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Abstract 

Energy Flow in Streaming Non-Maxwellian Plasmas with Parallel Electromagnetic Waves 

(PEMW) is studied by using the kinetic model. The wave-particle interaction is considered 

while studying energy flux. We study the effects of streaming velocity, temperature 

anisotropy (𝜂 =
𝑇⊥

𝑇∥
), wave frequency, thermal velocity and the index kappa (𝜅) on the 

energy flux. It is observed, for smaller values of streaming velocity, wave frequency, 

thermal velocity and the index 𝜅 the PEMW transport its energy slowly over the long 

distance; while for smaller values of temperature anisotropy the wave rapidly transport its 

energy over the short distance. Thus the aforementioned parameters play a crucial role 

in the transmission of wave energy. 

 



Contents

1 INTRODUCTION 1

1.1 What is Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Debye Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Conditions for Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Plasma Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.2 Kinetic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Waves in Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Perpendicular Propagating Electromagnetic Waves . . . . . . . . . . . . . 5

1.5.2 Parallel Propagating Electromagnetic Waves . . . . . . . . . . . . . . . . 6

1.6 Damping of Plasma Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Plasma Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Energy Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 KINETIC MODEL OF PLASMA 12

2.1 Maxwellian Velocity Distribution Function . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Bi-Maxwellian Velocity Distribution Function . . . . . . . . . . . . . . . . . . . . 15

2.3 Non-Maxwellian Velocity Distribution Function . . . . . . . . . . . . . . . . . . . 16

2.3.1 Streaming Bi-Kappa Velocity Distribution Function . . . . . . . . . . . . 16

2.4 Derivation of Generalized Dielectric Tensor . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 pk Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 p? Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



3 MATHEMATICAL WORK 29

3.1 Dispersion Relation of Parallel Electromagnetic Waves (PEMW) by Using Ki-

netic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Resonant Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Derivation of Energy �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 RESULTS AND DISCUSSION 44

4.1 Graphical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



Chapter 1

INTRODUCTION

1.1 What is Plasma

A quasi-neutral gas of charged particles having collective behavior is called a plasma. Plasmas

are generally composed of an equal number of positive and negative charged particles once a

neutral gas has been ionized. When this happens, the oppositely charged �uids are very much

bonded together and they cancel each other out in respect of electricity in terms of large scale

lengths. This plasma termed quasineutral. Collective behaviour indicates that each individual

particle (ions,electrons) a¤ects the behaviour of the plasma. Sometimes we often stated that

95% (or 99% depending on who we wish to �atter) of the Universe is composed of plasma. This

assertion quanti�es the quantity of plasma with a high level of endearment to plasma physics

and is non-falsi�able (or falsi�able). Nonetheless, we must recognize that most matter around

us exists in form known as plasma. In the early universe, everything existed as plasma, and

this state continues today, as plasma still �lls nebulae, stars, and interstellar space. The solar

system is abundant with plasma in the form of solar wind, and the Earth is entirely surrounded

by plasma trapped within its magnetic �eld. Terrestrial plasmas are not di¢ cult to �nd also.

They are present in a variety of laboratory experiments, �uorescent lamps, lightning, and an

expanding number of industrial activities [1].
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Figure 1.1. Four states of matter, plasma is created when energy is added to a solid, liquid or

gas.[2]

1.2 Debye Shielding

A plasma behavior is fundamentally characterized by its ability to shield o¤ electric potentials

that are impressed upon it. Imagine we insert two charged balls connect to a battery to create

an electric �eld inside a plasma. Particles of the opposite charge would be attracted by the balls,

cloud of ion would revolve around the negative ball while the positive one would be surrounded

with another cloud made of electrons. if there were no thermal motions in the cold plasma,

there would have been equal numbers of charges on the ball itself and in the cloud and perfect

shielding would exist, and there would be no electric �eld outside the plasma. Debye length is

distance over which ions and electrons can be seperated in plasma. This is an essential physical

feature that de�ne the plasma. Debye length has direct relation with temperature square root

and inverse relation with density square root, calculated as follows

�D =

r
�oKT

ne2
(1.1)

where �D is debye length.

Figure 1.2. Debye Shielding
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1.3 Conditions for Plasma

An ionized gas is classi�ed as plasma if it meets the following three conditions [3].

(1) �D << L: The Debye length is very small compared to the overall length of the plasma,

ensuring the plasma quasi-neutrality.

(2) ND >> 1: This implies that the number of particles within the Debye sphere must be

signi�cantly greater than one. This condition ensures the ful�llment of the collective behavior

of plasma.

(3) !� >> 1: In this context, ! represents the frequency of plasma oscillations, while �

denotes the average duration between collisions involving neutral atoms.

1.4 Plasma Models

Two main models are utilized for exploring plasma physics.

1.4.1 Fluid Model

Charged particles are found in plasma; electrons and ions, which undergo complex movements

while in plasma. This movement generates electric and magnetic �elds in the plasma [4]. It

is hard to study bahavior of these complex movements, we use the �uid model in order to

avoid studying all the complexities of the plasma particles by treating plasma as a �uid [3].

At the macroscopic level, �uid model is the simplest method used for the study of plasma.

The �uid model is used to analyze plasma at the macroscopic level because it does not take

into account the identity of individual particles but only focuses on how �uid elements move.

Magneto-hydrodynamics (MHD) is an expansion of �uid models where plasma is regarded as a

conductive �uid subject to the e¤ects of magnetic and electric �elds [5, 6].

Equations of Fluid Model

In �uid model, following equations are used

(1) Maxwell�s equation

(2) Equation of Continuity

(3) Equation for Momentum Transport

3



1.4.2 Kinetic Model

In order to investigate microscopic-scale plasma physics, a kinetic model is employed. Landau

damping, wave particle interactions, and temperature anisotropy are examples of the processes

for which the use of �uid model is not appropriate. The kinetic model utilizes the velocity

distribution function f(v). A model that uses the velocity distribution function (VDF) to

describe the behavior of a plasma, as well as each constituent species, is known as the kinetic

model. Kinetic equations are solved to study spatial and temporal estimation. There is also

the use of kinetic model for studying plasma in non thermal equilibrium cases [1, 5]. The best

technique for theoretical studies of plasma is the kinetic model.

The particles distribution function in the kinetic model is determined by their position, time

and velocity at any instant [3];

f (r; v; t) = f (x; y; z; vx; vy; vz; t) (1.2)

1.5 Waves in Plasma

Plasma has various type of waves. This multitude of waves shows changes in these two �elds,

electric �eld as well as magnetic �eld. However, they are grouped into two major groups among

the many classes of plasma waves. These two include electrostatic waves and electromagnetic

waves. Electric perturbations lead to the emission of electrostatic waves. If electric and mag-

netic perturbation exist simultaneously then plasma wave known as electromagnetic waves.

There are also plasma waves which are categorized based on moving particles that oscillate

such as electron waves are high frequency and ion waves are low frequency. This is due to

electrons are more energetic than ions. However, electrons are extremely hot compared to ions.

It happens that ion inertia supplies the uniform background which gives rise to high frequency

of electron waves and low frequency of ion waves. Properties of plasma waves propagation

are related to such other parameters as plasma waves frequency, frequency of collision, plasma

density, as well as temperature. Plasma waves travel in the direction indicated by the wave

number (k) as it relates to the unperturbed magnetic �eld (B0) and perturbed electric �elds

(E1) [7].
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1.5.1 Perpendicular Propagating Electromagnetic Waves

Waves where the wave number (k) is perpendicular to the unperturbed magnetic �eld (B0) are

referred to as perpendicular waves.

k ? B0

Lower hybrid mode, upper hybrid mode, ordinary mode (also called O-mode), Extra-

ordinary mode ( also called X-mode), Bernstein modes and magnetosonic mode all these are

example of perpendicular waves.

Ordinary Wave (O-Mode)

In ordinary wave, propagation vector (k) of EM waves is orthogonal to the unperturbed mag-

netic �eld (B0) and electric �eld (E1) is parallel to the B0. Dispersion relation of O-mode

is

!2 = !2p + c
2k2 (1.3)

The same outcome emerges if we set the electromagnetic problem to B0=0. A changing

magnetic �eld doesn�t a¤ect ordinary waves.

Extraordinary Waves

In extraordinary waves, both perturbed electric �eld (E1) and propagation vector (k) of EM

waves is orthogonal to the unperturbed magnetic �eld (B0). This type waves are referred to

as extraordinary wave. In this case the electric �eld (E1) polarization is elliptical in nature.

It is comprised of a combination of longitudinal and transverse electromagnetic waves. The

dispersion relation for these waves would be.

c2k2

!2
= 1�

!2p
!2
(!2 � !2p)
(!2 � !2h)

(1.4)

The term !h refers to the upper hybrid frequency and it is determined as

!2h = !
2
p + !

2
c (1.5)
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Where !c and !p denotes the cyclotron frequency and plasma frequency. In this speci�c in-

stance,

is the factor that in�uences how electrons move. This mode resonates at the upper hybrid fre-

quency (!h = ! =
q
!2p + !

2
c) and preventing the wave from propagating any further.

1.5.2 Parallel Propagating Electromagnetic Waves

Waves with a wave number (k) aligned with the direction of the unperturbed magnetic �eld

(B0) are referred to as parallel waves.

k k B0

Examples of plasma waves that propagate parallel to the magnetic �eld include right-handed

and left-handed circularly polarized waves (R-waves and L-waves), Langmuir waves (or electron

plasma waves), ion acoustic waves, pure Alfvén waves, whistler waves, and helicon waves.

Electron Plasma Waves

These waves as a result of electrons being displaced during ions acting as a uniform background.

The displacement of the electron establishes an electric �eld in a speci�c direction which in turn

pulls the electrons back towards their true positions in a bid to restore plasma neutrality. Ions

function as a uniform background for electrons because of their high mass in comparison with

that of electrons. Due to electrons inertia, they will always rebound and as a result they vibrate

around the average position or the equilibrium position at a frequency referred to as plasma

frequency [8]. The speed of these oscillations is such that ions are unable to keep up with

the oscillatory �eld, for this reason they are referred to as being stationary with a constant

background. At high temperatures, thermal energies are so high that these kinds of oscillations

are spreading throughout the whole system. These oscillations play crucial role in plasma

diagnostics. In a solar corona, one observes this type of oscillations at larger scale [9]. The

dispersion relation for these waves as

!2 = !2pe +
3

2
k2v2th (1.6)
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where vth is thermal velocity of electron v2th =
2kBT
m . Speed of light is greater then group

velocity in case of electron plasma waves.

Ion Acoustic waves

Without particles clashing with each other, ordinary sound wave can�t be created but, on

account of their charge, ions are capable of transmitting vibrations between themselves. Ions

acoustic waves act as pressure waves. These are also slow moving waves for heavy ions in

motion. In plasma with few collisions, such waves are produced. The main role in producing

these waves is played by the ion dynamics. The dispersion relation as

!2 = k2(

iKBTi
M

+
KBTe
M

) (1.7)

Group velocity has the same value as the phase velocity for ion acoustic waves.

Right and Left-Handed Circularly Polarized Electromagnetic Waves

These waves propagate parallelly. In this case, wave number (k) aligns with the unperturbed

magnetic �eld (B0) and there are two transverse components to the perturbed electric �eld

(E1). Dispersion relation for the R-wave as

c2k2

!2
= 1�

!2p
!2 � !c!

(1.8)

In the same way for L-waves, dispersion relations become

c2k2

!2
= 1�

!2p
!2 + !c!

(1.9)

The only di¤erence in their dispersion relations is whether there is a + or � sign with !c in

the denominator of the right side. For the L-wave it is positive while for R-wave it is negative.

The rotation of the E vector in the R-wave resembles that of a typical screw. Using Right-hand

rule, you can determine the direction of the wave vector k and the direction of the rotation of

the vector E. According to the right-hand rule, the direction of vector E is indicated by the

curved �ngers, while the direction of wave number (k) is indicated by the thumb. However, for

L-wave, the rotation direction of vector E stands entirely opposite to that of R-wave. When it
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comes to R-waves, electrons resonate at ! = !c and k goes to in�nity. It is known as cyclotron

resonance. Right-handed circularly polarized waves rotate in the same direction as electrons

do. The accelerating electrons continuously lose energy as the wave propagates at resonance

hence R-wave does not travel. This is not the case with L-waves since they rotate oppositely.

Whislter Waves

Low frequency R-waves are called whislter wave. Whistler waves are characterized by parallel

propagation, where the wave number (k) aligns parallel to the direction of the uniform magnetic

�eld [9]. The signals are usually of a higher frequency while whistling sounds indicate that

the waves are moving at relatively lower frequencies. The whistling sounds take place at audio

frequencies. The ionosphere is subject to some sort of excitement and this results from lightning,

which we can understand by means of electromagnetic radiations and normally, these waves are

curbed near the �eld because the earth magnetic �eld de�ects the waves. In southern hemisphere

when lightning errupts, there are sounds on various frequencies. For example, high harmonic

waves come faster than the waves with low harmonic frequencies [10]. The rotation direction

of the R wave vector resembles that of a typical screw. Apply the right-hand rule in describing

the direction of the wave number (k) and vector E. The direction of vector E is shown by

curved �ngers while the direction of propagation of vector (k) is shown by a thumb. Whistler

wavers have the same direction as electrons hence, whistler waves exhibit some resonance at

(! = !ce). The waves that are classi�ed as right or left-handed, which are circularly polarized,

are known to behave in unique ways during their interactions with moving particles along the

magnetic �eld [11]. It is necessary to thoroughly explore these types of interactions for learning

about the process of di¤usion, the heating, damping and growth of particles.

1.6 Damping of Plasma Waves

One of plasma physics most beautiful results is the fact that plasma waves su¤er damping

without any loss of energy arising from collisions among particles. The most common examples

of Landau damping and cyclotron damping illustrate this particular phenomenon. Landau was

the �rst person to provide a justi�cation for collision-less damping in the case of electron plasma
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waves in early 1945. This was experimentally veri�ed in 1960. The concept of wave particle

interactions helps o¤er insight into this damping process at its physical level. It�s possible for

a strong wave-particle interaction to occur when the particle speeds are such that they closely

match the phase velocity of the wave. When the particle�s velocity surpasses that of the wave,

it will slow down but it will accelerate when the speed of the wave is higher. In the Maxwellian

velocity distribution case, the wave loses energy in wave-particle interaction with electrons by

transferring its energy to them when many electrons have velocities lower than the wave phase

velocity. This decreases the amplitude of the wave, thus causing the wave to damp.

To solve the problem of damping of waves, one will need either complex values of k or

of !. There are two kinds of damping, which are spatial and temporal damping. Spatial

damping is when the damping is known as if k is complex while ! is real; besides, temporal

damping happens if only k is real with an imaginary component of !. In the spatial damping

process, there is a decrease in the amplitude that happens with increasing distance from where

the wave was generated along its path of travel. In steady-state heating we observe spatial

damping experimentally. This damping happens when a medium is excited by a continuous

driver of �xed frequency. Howveer, temporal damping occurs whenever the medium itself gets

spontaneously perturbed and waves amplitude decrease over a propagating wave as time goes

by. Temporal damping happens even on the sun atmosphere characterized by wave excitation

through spontaneous perturbation [12].

1.7 Plasma Instabilities

In plasma there are many instabilities that exist and it can be de�ned by �anything that disturbs

an almost balanced state of a system; this helps in lowering the free energy of the system thereby

allowing it to attain true thermodynamic status�. We shall categorize these instabilities into

two groups namely the macro instabilities related to con�guration or low wave number, and the

micro instabilities associated with kinetics or high wave number. The simplest model for these

macro instabilities are in terms of �uid models. Examples of macro-instability behavior include

Rayleigh-Taylor instability, Kelvin-Helmholtz instability, �rehose instability, mirror instability,

helical instability, kink instability, and pinch instability. Micro instabilities are created at short
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wavelengths. Analyzing micro instability problems typically involves utilizing an analytical

model such as the Vlasov equation. The Weibel instability, Harris instability, and Whistler

instability represent some of the most common examples of micro-instabilities. Dismissal of

these instability criteria is because they all depend on the shape of free energy source and

velocity distribution function (VDF) in plasma. Various outcomes may result from di¤erent

sources of free energy. Understanding the nature of the free energy source in plasma is critical

for studying the type of instability. Factors include temperature anisotropy as well as streaming

of particles with respect to (w.r.t) each other in a magnetic con�guration within plasmas which

result to free energy source. Similarly, it has been proved that kinetic instability reduces

this free energy and scatters particles within the plasma while at the same time preventing

any increase caused by temperature anisotropy [13, 14, 15, 16, 17]. In collision-less magnetized

plasma, the particle distribution function exhibits anisotropy. Depending on the magnitude and

sign of the temperature anisotropy, di¤erent types of instabilities appear. For example, when

the temperature perpendicular is less than the temperature parallel
�
T? < Tk

�
, it�s possible to

have two instabilities ordinary or �re-hose instability. When the temperature perpendicular to

the speci�ed direction exceeds the temperature parallel to it
�
T? > Tk

�
; then it gives birth to

whistler instability, characterized by a right-handed circularly waves beneath gyro-frequency.

While transitioning toward a �eld free region, this becomes purely Weibel instability.

1.8 Energy Flow

In electromagnetic waves, the Poynting vector provides the energy �ux density. What happens

to the energy as the wave travels through a particular region is determined by the divergence

of Poynting vector [18]. To understand energy transfer rates within a plasma, one needs to

understand energy �ow. These energy transfers arise from collisions between charged ions and

electrons that are enclosed in these plasmas as well interactions with external agents such as

electric currents and magnetic �elds. Understanding energy �ow enables scientists manipu-

late fabrication processes like plasma etching used to produce microchips or power exchange

processes in fusion reactors. When scientists measure the energy �ux density at the surface,

they can tell how plasma parameters a¤ect processes such as thin �lm deposition. Moreover,
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knowledge of the e¤ects of plasma density and external �elds on the energy �ow makes it

possible to devise diagnostic instruments for monitoring and optimizing plasma behavior.
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Chapter 2

KINETIC MODEL OF PLASMA

The �uid model is employed to examine plasma, treating it as a �uid entity [3], which is the

simplest model applied in studying dynamics of plasma on macroscopic level. In �uid model,

individual particles do not have any identity; instead what is considered here is the movement

of �uid elements as used to study plasma in this model at macroscopic level. In contrast,

kinetic model is used when studying the plasma at the microscopic level. Landau damping

and temperature anisotropy are examples of phenomena for which �uid models can no longer

be applied. Kinetic model utilizes velocity distribution function. A model that studies plasma

phenomena and behavior of each species using velocity distribution function is called kinetic

model. Kinetic theory is used to study behavior of each species. Kinetic equations have been

derived for solving temporal and spatial estimations. Kinetic model is an alternate framework

to understand the properties of plasma in non-equilibrium scenarios [3, 5]. Kinetic model o¤ers

most accurate description of plasma under theoretical scenario. In plasma and neutral gases,

the particles have random speeds. It is hard to de�ne an exact speed for a particle. The

distribution of velocities in the system is best explained by statistical method when it comes to

particles moving in plasma. The velocity distribution functions (VDFs) is a demonstration of a

statistical approach which is mathematical [19]. A function resembling a distribution function,

encompassing seven variables f(x; y; z; vx; vy; vz; t), represents the density of particles within

the phase space per unit volume for a single particle [3]. There is large number of particles

in plasma. Plasma comprises particles traveling at di¤erent velocities. Deriving equations of

motion for individual particles is very hard. And that is why the statistical method is applied.
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Therefore, we employ the radial velocity distribution function, providing the density of particle�s

divide by the unit volume in ordinary space or alternatively the density of particles divide by

the m3 near the particular point x and moment t having the components of velocity v1; v2 , v3

to v1 + dv1, v2 + dv2, v3 + dv3. In a mathematical form, it reads;

f(x; v; t) =
dN

d3xd3v
(2.1)

"d3x" is the elemental volume of a space, while �d3v� is the elemental velocity volume.

Every particle can be situated at any point in the range from x to x+ dx for position, from v

to v + dv for velocity.

The expression of the number of particles per unit volume is as.

n (x; t) =
@N

@V
=
@N

@x3
(2.2)

The density of particles divide by the unit volume is denoted by n (x; t), @N represents the

total density of particles, while @V denotes the volume. From the equations provided above,

we can express it as follows

n (x; t) =
@N

@x3
=

1

d3x

Z
f (x; v; t) d3xd3v

n (x; t) =

Z
f (x; v; t) d3v (2.3)

The integration above can be used for any velocities [3, 5].

The Boltzmann Vlasov equation describes the temporal evolution of the distribution func-

tion within phase space. The Vlasov equation represents a speci�c instance of the Boltzmann

equation applicable to collision-less scenarios. The expression for the relativistic Vlasov equa-

tion is as follows,

@f

@t
+ v:

@f

@x
+
q

m
(E + v �B): @f

@v
= 0 (2.4)

The electrochemical oscillations produced in plasma were �rst studied using the Vlasov

theory. Kinetic theory can be used to describe instabilities and plasma waves, including the
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wave-particle interaction such as Landau damping. It was demonstrated on the basis of kinetic

theory that the �uid-like behavior of the Langmuir oscillations is determined by the electron

density at which these oscillations occur. We can determine such, that the density and velocity

of an electron are functions with respect to space and time within the �uid theory. Therefore,

between temperature and density we can postulate a relationship in order for us to achieve this;

however, this is not necessary according to kinetic theory since the distribution function could

be calculated without making any assumptions. This way it becomes easy for us to compute

the velocity, temperature and density as they are nothing more than velocity moments of

distribution function.

The Maxwells curl equations and the Vlasov equation describe the behavior of electromag-

netic waves. These curl equations are follows as

r�E = �1
c

@B

@t
; r�B = 1

c

�
4�J�@E

@t

�
(2.5)

2.1 Maxwellian Velocity Distribution Function

In plasmas with high temperature and low density, the Maxwellian distribution is employed. It

can also be used in systems that are at thermal equilibrium. A gas containing multiple random

velocities is known as a thermal equilibrium gas hence the reason why Maxwellian distribution

function best �ts this type of system. Plasma has several uses in geophysics, space physics, and

astrophysics. In these systems, the plasma is said to be in thermal equilibrium. Particles that

have higher energie�s within the system will get to ��maxwellize�their energies through collision

within a particular time frame denoted as relaxation time [3, 5]. An optimized form for this

law can be expressed mathematically through the use of equations as stated below.

f0� =

r
m�

2�kBT�
exp

 
�1
2

m�v
2
�

kBT�

!
or

f0� =
1

�
3
2 v2th�

exp

 
�
v2�
v2th�

!
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where � is subscript for species (electrons and ions), and vth denote thermal velocity.

2.2 Bi-Maxwellian Velocity Distribution Function

In case of temperature di¤erences in plasma, the Maxwellian distribution function gives way to

the Bi-Maxwellian type. This function has two velocity components, vthk� and vth?� component

arising from the presence of two temperatures in di¤erent directions.

The velocity component direction is in diection of constant magnetic �eld. Space plasma

contains an abundance of bi-Maxwellian distribution. Cosmic plasma parameters are similar to

those of solar wind plasma due to near packed condensed objects in accretion disks, interstellar

medium within interclusters of about heavy particles [20, 21]. It has been observed that

ion distribution in solar wind closely resembles an electron distribution pattern namely bi-

Maxwellian distribution which has two distinct temperature for two distinct directions. This

can be mathematically denoted as:

f0� =
1

�v2th?�
p
�vthk�

exp

 
�
v2?�
v2th?�

�
v2k�
v2thk�

!
or

f0� =
1

�
3
2 v2th?�vthk�

exp

 
�
v2?�
v2th?�

�
v2k�
v2thk�

!

where

v2th?� =
2T?�
m�

v2thk� =
2Tk�
m�

vth?� and vthk� are the perpendicular and parallel thermal velocity components, while m�

denotes the mass of the particle.

In the context of momentum, the bi-Maxwellian distribution function is expressed as
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f0� =
1

2�m�T?�
�
2�m�Tk�

� 1
2

exp

 
�

p2?�
2m�T?�

�
p2k�

2m�Tk�

!

2.3 Non-Maxwellian Velocity Distribution Function

When particles have very high energy, we can describe the particle distribution better using

the velocity power law than with an exponential decay like in Maxwellian distribution. In

systems where particles possess high energy levels, the distribution ceases to be Maxwellian.

Non-Maxwellian distributions come in handy for such systems. The plasma particles do not

possess thermal equilibrium under these distributions. The distribution functions which violate

Maxwellian theory are caused by the interaction of waves with particles. The suprathermal

radiation �eld contains more than its fair share of thermal particles. Others are found in galactic

comic rays, solar �ares, and the solar wind too in outer space. Whenever shock waves free of

any collisions pass through an area for a moment there is no balance involving heat anymore

due to these waves penetrating into a collisionless state. Some forms of such distributions are:

bi-Kappa velocity distribution function, kappa Maxwellian velocity distribution function, loss

cone kappa velocity distribution function, and product bi-Kappa velocity distribution function.

In this thesis, we utilized a bi-Kappa velocity distribution function, thus we provide a concise

overview of this function below.

2.3.1 Streaming Bi-Kappa Velocity Distribution Function

The streaming bi-Kappa velocity distribution function also known as the bi-Lorentzian velocity

distribution function, can be mathematically expressed as:

f0� =
n0�� (�+ 1)

�
3
2 �2?��k��

�
�� 1

2

�
�
3
2

2641� v2
?�

k�2?�
+

�
vk� � v0

�2
k�2

k�

375
���1

where

�2(?;k)� =

�
2�� 3
�

�
v2th(?;k)� ; vth(?;k)� =

s
T
(?;k)�

m�
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Spectral index ���serves as the descriptor of particle kappa distribution. It shows the gra-

dient of those high-speed tails that are seen in the velocities distribution of plasma particles

beyond the thermal speed. For values approaching critical limit (�!1), plasma particles�dis-

tribution tends Maxwellian alike. Provided kappa number is � > 3
2 , this prevents distribution

from breaking and allowing to de�ne an equivalent temperature or otherwise the aforemen-

tioned parameters would be meaningless. It was said before that one uses Maxwellian velocity

distribution function for such a system which is in thermal equilibrium. The speci�cs of this

dependency are responsible for physical properties such as �uctuations in temperature or mag-

netic �eld strengths existing within plasma created under laboratory conditions or around stars,

respectively. The former case includes power law models whereas latter type involves exponen-

tial forms also known as bi-Maxwellians they describe low-energy/thermalized particles within

those energetic/intermediate ranges above (high energy). These kind of distributions occur

due to particle interactions . A bi-Maxwellian distribution function is able to well describing

these non-Maxwellian high energy or such thermaly suprathermal tails. This is an interactional

result of particles [22, 23]. Such distributions are frequently observed in plasmas characterized

by infrequent collisions among charged particles and low plasma density. For example, kappa

distribution exists when 6 > � > 2 found using satellite data in the solar wind [24, 25]. Fore-

shocks of the Earth are best �tted by distributions with 6 > � > 3 [26, 27, 28]. Kappa index

spectral of 10 > � > 5 are the optimal match for the solar corona [29].
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Figure 2.1: Kappa velocity distribution function for various values of the kappa parameters.

2.4 Derivation of Generalized Dielectric Tensor

By using relativistic vlasov equation

@f

@t
+ v:

@f

@x
+ q:(E+

v �B
c

):
@f

@p
= 0 (2.6)

The relationship between relativistic momentum p and velocity v is expressed as follows

p = 
mv 
 =

�
1� v

2

c2

�� 1
2

=

r
1 +

p2

m2c2
(2.7)

v =
cpp

m2c2 + p2

The relativistic vlasov equation accompanied by the Maxwell equations, explain complete dy-

namics of the plasma system.

Faraday�s law

r�E = �1
c

@B

@t
(2.8)

Ampere�s law

r�B = 1

c

@E

@t
+
4�

c
J (2.8)

By linearization we get,

(E;B; f) =

1Z
0

dt e�ut
1Z

�1

1

(2�)3
e�i k : x:dx (E1;B1;f1) ;

L
�
@ (E1;B1;f1)

@t

�
= uL (E1;B1; f1)

and
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F
�
@ (E1;B1; f1)

@t

�
= i k F (E1;B1; f1) ; u = �i!

the Vlasov Eq (2:6) and the equation of wave from Maxwell�s curl Eqs (2:7; 2:8) become

(u+ i k:v) f1 +
q

c
(v �B0) �

@f1
@p

+ q(E1 �
i

u
v� (k�E1) �

@f0
@p

= 0 (2.9)

and ��
u2 + c2:k2

�
:�mn � c2kmkn + 4�u�mn

�
En = 0

or ��
�mn +

4�

u
�mn

�
+
c2k2

u2
� ckm

u

ckn
u
+

�
En = 0

or �

mn �N2

�
�mn�

NmNn
N2

��
En = 0 (2.10)

Where 
mn � �mn +
4�
u �mn represents the dielectric tensor, Nm; n =

ckm; n
!

is the total

refractive index, and mth =nth subscript indicates the respective refractive index.

Given that the wave number k is in the x-z plane, by changing the di¤erential equation

(2:9) using cylindrical coordinates

@f1
@'
�
�
u+ ikkvk+ik?v? cos'

�



f1 =
	(')



(2.11)

q

c
(v �B0):

@f1
@p

= �
@f1
@'

Also

	(') = q

�
E1 �

i

u
v� (k�E1)

�
� @f0
@p

And


 =
qB0

m c

=

0
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Vlasov equation, in equilibrium as

q

c
(v �B0) �

@f0
@p

= 0

gives
@f0
@'

= 0 i.e., f0 depends on p? and pk but independent of '

Alternatively, it is possible to express 	(') is

	('0) = q

�
E1�

i

u
v� (k�E1)

�
� @f0
@p0

, where p
0
(p?; '

0; pk)

= q

�
E1 �

@f0
@p0
� i
u

��
k � @f0
@p0

�
(v �E1)�

�
E1 �

@f0
@p0

�
(v � k)

��
= q

�
E1 �

@f0
@p0

�
1 +

i

u
(k � v)

�
� i

u

�
k � @f0

@p0

�
(v �E1)

�
= q

��
1+

i

u

�
k?v? cos'

0 + kkvk
����

Ex1 cos'
0 + Ey1 sin'

0� @f0
@p?

+ Ez1
@f0
@pk

�
� i
u

�
k? cos'

0 @f0
@p?

+ kk
@f0
@pk

���
Ex1 cos'

0 + Ey1 sin'
0� v? + Ez1vk	�

= q

�
@f0
@p?

+
i

u
kk

�
vk
@f0
@p?
�v?

@f0
@pk

��
Ex1 cos'

0

+q

�
@f0
@p?

+
i

u
kk

�
vk
@f0
@p?
�v?

@f0
@pk

��
Ey1 sin'

0

+q

�
@f0
@pk
� i

u
k? cos'

0
�
vk
@f0
@p?
�v?

@f0
@pk

��
Ez1

or

	('0) = q(�1: sin'
0; �1: cos'

0; �2 + cos'
0
3�):E1

Where

�1 =

�
@f0
@p?

+
ikk
u

�
vk
@f0
@p?

� v?
@f0
@pk

��
�2 =

@f0
@pk

and �3 = �
ik?
u

�
vk
@f0
@p?

� v?
@f0
@pk

�
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for �nding the solution of in-homogeneous di¤erential Eq. (2:6), First, we solve the homogeneous

part of this equation i.e.,

@f1
@'
�
�
u+ ikk:vk+ik?v? cos'




�
f1 = 0

we get the �nal form is

H(';'0) = exp

264 1



'Z
'0

�
u+ ikkvk+ik?v? cos'

�
d'00

375
= exp

�
1




n
(u+ ikkvk)('� '

0
) + ik?v?(sin'� sin'

0
)
o�

We get the solution of Eq. (2:11) by using integration by factor technique as

f1 =
1




'Z
�1

H(';'0)�('0)d'0 (2.12)

For the function H(';'0) to converge, the choice of sign at the lower bound is essential; it is

therefore desirable to have a �1 limit when 
 is positive and a +1 limit when 
 is negative.

Alternatively, it is possible to express the above Eq.(2:12) as

f1 =
q




'Z
�1

exp

��
u+ ikkvk




�
('� '0) + ik?v?



(sin'� sin'0)

�
�

�(�1 cos'0; �1 sin'0; �2 + cos'03�)d'
0
:E1 (2.13)

Now, let�s express the current density function using the perturbed distribution function.

J = !� :E1 =
X

qn0

Z
v:f1d

3p

using above eq in equation. (2:10) as
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4�u !� :E1 = 4�u
X

q2n0

1Z
�1

dpk

1Z
0

dp?p?

2�Z
0

d'

'Z
1

d'
0

� 1


exp

�
1




n�
u+ ikkvk

� �
'� '0

�
+ ik?v?

�
sin '� sin '0

�o�
��

v? cos '; v? sin '; vk
�
�
�
cos '

0
1 �1; sin '

0
�1; �2 + cos '

0
�3

�
:E1(2.14)

We introduce new variable for � = ' � '0 as an alternative of '0 and then by performing

'-integration �rst we have.

2�Z
0

d' exp[i:(sin'� sin('� �))z]

�

0BBBB@
v? cos' cos('� �)�1 v? cos' sin('� �)�1 v? cos' (�2 + cos('� �)�3)

v? sin' cos('� �)�1 v? sin' sin('� �)�1 v? sin' (�2 + cos('� �)�3)

vk cos('� �)�1 vk sin('� �)�1 vk(�2 + cos('� �)�3)

1CCCCA
Hence

= 2�
1X

j=�1
exp[ij�]� (2.15)

�

0BBBBBB@
j2

z2
v? [Jj(z)]

2 �1
ij

z
v?Jj(z)J

0
j(z)�1 v?

j

z
[Jj(z)]

2

�
�2 +

j

z
�3

�
� ij
z
v?Jj(z)J

0
j(z)�1 v?[J

0
j(z)]

2�1 �iv?Jj(z)J 0j(z)
�
�2 +

j

z
�3

�
j

z
vk[Jj(z)]

2�1 ivkJ j(z)J
0
j(z)�1 vk[Jj(z)]

2

�
�2 +

j

z
�3

�

1CCCCCCA
where we utilized the Bessel�s function identities.

exp[i sin':z] =
1X

j=�1
exp[ij']Jj(z) and exp[� i sin ('� �) :z] =

1X
i=�1

exp[�ii ('� �)]Ji(z)

with z =k?v?

 .
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We now carry out the � integration

�1Z
0

d� exp

�
1



(u+ ikkvk + ij
)�

�
=

�

u+ ikkvk + ij


(2.16)

The equation (2:10) can be rewritten using the result of � and ' integrations from Eq.(2:14).

�

mn �N2

�
�mn �

NmNn

N2

��
En = 0 (2.17)

Where 
mn is dielectric tensor and write as


mn = �mn �
2�

u

X
m!2p

1Z
�1

dpk

1Z
0

p?dp?

1X
j=�1

1

u+ ikkvk + ij

�

0BBBBBB@
j2

z2
v? [Jj(z)]

2 �1
ij

z
v?Jj(z)J

0
j(z)�1 v?

j

z
[Jj(z)]

2

�
�2 +

j

z
�3

�
� ij
z
v?Jj(z)J

0
j(z)�1 v?[J

0
j(z)]

2�1 �iv?Jj(z)J 0j(z)
�
�2 +

j

z
�3

�
j

z
[Jj(z)]

2vk�1 iJj(z)J
0
j(z)vk�1 vk[Jj(z)]

2

�
�2 +

j

z
�3

�

1CCCCCCA(2.18)

Further we can note the next relationship in order to simplify the tensor 
mn

v?

�
�2 +

j

z
�3

�
u+ ikk:vk + ij


=
vk�1

u+ ikk:vk + ij

� 1
u

�
vk
@ f0
@ p?

� v?
@ f0
@ pk

�
And using the Bessel�s function properties

1X
n=�1

n[Jn(z)]
2 = 0;

1X
n=�1

Jn(z)J
0
n(z) = 0;

1X
n=�1

[Jn(z)]
2 = 1

After performing the steps above, we have Eq. (2:17) as:


mn = �mn�
2�

u

X
m!2p

1Z
�1

dpk

1Z
0

p?dp?�1

1X
j=�1

Mmn

u+ ikkvk + ij

+ Lmn (2.19)

where
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Lmn =

0BBBBB@
j2

z2
v? [Jj(z)]

2 i:j

z
v?Jj(z)J

0
j(z)

j

z
vk[j(z)]

2

� ij
z
v?Jj(z)J

0
j(z) v?[J

0
j(z)]

2 �ivkJ j(z)J 0j(z)
j

z
vk[Jj(z)]

2 ivkJ j(z)J
0
j(z)

v2k
v?
[Jj(z)]

2

1CCCCCA
Lmn has only non-zero component

Lzz =
2�

u2

X
m!2p

1Z
�1

dpk

1Z
0

p?dp?

�
vk
v?

�
vk
@ f0
@ p?

� v?
@ f0
@ pk

��

We also noted here

�1 =

�
@ f0
@ p?

+
i kk
u

�
vk
@ f0
@ p?

� v?
@ f0
@ pk

��
Equation (2:21) conveys the generalized dielectric tensor in a plasma that is uniform, on

the condition that the corresponding equilibrium distribution function f0 can be arbitrary. A

striking characteristic of the former lies in its Onsager symmetry; the symmetry properties are

always ful�lled by the dielectric tensor of hot plasma.


xy = �
xy; 
xz = 
zx and 
yz = �
zy

Assuming the equilibrium distribution function f0 is held constant.

We will derive the generalized dielectric tensor for a bi-Maxwellian plasma that is not fast-

moving. The distribution function for a bi-Maxwellian plasma that is not fast-moving is

f0 =
1

2�mT?
�
2�mTk

� 1
2

exp

"
� p2?
2mT?

�
p2k
2mTk

#
(2.20)

The generalized dielectric tensor in equation (2:17) changes to the above Eq.(2:19)


mn = �mn�4�
X !2p

!

1Z
�1

dpk

1Z
0

p?dp?

1X
j=�1

Mmn

�
1�

kkvk
!

�
1� T?

Tk

��
f0

! � kkvk � j

+Lmn (2.21)
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where

Lmn =

0BBBBBBB@

j2
2

k2?v
2
th?
[Jj(z)]

2
ij


k?v2th?
v?Jj(z)J

0
j(z)

j


k?v2th?
vk[Jj(z)]

2

� ij


k?v2th?
v?Jj(z)J

0
j(z)

v2?
v2th?

[J 0j(z)]
2 �i

v?vk
v2th?

Jj(z)J
0
j(z)

j


k?v2th?
vk[Jj(z)]

2 i
v?vk
v2th?

Jj(z)J
0
j(z)

v2k
v2th?

[Jj(z)]
2

1CCCCCCCA
and

Lzz =
1

!2
4�
X !2p

v2th?

�
1� T?

Tk

� 1Z
�1

dpkv
2
k

1Z
0

dp?p?f0

At the equation above (2:22), we used u = �i!. The fact is, for a non relativistic bi-maxwellian

distribution, parallel and perpendicular integrations are decoupled. So, in the sequel, we will

handle them separately.

2.4.1 pk Integration

For parallel transport k? = 0, by taking limit of k? ! 0 in the previous equation. And in this

limit
1

z
[Jj(z)]

2 ! 0 and Jj(z)J 0j(z) ! 0 due to Jj(z) ! 1
j!(

z
2)
j additionally Jj(z) = (�1)j

Jj(z): Thus the 
mn matrix would change such that xz and yz components will be zero making

it 2�2 matrix then gives R-L waves while zz component results into electrostatic modes i.e.

Langmuir and ion-Acoustic modes. In order to perform pk- integration, we will need these

integrals

(A1; A2; A3; A4) �
1p

2�mTk

1Z
�1

dpk exp

"
�

p2k
2mTk

#
! � kkvk � j


�
1; vk; v

2
k ; v

3
k

�
Presenting the familiar plasma dispersion function

Z (x) =
1p
�

1Z
�1

dU
e�U

2

(U � x)
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we get

(A1; A2; A3; A4) =

 
�Z

�
�j
�

kkvthk
;

Z 0
�
�j
�

2kk
;

vthk �jZ
0 ��j�

2kk
;�
vthk
2kk

�
1� �jZ 0

�
�j
��!

where we substitute

U2 =
p2k
2mTk

and de�ned vthk =

r
2Tk
m
; �j =

! � j

kkvthk

We also �nd the A5 integral as

A5 �
1Z

�1

dpk

v2k exp[�
p2k
2mTk

]p
2�mTk

=
v2thk
2

2.4.2 p? Integration

Similarly, if perturbed wave propagates perpendicular to magnetic �eld kk = 0, then integration

of pk leads to zero for 
xz and 
yz for the same components. In this case, the 2�2 matrix gives

the x-mode and the O-mode results from zz component. In order to perform p?- integration,

we will need these integrals

(A6; A7; A8) �
1

2�

1

mT?

1Z
0

dp?p? exp[�
p2?
2mT?

]
�
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0
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0
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I
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2
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2
20

and
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�
=
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2�
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The above integrations as well as Onsager symmetry relationships were used to arrive at this

result along with the condition that wave number vector
�!
k lies on x-z plane. A magnetized

non relativistic bi-Maxwellian plasma the generalized dispersion relation reads

���������

xx �N2

k 
yx 
xz +N?Nk

�
xy 
yy �N2 
yz


xz +N?Nk �
yz 
zz �N2
?

��������� = 0 (2.22)

where
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X !2p

!2
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j2

�
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�
�j
�
�
Z 0
�
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�

2
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� 1
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(2.23)
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X !2p
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�
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yz = i
X vthk
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r
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� 1
��

Z 0
�
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(2.28)

The equations mentioned above represent the components of the dielectric tensor, with each

component corresponding to di¤erent types of waves.

Derive the general dispersion relation for right handed circularly polarized EM waves for

two scenarios: �j � 1 and �j � 1. For the case �j � 1 the dispersion relation will take the
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form.

Z(�j) = i
p
�e��

2
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Chapter 3

MATHEMATICAL WORK

3.1 Dispersion Relation of Parallel ElectromagneticWaves (PEMW)

by Using Kinetic Model

The disperion relation for PEMW in magnetized plasmas is,

!2 = c2k2 � �!!2pe
Z 1

�1
dvk

Z 1

0
v2?dv? �

24
�
@f0
@v?
� k

!

�
vk

@f0
@v?
� v?

@f0
@vk

��
(! � kkvk � !ce)

35 (3.1)

Where kk represents the wave-number, ! represents wave frequency, !ce is the electron gyro-

frequency, f0 is the arbitrary function and v?or vk is the perpendicular and parallel velocity of

the electron to the unperturbed magnetic �eld.

We are using kinetic approach in this research article. We suppose that a streaming velocity

is present and moving parallel to the EM wave. Here we used the temperature anisotropic

streaming bi-Kappa velocity distribution function expressed as,

f0 =
n0� (�+ 1)
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3
2

"
1� v2?
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(vk � v0)2
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(3.2)

where v0 denotes the streaming velocity whose direction is parallel to the electromagnetic

waves. Spectral index � is limited to � > 3
2 and � is gamma function.

�2(?;k) =

�
2�� 3
�

�
v2th(?;k) ; vth(?;k) =

r
T
(?;k)

m
(3.3)
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Let

A =
n0� (�+ 1)
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Distribution function becomes
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Di¤erentiate f0 with respect to vk
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put equation (3:5) and (3:6) in equation (3:1)
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By taking common
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After simpli�cation
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�nally we obtained
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!2 = c2k2 + �!!2pe
2A (�+ 1)

��2?

Z 1

�1
dvk �2664

�
1� k

!

�
vk � (vk � v0)

�2?
�2k

��
(! � kvk � !ce)

3775 1

2 (�+ 1)
��4?

"
1 +

(vk � v0)2

��2k

#��

!2 = c2k2 +A�!!2pe�
2
?

Z 1

�1
dvk �2664

�
1� k

!

�
vk � (vk � v0)

�2?
�2k

��
(! � kvk � !ce)

3775
"
1 +

(vk � v0)2

��2k

#��

Put eq.(3:3) in above equation we get
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By doing some mathematical arrangements

!2 = c2k2 +
� (�+ 1)

�
1
2 �k�

�
�� 1

2

�
�
3
2

!!2pe

Z 1

�1
dvk �2664

�
1� k

!

�
vk � (vk � v0)

�2?
�2k

��
k�k

�
!�kvk�!ce

k�k

�
3775
"
1 +

(vk � v0)2

��2k

#��

!2 = c2k2 +
� (�+ 1)

�
1
2 �k�

�
�� 1

2

�
�
3
2

!!2pe

Z 1

�1
dvk �2664

�
1� k

!

�
vk � (vk � v0)

�2?
�2k

��
k�k

�
!�!ce
k�k

� vk
�k

�
3775
"
1 +

(vk � v0)2

��2k

#��

Hence

!2 = c2k2 +
� (�+ 1)

�
1
2 �k�

�
�� 1

2

�
�
3
2

!!2pe

Z 1

�1
dvk �2664

�
1� k

!

�
vk � (vk � v0)

�2?
�2k

��
k�k

�
!�!ce
k�k

� vk
�k
+ v0

�k
� v0

�k

�
3775
"
1 +

(vk � v0)2

��2k

#��

Finally we get
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Here some variables are de�ned as

B =
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Put these variable�s in eq.(3:8)
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After simpli�cation
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Put value of I2 in eq.(3:9)
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Z (�) is modi�ed plasma dispersion function de�ned as [30, 31, 32]
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(3.11)

Equation (3:11) presents the dispersion relation for an R-wave which comes with tempera-

ture anisotropy and that streaming in the direction parallel to the axis.

In literature, many authors have studied the dispersion relation of EM waves that propagate

in a parallel way to explore damping/instability of the waves. This research paper focus on how

the energy �ow of EM waves propagating in parallel across a distance in streaming bi-Kappa

distributed plasmas. To the best of our knowledge, this work has not been studied by any

authors before. In this work, analytical approach is employed to solve equation (3:11) for the

complex wave number to obtain the imaginary wave-number (ki) from which it is used in the

Poynting �ux theorem.

3.2 Resonant Case

The plasma dispersion function expansions for resonant case (� << 1) is given by
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By using small argument expansion of plasma dispersion relation in equation (3:11)we get,
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After simpli�cation we get
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We aim to explore strong wave-particle interactions by focusing on the small argument

(� << 1) of the plasma dispersion function, while for large arguments (� >> 1) the wave-

particle interactions is weak and the imaginary part of the wave number becomes insigni�cant.

Assume that k is complex and ! is real.
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We take assumption k2r >> k
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i
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The real and imaginary part of eq.(3:13) is
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Put value of kr in the above equation
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Eq.(3:15) show the imaginary part of wave vector number (k)

where in low magnetized plasma ! > !ce and
�2?
�2k
> 1:

3.3 Derivation of Energy �ow

In order to ascertain how the EM waves transfer their energy to the particles, we employ the

Poynting �ux theorem under uniform state conditions as [33, 34]

r:S = �P

P =
1

2
Re(J�:E)

S =
Re

�o
(E� �B)

where P represents the power dissipation, S represents the poynting vector, �o is the mag-

netic permeability, J ia current density, and E is the perturbed electric.

The geometry of our problem is such that the unperturbed magnetic �eld and wave prop-

agation both are along the z-axis, while the magnetic �eld and electric �eld perturbation is in

the x-y plane.

When we simpli�ed the expressions for S and P, we revisited the energy �ux theorem,

dS

dz
= �kiSz (3.16)

Taking integration on both sides

Z Z

0

dS

Sz
= �ki

Z Z

0
dz
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ln [Sz]
Z
0 = �ki [Z]

Z
0

ln (S (z)� S (0)) = �ki (Z � 0)

ln

�
S (z)

S (0)

�
= �kiZ

Taking expontial on both sides

S (z)

S (0)
= exp (�kiZ) (3.17)

Here, S(0) represents the energy at the origin of wave propagation, and equation (3:15)

de�nes ki. It is essential to note the way in which the energy �ux theorem shows the spatial

damping factor ki.

Put eq.(3:15) in eq(3:17)
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By de�ning some variables
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Chapter 4

RESULTS AND DISCUSSION

To study the e¤ect of temperature anisotropy, streaming velocity and the kappa index (�) on

the energy �ow in streaming bi-Kappa distributed plasma with PEMW for the resonant case

(� << 1), we plot equation (3:18). The �nding are applicable for the solar wind region.

Table: Parameters for solar wind at 1AU [34].

ne(cm�3) Te(k) B�(G) !pe(s�1) !ce(s�1) v�(cms�1)

10 105 5�10�5 2�10�5 102 3�107

Where ne is number density of electron, Te is temperature, B� is ambient magnetic �eld,

!pe is plasma frequency, !ce cyclotron frequency, and v� is streaming velocity of electron in

streaming plasma.
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4.1 Graphical Illustration

Figure 4.1: Poynting �ux ( SS� ) versus distance (
!p
c z) for �xed value of temperature anisotropy

(� = 1), kappa index (� = 1), and thermal velocity ( vtkc = 0:004 )

Figure 1 show that the e¤ectiveness of wave-particle interactions in isotropic Maxwellian

plasma signi�cantly depends on the electron streaming velocity. When the streaming velocity

is low, the interactions are robust, leading to rapid wave damping over short distances. On the

other hand, when the streaming velocity is high, the interactions are weaker, causing waves to

carry their energy more slowly over longer distances.

Figure 4.2: Poynting �ux ( SS� ) versus distance (
!p
c z) for �xed value of temperature anisotropy

(� = 2), kappa index (� = 3), and thermal velocity (
vtk
c = 0:004 )
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Figure 2. show that when we �xed temperature anisotropy, thermal velocity, and index

kappa the wave rapidly transport their energy across shorter distances.

Figure 4.3: Poynting �ux ( SS� ) versus distance (
!p
c z) for �xed value of temperature anisotropy

(� = 2), streaming velocity (v�c = 0.001), and thermal velocity (
vtk
c = 0:004 )

From �gure 3, we can see that for small value of kappa index (�), the wave deliver their

energy rapidly. The reason may be the e¢ cient conversion of thermal energy to particle motion

in streaming plasma.

Figure 4.4: Poynting �ux ( SS� ) versus distance (
!p
c z) for �xed value of kappa index (� = 1),

temperature anisotropy (� = 1), and streaming velocity ( voc = 0:001 )
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Figure 4 show the isotropic Maxwellian plasmas, we can see that if the thermal velocity is

low the energy of the waves will be carried more quickly but for short distances; Whereas if

the thermal velocity is high these waves will take more time to carry their energy to longer

distances.

Figure 4.5: Poynting �ux ( SS� ) versus distance (
!p
c z) for �xed value of temperature anisotropy

(� = 2), index kappa (� = 3), and streaming velocity ( voc = 0:001 )

Figure 5 show that when we �xed temperature anisotropy, streaming velocity, and index

kappa the waves transport their energy across shorter distances.

Figure 4.6: Poynting �ux ( SS� ) versus distance (
!p
c z) for �xed value of thermal velocity (

vtk
c = 0:004 ), index kappa (� = 3), and streaming velocity (

vo
c = 0:001 )
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Figure 6 show that when temperature anisotropy of electron increases, waves rapidly trans-

port their energy over the smaller distance. In temperature anisotropic plasma, there are more

resonant particles, enabling the wave to quickly transfer its energy over smaller distances.

Figure 4.7: Poynting �ux ( SS� ) versus distance (
!p
c z) for �xed value of thermal velocity (

vtk
c = 0:004 ), index kappa (� = 3), and streaming velocity (

vo
c = 0:001 )

In �g.7. we observe that when the values of wave frequency of electrons is small then the

wave deliver their energy slowly over longer distances. It may be due to electron with lower

energy move at a slow pace and have a lesser probability of colliding with other particles.

4.2 Conclusion

Kinetic approach has used to examine the energy �ow in streaming non-Maxwellian plasmas

with parallel electromagnetic waves. We observed that with the change in streaming velocity,

temperature anisotropy, wave frequency, thermal speed and the kappa index (�) the energy �ux

changes signi�cantly over distances. From �gures 1, 2 and 3 we examine that wave transport its

energy across long distances for greater values of streaming velocity, index kappa, and thermal

speed. It can be seen in �gures 4; and 6 that the wave deliver its energy across long distances

for greater values of thermal speeds and wave frequencies. Figure 5 show that wave transport

its energy across shorter distance for larger value of temperature anisotropy. It is also examined

that the wave delivered their energy quickly in streaming non-Maxwellian plasma, it may be
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due to streaming cause instabilities in the plasma, where the wave energy can be transmitted

to streaming particles making them even more energetic, this may result in additional wave

growth and turbulence.

This research may be relevant in various applications, including space physics , astrophysics,

laboratory plasma experiments. In astronomy it could be used to explain phenomena such as

plasma waves in the interstellar medium or the behavior of plasma around stars or black holes.

It should be useful in space physics to understand how solar wind and planetary magnetospheres

interact. In laboratory plasma researchers may examine the behavior of non-Maxwellian plas-

mas in order to enhance plasma con�nement.
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