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ABSTRACT 
 

Exponential increase in number of vulnerabilities, network traffic and bandwidth pose a 

serious threat to the performance aspects of Intrusion Detection Systems (IDS). 

Signature-Based IDS operates by comparing packet payloads against attack signatures. 

The process of signature matching takes up a lot of processing time and thus overwhelms 

the efficiency of a single Intrusion Detection System In this work; we propose a 

function-parallel architecture for enhancing the performance of IDS. The proposed 

architecture outperforms existing approaches of performance enhancement in terms of 

speed-up and cost. The parallel implementation has been done in java language on a 

cluster system comprising of 32 nodes. The cluster consists of dual 3.06 GHz, 1 GB 

RAM control node, 16 HP and 16 SUN 2.2 GHz compute nodes with 4 GB RAM on 

each node. Control node runs Red Hat Enterprise Linux AS Operating System whereas 

compute nodes run the WS version of the same OS. All nodes are interconnected using a 

Gigabit interconnect through HP ProCurve 2848 switch. The results obtained by parallel 

implementation of our proposed solution have shown 60 percent improvement in speed 

up on 32 Intrusion Detection Sensors. The approach has shown the potential to be 

extended and implemented on reconfigurable hardware for developing a cost-effective 

and scalable solution for future. 
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C h a p t e r  1  

INTRODUCTION 

1.1 Introduction 

Attacks on computer systems have been increased tremendously with increase in number 

of vulnerabilities. Over 32000 different vulnerabilities have been reported between 2000 

and 2007 [1]. These vulnerabilities are exploited by hackers to gain access to computer 

systems over the internet. Any violation attempt or actual violation to the security policy 

committed by an internal or external user is called an Intrusion [2]. The set of techniques 

used to identify intrusions on computer systems is defined as intrusion detection [3]. 

Intrusion detection and prevention systems play a crucial role in the security of systems 

and networks. Intrusion Detection Systems (IDS) are classified mainly on the basis of 

analysis techniques as Signature-based IDS [4] and Anomaly-based IDS [5].  Security 

policy in signature-based IDS is implemented by rules [6]. In signature-based IDS, the 

rules are written in a rule description language which provides different constructs for 

describing an attack signature. Signature-based IDS needs to check thousands of known 

attack signatures for every packet. Signature matching of this type imposes significant 

delays on IDS due to size of network traffic and complexity of policies. Therefore IDS 

cannot keep pace with the speed of modern networks, resulting in loss of information and 

performance chokepoints [7]. The existing work to improve the performance focuses on 

the use of hardware techniques, improvement in software and algorithm and 

parallelization. This work explores different parallel processing techniques for improving 

the performance of Signature-Based Network Intrusion Detection System and proposes a 

function parallel architecture for performance enhancement of Signature-based IDS. The 

existing work in this regard is based on data parallel approaches and is of very 

preliminary nature. The data parallel approaches are characterized by several drawbacks 
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discussed in chapter 4. The proposed architecture employs the concept of function-

parallelism and divides overall IDS policy across an array of Intrusion detection sensors. 

The parallel implementation has been done on a cluster system and experimental results 

show a comparison of proposed solution with existing work. The proposed solution 

outperforms existing data parallel approaches and show a significant speed-up which 

increases linearly with addition in the number of Intrusion Detection sensors. The 

proposed approach has the potential to be extended and implemented on reconfigurable 

hardware for developing a cost-effective and scalable solution for the future. 

 

1.2 Problem Statement 

Security policy in signature based IDS is implemented by rules. The policy database 

contains thousands of rules. These rules contain signatures against different attacks. A 

signature-based NIDS evaluates packet payloads against this huge policy database. Thus 

making rule matching the most expensive part of signature based IDS in terms of 

processing and memory resources. Rule matching of this type imposes significant delays 

on traffic due to complexity and size of polices. Therefore any rule matching processor 

based on a single intrusion detection component cannot scale over certain thresholds.  

 

1.3 Overall Objective 

The motivation behind this work is to explore and develop different techniques used for 

enhancing the performance of signature-based NIDS and design an architecture that 

processes network traffic in less time. The architecture will be evaluated by using 

benchmark data and performance comparison will be carried out with existing data 

parallel approach. Possibility of expanding the research to Intrusion Prevention Systems 

will also be studied 
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1.4 Thesis Organization 

The research thesis is organized as given. Chapter 2 discusses the challenges faced by 

Intrusion Detection Technology in detail from the performance prospective.  An in depth 

review of Intrusion Detection Systems is given in Chapter 3. Different techniques for 

parallelization of IDS are discussed in Chapter 4. The proposed architecture for 

performance enhancement is presented in Chapter 5. Issues related to Concurrency and 

proposed multi-threaded model are discussed in Chapter 6. Implementation of the 

proposed architecture along with experimental results is presented in chapter 7. Finally 

conclusion and Future work is discussed in Chapter 8. 

 

1.5 Summary 

This chapter has provided a comprehensive introduction to the addressed research work. 

A brief introduction, problem statement and overall objective of the research work have 

been discussed. Towards the end of the chapter, overall thesis organization is provided to 

help the reader in a thorough manner. 
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C h a p t e r  2  

RESEARCH MOTIVATION 

2.1 Introduction 

The real motivation behind this dissertation is, the continuously pressing performance   

requirements that modern networks impose on security devices. This chapter discusses 

some challenges that have become a real matter of concern for performance enhancement 

of IDS. 

 

2.2 Challenges 

Network intrusion detection System (NIDS) detect and investigate security threats on an 

organization’s network. It complements other security devices, such as firewalls, by 

providing information about the frequency and nature of attacks. The performance of a 

network intrusion detection system is characterized by the probability that an attack is 

detected and the number of false alerts. However, the system’s ability to process traffic at 

maximum rate offered by the network is equally important with minimal packet loss. 

Significant packet loss degrades the overall effectiveness of the system and can leave a 

number of attacks undetected. A high performance sensor not only improves the quality 

of detection by reducing the number of false alerts, but also processes packets at a higher 

rate. Network Intrusion Detection Systems cannot rely on flow control mechanisms and 

acknowledgments to control the flow of data. Instead, the NIDS must be able to process 

packets at the maximum rate offered by the network. 

2.2.1 Network Speed 

The issue of faster data communication is becoming more and more critical with 

relentless increase in world’s internet traffic. Researchers are focusing on improved 
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techniques to increase data transmission rates in order to cope with phenomenal surge in 

data traffic, as internet population exceeds a billion users. German and Japanese 

scientists recently collaborated to achieve just such a quantum leap in obliterating the 

world record for data transmission. By transmitting a data signal at 2.56 terabits per 

second over a 160-kilometer link, the researchers broke the old record of 1.28 terabits per 

second held by a Japanese group. By comparison, the fastest high-speed links currently 

carry data at a maximum 40 Gbit/s, or around 50 times slower.   The researcher assumes 

the transmission capacity on the large transoceanic traffic links will need to increase to 

between 50 and 100 terabits per second in ten to 20 years. This kind of capacity will only 

be feasible with the new high-performance systems. This phenomenal surge of data at 

very high speed poses a serious threat to the efficiency of Intrusion Detection Systems. 

The amount of data available within a single host can make the intrusion detection 

problem computationally very intensive. In the case of network-based intrusion 

detection, the traffic going through a gateway, for instance, can be prohibitively huge 

making it practically impossible for a security scanner to check every single packet 

without dropping some of them. Packet dropping severely damages the effectiveness of 

this type of protection tools. Similarly, audit facilities can generate very large log files 

which limit the likelihood of performing real-time processing, which is not as desirable 

as real-time detection.  

2.2.2 Vulnerabilities 

Vulnerability can be defined as a coding bug, configuration error, or design flaw that can 

be exploited to compromise the security of a system [8].  One of the clearest trends in 

information security is the fact that more and more vulnerabilities are discovered 

everyday and, consequently, more attacks that exploit them also appear on the scene. 

New threats appear every day challenging the quality and configuration of all kinds of 
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platforms ranging from web farms to even wireless telephony. Viruses and worms such 

as Sasser, Nimda, Code Red, Blaster, and Slammer have hit thousands of computers 

resulting in millions of people losing a considerable number of effective working hours. 

When a popular website is compromised by hackers or when a denial of service attack is 

underway, the reputation of entire institutions may be hurt and the consequences may 

cause a considerable loss of market share. A system that has not been found to be 

vulnerable today could be brought down tomorrow. The purpose of the release of 

vulnerability information is to make users and administrators aware of the existing 

threats. However, this information is also used by attackers that devise new techniques to 

abuse systems. The figure 2.1 shows number of vulnerabilities reported each year by 

CERT [1]. A significant rise in the number of vulnerabilities can be observed with the 

passage of time.  

 

Figure2. 1: Increase in vulnerabilities 
 

2.2.3 Rise in Signature Database 

The increase in vulnerabilities has given birth to more security incidents and compromise 

of millions of resources on internet. The average annual loss reported in the year 2007 
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survey shot up to $350,424 from $168,000 in 2006 [9]. Percentage of organizations 

reporting computer intrusions to law enforcement continued upwards after reversing a 

multi-year decline over the past two years, standing now at 29 percent as compared to 25 

percent in last year’s report [9]. In Signature-Based IDS, these vulnerabilities are fixed 

by designing new signatures and adding them to signature database. As a result, numbers 

of signature are continuously increasing. 

In June, 2003 there were only 1500 signatures in default Snort Rule Set whereas in June, 

2006 it reached up to 5000 default signature and it is approaching 10,000 now. This 

increase in signature database means that the Packet payloads have to be evaluated 

against more signatures, putting too much load on IDS to process huge amount of traffic 

against thousands of signatures in a fraction of time. Therefore with increase in network 

speed and signature database, there is pressing requirement for developing performance 

enhancement methodologies. 

 

  
Figure2. 2: Increase in Signature Database 

The increase in network speed poses a serious threat to the performance aspects of 

Intrusion Detection Systems. The process of signature matching is computationally very 
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intensive and IDS has to process huge amount of traffic in a fraction of time. The 

performance constraint makes it impossible for IDS to check every packet and it starts 

dropping the packet. Intrusion Detection Systems also serve as a forensic tool because 

the information regarding malicious packets is logged. With increase in the amount of 

network speed, the drop rate also increases and IDS may not catch evidence needed to 

trace an attacker.  

Intrusion Prevention systems are placed inline and the overwhelming load of traffic 

results in a more devastating situation where rest of the network behind an IPS will 

experience a denial of service situation. The IPS needs to process the data rapidly and 

forward traffic to its intended destination.  

 

2.3 Summary 

This chapter has presented an overview of the challenges that modern IDS face in the 

form of growth in vulnerabilities and rise in signature database. Due to increase in the 

number of vulnerabilities reported per year, signature database of IDS is continuously 

increasing. As a result, IDS has to evaluate millions of packets against thousands of 

attacks signatures. Signature matching of this type is computationally very intensive and 

imposes significant delays on IDS resulting in loss of information. 
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Chapter 3 

INTRUSION DETECTION SYSTEMS 

 
3.1 Introduction 

An Intrusion Detection System (IDS) detects unwanted attempts of accessing, 

manipulating or disabling of computer systems. These attempts are usually made by 

hackers, malicious programs, or disgruntled employees. Intrusion Detection Systems are 

used to detect several types of malicious behaviors that can compromise the security and 

trust of a computer system. It detects network attacks against vulnerable services, data 

driven attacks on applications, host based attacks such as privilege escalation, 

unauthorized logins and access to sensitive files. 

 

3.2 Classification of IDS 

Currently there are two basic techniques for intrusion detection. The first technique, 

called anomaly detection, defines a normality profile or normal working of systems, and 

then it detects anything that deviates from this normal activity [8]. It relies on being able 

to define desired form or behavior of the system and then to distinguish between that and 

undesired or anomalous behavior. The boundary between acceptable and anomalous 

form of stored code and data is precisely definable. One bit of difference indicates a 

problem. The boundary between acceptable and anomalous behavior is much more 

difficult to define. The second approach, called misuse detection [8], involves 

characterizing known ways to penetrate a system. Each one is usually described as a 

pattern. The misuse detection system monitors for explicit patterns. The pattern may be a 

static bit string, for example a specific virus bit string insertion. Alternatively, the pattern 

may describe a suspect set or sequence of actions. Patterns take a variety of forms as will 

be illustrated later. Intrusion detection systems have been built to explore both 
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approaches – anomaly detection and misuse detection – for the past 15 to 20 years. In 

some cases, the two kinds of detection are combined in a complementary way in a single 

system. There is a consensus in the community that both approaches continue to have 

value. The techniques for single systems have been adapted and scaled to address 

intrusion in distributed systems and in networks. Efficiency and system control have 

improved. User interfaces have improved, especially those for specifying new misuse 

patterns and for interaction with the system security administrator. Essentially all the 

intrusion detection implementations that will be discussed are extensions of operating 

systems. They use operating system notions of events, and operating system data 

collection, particularly audit records, as their base 

 

3.2.1 Anomaly-Based Detection 

Anomaly detection is also known as profile-based intrusion detection and statistical 

intrusion detection. In this technique, a definition of “normality” is created and any 

abnormal traffic that deviates from that normality profile is declared as intrusive [7]. 

 

Figure3. 1: Anomaly based Detection 

This approach assumes that intrusion constitutes of irregular events. The normal activity 

of users and applications is monitored and their behavior profiles are created. These 

profiles are built through training or heuristics [10-15]. 

4308FFCD3A09D8BD80 BB 
 

09E12DFFCD03AD89D8A 
0C90C08E80D4A6D4AA 
… 

Valid sequences 

Detection System 

System activity 
 

Intrusive Sequence 
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 Anomaly-Based IDS then monitors the behaviors of users and applications as shown in 

figure 3.1. Any activity that diverges from the normal profile is considered as intrusive. 

Differentiating an abnormal activity from a normal one is very difficult task which 

requires compliance with protocols, understanding the internals of an application, 

expertise level of users, their preferences, date and time.  

 A false positive is the classification of genuine activity as intrusive whereas a false 

negative is the classification of illegal activity as benevolent – the latter being a much 

more serious problem as it represents failure to identify potentially harmful events. 

Anomaly based intrusion detection systems are difficult to implement as they require not 

only compliance with protocols and understanding the inner-working of an application 

but also expertise level of users, their preferences, and the date and time.[16]. 

Construction and tuning of behavioral models required for anomaly based intrusion 

detection systems are computationally very intensive. 

3.2.2 Signature-Based Detection 

Signature-based Detection is also known as misuse detection or pattern-based detection. 

In this technique, patterns of abnormal activity are defined as shown in figure 3.2. IDS 

searches to find the occurrence of those patterns in monitored data stream. If an attack 

pattern is found in data stream, it is the sign of an intrusion [17]. This pattern or 

fingerprint called signature and it is used to identify and represent an attack [18]. 

Signature-based IDS will monitor packets on the network and match up to them against a 

database of signatures or attributes from known malicious threats. Monitoring programs 

observe different data streams present on the system and match them against a bank of 

attack signatures [19-21]. This is similar to the way most antivirus software detects 

malware. The antivirus searches for malicious signatures inside executables of 
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applications while the signature-based IDS perform the same operation at the network 

layer. 

 

Figure3.2: Signature based Detection 

 

3.3 Functional Decomposition of IDS 

 
 

 

 
Figure3. 3: Functional decomposition of IDS 

 

3.3.1 Packet Acquisition 

After initialization, Signature-based IDS enters into its packet processing function. For 

passive sniffing (and file read-back) modes this function is InterfaceThread in 

src/snort.c. This function utilizes the libpcap library [26] for retrieving packets from the 

Packet Acquisition Packet Decoding Preprocessing 

Notification Content Matching Normalization 

4308FFCD3A09D8B9D80 BB 
 

BB,3D,25,AA,FF,E9,F8,63,
47,32,11,00,01,02,03,04 
… 

Invalid sequences 

Detection System 

System activity 
 

Intrusive Sequence 



 

 13 

network device or a trace file. Libpcap is a cross-platform library that provides an API 

for receiving packets directly from the network. Libpcap provides basic information 

about each packet, including the time at which the packet was captured from the 

network, length of the packet on the wire and link layer type of the interface on which 

the packet was captured. 

3.3.2 Packet Decoding 

Once the packets are acquired, it passes it into the packet decoder. Exactly where the 

packet enters the decoder depends on the link layer from which it is being read. IDS 

support a number of link layers from pcap: Ethernet, 802.11, Token Ring, FDDI, Cisco 

HDLC, SLIP, PPP, and OpenBSD’s PF. It also supports the link layers specific to the 

APIs used for inline mode. Above the link layer, it supports decoding several other 

protocols, including IP, Internet Control Message Protocol (ICMP), TCP, and User 

Datagram Protocol (UDP). Although “decoders” are available for many other protocols 

(such as Internetwork Packet Exchange [IPX]) within Snort, many of them are just stubs 

that increment counters to indicate how many packets have been seen. In order to extend 

Snort to really support these protocols, work should begin in the decoder. You can find 

the implementation of the decoder in src/decode.c. Regardless of which link layer is 

being used, all of the decoders work in the same general fashion. For the particular layer 

being decoded, pointers in the packet structure are set to point to various parts of the 

packet. Based on the decoded information, it calls into appropriate higher-layer decoders 

until no more decoders are available.  
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Figure3. 4: Decoders Chain 

3.3.3 Preprocessing 

After the packet has been decoded, it is passed into the preprocessors. The preprocessors 

provide a variety of functions, from protocol normalization, to statistics based detection, 

to non rule-based detection. There is variety of tasks that preprocessors can perform .A 

preprocessor is code that is compiled into the IDS engine upon build in order to 

normalize traffic and/or examine the traffic for attacks in a fashion beyond what can be 

done in normal rules. Although that might seem like an overly simplistic explanation for 

what these complex pieces of Snort do, it’s important to realize their contribution to the 

overall whole of the intrusion detection system (IDS).  

 

3.3.3.1 Protocol Decoders 

Before the preprocessors even see traffic, all traffic must pass through the protocol 

decoders. Figure 3.5 shows layout of link layer decoders. 

 

3.3.3.2 IP Defragmentation 

The IP defragmentation preprocessor(s) reassembles fragmented packets. 
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3.3.3.3 Stateful Inspection 

The stream4 preprocessor verifies that packets are part of an established session  

 

3.3.3.4 Stream Reassembly  

The stream4_reassemble preprocessor reassembles TCP streams into a “pseudo-packet” 

for contextual analysis. 

 

3.3.3.5 Application Layer Processors 

This step contains a collection of preprocessors (with more coming all the time!) that 

normalizes complex protocols, and, if needed, generates events on incorrect 

implementations of the protocol, or an attempted misuse of the protocol. 

 

3.3.3.6 Detection Engine 

Finally, after all these steps have taken place, then the packets are passed through to the 

Snort detection engine. 

 

 
 

Figure3. 5: Levels of link-layer decoders 
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3.3.4 Content Matching 

Signature-based intrusion detection systems rely on content matching for detecting the 

anomalous traffic. A great deal of academic research focuses on analysis and design of 

anomaly based detection techniques but majority of the commercial intrusion detection 

systems are signature-based due to its high detection accuracy. 

During the content matching phase, IDS examines the contents of a network packet and 

checks for the presence of attack signatures. Each signature is represented by a rule that 

describes a known intrusion threat. If a packet is found to contain a given signature, then 

the action specified by a rule associated with the signature is taken. This action triggers 

an alert and logs the specious packet. Snort uses a simple, lightweight rules description 

language that is flexible and quite powerful. There are a number of simple guidelines to 

remember when developing Snort rules. Most Snort rules are written in a single line. 

This was required in versions prior to 1.8. In current versions of Snort, rules may span 

multiple lines by adding a backslash \ to the end of the line. Snort rules are divided into 

two logical sections, the rule header and the rule options. The rule header contains the 

rule’s action, protocol, source and destination IP addresses and netmasks, and the source 

and destination ports information. The rule option section contains alert messages and 

information on which parts of the packet should be inspected to determine if the rule 

action should be taken.   

 

Figure3. 6: Header and body part of Rule 

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|"; 

msg:"mountd access";) 
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The text up to the first parenthesis in figure 3.6 is the rule header and the section 

enclosed in parenthesis contains the rule options. The words before the colons in the rule 

options section are called option keywords. 

All of the elements in that make up a rule must be true for the indicated rule action to be 

taken. When taken together, the elements can be considered to form a logical AND 

statement. At the same time, the various rules in a Snort rules library file can be 

considered to form a large logical OR statement. 

 

3.3.5 Notification 

After the content matching phase the intrusion detection system issues a notification of 

the events that are produced to inform network administrators about the incident. IDS 

also store this information in the form of logs that are later used for tracing the 

perpetrators and detailed forensic analysis. 

 

3.4 Limitations 

Intrusion detection technology still suffers from some serious limitations that need to be 

worked out in order to create effective products. Some of the main challenges relevant to 

the topic are described next. 

 

3.4.1 False Alarms 

Many intrusion detection tools suffer from detection inaccuracy. The high rate of false 

positives and false negatives that intrusion detection tools generate does not help system 

administrators simplify their daily tasks. On the contrary, users may eventually opt for 

disabling this software rather than having to interpret the stream of alarms reported by 

the security system that may, in fact, not be reflecting the truth. This is a major limitation 

of intrusion detection technologies and is the priority for multiple data fusion and model-

based projects. 
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3.4.2 Switched Networks 

Modern networks utilize more intelligent devices to route packets from one location into 

the other. Many intrusion detection prototypes were based on the ability to configure a 

network device in promiscuous mode in a way that the monitoring mechanism could 

easily see and analyze all Ethernet packets. This allowed the system to correlate packets 

addressed to different hosts connected to the same segment, and also to protect several 

hosts at the same time. With modern network technology, this approach may no longer 

be as successful. 

 

3.4.3 Encryption 

Encrypted data cannot be easily interpreted unless a decryption key is available 

Information technology has witnessed the development of cryptographic protocols and 

tools that protects the privacy of data. File transfers, interactive sessions, and email can 

all be protected with encryption. Although this secures the information they handle, it 

renders further security analysis impossible – necessary in the case they transport illicit 

material. As more companies become security-conscious the use of encryption will 

increase. Intrusion detection tools are currently inadequate to deal with this problem as 

they are blind to encrypted communications. 

 

3.4.4 Performance 

Data filtering and screening is a computationally demanding task that is central to 

intrusion detection. Providing a system with real-time monitoring capabilities implies 

good search and pattern matching algorithms as well as efficient buffering of network 

traffic, audit trails, etc. which guarantees no data piece goes through without being 

inspected. Given the detailed checking needed by intrusion detection, a lot of resources 

are allocated and consumed and the performance of the hosting system ends up being 
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impacted. As a consequence, heavy intrusion detection software and business processes 

cannot cohabit and the former is sometimes disabled to give full privileges to priority 

services. 

 

3.4.5 Security of Intrusion Detection Technology 

Security tools are expected to be secure themselves – otherwise they could not be trusted 

and their results would be worthless. As software products, intrusion detection systems 

face the same security challenges other applications do (e.g., poor implementation and 

weak design). In fact, not much attention has been put into the secure design of this type 

of software. Only a few systems can be considered moderately secure but the rest is 

prone to direct or evasion attacks. This is an aspect that cannot be ignored when 

designing protection systems. 

 

3.4.5 Summary 

This chapter has presented an introduction to intrusion detection technology, it functional 

decomposition and limitations. Intrusion Detection System (IDS) can be classified on the 

basis of analysis technique into two types; Signature-based detection and Anomaly-based 

detection. Signature-based IDS are the ones currently dominating the market with high 

detection accuracy. An IDS performs a series of operation on packet data before it is 

evaluated against attack signatures. Signature-based IDS also suffer from some serious 

limitation such as performance drawbacks, false alarms and security of intrusion 

detection technology. 
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C h a p t e r  4  

PERFORMANCE ENHANCEMENT 

 
4.1 Introduction 

Performance Enhancements of Intrusion Detection Systems for high-speed links has 

been the focus of much debate and research in the recent past. The most common 

solutions to achieve high performance rely on hardware approaches [24-26], 

improvement in software and algorithm and parallelization. A common point of view is 

that high-speed network based Intrusion Detection is not practical by using a single 

sensor because of the technical difficulties encountered in keeping pace with increasing 

network speed and enormous surge of internet data. Analysis of network traffic on high-

speed links is computationally intensive problem requiring lot of processing time. 

The performance enhancement of Intrusion detection techniques is a fertile area of 

research where different approaches are being used to increase their efficiency. The 

NIDSs’ weak process ability is mainly because that the analysis of network packets 

needs much computing. So it seems that the problem could be resolved if the processors’ 

speed is increased. Unfortunately, the speed of networks increases faster than the speed 

of processors. It’s impossible to keep up with the speed of networks by just increase the 

CPU’s speed of NIDSs. This chapter presents an overview of existing work in this field 

and its analysis. 

Parallelism is one technique that may be used to help reduce IDS processing time. 

Parallelization can occur at different levels of the intrusion detection system. For 

example the entire IDS can be duplicated and arriving packets can be distributed to  

various systems. The policy of IDS can be duplicated and network traffic is divided by 
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using a traffic splitter. Likewise same data can be sent to each node and it is evaluated 

against a subset of the overall IDS policy.  

 
4.2 Data Parallel Approach 

 
Data parallelization is a form of parallelization which is also known as loop level 

parallelism. It focuses on distributing the data across multiple computing nodes. In data 

parallelism, each processor performs same computations on different sets of data.  For 

example, if the code is being run on dual-processor system having CPU-A and CPU-B 

and we have to perform operation on data D, it is possible to tell CPU-A to do that task 

on one part of data and CPU-B on other part of data. Both operations are performed 

simultaneously which reduces the execution time of serial program. In data parallel 

implementation of matrix addition, CPU-A could add elements from top half of the 

matrices and CPU-B could add all elements from bottom half of matrices. The two 

processors work in parallel and the job of matrix addition would take one half of the time 

of performing the same operation on single processor. 

There are not many parallel architectures available for improving the performance of IDS 

and existing work towards parallelization of IDS is based on the concept of data 

parallelism [9]. In data parallel approach, each node contains the complete IDS policy. A 

traffic splitter is then used to distribute packets to each node. The primary goal of the 

traffic splitter is to perform load balancing across all nodes. However, because intrusion 

detection systems perform stateful analysis a simple round-robin technique for 

distributing packets is inadequate. It is necessary that the traffic splitter maintain session 

integrity due to factors like packet reassembly.  

 

The first implementation was given by Christopher Kruegel, in which the traffic is 

divided into slices and each slice is processed by one or more Intrusion Detection sensors 
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[24]. The partitioning is done so that a single slice contains all the evidence necessary to 

detect a specific attack. The architecture of the system is showed in Fig. 4.1. The 

scatterer only scatters frames in a round-robin fashion to guarantee high speed. The task 

of the slicers is to route the frames they receive to the sensors that may need them to 

detect an attack. The reassemblers are responsible to reassemble the possibly disordered 

frames. The system’s throughput nearly reaches 200 Mbps in their experiment. The 

system consists of a network tap, set of m different slicers, set of n stream assemblers 

and set of P different Intrusion Detection Sensors. The network tap monitors traffic 

speed on high-speed monitored link and extracts sequence of frames on the wire during a 

specific time period. These frames are passed to the scatterer who partitions these frames 

and divides them into different subsequences.  

 

The splitting of the traffic is done on scatterer and each portion is directed to a different 

slicer. The traffic slicers route frames to sensors that may need them to detect an attack. 

The task of frame routing is performed is not performed on the scatterer because frame 

routing is complex task and will become a bottle neck of scatterer in particular and 

overall architecture in general. The traffic slicers are connected to a switch port and send 

frames to a designated stream reassembler through a predefined outgoing channel of the 

switch. Each channel is also associated with some intrusion detection sensors. The job of 

reassemblers is to make sure that packets appear on the channel in same order as they 

appeared on high-speed link. The paper mainly discusses how to divide the network 

traffic to avoid losing the evidence for intrusion detection. But the author does not 

present a feasible method to equally divide the traffic although he shows that the load 

balancing can be done by dynamically change the slices’ filters. In the experiment, the 

traffic is statically divided according to the address range. The architecture uses a static 

configuration of slicers based upon an offline configuration that is loaded on startup. The 
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static approach suffers from a major drawback as large percentage of network packets 

could be forwarded to a single channel resulting in a performance overhead on that 

sensor. Besides, the system is also complex, which needs many devices and has to 

reassemble the disordered frames.  

 

 

Figure4. 1:  High-level architecture of the high-speed intrusion detection system. 

 

Charitakis et al examine a splitter’s architecture in their paper [27] and two methods are 

used to improve system’s performance. First method is based on the concept of early 

filtering, where a portion of packets is processed on the splitter instead of intrusion 

detection sensors as shown in the figure 4.2. The cost of header preprocessing is 

significantly cheaper than computationally intensive payload analysis. The NIDS rule set 

is analyzed and rules that do not require content matching are extracted. It has been 

observed that a very small portion of the default rule set is only subject to header 

analysis.  
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Figure4. 2: Active IDS splitter architecture 

 
These rule sets are referred as Early Filtering rule sets. When a packet arrives at a sensor, 

it is first evaluated against EF rule set. If no rule is matched and packet contains no 

payload then the packet is discarded. However if the packet contains payload and no rule 

is matched, it is retained for payload analysis and forwarded to the sensor. The second 

method uses locality buffering technique where the splitter records packets in buffers as 

shown in figure 4.3. The use of locality buffers improves memory access locality on the 

sensors. 

 

 

Figure4. 3: Packet grouping using locality buffers 

 

The experiment shows that these methods do improve the performance. However, since 

early filtering and locality buffering may cause some packets been dropped or reordered, 

it is impossible for the sensors to do state analysis which is important to improve the 

detection accuracy. In addition, the author splits the traffic by simply hashing on flow 

identifiers and does not discuss the problem of load balancing in the paper. The other 



 

 25 

interesting parallel architecture presented in [28] is characterized by a custom hardware 

load balancer that feeds conventional NIDS sensors. To ensure that every packet 

belonging to a certain flow is analyzed by the same sensor, the hardware load balancer 

calculates a set of hashing functions on different fields of the packet as shown in figure 

4.4 and 4.5.  

 

Figure4. 4: Types of hashing 

 
The destination NIDS sensor is selected on the basis of the resulting hashes. However, 

although the balancer may dynamically adapt to the traffic dispatching rules, the 

redirection of already established connections to a different sensor makes it impossible to 

perform a stateful analysis. 

 
 

 

Figure4. 5: Multiple levels of hashing 

A serialization of the internal NIDS state was proposed in [29]. This is an important 

contribution because a serialized representation can be propagated to other NIDS sensors 
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to achieve better coordination in distributed NIDS architectures. However, this paper 

does not consider state serialization as a mean to provide Stateful and dynamic load 

balancing of established connections among different NIDS sensors. Figure 4.6 shows 

the integration of this concept in architecture of Bro [31]. 

 

 

Figure4. 6: Integrating independent state into Bro. 

 

4.3 Function Parallel Approach 

Function parallelism is also known as task parallelism and control parallelism. It is a 

form of parallelization of computer code across multiple processors in. Task parallelism 

focusses on distributing execution processes or threads across different parallel 

computing nodes. In a multiprocessor system, task parallelism is achieved when each 

processor executes a different thread or process on the same or different data. The 

threads may execute the same or different code. In the general case, different execution 

threads communicate with one another as they work. Communication takes place usually 

to pass data from one thread to the next as part of a workflow. If we are running code on 
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a dual processor system in a parallel environment and we wish to do tasks "A" and "B”, 

it is possible to tell CPU-A to do task A and CPU-B to do task B simultaneously and 

reduce the runtime of the execution. 

Function parallelism involves dividing the IDS policy which consists of a set of rule 

groups each containing some number of rules across nodes. These rules are placed into 

rule groups based on their source and destination port numbers. For example, rules 

associated with web traffic are usually placed in the port 80 rule group. One method is to 

take rules from each rule group and spread them evenly across all nodes. In this case a 

traffic duplicator is then used to duplicate each incoming packet so that all packets are 

seen by all nodes. Using this method, which each packet must be examined by each node 

because each node contains a fraction of the rules which are applicable to all packets.  

 

4.4 Summary 

This chapter has presented an overview of performance enhancing techniques, their 

strengths and weaknesses. The most common solutions to achieve high performance for 

intrusion detection rely on the use of hardware, improvements in software and use of 

parallel computing techniques. Application of parallel computing in the domain of 

intrusion detection seems promising due to high scalability and low cost. Data parallel 

methods focus on dividing network traffic through splitter while function parallel 

methods divide policy database of signature-based intrusion detection system across an 

array of nodes. 
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C h a p t e r  5  

PROPOSED FUNCTION PARALLEL ARCHITECTURE 

 
5.1 Introduction 

This chapter presents our proposed architecture in detail, also differentiating it from 

existing work. The data parallel approach for performance enhancement is characterized 

by several drawbacks discussed in Chapter 2. The proposed architecture employs the 

concept of function parallelism for improving the performance of Signature-Based 

Network Intrusion Detection System. Instead of dividing the data, the security policy of 

IDS is divided across different nodes.  This security policy of IDS consists of different 

rules where each rule contains a signature and the action against a known attack. Each 

node in this architecture receives same data packets and compares them against different 

rule sets. 

5.2 Design Goals 

The proposed architecture considers following design goals 

5.2.1 Uniform Division 

The security policy of IDS is divided across multiple sensors such that the workload 

distribution on each sensor is uniform and performance is maximized. This requirement 

is the key to guarantee system’s performance. If one slice is much larger than others, the 

intrusion detection sensor that processes the particular slice will become a bottleneck of 

the system and waste other sensors abilities of processing traffic. 
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5.2.2 Efficiency 

The load-balancing algorithm should be simple and efficient enough to operate at high 

speed networks. This requirement assures that each sensor can detect attacks without any 

interaction so that the system’s complexity is greatly reduced. 

5.2.3 Adaptability 

The architecture should be dynamically adaptable to varying traffic loads and 

compositions. This requirement is also for the performance. It is obvious that a simple 

and efficient algorithm is easy to archive a high throughput. Unfortunately, in practice, it 

is very hard to satisfy all of these requirements. For example, the round-robin partition 

algorithm, which sends the packets to the sensors in turn, completely satisfies 

requirement 1 and requirement 3. However, because the algorithm does not consider any 

character of the packets, it is very possible that several packets relevant to the same 

attack are sent to different sensors. As a result, no sensor has enough information to 

detect the attack. The round-robin algorithm does not satisfy requirement 2. On the other 

hand, to satisfy requirement 2, it is difficult to partition the traffic equally and keep the 

algorithm simple and efficient.  

After studying the network attacks, we design a simple architecture that satisfies 

requirement 2 and guarantee that the slices have the nearly same sizes. There are two 

kinds of network attacks. The attacks in the first category are those that can be detected 

after inspecting all the packets belonging to one TCP/UDP connection. Most attacks fall 

into this category, such as the attacks making use of the bugs of the programs. On the 

contrary, several connections have to be inspected to detect the attacks in the second 

category. Scan and DoS fall into this category. For the first kind of attacks, the sensor 

would be able to detect the possible attacks without other information if all packets 
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belonging to the same TCP/UDP connection are sent to it. So, no sensor-to-sensor 

interaction would be needed if partitioning according to TCP/UDP connections.  

5.3 Functional Components 

The architecture consists of following components as described in figure5.1. 

5.3.1 Network Source 

It is installed on a high speed monitored link and it feeds traffic to rest of the system. A 

network source can be implemented by using a simulator, network tap or switch with 

span port. 

5.3.2 Duplicator 

 Traffic duplicator is used to duplicate each incoming packet so that all packet s are seen 

by all nodes. The functionality of a duplicator can be implemented by a simple broadcast 

or multicast to some selected nodes. 

 

 

 Figure5. 1: Functional Components of proposed architecture 
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5.3.3 Configuration Manager 

It controls and updates the configuration of rules on each sensor. Every sensor contains 

complete rule set which is divided according to configuration file placed on each 

intrusion detection sensor. Configuration manager maintains and updates the contents of 

this configuration file on each sensor. 

5.3.4 Sensor Array 

It refers to a collection of systems on which signature based IDS is installed.  Sensor 

array can be implemented by installing signature based IDS on individual computers. 

Each sensor is equipped with a policy database and a local configuration file which 

enables a certain rule set on that sensor. The configuration manager can update this file 

dynamically to regulate the processing load on that sensor. Each intrusion detection 

sensor will match incoming traffic against those rules which are 

 

 
 

enabled in file. The proposed architecture uses multiple sensors for signature matching. 

Each sensor is equipped with different components as shown in the figure 5.2. 

 

Figure5. 2: Functional Decomposition of a Sensor 
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5.3.4.1 Detection Engine 

Each sensor is equipped with a detection engine which is installed on it. This detection 

engine can be an existing signature-based intrusion detection system. 

 

5.3.4.2 Rule Loader 

This component reads Sensor.conf file and updates the entries in rule vector as well as 

Table ‘S’ 

 

5.3.4.3 Mapping Table 

Each Sensor contains a table “S” that maps hash value k to the Rule-set R. The hash 

value is calculated as a function of source and destination port numbers. 

 

5.3.4.4 Rule Vector 

The rules are loaded and placed in a data structure designed especially to accommodate 

rules. This data structure can be implemented in the form of a vector. 

 

5.4 Working 

Each sensor upon startup read its configuration. The format of configuration file is 

shown in figure 5.3. The entries of the file can be manually or automatically updated by 

using configuration manager.  

 

  
 

Figure5. 3 Format of Sensor.conf file 

#Sensor.conf 
$TOTAL_SENSORS = 32; 
$SENSOR_INDEX = 2; 
#Load ($ Category_Name, $Length_of_Ruleset) 
Load (Backdoor. Rules, 639) 
Load (DOS. Rules, 639) 
Load (VIRUS. Rules, 639) 
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Each sensor is assigned an index number on the basis of which rules are loaded from 

specific rule sets. Sensor index of each intrusion detection sensor is specified in the 

configuration file along with total number of sensors used by parallel IDS. The 

configuration file also specifies routines or functions for loading rules from a specific 

category of rule sets. Each Load routine takes two arguments; rule set category and total 

number of rules. $LENGTH describes the length of a particular rule set. Each sensor 

reads configuration file and loads a certain subset of the overall IDS policy according to 

a predefined algorithm shown in Figure 5.2. Given the sensor index, total sensors and 

length of a rule set, the algorithm tries to find indexes that describe which rules from a 

specific rule set are to be loaded. The algorithm divides length of a rule set by number of 

sensors used. The values of quotient and remainder are stored. If rules are not perfectly 

divisible by total sensors, the remaining rules are divided on P-R processors as shown in 

figure 5.4. For instance If 639 rules are to be divided across 32 nodes, the algorithm 

proceeds as shown in figure 5.5. 

 

 

Figure5. 4:  Rule Loading Algorithm 

Func (SENSOR_INDEX, RULESET, TOTAL_SENSORS) 
Begin 

Quotient = 0; 
Remainder = 0; 
Size = 0; 
Quotient = RULESET/TOTAL_SENSORS; 
Remainder = RULESET%TOTAL_SENSORS; 
Size = Quotient; 
If (SENSOR_INDEX < Remainder) 

SIZE++;Int ARRAY [SIZE]; 
Int COUNT = 0; 
FOR (INT I = 0; I < SIZE; I++) 

ARRAY [I] = INDEX + COUNT; 
COUNT = COUNT + TOTAL_SENSORS 

End 
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By introducing this mechanism of rule division, we ensure the portability of proposed 

architecture where the changes have to be made only on configuration manager and not 

on every sensor. Any change made by the user or the system is automatically picked by 

each sensor as configuration manager updates the entries by updating sensor 

configuration file on each sensor.  

 

 

Each sensor maintains a table ‘S’ which is used for the selection of a rule set for a 

packet. It maintains information about the location of rules in RAM belonging to 

particular category of hash value. The hash value can be calculated as function of source 

and destination port numbers. The format of this table is shown in figure 5.6. After a 

Sensor has loaded a rule set, it records its entry in this table.  

 

Hash-Value Category Offset Length 
8568 SNMP 1 60 
0023 TELNET 61 85 
0021 FTP 86 115 
0080 HTTP 116 217 
3600 DNS 218 290 

 
Figure5. 6: Format of Table ‘S’ 

Given 
SENSOR_INDEX = 2 
RULESET = 639 
TOTAL_SENSORS = 32 

============================================== 
Quotient = 639/32 = 19 
Remainder = 639%32 = 31 
Size = 19 
AS SENSOR_INDEX < Remainder 

SIZE++; SIZE = 20; 
Int ARRAY [20]; 
Int COUNT = 0; 
FOR (INT I = 0; I < SIZE; I++) 

ARRAY [I] =SENSOR_INDEX + COUNT; 
COUNT = COUNT + TOTAL_SENSORS 

 

Figure5. 5: Rule Loading 
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These entries are then used in the later stage when the sensor performs a decision based 

upon the packet type that which rules are to be loaded. After the Sensor has loaded the 

rules and maintained the Table ‘S’ and all the entries of rule vector are populated , it is 

set to receive traffic from the splitter. When the sensor receives a packet P, the sensor 

has to decide that the packet has to be evaluated against which type of traffic. The 

decision depends upon the type of packet and as the rules are categorized on the basis of 

porn numbers hash values , therefore the Sensor will perform a simple hash function on 

port number and will map the result ‘K’ onto the Table ‘S’.  

 

 

Figure5. 7: Rule set selection algorithm 

Depending upon the type of hash value, the rule set is selected and the detection engine 

starts signature matching on the packet as shown in figure 5.7. 

5.5 Error Reporting 

Error reporting or taking any action against an Intrusion is an important issue in parallel 

IDS. In centralized architecture, single intrusion detection sensor performs all the 

matching and produces an alert and the availability of rules and signature matching is 

central. But in parallel architecture, each sensor is evaluating a particular packet against a 

different rule set and there may be more than one match on a single packet. The 

information coming from several intrusion detection sensors must be combined and 

correlated by a central process. The proposed Architecture uses a simple and efficient 

Step1: Calculate src_port||dest_port hash value ‘k’ 
Step2: Search for the Rule-set R to which k maps in S 
Step 3: Read offset of R in S 
Step 4: Read length l of the Rule-set R in S 
Step 5: For index = offset; index < l; index++ 
Intrusive = Detection-engine(P,R[index]); 
If (Intrusive) 
Log (P, R[index]) 
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way of combining and correlating this information as shown in figure 5.8. Each sensor 

evaluates packet payloads against attack signatures. Whenever a malicious packet is 

found, the sensor records information related to the type of attack in a table. 

 
  
 

 

The table has a specific entry for each sensor to avoid mutual exclusion. Error Console is 

a lightweight thread that monitors the status of the table and whenever an update is made 

by a sensor, error console reads the entry and produces a notification of that intrusion. 

The information is also logged in database for further use. 
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Figure5. 8: Correlation mechanism for parallel intrusion detection system 
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5.6 Summary 

This chapter has presented our proposed architecture in detail. This architecture employs 

the concept of function parallelism for increasing the performance of signature-based 

IDS. Instead of dividing the data, it divides rules on the basis of rule groups. Each 

intrusion detection sensor receives same data and evaluates it against different signatures. 

Finally the results are combined using a broadcast message. The message is received by 

error console which displays the intrusion on the screen and logs it in database. 
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C h a p t e r  6  

PROPOSED MULTI-THREADED ARCHITECTURE FOR HIGH 

SPEED IDS 

 
6.1 Introduction 

We have presented our proposed architecture based on the concept of function 

parallelism in Chapter 5. The architecture has the potential to perform well on high 

performance computing platforms where Intrusion Detection Systems are installed on 

general purpose central processing units. But the hardware architecture has been 

changing during the last two decades and the biggest players in processor manufacturing 

are relying on multiprocessors. Rather than increasing the speed of single processor, 

multiple processors are stamped on a single chip. Therefore an application has to be 

implemented in such a way that it gains benefit from the underlying architecture in order 

to perform well. The improvements in the fabrication of semi-conductors and processor 

implementation steadily increased the performance of sequential computer programs for 

the past three decades. The performance gain through the inception of multi-core 

architectures represents a fundamental shift in computing. The normal desktop 

applications with sequential execution cannot gain any benefit from multi-core 

architectures .The individual cores will become much simpler and run at lower clock 

speed in order to reduce power consumption on dense multi-core processors. 

The architectural changes in multi-core processors benefit only concurrent applications 

and therefore have little value for most existing mainstream software [9]. These changes 

mark a fundamental turning point for mainstream software development industry. New 
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applications cannot simply rely on increasing clock speed. For high performance gains, 

the applications have to be highly concurrent. 

In this chapter we present a lightweight multi-threaded design model that gains 

advantage of multiprocessor architectures. This allows spreading the signature matching 

workload over multiple CPUs of the same machine and performance to scale beyond 

single-CPU machines. 

 

6.2 Design Goals 

The proposed architecture considers some design issues in order to maximize the 

performance of proposed architecture. The algorithm should divide the whole workload 

into slices with equal sizes. This requirement is the key to guarantee the system’s 

performance. If workload on a single thread is larger than others, the thread that 

processes that workload will become the bottleneck of the system and waste other 

threads’ process abilities. Each slice contains all the evidence necessary to detect a 

specific attack. This requirement assures that each thread can detect attacks without any 

interaction so that the system’s complexity is greatly reduced.  

 

The proposed model divides overall IDS policy across multiple threads. We argue that 

data parallel approach for dividing the workload is not suitable as it is characterized by 

some drawbacks such as connection state maintenance and tcp reassembly. Moreover by 

assigning individual connections to separate threads, the workload cannot be divided 

uniformly due to variation in traffic type and volume. The proposed model therefore 

divides the policy across multiple threads and performs a uniform distribution of 

workload. The load-balancer copies each packet to trace tables, which are specially 

designed data structures to accommodate network traffic and IDS rules. 
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6.3 Functional Components 

The proposed multithreaded model for intrusion detection consists of different 

components which are illustrated in the figure 6.1. 

 

6.3.1 Load Balancer 

Instead of separating the individual phases from the serial execution and including it in 

multi-threaded path, we introduce a sophisticated and easy to implement load balancer. 

In case of shared memory architecture, the load balancer does not need to handle issues 

like connection state monitoring. From the packet capturing phase the packets are 

forwarded to the load balancer, which initializes the main thread and also keeps track of 

the maximum number of threads that are currently active. Load-balancer can also be 

implemented as a part of the packet capturing module. When a packet ‘p’ is received by 

the load-balancer, it duplicates the packet onto trace tables and notifies all the threads 

about the arrival of new packet so that they are consumed by daemon threads for 

signature-matching process. Load-balancer also updates and divides IDS policy on every 

table. The policies are updated and loaded on system start-up. Whenever a new rule is 

entered by a user or an application, load-balancer updates the copies on every trace table. 

 

6.3.2 Daemon Thread 

Daemon thread acts as a child thread for the load-balancer. Each daemon has a unique id 

and based upon that ID, it loads a certain rule set and places it in the trace table. 

Whenever a new packet ‘P’ arrives, load-balancer notifies every daemon about the 

arrival of the packet. Each daemon compares it against it against a subset of the overall 

policy and if it finds any intrusion, it notifies the load-balancer about the malicious 

packet. 
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6.3.3 O/P Thread 

The architecture doesn’t allocate any special thread for producing any output. We believe 

that majority of the traffic in a network is clean and very few packets are malicious. 

Therefore assigning a separate o/p thread for producing alerts can significantly reduce 

the efficiency of the system. The proposed architecture presents different alternatives for 

assigning a separate thread to show alerts. Load-balancer checks the availability of any 

daemon thread and assigns it, the task of logging the malicious packet and producing 

alert. 

 

6.3.4 Trace Tables 

These are used as data structures for holding incoming packets and rule files. Each table 

has two portions, one for accommodating the rule set loaded by the daemon threads and 

the other which provide storage for the incoming packets. The rule sets are placed on the 

basis of a simple hash-function of source and destination port numbers. When a packet  
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Figure6. 1: Multi threaded architecture for intrusion detection 
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‘P’ is received by a daemon thread, it performs a hash-function on source and destination 

port numbers and maps the resultant hash value onto the trace table which keeps an entry 

of a unique rule set for each hash value. The trace tables provide very simple and 

efficient mechanism for storing packet payloads and the rule sets 

 
6.4 Summary 

Due to the emergence of multi-core processors, application software cannot rely on 

increasing clock speed. Applications have to be highly concurrent in order to achieve 

high performance gains. This chapter has presented a concurrent architecture of 

signature-based IDS which uses multiple threads for signature matching. Instead of 

allocating a separate output thread, dynamic load balancing mechanism is introduced 

which ensures maximum utilization of hardware resources.  
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C h a p t e r  7  

IMPLEMENTATION 

7.1 Introduction 

The implementation of function parallel architecture has been done using default 

signature set of snort. The implementation of duplicator, configuration manager has been 

done in java using jdk1.4 and Jpcap for packet capturing. This chapter presents the 

performance evaluation of function parallel architecture on the basis of different 

parameters like execution time, speed up factor, cost, efficiency and effectiveness. 

 

7.2 Experimental Setup 

This section presents the experimental results for the parallel algorithm. The results were 

taken on a High Performance Computing Cluster. The cluster consists of dual 3.06 GHz, 

1 GB RAM control node, 16 HP and 16 SUN 2.2 GHz compute nodes with 4 GB RAM 

on each node. Control node runs Red Hat Enterprise Linux AS Operating System 

(Release 3 Update 6) whereas compute nodes run the WS version of the same OS. All 

nodes are interconnected using a Gigabit interconnect through HP ProCurve 2848 

switch. The implementation has been done in Java. MPJ Express [18] has been used for 

code parallelization of a prototype implementation of a signature-based NIDS. The 

configuration manager and the splitter are installed on the control node and snort 

signatures are placed on each node for intrusion detection. 

Snort uses a simple, lightweight rules description language that is flexible and quite 

powerful. There are a number of simple guidelines to remember when developing Snort 

rules. Most Snort rules are written in a single line. This was required in versions prior to 

1.8. In current versions of Snort, rules may span multiple lines by adding a backslash \ to 



 

 44 

the end of the line. Snort rules are divided into two logical sections, the rule header and 

the rule options. The rule header contains the rule’s action, protocol, source and 

destination IP addresses and netmasks, and the source and destination ports information. 

The rule option section contains alert messages and information on which parts of the 

packet should be inspected to determine if the rule action should be taken. The text up to 

the first parenthesis is the rule header and the section enclosed in parenthesis contains the 

rule options. The words before the colons in the rule options section are called option 

keywords. All of the elements in that make up a rule must be true for the indicated rule 

action to be taken. When taken together, the elements can be considered to form a logical 

AND statement. At the same time, the various rules in a Snort rules library file can be 

considered to form a large logical OR statement. The rule header contains the 

information that defines the who, where, and what of a packet, as well as what to do in 

the event that a packet with all the attributes indicated in the rule should show up. The 

first item in a rule is the rule action. The rule action tells Snort what to do when it finds a 

packet that matches the rule criteria. There are 5 available default actions in Snort, alert, 

log, pass, activate, and dynamic. In addition, if you are running Snort in inline mode, you 

have additional options which include drop, reject, and sdrop.  

 

7.2 Results 

The experimental results were obtained on 1, 4, 8, 12, 16, 20, 24, 28 and 32 intrusion 

detection sensors. The experiment was carried out with 7458 default rules of Snort 2.6 

release. The alerts were directed to standard output. Traffic is taken from the Lincoln’s 

lab DARPA Intrusion detection evaluation data sets [19, 20] specifically the outside 

tcpdump data of week 1 and 4. Care was taken that dump file was completely cached in 

RAM at the start of experiment.  The results were evaluated on the basis of following 

parameters. 
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7.2.1 Execution Speed 

 The experiment was performed 20 times and run times were averaged. A comparison of 

execution time is presented in figure 7.1. It is clear that function parallel method reduces 

the overall time and sticks closely with theoretical model. 

 

 

 
 

Figure7. 1: Execution Time (sec) 

 

7.2.2 Speed-up Factor 

A measure of relative performance between a multiprocessor system and a single 

processor system is the speedup factors (n), defined as  

 

 
 

 

 

Where ts is the execution time on a single processor and tp is the execution time on a 

multiprocessor. S(n) gives the increase in speed in using a multiprocessor. The 
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experimental results show a significant rise in speed-up with increase in the number of 

sensors. The observed speed-up sticks with theoretical speed-up and shows a 

performance gain over classical data parallel approach for intrusion detection systems as 

shown in figure 7.2. 

 

 

Figure7. 2 : Speed-up Factor 

 

7.2.2 Effectiveness 

Effectiveness is a measure of load distribution on multiple sensors. The data parallel 

approach cannot regulate the load balancing due to issues like connection state 

maintenance and TCP reassembly. The proposed architecture divides workload by 

evenly distributing the overall policy across multiple sensors. Figure 7.3 shows the 

distribution of rules on ten different sensors for a Trojan Scan. 

 

 



 

 47 

 
 

Figure7. 3: Effectiveness on ten IDS sensors 

 

 

7.2.4 Cost 

The cost of parallel architecture is defined as the product of running time and the number 

intrusion detection sensors.  

 

NODES Cost-Data Parallel Cost-Function Parallel 

1 33.54 29.12 

2 33.54 28.92 

4 39.44 29.23 

8 44.32 29.92 

16 65.46 27.52 

32 78.34 27.21 

 

Figure7. 4: Cost of data and function parallelism methods 
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Figure 7.4 indicates that proposed solution is cost effective as compared to data parallel 

approach which suffers mainly due to diversity of traffic, making it impossible for the 

splitter to divide uniformly. 

 

7.3 Summary 

This chapter has presented results of our parallel implementation on cluster system. 

Implementation has been in java language and JPCAP has been used as packet capturing 

library. The performance of proposed architecture has been evaluated mainly in terms of 

speed-up factor and cost. Proposed solution for high speed intrusion detection is cost 

effective and processes more traffic in less time as compared to classical data parallel 

approach for IDS. 
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C h a p t e r  8  

FUTURE WORK 

8.1 Overview 

The performance requirements of Intrusion Detection Systems are continuously 

increasing with increase in network speed and traffic loads .The ability of the system to 

handle increasing traffic loads becomes even more crucial when IDS are placed in line, 

just becoming an IPS. It is severe enough to have overloaded IDS which drops packets as 

this can lead to missed intrusions. But when an IPS is overloaded it is not only the 

system itself which faces a denial-of-service, but all the users whose traffic passes 

through the system. Numerous approaches to improve the performance of intrusion 

detection and prevention systems have been suggested by researchers in all areas of 

computer science. Some approaches focus on improving software and algorithms, others 

introduce new hardware techniques, and still others examine the use of parallelism in 

intrusion detection. Our current work has presented a function-parallel architecture for 

enhancing the performance of Intrusion Detection Systems. We argue that data parallel 

approaches are categorized by some drawbacks which can be overcome by using our 

proposed Function-Parallel Architecture. The proposed architecture outperforms existing 

data parallel approaches and results obtained by our parallel implementation have shown 

significant speed. The approach has also shown the potential to be extended and 

implemented on reconfigurable hardware to develop a cost-effective and scalable 

solution for the future. 

We have also discussed the importance of concurrency in the context of Intrusion 

Detection Systems. The introduction of multi-core architecture has revolutionized the 

approaches towards speed up. Now an application cannot perform well until its design 
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considers architectural considerations right from the start. We have discussed our 

proposed Multi-threaded model for Intrusion detection system and carried out its 

comparison with single-threaded implementations. 

8.2 Future Work 

There are many interesting avenues for future work. The function parallel and data 

parallel approaches can be combined in an effective manner to gain advantage on high 

speed network. The increase in the amount of data is tremendous and this trend will 

continue in the future. Data Parallel technique can be used to divide the data in slices and 

then for processing each slice, the concept of function-parallelism can be employed. We 

showed that Function-Parallel implementation of a signature-based NIDS sensor is able 

to outperform existing data parallel approach. This result provides a new approach to 

increase the performance of individual sensors. We were only able to evaluate our 

designs on 32 nodes. It would be very interesting to evaluate its performance on more 

nodes to develop a better understanding of the proposed architecture. 

The idea can be further extended to parallelize different stages of intrusion detection. For 

future NIDS implementations, we believe that Function-Parallel approach should be 

seriously considered. We were able to achieve a performance increase through 

modification of existing code, but we think that a complete new implementation that 

takes function parallelization into account from the start would suffer less overhead and 

perform even better. 
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Appendix “A” – Code Listing 

 
import java.io.*; 

import java.util.*; 

import java.net.*; 

public class FPAIDSDaemon { 

  private int total_sensors = 0; 

  private int sensor_index = 0; 

  private String [] rulefiles = null; 

  private String configurationFilePath = null; 

  private ServerSocket server = null; 

  private int serverport = 3000; 

  private int indexes[] = null; 

  private Rule[] IDSPolicy = null; 

  private Rule[] sensorPolicy = null; 

  public void updateSensorConfiguration( String configurationFilePath ) 

  { 

    try 

    { 

      FileInputStream fin = new FileInputStream(configurationFilePath); 

      ObjectInputStream ob_in = new ObjectInputStream(fin); 

Configuration sensor_configuration = 

(Configuration)ob_in.readObject(); 

      this.sensor_index = sensor_configuration.getSensor_index(); 

      this.total_sensors = sensor_configuration.getTotal_sensors(); 

      Vector v = sensor_configuration.getRulespath(); 

      this.rulefiles = new String[v.size()]; 

      for ( int i = 0 ; i < rulefiles.length ; i++ ) 

      { 

        this.rulefiles[i] = (String)v.elementAt(i); 

       }//end for 
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   }//end try 

    catch (FileNotFoundException ex) 

    { 

      System.out.println(ex.getMessage()); 

      ex.printStackTrace(); 

    }//end catch 

    catch (IOException ex) 

    { 

      System.out.println(ex.getMessage()); 

      ex.printStackTrace(); 

    }//end catch 

    catch (ClassNotFoundException ex) 

    { 

      System.out.println(ex.getMessage()); 

      ex.printStackTrace(); 

    }//end catch 

   }//end updateSensorConfiguration method 

  public int[] calculateRuleIndexes( int total_rules , int sensor_index 

, int total_sensors ) 

  { 

    int indexes[] = null; 

    int remainder = 0; 

    int q = total_rules/total_sensors; 

    indexes = new int[q+1]; 

    int index = 0; 

    remainder = total_rules%total_sensors; 

    for ( int i = 0 ; i <= q ; i++ ) 

    { 

     index = sensor_index + (total_sensors*i); 

     if ( index >total_rules-1){ 

       break;} 
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     else 

     { 

         indexes[i] = index; 

     } 

     //System.out.println(indexes[i]); 

    }//end for 

   return indexes; 

  } 

public Rule[] readSerializedRules( String serializedRuleFilePath ) 

{ 

  Rule rules[] = null; 

  FileInputStream fin = null; 

  ObjectInputStream ois = null; 

  Object temp[] = null; 

  try { 

      fin = new FileInputStream(serializedRuleFilePath); 

      ois = new ObjectInputStream(fin); 

      Vector v = (Vector)ois.readObject(); 

      temp = v.toArray(); 

      rules = new Rule[temp.length]; 

      for ( int i = 0 ; i < rules.length ; i++ ) 

      { 

        rules[i] = (Rule)temp[i]; 

      }//end for 

    }//end try 

    catch (FileNotFoundException ex) { 

      ex.printStackTrace(); 

    }//end catch 

    catch (IOException ex) { 

      ex.printStackTrace(); 

    }//end catch 
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    catch (ClassNotFoundException ex) { 

      ex.printStackTrace(); 

    }//end catch 

  return rules; 

}//end method readSerializedRules 

public void printIDSPolicy () 

{ 

  for ( int i = 0 ; i < IDSPolicy.length ; i++ ) 

 { 

     System.out.println(IDSPolicy[i].toString()); 

   }//end for 

}//end printIDSPolicy 

public void printSensorPolicy() 

{ 

  for ( int i = 0 ; i < this.sensorPolicy.length ; i++ ) 

  { 

    System.out.println(sensorPolicy[i].toString()); 

  }//end for 

}//end method 

public void sleep( int interval) 

{ 

  try 

    { 

      for ( int i = 0 ; i < 50 ; i++ ) 

      { 

        Thread.sleep(interval); 

        System.out.print("."); 

      } 

      System.out.println(); 

     } 

    catch (InterruptedException ex1) { 
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      ex1.printStackTrace(); 

     } 

} 

  public FPAIDSDaemon() 

  { 

  }//end constructor 

  public FPAIDSDaemon(String configurationFilePath) 

  { 

    this.configurationFilePath = configurationFilePath; 

    System.out.println("Reading Configuration"); 

    this.sleep(20); 

    this.updateSensorConfiguration(this.configurationFilePath); 

    System.out.println("updating Configuration"); 

    this.sleep(30); 

    System.out.println("Loading IDS Policy"); 

    this.sleep(100); 

    this.IDSPolicy = this.readSerializedRules(this.rulefiles[0]); 

    System.out.println("calulating indexes..."); 

    this.sleep(10); 

    this.indexes = 

this.calculateRuleIndexes(this.IDSPolicy.length,this.sensor_index,this.

total_sensors); 

    System.out.println("Extracting policy based upon indexed values"); 

    this.sleep(100); 

    this.sensorPolicy = new Rule[this.indexes.length]; 

    for ( int i = 0 ; i < sensorPolicy.length ; i++ ) 

    { 

      sensorPolicy[i] = IDSPolicy[indexes[i]]; 

    }//end for 

    this.printIDSPolicy(); 

    this.printSensorPolicy(); 



 

 59 

    try { 

 

      this.server = new ServerSocket(this.serverport); 

      System.out.println("FPAIDS DAEMON listening on port " + 

                              server.getLocalPort()); 

      Socket client  = server.accept(); 

      DataInputStream din = new 

DataInputStream(client.getInputStream()); 

      String message = din.readUTF(); 

      System.out.println(message); 

      }//end try 

    catch (IOException ex) { 

      ex.printStackTrace(); 

    } 

  public static void main(String[] args) 

  { 

    FPAIDSDaemon FPAIDSDaemon1 = new 

FPAIDSDaemon("C:\\FPAIDS\\sensor.conf"); 

  }//end main 

}//end class 
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