Knowledge graphs (KGs) have become an important tool for reasoning and describing complicated 

knowledge areas like e-commerce and the biological sciences. Entities and relationships—

represented as nodes and edges, respectively—are found in KGs. While edges show links between 

things, such as "is a subclass of" or "causes," nodes can have characteristics or attributes, such as 

a person's name or a disease's description. KGs can handle uncertainty, incompleteness, and 

inconsistencies, which is one of its many advantages over traditional databases. They are 

frequently utilized in many different applications, such as question-answering systems, 

recommender systems, and search engines. The need for KG-based solutions is growing across 



4 
 

multiple fields due to the exponential expansion of digital data, making this an essential area of 

study and development. KGs are especially crucial in the biomedical field for the identification of 

possible therapeutic targets, the study of disease mechanisms, and the discovery of new 

medications. They make it possible to combine information from many biomedical data sources, 

which opens up new avenues for research into intricate biological systems and the discovery of 

previously unknown linkages. 

1.1.4. Drug-Drug Interactions 

When two or more medications interact with one another in a way that modifies their 

safety or efficacy, this is known as a drug-drug interaction (DDI). Numerous processes, including 

as pharmacokinetic, pharmacodynamics, or pharmacogenetics interactions, may be involved in 

these interactions. When a medication influences the distribution, metabolism, excretion, or 

absorption of another medication, alterations in the drug's plasma concentration and therapeutic 

impact result in pharmacokinetic interactions. Pharmacogenetics interactions occur when genetic 

variations affect the metabolism or response to a drug, leading to different outcomes in different 

individuals. DDIs can have significant clinical consequences, such as increased toxicity, decreased 

efficacy, or unexpected adverse events. Thus, for safe and efficient medication therapy, DDI 

prediction and management are essential. Using these methods for DDI prediction and mitigation 

is becoming more popular as better machine learning models, like graph neural networks, become 

available and biomedical knowledge graphs become more widely available. 

1.1.5. Hyper-parameter 

Hyper parameters are aspects of a machine learning model that are predetermined and 

don't change during the training process. These parameters need to be carefully adjusted to get the 

best results because they have a big impact on the model's performance.  

You have established a number of hyper parameters for your model in your study, which comprise: 

Embedding dimension: 

The dimension of the vector that each node in the graph is represented by. 

Neighborhood sample size:  
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The number of neighbors to take into account while aggregating data from a node's 

nearby neighborhood. 

L2_weight: 

The degree to which the model's weights are subjected to the L2 regularization penalty in 

order to avoid overfitting. 

Learning rate:  

The size of the step at which the model's parameters are updated using stochastic gradient 

descent. 

Optimizer type:  

An algorithm, like Adam or SGD that modifies the model's parameters while it is being 

trained. 

Batch size:  

The quantity of samples the model processes throughout a training cycle. 

Aggregator type:  

The technique—such as mean or max pooling—that is utilized to compile data from a 

node's immediate vicinity. 

Regularization strength:  

The degree to which the model's parameters are subjected to a regularization penalty in 

order to avoid overfitting. 

Number of epochs:  

The total number of times the model runs over the whole training set while being trained. 

One can maximize the performance of your model and make sure it performs well when applied 

to new data by carefully adjusting these hyper parameters. 
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1.1.6. Evaluation parameter 

Measures known as evaluation parameters are employed to evaluate a model's 

performance on a particular task. Evaluation metrics are used in the context of machine learning 

to assess a model's predicted performance. Four widely-used evaluation criteria were employed in 

this study: accuracy (ACC), F1 score, area under the precision-recall curve (AUPR), and area 

under the receiver operating characteristic curve (AUC-ROC). 

Accuracy (ACC): 

 The ratio of accurately predicted samples to the total number of samples. It is a 

straightforward metric that expresses the proportion of accurate predictions the model makes. 

F1 score: 

  The harmonic mean of recall and precision. When datasets are unbalanced means, this 

evaluation metric is frequently employed. This is a useful indicator for assessing models on 

unbalanced datasets since it takes precision and recall into account. 

Area under the Receiver Operating Characteristic Curve (AUC-ROC): 

A binary classifier performance is assessed using this. AUC-ROC plots the true positive 

rate (TPR) versus the false positive rate (FPR) at different categorization thresholds. The model's 

capacity to discriminate between positive and negative classes is also measured by AUC-ROC. 

Area under the Precision-Recall Curve (AUPR): 

A measure employed in the assessment of binary classifier performance. Plotting accuracy vs 

recall at different classification thresholds is what the precision-recall curve shows. AUPR is a 

useful metric for imbalanced datasets since it evaluates the trade-off between precision and recall. 
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1.2. Introduction 

When used concurrently, certain medications have the potential to interact and alter one or 

both of the medications' effectiveness. We refer to this kind of interaction as a drug-drug 

interaction (DDI). Adverse drug responses (ADRs) [1], decreased drug efficacy, and even 

potentially fatal diseases can result with DDIs. ADRs can have unanticipated pharmacological 

consequences and possibly be fatal, which makes them a serious worry in the healthcare industry. 

ADRs are the fourth greatest cause of death in hospitalized patients, with a fatality rate of 0.32% 

[10], indicating that the overall prevalence of significant ADRs may be substantially higher than 

anticipated, according to recent studies [2]. 

The more medicines a person consumes, the higher their chance of developing DDIs. Over 

10% of people take five or more prescriptions at the same time, according to the U.S. Centers for 

Disease Control and Prevention, and the problem gets worse for older adults—roughly 20% of 

them use ten or more medications at a time [3]. This greatly increases the likelihood of having 

ADRs. In order to reduce unexpected ADRs and maximize therapy synergy to lessen the impact 

of unanticipated pharmacological effects, it is imperative that potential DDIs be effectively 

identified [4]. 

The mainstay of current DDI prediction techniques is the integration of several data sources 

to extract drug properties, including multi-task learning [7], adverse or side effect [6], and 

similarity features [5]. These techniques operate under the premise that medications with 

comparable representations will also have comparable DDIs. Machine learning approaches have 

emerged as a viable method for predicting drug-disease interactions (DDIs) from a variety of 

sources, including drug databases, scientific literature, and electronic health records. However, the 

majority of computer models that are now in use that make use of AI techniques tend to concentrate 

more on merging various data sources and including widely used embedding techniques [8], with 

less emphasis on possible connections between medications and other entities like targets and 

genes. Although some recent studies have utilized KGs for DDI prediction, these methods only 

learn node hidden embedding directly, limiting the ability to obtain comprehensive neighborhood 

details for every entity in the KG. 
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Therefore, this research aims to address these research gaps by leveraging comprehensive 

neighborhood details for every entity in KG and employing the knowledge graph attention network 

(KGAT), a technique that has not been previously used for DDI prediction despite its popularity 

in various applications. The objectives of this research are to demonstrate the effectiveness of KGs 

and GNN in solving complex prediction tasks, to provide a simple and innovative approach that 

can potentially increase the prediction accuracy of DDIs with low-dimensional complexity, and to 

improve reliability and the accuracy of DDI prediction, potentially leading to better patient 

outcomes and safer drug development. 

To achieve these objectives, this thesis proposes a novel KGAT model that utilizes both 

attention mechanisms and sum aggregation layers to capture important features and enhance 

performance of DDI prediction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset 

is used to evaluate the suggested model, and the outcomes are compared to state-of-the-art 

methods. This research advances the field of DDI prediction by proving the efficacy of this method 

and offering a novel, straightforward technique that may improve the prediction accuracy of DDIs 

with low dimensional complexity. Additionally, this research highlights the importance of 

leveraging comprehensive neighborhood details for every entity in the KG and employing KGAT 

for DDI prediction. 

Overall, Because ADRs are a major cause of morbidity and mortality in healthcare, 

accounting for an estimated 7k deaths annually [9], and because they can be accurately predicted, 

this research has the potential to both improve patient outcomes and aid in the development of 

safer drugs.  
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1.3. Block Diagram 

 

 

FIGURE 1: BLOCK DIAGRAM 
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1.4. Problem Statement 

DDIs are a major concern in healthcare as they can lead to ADRs and potentially life-

threatening outcomes. While traditional methods for identifying DDIs rely on experimental 

studies, these methods are time-consuming, expensive, and often lack comprehensive coverage of 

all possible drug combinations. More and more biomedical literature and electronic health data are 

becoming available, which has increased the demand for precise and effective computational 

techniques to identify possible DDIs. Nevertheless, current computational models suffer from a 

number of drawbacks, including a failure to consider plausible associations between medicines 

and other things and an incapacity to gather thorough neighborhood information for each object in 

the knowledge network. Therefore, for better DDI prediction, a knowledge graph-based model that 

can accurately reflect the intricate interactions between medications and other things needs to be 

developed. 
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1.5. Objectives 

• To show how well knowledge graphs and graph neural networks perform at handling 

challenging prediction problems.. 

• To offer a novel and straightforward method that may improve the accuracy of drug-drug 

interactions predictions with low dimensional complexity. 

• To take advantage of the extensive neighborhood data for every entity in the KG, since 

most approaches just learn the latent embedding of nodes directly, which yields poor 

accuracy results. 

• To employ the knowledge graph attention network, a technique that has not been 

previously used for DDI prediction despite its popularity in various applications. 
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1.6. Resources Used 

The present study utilized various resources to conduct the research. The first resource used 

was the virtual access to the supercomputer of the university. Through remote desktop connection, 

we were able to log in to their account and access the computing resources provided by the 

supercomputer. Following a successful login, the open-source Python distribution Anaconda was 

installed. It combines a number of packages and libraries to offer a platform for data science and 

machine learning applications. A virtual environment with the project-specific dependencies was 

established in the Anaconda environment. Versions of Python 3.6.6, Keras 2.3.0, TensorFlow 

1.13.1, and scikit-learn 0.22 were among these dependencies. Popular deep learning frameworks 

TensorFlow and Keras are used to create and train neural networks, and scikit-learn is a machine 

learning library used for a variety of tasks like clustering, regression, and classification. Once the 

virtual environment was set up, we installed Spyder, an open-source integrated development 

environment (IDE), which provided a convenient interface for editing, running, and debugging the 

project files. Together, these resources provided the necessary tools and infrastructure for 

conducting the research and developing the KG based model for DDI prediction. 
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1.7. Applications and National Need 

The applications and national need for this study are significant and far-reaching. The 

current ranking of Pakistan at 154/195 in the year 2021 Global health security Index indicates a 

dire need for advancements in healthcare technologies. This study aligns with national needs by 

providing a solution for improving human health through the development of a knowledge graph 

centered model for drug-drug interaction prediction. This model offers several advantages over 

traditional biomedical methods as it is less costly, less time-consuming, and has higher scalability. 

The area of application for this study is vast and includes various fields such as biomedicine, 

bioinformatics, computational biology, and health informatics. The results of this study will have 

applications in personalized medicine, pharmacovigilance, adverse drug reaction monitoring, and 

drug development and discovery. The application of knowledge graphs in drug discovery has the 

potential to transform the sector and enhance patient outcomes. 

  



14 
 

CHAPTER 2:  LITERATURE REVIEW 

An extensive evaluation of the relevant research in the area of drug-drug interaction prediction is 

given in the literature review chapter. An overview of the different methods used to predict drug-

drug interactions is given at the beginning of the chapter. These methods include neural network, 

ensemble-based, matrix factorization, graph embedding, literature-based, similarity-based, and 

classification-based, link prediction/random walk, neural network, and knowledge graph-DDI 

methods. In addition, the chapter examines earlier studies that were especially connected to the 

KGAT model.  

 

Moreover, the chapter also emphasizes the necessity for creating a more precise and effective 

model for forecasting drug-drug interactions and points out research gaps in the body of current 

knowledge. The literature evaluation offers insight into the state of the art in the field of drug-drug 

interaction prediction and forms the basis for the proposed research project.  
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2.1. Related Work 

DDIs can have serious consequences for patients, including reduced therapeutic efficacy 

and increased risk of ADRs. Therefore, predicting potential DDIs is crucial for ensuring patient 

safety. Various approaches have shown promise in predicting DDIs by leveraging various data 

sources. In this literature review, we have discussed 9 different approaches for DDI prediction and 

a general KGAT approach on different applications as this approach has not been implemented for 

DDI prediction. 

2.1.1. Similarity-Based 

Pairwise similarities between medications are used by similarity-based approaches to 

predict DDIs. Based on a variety of characteristics, including pharmacological characteristics and 

chemical structure, these similarities can be computed. Similarity-based techniques are simple to 

use and comprehend. An overview of medications and their targets is given by Imming et al. (2006) 

[11], who stress the significance of comprehending drug-target interactions in drug discovery. The 

research emphasizes how difficult it is to forecast DDIs because of the variety of molecular targets 

and the intricacy of biological systems. The FDA's viewpoint on DDI prediction is covered by 

Zhang et al. (2009) [12], along with the significance of spotting possible interactions at an early 

stage of the drug development process. A summary of the in vitro and in vivo techniques for DDI 

evaluation is also included in the study. A computational system named INDI is introduced by 

Gottlieb et al. (2012) [13] in order to predict medication interactions and recommendations related 

to them. In order to forecast DIs, INDI blends drug similarity measurements based on drug-target 

interactions and side effects. A strategy for DDI prediction based on molecular structure similarity 

analysis is put out by Vilar et al. (2012) [14]. The method described in this research represents the 

structure of pharmaceuticals using molecular fingerprints, and then evaluates the similarity of drug 

pairs based on these fingerprints. A computational approach for DDI prediction based on 

functional similarity across medications is developed by Ferdousi et al. (2017) [15]. The model 

predicts DDIs by estimating the functional similarity of medications based on gene ontology 

annotations and drug target information. 



16 
 

The similarity-based method may not take into consideration context-specific elements that 

affect DIs and has limited capacity to capture complicated interactions and dependencies between 

medicines and DDIs. 

2.1.2. Classification-Based 

Classification-based approaches learn a classification model that can predict DDIs for 

novel drug combinations using a training set of known DDIs. These techniques can distinguish 

between different kinds of DDIs and manage more intricate medication interactions. Using a 

classification-based methodology, Li et al. (2015) [16] carried out a thorough investigation and 

analysis of medication combinations. They discovered new DIs by using ML algorithms to forecast 

DDIs based on the chemical and biological characteristics of medications. A unique method, called 

LCM-DS, for DDI prediction utilizing the Dempster-Shafer theory of evidence was proposed by 

Shi et al. (2016) [17]. They obtained encouraging findings by predicting DDIs for novel 

medications using a classification-based method. A statistical learning-based method was created 

by Kastrin et al. (2018) [18] to forecast possible DDIs. They used topological plus semantic 

parallel features and applied ML algorithms to classify DIs as either interacting or non-interacting. 

A compact integration of heterogeneous networks for the prediction of pharmacological side 

effects was proposed by Zhao et al. (2019) [19]. They created a classification-based strategy based 

on machine learning algorithms to forecast the probability of a medicine having a specific side 

effect based on gene ontology annotations, drug-target interaction networks, and protein-protein 

interaction networks.  

In order to attain high accuracy, the Classification-Based approach needs a large and 

diversified training set of known DDIs, which is restricted by the quality and quantity of available 

data. There's a chance that it will over fit to training data, which would lead to inadequate 

generalization to fresh data. 

2.1.3. Literature-Based 

Drug pairings and the interactions they are linked with are identified by literature-based 

approaches that extract DDI data from scientific publications and apply natural language 

processing (NLP) techniques. These techniques are able to make use of large volumes of 

unstructured text data. In order to find DDIs, Tari et al. (2010) [20] suggested using text mining 
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and reasoning to examine drug metabolism characteristics. The approach was based on searching 

scientific literature for words that provided evidence of medication interactions, after which logical 

criteria were applied to deduce possible interactions. Tatonetti et al. (2012b) [21] created a data-

driven method that makes use of electronic health information to forecast medication interactions 

and effects. To forecast novel interactions and adverse events, their approach combined DDIs, 

drug-gene interactions, and phenotypic side effects.  

Kolchinsky et al. (2013) [22] assessed how well linear classifiers performed on 

publications that included DDI pharmacokinetic findings. They contrasted several feature 

extraction techniques and classifiers and showed that employing literature-based methods to 

predict DDIs is feasible. 

Literature-based methodologies depend on the reliability and accessibility of literature 

sources, which can be unreliable, prejudiced, or omit crucial information that isn't made clear in 

the literature. 

2.1.4. Link Prediction / Random Walk 

Graph theory is used by link prediction methods to forecast new drug connections based 

on a drug's connectedness within a drug distribution network. Indirect medication interactions can 

also be found using random walk-based techniques. A pharmacointeraction network model was 

presented by Cami et al. (2013) [23] to predict unknown drug-target interactions (DDIs) by 

combining several data sources, such as drug indications, side effects, and drug-target interactions, 

into a single network representation. DeepWalk is an online learning method that was presented 

by Perozzi et al. (2014) [24]. It learns node embeddings by using the Skip-gram model from natural 

language processing and using random walks as sentences. They learned node embeddings in 

social networks using DeepWalk, and they attained state-of-the-art results on multiple common 

benchmarks.A drug recommendation approach based on a combination of ensemble learning and 

matrix factorization was presented by Zhang et al. (2016) [25]. By taking use of the similarities 

between medications and past preferences, their approach forecasts possible adverse effects of 

pharmaceuticals. A technique for forecasting pharmacodynamic drug-drug interactions was put 

out by Park et al. (2015) [26] through an examination of signaling interference propagation on 

protein-protein interaction networks. Their strategy is predicated on the idea that medications that 
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disrupt the same protein are more likely to interact with one another. A probabilistic method for 

forecasting DDIs was presented by Sridhar et al. (2016) [27] by simulating the overall similarity 

of medications. To capture the joint distribution of drug pairs, side effects, and chemical properties, 

they employed a generative model and inference to identify potential drug interactions. Struc2vec 

is a technique for learning node embeddings that extracts structural information from graphs, as 

described by Ribeiro et al. (2017) [28]. By taking into account a node's structural identity—which 

is defined as the collection of neighborhoods around it with progressively larger radii—their 

method generalizes DeepWalk. An integrated drug similarity network technique (IDNDDI) was 

introduced by Yan et al. (2019) [29] to predict drug-drug interactions. By combining information 

from several sources, like as chemical structures, targets, and side effects, they created a drug 

similarity network. Then, they used a random walk-based method to forecast possible DIs. 

 Large networks may provide scalability problems for these investigations, and their scope 

is restricted by the accuracy and completeness of the network data. Moreover, they might miss 

intricate relationships and interactions between medications and DDIs. 

2.1.5. Neural Network 

Deep learning techniques are used by neural network-based approaches to learn intricate 

drug representations and forecast DDIs. These techniques are capable of processing sizable and 

intricate data sets and capturing intricate drug interactions. LINE (Large-scale Information 

Network Embedding) is a scalable method for network embedding that maintains the first- and 

second-order proximity of nodes. It was first presented in a publication by Tang et al. (2015) [30]. 

LINE is appropriate for large-scale network applications because it uses both the local and global 

network topologies to learn node embeddings. Wang et al. (2016) [31] describe a unique method 

for learning the network representation termed Structural Deep Network Embedding (SDNE) in 

their paper. SDNE is a deep autoencoder that uses deep neural networks to learn non-linear 

representations while maintaining both first- and second-order closeness of nodes. The study 

shows that SDNE performs better on a variety of tasks than other cutting-edge network embedding 

techniques. A Variational Graph Autoencoder (VGAE) model for node clustering is proposed by 

Mrabah et al. (2016) [32]; this model circumvents the problem of feature twisting in the latent 

space of conventional graph autoencoders. VGAE employs the reparameterization method for 

effective training, modeling the probability distribution of latent variables. The study demonstrates 
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that VGAE can successfully cluster nodes in different real-world datasets by evaluating the 

suggested model. 

Neural network techniques are computationally costly, needing enormous quantities of 

processing power and time to train, as they may suffer from overfitting and require a large amount 

of data to train. It could be challenging to decipher and comprehend the model's prediction-making 

process. 

2.1.6. Ensemble-Based 

Several ML models are combined in ensemble-based strategies to increase prediction 

accuracy. These techniques are capable of handling various data formats and capturing various 

facets of the DDI issue. The first study, by Zhang et al. (2017) [33], integrates phenotypic, 

chemical, biological, and network data to provide an ensemble-based method for DDIs. The 

suggested approach uses an ensemble approach to aggregate the output of multiple machine 

learning methods, such as logistic regression, decision trees, and random forests. The second 

paper, A meta-learning approach for representation learning-based drug-drug interaction 

prediction is presented by Deepika and Geetha (2018) [34]. Learning a meta-learner that can 

forecast the best classifier for a given dataset is the suggested approach. The technique leverages 

a number of well-known representation learning methods, such as autoencoders and deep belief 

networks, and trains a meta-learner to select the best classifier for a particular dataset based on the 

features that the algorithms have learnt. 

These techniques run the danger of overfitting if individual models have a high degree of 

correlation, can be challenging to integrate numerous models, and may demand a large amount of 

processing power. 

2.1.7. Matrix Factorization 

Drugs and interactions are represented in lesser dimensions when a DI matrix is broken 

down using matrix factorization techniques. Next, new interactions can be predicted using these 

representations. These techniques can capture latent correlations between medications and handle 

missing data. A technique for dimensionality reduction and data representation known as 

Laplacian eigenmaps is presented in Belkin and Niyogi's 2003 [35] study. It preserves the local 



20 
 

structure of high-dimensional data points by embedding them into a low-dimensional space using 

graph theory. This method has been extensively used in many domains, including medication 

development. A technique for identifying possible DDIs through interaction profile fingerprint 

modeling is presented by Vilar et al. (2013) [36]. To find possible interactions, the method entails 

creating binary interaction profiles for every medication and comparing them. This approach 

works well in identifying potential interactions between drugs that have not been previously 

reported. Grarep is a matrix factorization technique that Cao et al. (2015) [37] propose for learning 

network representations by utilizing global structural information. This method has been applied 

to drug discovery to forecast putative targets for drugs since it can capture intricate interactions 

between nodes in a graph. For DDI prediction, Zhang et al. (2018) [38] suggest a manifold 

regularized matrix factorization method. This approach has demonstrated promising results in 

predicting hitherto unidentified interactions and uses manifold regularization to better capture the 

underlying structure of DDIs. A semi-nonnegative matrix factorization method is suggested by Yu 

et al. (2018) to forecast and comprehend comprehensive DDIs. This method makes use of 

similarity matrices for both medicines and targets in order to capture the intricate relationships 

between them. TMFUF, a triple matrix factorization-based unified framework for predicting 

complete DDIs of novel medications, is proposed by Shi et al. (2018) [40]. To more correctly 

forecast DDIs, this approach incorporates many data sources, such as target similarity, side effect 

similarity, and drug chemical structure. A technique for DDI detection via artificial neural 

networks and traditional graph similarity metrics is put forth by Shtar et al. (2019) [41]. Compared 

to conventional methods, our methodology is more accurate in capturing the complicated 

relationships between pharmaceuticals and predicting probable interactions. For DDI prediction, 

Rohani et al. (2020) [42] suggest an integrated similarity-constrained matrix factorization method. 

This method has demonstrated better accuracy over existing matrix factorization algorithms by 

utilizing both target and drug chemical structure similarities to forecast possible interactions. 

Matrix Factorization based techniques are dependent on the completeness and quality of 

the input data and do not work well with sparse data sets since they may not capture complicated 

interactions and dependencies between medications and DDIs. 
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2.1.8. Graph Embedding 

Drugs and interactions within a DDI network are represented in low dimensions by graph 

embedding techniques. Next, new interactions can be predicted using these representations. These 

techniques can handle incomplete data and capture intricate drug connections. A deep learning 

method for forecasting drug-drug and drug-food interactions was presented by Ryu et al. (2018) 

[43]. This method makes use of a variety of data sources, such as chemical and genomic data. In 

order to forecast DDIs, Ma et al. (2018) [44] suggested an attentive multi-view graph autoencoder 

model that combines drug similarity data from several sources. A multi-modal deep autoencoder 

technique was presented by Liu et al. (2019) [45] to embed structural networks and predict DDIs. 

In order to increase the precision of DDI prediction, Lee et al. (2019) [46] developed a novel deep 

learning (DL) model that incorporates a variety of data sources, such as side effect profiles, genetic 

data, and chemical structures. A deep neural network (DNN) model for predicting drug-dose 

interactions (DDIs) was presented by Hou et al. (2019) [47]. This model makes use of several drug 

properties, such as chemical structures, side effects, and drug targets. In order to predict drug-drug 

interactions (DDIs), Deng et al. (2020) [48] developed a multimodal DL framework that 

incorporates several sorts of data, such as chemical structures, drug side effects, and drug-target 

interactions. A DL model called DPDDI was presented by Feng et al. (2020) [49] to predict DDIs 

by incorporating several pharmacological properties, such as chemical structures, drug targets, and 

side effects. A thorough analysis of GNNs, a class of DL models made for graph data, including 

graphs utilized in DDI prediction, was provided by Wu et al. (2021) [50]. 

Studies that rely on graph embedding could miss context-specific data regarding 

medications and DDIs. They cannot function successfully in vast and complicated networks 

because they are constrained by the completeness and quality of the input data and graph structure. 

2.1.9. Knowledge Graph-DDI 

DDIs are represented as a KG in knowledge graph-based approaches, which employ graph-

based algorithms to forecast future interactions. These techniques can manage missing data and 

capture intricate drug connections. Using linked open data, Celebi et al. (2019) [51] assessed 

several KG embedding techniques for DDI prediction. They discovered that TransE performed 

better than alternative strategies and that performance was enhanced by using connected open data. 
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A DDI prediction technique based on KG embeddings and a convolutional-LSTM network was 

presented by Karim et al. (2019). Their method outperformed baseline models, and they 

demonstrated that the prediction accuracy increased with the inclusion of contextual information. 

SumGNN, a technique for multi-typed DDI prediction via effective KG summarization, was 

presented by Yu et al. (2021) [52]. On two benchmark datasets, they demonstrated that their 

method reached state-of-the-art performance and outperformed existing approaches. BioDKG-

DDI, a technique for forecasting DDIs based on drug KG including biochemical data, was 

introduced by Ren et al. (2022) [53]. In comparison to cutting edge techniques, their strategy 

produced competitive results by combining several forms of data. They also showed how well 

their approach worked for locating possible drug-drug interactions (DDIs) between medications 

used to treat COVID-19. 

In addition to needing high-quality data and possibly having scalability problems, KG 

techniques for DDI may miss new or developing DIs that aren't clearly reflected in the KG. The 

accuracy and comprehensiveness of the KG and related data sources also place restrictions on 

these strategies. The ability of KGs to integrate and depict various biological data types has been 

demonstrated by their recent breakthroughs in drug discovery. A Knowledge Base (KG) is a type 

of structured, semantic database used to store information about items and their relationships. 

Through the use of KGs, scientists may combine information from multiple sources, like as 

proteomics, metabolomics, and genomes, to produce a holistic picture of the biological system. In 

drug discovery, KGs can be used to forecast DTIs, DDIs, and drug. 

A more recent advancement in the field of KGs that can be applied to drug discovery 

prediction is Knowledge Graph Neural Networks, or KGNNs. KGNNs are a kind of neural 

network that uses node characteristics and graph topology together to generate predictions. Among 

other things, they can be used to forecast DTIs, DDIs, and medication efficacy. Nevertheless, 

KGNNs still have a number of drawbacks, including the challenge of managing large-scale KGs 

and the requirement for a substantial quantity of labeled data. 

In summary, a variety of strategies exist for predicting DTIs and DDIs, such as methods based on 

similarity, classification, literature, and link prediction/random walk. Recent advancements in KGs 

have demonstrated their potential in drug discovery, and KGNNs have become a viable method 

for prediction in this domain. 
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2.1.10.  KGAT (GENERAL) 

In order to forecast DDIs, a deep learning technique called knowledge graph attention 

network (KGAT) combines neural network- and knowledge graph-based techniques. Additionally, 

KGAT is capable of handling partial data and capturing intricate drug connections. Nevertheless, 

no study has employed the KGAT for DDI prediction, despite its widespread use in other areas. 

This general review of studies from various fields of applications is provided here in order to get 

insight into the process of applying attention mechanisms to pharmacological knowledge graphs. 

KGAT, a knowledge graph attention network, was proposed by Wang et al. (2019) [54]. It learns 

to recommend things by capturing both entity and relation information in a KG. They used real-

world recommendation datasets to show how effective their approach is. DETERRENT, a 

knowledge-guided graph attention network for identifying healthcare disinformation, was 

introduced by Cui et al. (2020) [55]. Incorporating domain-specific knowledge into the model with 

a KG, they demonstrated how their approach works better than current techniques. Message-aware 

GAT for large-scale multi-robot path planning was introduced by Li et al. (2021) [56]. They 

presented a novel attention mechanism that takes into account the messages delivered from each 

edge to its nearby nodes, and they used a difficult robotic path planning challenge to show how 

effective their approach is. DisenKGAT, a KG embedding method with a disentangled graph 

attention network, was introduced by Wu et al. (2021) [57]. In order to better capture the diverse 

information in the KG, their method disentangles the embeddings of various relation types and 

employs graph attention to capture the relations between entities. KGANCDA, a strategy for 

forecasting circRNA-disease correlations based on a KGAT, was proposed by Lan et al. (2022) 

[58]. They demonstrated how their method works better than current approaches by representing 

the relationships between circRNAs and diseases using a heterogeneous knowledge network. For 

knowledge graph completion, Zhang et al. (2023) [59] created a GAT with dynamic relation 

representation. Their method changes the relation embeddings dynamically based on the learnt 

importance by using attention processes to learn the relative importance of various relation kinds. 

They used a number of benchmark datasets to show how effective their strategy was. 
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The salient features of the research examined in this study are enumerated in the following table:  

Category Papers Description Limitations 

Similarity-

Based 

Imming et al.  (2006) 

[11], Zhang et al.  

(2009)[12], Gottlieb et 

al.  (2012)[13], Vilar 

et al.  (2012)[14], 

Ferdousi et al.  

(2017) [15]. 

ML algorithms, which rely on similarity 

measures, are used in these approaches 

to predict DDIs. The algorithms employ 

similarity measures, such as Jaccard 

index, cosine similarity, and Tanimoto 

coefficient, to compare the drug features 

and predict DDIs. 

 Limited ability to capture complex 

relationships and dependencies 

between drugs and DDIs. 

 May not account for context-specific 

factors that impact drug interactions. 

Classificati

on-Based 

Li et al.  (2015)[16], 

Jian-Yu et al.  

(2016)[17], Kastrin et 

al. (2018)[18], Zhao et 

al. (2019)[19].  

The enlisted methodologies involve the 

classification of drugs into different 

categories based on their 

pharmacological properties and 

therapeutic effects using ML algorithms 

such as SVMs. 

 Limited by the quality and quantity of 

available data. 

 Require a large and diverse training 

set of known DDIs to achieve high 

accuracy. 

 Risk of overfitting to training data, 

which can result in poor 

generalization to new data. 

 

Literature

-Based 

Tari et al. (2010)[20], 

Tatonetti et al.  

(2012b)[21], 

Kolchinsky et al. 

(2013)[22]. 

These studies involve NLP techniques to 

extract drug interaction information 

from text sources, followed by text or 

statistical analysis techniques to 

establish drug relationships and ML 

techniques to predict the unknown drug 

interactions. 

 Relies on availability and accuracy of 

literature sources, which may be 

incomplete or biased. 

 May miss important information that 

is not explicitly mentioned in the 

literature. 

 Suffer from low accuracy due to noise 

and variability in language use. 

 

Link 

Prediction 

/ Random 

Walk 

Cami et al. (2013)[23], 

Perozzi et al. 

(2014)[24], Zhang et 

al. (2015)[25], Park et 

al. (2015)[26], Sridhar 

et al. (2016)[27], 

Ribeiro et al. 

(2017)[28], Yan et al. 

(2019)[29]. 

Drugs are represented as nodes, and their 

connections and interactions as edges to 

predict unknown interactions. The label 

propagation, recursive least squares 

(RSL), graph traversal and random 

walks strategies are employed for link 

prediction in these techniques. 

 Limited by the quality and 

completeness of network data. 

 May suffer from scalability issues 

with large networks. 

 May not capture complex interactions 

and dependencies between drugs and 

DDIs. 

 

Neural 

Network 

Tang et al. (2015)[30], 

Wang et al. 

(2016)[31], Kipf et al. 

(2016)[32]. 

Such approaches involves the use of 

deep learning algorithms, such as CNNs 

and RNNs, to predict DDIs. These 

algorithms use the features of drugs and 

their interactions to predict DDIs. 

 Training requires large no of data. 

 Computationally intensive, requiring 

large amounts of computing power 

and time to train. 

 Can be difficult to interpret and 

understand how the model is making 

predictions. 

 

 Table 1: Literature Review of DDIs 
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Ensemble-

Based 

Zhang et al. 

(2017)[33], Deepika et 

al. (2018)[34]. 

The techniques were used for DDI 

prediction by combining multiple types 

of features and models, such as 

similarity-based features and deep neural 

networks. 

 Can be difficult to integrate multiple 

models and may require significant 

computational resources. 

 Risk of overfitting if individual 

models are highly correlated 

 

Matrix 

Factorizati

on 

Belkin et al. 

(2003)[35], Vilar et al. 

(2013)[36], Cao et al. 

(2015)[37], Zhang et 

al. (2018)[38], Yu et 

al. (2018)[39], Shi et 

al. (2018)[40], Shtar et 

al. (2019)[41], Rohani 

et al. (2020)[42]. 

The proposed algorithms employ a 

decomposition process on the known 

DDI matrix into several potential 

matrices, which are constrained by 

collective similarity. Then, the potential 

matrix is reconstructed to obtain a new 

low-dimensional interaction matrix. 

 May not capture complex interactions 

and dependencies between drugs and 

DDIs so do not perform well with 

sparse datasets. 

 Limited by the quality and 

completeness of the input data. 

 

Graph 

Embeddin

g 

Ryu et al. (2018)[43], 

Ma et al. (2018)[44], 

Liu et al. (2019)[45], 

Lee et al. (2019)[46], 

Hou et al. (2019)[47], 

Deng et al. (2020)[48], 

Feng et al.  (2020)[49], 

Wu et al. (2021)[50]. 

Such methods involve the use of graph 

embedding algorithms that 

automagically learn node representation 

in low-dimensional space for predicting 

DDI.  

 They are limited by the quality and 

completeness of the input data and 

graph structure so they cannot 

perform well with large and complex 

networks. 

 Cannot perform well with large and 

complex networks. 

 

Knowledg

e Graph-

DDI 

Celebi et al. 

(2019)[51], Karim et 

al. (2019), Yue et al. 

(2021)[52], Ren et al. 

(2022)[53]. 

These studies extracts features from 

different biological entities such as 

drugs, targets, and enzymes, and 

integrates them into a multi-modal KG to 

perform graph embedding. 

 Limited by the quality and 

completeness of the KG and 

associated data sources. 

 Require high-quality data and may 

suffer from scalability issues. 

 May not capture novel or emerging 

DI that are not explicitly represented 

in the KG. 

 

KGAT 

(General) 

Wang et al. 

(2019)[54], Cui et al. 

(2020)[55], Li et al. 

(2021)[56], Wu et al. 

(2021)[57], Lan et al. 

(2022)[58], Zhang et 

al. (2023)[59].  

GNN techniques that utilizes attention 

mechanisms to model complex 

relationships in KGs. KGAT has become 

a prevalent tool and has been applied in 

various applications, including 

recommendation systems, collaborative 

filtering, KG completion, entity 

alignment, text-to-speech synthesis, 

healthcare and drug discovery. 

 May have same limitations as 

mentioned above in the knowledge 

graph category as for this technique 

only an additional mechanism of 

attention is introduced. 
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2.2. Research Gaps 

The fundamental focus of many AI-based computational models for DDI prediction is 

merging popular embedding techniques and different data sources. Nevertheless, scientists 

frequently ignore the possible relationships that medications may have with other objects, such 

targets and genes. Additionally, some recent studies have utilized KGs for DDI prediction, but 

these methods typically learn node hidden embeddings directly, limiting the ability to obtain 

detailed information on the neighborhoods of every entity in the KG [60]. Furthermore, despite its 

popularity in various applications, no research has used the KGAT for DDI prediction. 
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CHAPTER 3: EXPERIMENTAL PIPELINE 

In this chapter offers a thorough explanation of the experimental procedure we used to assess the 

suggested DDI-KGAT model for drug-drug interaction prediction. The chapter is organized into 

multiple sections, with Pseudocode serving as the introduction, outlining the proposed model's 

algorithmic flow. We then go over the steps needed in gathering data for drug-drug interactions 

and creating the biological knowledge network, which we call data collection and preprocessing. 

We go over feature extraction in section 3.3. Feature extraction is the process of taking pertinent 

features out of the knowledge network and using them to represent medications and their 

interactions. We describe the specifics of the Model Development process, which included putting 

the KGAT model into practice, in section 3.4. Finally, in section 3.5, we conclude with a discussion 

of model training and assessment. This process entailed using the extracted features to train the 

model and a variety of assessment measures to assess its performance. An extensive description 

of the experimental procedure we used to assess the suggested KGAT model for drug-drug 

interaction prediction is given in this chapter. 
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Developing a Model for DDI Prediction Based on Knowledge Graphs  

3.1. Experimental Work 

3.1.1. Pseudocode  

1. Define the main function  

2. Load the necessary modules and libraries. 

3. Define the get_optimizer function.  

a. Check the type of optimizer.  

b. Return the corresponding Keras optimizer. 

4. Define the train function that takes several inputs.  

5. Initialize the config object with the default values.  

6. Adjust the model's hyper parameters.  

7. Get the information from the dataset.  

8. Create an instance of the KGAT class.  

a. Initialize the class with the hyper parameters. 

b. Define architecture of generator plus discriminator. 

c. Define the generator and discriminator's loss functions. 

d. Define the training procedure for the generator and discriminator. 

e. Define the method to score the model. 

f. Define the method to load the best model. 

g. Define the method to load the SWA model. 

9. Use the training data to fit the model.  

10. Use the validation data to assess the model.  

11. Print the results. 
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3.1.2. Block diagram of experimental work 

 

The block diagram illustrates the main experimental workflow of this research, from data 

collection and DDI extraction through to model development, training, and evaluation. Predicting 

DDIs is made rigorous and methodical with this organized technique. 

 

Data Collection DDI Extraction

KG Construction Feature ExtractionModel Development 

Hyperparameter 

Settings
Model Training

Backpropagation & 

SGD  

Output Layer  Evaluation 

 

FIGURE 2:  BLOCK DIAGRAM OF THE EXPERIMENTAL WORKFLOW 
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3.2. Data Collection and Preprocessing 

3.2.1. DDI Extraction 

1. Download data from public drug database (KEGG): The first step in DDI 

extraction is to obtain the necessary data from the KEGG drug database. This can be done 

by downloading the XML file containing information about drugs and their interactions. 

2. Parse DDI information from XML file: The next step is to extract the DDI 

information from the XML file. This involves parsing the file and identifying the relevant 

information, such as the names and identifiers of the drugs involved in each interaction. 

3. Compile an edge list of drug identifier combinations: Once the DDI 

information has been extracted, the next step is to create an edge list of drug identifier 

combinations. This involves creating a list of all the possible drug pairs involved in DDIs, 

along with a binary label indicating whether or not a DDI exists between each pair. 

3.2.2. KG Construction 

1. Retrieve raw data from KEGG dataset: The first step in constructing the KG 

is to obtain the necessary data from the KEGG dataset. This can be done by downloading 

the relevant files from the KEGG website. 

2. Convert data into RDF graph using Bio2RDF tool: The next step is to 

convert the raw data into an RDF graph using the Bio2RDF tool. This involves mapping 

the data to appropriate ontologies and creating RDF triples that represent the entities and 

relationships in the KG. 

3. Upload RDF graph to RDF triplestore: Once the RDF graph has been 

created, the next step is to upload it to an RDF triplestore. This allows for efficient querying 

and retrieval of data from the KG. 

4. Execute federated SPARQL queries based on billion triples benchmark to 

extract selected triples: In order to extract the relevant triples from the KG, federated 

SPARQL queries based on the billion triples benchmark are executed. These queries 

retrieve triples that represent the entities and relationships involved in DDIs. 



31 
 

5. Construct KG from extracted triples (entity, relation, entity): The final step 

in KG construction is to use the extracted triples to construct the KG. This involves creating 

nodes for each entity in the KG (drugs, genes, and targets) and edges for each relationship 

between entities. The resulting KG can be used as input to train the KGAT model for 

predicting DDIs. 

Create two data sources: 

1. Parsed DDI matrix containing drug-drug pairs. 

2. Constructed knowledge graph. 

3.3. Feature Extraction 

The next step is to extract features from the preprocessed data. We used various techniques 

to convert categorical data into numerical data. We also used graph-based methods to represent 

the drug interactions and associations in a more structured format. This step helped us to obtain 

the necessary features required for the drug combination prediction. 
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3.4. Model Development 

We developed a knowledge graph-based approach called KGAT for drug combination 

prediction using attention mechanisms. KGAT uses GNN with attention mechanisms to learn 

embeddings for the drugs and their interactions in the KG. The attention mechanisms allow KGAT 

to capture important features and enhance the performance of drug combination prediction. 

 

FIGURE 3: OVERVIEW OF OUR TECHNIQUE 
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3.5. Model Training and Evaluation 

We Our KGAT model was trained using a sizable dataset of medication combinations, and 

its effectiveness was assessed using the KEGG dataset. In order to prevent overfitting and 

guarantee its robustness, we carried out cross-validation. After that, we split the dataset into 

training and testing sets by preparing the data and extracting its features. Before training the model 

using backpropagation and stochastic gradient descent to minimize the loss function, we defined 

the hyper-parameters, which included the embedding dimension, neighborhood sample size, 

l2_weight, learning rate, optimizer type, batch size, aggregator type, regularization strength, and 

number of epochs. Using widely used evaluation metrics including accuracy (ACC) and F1 score, 

as well as Area under the Precision-Recall Curve (AUPR) and Receiver Operating Characteristic 

Curve (AUC-ROC), we assessed the model's performance on the testing set. 

Furthermore, we visualized the model's predictions and the relationships between the drugs 

in the KG and compared the performance with other state-of-the-art approaches for predicting 

DDIs.  
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CHAPTER 4: METHODOLOGICAL FRAMEWORK 

In this chapter, experimental setup and technique for the proposed KGAT model are provided. The 

methodology section details the architecture of DDI-KGAT, which consists of input, graph 

embedding, graph attention, graph convolution, aggregation, and output layers. Each layer is 

described in detail, including the purpose and functionality of the layer in the model. Additionally, 

the training process's loss function is also covered. 

 

The experimental setup, which includes the data sources and pre-processing methods used to build 

the biomedical knowledge graph (KG) and extract drug-drug interactions (DDIs) for the model 

training and evaluation, is described after the methodology section. The main data source for 

building the KG is the KEGG database, which includes details on metabolic pathways and 

biological reactions. This section also includes a description of the hyper-parameter values that 

were used in the tests. All things considered, this chapter offers a thorough rundown of the 

experimental design and technique for the DDI-KGAT model.  
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4.1. Methodology 

Complete architecture of Knowledge Graph Attention Network (KGAT) for predicting 

drug-drug interactions (DDI): 

4.1.1. Input Layer 

-Knowledge graph (KG) with entities (drugs, targets, genes) and relations between them 

-DDI labels (binary classification) 

4.1.2. Graph Embedding Layer 

In the DDI prediction task, the Embedding Layer maps every drug and feature in the KG 

to a low-dimensional vector space using embedding matrices. The embedding matrices are trained 

through backpropagation while training the model, during the training phase.  

In this project, we use an entity embedding approach to encode the drug nodes and their 

features. We create a dictionary of all drugs and features in the KG and assign a unique index to 

every of them. We then use these indices to create a dense matrix representation of the KG. 

To obtain the entity embeddings, we use an embedding matrix that maps the indices to low-

dimensional vectors. Every row of the embedding matrix represents a unique entity in the KG. 

During training, the embedding matrix is learned through backpropagation to minimize the loss 

function. 

The Embedding Layer is an essential component of the KGAT model because it enables 

the model to represent every entity in the KG as a low-dimensional vector. This vector 

representation captures the characteristics of the entity and its relationships with other entities in 

the KG. These embeddings are then fed into the Attention Layer for further processing. 

4.1.3. Graph Attention Layer 

The Attention Layer in our project is a crucial component in capturing the relationships 

between entities in the KG and incorporating this information into the drug representation. The 

layer operates by computing attention weights for every neighbor of a drug node in the KG, which 

are a measure of the importance of every neighbor in the context of the drug node. 
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In the attention computation process, a multi-head attention mechanism is employed, 

enabling the model to concurrently focus on diverse subsets of neighbors. The attention weights 

(AW) are determined through a dot product between the drug node embedding and the embedding 

of each neighbor (ne), followed by the addition of the attention bias term (ab) and an attention 

weight tensor (aw). The resulting values undergo a softmax operation (σ) along the specified axis 

to generate a probability distribution over the neighbors. The mathematical representation is 

expressed as: 

𝐴𝑊 =  𝜎((𝑛𝑒 .  𝑎𝑤) +  𝑎𝑏)𝑎𝑥𝑖𝑠=1    (1) 

The attention weights are then used to obtain a context vector for the drug node by summing 

the weighted neighbor embeddings. The context vector captures the most important information 

from the neighbors in the KG and is used as a supplement to the original drug representation 

obtained from the Embedding Layer. 

Overall, the Attention Layer is an essential component of current work as it allows the 

model to effectively capture the intricate connections among entities in the KG, which is crucial 

for accurately predicting DDIs. 

4.1.4. Graph Convolution Layer 

For the purpose of learning node representations in a graph, the graph convolution layer is 

a crucial part of GNNs, which include graph attention networks (GATs). This layer's objective is 

to compile data from a node's immediate neighborhood and create a new representation for the 

node that includes its neighbors' and the node's own features. 

While there are other methods for creating graph convolution layers, a popular strategy is 

to leverage a message passing scheme variation. Messages are passed iteratively between nodes in 

a graph using the message passing technique. Each message is a function of the node's own 

properties as well as those of its neighbors. After that, a mean or summing operation is applied to 

all of the neighbors' messages, and the resulting aggregate message is used to update the node's 

representation. 
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Our study explores the effectiveness of three distinct types of aggregators, including the 

sum, mean, and max aggregators, each influencing the aggregation process differently. In the 

subsequent formulas (2), (3), and (4) we utilize the following terms: 

Drug Entity (e), represents the intrinsic properties of the drug node in the KG; Neighbor 

(n), signifies the features of neighboring nodes that interact with the drug node; Output (y), denotes 

the resultant representation of the drug node after the aggregation process; Activation Function (σ) 

as we are using sigmoid, it introduces non-linearity to the output, facilitating the model to learn 

complex relationships and patterns; Dot Product Operation (.) , a mathematical operation used 

extensively in the aggregation process to determine feature significance; Weight Tensor (w), refers 

to the tensor responsible for weighting the importance of different features during aggregation; 

Bias Term (b), represents the bias term, which is introduced to the weighted sum during 

aggregation.  
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FIGURE 4: STRUCTURE OF GRAPH CONVOLUTION LAYER 

4.1.4.1. Sum Aggregation Layer 

In the Sum Aggregation Layer, the drug features and the context vector obtained from the 

Attention Layer are combined (𝑒 +  𝑛) to create a more inclusive illustration of the drug node in 

the KG. The drug features represent the intrinsic properties of the drug, while the context vector 

captures the influence of the drug's neighbors in the KG. By weighting and combining these two 

sources of information, the model is capable to capture both the intrinsic properties of the drug and 

its interactions with other entities in the KG, resulting in a more accurate prediction of DDIs.  

𝑦𝑠𝑢𝑚  =  𝜎((𝑒 + 𝑛) ⋅ 𝑤 + 𝑏)                               (2) 
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4.1.4.2. Mean Aggregation Layer 

In the Mean Aggregation Layer, the drug features and the context vector obtained from the 

Attention Layer are combined using the element-wise mean operation ((𝑒 +  𝑛)/2) to create a 

more balanced representation of the drug node in the KG. This operation allows the model to 

capture both the individual properties of the drug and the overall characteristics of its neighbors in 

the KG, leading to a more complete understanding of the drug and its potential interactions. 

𝑦𝑚𝑒𝑎𝑛 =  𝜎(((𝑒 + 𝑛)/2) ⋅ 𝑤 + 𝑏)                    (3) 

4.1.4.3. Max Aggregation Layer 

In the Max Aggregation Layer, the drug features and the context vector obtained from the 

Attention Layer are combined using the element-wise maximum operation (𝑚𝑎𝑥(𝑒, 𝑛)) to 

emphasize the most salient features of the drug node in the KG. This operation permits the model 

to focus on most important properties of the drug and its neighbors, potentially leading to more 

accurate predictions of DDIs. However, the approach may also be more sensitive to outliers and 

noise in the data, and may require more careful tuning. 

𝑦𝑚𝑎𝑥  =  𝜎(𝑚𝑎𝑥(𝑒, 𝑛) ⋅ 𝑤 + 𝑏)                        (4) 

4.1.5. Output Layer 

The composite representation of the drug node is then sent into the FCNN for binary 

classification. A particular kind of neural network called an FCNN is made up of fully connected 

layers that are connected one after the other so that every neuron in one layer is connected to every 

other neuron in the layer above it. A single value that represents the anticipated chance of a DDI 

between the two medications is the output of the FCNN's last layer. The model is trained using the 

binary cross-entropy loss function, which calculates the variance between each training example's 

predicted and actual label and uses the Adam optimizer to apply gradient descent to modify the 

model's weights. 
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4.1.6. Loss Function 

The binary cross entropy loss, or loss function (𝐿), is a frequently used function for binary 

classification issues such as DDI prediction. The difference between the true labels, which is either 

𝑦 = 0 (no DDI) or 𝑦 = 1 (DDI present) and the predicted probability (𝑝) of a DDI is measured 

by the binary cross entropy loss. 

𝐿 =  − [𝑦 ∗  𝑙𝑜𝑔 (𝑝)  +  (1 −  𝑦)  ∗  𝑙𝑜𝑔 (1 −  𝑝)]    (5) 

During training, model employs the Adam optimizer, a commonly used algorithm that 

dynamically adjusts learning rates for each parameter based on gradients. The optimizer aims to 

find the best parameter configuration, minimizing the loss function and maximizing predictive 

performance on test data. By integrating a loss function and optimizer, the model learns from 

errors, fine-tuning parameters for improved predictions. Evaluating the resulting predictions on a 

separate test set allows performance measurement and facilitates comparison with other models or 

baselines. 

The DDI-KGAT method is composed of multiple graph convolutional layers that are 

succeeded by attention layers that determine the significance of certain graph segments for the 

DDI prediction job. This enables the model to filter out noise and unimportant data and concentrate 

only on pertinent regions of the graph. To forecast DDI, the final output layer combines drug 

characteristics and learned node embeddings. 

Overall, the architecture of KGAT for DDI prediction involves multiple layers that are 

specifically designed to influence the graph structure of the data and incorporate information from 

the graph in a principled way. The attention mechanism in the DDI-KGAT provides a flexible way 

to weight the contributions of different parts of the graph to the prediction task, making it a 

powerful approach for modeling complex relationships in the data. 
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4.2. Experimental Setup 

4.2.1. KEGG Database 

In order to make it easier to analyze complicated biological systems, KEGG is a 

comprehensive database resource that combines different biological information, including 

genetic, chemical, and network information. KEGG is an invaluable resource for biomedical 

research since it offers a significant amount of manually selected data on numerous biological 

processes, illnesses, and medications. In the realm of bioinformatics, the KEGG dataset is 

extensively utilized and has been useful in deepening our understanding of biological systems. 

In this study, we utilized a combination of two data sources: a parsed DDI matrix and a 

constructed biomedical knowledge graph. The DDI matrix was extracted from publicly available 

drug database, KEGG, and parsed to assemble an edge list of the drug identifier combinations. The 

KG was constructed by retrieving raw data from the KEGG dataset and converting it into an RDF 

graph using the Bio2RDF tool. The RDF graph was then uploaded to an RDF triplestore, and to 

extract selected triples federated SPARQL queries built on the billion triples benchmark were 

executed. The constructed KG was composed of entities, relations, and entities. The statistics of 

both data sources were analyzed to ensure data quality and accuracy. 

Table 2: Basic statistics of the used KEGG dataset. 

Drugs 1925 

DDIs 113965 

Entities 129910 

Relation 167 

KG triplets 362870 

 

To preserve the original integrity of the KG, we collected and constructed it using a careful 

approach. However, as the KG should not include any explicit information on DDIs, we excluded 

the information in the form of URLs, specifically "Drug-Drug-Interaction" from KEGG-drug 
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datasets. This process ensured that the KG did not include any data that could bias the prediction 

of DDIs. 

4.2.2. Hyper-Parameter Settings 

After conducting a thorough case study and examining the effects of hyper parameters at 

various settings, we have carefully tuned our model to the optimal configuration that yields the 

best results for our task of DDI prediction. 

All authorized DDIs were split into positive samples at random and then distributed using 

an 18/1/1 ratio among training, validation, and testing sets. We randomly selected an equal number 

of negative samples from the complement set of positive samples in each phase to maintain 

equilibrium. We used eight-fold cross-validation tests and a random search to optimize all trainable 

parameters with Adam. We optimized additional hyper-parameter values for the validation set, 

which are shown in a table for reference, and the training was set for 30 epochs. 

Table 3: Hyper-parameter settings. 

Hyper-parameter Value 

Neighbor sampling size 16 

Dimension of embedding 32 

Depth of receptive field 2 

Batch size 2048 

L2 regularizer weight 2e-8 

Learning rate 5e-3 
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CHAPTER 5: RESULTS AND DISCUSSIONS 

 

The findings and explanations of the KGAT model for forecasting drug-drug interactions are 

presented in this chapter. The findings of the experiments done on the KGAT model are presented 

at the start of the chapter. Several performance indicators, including accuracy, F1 score, AUC-

ROC, and AUPR, are included in the results section. To assess KGAT's efficacy, its performance 

is also contrasted with that of other cutting-edge techniques. 

 

The results and their consequences are thoroughly analyzed in the discussion section. The study's 

contributions are highlighted and the results are compared with earlier research. A overview of the 

findings and their importance in the context of KGAT-based drug-drug interaction prediction 

round off the chapter.  
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5.1. Results 

The outcomes of our tests assessing the effectiveness of our suggested KGAT model for DDI 

prediction on the KEGG dataset are shown in this section. We evaluate the efficacy of three distinct 

aggregator types—sum, mean, and max—that are frequently employed in GNNs. 

First, we use the sum aggregator to analyze our methods' performance. The findings 

demonstrate that, in comparison to state-of-the-art methods, our KGAT model obtains the greatest 

average AUC-ROC of 0.9447, ACC of 0.8869, F1 score of 0.8917, and AUPR of 0.9255. 

 

FIGURE 5: RESULTS OF OUR MODEL USING SUM AGGREGATOR 

Next, we use the mean aggregator to assess how well our plan is working. The findings 

show that the KGAT model performs comparably to the sum aggregator, achieving an average 

AUC-ROC of 0.9419, ACC of 0.8823, F1-score of 0.8867, and AUPR of 0.9226. 

 

FIGURE 6: RESULTS OF OUR MODEL USING MEAN AGGREGATOR  
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We then examine the performance of our model using the max aggregator. The results 

indicate that the KGAT model achieves the average AUC-ROC of 0.9397, ACC of 0.8772, F1-

score of 0.8816 and AUPR of 0.9207, which is slightly lower than the performance achieved with 

the sum aggregator. 

 

FIGURE 7: RESULTS OF OUR MODEL USING MAX AGGREGATOR 

Finally, we present a comparison of the performance of our KGAT model using the three 

different types of aggregators. The results show that the sum aggregator outperforms both the mean 

and max aggregators in terms of AUC-ROC, ACC, F1-score and AUPR. Our findings suggest that 

the sum aggregator is the most effective aggregation function for our proposed KGAT model in 

the task of predicting drug-drug interactions.  

 

FIGURE 8: OVERALL COMPARISON OF OUR MODEL RESULTS 
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5.2. Discussion 

GNNs have emerged as powerful tools for DDI prediction using KGs. Aggregators play a 

crucial role in these models as they determine how neighboring nodes are combined to update the 

embedding of a central node. The selection of aggregator depends on the precise task and the 

characteristics of the graph being used. 

There are many main types of aggregators commonly used in GNNs. We have used: sum, 

mean, and max aggregators. The sum aggregator is a simple function that computes the sum of the 

embeddings of neighboring nodes, making it widely used to update the embedding of a central 

node by combining info from all neighboring nodes. However, it can be sensitive to outliers and 

may not always capture the most relevant information from neighboring nodes. On the other hand, 

the mean aggregator computes the mean of the embeddings of neighboring nodes, making it more 

robust to outliers and commonly used in graph neural networks. Meanwhile, the max aggregator 

computes the maximum of the embeddings of neighboring nodes and is useful when the most 

relevant information is likely to come from a single neighbor. 

The choice of aggregator in a graph neural network can have significant implications for 

memory usage and computational power. The sum aggregator is a memory-efficient function that 

requires less computational resources than the mean and max aggregators. Moreover, our research 

study found that the sum aggregator outperformed the mean and max aggregators in predicting 

DDIs, mainly because it can effectively capture the most relevant information from neighboring 

nodes. Additionally, the sum aggregator is a simple and intuitive function that is easy to implement 

and interpret, making it a prevalent choice for many applications. Overall, the sum aggregator is a 

reliable and efficient function that can be a useful tool for updating the embeddings of central 

nodes in GNNs. 
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5.2.1. Comparison with similar work on predicting DDIs using knowledge graph 

neural network (KGNN) on KEGG dataset. 

Our research study has shown that incorporating an attention mechanism with a simpler 

aggregator has yielded even better results than the concatenate aggregator, which was claimed to 

be the best so far by Lin et al. [60].  

 

FIGURE 9: OUR TECHNIQUE CONTRAST TO THE 2ND BEST TECHNIQUE UNTIL NOW 

This finding suggests that our technique has surpassed the state of the art approaches and 

achieved the highest ACC, F1-score, AUC-ROC, and AUPR values for the DDI prediction task. 

Table 4: Comparison of DDI-KGATX vs KGNNX technique. 

Methods 

Metrics 

KGNNx DDI-KGATx 

neighbor sum concat max mean sum 

AUC-

ROC 
0.9295 0.9387 0.9422 0.9397 0.9419 0.9447 

ACC 0.8681 0.8818 0.8844 0.8799 0.8853 0.8901 

F1 score 0.8726 0.8862 0.8894 0.8816 0.8867 0.8917 

AUPR 0.9052 0.9134 0.9212 0.9207 0.9226 0.9255 
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The results of our study have significant inferences for the field of KG embedding, 

especially in domains where high accuracy and low-dimensional complexity are essential, such as 

drug discovery. By combining the attention mechanism with a simpler aggregator, our technique 

has not only improved the performance of the KGNN model [61] but has also reduced its 

complexity, making it more computationally efficient. 

 

FIGURE 10: COMPARISON OF OUR KGATx TECHNIQUE VS KGNNx 

All things considered, our research study has advanced the state of the art in KG embeddings 

by putting forth a unique method that works better than current models. It emphasizes how crucial 

it is to investigate various aggregator kinds and include attention techniques in order to improve 
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5.2.2. Comparison with state-of-the-art techniques using knowledge graph for 

predicting DDIs. 

In the study by Feng et al. on DPDDI [49], deep learning frameworks are employed; however, a 

limitation arises in terms of interpretability, making it challenging to comprehend the underlying 

factors influencing predictions. Yu et al. propose SumGNN [52], which focuses on efficient KG 

summarization for multi-typed drug interaction prediction. Nonetheless, the method encounter 

difficulties in capturing intricate relationships within the KG, potentially impacting prediction 

accuracy. Ren et al. introduce BioDKG-DDI [53], which combines biochemical information with 

a drug KG. Nevertheless, the integration of multiple data sources presents complexities and 

potential challenges in handling heterogeneous data. SA-DDI technique by Yang et al. [62] include 

challenges in interpreting the identified substructures, requiring further investigation for 

meaningful interpretation. Lastly, Hao et al. [63] utilize a three-way decision and stack multiple 

complex techniques, which can lead to increased computational complexity and hinder scalability. 

Although their performance is comparable to DDI-KGAT, but it is not offering the same level of 

simplicity and computational efficiency. 

 

FIGURE 11: COMPARISON OF DDI-KGAT VS STATE-OF-THE-ART TECHNIQUES 

The effectiveness of present strategies is validated by the outstanding F1 score, accurately 

capturing true positives and reducing false positives in DDI prediction. Prioritizing this metric 

allows for meaningful comparisons with existing literature, offering a comprehensive assessment 
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between precision and recall. This focus underscores our commitment to addressing DDI 

prediction challenges and establishes a new benchmark in the field. In conclusion, the F1 score 

serves as a reliable metric, demonstrating the effectiveness of DDI-KGAT in predicting DDIs. 

Table 5: Comparison of DDI-KGAT vs state-of-the-art techniques 

Methods F1-score (%) 

DPDDI (Feng et al., 2020) [49] 85.5 

SumGNN (Yu et al., 2021) [52] 86.9 

BioDKG-DDI (Ren et al., 2022) [53] 88 

SA-DDI (Yang et al., 2022) [62] 88 

3WDDI (Hao et al., 2023) [63] 89 

DDI-KGAT (Ours) 89 

Our analysis reveals that DDI-KGAT stands out from the aforementioned publications due to its 

exceptional performance, high accuracy, low-dimensional complexity, and computational 

efficiency. The approach offers a simpler and more interpretable solution, while still achieving 

comparable or even superior results, demonstrating its effectiveness and practicality in the context 

of DDI prediction. Additionally, DDI-KGAT demonstrates superior computational efficiency, 

scalability, and integration ease compared to current methods. It requires less computational 

resources and proposes faster inference times due to its optimized architecture, maintaining robust 

performance with increasing data volumes and knowledge graph complexity. Its interpretable 

predictions and user-friendly interface facilitate seamless integration into clinical workflows, 

making it the preferred choice for DDI prediction in real-world settings. This positions DDI-

KGAT as a benchmark in the field, setting new standards for efficiency and usability in DDI 

prediction. See the table below for a summary of the performance of DDI-KGAT compared to 

state-of-the-art techniques. 

  



50 
 

Table 6: Performance overview of DDI-KGAT vs state-of-the-art techniques 

Methods 
Computational 

Efficiency 
Scalability 

Integration 

Ease 

DPDDI Moderate to High Limited Moderate 

SumGNN Moderate Moderate Limited 

BioDKG-DDI Moderate Moderate Limited 

SA-DDI Moderate to High Limited Moderate 

3WDDI Low to Moderate Limited Limited 

DDI-KGAT 

(Ours) 
High High Easy 

 

5.2.3. Case Study 

EVALUATING DDI PREDICTIONS FOR METFORMIN AND DAPAGLIFLOZIN 

To demonstrate the clinical relevance and interpretability of our DDI-KGAT model, we conducted 

a detailed case study focused on the predicted interaction between Metformin, a widely used 

antidiabetic drug, and Dapagliflozin, an SGLT2 inhibitor. Both drugs are commonly prescribed to 

manage type 2 diabetes but their interaction potential is not extensively documented in clinical 

practice. 

Our DDI-KGAT model predicted a significant interaction between Metformin and 

Dapagliflozin. This interaction could potentially enhance the hypoglycemic effects when used 

concomitantly, thereby increasing the hazard of lactic acidosis [64] , a rare but thoughtful 

complication that involves the enhanced glucose regulatory effect. The binary output of the model 

indicated a "positive" interaction, suggesting heightened attention when these drugs are prescribed 

together.  
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SUMMARY 

The goal of the proposed study is to predict drug-drug interactions (DDI) by employing a unique 

knowledge graph-based method known as KGAT. This method efficiently extracts the drug and 

its possible neighbors by capturing high-order structures and semantic relations of the graph. To 

capture significant aspects and connections between medications and other things, like targets and 

genes, the model makes use of attention mechanisms. This smaller dimensionality, 

computationally efficient method makes use of detailed neighborhood information for each entity 

in the knowledge graph (KG). On the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

dataset, the study demonstrates that the KGAT model performs better than the state-of-the-art 

methods currently in use. The model emphasizes the significance of accurate drug combination 

prediction and has the potential to enhance patient outcomes and safer drug development. The 

usage of the knowledge graph attention network (KGAT), a method not previously investigated in 

DDI prediction, is also investigated in this study, as is its potential for further investigation in KG 

embedding. 

The study draws attention to the shortcomings in current computational models that use AI 

techniques for DDI prediction. These models typically concentrate on merging popular embedding 

methods and integrating multiple data sources, but they pay less attention to possible correlations 

between drugs and other entities like targets and genes. Furthermore, KGs have been used for DDI 

prediction in recent research; however, these approaches directly train node hidden embedding, 

which restricts the capacity to acquire detailed neighborhood information for each entity in the 

KG. The study's findings show how well the KGAT model performs when using the sum, mean, 

and max aggregators—three aggregator types that are frequently employed in graph neural 

networks (GNNs). The findings demonstrate that in terms of AUC-ROC, ACC, F1-score, and 

AUPR, the sum aggregator performs better than the mean and max aggregators. 

The talk focuses light on the aggregator selection that is frequently employed in GNNs. 

The particular task at hand and the properties of the graph being used determine which aggregator 

is best. The sum aggregator is a frequently used function that combines information from all nearby 

nodes to update the embedding of a central node. It is a simple function that computes the sum of 

the embeddings of neighboring nodes. Often utilized in graph neural networks, the mean 
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aggregator calculates the mean of the embeddings of nearby nodes, increasing its resilience to 

outliers. In the meanwhile, the max aggregator is helpful when the most pertinent data is probably 

going to originate from a single neighbor since it calculates the maximum of the embeddings of 

nearby nodes. The choice of aggregator in a GNN can have significant implications for memory 

usage and computational power. The sum aggregator is a memory-efficient function that requires 

less computational resources than the mean and max aggregators. 

Overall, the research provides a valuable framework for future research in knowledge 

graph-based drug combination prediction, highlighting the potential of attention mechanisms in 

this field. The suggested method has the ability to enhance patient outcomes and promote safer 

medication development by discovering innovative drug combinations with enhanced efficacy and 

safety characteristics. 
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CONCLUSIONS 

In conclusion, our research has effectively created a novel method for leveraging graph neural 

networks and knowledge graphs to predict drug-drug interactions. Our results show that this 

approach has the ability to solve challenging prediction tasks because it makes use of the structured 

information found in knowledge graphs to learn the complex relationships between medications 

and their interactions. Through the addition of a sum aggregator as an attention mechanism to the 

KGAT model, we were able to show a notable increase in accuracy while maintaining the model's 

computational efficiency and reduced dimensionality. Our utilization of the knowledge graph 

attention network added further novelty to our study and holds great promise for future research 

in knowledge graph embedding, especially in domains where high accuracy and low-dimensional 

complexity are of utmost importance. 

This method has many advantages, such as improving drug-drug interaction prediction accuracy, 

avoiding costly and time-consuming experimental studies, and offering transparency and 

interpretability to aid in understanding the underlying mechanisms of drug interactions. The 

method's simplicity makes it accessible to a larger audience, and it may also be expanded to other 

fields where graph-based data is common, like social networks, recommendation systems, and 

fraud detection. 

Overall, our research shows how well knowledge graphs and graph neural networks perform 

complex prediction tasks, and our methodology offers a straightforward and novel means of 

potentially revolutionizing the fields of personalized medicine and drug discovery, resulting in 

safer and more effective treatments for a range of illnesses.  
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