IT Inventory and Resource Management with

OCS Inventory NG 1.02

Eliminate inventorying dilemmas by implementing a free & feasible IT
Inventory solution

IT Inventory and Resource
Management with OCS
Inventory NG 1.02

Eliminate inventorying dilemmas by implementing
a free & feasible IT Inventory solution

Barzan "Tony" Antal

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBALI

IT Inventory and Resource Management with OCS
Inventory NG 1.02

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010
Production Reference: 1070510

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849511-10-0
www . packtpub.com

Cover Image by Parag Kadam (paragvkadamegmail . com)

Author
Barzan "Tony" Antal

Reviewer
Jeff Prater

Acquisition Editor
Dilip Venkatesh

Development Editor
Neha Patwari

Technical Editors
Hyacintha D'Souza

Smita Solanki

Copy Editor
Leonard D'Silva

Indexer

Credits

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Priya Mukherji

Project Coordinator
Ashwin Shetty

Proofreader
Lesley Harrison

Graphics
Geetanjali Sawant

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Monica Ajmera Mehta

About the Author

Barzan "Tony" Antal is a system administrator and network technician at a
significant company that delivers industrial software, system integration, and IT
solutions. He is also a professional technical writer with over 150 articles published
across a large portfolio of prestigious websites covering topics of computer hardware,
IT news, networking, security, software development, SEO/SEM, Web, and

other technologies.

The author has acquired a diverse experience in the fields of IT&C by passionately
pursuing and attempting to apply everything as many times as possible in the real
world. He is a strong believer in practicality, and his down-to-earth approach helps
him out as a consultant providing assistance and finding customized feasible solutions.
During his writing endeavors, this aching for viability always shines through.

Acknowledgement

First and foremost, I'd like to thank the outrageous support from my parents and
close friends. My girlfriend, Dea, for accepting my way of dealing with everything

in life. Special thanks to Gabor Bernat, I'm grateful for those well-thought comments
regarding the manuscript. My colleague, Ceclan Sandor, for keeping up with support
over time. Alina D., Lehel M., and Szilard N. for their encouragements and believing
in me.

A huge thank you to my technical reviewer — Jeff Prater, you cannot imagine the
impact your input has had on this book. You have definitely gone beyond the call

of duty while reviewing and researching. Robert Dunham, for kick-starting me in
my writing endeavors many years ago. If it wasn't for you, I wouldn't be a published
author now.

Moreover, I'd like to thank the professional and entirely author-centric team

from Packt Publishing, especially Ashwin Shetty, Dilip Venkatesh, Duane Moraes,
Hyacintha D'Souza, Neha Patwari, Priya Mukherji, Smita Solanki and everyone else.
All of your hard work made this book possible. My sincere thanks for putting up
with my hectic schedule.

Lastly, I consider this book as a tribute to the developers of OCS Inventory NG,
GLPIL and the Open Source community. I also appreciate the readers of this book
and truly hope that my work helps a great deal in succeeding to fulfill their IT
inventory demands.

And finally, thanks James Payne for understanding my lack of activity from the
Shed. Oh, and of course, everyone from the DevHardware Forums —You guys
are fantastic!

About the Reviewer

Jeff Prater is the Director of Technology for the Houston County District Attorney's
Office in Perry, Georgia. His expertise and knowledge of modern technologies
gave him the opportunity to transform an inefficient government department into
an efficient, modeled prosecutor's office through the introduction of a document
and case management system. In 2007, the Houston County District Attorney's
office became the first paperless prosecutor's office in the state of Georgia. Because
of his success with government automation and efficiency technologies, he was
given the opportunity to speak at the National District Attorneys Association 2007
Annual Conference at the National Advocacy Center, University of South Carolina.
To compliment his career in technology, Jeff also writes technical articles for Ziff
Davis Enterprise/Developer Shed aimed at individuals with limited technology
experience. In his free time, Jeff enjoys spending time with his wife, Beth, and his
newborn daughter, Leah.

Table of Contents

Preface 1
Chapter 1: Introduction to IT Inventory and Resource Management 7
Inventorying requirements in the real world 8
A feasible solution to avoid inevitable havoc 8
Streamlining software auditing and license management 9
More uses of an integrated IT inventory solution 10
Gathering relevant inventory information 11
Overall inventory demands to enhance usability 11
Centralization: Introducing the client-server model 13
Example of the client-server model—an Internet forum 13
The client-server model versus the peer-to-peer paradigm 14

IT inventorying based on the client-server model 15
How does OCS Inventory NG meet our needs? 15
Brief overview on OCS Inventory NG's architecture 16
Rough performance evaluation of OCS-NG 17
Meeting our inventory demands 17
Set of functions and what it brings to the table 19
Taking a glance at the OCS-NG web interface 20

An incentive on functionalities 21
Summary 24
Chapter 2: Setting up an OCS Inventory NG Management Server 25
Getting ready for the OCS-NG installation 26
Setting up prerequisite software on Linux flavors 27
Demystifying package management 28
The everlasting dilemma of solving dependency hell 28
Getting familiar with your distribution's package manager 29
Yum on RPM-based Linux distributions 30

APT and Aptitude/Synaptic on Debian and its derivates 31

Table of Contents

Installing Apache, MySQL, and PHP/Perl on Linux systems 33
Installing the AMP stack with yum 33
Installing AMP stack with apt 35
Installing AMP stack with emerge on Gentoo 35
Installing the AMP stack with an XAMPP precompiled package 36

Setting up the necessary modules on Linux systems 37

Setting up the OCS-NG management server on

Linux operating systems 38
Installing OCS-NG server via an RPM package 39
Installing OCS-NG server via installation script 41

Downloading and extracting the OCS-NG server package 42
Running the installation script and checking prerequisites 44
The real work behind the scenes of the script 50

Setting up the OCS-NG management server on

Windows operating systems 55
XAMPP for Windows, the warm-up stage 55

Warning: XAMPP 1.6.8-1.7.1—a known issue and solution 58
Launching the OCS-NG integrated installation 59

A pragmatic look at initial configuration 60
Summary 62
Chapter 3: The Zen of Agent Deployment 63

Behind the scenes: How agents earn their living 64

Choosing the best agent type 65
Demystifying the LocalSystem account of Windows OS 66

Choosing the best deployment method 68

Deploying agents on Windows operating systems 69
Getting familiar with command-line arguments 70
Manual installation strategies 72
Using OcsLogon.exe to deploy via GPO or login scripts 76

Using the packager to create the deployable agent 77
Getting the agent package on the OCS-NG server 78
Deployment via Active Directory GPOs 79
Initiating deployment with OcsLogon.exe via login script 82
Unattended installation via the PsExec.exe tool 84

Deploying agents on Linux operating systems 85
Installing agents on Linux with user interaction 86
Installing agents on Linux without user interaction 88

Deploying agents on Mac OS X operating systems 89

Deploying agents on mobile devices 91

Summary 92

Lii]

Table of Contents

Chapter 4: Finding your Way through OCS-NG Features 95
Getting familiar with the OCS-NG web interface 96
Logging in 96
Looking around and examining the view 97
Elaborating the overview section of statistics 98
Getting to know the blue query toolbar 102
Understanding the first two queries 102
Demystifying TAG-based repartitioning 103
Understanding the other three queries 104
Getting to know the administrative toolbar 106
Preliminary configuration tips and best practices 112
Explaining configuration parameters 113
Maintaining a clean inventory: Solving common pitfalls
and eliminating redundancies 115
Implementing the Registry query function 117
Uploading inventory data of hosts that are not networked 118
Working with the inventory 120
Summary 122
Chapter 5: Investigating the Process of Gathering Inventory Data 123
Going beyond the retrieval mechanism 124
Using the IP Query function 133
Summary 135
Chapter 6: Package Deployment through OCS-NG 137
Getting to know the package deployment function 138
Creating a package: Step-by-step approach 140
Server requirements for effortless deployment 143
Package activation and going beyond deployment 144
Affecting packages: Getting the packages through 148
Managing the rules of affectations 150
Securing the process with SSL certificates 151
Working with self-signed certificates 152
Working with PKIs that have certificate authority 155
Getting the certificates deployed on agents 155
Summary 157
Chapter 7: Integrating OCS-NG with GLPI 159
Introducing GLPI: IT asset management on steroids 160
Getting familiar with the web interface of GLPI 162
Setting up GLPI on top of our OCS-NG server 164
Configuring GLPI to integrate with the OCS-NG mode 168
Extending GLPI with plugins 170

[iii]

Table of Contents

Using GLPI to track and manage inventory assets 172
Carrying out administrative tasks with GLPI 176
Generating reports and statistics with GLPI 178
License tracking and software auditing with GLPI 180
Helpdesk and issue tracking functions of GLPI 182
Summary 185
Chapter 8: Best Practices on Inventorying with OCS-NG 187
Backing up and restoring the OCS-NG database 188
Dumping the database with mysqldump 188
Dumping the database with phpMyAdmin 189
Restoring SQL dump files via MySQL's CLI 191
Automating and scheduling dumping backups via scripts 192
Adding the scheduled job into crontab on Linux OS 192
Writing the batch script and adding into Windows Scheduler 193
Tweaking the OCS-NG server for performance 194
Useful scripts that make our everyday life easier 196
Implementing PHP notification-sender scripts 197
Extending OCS-NG inventory via .vbs scripts 198
Uninstalling the OCS agent via batch script 199
Best practices on retrieving model-specific data of various computer
hardware components 200
Retrieving model-specific data of HDDs 201
Retrieving model-specific data of RAM memory modules 204
Updating OCS-NG agents on clients (when needed) 208
Updating the Windows agent 208
Updating the UNIX agent 209
Updating OCS-NG central server (when needed) 210
Summary 211

[iv]

Table of Contents

Chapter 9: Troubleshoot Confidently—Find Solutions

and Workarounds 213
Keeping an eye on the behavior of agents 214
A closer look at the agent's logdfile 214
Troubleshooting problems related to agents 218
Forcing an agent to report inventory 219
Solving administration console-based issues 222
Solving MySQL limitations the right way 222
Solving PHP limitations the right way 223
Identifying and fixing issues on the server backend 226
Communication server fails to write a logfile on Linux 228
Diagnosing uncommon pitfalls—asking for help 229
Summary 231
Appendix: Keeping Pace with Version Updates—Glancing
over the changelog of the Latest Release 233
Analyzing the changelog 234

Index 237

[v]

Preface

OCS Inventory NG is a cross-platform, open source inventory, and asset management
solution. It brings more than plentiful features to the table to satisfy the business needs
of small-to-large organizations with up to tens of thousands of computers. However, to
put this inventory solution to optimum use requires a lot of skill.

This book will lead you through the steps of implementing OCS-NG until you master
working with it. This book aims at reducing efforts involved in resource management.
The solution gives a robust foundation on top of which we can implement other
third-party applications, plugins, and much more.

This book begins with the basics —it explains what IT inventorying needs are to be
met in the real world. Then, it covers a step-by-step approach to everything you need
to know to set up and implement OCS-NG as a centralized inventory solution to meet
all these requirements. It delves deeper into carrying out inventory tasks with

every chapter.

You will learn how to choose the best agent type and deployment method. We
discuss the process of gathering inventory data and cover techniques for creating
and deploying packages. You will also learn how to acquire added benefits with

the use of plugins. We discuss best practices on inventorying and troubleshooting
agent-related problems. The book presents real-world inventorying scenarios along
with their solutions. You will basically learn how to use OCS-NG to get the most out
of it.

As a conclusion, if you want to learn about a free solution that fulfills inventorying
necessities of the real world, then this is the book for you.

A practical guide on how to set up, configure, and work with OCS Inventory
NG —a cross-platform, open source inventory solution.

Preface

What this book covers

Chapter 1, Introduction to IT Inventory and Resource Management presents the
importance of IT inventory within any organization or company. It describes
some of the must-have features that an automated and centralized solution
should provide. OCS Inventory NG comes into the picture saving the

day and selecting many of those checkboxes.

Chapter 2, Setting up an OCS Inventory NG Management Server explains the server
role requirements of an OCS-NG management server and leads the user through
the steps of setting up the requisite software on the chosen platform. Once the
system is ready, OCS-NG is installed and configured to collaborate with the
agents that will soon be deployed.

Chapter 3, The Zen of Agent Deployment helps you understand the types of agents
and the various ways agents can be deployed on client machines. This chapter
presents operating system-specific strategies to automate the deployment of
agents. Additional components that are required are thoroughly explained.

Chapter 4, Finding your Way through OCS-NG Features exposes the diversified
features that OCS-NG sports and gives a rundown on each of them. From this
chapter, you will learn how gathering from clients happens, how to sort the results,
and accomplish all kinds of administrative tasks with the fresh inventory database.

Chapter 5, Investigating the Process of Gathering Inventory Data goes further beyond
the actual mechanism of retrieving information and focuses on how to optimize
and tweak this process as well as find leakages. Administrators can determine
which devices are inventoried, how frequently they are inventoried, locate hosts
that are not inventoried, and resolve synchronization issues.

Chapter 6, Package Deployment through OCS-NG takes a practical look at package
deployment and command execution functionalities on inventoried clients. These
increase the usefulness of our centralized inventory suite. This chapter opens to
view the different ways in which you can do this as well as how to specify on
which clients this can be done.

Chapter 7, Integrating OCS-NG with GLPI adds the icing on the cake by introducing
integration possibilities with other tools. This chapter gives you the edge by explaining
how GLPI empowers our OCS-NG inventory. Opting for GLPI on top of OCS-NG is
akin to functionalities on steroids, and you will learn how to make it work.

Chapter 8, Best Practices on Inventorying with OCS-NG deals with all-around repetitive
tasks related to IT inventories and management needs and how to get them solved
with our setup. This chapter deals with some best practices and other tips of backing
up the database. It also deals with everyday situations that can happen and need to
be resolved seamlessly.

[2]

Preface

Chapter 9, Troubleshoot Confidently — Find Solutions and Workarounds continues the
string of practical tips and tricks and good-to-know strategies. This chapter covers
identifying issues, diagnosing common problems, troubleshooting them, and finding
solutions for them.

Appendix, Keeping Pace with Version Updates — Glancing over the changelog of the Latest
Release gives a brief overview on how to read changelogs, explains us what they are,
and why they are useful to us. Their relevancy is quite high as every open source
project has a changelog.

What you need for this book

OCS Inventory NG runs on top of the popular Apache web server, using MySQL's
InnoDB engine and the PHP server-side scripting language. In order to install the
OCS-NG management server, the system must have these prerequisites installed
and configured.

There is an integrated pack that sets up all of the components we must have for a
fully functional web server. This package is available for Windows, Linux, Solaris,
and Mac OS X operating systems. It's called XAMPP. The developers of OCS-NG
thought about making the process seamless on Windows machines. The Win32
installation kit of OCS-NG includes this integrated pack and sets up the
prerequisites during the setup process.

The OCS Inventory NG management server consists of the following four server roles:

e Database server: It requires MySQL 4.1 or a higher version that uses the
InnoDB engine

e Communication server: It requires Apache web server 1.3 or higher and
some Perl modules (which we are going to present in a minute)

e Deployment server: It requires any web server (Apache works here too)

¢ Administration console: It needs Apache Web Server, PHP 4.3 or higher,
and some additional ZIP and GD support

Apart from those main server components, the following modules are necessary:

e Apache server needs to be 1.3.X, 2.0.X+ with the following modules:

Mod_perl version 1.29+
° Mod_php version 4.3.2+

e PHP 4.3.2+ with extensions:
° ZIP library of ZIP file functions and support

° GD library of image functions

[31]

Preface

e PERL 5.6+ with the following modules:
° XML:Simple version 2.12+
° Compress:Zlib version 1.33+
° DBI version 1.40+
° DBD:MySQL version 2.9004+
° Apache::DBI version 0.93
° Net:IP version 1.21+

° SOAP::Lite version 0.66+

e MySQL 4.1+ with following engine:
° InnoDB

e Any sort of make utility to control the generation of executables and similar
important files from an application's source code files

[e]

For example: GNU make.

Who this book is for

The book targets an audience of system administrators and IT professionals who are
required to implement, configure, customize, and work with IT inventory and asset
management solutions.

The book does not presume any prior knowledge of inventory management.

It only requires a solid grasp of the client-server model and familiarity with the
chosen operating system along with the necessary web server and database server
terminologies. Anyone with an interest in inventorying IT assets and solving
real-world resource management dilemmas will enjoy this book.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For example, installing a package is done
by typing yum install package-name."

[4]

Preface

A block of code is set as follows:

memory limit = 96M
post _max_size = 64M
upload max filesize = 64M

Any command-line input or output is written as follows:
openssl req -new -key server.key -out server.csr

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
the Next button moves you to the next screen.”

& Warnings or important notes appear in a box like this.
i

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www . packtpub.com or e-mail suggest@
packtpub. com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

[51]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code —we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions

of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

Introduction to IT Inventory
and Resource Management

In the past decade or so, we have begun to realize that computers are an indispensable
necessity. They're around us everywhere, from the computers in our comfortable
households to rovers from other planets. Currently, it is not uncommon at all to have
more than a few dozen office computers and other pieces of IT equipment in the
infrastructure of a small company that does nothing directly related to that

specific area.

It should not surprise anyone that in the case of business environments, there has to
be some streamlined inventory, especially when we consider that the network might
have a total of several hundred, if not thousands, of workstation computers, servers,
portable devices, and other office equipment such as printers, scanners, and other
networking components.

Resource management, in its essence, when viewed from an IT perspective,

provides a method to gather and store all kinds of information about items in our
infrastructure. Later on it supports means to further maintain the said inventory.
Moreover, it performs routine tasks based on the collected data such as generating
reports, locating relevant information easily (like where is a specific memory module
with the model number you're looking for), auditing the type of software installed
on workstation computers, and more.

Our plan of action for this chapter is going to be pretty straightforward; we will
analyze the IT inventorying needs and some general requisites when it comes to
managing those assets. What's more, we'll be presenting the client-server model that
is the underlying foundation on which most centralized management solutions are
working. This is when OCS Inventory NG pops into the picture saving the day.
Soon we will see why.

Introduction to IT Inventory and Resource Management

Throughout this book, we will adopting a step-by-step approach to build up our
full-fledged OCS-NG, become familiar with its set of features, and excel in fulfilling
our inventorying needs on all levels. Once the groundwork is done, we can further
discuss more on best practices and learn how to troubleshoot confidently. Moreover,
we can present a future possibility to empower what we've already done by building
on top of it another asset management system that provides even more functionalities.

We will learn about OCS Inventory NG soon. For now, it's to realize that it's an
open source project. No matter how successful a company is, open source solutions
are always appreciated by the IT staff and management. Open source projects are
preferred as long as they are actively developed, fairly popular, well documented,
provides community support, and meets the needs of the company. Among others,
open source projects end up modular and flexible.

Inventorying requirements in the real
world

One of the general requirements of an IT inventory is to be efficient and practical.
The entire process should be seamless to the clients and should require limited
(or no) user interaction. Once set up, it just needs to be automated to update

the inventory database, based on the latest changes, without requiring manual
intervention. Thereafter, the collage of data gathered is ought to be organized and
labeled the way we want.

Businesses everywhere have come to realize that process integration is the best method
for querying, standardizing, and organizing information about the infrastructure.

The age of hi-tech computing made this possible by speeding up routine tasks and
saving up employee time, eliminating bureaucracy and unnecessary filing of papers
that all lead to frustration and waste of resources. Implementing integrated processes
can change the structure and behavior of an organization, but finding the correct
integration often becomes a dilemma.

A feasible solution to avoid inevitable havoc

Drifting back to the case of the IT department, the necessity of having an integrated
and centralized solution to manage numerous systems and other hardware equipment
becomes obvious. The higher the number of systems, the bigger the volume to be
managed, the more easily the situation can get out of control, thus leading to a crisis.
Everyone runs around in panic like headless zombies trying to figure out who can

be held responsible, and what can be done in order to avoid such scenarios.

[8]

Chapter 1

Taking a rational approach as soon as possible can improve the stability of entire
organizations. Chances are you already know this, but usually system administrators
tend to dislike working with papers, filling in forms, storing them purely for archiving
needs, and then when they least expect it, finding relevant information. A system like
that won't make anyone happy.

A centralized repository in the form of a database gives almost instant access to results
whenever such a query happens. Its actual state of always being up-to-date and
reflecting the actual state of the infrastructure can be guaranteed by implementing
an updating mechanism.

Later on, once the database is in a healthy state and the process is integrated, tried, and
proven, it won't make any significant difference whether you are managing dozens

of computers or thousands. A well-designed integrated process is future-proof and
scalable. Thus it won't become a setback if and when the company decides to expand.

Streamlining software auditing and license
management

As mentioned earlier, it is important to understand that auditing workstation
machines cannot be neglected. In certain environments, the users or employees have
limited access and work within a sort of enclosed program area, and they can do
little to nothing outside of their specialization. There are situations that arise when
the employees are supposed to have administrative access and full permissions. It is
for the good of both the user and the company to monitor and pay attention to what
happens within each and every computer.

Having an up to par auditing mechanism can integrate the license management system
as well. The persons responsible for this can track the total amount of licenses used
and owned by the company, can calculate balance, can notify when this number is
about to run out, and so on. It isn't uncommon at all to automate the purchasing of
licenses either.

The license management process description varies from firm to firm, but usually it's
something similar to the following: the user requests for a license, the supervisor
agrees, and the request is sent to the relevant IT staff. After this step, the license
request gets analyzed. Based on the result, it is either handed out or
ordered/acquired if necessary.

[o]

Introduction to IT Inventory and Resource Management

If the process is not automated, all this would involve paperwork, and soon you
will see frustrated employees running back and forth through departments asking
who else needs to sign this paper. The process of automating and printing the end
result is elegant and takes no trouble. The responsible department can then store
the printed document for archiving purposes, if required. However, the key of the
process lies in integration. Inventorying can help here too.

More uses of an integrated IT inventory
solution

The count of office consumables can also be tracked and maintained. This is a trickier
process because it cannot be done totally unattended, unless by installing some sort of
sensor to track the count of printer cartridges inside office furniture or the warehouse.
However, you can update this field each time the item in question gets restocked.

A centralized method for tracking consumables means the responsible parties can
get notified before running out of stock. Once again, this step eliminates unexpected
scenarios and unnecessary tasks.

The beauty of centralized management solutions in the IT world is that if it is done
correctly, then it can open doors to numerous other activities as well. For example, in
the case of workstation PCs, the integrated process can be expanded into providing
remote administration and similar other activities to be carried out remotely on the
client machine.

Package deployment and execution of scripts are just few distinctive examples.
Think of it as, license is granted, the package is deployed, and the script is run to
ensure proper registration of the application, if required. System administrators
can usually help fix common issues of employees through remote execution of
scripts. Surely, there are other means to administer the machines, but we're
focusing on all-in-one integrated solutions.

Another possibility is integrating the help-desk and ticketing system within the
centralized inventory's management control panel as well. In this way, when

an employee asks for help or reports a hardware issue, the system administrator
can take a look at what's inside that system (hardware specifications, software
installed, and so on.).Therefore, the system administrator gets to know the
situation beforehand and thus use the right tools to troubleshoot the issue.

[10]

Chapter 1

Gathering relevant inventory information

We can conclude that in order to have a complete inventory which we can build
on and implement other IT-related and administrative tasks, we need, at least,
the following:

e Collecting relevant hardware information in case of workstation computers

° Manufacturer, serial number, model number of every
component

° When applicable, some of the following: Revision number,
size, speed, memory, type, description, designation,
connection port, interface, slot number, driver, MAC and IP
address, and so on

e Collecting installed software/OS (licensing) information

° Operating system: Name, version, and registration
information

° Application name, publisher, version, location

° Customqueries from the Windows registry (if applicable)
e Collecting information about networking equipment and office peripherals

° Manufacturer, serial number, model, type of component, and
so on

¢ MAC and IP address

° When applicable: Revision, firmware, total uptime, and so on

Overall inventory demands to enhance
usability

Now let's create a list of criteria that we want our IT inventory solution to meet.
In the previous paragraph, we enumerated some of the must-have data that cannot
be left out from our inventory. Likewise, we have expectancies regarding how the
process works.

From the perspective of your users, the process must be transparent and the
background software must not become a resource hog. The bandwidth usage that
is required to communicate with the centralized management server should be
minimal. The inventorying mechanism must be automatic and discover on its own
every item within the environment. Once everything is recorded, the copy stored in
the database must always be kept up-to-date and backed up.

[11]

Introduction to IT Inventory and Resource Management

The inventorying client that sweeps through the entire network should be
cross-platform. As always, everyone likes an intuitive and fast user interface.

This is especially important when managing inventories and working with large
volumes of data. The control panel or management center is the place where we
can organize, label, and work with the gathered information. If the interface is too
complex or overcrowded, it leads to frustration.

The way information is queried from the database and displayed on screen must
be snappy so that we don't have to wait and get bored to tears while some rotating
hourglass is animated.

In addition, we want integrated backup functions. It's always possible to manually
create database dumps or backup points, but if we can do so directly from the
interface, it's much easier and possible for non-IT proficient individuals as well.

Assuming that the web interface can be configured to be accessed by multiple
users having different permissions and rights, it can become quite a useful tool for
employees working in non-IT departments such as accounting and management.
The process of inventorying becomes streamlined, and everyone can work with the
inventory information to get their share of tasks done.

In a corporate environment, it might happen quite often that an employee receives

a new computer and the older computer is received by another user having different
needs. The inventory must be able to automatically detect and diagnose these
situations and track the history of a machine.

The ability to custom specify, define, and set labels to the inventoried items is really
important. When done professionally, companies might agree upon some naming
convention to label inventoried items. An example of this is the following: pc001 in
case of workstation computers, nt 001 for networking equipment, svoo1 for servers,
pho001 for phones, proo1 for printers, and so on.

This means that we need such functionalities from our IT inventory solution

to track these inventory IDs as well. Should you want to take this idea further,
you can generate and print barcodes, and stick those on the side of those items.

A feature-laden IT inventory can systematize the way tasks are carried out within
an organization.

Summing these up, we have looked upon the most common inventorying
requirements that each one of us is facing within a corporate environment. These are
the necessities, and the solution we require to implement so that our needs are met. In
order to understand how it's going to accomplish our demands, we will talk about the
client-server model. Once we know that, we are going to overview how OCS-NG ticks
those inventory-requisite checkboxes.

[12]

Chapter 1

Centralization: Introducing the
client-server model

Ever since distributed applications appeared, the client-server model has become
popular. In the simplest terms, the server is a computer (usually, a high performing
one) running the service that centralizes some kind of information. It's also able to
receive connections from clients, process their requests, and give them the results
whenever necessary.

Clients establish a connection with the server in order to request or upload some
content. This communication model describes one of the most basic relationship and
architecture. Typically, servers can simultaneously accept and process requests. This
is done with multithreading programming. Other times, the queries are so fast that
sequential execution is enough.

The communication between clients and the server can happen either through the
Internet in case of wide area network (WAN) or just locally when it's limited to the
local area network (LAN). When necessary to enhance scalability, it is possible to
incorporate more than one server in the client-server model. The servers will be part
of a pool and they can share the load between each other. Thus a balanced workload
and bandwidth is achieved.

Example of the client-server model—an
Internet forum

The service that runs on the servers is a computer application. It usually uses elements
of other services. Let's consider the example of a PHP-based web application: forums
or bulletin boards. Everyone knows those. The forum application is the service running
on the server, and the clients are the members visiting the site, posting, reading posts,
and so on.

The forum service cannot run on its own. It needs a set of other vital server
components. A web server is necessary to listen, accept, and serve HTTP requests
from visitors. In the case of users, the web browser can formulate the HTTP requests,
establish the communication with the target web server, and retrieve its HTTP
responses. This is how web surfing can be explained from a client-server
architecture perspective.

[13]

Introduction to IT Inventory and Resource Management

Nevertheless, this is not sufficient for the forum script to function properly. It is
heavily dependent on a database service as well. This is the place where the data is
stored. If the script is PHP based, then the PHP service is also a prerequisite so that
the dynamically generated web pages can be processed. While, other services may
also be required, for the sake of keeping things simple and to present the basis of a
client-server architecture, these services will suffice.

The client-server model versus the
peer-to-peer paradigm

The client-server model has its share of advantages and drawbacks when compared
with other similar models such as the peer-to-peer paradigm. First and foremost, the
client-server model is based on having only one place where the data is stored, on the
server. This provides enhanced security and management. The server can be tightly
secured, firewalled, and powered by high-performing components. In addtion, the
sever has access to plenty of system resources, is backed up regularly, and must be
maintained appropriately.

The data is centralized, and this gives a safer infrastructure to maintain an
error-free copy of the actual data on the side of every client. From the client's
perspective, the server can be replaced, upgraded, or migrated on another server,
without being affected. They know the path and destination of how to reach the
server. If the migration or the maintenance is carried out properly, clients will not
even be aware of that.

The peer-to-peer (P2P) paradigm takes a different approach to the client-server
model. The model presumes that every end point can act both as a server and client
likewise. Undoubtedly this brings the advantage of greater scalability and flexibility.
But it is tougher and time-consuming to maintain an actual up-to-date copy of the
database on every end-point client.

The P2P paradigm solves the possibility of network traffic congestion as there's
no dedicated server to get overloaded. Ultimately, this is not a magic pill either as
all of the clients creating so much cross-talk contributes to increased all-around
network traffic.

On the other hand, the client-server model does not provide such a high degree of
robustness. If and when the server fails on a hardware level, until it gets replaced,
repaired, or fixed, clients won't be able to connect and get any data out of the
management server at all. However, there are various workarounds to enhance
the uptime of servers and ensure their balanced workflow. Redundancy can also
be implemented within the model if it is truly necessary.

[14]

Chapter 1

IT inventorying based on the client-server model

Each of the paradigms mentioned have their share of best fit scenarios where
using one in favor of the other is a better decision. In case of IT inventorying and
resource management solutions, the first model-which is the client-server model,
centralization is a better approach. The chance of overloading the server is lower
because the volume of data that is exchanged is really low, a few kilobytes at most.
The bandwidth usage is light.

Most importantly, the server-client model yields immediate access to the actual
information stored (that is secured) in the database. Centralization is an
advantage here.

How does OCS Inventory NG meet our
needs?

OCS Inventory NG stands for Open Computer and Software Inventory Next
Generation, and it is the name of an open source project that was started back in

late 2005. The project matured into the first final release in the beginning of the year
2007. It's an undertaking that is still actively maintained, fully documented, and has
support forums. It has all of the requirements that an open source application should
have in order to be competitive.

There is a tricky part when it comes to open source solutions. Proposing them and
getting them accepted by the management requires quite a bit of research. One

side of the coin is that it is always favorable as everyone appreciates cutting down
licensing costs. The problem with such a solution is that you cannot always take for
granted their future support.

In order to make an educated guess as to whether an open source solution could be
beneficial for the company, we need to look at the following criteria: how frequently
is the project updated, check the download count, what is the feedback of the
community, how thorough is the documentation, and how active is the

support community?.

OCS-NG occupies a dominant position when it comes to open source projects in the
area of inventorying computers and software.

[15]

Introduction to IT Inventory and Resource Management

Brief overview on OCS Inventory NG's

architecture

The architecture of OCS-NG is based on the client-server model. The client program
is called a network agent. These agents need to be deployed on the client computers
that we want to include in our inventory.

The management server is composed of four individual server roles: the database
server, communication server, deployment server, and the administration console
server. More often than not, these can be run from the same machine.

OCS Inventory NG is cross-platform and supports most Unices, BSD derivates
(including Mac OS X), and all kinds of Windows-based operating systems. The
server can also be run on either platform. As it is an open source project, it's based

on the popular LAMP or WAMP solution stack. This means that the main server-side
prerequisites are Apache web server, MySQL database server, and PHP server. These
are also the viable components of a fully functional web server.

The network agents communicate with the management server under standardized
HTTP protocols. The data that is exchanged is then formatted under XML
conventions. The following screenshot gives a general overview of the way clients
communicate with the management server's sub-server components:

Unix inventory
agent

Management Server
Communication

server

Unix inventory
agent

Windows inventory
agent

Windows inventory
agent

Deployment Database
server server

Administration
console

Windows inventory
agent

Administrator with
Web browser

Chapter 1

Rough performance evaluation of OCS-NG

The data that is collected in the case of a fully-inventoried computer adds up to
something around 5KB. That is a small amount, and it will neither overload the
server nor create network congestion. It is often said that around one million
systems can be inventoried daily on a 3GHz bi-Xeon processor based server
with 4 GB of RAM without any issues.

Any modest old-generation server should suffice for the inventory of few thousand
systems. When scalability is necessary such as over 10,000-20,000 inventoried
systems, it is recommended to split those 4 server-role components on two
individual servers.

Should this be the case, the database server needs to be installed on the same
machine with the communication server and on another system with the
administration server and the deployment server with a database replica.
Any other combination is also possible.

Although distributing the server components is possible, very rarely do we really
need to do that. In this day and age, we can seamlessly virtualize up to four or more
servers on any dual or quad-core new generation computer. OCS-NG's management
server can be one of those virtual machines. If necessary, distributing server
components in the future is possible.

Meeting our inventory demands

First and foremost, OCS Inventory NG network agents are able to collect all of the
must-have attributes of a client computer and many more. Let's do a quick checkup
on these:

e BIOS:

° System serial number, manufacturer, and model

° Bios manufacturer, version, and date
e Processors:

o

Type, count (how many of them), manufacturer, speed,
and cache

e Memory:

° Physical memory type, manufacturer, capacity, and

slot number

o

Total physical memory

o

Total swap/paging memory

[17]

Introduction to IT Inventory and Resource Management

e Video:

° Video adapter: Chipset/model, manufacturer, memory size,
speed, and screen resolution

Display monitor: Manufacturer, description, refresh rate,
type, serial number, and caption

e Storage/removable devices:

[e]

Manufacturer, model, size, type, speed —all when applicable
° Drive letter, filesystem type, partition/volume size, free space
e Network adapters/telephony:

o

Manufacturer, model, type, speed, and description

° MAC and IP address, mask and IP gateway, DHCP
server used

e Miscellaneous hardware:

o

Input devices: Keyboard, mouse, and pointing device

[e]

Sound devices: Manufacturer name, type, and description

o

System slots: Name, type, and designation

System ports: Type, name, caption, and description

e Software information:

[e]

Operating system: Name, version, comments, and
registration info

° Installed software: Name, publisher, version (from Add /
Remove software or Programs and Features menu)

Custom-specified registry queries (applicable to Windows OS)

Not only computers, but also networking components can be used for inventorying.
OCS Inventory NG detects and collects network-specific information about these
(such as MAC address and IP address, subnet mask, and so on.). Later on, we can
set labels and organize them appropriately.

The place where OCS-NG comes as a surprise is its unique capability to make
an inventory of hosts that are not on the network. The network agent can be
run manually on these offline hosts and are then imported into the centralized
management server.

[18]

Chapter 1

One of its features includes intelligent auto-discovering functionalities and its
ability to detect hosts that have not been inventoried. It is based on popular network
diagnosing and auditing tools such as nmap. The algorithm can decide whether it's
an actual workstation computer or rather just a printer. If it's the former, then the
agent needs to be deployed. The network scanning is not done by the management
server. It is delegated to network agents.

In this way, the network is never overcrowded or congested. If the management
server itself scans for populated networks spanning throughout different subnets,
the process would be disastrous. In this way, the process is seamless and simply
practical. Another interesting part is the election mechanism based on which the
server is able to decide the most suited client to carry out the discovery. A rough
sketch of this in action can be seen in the next figure:

ol

\disc. / disc.

discovers

Server delegates the task
of discovering other clients
to network agents; these can Management
find uninventoried clients Server

in their neighborhood.

Set of functions and what it brings to the table

At this moment, we're fully aware that the kind information that the network agents
are getting into the database are relevant and more than enough for our inventorying
needs. Nevertheless, we won't stop here. It's time to analyze and present its web
interface. We will also shed a bit of light on the set of features it supports out of the
box without any plugins or other mods yet. There will be a time for those too.

[19]

Introduction to IT Inventory and Resource Management

Taking a glance at the OCS-NG web interface

The web interface of OCS Inventory NG is slightly old-fashioned. One direct
advantage of this is that the interface is really snappy. Queries are displayed
quickly, and the UI won't lag.

The other side of the coin is that intuitiveness is not the interface's strongest point.
Getting used to it might take a while. At least it does not make you feel that the
interface is overcrowded. However, the location and naming of buttons leaves
plenty of room for improvement. Some people might prefer to see captions below
the shortcuts as the meaning of the icons is not always obvious. After the first few
minutes, we will easily get used to them.

A picture is worth thousands of words, so let's exemplify our claims.

The buttons that appear in the previous screenshot from left to right are
the following:

e All computers

e Tag/Number of PC repartition
e Groups

e All softwares

e Search with various criteria

— =

BERZFSEITIFE®E P

(m]

In the same fashion, in this case, the buttons in the previous screenshot stand for the
following features:

¢ Deployment

e Security

e Dictionary

e Agent

e Configuration (this one is intuitive!)
e Registry (self-explanatory)

[20]

Chapter 1

e Admin Info

e Duplicates

o Label File configuration
e Users

e Local Import

e Help

When you click on the name of the specific icon, the drop-down menu appears right
below on the cursor.

All in all, the web interface is not that bad after all. We must accept that the strongest
point lies in its snappiness, and the wealth of information that is presented in a
fraction of a second rather than its design or intuitiveness.

We appreciate its overall simplicity and its quick response time. We are often
struggling with new generation Java-based and AJAX-based overcrowded interfaces
of network equipment that seem slow as hell. So, we'll choose OCS Inventory NG's
UI over those anytime!

An incentive on functionalities

Now that we are familiar with the look of the web admin panel of OCS Inventory
NG, let's find out the kinds of functionalities that are hiding beyond those icons.

Firstly, we have the All computers option to enumerate the entire inventory. We can
customize the type of columns we want to track. One of the most common
configurations is the following setup: Tag, Last Inventory, Computer, User, RAM,

and CPU. This seems intuitive and could suffice for most usages. Whenever necessary,
we can fine-tune this by adding or removing columns from the following possibilities:

e Bios Manufacturer, Bios Version, Bios Date

e CPU number (stands for core number), CPU Type
e Company

e Description

e Domain

° Fidelity

o [P address

e Lastcome

e Manufacturer, Model

e OS Version

[21]

Introduction to IT Inventory and Resource Management

e Owner
e Quality
e Serial number
e Service pack
e Swap
e User Agent, User Domain
e Win Product ID, Win Product Key
This gives us a global view of the inventory. Should we want to find more about a

specific computer, we click on its name. Then, we are redirected to a dedicated page
for that item.

The following two images give us a sense of what to expect.

Name: J—
Domain: p—
Userdomain: =
Last inventory: 10/26/2009 16:06:18
IP address:
User: =
Memory: 4096
Swap: 4677
MNetwork name 1: e
Network name 2: 0.0.0.0
05 Name: Microsoft Windows ®P Professional
0s Yersion: 5.1.2600
Service pack: Service Pack 2
Comments: .. =
Windows user: Systern Adrministrator

Windows licence: — "
Windows key: — -
User agent: OCE-NG_windows_client_w4 054

What's more, we can also find details about the hardware components inside the
computer, details about the software applications installed, and even investigate
the behavior of IpDiscover. This is how the automatic network diagnosis feature is
called. We're going to get in depth of this concept in a later chapter as we progress
and build our inventory.

There are situations when we need to repartition and categorize computers into
several groups based on some attributes. This is when the TAG-based repartitioning
feature comes out as a winner. We can configure network clients to submit the

[22]

Chapter 1

inventory data accompanied with TAG information. This option is practical when
departments or different sites are inventoried in the same database. A simple tag
makes all the difference.

The searching functionalities are impressive. We're able to forge any kind of query
using parameters such as processor speed, manufacturer, IP address, OS version,
and the ones mentioned earlier. The modifiers are EXACTLY, DIFFERENTLY, or
LIKE. In this way, we can build complex search queries in a rather simple fashion.

Check out the following example. Let's find Windows-based Test machines in that
IP range.

W Enabled Computer name | LIKE | [Test

M Enabled Frequency IAlwaysinventDriedj

M Enabled | IP address | LIKE =] oo

W Enabled Operating system | LIKE = | WINDOWS (all)

From the OCS-NG web interface, we can set up users with different levels of access.
This is one of our inventory requirements as well. Lots of other functionalities

are worth mentioning, such as categorizing software applications, and setting up
ignored ones, which do not matter from our point of view (for example, freeware
and open source applications do not require licensing).

The package deployment and remote execution functionalities might be appreciated
by some. They won't make or break the deal of choosing OCS-NG anyway. The

real benefit comes from its lightweight structure and the intelligent auto-discover
routines. On top of these, the modular build of the inventory makes it possible for
further extensions.

Until now, we have seen that OCS-NG seems to meet all of the inventorying
demands we specified earlier. This means that we're beginning a journey
to build an entire fully-fledged inventorying solution from ground up.

We can guarantee a practical ride!

[23]

Introduction to IT Inventory and Resource Management

Summary

In this introductory chapter, we have kick started our venture to understand and
solve IT inventory requirements that exist in almost every firm in the real world.

We presented the practical uses of having a mature inventory coupled with a healthy
database ready to serve requests. No doubt we have realized that implementing such
an integrated process is a necessary method before the situation gets out of control.

Together we created a list of criteria and expectations that we demand from our
integrated inventory solution. By having all of these in place, the way work is
done inside an organization becomes streamlined. Moreover, we can eliminate
unnecessary paperwork. The responsible parties that will be managing their own
departments will be able to get their tasks done even more efficiently.

We have realized that centralization is the best solution for an inventory and asset
management system. After analyzing and comparing two of the most popular
networking and distributed computing paradigms with each other, we backed up
our suppositions. We have learned the mechanism of the client-server model as well
as the peer-to-peer paradigm architecture.

We have set the scene for the book by presenting an incentive on OCS Inventory
NG and overviewing the set of features it brings to the table. Moreover, we can
tackle this situation further and build from ground up our OCS-NG inventory
on a step-by-step basis.

So let's go ahead and begin setting up our OCS-NG central management server.

[24]

Setting up an OCS Inventory
NG Management Server

There's one fantastic analogy to building servers, even though it might seem
hilarious. The process is like architecture, for example, building a house. Shocking,
isn't it? Yes! Nevertheless, it makes sense. First, we need a rock solid foundation.
Depending on your point of view, this can either be the hardware platform or the
server software backend platform.

The foundation requires the necessary materials. These are akin to software
prerequisites in case of software application, for example, Perl modules. When
the foundation is laid, and when it seems to be solid (meaning the material is
conglomerated), which means every module and component gets along well
with the other items, we can say we are ready to begin building the house.
The house itself can stand for the application we're going to install.

Right now, the house we're going to install is the OCS Inventory NG management
server. The foundation is a well-rounded AMP stack web server with the necessary
modules. After the house is built, and assuming it does not fall apart right away
(meaning no errors), the final step before moving in is its interior design.

Naturally, the interior design of fresh homes represents the initial configuration of
server variables. Getting the fences up consists of setting passwords and eliminating
security flaws. Now, depending on how large our family gets, we might find out
that the way we designed our home is not appropriate. The groundsill might be
weak, and the home can prove to be small and uncomfortable. Jokes aside, it's
self-explanatory how this analogy continues.

In this chapter, let's get the following tasks done:

e Get to know the platform on which OCS-NG management server runs

e Set up the software prerequisites on Linux distributions

Setting up an OCS Inventory NG Management Server

e Install the OCS Inventory NG management server on Linux distributions

e Learn the installation on Windows with the help of an integrated
installation kit

e Carry out some initial configuration and get the server ready for agents.

Getting ready for the OCS-NG installation

The OCS-NG management server encloses all of the four server roles that our
inventory solution entails. It is the centralized heart of the inventory. In this chapter,
we're going to look through the necessary steps to prepare our system in order to
fulfill the general requirements of running OCS-NG management server. As it is a
cross-platform project, we will cover the installation on specific Linux flavors and
on a Windows server operating system.

The actual installation process is console based on Linux environments. It is
verbosely logged, and the steps can be easily followed. It is straightforward. On
Microsoft Windows operating systems, there is a de facto standard Win32 setup-like
installation wizard.

OCS Inventory NG runs on top of the popular Apache web server, using MySQL's
InnoDB engine and the PHP server-side scripting language. In order to install the
OCS-NG management server, the system must have these prerequisites installed
and configured.

On Linux distributions, we'll look into a brief overview of the steps involved for
installation. This checkup helps us to refresh our memory. Under most circumstances,
should you desire to install OCS-NG on a Linux server, this suggests that you are
familiar with working in Linux/Unix environments. Therefore, setting up basic server
roles should not cause you any problems.

There is an integrated pack that sets up all of the components we must have for a
fully functional web server. This package is available for Windows, Linux, Solaris,
and Mac OS X operating systems. It's called XAMPP. The developers of OCS-NG
thought about making the process seamless on Windows machines. The Win32
installation kit of OCS-NG includes this integrated pack and sets up the prerequisites
during the setup process.

Regardless of which platform we choose to install the OCS-NG management
server on, the next step is the initial configuration. After fiddling with a few
security pointers, we can finally declare that our server is pretty much ready
for further action. Thus, our objective is met.

This is our action plan for this chapter!

[26]

Chapter 2

Setting up prerequisite software on Linux
flavors

The OCS Inventory NG management server consists of the following four server roles:

e Database server: It requires MySQL 4.1 or a higher version that uses the
InnoDB engine

e Communication server: It requires Apache web server 1.3 or higher and
some Perl modules (which we are going to present in a minute)

e Deployment server: It requires any web server (Apache works here too)

¢ Administration console: It needs Apache Web Server, PHP 4.3 or higher,
and some additional ZIP and GD support

. Fromnow on, in the case of software versions, the "+" suffix at the
% end of version numbers is akin with the "or higher" expression. For
s example, MySQL 4.1+ means MySQL with at least version number

4.1 or higher.

Apart from those main server components, the following modules are necessary:

e Apache server needs to be 1.3.X, 2.0.X+ with the following modules:
° Mod_perl version 1.29+
° Mod_php version 4.3.2+

e PHP 4.3.2+ with extensions:
° ZIP library of ZIP file functions and support

° GD library of image functions

e PERL 5.6+ with the following modules:
° XML:Simple version 2.12+
° Compress:Zlib version 1.33+
° DBI version 1.40+
° DBD:MySQL version 2.9004+
° Apache::DBI version 0.93
° Net:IP version 1.21+
° SOAP::Lite version 0.66+

[27]

Setting up an OCS Inventory NG Management Server

e MySQL 4.1+ with following engine:
¢ InnoDB

e Any sort of make utility to control the generation of executables and similar
important files from an application's source code files
° For example: GNU make.

The list might look overwhelming at first. However, in the real world, setting up
these components isn't any hassle at all. Almost every Linux distribution comes
with these (and many more) server roles that can be enabled easily during setup
or after. The addition of these modules and certain extensions can be done in less
than five minutes.

The process of installing new applications inside a Linux environment is usually
assisted by package management software. These are distribution-specific utilities
that download software packages from maintained repositories and automate the
installation process. If all goes well, "dependency hell" is avoided seamlessly. From
the user's point of view, these package managers handle everything. As a result, they
are confused with installers.

Demystifying package management

The overall list of tasks that a package manager is responsible for performing is quite
long. Firstly, these tools track and organize libraries and other applications present
on the operating system. They know each and every program that is installed, their
version, where they are installed, the packages they are dependent upon, and more.

Ever since the evolution of Linux operating system, newcomers to this world were
terrified of the "dependency hell." As we all know, Linux brings lots of options
when it comes to the kind of software we can choose from. There are hundreds of
applications for every simple task. Usually these applications rely on already created
libraries, but a problem arises when there are numerous versions of a certain library.
It is hard to keep track of them manually.

The everlasting dilemma of solving dependency
hell

Years ago, users were required to resolve this "dependency hell" themselves. This
meant figuring out the list of dependencies in case of a software. Somehow, one
had to find those necessary packages and libraries (that is, download them from
the Web), and set them up. Once these were done, one had to try to install the
application again. New dependency problems might have appeared again.

Rinse and repeat. It was a long-winded process.

[28]

Chapter 2

Package management software was designed to automate all of the preceding
installations. Each distribution has an official repository of certified software, which
is pretty much guaranteed to work on the said operating system. The dependencies
is resolved really fast. The required libraries are downloaded from the repository
as well.

This solution works fantastically in the case of popular applications as these are

all officially supported. From a pragmatic point of view, this method is not a magic
pill. It is not possible to officially support and certify all of the software that exists.
In rare cases, the user still needs to struggle and fight with dependencies like our
forefathers did.

Nevertheless, the management server of OCS-NG requires tried and proven open
source server components. LAMP is the acronym for Linux, Apache, MySQL, and
PHP/Perl. This software stack is one of the most widely recognized bundles with
regards to setting up a general-purpose web server. This means that no matter what
distribution you've chosen, these server components are going to be available via
their official repos.

Before we actually begin to set up Apache, MySQL, and PHP/Perl on our Linux
distro, we are going to look into some of the most common package managers.
Once we know how to work with each, installing those server daemons and
packages is child's play.

Getting familiar with your distribution's
package manager

Nowadays, most Linux distributions come with at least one full-fledged package
manager. By default, these connect and grab those binary packages from officially
supported software repositories. Most package management software achieves
the same functionality under a different layout, shape, form, or by using a
different approach.

As a memory refresher, we cannot forget that installing packages and/or updating
our Linux distributions requires root access. Despite the controversy it created, some
distros allow the installation of signed packages from their official repository even
without a root password, but in most cases we need root access to do administrative
tasks on an operating system. Therefore, working under our favorite package
manager also requires root access.

[29]

Setting up an OCS Inventory NG Management Server

Yum on RPM-based Linux distributions

One of the most widely implemented package managers these days is yum. Yum
comes from Yellowdog Updater. It is RPM-compatible and, thus, it is equipped in
most distributions that support RPM packages. By its nature, yum is console based,
but there are many graphical user interface (GUI) frontends available.

The advantage of using package management software such as yum comes mainly
from making the update procedure really trivial. Every time a new package is
installed via yum, it is stored in your software/package database. When a new
version is released and added to the repository, you can find out whether you're
lagging behind and update it if required. Nevertheless, not every repository is
always up-to-date. This is to be kept in mind.

Opting for software that is distributed via package management comes with a certain
guarantee. In case of really popular software packages, like the server components
we are going to install soon (Apache Web Server, MySQL, and PHP/PERL), this is
critical. Their installation becomes seamless, and they are guaranteed to work on
your specific distributions. If you're running an old Linux distro, then you'll get an
old version of those too.

The following Linux distributions are equipped with yum right from scratch:

e Red Hat Enterprise Linux
e Fedora/Fedora Core

e Mandrake/Mandriva

e CentOS

e SuSE Linux/openSUSE

¢ Yellow Dog Linux

e And others

Working with yum is quite easy. For example, installing a package is done by typing
yum install package-name. To check whether an update is available for a package,
we type yum update package-name. Without specifying a package-name, type yum
update, it checks and updates each of them if updates are ready. In order to find

out if a package is installed or not, we can simply type yum list installed
package-name.

Then there are situations when we aren't sure of a package's full name. In such
cases, we type yum list perl=* and this way it enumerates every package that
begins with perl. We can use wildcards. Removing packages can be done with
yum remove package-name.

For more information and other useful tips on how to fully use yum, type man yum.

[30]

Chapter 2

APT and Aptitude/Synaptic on Debian and its
derivates

Advanced Packaging Tool (APT), was designed as a package manager user interface
for Debian-based Linux distributions. Initially, it was just a frontend for dpkg, which
is the core package manager on Debian derivates; it works with .deb packages.

For a moment, let's think of a pyramid. On the lowest layer, there is dpkg. It is the
core of Debian package management. It is the tool that provides the functionality to
install, remove, and extract information out of . deb packages. On top of dpkg sits
APT. It is a f