

PERFORMANCE ENHANCEMENT OF
SIGNATURE-BASED NETWORK

INTRUSION DETECTION SYSTEM

By

Muhammad Tariq Saeed

A thesis submitted to the faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Pakistan in partial fulfillment of

the requirements for the degree of MS in Information Security

September 2008

ABSTRACT

Exponential increase in number of vulnerabilities, network traffic and bandwidth pose a

serious threat to the performance aspects of Intrusion Detection Systems (IDS).

Signature-Based IDS operates by comparing packet payloads against attack signatures.

The process of signature matching takes up a lot of processing time and thus overwhelms

the efficiency of a single Intrusion Detection System In this work; we propose a

function-parallel architecture for enhancing the performance of IDS. The proposed

architecture outperforms existing approaches of performance enhancement in terms of

speed-up and cost. The parallel implementation has been done in java language on a

cluster system comprising of 32 nodes. The cluster consists of dual 3.06 GHz, 1 GB

RAM control node, 16 HP and 16 SUN 2.2 GHz compute nodes with 4 GB RAM on

each node. Control node runs Red Hat Enterprise Linux AS Operating System whereas

compute nodes run the WS version of the same OS. All nodes are interconnected using a

Gigabit interconnect through HP ProCurve 2848 switch. The results obtained by parallel

implementation of our proposed solution have shown 60 percent improvement in speed

up on 32 Intrusion Detection Sensors. The approach has shown the potential to be

extended and implemented on reconfigurable hardware for developing a cost-effective

and scalable solution for future.

 iii

To my loving parents

 iv

ACKNOWLEDGMENTS

All praise and thanks to Almighty Allah who has showered me with His invaluable

blessings throughout my life, giving me strength and spirit to complete this research

work.

I wish to express my sincere gratitude to my thesis advisor AVM(R) Dr. Muhammad

Shamim Baig for his continued support and guidance during this project. I have made

numerous mistakes and have found him understanding and tolerant. It has been a

rewarding experience working with him.

I also gratefully acknowledge the help and guidance provided by my guidance committee

members Lt. Col. Attiq Ahmad, Lt. Col. Mofassir-ul-Haque and Air Cdre. Tahir

Mahmood Khalid. Without their personal supervision, advice and valuable guidance,

completion of this research work would not have been possible.

I am especially thankful to Air Cdre. Habeel Ahmed for his continuous support and

encouragement during this research work. I also owe very special thanks to Miss Samin

Khaliq, Mr. Muhammad Tariq and Sqn. Ldr. Liaqat Ali Khan for their valuable

suggestions.

 v

TABLE OF CONTENTS

INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Problem Statement .. 2

1.3 Overall Objective .. 2

1.4 Thesis Organization .. 3

1.5 Summary ... 3

RESEARCH MOTIVATION ... 4

2.1 Introduction ... 4

2.2 Challenges ... 4

2.2.1 Network Speed .. 4

2.2.2 Vulnerabilities ... 5

2.2.3 Rise in Signature Database ... 6

2.3 Summary ... 8

INTRUSION DETECTION SYSTEMS... 9

3.1 Introduction ... 9

3.2 Classification of IDS ... 9

3.2.1 Anomaly-Based Detection .. 10

3.2.2 Signature-Based Detection.. 11

3.3 Functional Decomposition of IDS .. 12

3.3.1 Packet Acquisition .. 12

3.3.2 Packet Decoding ... 13

3.3.3 Preprocessing .. 14

3.3.3.1 Protocol Decoders ... 14

3.3.3.2 IP Defragmentation ... 14

3.3.3.3 Stateful Inspection .. 15

3.3.3.4 Stream Reassembly ... 15

3.3.3.5 Application Layer Processors ... 15

3.3.4 Content Matching.. 16

3.3.5 Notification ... 17

3.4 Limitations .. 17

3.4.1 False Alarms ... 17

 vi

3.4.2 Switched Networks ... 18

3.4.3 Encryption ... 18

3.4.4 Performance .. 18

3.4.5 Security of Intrusion Detection Technology ... 19

3.4.5 Summary ... 19

PERFORMANCE ENHANCEMENT ... 20

4.1 Introduction ... 20

4.2 Data Parallel Approach ... 21

4.3 Function Parallel Approach .. 26

4.4 Summary ... 27

PROPOSED FUNCTION PARALLEL ARCHITECTURE .. 28

5.1 Introduction ... 28

5.2 Design Goals ... 28

5.2.1 Uniform Division .. 28

5.2.2 Efficiency .. 29

5.2.3 Adaptability... 29

5.3 Functional Components .. 30

5.3.4.1 Detection Engine ... 32

5.3.4.2 Rule Loader ... 32

5.3.4.3 Mapping Table .. 32

5.3.4.4 Rule Vector ... 32

5.4 Working .. 32

5.5 Error Reporting ... 35

5.6 Summary ... 37

PROPOSED MULTI-THREADED ARCHITECTURE FOR HIGH SPEED IDS 38

6.1 Introduction ... 38

6.2 Design Goals ... 39

6.3 Functional Components .. 40

6.3.1 Load Balancer ... 40

6.3.2 Daemon Thread ... 40

6.4 Summary ... 42

IMPLEMENTATION ... 43

7.1 Introduction ... 43

7.2 Experimental Setup ... 43

 vii

7.2 Results ... 44

7.2.1 Execution Speed.. 45

7.2.2 Speed-up Factor .. 45

7.2.2 Effectiveness ... 46

7.2.4 Cost ... 47

7.3 Summary ... 48

FUTURE WORK .. 49

8.1 Overview ... 49

8.2 Future Work .. 50

BIBLIOGRAPHY ... 51

Appendix “A” – Code Listing ... 54

 viii

LIST OF FIGURES

FIGURE ... …..CAPTION……………………………………………………………PAGE

FIGURE2. 1: INCREASE IN VULNERABILITIES ... 6

FIGURE2. 2: INCREASE IN SIGNATURE DATABASE ... 7

FIGURE3.1: ANOMALY BASED DETECTION ... 10

FIGURE3.2: SIGNATURE BASED DETECTION... 12

FIGURE3.3: FUNCTIONAL DECOMPOSITION OF IDS .. 12

FIGURE3.4: DECODERS CHAIN .. 14

FIGURE3.5: LEVELS OF LINK-LAYER DECODERS .. 15

FIGURE3.6: HEADER AND BODY PART OF RULE ..16C

FIGURE4.1: HIGH-LEVEL ARCHITECTURE OF THE HIGH-SPEED IDS. ... 23

FIGURE4.2: ACTIVE IDS SPLITTER ARCHITECTURE .. 24

FIGURE4.3: PACKET GROUPING USING LOCALITY BUFFERS ... 24

FIGURE4.4: TYPES OF HASHING ... 25

FIGURE4.5: MULTIPLE LEVELS OF HASHING ... 25

FIGURE4.6: INTEGRATING INDEPENDENT STATE INTO BRO. ... 26

FIGURE5.1: FUNCTIONAL COMPONENTS OF PROPOSED ARCHITECTURE 30

FIGURE5.2: FUNCTIONAL DECOMPOSITION OF A SENSOR ... 31

FIGURE5.3 FORMAT OF SENSOR.CONF FILE .. 32

FIGURE5.4: RULE LOADING ALGORITHM ... 33

FIGURE5.6: FORMAT OF TABLE ‘S’ .. 34

FIGURE5.5: RULE LOADING ... 34

FIGURE5.7: RULE SET SELECTION ALGORITHM .. 35

FIGURE5.8: CORRELATION MECHANISM FOR PARALLEL IDS .. 36

FIGURE6. 1: MULTI THREADED ARCHITECTURE FOR INTRUSION DETECTION 41

FIGURE7. 1: EXECUTION TIME (SEC) ... 45
FIGURE7. 2 : SPEED-UP FACTOR ... 46

FIGURE7. 3: EFFECTIVENESS ON TEN IDS SENSORS ... 47

FIGURE7. 4: COST OF DATA AND FUNCTION PARALLELISM METHODS 47

 1

C h a p t e r 1

INTRODUCTION

1.1 Introduction

Attacks on computer systems have been increased tremendously with increase in number

of vulnerabilities. Over 32000 different vulnerabilities have been reported between 2000

and 2007 [1]. These vulnerabilities are exploited by hackers to gain access to computer

systems over the internet. Any violation attempt or actual violation to the security policy

committed by an internal or external user is called an Intrusion [2]. The set of techniques

used to identify intrusions on computer systems is defined as intrusion detection [3].

Intrusion detection and prevention systems play a crucial role in the security of systems

and networks. Intrusion Detection Systems (IDS) are classified mainly on the basis of

analysis techniques as Signature-based IDS [4] and Anomaly-based IDS [5]. Security

policy in signature-based IDS is implemented by rules [6]. In signature-based IDS, the

rules are written in a rule description language which provides different constructs for

describing an attack signature. Signature-based IDS needs to check thousands of known

attack signatures for every packet. Signature matching of this type imposes significant

delays on IDS due to size of network traffic and complexity of policies. Therefore IDS

cannot keep pace with the speed of modern networks, resulting in loss of information and

performance chokepoints [7]. The existing work to improve the performance focuses on

the use of hardware techniques, improvement in software and algorithm and

parallelization. This work explores different parallel processing techniques for improving

the performance of Signature-Based Network Intrusion Detection System and proposes a

function parallel architecture for performance enhancement of Signature-based IDS. The

existing work in this regard is based on data parallel approaches and is of very

preliminary nature. The data parallel approaches are characterized by several drawbacks

 2

discussed in chapter 4. The proposed architecture employs the concept of function-

parallelism and divides overall IDS policy across an array of Intrusion detection sensors.

The parallel implementation has been done on a cluster system and experimental results

show a comparison of proposed solution with existing work. The proposed solution

outperforms existing data parallel approaches and show a significant speed-up which

increases linearly with addition in the number of Intrusion Detection sensors. The

proposed approach has the potential to be extended and implemented on reconfigurable

hardware for developing a cost-effective and scalable solution for the future.

1.2 Problem Statement

Security policy in signature based IDS is implemented by rules. The policy database

contains thousands of rules. These rules contain signatures against different attacks. A

signature-based NIDS evaluates packet payloads against this huge policy database. Thus

making rule matching the most expensive part of signature based IDS in terms of

processing and memory resources. Rule matching of this type imposes significant delays

on traffic due to complexity and size of polices. Therefore any rule matching processor

based on a single intrusion detection component cannot scale over certain thresholds.

1.3 Overall Objective

The motivation behind this work is to explore and develop different techniques used for

enhancing the performance of signature-based NIDS and design an architecture that

processes network traffic in less time. The architecture will be evaluated by using

benchmark data and performance comparison will be carried out with existing data

parallel approach. Possibility of expanding the research to Intrusion Prevention Systems

will also be studied

 3

1.4 Thesis Organization

The research thesis is organized as given. Chapter 2 discusses the challenges faced by

Intrusion Detection Technology in detail from the performance prospective. An in depth

review of Intrusion Detection Systems is given in Chapter 3. Different techniques for

parallelization of IDS are discussed in Chapter 4. The proposed architecture for

performance enhancement is presented in Chapter 5. Issues related to Concurrency and

proposed multi-threaded model are discussed in Chapter 6. Implementation of the

proposed architecture along with experimental results is presented in chapter 7. Finally

conclusion and Future work is discussed in Chapter 8.

1.5 Summary

This chapter has provided a comprehensive introduction to the addressed research work.

A brief introduction, problem statement and overall objective of the research work have

been discussed. Towards the end of the chapter, overall thesis organization is provided to

help the reader in a thorough manner.

 4

C h a p t e r 2

RESEARCH MOTIVATION

2.1 Introduction

The real motivation behind this dissertation is, the continuously pressing performance

requirements that modern networks impose on security devices. This chapter discusses

some challenges that have become a real matter of concern for performance enhancement

of IDS.

2.2 Challenges

Network intrusion detection System (NIDS) detect and investigate security threats on an

organization’s network. It complements other security devices, such as firewalls, by

providing information about the frequency and nature of attacks. The performance of a

network intrusion detection system is characterized by the probability that an attack is

detected and the number of false alerts. However, the system’s ability to process traffic at

maximum rate offered by the network is equally important with minimal packet loss.

Significant packet loss degrades the overall effectiveness of the system and can leave a

number of attacks undetected. A high performance sensor not only improves the quality

of detection by reducing the number of false alerts, but also processes packets at a higher

rate. Network Intrusion Detection Systems cannot rely on flow control mechanisms and

acknowledgments to control the flow of data. Instead, the NIDS must be able to process

packets at the maximum rate offered by the network.

2.2.1 Network Speed

The issue of faster data communication is becoming more and more critical with

relentless increase in world’s internet traffic. Researchers are focusing on improved

 5

techniques to increase data transmission rates in order to cope with phenomenal surge in

data traffic, as internet population exceeds a billion users. German and Japanese

scientists recently collaborated to achieve just such a quantum leap in obliterating the

world record for data transmission. By transmitting a data signal at 2.56 terabits per

second over a 160-kilometer link, the researchers broke the old record of 1.28 terabits per

second held by a Japanese group. By comparison, the fastest high-speed links currently

carry data at a maximum 40 Gbit/s, or around 50 times slower. The researcher assumes

the transmission capacity on the large transoceanic traffic links will need to increase to

between 50 and 100 terabits per second in ten to 20 years. This kind of capacity will only

be feasible with the new high-performance systems. This phenomenal surge of data at

very high speed poses a serious threat to the efficiency of Intrusion Detection Systems.

The amount of data available within a single host can make the intrusion detection

problem computationally very intensive. In the case of network-based intrusion

detection, the traffic going through a gateway, for instance, can be prohibitively huge

making it practically impossible for a security scanner to check every single packet

without dropping some of them. Packet dropping severely damages the effectiveness of

this type of protection tools. Similarly, audit facilities can generate very large log files

which limit the likelihood of performing real-time processing, which is not as desirable

as real-time detection.

2.2.2 Vulnerabilities

Vulnerability can be defined as a coding bug, configuration error, or design flaw that can

be exploited to compromise the security of a system [8]. One of the clearest trends in

information security is the fact that more and more vulnerabilities are discovered

everyday and, consequently, more attacks that exploit them also appear on the scene.

New threats appear every day challenging the quality and configuration of all kinds of

 6

platforms ranging from web farms to even wireless telephony. Viruses and worms such

as Sasser, Nimda, Code Red, Blaster, and Slammer have hit thousands of computers

resulting in millions of people losing a considerable number of effective working hours.

When a popular website is compromised by hackers or when a denial of service attack is

underway, the reputation of entire institutions may be hurt and the consequences may

cause a considerable loss of market share. A system that has not been found to be

vulnerable today could be brought down tomorrow. The purpose of the release of

vulnerability information is to make users and administrators aware of the existing

threats. However, this information is also used by attackers that devise new techniques to

abuse systems. The figure 2.1 shows number of vulnerabilities reported each year by

CERT [1]. A significant rise in the number of vulnerabilities can be observed with the

passage of time.

Figure2. 1: Increase in vulnerabilities

2.2.3 Rise in Signature Database

The increase in vulnerabilities has given birth to more security incidents and compromise

of millions of resources on internet. The average annual loss reported in the year 2007

 7

survey shot up to $350,424 from $168,000 in 2006 [9]. Percentage of organizations

reporting computer intrusions to law enforcement continued upwards after reversing a

multi-year decline over the past two years, standing now at 29 percent as compared to 25

percent in last year’s report [9]. In Signature-Based IDS, these vulnerabilities are fixed

by designing new signatures and adding them to signature database. As a result, numbers

of signature are continuously increasing.

In June, 2003 there were only 1500 signatures in default Snort Rule Set whereas in June,

2006 it reached up to 5000 default signature and it is approaching 10,000 now. This

increase in signature database means that the Packet payloads have to be evaluated

against more signatures, putting too much load on IDS to process huge amount of traffic

against thousands of signatures in a fraction of time. Therefore with increase in network

speed and signature database, there is pressing requirement for developing performance

enhancement methodologies.

Figure2. 2: Increase in Signature Database

The increase in network speed poses a serious threat to the performance aspects of

Intrusion Detection Systems. The process of signature matching is computationally very

 8

intensive and IDS has to process huge amount of traffic in a fraction of time. The

performance constraint makes it impossible for IDS to check every packet and it starts

dropping the packet. Intrusion Detection Systems also serve as a forensic tool because

the information regarding malicious packets is logged. With increase in the amount of

network speed, the drop rate also increases and IDS may not catch evidence needed to

trace an attacker.

Intrusion Prevention systems are placed inline and the overwhelming load of traffic

results in a more devastating situation where rest of the network behind an IPS will

experience a denial of service situation. The IPS needs to process the data rapidly and

forward traffic to its intended destination.

2.3 Summary

This chapter has presented an overview of the challenges that modern IDS face in the

form of growth in vulnerabilities and rise in signature database. Due to increase in the

number of vulnerabilities reported per year, signature database of IDS is continuously

increasing. As a result, IDS has to evaluate millions of packets against thousands of

attacks signatures. Signature matching of this type is computationally very intensive and

imposes significant delays on IDS resulting in loss of information.

 9

Chapter 3

INTRUSION DETECTION SYSTEMS

3.1 Introduction

An Intrusion Detection System (IDS) detects unwanted attempts of accessing,

manipulating or disabling of computer systems. These attempts are usually made by

hackers, malicious programs, or disgruntled employees. Intrusion Detection Systems are

used to detect several types of malicious behaviors that can compromise the security and

trust of a computer system. It detects network attacks against vulnerable services, data

driven attacks on applications, host based attacks such as privilege escalation,

unauthorized logins and access to sensitive files.

3.2 Classification of IDS

Currently there are two basic techniques for intrusion detection. The first technique,

called anomaly detection, defines a normality profile or normal working of systems, and

then it detects anything that deviates from this normal activity [8]. It relies on being able

to define desired form or behavior of the system and then to distinguish between that and

undesired or anomalous behavior. The boundary between acceptable and anomalous

form of stored code and data is precisely definable. One bit of difference indicates a

problem. The boundary between acceptable and anomalous behavior is much more

difficult to define. The second approach, called misuse detection [8], involves

characterizing known ways to penetrate a system. Each one is usually described as a

pattern. The misuse detection system monitors for explicit patterns. The pattern may be a

static bit string, for example a specific virus bit string insertion. Alternatively, the pattern

may describe a suspect set or sequence of actions. Patterns take a variety of forms as will

be illustrated later. Intrusion detection systems have been built to explore both

 10

approaches – anomaly detection and misuse detection – for the past 15 to 20 years. In

some cases, the two kinds of detection are combined in a complementary way in a single

system. There is a consensus in the community that both approaches continue to have

value. The techniques for single systems have been adapted and scaled to address

intrusion in distributed systems and in networks. Efficiency and system control have

improved. User interfaces have improved, especially those for specifying new misuse

patterns and for interaction with the system security administrator. Essentially all the

intrusion detection implementations that will be discussed are extensions of operating

systems. They use operating system notions of events, and operating system data

collection, particularly audit records, as their base

3.2.1 Anomaly-Based Detection

Anomaly detection is also known as profile-based intrusion detection and statistical

intrusion detection. In this technique, a definition of “normality” is created and any

abnormal traffic that deviates from that normality profile is declared as intrusive [7].

Figure3. 1: Anomaly based Detection

This approach assumes that intrusion constitutes of irregular events. The normal activity

of users and applications is monitored and their behavior profiles are created. These

profiles are built through training or heuristics [10-15].

4308FFCD3A09D8BD80 BB

09E12DFFCD03AD89D8A
0C90C08E80D4A6D4AA
…

Valid sequences

Detection System

System activity

Intrusive Sequence

 11

 Anomaly-Based IDS then monitors the behaviors of users and applications as shown in

figure 3.1. Any activity that diverges from the normal profile is considered as intrusive.

Differentiating an abnormal activity from a normal one is very difficult task which

requires compliance with protocols, understanding the internals of an application,

expertise level of users, their preferences, date and time.

 A false positive is the classification of genuine activity as intrusive whereas a false

negative is the classification of illegal activity as benevolent – the latter being a much

more serious problem as it represents failure to identify potentially harmful events.

Anomaly based intrusion detection systems are difficult to implement as they require not

only compliance with protocols and understanding the inner-working of an application

but also expertise level of users, their preferences, and the date and time.[16].

Construction and tuning of behavioral models required for anomaly based intrusion

detection systems are computationally very intensive.

3.2.2 Signature-Based Detection

Signature-based Detection is also known as misuse detection or pattern-based detection.

In this technique, patterns of abnormal activity are defined as shown in figure 3.2. IDS

searches to find the occurrence of those patterns in monitored data stream. If an attack

pattern is found in data stream, it is the sign of an intrusion [17]. This pattern or

fingerprint called signature and it is used to identify and represent an attack [18].

Signature-based IDS will monitor packets on the network and match up to them against a

database of signatures or attributes from known malicious threats. Monitoring programs

observe different data streams present on the system and match them against a bank of

attack signatures [19-21]. This is similar to the way most antivirus software detects

malware. The antivirus searches for malicious signatures inside executables of

 12

applications while the signature-based IDS perform the same operation at the network

layer.

Figure3.2: Signature based Detection

3.3 Functional Decomposition of IDS

Figure3. 3: Functional decomposition of IDS

3.3.1 Packet Acquisition

After initialization, Signature-based IDS enters into its packet processing function. For

passive sniffing (and file read-back) modes this function is InterfaceThread in

src/snort.c. This function utilizes the libpcap library [26] for retrieving packets from the

Packet Acquisition Packet Decoding Preprocessing

Notification Content Matching Normalization

4308FFCD3A09D8B9D80 BB

BB,3D,25,AA,FF,E9,F8,63,
47,32,11,00,01,02,03,04
…

Invalid sequences

Detection System

System activity

Intrusive Sequence

 13

network device or a trace file. Libpcap is a cross-platform library that provides an API

for receiving packets directly from the network. Libpcap provides basic information

about each packet, including the time at which the packet was captured from the

network, length of the packet on the wire and link layer type of the interface on which

the packet was captured.

3.3.2 Packet Decoding

Once the packets are acquired, it passes it into the packet decoder. Exactly where the

packet enters the decoder depends on the link layer from which it is being read. IDS

support a number of link layers from pcap: Ethernet, 802.11, Token Ring, FDDI, Cisco

HDLC, SLIP, PPP, and OpenBSD’s PF. It also supports the link layers specific to the

APIs used for inline mode. Above the link layer, it supports decoding several other

protocols, including IP, Internet Control Message Protocol (ICMP), TCP, and User

Datagram Protocol (UDP). Although “decoders” are available for many other protocols

(such as Internetwork Packet Exchange [IPX]) within Snort, many of them are just stubs

that increment counters to indicate how many packets have been seen. In order to extend

Snort to really support these protocols, work should begin in the decoder. You can find

the implementation of the decoder in src/decode.c. Regardless of which link layer is

being used, all of the decoders work in the same general fashion. For the particular layer

being decoded, pointers in the packet structure are set to point to various parts of the

packet. Based on the decoded information, it calls into appropriate higher-layer decoders

until no more decoders are available.

 14

Figure3. 4: Decoders Chain

3.3.3 Preprocessing

After the packet has been decoded, it is passed into the preprocessors. The preprocessors

provide a variety of functions, from protocol normalization, to statistics based detection,

to non rule-based detection. There is variety of tasks that preprocessors can perform .A

preprocessor is code that is compiled into the IDS engine upon build in order to

normalize traffic and/or examine the traffic for attacks in a fashion beyond what can be

done in normal rules. Although that might seem like an overly simplistic explanation for

what these complex pieces of Snort do, it’s important to realize their contribution to the

overall whole of the intrusion detection system (IDS).

3.3.3.1 Protocol Decoders

Before the preprocessors even see traffic, all traffic must pass through the protocol

decoders. Figure 3.5 shows layout of link layer decoders.

3.3.3.2 IP Defragmentation

The IP defragmentation preprocessor(s) reassembles fragmented packets.

 15

3.3.3.3 Stateful Inspection

The stream4 preprocessor verifies that packets are part of an established session

3.3.3.4 Stream Reassembly

The stream4_reassemble preprocessor reassembles TCP streams into a “pseudo-packet”

for contextual analysis.

3.3.3.5 Application Layer Processors

This step contains a collection of preprocessors (with more coming all the time!) that

normalizes complex protocols, and, if needed, generates events on incorrect

implementations of the protocol, or an attempted misuse of the protocol.

3.3.3.6 Detection Engine

Finally, after all these steps have taken place, then the packets are passed through to the

Snort detection engine.

Figure3. 5: Levels of link-layer decoders

 16

3.3.4 Content Matching

Signature-based intrusion detection systems rely on content matching for detecting the

anomalous traffic. A great deal of academic research focuses on analysis and design of

anomaly based detection techniques but majority of the commercial intrusion detection

systems are signature-based due to its high detection accuracy.

During the content matching phase, IDS examines the contents of a network packet and

checks for the presence of attack signatures. Each signature is represented by a rule that

describes a known intrusion threat. If a packet is found to contain a given signature, then

the action specified by a rule associated with the signature is taken. This action triggers

an alert and logs the specious packet. Snort uses a simple, lightweight rules description

language that is flexible and quite powerful. There are a number of simple guidelines to

remember when developing Snort rules. Most Snort rules are written in a single line.

This was required in versions prior to 1.8. In current versions of Snort, rules may span

multiple lines by adding a backslash \ to the end of the line. Snort rules are divided into

two logical sections, the rule header and the rule options. The rule header contains the

rule’s action, protocol, source and destination IP addresses and netmasks, and the source

and destination ports information. The rule option section contains alert messages and

information on which parts of the packet should be inspected to determine if the rule

action should be taken.

Figure3. 6: Header and body part of Rule

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|";

msg:"mountd access";)

 17

The text up to the first parenthesis in figure 3.6 is the rule header and the section

enclosed in parenthesis contains the rule options. The words before the colons in the rule

options section are called option keywords.

All of the elements in that make up a rule must be true for the indicated rule action to be

taken. When taken together, the elements can be considered to form a logical AND

statement. At the same time, the various rules in a Snort rules library file can be

considered to form a large logical OR statement.

3.3.5 Notification

After the content matching phase the intrusion detection system issues a notification of

the events that are produced to inform network administrators about the incident. IDS

also store this information in the form of logs that are later used for tracing the

perpetrators and detailed forensic analysis.

3.4 Limitations

Intrusion detection technology still suffers from some serious limitations that need to be

worked out in order to create effective products. Some of the main challenges relevant to

the topic are described next.

3.4.1 False Alarms

Many intrusion detection tools suffer from detection inaccuracy. The high rate of false

positives and false negatives that intrusion detection tools generate does not help system

administrators simplify their daily tasks. On the contrary, users may eventually opt for

disabling this software rather than having to interpret the stream of alarms reported by

the security system that may, in fact, not be reflecting the truth. This is a major limitation

of intrusion detection technologies and is the priority for multiple data fusion and model-

based projects.

 18

3.4.2 Switched Networks

Modern networks utilize more intelligent devices to route packets from one location into

the other. Many intrusion detection prototypes were based on the ability to configure a

network device in promiscuous mode in a way that the monitoring mechanism could

easily see and analyze all Ethernet packets. This allowed the system to correlate packets

addressed to different hosts connected to the same segment, and also to protect several

hosts at the same time. With modern network technology, this approach may no longer

be as successful.

3.4.3 Encryption

Encrypted data cannot be easily interpreted unless a decryption key is available

Information technology has witnessed the development of cryptographic protocols and

tools that protects the privacy of data. File transfers, interactive sessions, and email can

all be protected with encryption. Although this secures the information they handle, it

renders further security analysis impossible – necessary in the case they transport illicit

material. As more companies become security-conscious the use of encryption will

increase. Intrusion detection tools are currently inadequate to deal with this problem as

they are blind to encrypted communications.

3.4.4 Performance

Data filtering and screening is a computationally demanding task that is central to

intrusion detection. Providing a system with real-time monitoring capabilities implies

good search and pattern matching algorithms as well as efficient buffering of network

traffic, audit trails, etc. which guarantees no data piece goes through without being

inspected. Given the detailed checking needed by intrusion detection, a lot of resources

are allocated and consumed and the performance of the hosting system ends up being

 19

impacted. As a consequence, heavy intrusion detection software and business processes

cannot cohabit and the former is sometimes disabled to give full privileges to priority

services.

3.4.5 Security of Intrusion Detection Technology

Security tools are expected to be secure themselves – otherwise they could not be trusted

and their results would be worthless. As software products, intrusion detection systems

face the same security challenges other applications do (e.g., poor implementation and

weak design). In fact, not much attention has been put into the secure design of this type

of software. Only a few systems can be considered moderately secure but the rest is

prone to direct or evasion attacks. This is an aspect that cannot be ignored when

designing protection systems.

3.4.5 Summary

This chapter has presented an introduction to intrusion detection technology, it functional

decomposition and limitations. Intrusion Detection System (IDS) can be classified on the

basis of analysis technique into two types; Signature-based detection and Anomaly-based

detection. Signature-based IDS are the ones currently dominating the market with high

detection accuracy. An IDS performs a series of operation on packet data before it is

evaluated against attack signatures. Signature-based IDS also suffer from some serious

limitation such as performance drawbacks, false alarms and security of intrusion

detection technology.

 20

C h a p t e r 4

PERFORMANCE ENHANCEMENT

4.1 Introduction

Performance Enhancements of Intrusion Detection Systems for high-speed links has

been the focus of much debate and research in the recent past. The most common

solutions to achieve high performance rely on hardware approaches [24-26],

improvement in software and algorithm and parallelization. A common point of view is

that high-speed network based Intrusion Detection is not practical by using a single

sensor because of the technical difficulties encountered in keeping pace with increasing

network speed and enormous surge of internet data. Analysis of network traffic on high-

speed links is computationally intensive problem requiring lot of processing time.

The performance enhancement of Intrusion detection techniques is a fertile area of

research where different approaches are being used to increase their efficiency. The

NIDSs’ weak process ability is mainly because that the analysis of network packets

needs much computing. So it seems that the problem could be resolved if the processors’

speed is increased. Unfortunately, the speed of networks increases faster than the speed

of processors. It’s impossible to keep up with the speed of networks by just increase the

CPU’s speed of NIDSs. This chapter presents an overview of existing work in this field

and its analysis.

Parallelism is one technique that may be used to help reduce IDS processing time.

Parallelization can occur at different levels of the intrusion detection system. For

example the entire IDS can be duplicated and arriving packets can be distributed to

various systems. The policy of IDS can be duplicated and network traffic is divided by

 21

using a traffic splitter. Likewise same data can be sent to each node and it is evaluated

against a subset of the overall IDS policy.

4.2 Data Parallel Approach

Data parallelization is a form of parallelization which is also known as loop level

parallelism. It focuses on distributing the data across multiple computing nodes. In data

parallelism, each processor performs same computations on different sets of data. For

example, if the code is being run on dual-processor system having CPU-A and CPU-B

and we have to perform operation on data D, it is possible to tell CPU-A to do that task

on one part of data and CPU-B on other part of data. Both operations are performed

simultaneously which reduces the execution time of serial program. In data parallel

implementation of matrix addition, CPU-A could add elements from top half of the

matrices and CPU-B could add all elements from bottom half of matrices. The two

processors work in parallel and the job of matrix addition would take one half of the time

of performing the same operation on single processor.

There are not many parallel architectures available for improving the performance of IDS

and existing work towards parallelization of IDS is based on the concept of data

parallelism [9]. In data parallel approach, each node contains the complete IDS policy. A

traffic splitter is then used to distribute packets to each node. The primary goal of the

traffic splitter is to perform load balancing across all nodes. However, because intrusion

detection systems perform stateful analysis a simple round-robin technique for

distributing packets is inadequate. It is necessary that the traffic splitter maintain session

integrity due to factors like packet reassembly.

The first implementation was given by Christopher Kruegel, in which the traffic is

divided into slices and each slice is processed by one or more Intrusion Detection sensors

 22

[24]. The partitioning is done so that a single slice contains all the evidence necessary to

detect a specific attack. The architecture of the system is showed in Fig. 4.1. The

scatterer only scatters frames in a round-robin fashion to guarantee high speed. The task

of the slicers is to route the frames they receive to the sensors that may need them to

detect an attack. The reassemblers are responsible to reassemble the possibly disordered

frames. The system’s throughput nearly reaches 200 Mbps in their experiment. The

system consists of a network tap, set of m different slicers, set of n stream assemblers

and set of P different Intrusion Detection Sensors. The network tap monitors traffic

speed on high-speed monitored link and extracts sequence of frames on the wire during a

specific time period. These frames are passed to the scatterer who partitions these frames

and divides them into different subsequences.

The splitting of the traffic is done on scatterer and each portion is directed to a different

slicer. The traffic slicers route frames to sensors that may need them to detect an attack.

The task of frame routing is performed is not performed on the scatterer because frame

routing is complex task and will become a bottle neck of scatterer in particular and

overall architecture in general. The traffic slicers are connected to a switch port and send

frames to a designated stream reassembler through a predefined outgoing channel of the

switch. Each channel is also associated with some intrusion detection sensors. The job of

reassemblers is to make sure that packets appear on the channel in same order as they

appeared on high-speed link. The paper mainly discusses how to divide the network

traffic to avoid losing the evidence for intrusion detection. But the author does not

present a feasible method to equally divide the traffic although he shows that the load

balancing can be done by dynamically change the slices’ filters. In the experiment, the

traffic is statically divided according to the address range. The architecture uses a static

configuration of slicers based upon an offline configuration that is loaded on startup. The

 23

static approach suffers from a major drawback as large percentage of network packets

could be forwarded to a single channel resulting in a performance overhead on that

sensor. Besides, the system is also complex, which needs many devices and has to

reassemble the disordered frames.

Figure4. 1: High-level architecture of the high-speed intrusion detection system.

Charitakis et al examine a splitter’s architecture in their paper [27] and two methods are

used to improve system’s performance. First method is based on the concept of early

filtering, where a portion of packets is processed on the splitter instead of intrusion

detection sensors as shown in the figure 4.2. The cost of header preprocessing is

significantly cheaper than computationally intensive payload analysis. The NIDS rule set

is analyzed and rules that do not require content matching are extracted. It has been

observed that a very small portion of the default rule set is only subject to header

analysis.

 24

Figure4. 2: Active IDS splitter architecture

These rule sets are referred as Early Filtering rule sets. When a packet arrives at a sensor,

it is first evaluated against EF rule set. If no rule is matched and packet contains no

payload then the packet is discarded. However if the packet contains payload and no rule

is matched, it is retained for payload analysis and forwarded to the sensor. The second

method uses locality buffering technique where the splitter records packets in buffers as

shown in figure 4.3. The use of locality buffers improves memory access locality on the

sensors.

Figure4. 3: Packet grouping using locality buffers

The experiment shows that these methods do improve the performance. However, since

early filtering and locality buffering may cause some packets been dropped or reordered,

it is impossible for the sensors to do state analysis which is important to improve the

detection accuracy. In addition, the author splits the traffic by simply hashing on flow

identifiers and does not discuss the problem of load balancing in the paper. The other

 25

interesting parallel architecture presented in [28] is characterized by a custom hardware

load balancer that feeds conventional NIDS sensors. To ensure that every packet

belonging to a certain flow is analyzed by the same sensor, the hardware load balancer

calculates a set of hashing functions on different fields of the packet as shown in figure

4.4 and 4.5.

Figure4. 4: Types of hashing

The destination NIDS sensor is selected on the basis of the resulting hashes. However,

although the balancer may dynamically adapt to the traffic dispatching rules, the

redirection of already established connections to a different sensor makes it impossible to

perform a stateful analysis.

Figure4. 5: Multiple levels of hashing

A serialization of the internal NIDS state was proposed in [29]. This is an important

contribution because a serialized representation can be propagated to other NIDS sensors

 26

to achieve better coordination in distributed NIDS architectures. However, this paper

does not consider state serialization as a mean to provide Stateful and dynamic load

balancing of established connections among different NIDS sensors. Figure 4.6 shows

the integration of this concept in architecture of Bro [31].

Figure4. 6: Integrating independent state into Bro.

4.3 Function Parallel Approach

Function parallelism is also known as task parallelism and control parallelism. It is a

form of parallelization of computer code across multiple processors in. Task parallelism

focusses on distributing execution processes or threads across different parallel

computing nodes. In a multiprocessor system, task parallelism is achieved when each

processor executes a different thread or process on the same or different data. The

threads may execute the same or different code. In the general case, different execution

threads communicate with one another as they work. Communication takes place usually

to pass data from one thread to the next as part of a workflow. If we are running code on

 27

a dual processor system in a parallel environment and we wish to do tasks "A" and "B”,

it is possible to tell CPU-A to do task A and CPU-B to do task B simultaneously and

reduce the runtime of the execution.

Function parallelism involves dividing the IDS policy which consists of a set of rule

groups each containing some number of rules across nodes. These rules are placed into

rule groups based on their source and destination port numbers. For example, rules

associated with web traffic are usually placed in the port 80 rule group. One method is to

take rules from each rule group and spread them evenly across all nodes. In this case a

traffic duplicator is then used to duplicate each incoming packet so that all packets are

seen by all nodes. Using this method, which each packet must be examined by each node

because each node contains a fraction of the rules which are applicable to all packets.

4.4 Summary

This chapter has presented an overview of performance enhancing techniques, their

strengths and weaknesses. The most common solutions to achieve high performance for

intrusion detection rely on the use of hardware, improvements in software and use of

parallel computing techniques. Application of parallel computing in the domain of

intrusion detection seems promising due to high scalability and low cost. Data parallel

methods focus on dividing network traffic through splitter while function parallel

methods divide policy database of signature-based intrusion detection system across an

array of nodes.

 28

C h a p t e r 5

PROPOSED FUNCTION PARALLEL ARCHITECTURE

5.1 Introduction

This chapter presents our proposed architecture in detail, also differentiating it from

existing work. The data parallel approach for performance enhancement is characterized

by several drawbacks discussed in Chapter 2. The proposed architecture employs the

concept of function parallelism for improving the performance of Signature-Based

Network Intrusion Detection System. Instead of dividing the data, the security policy of

IDS is divided across different nodes. This security policy of IDS consists of different

rules where each rule contains a signature and the action against a known attack. Each

node in this architecture receives same data packets and compares them against different

rule sets.

5.2 Design Goals

The proposed architecture considers following design goals

5.2.1 Uniform Division

The security policy of IDS is divided across multiple sensors such that the workload

distribution on each sensor is uniform and performance is maximized. This requirement

is the key to guarantee system’s performance. If one slice is much larger than others, the

intrusion detection sensor that processes the particular slice will become a bottleneck of

the system and waste other sensors abilities of processing traffic.

 29

5.2.2 Efficiency

The load-balancing algorithm should be simple and efficient enough to operate at high

speed networks. This requirement assures that each sensor can detect attacks without any

interaction so that the system’s complexity is greatly reduced.

5.2.3 Adaptability

The architecture should be dynamically adaptable to varying traffic loads and

compositions. This requirement is also for the performance. It is obvious that a simple

and efficient algorithm is easy to archive a high throughput. Unfortunately, in practice, it

is very hard to satisfy all of these requirements. For example, the round-robin partition

algorithm, which sends the packets to the sensors in turn, completely satisfies

requirement 1 and requirement 3. However, because the algorithm does not consider any

character of the packets, it is very possible that several packets relevant to the same

attack are sent to different sensors. As a result, no sensor has enough information to

detect the attack. The round-robin algorithm does not satisfy requirement 2. On the other

hand, to satisfy requirement 2, it is difficult to partition the traffic equally and keep the

algorithm simple and efficient.

After studying the network attacks, we design a simple architecture that satisfies

requirement 2 and guarantee that the slices have the nearly same sizes. There are two

kinds of network attacks. The attacks in the first category are those that can be detected

after inspecting all the packets belonging to one TCP/UDP connection. Most attacks fall

into this category, such as the attacks making use of the bugs of the programs. On the

contrary, several connections have to be inspected to detect the attacks in the second

category. Scan and DoS fall into this category. For the first kind of attacks, the sensor

would be able to detect the possible attacks without other information if all packets

 30

belonging to the same TCP/UDP connection are sent to it. So, no sensor-to-sensor

interaction would be needed if partitioning according to TCP/UDP connections.

5.3 Functional Components

The architecture consists of following components as described in figure5.1.

5.3.1 Network Source

It is installed on a high speed monitored link and it feeds traffic to rest of the system. A

network source can be implemented by using a simulator, network tap or switch with

span port.

5.3.2 Duplicator

 Traffic duplicator is used to duplicate each incoming packet so that all packet s are seen

by all nodes. The functionality of a duplicator can be implemented by a simple broadcast

or multicast to some selected nodes.

 Figure5. 1: Functional Components of proposed architecture

S
1

S
2

S
3

S
5

S
6

S
7

S
4

S
8

TRAFFIC SOURCE

DUPLICATOR

Intrusion Detection
Sensors

High Speed Connection

 CONFIGURATION

MANAGER

 31

5.3.3 Configuration Manager

It controls and updates the configuration of rules on each sensor. Every sensor contains

complete rule set which is divided according to configuration file placed on each

intrusion detection sensor. Configuration manager maintains and updates the contents of

this configuration file on each sensor.

5.3.4 Sensor Array

It refers to a collection of systems on which signature based IDS is installed. Sensor

array can be implemented by installing signature based IDS on individual computers.

Each sensor is equipped with a policy database and a local configuration file which

enables a certain rule set on that sensor. The configuration manager can update this file

dynamically to regulate the processing load on that sensor. Each intrusion detection

sensor will match incoming traffic against those rules which are

enabled in file. The proposed architecture uses multiple sensors for signature matching.

Each sensor is equipped with different components as shown in the figure 5.2.

Figure5. 2: Functional Decomposition of a Sensor

DETECTION
 ENGINE

RULE LOADER

SENSOR CONFIGURATION.

Rule

Rule Vector

Table

 32

5.3.4.1 Detection Engine

Each sensor is equipped with a detection engine which is installed on it. This detection

engine can be an existing signature-based intrusion detection system.

5.3.4.2 Rule Loader

This component reads Sensor.conf file and updates the entries in rule vector as well as

Table ‘S’

5.3.4.3 Mapping Table

Each Sensor contains a table “S” that maps hash value k to the Rule-set R. The hash

value is calculated as a function of source and destination port numbers.

5.3.4.4 Rule Vector

The rules are loaded and placed in a data structure designed especially to accommodate

rules. This data structure can be implemented in the form of a vector.

5.4 Working

Each sensor upon startup read its configuration. The format of configuration file is

shown in figure 5.3. The entries of the file can be manually or automatically updated by

using configuration manager.

Figure5. 3 Format of Sensor.conf file

#Sensor.conf
$TOTAL_SENSORS = 32;
$SENSOR_INDEX = 2;
#Load ($ Category_Name, $Length_of_Ruleset)
Load (Backdoor. Rules, 639)
Load (DOS. Rules, 639)
Load (VIRUS. Rules, 639)

 33

Each sensor is assigned an index number on the basis of which rules are loaded from

specific rule sets. Sensor index of each intrusion detection sensor is specified in the

configuration file along with total number of sensors used by parallel IDS. The

configuration file also specifies routines or functions for loading rules from a specific

category of rule sets. Each Load routine takes two arguments; rule set category and total

number of rules. $LENGTH describes the length of a particular rule set. Each sensor

reads configuration file and loads a certain subset of the overall IDS policy according to

a predefined algorithm shown in Figure 5.2. Given the sensor index, total sensors and

length of a rule set, the algorithm tries to find indexes that describe which rules from a

specific rule set are to be loaded. The algorithm divides length of a rule set by number of

sensors used. The values of quotient and remainder are stored. If rules are not perfectly

divisible by total sensors, the remaining rules are divided on P-R processors as shown in

figure 5.4. For instance If 639 rules are to be divided across 32 nodes, the algorithm

proceeds as shown in figure 5.5.

Figure5. 4: Rule Loading Algorithm

Func (SENSOR_INDEX, RULESET, TOTAL_SENSORS)
Begin

Quotient = 0;
Remainder = 0;
Size = 0;
Quotient = RULESET/TOTAL_SENSORS;
Remainder = RULESET%TOTAL_SENSORS;
Size = Quotient;
If (SENSOR_INDEX < Remainder)

SIZE++;Int ARRAY [SIZE];
Int COUNT = 0;
FOR (INT I = 0; I < SIZE; I++)

ARRAY [I] = INDEX + COUNT;
COUNT = COUNT + TOTAL_SENSORS

End

 34

By introducing this mechanism of rule division, we ensure the portability of proposed

architecture where the changes have to be made only on configuration manager and not

on every sensor. Any change made by the user or the system is automatically picked by

each sensor as configuration manager updates the entries by updating sensor

configuration file on each sensor.

Each sensor maintains a table ‘S’ which is used for the selection of a rule set for a

packet. It maintains information about the location of rules in RAM belonging to

particular category of hash value. The hash value can be calculated as function of source

and destination port numbers. The format of this table is shown in figure 5.6. After a

Sensor has loaded a rule set, it records its entry in this table.

Hash-Value Category Offset Length
8568 SNMP 1 60
0023 TELNET 61 85
0021 FTP 86 115
0080 HTTP 116 217
3600 DNS 218 290

Figure5. 6: Format of Table ‘S’

Given
SENSOR_INDEX = 2
RULESET = 639
TOTAL_SENSORS = 32

==
Quotient = 639/32 = 19
Remainder = 639%32 = 31
Size = 19
AS SENSOR_INDEX < Remainder

SIZE++; SIZE = 20;
Int ARRAY [20];
Int COUNT = 0;
FOR (INT I = 0; I < SIZE; I++)

ARRAY [I] =SENSOR_INDEX + COUNT;
COUNT = COUNT + TOTAL_SENSORS

Figure5. 5: Rule Loading

 35

These entries are then used in the later stage when the sensor performs a decision based

upon the packet type that which rules are to be loaded. After the Sensor has loaded the

rules and maintained the Table ‘S’ and all the entries of rule vector are populated , it is

set to receive traffic from the splitter. When the sensor receives a packet P, the sensor

has to decide that the packet has to be evaluated against which type of traffic. The

decision depends upon the type of packet and as the rules are categorized on the basis of

porn numbers hash values , therefore the Sensor will perform a simple hash function on

port number and will map the result ‘K’ onto the Table ‘S’.

Figure5. 7: Rule set selection algorithm

Depending upon the type of hash value, the rule set is selected and the detection engine

starts signature matching on the packet as shown in figure 5.7.

5.5 Error Reporting

Error reporting or taking any action against an Intrusion is an important issue in parallel

IDS. In centralized architecture, single intrusion detection sensor performs all the

matching and produces an alert and the availability of rules and signature matching is

central. But in parallel architecture, each sensor is evaluating a particular packet against a

different rule set and there may be more than one match on a single packet. The

information coming from several intrusion detection sensors must be combined and

correlated by a central process. The proposed Architecture uses a simple and efficient

Step1: Calculate src_port||dest_port hash value ‘k’
Step2: Search for the Rule-set R to which k maps in S
Step 3: Read offset of R in S
Step 4: Read length l of the Rule-set R in S
Step 5: For index = offset; index < l; index++
Intrusive = Detection-engine(P,R[index]);
If (Intrusive)
Log (P, R[index])

 36

way of combining and correlating this information as shown in figure 5.8. Each sensor

evaluates packet payloads against attack signatures. Whenever a malicious packet is

found, the sensor records information related to the type of attack in a table.

The table has a specific entry for each sensor to avoid mutual exclusion. Error Console is

a lightweight thread that monitors the status of the table and whenever an update is made

by a sensor, error console reads the entry and produces a notification of that intrusion.

The information is also logged in database for further use.

S
1

S
2

S
3

S
5

S
6

S
7

S
4

S
8

TRAFFIC SOURCE

DUPLICATOR

Intrusion Detection
Sensors

High Speed Connection

Int_1[subseven,203.112.1.
116,19:25:33,192.168.1.2
54]

Error Console

Error Log

Message Broadcast

Figure5. 8: Correlation mechanism for parallel intrusion detection system

 37

5.6 Summary

This chapter has presented our proposed architecture in detail. This architecture employs

the concept of function parallelism for increasing the performance of signature-based

IDS. Instead of dividing the data, it divides rules on the basis of rule groups. Each

intrusion detection sensor receives same data and evaluates it against different signatures.

Finally the results are combined using a broadcast message. The message is received by

error console which displays the intrusion on the screen and logs it in database.

 38

C h a p t e r 6

PROPOSED MULTI-THREADED ARCHITECTURE FOR HIGH

SPEED IDS

6.1 Introduction

We have presented our proposed architecture based on the concept of function

parallelism in Chapter 5. The architecture has the potential to perform well on high

performance computing platforms where Intrusion Detection Systems are installed on

general purpose central processing units. But the hardware architecture has been

changing during the last two decades and the biggest players in processor manufacturing

are relying on multiprocessors. Rather than increasing the speed of single processor,

multiple processors are stamped on a single chip. Therefore an application has to be

implemented in such a way that it gains benefit from the underlying architecture in order

to perform well. The improvements in the fabrication of semi-conductors and processor

implementation steadily increased the performance of sequential computer programs for

the past three decades. The performance gain through the inception of multi-core

architectures represents a fundamental shift in computing. The normal desktop

applications with sequential execution cannot gain any benefit from multi-core

architectures .The individual cores will become much simpler and run at lower clock

speed in order to reduce power consumption on dense multi-core processors.

The architectural changes in multi-core processors benefit only concurrent applications

and therefore have little value for most existing mainstream software [9]. These changes

mark a fundamental turning point for mainstream software development industry. New

 39

applications cannot simply rely on increasing clock speed. For high performance gains,

the applications have to be highly concurrent.

In this chapter we present a lightweight multi-threaded design model that gains

advantage of multiprocessor architectures. This allows spreading the signature matching

workload over multiple CPUs of the same machine and performance to scale beyond

single-CPU machines.

6.2 Design Goals

The proposed architecture considers some design issues in order to maximize the

performance of proposed architecture. The algorithm should divide the whole workload

into slices with equal sizes. This requirement is the key to guarantee the system’s

performance. If workload on a single thread is larger than others, the thread that

processes that workload will become the bottleneck of the system and waste other

threads’ process abilities. Each slice contains all the evidence necessary to detect a

specific attack. This requirement assures that each thread can detect attacks without any

interaction so that the system’s complexity is greatly reduced.

The proposed model divides overall IDS policy across multiple threads. We argue that

data parallel approach for dividing the workload is not suitable as it is characterized by

some drawbacks such as connection state maintenance and tcp reassembly. Moreover by

assigning individual connections to separate threads, the workload cannot be divided

uniformly due to variation in traffic type and volume. The proposed model therefore

divides the policy across multiple threads and performs a uniform distribution of

workload. The load-balancer copies each packet to trace tables, which are specially

designed data structures to accommodate network traffic and IDS rules.

 40

6.3 Functional Components

The proposed multithreaded model for intrusion detection consists of different

components which are illustrated in the figure 6.1.

6.3.1 Load Balancer

Instead of separating the individual phases from the serial execution and including it in

multi-threaded path, we introduce a sophisticated and easy to implement load balancer.

In case of shared memory architecture, the load balancer does not need to handle issues

like connection state monitoring. From the packet capturing phase the packets are

forwarded to the load balancer, which initializes the main thread and also keeps track of

the maximum number of threads that are currently active. Load-balancer can also be

implemented as a part of the packet capturing module. When a packet ‘p’ is received by

the load-balancer, it duplicates the packet onto trace tables and notifies all the threads

about the arrival of new packet so that they are consumed by daemon threads for

signature-matching process. Load-balancer also updates and divides IDS policy on every

table. The policies are updated and loaded on system start-up. Whenever a new rule is

entered by a user or an application, load-balancer updates the copies on every trace table.

6.3.2 Daemon Thread

Daemon thread acts as a child thread for the load-balancer. Each daemon has a unique id

and based upon that ID, it loads a certain rule set and places it in the trace table.

Whenever a new packet ‘P’ arrives, load-balancer notifies every daemon about the

arrival of the packet. Each daemon compares it against it against a subset of the overall

policy and if it finds any intrusion, it notifies the load-balancer about the malicious

packet.

 41

6.3.3 O/P Thread

The architecture doesn’t allocate any special thread for producing any output. We believe

that majority of the traffic in a network is clean and very few packets are malicious.

Therefore assigning a separate o/p thread for producing alerts can significantly reduce

the efficiency of the system. The proposed architecture presents different alternatives for

assigning a separate thread to show alerts. Load-balancer checks the availability of any

daemon thread and assigns it, the task of logging the malicious packet and producing

alert.

6.3.4 Trace Tables

These are used as data structures for holding incoming packets and rule files. Each table

has two portions, one for accommodating the rule set loaded by the daemon threads and

the other which provide storage for the incoming packets. The rule sets are placed on the

basis of a simple hash-function of source and destination port numbers. When a packet

TRAFFIC
SOURCE

LOAD
BALANCER

P1
P2
.
.

Pn

DT-1 DT-2 DT-3

NotifyAll ()

ALERRT QUEUE

Notify
()

P1
P2
.
.

Pn

P1
P2
.
.

Pn

Figure6. 1: Multi threaded architecture for intrusion detection

 42

‘P’ is received by a daemon thread, it performs a hash-function on source and destination

port numbers and maps the resultant hash value onto the trace table which keeps an entry

of a unique rule set for each hash value. The trace tables provide very simple and

efficient mechanism for storing packet payloads and the rule sets

6.4 Summary

Due to the emergence of multi-core processors, application software cannot rely on

increasing clock speed. Applications have to be highly concurrent in order to achieve

high performance gains. This chapter has presented a concurrent architecture of

signature-based IDS which uses multiple threads for signature matching. Instead of

allocating a separate output thread, dynamic load balancing mechanism is introduced

which ensures maximum utilization of hardware resources.

 43

C h a p t e r 7

IMPLEMENTATION

7.1 Introduction

The implementation of function parallel architecture has been done using default

signature set of snort. The implementation of duplicator, configuration manager has been

done in java using jdk1.4 and Jpcap for packet capturing. This chapter presents the

performance evaluation of function parallel architecture on the basis of different

parameters like execution time, speed up factor, cost, efficiency and effectiveness.

7.2 Experimental Setup

This section presents the experimental results for the parallel algorithm. The results were

taken on a High Performance Computing Cluster. The cluster consists of dual 3.06 GHz,

1 GB RAM control node, 16 HP and 16 SUN 2.2 GHz compute nodes with 4 GB RAM

on each node. Control node runs Red Hat Enterprise Linux AS Operating System

(Release 3 Update 6) whereas compute nodes run the WS version of the same OS. All

nodes are interconnected using a Gigabit interconnect through HP ProCurve 2848

switch. The implementation has been done in Java. MPJ Express [18] has been used for

code parallelization of a prototype implementation of a signature-based NIDS. The

configuration manager and the splitter are installed on the control node and snort

signatures are placed on each node for intrusion detection.

Snort uses a simple, lightweight rules description language that is flexible and quite

powerful. There are a number of simple guidelines to remember when developing Snort

rules. Most Snort rules are written in a single line. This was required in versions prior to

1.8. In current versions of Snort, rules may span multiple lines by adding a backslash \ to

 44

the end of the line. Snort rules are divided into two logical sections, the rule header and

the rule options. The rule header contains the rule’s action, protocol, source and

destination IP addresses and netmasks, and the source and destination ports information.

The rule option section contains alert messages and information on which parts of the

packet should be inspected to determine if the rule action should be taken. The text up to

the first parenthesis is the rule header and the section enclosed in parenthesis contains the

rule options. The words before the colons in the rule options section are called option

keywords. All of the elements in that make up a rule must be true for the indicated rule

action to be taken. When taken together, the elements can be considered to form a logical

AND statement. At the same time, the various rules in a Snort rules library file can be

considered to form a large logical OR statement. The rule header contains the

information that defines the who, where, and what of a packet, as well as what to do in

the event that a packet with all the attributes indicated in the rule should show up. The

first item in a rule is the rule action. The rule action tells Snort what to do when it finds a

packet that matches the rule criteria. There are 5 available default actions in Snort, alert,

log, pass, activate, and dynamic. In addition, if you are running Snort in inline mode, you

have additional options which include drop, reject, and sdrop.

7.2 Results

The experimental results were obtained on 1, 4, 8, 12, 16, 20, 24, 28 and 32 intrusion

detection sensors. The experiment was carried out with 7458 default rules of Snort 2.6

release. The alerts were directed to standard output. Traffic is taken from the Lincoln’s

lab DARPA Intrusion detection evaluation data sets [19, 20] specifically the outside

tcpdump data of week 1 and 4. Care was taken that dump file was completely cached in

RAM at the start of experiment. The results were evaluated on the basis of following

parameters.

 45

7.2.1 Execution Speed

 The experiment was performed 20 times and run times were averaged. A comparison of

execution time is presented in figure 7.1. It is clear that function parallel method reduces

the overall time and sticks closely with theoretical model.

Figure7. 1: Execution Time (sec)

7.2.2 Speed-up Factor

A measure of relative performance between a multiprocessor system and a single

processor system is the speedup factors (n), defined as

Where ts is the execution time on a single processor and tp is the execution time on a

multiprocessor. S(n) gives the increase in speed in using a multiprocessor. The

 46

experimental results show a significant rise in speed-up with increase in the number of

sensors. The observed speed-up sticks with theoretical speed-up and shows a

performance gain over classical data parallel approach for intrusion detection systems as

shown in figure 7.2.

Figure7. 2 : Speed-up Factor

7.2.2 Effectiveness

Effectiveness is a measure of load distribution on multiple sensors. The data parallel

approach cannot regulate the load balancing due to issues like connection state

maintenance and TCP reassembly. The proposed architecture divides workload by

evenly distributing the overall policy across multiple sensors. Figure 7.3 shows the

distribution of rules on ten different sensors for a Trojan Scan.

 47

Figure7. 3: Effectiveness on ten IDS sensors

7.2.4 Cost

The cost of parallel architecture is defined as the product of running time and the number

intrusion detection sensors.

NODES Cost-Data Parallel Cost-Function Parallel

1 33.54 29.12

2 33.54 28.92

4 39.44 29.23

8 44.32 29.92

16 65.46 27.52

32 78.34 27.21

Figure7. 4: Cost of data and function parallelism methods

 48

Figure 7.4 indicates that proposed solution is cost effective as compared to data parallel

approach which suffers mainly due to diversity of traffic, making it impossible for the

splitter to divide uniformly.

7.3 Summary

This chapter has presented results of our parallel implementation on cluster system.

Implementation has been in java language and JPCAP has been used as packet capturing

library. The performance of proposed architecture has been evaluated mainly in terms of

speed-up factor and cost. Proposed solution for high speed intrusion detection is cost

effective and processes more traffic in less time as compared to classical data parallel

approach for IDS.

 49

C h a p t e r 8

FUTURE WORK

8.1 Overview

The performance requirements of Intrusion Detection Systems are continuously

increasing with increase in network speed and traffic loads .The ability of the system to

handle increasing traffic loads becomes even more crucial when IDS are placed in line,

just becoming an IPS. It is severe enough to have overloaded IDS which drops packets as

this can lead to missed intrusions. But when an IPS is overloaded it is not only the

system itself which faces a denial-of-service, but all the users whose traffic passes

through the system. Numerous approaches to improve the performance of intrusion

detection and prevention systems have been suggested by researchers in all areas of

computer science. Some approaches focus on improving software and algorithms, others

introduce new hardware techniques, and still others examine the use of parallelism in

intrusion detection. Our current work has presented a function-parallel architecture for

enhancing the performance of Intrusion Detection Systems. We argue that data parallel

approaches are categorized by some drawbacks which can be overcome by using our

proposed Function-Parallel Architecture. The proposed architecture outperforms existing

data parallel approaches and results obtained by our parallel implementation have shown

significant speed. The approach has also shown the potential to be extended and

implemented on reconfigurable hardware to develop a cost-effective and scalable

solution for the future.

We have also discussed the importance of concurrency in the context of Intrusion

Detection Systems. The introduction of multi-core architecture has revolutionized the

approaches towards speed up. Now an application cannot perform well until its design

 50

considers architectural considerations right from the start. We have discussed our

proposed Multi-threaded model for Intrusion detection system and carried out its

comparison with single-threaded implementations.

8.2 Future Work

There are many interesting avenues for future work. The function parallel and data

parallel approaches can be combined in an effective manner to gain advantage on high

speed network. The increase in the amount of data is tremendous and this trend will

continue in the future. Data Parallel technique can be used to divide the data in slices and

then for processing each slice, the concept of function-parallelism can be employed. We

showed that Function-Parallel implementation of a signature-based NIDS sensor is able

to outperform existing data parallel approach. This result provides a new approach to

increase the performance of individual sensors. We were only able to evaluate our

designs on 32 nodes. It would be very interesting to evaluate its performance on more

nodes to develop a better understanding of the proposed architecture.

The idea can be further extended to parallelize different stages of intrusion detection. For

future NIDS implementations, we believe that Function-Parallel approach should be

seriously considered. We were able to achieve a performance increase through

modification of existing code, but we think that a complete new implementation that

takes function parallelization into account from the start would suffer less overhead and

perform even better.

 51

BIBLIOGRAPHY

[1] Computer Emergency Response Team, “Vulnerability Statistics”, Computer
Emergency Response Team, Carnegie Mellon University, 1995-2008. [Online].
Available: http://www.cert.org/stats/fullstats.html. [Accessed: Mar 5, 2008].

[2] McHugh, J., “Intrusion and Intrusion Detection”, International Journal of Information

Security 2001

[3] Escamilla, T. “Intrusion Detection: Network Security beyond the Firewall”. John Wiley

& Sons Inc, New York, 1998.

[4] Roesch, M. “Snort: Lightweight Intrusion Detection for Networks”, 13th Conference on

Systems Administration, Berkeley, CA, 1999

[5] Hofmeyr, S. A., Forrest, S., and Somayaji, A., “Intrusion Detection using Sequences of

System Calls” Journal of Computer Security, 1998.

[6] Ramalingam, G. “Context-sensitive Synchronization-Sensitive Analysis is undecidable”,

ACM Transactions on Programming Languages and Systems

[7] Patrick Wheeler, Errin Fulp,”Taxonomy of Parallel Techniques for Intrusion Detection”,

ACMSE 2007 March 23-24, 2007

[8] Axelsson, S., “Research in Intrusion-Detection Systems: A Survey”. Technical Report,

Department of Computer Engineering, Chalmers University of Technology, Sweden,
1998.

[9] http://www.gocsi.com, Computer Security Institute (CSI) FBI Survey 2007

[10] Paxson, V. “Bro: A System for Detecting Network Intruders in Real-time” Elsevier

Computer Networks, 1998

[11] Lane, T., Brodley, C. E., “Temporal Sequence Learning for Anomaly Detection” 5th

ACM Conference on Computer and Communications Security, 1998

[12] Hofmeyr, S. A., Forrest, S., and Somayaji, A., “Intrusion Detection using Sequences of

System Calls” Journal of Computer Security, 1998

[13] Samaha, S. E. Haystack: “An Intrusion Detection System”, 4th Aerospace Computer

Security Applications Conference, IEEE Computer Society Press, 1988

[14] Lane, T., and Brodley, C. E. “Temporal Sequence Learning and Data Reduction for

Anomaly Detection”, ACM Transactions on Information Systems Security, 1999

[15] Forrest, S., Hofmer, S. A., Somayaji, A., and Longstaff, T. A. “A Sense of Self for UNIX

Processes”,. IEEE Symposium on Security and Privacy, IEEE Press, Oakland, May
1996

[16] Errin W. Fulp and Ryan J. Farley, “A Function- Parallel Architecture for High-Speed

Firewalls”, Proceedings of ICC IEEE 2006

 52

[17] Anita K. Jones and Robert S. Sielken ,”Computer System Intrusion Detection: A
Survey”

[18] Northcutt, S., Cooper, M., Fearnow, M., and Frederick, K. Intrusion Signatures

and Analysis, 1st ed. New Riders, SANS GIAC. Indianapolis, IN, January 2001

[19] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J., Levitt,
K., Wee, C., Yip, R., and Zerkle, D., “GrIDS – A Graphbased Intrusion Detection
System for Large Networks”, 19th National Intrusion Detection Working Group –
Information Systems Security Conference, October 1996

[20] Dowel C, R. “The Computer Watch Data Reduction Tool”, 13th National Computer

Security Conference, Washington, October 1990

[21] Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A.,” A Secure Environment for

untrusted Helper Applications”, 6th USENIX Security Symposium, July 1996.

[22] http://sourceforge.net/projects/libpcap

[23] H. Song, T. Sproull, M. Attig, and J. Lockwood, “Snort offloader: A reconfigurable

hardware NIDS filter”, 15th International Conference on Field Programmable Logic and
Applications (FPL), Tampere, Finland, Aug. 2005

[24] H. Song and J. W. Lockwood, “Efficient packet classification for network intrusion

detection using fpga,” Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field- programmable gate arrays. New York, NY, USA: ACM Press

[25] Christopher R. Clark, “Design of efficient fpga circuits for matching complex

Patterns in network intrusion detection systems”, Master’s thesis, Georgia Institute of
Technology, December 2003

[26] Christopher Kruegel Fredrik Valeur Giovanni Vigna Richard Kemmerer, “Stateful
Intrusion Detection for High Speed Networks”, Proceedings of IEEE symposium on
Security and Privacy, 2002

 [27] Charitakis, K. Anagnostakis, E. Markatos,”An Active Traffic Splitter Architecture for

Intrusion Detection” 11th IEEE/ACM International Symposium onAnalysis and
Simulation of Computer Telecommunications Systems, 2003

[28] Lambert Schaelicke, Kyle Wheeler, Curt Freeland, SPANIDS: “A Scalable Network

Intrusion Detection Load balancer” Sixth IEEE International Symposium on
Network Computing and Applications, 2007

[29] Charitakis, K. Anagnostakis, E. Markatos,” An Active Traffic Splitter

Architecture for Intrusion Detection” IEEE Transactions on Dependable and
Secure Computing, Jan-Mar 2006

[30] Lambert Schaelicke, Kyle Wheeler, Curt Freeland, “SPANIDS:A Scalable

Network Intrusion Detection Load balancer” Sixth IEEE International
Symposium on Network Computing and Applications, 2007

 53

[31] Robin Sommer, Vern Paxson, “Exploiting Independent State for Network
Intrusion Detection”, Proceedings of the 13th ACM conference on Computer and
communications security, 2006

[32] Bro Intrusion Detection System, [Online]. Available: www.bro-ids.org.

[Accessed: Mar 5, 2008]

 54

Appendix “A” – Code Listing

import java.io.*;

import java.util.*;

import java.net.*;

public class FPAIDSDaemon {

 private int total_sensors = 0;

 private int sensor_index = 0;

 private String [] rulefiles = null;

 private String configurationFilePath = null;

 private ServerSocket server = null;

 private int serverport = 3000;

 private int indexes[] = null;

 private Rule[] IDSPolicy = null;

 private Rule[] sensorPolicy = null;

 public void updateSensorConfiguration(String configurationFilePath)

 {

 try

 {

 FileInputStream fin = new FileInputStream(configurationFilePath);

 ObjectInputStream ob_in = new ObjectInputStream(fin);

Configuration sensor_configuration =

(Configuration)ob_in.readObject();

 this.sensor_index = sensor_configuration.getSensor_index();

 this.total_sensors = sensor_configuration.getTotal_sensors();

 Vector v = sensor_configuration.getRulespath();

 this.rulefiles = new String[v.size()];

 for (int i = 0 ; i < rulefiles.length ; i++)

 {

 this.rulefiles[i] = (String)v.elementAt(i);

 }//end for

 55

 }//end try

 catch (FileNotFoundException ex)

 {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 }//end catch

 catch (IOException ex)

 {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 }//end catch

 catch (ClassNotFoundException ex)

 {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 }//end catch

 }//end updateSensorConfiguration method

 public int[] calculateRuleIndexes(int total_rules , int sensor_index

, int total_sensors)

 {

 int indexes[] = null;

 int remainder = 0;

 int q = total_rules/total_sensors;

 indexes = new int[q+1];

 int index = 0;

 remainder = total_rules%total_sensors;

 for (int i = 0 ; i <= q ; i++)

 {

 index = sensor_index + (total_sensors*i);

 if (index >total_rules-1){

 break;}

 56

 else

 {

 indexes[i] = index;

 }

 //System.out.println(indexes[i]);

 }//end for

 return indexes;

 }

public Rule[] readSerializedRules(String serializedRuleFilePath)

{

 Rule rules[] = null;

 FileInputStream fin = null;

 ObjectInputStream ois = null;

 Object temp[] = null;

 try {

 fin = new FileInputStream(serializedRuleFilePath);

 ois = new ObjectInputStream(fin);

 Vector v = (Vector)ois.readObject();

 temp = v.toArray();

 rules = new Rule[temp.length];

 for (int i = 0 ; i < rules.length ; i++)

 {

 rules[i] = (Rule)temp[i];

 }//end for

 }//end try

 catch (FileNotFoundException ex) {

 ex.printStackTrace();

 }//end catch

 catch (IOException ex) {

 ex.printStackTrace();

 }//end catch

 57

 catch (ClassNotFoundException ex) {

 ex.printStackTrace();

 }//end catch

 return rules;

}//end method readSerializedRules

public void printIDSPolicy ()

{

 for (int i = 0 ; i < IDSPolicy.length ; i++)

 {

 System.out.println(IDSPolicy[i].toString());

 }//end for

}//end printIDSPolicy

public void printSensorPolicy()

{

 for (int i = 0 ; i < this.sensorPolicy.length ; i++)

 {

 System.out.println(sensorPolicy[i].toString());

 }//end for

}//end method

public void sleep(int interval)

{

 try

 {

 for (int i = 0 ; i < 50 ; i++)

 {

 Thread.sleep(interval);

 System.out.print(".");

 }

 System.out.println();

 }

 catch (InterruptedException ex1) {

 58

 ex1.printStackTrace();

 }

}

 public FPAIDSDaemon()

 {

 }//end constructor

 public FPAIDSDaemon(String configurationFilePath)

 {

 this.configurationFilePath = configurationFilePath;

 System.out.println("Reading Configuration");

 this.sleep(20);

 this.updateSensorConfiguration(this.configurationFilePath);

 System.out.println("updating Configuration");

 this.sleep(30);

 System.out.println("Loading IDS Policy");

 this.sleep(100);

 this.IDSPolicy = this.readSerializedRules(this.rulefiles[0]);

 System.out.println("calulating indexes...");

 this.sleep(10);

 this.indexes =

this.calculateRuleIndexes(this.IDSPolicy.length,this.sensor_index,this.

total_sensors);

 System.out.println("Extracting policy based upon indexed values");

 this.sleep(100);

 this.sensorPolicy = new Rule[this.indexes.length];

 for (int i = 0 ; i < sensorPolicy.length ; i++)

 {

 sensorPolicy[i] = IDSPolicy[indexes[i]];

 }//end for

 this.printIDSPolicy();

 this.printSensorPolicy();

 59

 try {

 this.server = new ServerSocket(this.serverport);

 System.out.println("FPAIDS DAEMON listening on port " +

 server.getLocalPort());

 Socket client = server.accept();

 DataInputStream din = new

DataInputStream(client.getInputStream());

 String message = din.readUTF();

 System.out.println(message);

 }//end try

 catch (IOException ex) {

 ex.printStackTrace();

 }

 public static void main(String[] args)

 {

 FPAIDSDaemon FPAIDSDaemon1 = new

FPAIDSDaemon("C:\\FPAIDS\\sensor.conf");

 }//end main

}//end class

	INTRODUCTION
	1.1 Introduction
	1.2 Problem Statement
	1.3 Overall Objective
	The motivation behind this work is to explore and develop different techniques used for enhancing the performance of signature-based NIDS and design an architecture that processes network traffic in less time. The architecture will be evaluated by usi...
	Thesis Organization
	Summary
	RESEARCH MOTIVATION
	2.1 Introduction
	2.2 Challenges
	2.2.1 Network Speed
	2.2.2 Vulnerabilities
	2.2.3 Rise in Signature Database

	2.3 Summary
	INTRUSION DETECTION SYSTEMS
	3.1 Introduction
	3.2 Classification of IDS
	3.2.1 Anomaly-Based Detection
	3.2.2 Signature-Based Detection
	3.3 Functional Decomposition of IDS
	3.3.1 Packet Acquisition
	3.3.2 Packet Decoding
	3.3.3 Preprocessing

	3.3.3.1 Protocol Decoders
	3.3.3.2 IP Defragmentation
	3.3.3.3 Stateful Inspection
	3.3.3.4 Stream Reassembly
	3.3.3.5 Application Layer Processors
	3.3.4 Content Matching
	3.3.5 Notification
	3.4 Limitations
	3.4.1 False Alarms
	3.4.2 Switched Networks
	3.4.3 Encryption
	3.4.4 Performance
	3.4.5 Security of Intrusion Detection Technology
	3.4.5 Summary
	PERFORMANCE ENHANCEMENT
	4.1 Introduction
	4.2 Data Parallel Approach
	4.3 Function Parallel Approach
	Function parallelism is also known as task parallelism and control parallelism. It is a form of parallelization of computer code across multiple processors in. Task parallelism focusses on distributing execution processes or threads across different p...
	4.4 Summary
	PROPOSED FUNCTION PARALLEL ARCHITECTURE
	5.1 Introduction
	5.2 Design Goals
	5.2.1 Uniform Division
	5.2.2 Efficiency
	5.2.3 Adaptability
	5.3 Functional Components
	5.3.4.1 Detection Engine
	5.3.4.2 Rule Loader
	5.3.4.3 Mapping Table
	5.3.4.4 Rule Vector
	5.4 Working
	5.5 Error Reporting
	5.6 Summary

	PROPOSED MULTI-THREADED ARCHITECTURE FOR HIGH SPEED IDS
	6.1 Introduction
	6.2 Design Goals
	6.3 Functional Components
	6.3.1 Load Balancer
	6.3.2 Daemon Thread
	6.4 Summary
	IMPLEMENTATION
	7.1 Introduction
	7.2 Experimental Setup
	7.2 Results
	7.2.1 Execution Speed
	7.2.2 Speed-up Factor
	7.2.2 Effectiveness
	7.2.4 Cost
	7.3 Summary
	FUTURE WORK
	8.1 Overview
	8.2 Future Work
	BIBLIOGRAPHY
	Appendix “A” – Code Listing

