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Abstract 

The energy transport of the circularly polarized electromagnetic (EM) waves is studied in 

a collision less Cairns distributed plasmas, whose constituents are the mobile electrons 

and static ions. For this purpose, the set of Vlasov-Maxwell equations are employed to 

derive a modified dispersion relation in terms of plasma dispersion function for the parallel 

propagating EM waves. The energy flux of the EM waves is studied by taking into account 

the wave-particle interactions caused by non-resonant [𝜉 =
𝜔−𝛺

𝑘∥𝑣𝑇∥
≫ 1] and resonant 

[𝜉 ≪ 1] conditions. It is found that variation of Cairns parameter, thermal speed, wave 

frequency, and temperature anisotropy (assuming the perpendicular temperature 𝑇⊥ to be 

larger than the parallel temperature 𝑇∥ with respect to ambient magnetic field) significantly 

influence the curves of the energy flux. Moreover, one has also been able to find the 

possibility of long distance energy transport as more efficient in resonant case as 

compared to non-resonant case. The outcome of this investigation can be helpful in 

understanding the wave-particle interaction in space exploration, in heating of fusion 

plasmas, and energy deposition in laser-produced plasmas. 
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Chapter 1

Introduction

1.1 Plasma

A widely held opinion is that 99% of the matter in universe is in the state of

plasma; which is made up of electri�ed gas with the atom segregated into negative electrons

and positive ions. Solids go through a phase change and become liquid as they get heated.

The liquids are turned into gasses by heating them. The addition of more energy resulting in

ionization of some of the atoms. The majority of matter is in the ionized state (fourth state

of matter), at temperatures exceeding 100; 000ok. If there is a way to ionize the gas and the

density is low enough to prevent rapid recombination, a plasma state can also exist below the

speci�ed temperature.

Plasma can be de�ned as a quasineutral gas (comprises neutral and charged particles)

which shows collective behaviour. We can�t specify any ionized gas a plasma unless it meets the

two fundamental properties: quasineutrality and collective behavior. Quasineutrality describes

plasma as neutral su¢ ciently to consider ni ' ne = n. Whereas collective behavior indicates

that each individual particle a¤ects the behavior of the plasma [1,2].

1.1.1 Space Plasma

Plasmas can be found in the solar wind, solar corona, comet tails, magnetosphere, interstellar

and intergalactic media, and accretion disks surrounding black holes, among other places in the

Solar System and beyond. Such type of a plasma also known as astrophysical plasma [3]. On
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Earth, plasmas can also be found in candle �ames extended to nuclear fusion reactor interiors.

High temperature and density are seen in several locations of space plasma; the Sun is the �nest

example of this type of plasma. The Sun is Earth�s primary energy source, and all energy that

is sent to Earth from the Sun comes in the form of plasma.

1.2 Debye Shielding

In the stationary state, about equal amounts of positive and negative charges per volume

element are required for the plasma to behave quasineutral. A volume element of this nature

needs to be su¢ ciently large to accommodate a good number of particles and relatively small

in relation to the characteristic lengths for changes in macroscopic parameters like density n

and temperature T .

Figure 1.1. Debye Shielding

In order for the plasma to seem neutral, the electric Coulomb potential �eld �C of every

individual point charge q is shielded by other charges in the plasma and assumes the Debye

potential form:

�D =
q

4�"or
exp(� r

�D
) (1.1)

where �D is the debye length; a measure of thickness of the sheath or shielding distance. Debye

shielding can also happen in systems with single species as the electron streams in klystrons

and magnetrons.
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1.3 Criteria for Plasma

There are three necessary requirements which an ionized gas must be ful�lled to behave as

plasma:

a. Quasineutrality �D << L

b. No. of particles in debye sphere ND >> 1

c. Collision Time !� >> 1

The �rst condition shows that the �D must be less than the dimension of plasma. When

a system�s dimensions L are signi�cantly greater than �D, any external potentials or localized

concentrations of charge that may appear are shielded out within a shorter distance than L,

preventing massive electric potentials or �elds from entering the majority of the plasma. The

second condition ND >> 1 explains that debye sphere must have large number of particles.

Debye shielding would not have any sense if there were only one or two particles in the sheath

region. The third condition requires !� >> 1 for a gas to act like a plasma instead of a

neutral gas, where ! is the typical plasma oscillation frequency and � is the mean time between

collisions with neutral atoms [1,2].

1.4 Models to Study Plasma

Numerous mathematical models are considered to study properties and associated phenomenon

of plasma, e.g. �uid and kinetic model.

1.4.1 Fluid Model

Fluid model is the easiest model to understand the macroscopic behavior of plasmas ranging

from laboratory experiments up to astrophysical phenomena. This model provide useful infor-

mation of collective plasma behavior which helps greatly in theoretical and numerical studies.

Fluid model works well in describing complex systems taking place on broader time and spatial

scales compared to average particle mean free path and collision time, such as plasma con-

�nement, plasma instabilities, etc. The commonly used equations in �uid model are Maxwell

equations, equation of continuity and a momentum transport equation.

Fluid model is extended to Single Fluid Model [2]; considers plasma treated as one �uid
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and assumes no charge accumulation, Two Fluid Model [4,7]; distinguish between electrons and

ions based on their unique dynamics, Magnetohydrodynamic (MHD) [5,7]; includes magnetic

�eld dynamics and �t for the description of large scale plasmas. Fluid model is applicable in

space physics, astrophysics and fusion research.

1.4.2 Kinetic Model

On small spatial and temporal scales, kinetic models are necessary with particle distributions

that do not follow the Maxwellian distribution [6]. Despite being much more accurate than

other types of models, the processing time required to simulate a macroscopic event with a

kinetic model is enormous. The kinetic model precisely represents the landau damping and

temperature anisotropy phenomenon. Kinetic theory uses microscopic models to understand

how individual particles behave in a plasma, collisional and non-equilibrium phenomenon. Ki-

netic model explains the statistical behavior of particles through distribution function which

depends on position and velocity and time.

f(r;v;t) = f(x; y; z; vx; vy; vz; t) (1.2)

Kinetic model mainly encompasses Vlasov equation [7]

@f

@t
+ v:

@f

@x
+
q

m
(E+ v �B): @f

@v
= 0

By establishing the complexities of particle dynamics and collisions, kinetic model enhance

our comprehension of plasma physics.

1.5 Plasma Waves

A plasma may consist of various phenomena in the form of waves. Waves in plasma physics are

the basic events created by the association between charged particles and electromagnetic �elds

[8]. They give basic understanding of plasma behavior both on Earth and in space. According

to various parameters like frequency, propagation mode, and the presence of magnetic �elds,

plasma waves can be classi�ed into di¤erent types. The relation between the wave vector k,
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uniform magnetic �eld Bo and perturbed electric �eld E1 determines the direction of wave

propagation [9].

1.5.1 Transverse Wave

A uniform, cold plasma lacking a magnetic �eld is the simplest case. Perturbations in the

magnetic and electric �elds can be studied in relation to the equilibrium state. The perturbation

of the �elds is described by the Maxwell�s curl equations. In the presence of oscillating magnetic

�eld B1 or (B1 6= 0), the wave vector k would be perpendicular to the perturbed electric �eld

E1 such that k ? E1.

For a pure transverse case, we can write

k ? E1 and k ? B1

since

r�E1 = �B1

thus the wave would be electromagnetic if B1 is �nite.

1.5.2 Longitudinal Wave

In the absence of oscillating magnetic �eld (B1 = 0), the wave vector k would be parallel to the

perturbed electric �eld E1such that k k E1 represents that wave is longitudinal and electrostatic

as well. Langmuir waves and ion acoustic waves are the examples of electrostatic waves [10].

Ion Acoustic Waves

In an ion acoustic wave (low frequency range) the wave vector k is perpendicular to unperturbed

magnetic �eld B0 such that k ? B0. The motion of ions relative to electrons causes these waves

in the plasma. The restoring force of moving ions generates them when they interact via

electrostatic �eld with background electrons [8]. It describes ion �uid equations that especially

dwell upon moving ions and their resultant electrostatic potential, being in the ion acoustic
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wave dynamics characterized sense. There are many instances where ion-acoustic waves have

had notable impacts such as thermal agitation due to waves, acceleration of particles.

1.5.3 Parallel Propagating Wave

The wave is said to be parallel propagating wave when wave vector k is parallel to unperturbed

magnetic �eld B0. [9]

Figure 1.2. Wave geometry of parallel propagating wave

Electromagnetic waves such as radio waves, Alfven waves and R-L waves are few examples

of parallel propagating waves.

1.5.4 Perpendicular Propagating Wave

If the wave vector k is perpendicular to the ambient magnetic �eld B0, then the wave would

be known as perpendicular propagating wave. [9]

k ? B0
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Figure 1.3. Wave geometry of perpendicular propagating wave

Extraordinary waves and magnetosonic waves are examples of perpendicular propagating

waves.

1.6 Applications of Transportation of Wave Energy in Radia-

tion Belt

Transport of wave energy takes into consideration large number of uses associated with inter-

action between charged particles and electromagnetic waves in space plasmas. These collabo-

rations are very important to di¤erent sectors of astrophysics, and exploration. I have chosen a

"Radiation Belt Region" to understand the energy �ux of parallel propagating electromagnetic

(PPEM) waves and some of the important applications of such speci�c region, are as follows:

1.6.1 Comprehending Wave Particle Interaction

PPEM waves have the capability to engage with charged particles of radiation belt by means of

diverse mechanisms like cyclotron resonance. By employing the Cairns distribution function, we

c an easily explain the behavior and distribution of such charged particles (especially electrons)

inside radiation belts. Through the analysis of PPEM waves�energy �ux, we can understand the

ways in which electromagnetic waves a¤ect particle interactions, particularly processes related

to scattering, loss and acceleration [11].
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1.6.2 Loss and Heating of Particles

PPEM waves plays a vital role in particles�loss and heating inside radiation belts. The energy

�ow of such waves controls the rate whereupon particles acquire or release energy from wave

particle dynamics. Understanding how this loss and heating a¤ect the overall behavior and

stability of radiation belt, is also important for forecasting space weather developments [12,13].

1.6.3 Dynamics and Variance in Radiation Belts

It is clear from examining radiation belts that a variety of factors i.e, solar storm and geo-

magnetic disruptions, have an impact on these regions in various ways. This suggests that the

degree of diversity inside radiation belts is largely determined by the way electromagnetic waves

propagate along with their energy �ow. Examining wave properties such as circular polariza-

tion and how they interact with Cairns dispersed plasmas can help us to comprehend the way

radiation belts vary on a daily or long-term basis.[11]

1.6.4 Prediction of Space Weather

Van Allen Radiation belts are hazardous to satellites and spaceships because of the existence

of severe cosmic particle bombardment within them. Expanding our understanding of wave

particle interactions would be bene�cial for predicting space weather, building spacecraft, and

modeling radiation belts. It would also help humans to create the best designs possible (of

spaceships) to lessen the impact of radiation belt�vulnerability on missions to space.[14]

1.7 Layout of Thesis

The initial section of my thesis encompasses brief introduction of plasma and its requirements.

Moreover, a description of �uid and kinetic models, and an overview of plasma waves has also

been discussed in later part of �rst section. The second section covers literature survey, and

it includes the synopsis of maxwellian and non-maxwellian distribution functions, the vlasov

kinetic model and the calculations of generalized dielectric tensor. The third section of my

thesis explains how can we calculate the general dispersion relation of electromagnetic waves.
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Furthermore, a derivation of general dispersion relation of right handed parallel propagating

electromagnetic waves through cairns distribution function, calculations of the imaginary wave

number by using pade approximation and plasma dispersion function for the limiting cases; non-

resonant and resonant cases, are also a part of said section. The fourth section comprises results

and discussion, which explains the e¤ect of variation of cairns parameter, thermal anisotropy,

thermal speed and wave frequency with respect to normalized poynting �ux and distance, for

both the limiting cases. At the end, conclusion of the thesis is included in section �ve.
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Chapter 2

Literature Survey

2.1 Distribution Functions

Since it is rare for a plasma to be perfect at equilibrium, some regular techniques used in

statistical mechanics cannot be used. Plasma treatment usually involves many species with

di¤erent temperatures because each type of particle is nearly close to a state of local equilibrium.

The conventional meaning of a thermal dynamic system is based on particle distribution function

f(r;v; t) , where r depicts the coordinate in the con�guration space, v represents the velocity

space coordinate, and both collectively act as a phase space which is about six dimensions

and also includes time. Averaged quantity "distribution function" implies that it is a kind of

probability density for having particle at some volume in the phase space [8].

The distribution function comprises seven variables f(x; y; z; vx; vy; vz; t) and if f is normal-

ized, it can be written as

+1Z
�1

f(r;v; t)dv = 1 (2.1)

where dv represents three dimensional volume element in velocity space [1]. A �uid descrip-

tion is less complex when compared to following the movement of every single particle, but it

is not as detailed as the change of f with time. Using the system�s evolution to describe it does

not involve looking at individual particle paths but seeking out groups of particles with the

same con�guration and velocity space coordinate [7]. Various types of distribution functions
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e.g. maxwellian and non-maxwellian distribution functions, are used to investigate the plasma

environments.

2.1.1 Maxwellian Velocity Distribution Function

The Maxwellian distribution function f(v) explains how likely it is to �nd a particle in a gas

or plasma at temperature T moving with a velocity v. One dimensional and three dimensional

[7] mathematical forms of such a distribution function are as, respectively:

f(v) =

�
m

2�kBT

� 1
2

exp

 
�mjvj

2

2kBT

!
(2.2)

f(v) =

�
m

2�kBT

� 3
2

exp

�
�mjvj

2

2kBT

�
(2.3)

The distribution of velocities attained by particles that have reached thermal equilibrium

is described by the Maxwellian distribution function. This enables one to comprehend the

movement of charged particles in various environments found within plasma structures. The

Maxwellian distribution function is essential to compute the thermal and electrical conductiv-

ity, describing wave-particle interactions and equilibrium states. The Maxwellian distribution

function can be graphically represented as:

Figure 2.1. Plot of Maxwellian velocity distribution function
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Bi-Maxwellian Velocity Distribution Function

The Bi-Maxwellian distribution function characterizes velocities of particles in thermal equi-

librium while this distribution is expansion of Maxwellian distribution [1]. This function is a

probabilistic density function which oftenly employed in plasma physics to illustrate distrib-

ution of particles�velocity, especially when considering two temperature plasmas is also not

left out. Whereby particles�populations have divergent temperatures because of their heating

mechanism hence it can occur under various conditions like astrophysical plasmas, laboratory

plasmas or regions of space. Whether the temperature ratio (T?Tk ) of hot particles exceeds or falls

below one, arbitrary anisotropy can be dealt with using the model bi-Maxwellian distribution

function. The mathematical representation of bi-Maxwellian distribution function is as follows:

f(v) =
1

�
3
2

1

vTkv
2
T?

exp

 
� v

2
?
v2T?
�
v2k
v2Tk

!
(2.4)

2.1.2 Non-Maxwellian Velocity Distribution Function

For a distribution function to be a Maxwellian, required enough collisions or various random-

ization processes. Many signi�cant events have far shorter span than the period needed for a

plasma to cool down to be a Maxwellian, because collisions in a hot plasmas happen sporad-

ically. It is therefore necessary to employ a collisionless paradigm of plasma to explain such

rapid processes. Due to the absence of randomization in a collisionless plasmas, entropy remains

constant thus an obtained distribution function is usually known as non-Maxwellian [7]. Under

these circumstances, thermodynamic equilibrium doesn�t exist making most thermodynamic

notion useless.

Kappa Distribution

A Kappa distribution refers to the statistical distribution followed by velocities of particle.

Notably, Kappa distributions majorly represent situations of non-equilibrium wherein particles

display long-tail characteristics which di¤ers than Maxwellian distributions [15]. The distrib-

ution is determined by the Kappa parameter � that a¤ects the distribution�s tails and shape.

Mathematically, the kappa distribution function [16] can be written as:
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f(v) =
N

(��)
3
2

1

v3t

�(�+ 1)

�(�� 1
2)

�
1 +

1

�

v2

v2t

����1
(2.5)

where � represents kappa function / index and it is a real number. The index establishes

the long tail of the distribution function�s slope for the suprathermal particle energy spectrum.

The kappa index must have values larger than 3
2 because the distribution function is folded and

thermal velocity would be unde�ned at � � 3
2 . Moreover, kappa distribution function retrieves

the Maxwellian distributions when � approaches in�nity [17,18]. Here � depicts gamma function

and vt shows thermal velocity wherein v2t =
2kBT
m .

Tsallis Distribution

Tsallis distribution (also known as q non-extensive distribution) models systems that conform

to non-extensive statistics, i.e. their behavior can not be described using the formalism of

standard extensive statistics. Tsallis distribution can simulate heavy-tailed distributions. This

distribution is appropriate for systems with existing correlations and clustering. q non-extensive

distribution function can be de�ned as [19]:

fo = Aq

�
1� (q � 1)v

2

v2t

� 1
q�1

(2.6)

whereAq represents normalization constant and q parameter shows extent of non-extensivity.

Notably, q non-extensive distribution function retrieves the Maxwellian distributions when q

approaches unity (q = 1) [20,21]. Hence, the value of normalization constant for q 7 1 can be

de�ned as:

Aq =
(1� q) 32�

h
1
1�q

i
�
3
2 �3t�

h
�12 �

q
q�1

i ; q < 1 (2.7)

and

Aq =
q
p
q � 1�

h
5
2 +

1
q�1

i
�
3
2 �3t�

h
2 + 1

q�1

i ; q > 1 (2.8)
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Cairns Velocity Distribution

Long-tailed distributions are caused by the presence of energetic particles in space and in

laboratory plasmas [22]. These distributions diverge from the Maxwellian equilibrium and could

be found in the Universe�s low-density plasma, where charged particle collisions are quite rare

[23-24]. Cairns Distribution Function was developed to represent the tails through an abundance

of particles that have high energy. A low energy component that resembles a Maxwellian is

overlaid on augmented energetic tail in the Cairns distribution.

Consequently, it o¤ers a valuable theoretical foundation for the non-Maxwellian, non-thermal

class of space plasmas and has been extensively utilized to understand waves and instabilities in

space plasmas. Mathematically, 3D anisotropic Cairns distribution function for plasma particles

can be written as [25]:

fo� =
1

(1 + 15
4 �)�

3
2 v2T?�vTk�

(
1 + �(

v2?
v2T?�

+
v2k
v2Tk�

)2

)
� exp

"
� v2?
v2T?�

�
v2k
v2Tk�

#
(2.9)

Similarly one dimensional form of said function is as under:

f(vx) =
1

vT
p
2�

1

1 + 3�

�
1 + �

v4x
v4T

�
� exp

�
� v2x
2v2T

�
(2.10)

where � is a spectral index that determines the number of particles with high energy in

a system. v2T (?;k) =
2kBT(?;k)

m�
depicts perpendicular and parallel thermal velocities. The spec-

tral index � (non-thermal parameter; � � 0) which demonstrates de�ection from Maxwellian

Distribution and distinguishes the overall amount of energetic non-thermal electrons [26]. At

� = 0, Cairns distribution function transitioned to Maxwellian distribution and contort its

shape at higher values; � > 0 [27]. 1D and 3D Cairns distribution functions can be plotted as:
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Figure 2.2. Plot of 1D Cairns velocity distribution function

Figure 2.3. Plot of 3D Cairns velocity distribution function

Where humps in plots represents the presence of energetic particles.
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2.2 The Kinetic Approach

Fluid model is the easiest model to understand the macroscopic behavior of plasmas, and is

enough to explain most observed phenomena. The wave equations or magnetohydrodynamics

are few examples of �uid equations that are su¢ cient to explain a large portion of astrophysics.

However, there is certain phenomena that �uid theory is unable to explain. The distribution

function f(v) must be taken into consideration for such phenomena. Kinetic theory describes

the development of the distribution function.

It is quite simple to understand the di¤erence between �uid and kinetic theories [1]. The

four scalar parameters are used in a function that de�nes the density n = n(r; t). In the velocity

distribution function f = f(r;v; t), there are seven distinct variables to take into consideration.

The function f(x; y; z; vx; vy; vz; t) dvxdvydvz describes the number of particles in every point

in space per unit volume and time. This function depends on the position of the particles as

well as their speed, which is measured by three components along the three axes of coordinates.

We are working in phase space because the position parameter r, and the velocity parameter

v, are independent of one another in this situation [10]. The density of particles is represented

as:

n(r; t) =

Z 1

�1
f(r;v; t)d3v (2.11)

The normalized state of distribution function is:

Z 1

�1
f(r;v; t)d3v = 1 (2.12)

therefore we can write the function as

f(r;v; t) = n(r; t)� f(r;v; t) (2.13)

2.2.1 Vlasov Equation

The Boltzmann equation is satis�ed by the distribution function f(r;v; t).
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@f

@t
+ v:r f +

F

m
:
@f

@v
=

�
@f

@t

�
c

(2.14)

where F depicts the force exerted on a particle whereas
�
@f
@t

�
c
indicates the time rate

of variation of f as a result of collisions. As the function f(r;v; t) comprises seven distinct

parameters, thus a complete derivative of function can be written as:

df

dt
=

@f

@t
+
@f

@x

dx

dt
+
@f

@y

dy

dt
+
@f

@z

dz

dt
+
@f

@vx

dvx
dt

+
@f

@vy

dvy
dt

+
@f

@vz

dvz
dt

(2.15)

by simpli�cations, we can write

@f

@x

dx

dt
+
@f

@y

dy

dt
+
@f

@z

dz

dt
=

24 �dxdt x+dy
dty +

dz
dt z
�
:�

@f
@xx+

@f
@yy+

@f
@z z
�
35

= v:r f (2.16)

also

@f

@vx

dvx
dt

+
@f

@vy

dvy
dt

+
@f

@vz

dvz
dt

=

24 � @f
@vx
x+ @f

@vy
y + @f

@vz
z
�
:�

dvx
dt x+

dvy
dt y+

dvz
dt z
�
35

=
@f

@v
:
dv

dt

=
F

m
:
@f

@v
(2.17)

by using equation (2.16) and (2.17), we can write equation (2.15) as

df

dt
=
@f

@t
+ v:r f +

F

m
:
@f

@v
(2.18)

by comparing equation (2.14) and (2.18)
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df

dt
=

�
@f

@t

�
c

(2.19)

here the time derivative of function f can be illustrated as convective derivative and it

would be zero when there are no collisions.

thus

@f

@t
+ v:r f +

F

m
:
@f

@v
= 0 (2.20)

since lorentz force is

F =q(E+ v �B) (2.21)

thus

@f

@t
+ v:r f +

q

m
(E+ v �B): @f

@v
= 0 (2.22)

The above equation is named as Vlasov equation and is generally used in kinetic model.

2.2.2 Generalized Dielectric Tensor

We will start with the relativistic form of Vlasov equation

@f�
@t

+ v � @f�
@x

+ q�(E+
v �B
c

) � @f�
@p

= 0 (2.23)

where v represents the velocity and the p shows relativistic momentum, both terms can be

co-related as

p = 
mv

and


 =

�
1� v

2

c2

�� 1
2

=

r
1 +

p2

m2c2

thus
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v =
cpp

m2c2 + p2

The plasma system is fully described by the relativistic Vlasov equation alongwith the curl

Maxwell equations.

from Faraday�s law

r�E = �1
c

@B

@t
(2.24)

from Ampere�s law

r�B = 1

c

@E

@t
+
4�

c
J (2.25)

by linearizing the equations (2.23 - 2.25) and performing Fourier Laplace transformation

(E;B; f�) =

1Z
0

dt e�st
1Z

�1

dx

(2�)3
e�i k : x (E1;B1; f1) ; L

�
@ (E1;B1; f1)

@t

�
= sL (E1;B1; f1�)

and F
�
@ (E1;B1; f1�)

@t

�
= i k F (E1;B1; f1�) ; s = �i!

by using the Maxwell curl equations (2.24 - 2.25), the Vlasov equation (2.23) would be

(s+ ik:v) f1� +
q�
c
(v �B0) �

@f1�
@p

+ q�

�
E1 �

i

s
v� (k�E1)

�
� @f0�
@p

= 0 (2.26)

similarly the wave equation become

��
s2 + c2k2

�
�ij � c2kikj + 4�s�ij

�
Ej = 0

�
�ij +

c2k2

s2
�ij�

c2kikj
s2

+
4�s

s2
�ij

�
s2Ej = 0

��
�ij +

4�

s
�ij

�
+
c2k2

s2
�ij�

cki
s

ckj
s

�
Ej = 0
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Since s = �i!; so ��
�ij +

4�

s
�ij

�
�N2�ij+ NiNj

�
Ej = 0

therefore �
�ij �N2

�
�ij�

NiNj
N2

��
Ej = 0 (2.27)

here �ij � �ij +
4�
s �ij represents the tensor of dielectric permittivity, whereas N =

ck

!

depicts the refractive index and Ni; j =
cki; j
!

are the i and j components of refractive index.

by considering wave vector k in x-z plane, we can write the equation (2.27) as

@f1�
@'
�
�
s+ ikkvk+ik?v? cos'

�



f1� =
�(')



(2.28)

assuming cylindrical coordinates, we can write

q�
c
(v �B0) �

@f1�
@p

= � 
@f1�
@'

so

�(') = q�(E1 �
i

s
v� (k�E1) �

@f0�
@p

and


� =
q�B0

m� c

=

0�



at equilibrium point, the Vlasov equation would be time independent, thus

q�
c
(v �B0) �

@f0�
@p

= 0

=) @f0�
@'

= 0

where f0 depends on p? and pk but it is independent of '

On the other hand, we can write �(') as
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�('0) = q�

�
E1�

i

s
v� (k�E1)

�
� @f0�
@p0

and p
0
(p?; '

0; pk)

�('0) = q�

�
E1 �

@f0�
@p0
� i
s

��
k � @f0�

@p0

�
(v �E1)�

�
E1 �

@f0�
@p0

�
(v � k)

��

�('0) = q�

�
E1 �

@f0�
@p0

�
1 +

i

s
(k � v)

�
� i
s

�
k � @f0�

@p0

�
(v �E1)

�

�('0) = q�

24 �1+ i
s

�
k?v? cos'

0 + kkvk
�	n

(E1x cos'
0 + E1y sin'0)

@f0�
@p?

+ E1z
@f0�
@pk

o
� is

�
k? cos'

0 @f0�
@p?

+ kk
@f0�
@pk

� �
(E1x cos'

0 + E1y sin'0) v? + E1z vk
	
35

so

�('0) = q�

�
@f0�
@p?

+
i

s
kk

�
vk
@f0�
@p?

�v?
@f0�
@pk

��
E1x cos'

0

+q�

�
@f0�
@p?

+
i

s
kk

�
vk
@f0�
@p?

�v?
@f0�
@pk

��
E1y sin'

0

+q�

�
@f0�
@pk

� i
s
k? cos'

0
�
vk
@f0�
@p?

�v?
@f0�
@pk

��
E1z

and

�('0) = q�(�1 cos'
0; �1 sin'

0; �2 + cos'
0�3):E1

here

�1 =

�
@ f0
@ p?

+
i kk
s

�
vk
@ f0
@ p?

� v?
@ f0
@ pk

��

�2 =
@ f0
@ pk

and
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�3 = �
i k?
s

�
vk
@ f0
@ p?

� v?
@ f0
@ pk

�
by solving the homogeneous portion of equation (2.28)

@f1�
@'
�
�
s+ ikkvk+ik?v? cos'

�



f1� = 0

thus the solution would be

G(';'0) = exp

264 1


�

'Z
'0

�
s+ ikkvk+ik?v? cos'

�
d'00

375

G(';'0) == exp

�
1


�

n
(s+ ikkvk)('� '

0
) + ik?v?(sin'� sin'

0
)
o�

The solution to equation (2.28) can be written with the help of integrating factor approach

f1� =
1


�

'Z
�1

G(';'0)�('0)d'0 (2.29)

also

f1� =
q�

�

'Z
�1

exp

24 �
s+ikkvk

�

�
('� '0)

+ik?v?
�
(sin'� sin'0)

35�E1
26664

�1 cos'
0

�1 sin'
0

�2 + cos'
0�3

37775 d'0 (2.30)

Since

J = !� :E1 =
X
�

q�n0�

Z
vf1�d

3p

thus we can write the perturbed current density as
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4�s !� :E1 = 4�s
X
�

q2�n0�

1Z
�1

dpk

1Z
0

dp?p?

2�Z
0

d'

'Z
1

d'
0

� 1


�
exp

24 1


�

8<:
�
s+ ikkvk

� �
'� '0

�
+ik?v?

�
sin '� sin '0

�
9=;
35

�E1:

26664
�1 cos'

0

�1 sin'
0

�2 + cos'
0�3

37775�
26664
v? cos '

v? sin '

vk

37775 (2.31)

let � = '� '0 and by performing '-integration, we get

2�Z
0

d' exp[iz(sin'� sin('� �))]

�

0BBBB@
v? cos' cos('� �)�1 v? cos' sin('� �)�1 v? cos' (�2 + cos('� �)�3)

v? sin' cos('� �)�1 v? sin' sin('� �)�1 v? sin' (�2 + cos('� �)�3)

vk cos('� �)�1 vk sin('� �)�1 vk(�2 + cos('� �)�3)

1CCCCA
also

= 2�
1X

n=�1
exp[in�] (2.32)

�

0BBBB@
n2

z2
v? [Jn(z)]

2 �1
in

z
v?Jn(z)J

0
n(z)�1 v?

n

z
[Jn(z)]

2
�
�2 +

n

z
�3

�
� in
z
v?Jn(z)J

0
n(z)�1 v?[J

0
n(z)]

2�1 �iv?Jn(z)J 0n(z)
�
�2 +

n

z
�3

�
n

z
vk[Jn(z)]

2�1 ivkJ n(z)J
0
n(z)�1 vk[Jn(z)]

2
�
�2 +

n

z
�3

�
1CCCCA

here, we used Bessel function identities;

exp[iz sin'] =
1X

n=�1
exp[in']Jn(z)
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and

exp[� iz sin ('� �)] =
1X

m=�1
exp[�im ('� �)]Jm(z)

where z =k?v?

�

by performing the �-integration,

�1Z
0

d� exp

�
1


�
(s+ ikkvk + in
�)�

�
=

�
�
s+ ikkvk + in
�

(2.33)

by substituting the equations (2.32 - 2.33) in equation (2.31), we can rewrite the equation

(2.27) as;

�
"ij �N2

�
�ij �

NiNj
N2

��
Ej = 0

thus

�ij = �ij �
2�

s

X
�

m� !
2
p�

1Z
�1

dpk

1Z
0

p?dp?

1X
n=�1

1

s+ ikkvk + in
�
(2.34)

�

0BBBB@
n2

z2
v? [Jn(z)]

2 �1
in

z
v?Jn(z)J

0
n(z)�1 v?

n

z
[Jn(z)]

2
�
�2 +

n

z
�3

�
� in
z
v?Jn(z)J

0
n(z)�1 v?[J

0
n(z)]

2�1 �iv?Jn(z)J 0n(z)
�
�2 +

n

z
�3

�
n

z
[Jn(z)]

2vk�1 iJ n(z)J
0
n(z)vk�1 vk[Jn(z)]

2
�
�2 +

n

z
�3

�
1CCCCA

Equation (2.34) can be simpli�ed with the help of under-mentioned relation and Bessel

function properties

v?
�
�2 +

n

z
�3

�
s+ ikkvk + in
�

=
vk�1

s+ ikkvk + in
�
� 1
s

�
vk
@ f0�
@ p?

� v?
@ f0�
@ pk

�
and

1X
n=�1

[Jn(z)]
2 = 1,

1X
n=�1

n[Jn(z)]
2 = 0,

1X
n=�1

Jn(z)J
0
n(z) = 0

Therefore equation (2.34) can be simpli�ed as
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�ij = �ij �
2�

s

X
�

m �!
2
p�

1Z
�1

dpk

1Z
0

p?dp?�1

1X
n=�1

Mij

s+ ikkvk + in
�
+ Lij (2.35)

where

Mij =

0BBBBB@
n2

z2
v? [Jn(z)]

2 in

z
v?Jn(z)J

0
n(z)

n

z
vk[Jn(z)]

2

� in
z
v?Jn(z)J

0
n(z) v?[J

0
n(z)]

2 �ivkJ n(z)J 0n(z)
n

z
vk[Jn(z)]

2 ivkJ n(z)J
0
n(z)

v2k
v?
[Jn(z)]

2

1CCCCCA

and

Lzz =
2�

s2

X
�

m �!
2
p�

1Z
�1

dpk

1Z
0

p?dp?

�
vk
v?

�
vk
@ f0�
@ p?

� v?
@ f0�
@ pk

��

also

�1 =

�
@ f0�
@ p?

+
i kk
s

�
vk
@ f0�
@ p?

� v?
@ f0�
@ pk

��
The equation (2.35) is the representation of generalized dielectric tensor and it is applicable

to any distribution function at equilibrium. The Onsager symmetric relations of generalized

dielectric tensor�s component are as follows

�xz = �zx , �xy = ��xy and �yz = ��zy (2.36)

In a magnetized plasma, we can write the generalized dispersion relation as

���������
�xx �N2

k �xy �xz +NkN?

��xy �yy �N2
k �yz

�xz +NkN? ��yz �zz �N2
?

��������� = 0 (2.37)
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Chapter 3

Mathematical Model

Energy �ux of parallel propagating electromagnetic waves has already been computed in Kappa

distributed plasmas [28]. Based on a review of the literature, there haven�t been any documented

studies of the energy transportation of parallel propagating electromagnetic waves in Cairns

distributed plasmas by using kinetic model, till date. Therefore, we are calculating the same in

our thesis for the both scenarios; non-resonant and resonant limit.

3.1 Generalized Dispersion Relation for ElectromagneticWaves

by Using Kinetic Model

As we calculated the general form of dielectric permittivity tensor in section 2.2, with speci�ed

values of Mij and Lij

�ij = �ij �
2�

s

X
�

m �!
2
p�

1Z
�1

dpk

1Z
0

p?dp?�1

1X
n=�1

Mij

s+ ikkvk + in
�
+ Lij (3.1)

and by considering the parallel propagation we assume k? = 0, therefore the general disper-

sion relation in magnetized plasma mentioned at equation (2.39) reduces into following form

��
�xx �N2

k

�2
+ �2xy

�
�zz = 0

where the z; z components of dielectric permittivity belongs to electrostatic case and it
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would be zero, so equation (3.1) becomes

�
�xx �N2

k

�2
+ �2xy = 0

N2
k = �xx � i�xy (3.2)

where (+) sign belongs to Right handed waves and (-) sign corresponds to Left handed

waves.

By substituting the values of �xx and �xy, we obtain the generalized dispersion relation of

right handed parallel propagating electromagnetic waves;

c2k2k
!2

= 1 +
!2pe
!

Z
d3V

v?
2

h
@f0
@v?
� vkkk

!

n
@f0
@v?
� v?

vk
@f0
@vk

oi
�
! � 
� vkkk

�

3.2 Dispersion Relation of Right Handed Parallel Propagating

Electromagnetic Waves by Using Cairns Velocity Distribu-

tion Function

We consider cylindrical geometry to solve our problem, where ambient magnetic �eld Bo is

parallel to wave vector k along z-axis, and electric �eld lies in x-y plane.

Figure 3.1. Geometry of right handed parallel propagating electromagnetic wave
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In order to derive the dispersion relation for right handed circularly polarized wave, we

assume collisionless magnetized plasma and consider the dynamics of electrons whereas we

treat the ions as merely a neutral background that at some point secures charge neutrality. The

generalized dispersion relation of parallel propagating electromagnetic waves can be written as

c2k2k
!2

= 1 +
!2pe
!

Z
d3V

v?
2

h
@f0
@v?
� vkkk

!

n
@f0
@v?
� v?

vk
@f0
@vk

oi
�
! � 
� vkkk

� (3.3)

where kk , ! & 
 =
qBo
mec

are the wave number, wave frequency and gyro-frequency of electrons

respectively. !pe =
q

4�noe2

me
represents plasma frequency of electrons.

We employ 3D anisotropic Cairns distribution function for plasma particles [29]

fo =
1�

1 + 15
4 �
�
�
3
2 v2T?

vTk

8<:1 + �
 
v2?
v2T?

+
v2k
v2Tk

!29=;� exp
"
� v

2
?
v2T?
�
v2k
v2Tk

#
(3.4)

where � is a spectral index that determines the number of particles with high energy in a

system.

let the normalization constant

A =
1�

1 + 15
4 �
�
�
3
2 v2T?

vTk

also we have the perpendicular and parallel thermal velocities of electrons

v2T (?;k) =

�
2kBT(?;k)
me

�
thus

fo = A

8<:1 + �
 
v2?
v2T?

+
v2k
v2Tk

!29=;� exp
"
� v

2
?
v2T?
�
v2k
v2Tk

#
(3.5)

@fo
@v?

=
@

@v?

24A exp � v2?
v2T?
�
v2k
v2Tk

!
+A�

 
v2?
v2T?

+
v2k
v2Tk

!2
exp

 
� v

2
?
v2T?
�
v2k
v2Tk

!35
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@fo
@v?

= A exp

 
� v

2
?
v2T?
�
v2k
v2Tk

! 
�2v?
v2T?

!
+

2664 2A�
�
v2?
v2T?
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��
2v?
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�
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��
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@fo
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!235 (3.6)

similarly

@fo
@vk

=
@

@vk
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+A�
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!35
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v2k
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2664 2A�
�

V 2?
v2T?�

+
V 2k
v2
Tk�

��
2vk
v2Tk

�
� exp

�
� v2?
v2T?
�

v2k
v2Tk

�
+

A�

�
v2?
v2T?

+
v2k
v2Tk

�2
exp

�
� v2?
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� 2vk
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+
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!235 (3.7)

by substituting equation (3.6 - 3.7) in equation (3.3)
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c2k2k
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= 1+
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The volume integeral is

Z
d3V =

Z 2�

0
d�

Z 1

0
v?dv?

1Z
�1

dvk

since

Z 2�

0
d� = 2�

Z
d3V = 2�
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0
v?dv?

1Z
�1

dvk

thus
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3.2.1 Perpendicular Integration

Now by solving the integral I �rst, let change the parameters

v2Tk = �
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2 ; v? = x ; dv? = dx

thus equation (3.9) becomes
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by putting equation (3.11) in equation (3.10)
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3.2.2 Parallel Integration

Now we will solve the integrals I1 and I2 separately

Since
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by changing variables

v2Tk = �
2 ;

v2k
v2Tk

= s2 and v2k = �
2s2 also vk = svTk ; dvk = vTkds
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37777775 (3.13)

Pade Approximation

A complex plasma dispersion function Z(�) (responsible for well known Landau damping)

develops when we examine the wave-particle interaction of parallel propagating waves. In order

to handle such a complicated function, we use the Pade approximation which is a distinctive

and conventional kind of rational fraction approximation. The method of this approximation

involves expanding a function as a ratio of two power series and using the coe¢ cients of the

Taylor series expansion of a function f(x) to �gure out the coe¢ cients of the denominator and

numerator [30,31]. The most precise approximation of a function by a rational function of a

speci�c order is commonly referred as the Pade approximation.

When functions have poles, the Pade approximation is typically better since rational func-

35



tions can be used to demonstrate them accurately. When the Taylor series fails to converge

[32], the Pade approximation frequently provides a more accurate approximation of the function

than truncating it. These factors make the Pade approximation a popular tool in computer

calculations.

Plasma dispersion function can be de�ned as [32]

Z(�) =
1p
�

1Z
�1

exp(�s2)
(s� �) ds (3.14)

where � = !�

kkvTk

, and s =
vk
vTk

The Landau integral cannot be computed analytically, unless the plasma dispersion function

is simpli�ed. Therefore, we use the Pade approximation [32] to manage the complexity involved

in plasma dispersion function

1p
�

1Z
�1

s
exp(�s2)
(s� �) ds = 1 + �Z(�) (3.15)
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�

1Z
�1

s2
exp(�s2)
(s� �) ds = � + �

2Z(�) (3.16)
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�
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(s� �) ds =

1

2
+ �2 + �3Z(�) (3.17)
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(s� �) ds =

3

4
+
�2

2
+ �4 + �5Z(�) (3.19)

thus by using pade approximation results, we substitute equations (3.14, 3.16 & 3.18) in

equation (3.13)
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Similarly, we will now solve the integral I2;
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Now with reference to pade approximation results, we substitute equations (3.15, 3.17 &

3.19) in equation (3.21);

I2 = �
 

1

1 + 15
4 �

!
1

kk

24 f1 + �Z(�)g+ �n34 + �2

2 + �
4 + �5Z(�)

o
+2�

�
1
2 + �

2 + �3Z(�)
	
+ 2� f1 + �Z(�)g

35

I2 = �
 

1

1 + 15
4 �

!
1

kk

24 1 + �Z(�) + 3�
4 +

��2

2 + ��4 + ��5Z(�)

+� + 2��2 + 2��3Z(�) + 2� + 2��Z(�)

35

I2 = �
 

1

1 + 15
4 �

!
1

kk

�
Z(�)

�
� + ��5 + 2��3 + 2��

	
+ 1 +

15�

4
+
5��2

2
+ ��4

�
(3.22)

by substituting both integrals equations (3.20 & 3.22) in equation (3.12), as;
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3.3 Expansion of Plasma Dispersion Function

Expansion of Z(�) presents as a useful mathematical depiction of how plasma reacts to electro-

magnetic waves. Therefore we use the expansions for a large argument (� >> 1)(non-resonant

case), and for small argument (� << 1) (resonant case). Moreover, the rationale behind select-

ing a large argument would result in a relatively weaker wave particle interaction, which would

negate the imaginary component of the wave number. In contrast, a small argument for the

plasma dispersion function exhibits a strong wave particle contact.

3.3.1 Non-Resonant Case (� >> 1)

We will use the following expansion of plasma dispersion function for large argument [32]

Z(�) = i
p
� exp(��2)� 1

�
� 1

2�3
� 3

4�5
� ::: (3.24)

by neglecting the higher order terms

Z(�) = �1
�
� 1

2�3
(3.25)

by substituting equation (3.25) in equation (3.23), we get
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we can retrieve the bi-maxwellian distribution by substituting � = 0 ;
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The above equation is a comparable validation of generalized dispersion relation of R-waves

[33].
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It is clear that k is not real for ! >> !pe so it would be imaginary under such condition.

Thus
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3.3.2 Resonant Case (� << 1)

Similarly, expansion of Plasma Dispersion Function for the smaller argument would be
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by ignoring higher order terms
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let the wave number as complex and wave frequency as real

kk = kr + iki

k2k = k2r � k2i + 2ikrki

by considering the spatial pro�le of the wave ki << kr , thus

k2k = k
2
r + 2ikrki
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3.4 Energy Flux

The focus of my thesis is to calculate the energy �ux of parallel propagating electromagnetic

waves. Therefore, we can comprehend the energy �ux density of electromagnetic waves by

using the Poynting vector [34]. Positive and negative divergence (r:S ? 0) represents the

increase and decrease of energy density in the environment. Understanding of the divergence

in the poynting vector is vital in exploring how the electromagnetic energy behaves in various

materials henceforth providing insights into energy propagation, as well as absorption and

scattering phenomena. Such a concept is very helpful to understand electromagnetic wave

dynamics in �elds like astrophysics, optics and telecommunication.

The poynting vector provides the way to calculate the energy �ux density during the propa-

gation of electromagnetic waves, and is important in determining where waves come from. The

steady state of poynting �ux theorem; r:S = �P (where S represents poynting vector and P

depicts power dissipation), is used to �nd out the energy transportation from electromagnetic

waves to plasma particles [35-38]. The poynting vector and power dissipation are written as:

S =
Re
2�o

(E� �B) (3.34)

and

P =
1

2
Re(J

�:E) (3.35)

where J is the current density and �o is the permeability of free space. By using the current

density which is calculated from Ampere�s law (J = 1
�o
(r�B)), we can write equation (3.35)

as:

P = Re[
ik(BxEy �ByEx)

2�o
]

P = �Re[ikS] (3.36)

thus steady state of poynting �ux theorem becomes
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dS

dz
= �P = �kiSz

S(z) = S(0) exp[�kiz] (3.37)

where S(0) shows the energy per unit time per unit area; from where wave begins to travel,

whereas value of ki has already been calculated in equations (3.27) and (3.33) for non-resonant

and resonant cases, respectively.
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Chapter 4

Results and Discussions

We have derived the imaginary wave numbers for both the non-resonant and resonant cases

of right handed parallel propagating electromagnetic waves with the help of kinetic theory.

The focus of our study was to calculate the energy �ux of right circularly polarized waves

in a collision-less cairns distributed plasmas. In this regard, plots of equations (27 & 33) in

accordance with equation (37) have been prepared by choosing the parameters of outer radiation

belt [39]; ne = 1 cm�3 , !ce = 105 s�1 and !p = 6� 104 s�1.
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4.1 Variation of Cairns Parameter with Normalized Poynting

Flux Versus Distance In Non-Resonant and Resonant Cases

Figure 4.1. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of

Cairns parameter in a non-resonant case, with a �xed values; (a) !
!p
= 2. (b) !ce!p = 1:66. (c)

vth
c = 0:09. (d) T?Tk = 2.

Figure 4.2. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of

Cairns parameter in a resonant case, with a �xed values; (a) !
!p
= 0:8. (b) !ce!p = 1:66. (c)
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vth
c = 0:09. (d) T?Tk = 2.

Figures 1 and 2 depicts how the energy is transported over a speci�c range of distance for

non-resonant and resonant cases, respectively. By varying the non-thermality/Cairns parame-

ter �, the wave transports its energy slowly over the shorter distance in a non-resonant case

because of e¢ cient resonance e¤ects at higher values of non-thermality parameter (see �gure 1).

However, in the resonant case, the wave dissipates energy quickly over the shorter distance for

smaller values of non-thermal parameter, whereas it may deliver its energy over longer distance

by increasing �, probably due to the signi�cant thermal e¤ects as can be seen from �gure 2.

4.2 Change in Temperature Anisotropy with Normalized Poynt-

ing Flux Versus Distance in Non-Resonant and Resonant

Cases

Figure 4.3. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of

temperature anisotropy in a non-resonant case, with a �xed values; (a) !
!p
= 2. (b)

!ce
!p
= 1:66. (c) vthc = 0:09. (d) � = 0:2.
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Figure 4.4. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of

temperature anisotropy in a resonant case, with a �xed values; (a) !
!p
= 0:8. (b) !ce!p = 1:66.

(c) vthc = 0:09. (d) � = 0:2.

Figures 3 and 4 represent the energy transportation under the in�uence of temperature

anisotropy (considering T? > Tk). Temperature anisotropy causes the transportation of energy

by a¤ecting the spatial apportioning. The wave delivers its energy gradually over the distance

with the increase in temperature anisotropy in a non-resonant case (�gure 3) probably due

to weaker thermal e¤ects. Contrariwise, the wave transports energy over a larger distance at

smaller value of temperature anisotropy. Whereas, the wave looses its energy abruptly at higher

values of temperature anisotropy in a resonant case (see �gure 4), because of larger number of

resonant particles.
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4.3 Variation of Thermal Speed with Normalized Poynting Flux

Versus Distance In Non-Resonant and Resonant Cases

Figure 4.5. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of

thermal speed vth
c in a non-resonant case, with a �xed values; (a) !

!p
= 2. (b) !ce!p = 1:66. (c)

T?
Tk
= 2. (d) � = 0:2.

Figure 4.6. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of

thermal speed vth
c in a resonant case, with a �xed values; (a) !

!p
= 0:8. (b) !ce!p = 1:66. (c)
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T?
Tk
= 2. (d) � = 0:2.

Figures 5 and 6 display the variation of thermal speed on the energy transportation during

wave-particle interaction. The wave carries energy over a certain distance in a non-resonant

case (�gure 5), which clearly indicates that variation of thermal e¤ects is not mainly a¤ecting

the energy transportation in a limiting case � >> 1. On the other hand, the wave transports

energy over a longer distance at smaller value of thermal speed, however wave surrenders energy

instantaneously over shorter distances by increasing the contribution of thermal e¤ects (�gure

6) in the limiting case � << 1 because for higher thermal speed, maximum number of particles

would gain velocity near the resonance requirement, resulting in the loss of energy of the wave.

4.4 Variation of Wave Frequency with Normalized Poynting

Flux Versus Distance In Non-Resonant and Resonant Cases

Figure 4.7. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of wave

frequency !
!p
in a non-resonant case, with a �xed values; (a) !ce!p = 1:66. (b)

vth
c = 0:09. (c)

T?
Tk
= 2. (d) � = 0:2.
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Figure 4.8. Normalized Poynting Flux ( SS0 ) versus distance (
!p
c Z) for di¤erent values of wave

frequency !
!p
in a resonant case, with a �xed values; (a) !ce!p = 1:66. (b)

vth
c = 0:09. (c)

T?
Tk
= 2. (d) � = 0:2.

In �gures 7 and 8, we have shown the e¤ect of the normalized wave frequency ( !!pe ) on the

energy transportation caused by non-resonant and resonant interactions, respectively. In both

cases, the wave delivers its energy quickly at smaller frequencies because resonant interactions

permit waves to deliver energy more e¤ectively to the particles. However, wave is carrying

energy over longer distances at higher frequencies because of the less absorption and wave

frequencies do not match with the resonance condition.
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Chapter 5

Conclusion

To summarize, we have studied the energy transport of the circularly polarized electromagnetic

waves in a Cairns distributed plasma. In this regard, the dynamical behavior of electrons is de-

scribed by the coupled set of Vlasov-Maxwell equations. A signi�cant change in the energy �ux

has been found by varying the nonthermal parameter, electron thermal speed, wave frequency

and electron temperature anisotropy e¤ects. It may be observed that wave transports its en-

ergy over a longer distance for resonant interaction caused by more resonant particles while

at shorter distance in non-resonant case possibly due to weaker thermal e¤ects in the Cairns

distributed plasmas. One also con�rms that a signi�cant de�ection from the Maxwellian results

occurs in the presence of nonthermal distributed plasmas. The results are relevant for heating

plasmas in fusion research, understanding astrophysical phenomena, diagnosing plasmas and

developing advanced laser and tele-communications equipment.
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