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1
introduction

item response theory (IRT)models show the relation-
ship between the ability or trait (symbolized y) measured by the
instrument and an item response. The item response may be
dichotomous (two categories), such as right or wrong, yes or no,
agree or disagree. Or, it may be polytomous (more than two
categories), such as a rating from a judge or scorer or a Likert-
type response scale on a survey. The construct measured by the
items may be an academic proficiency or aptitude, or it may be an
attitude or belief.

What do we use IRT for? One of the basic reasons is to score
tests or surveys. The IRT score is often called an ability, trait, or
proficiency. The IRT scoring takes into account the item difficulty
and discrimination. Items that are more discriminating, or more
reliable, are weighted more heavily, so IRT scores can be more
reliable than number-correct scores. If different examinees
take different tests, the IRT scores adjust for the difference in
difficulty. This makes computer adaptive testing (CAT) possible.
In CAT, the test items are selected to match each examinee’s
proficiency, so that the examinee will not be bored by easy items
or frustrated by overly difficult items. The IRT scoring puts the
scores from the different test forms onto the same metric, so that
each examinee can have a customized test form. Item response



theory also provides an index of the precision of the test score—
the standard error of measurement—for each examinee.

Additionally, IRT can be used in test or scale development. Item
response theory analysis supplies indices of item difficulty and
discrimination. Knowing the item difficulty is useful when building
tests tomatch the trait levels of a target population. For example, the
items on a fourth grade science test should not be so easy that the
average fourth-grader answers nearly all the items correctly, nor
should they be so difficult that the average student answers nearly all
of them incorrectly. Similarly, an instrument intended to measure
well-being in a college population should not consist of items only
endorsed by those with clinical depression. Another item index,
discrimination, is useful for selecting items that differentiate well
between examinees with low and high levels of the proficiency or
attitude measured by the test items. Together, difficulty and dis-
crimination can be used to calculate the standard error of measure-
ment or reliability of the scores. These basic indices provided by IRT
have analogs in classical test theory (CTT). The following sections
describe both the IRT and CTT indices and how they are related.
The IRT indices are more readily understood in the context of the
formal mathematical models for describing the item response prob-
abilities. These models are described later in the chapter; in the
sections that immediately follow, the IRT indices are introduced
only in general terms, leaving details for later.

Item Difficulty

Difficulty is defined in both CTT and IRT in terms of the like-
lihood of correct response, not in terms of the perceived difficulty
or amount of effort required. In CTT, the difficulty index, P, is the
proportion of examinees who answer the item correctly (some-
times P is called the P-value, but this terminology will be avoided
here because it is easily confused with the p-value, or probability
value, used in statistical hypothesis testing, which has an entirely
different meaning). For polytomous items, the item difficulty is
the mean score. So, counterintuitively, a more difficult item has a
lower difficulty index in CTT.

In IRT, the difficulty index, b, is on the same metric as the
proficiencies or traits. This metric is arbitrary, but often it is
anchored such that the proficiency distribution in a designated
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group has a mean of 0 and standard deviation of 1. The item
difficulty identifies the proficiency at which about 50% of the exam-
inees (or a little more, depending on the model) are expected to
answer the item correctly. For example, if b¼ 0.2, then about 50% of
examinees with proficiency¼ 0.2 would get the item right. A larger
percent of examinees with proficiency¼ 0.5 would get the item right.
In contrast to CTT, difficult items have higher difficulty indices.

Item Discrimination

A higher discrimination means that the item differentiates (dis-
criminates) between examinees with different levels of the con-
struct. Thus, high discrimination is desirable. The purpose of
using the instrument is to differentiate (discriminate) between
examinees who know the material tested and those who do not,
or on an attitude scale, between those who have positive attitudes
and those who have negative attitudes. In CTT, the corrected item-
total point-biserial correlation is the typical index of discrimina-
tion; when this is positive, examinees who answer the item
correctly (or endorse the item) score higher on the sum of the
remaining items than do those who answer the item incorrectly (or
disagree with the item). In IRT, an index symbolized as a is a
measure of the item discrimination. This index is sometimes called
the slope, because it indicates how steeply the probability of correct
response changes as the proficiency or trait increases. In both CTT
and IRT, higher values indicate greater discrimination.

Reliability and Standard Error of Measurement

In CTT, reliability is generally defined as the ratio of true score

variance to observed variance
s2
T

s2
X

� �
, or the squared correlation

between true and observed scores r2XT
� �

, where the true score is the

hypothetical average of the observed scores that would be obtained if
the measurement were repeated over an infinite number of similar
conditions. For example, parallel forms reliability is an estimate of the
reliability across parallel forms of the test, estimated by the correla-
tion of two particular parallel forms. Test–retest reliability is an
estimate of the reliability across testing occasions, estimated by the
correlation between scores obtained on two occasions. Coefficient a
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(equivalent to KR-20 for dichotomous items) is an estimate of the
reliability across different random sets of items, estimated based on
the relationships among items in one test form.

In CTT, the standard error of measurement, or standard error
of the estimated score, se, is then based on the definition that
observed score variance¼ true score variance plus error variance

(s2
X ¼ s2

T þ s2
e , so se ¼ sX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2XTÞÞ
p

. When this definition of
standard error is used, a single estimate of the standard error is
calculated regardless of the value of the observed score, X. The
estimate is calculated by substituting the standard deviation of the
scores in the sample for sX and some estimate of reliability,

perhaps coefficient a, for r2XT. Another common definition of
the standard error of measurement is based on the binomial

theorem: se¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xðn�XÞ
n�1

q
, where X is the number-correct score and

n is the number of items. With this definition, extreme scores
(scores that are close to 0 or the maximum value) have smaller
standard errors than middle scores. This definition does not
require an estimate of reliability to calculate the standard error.
Instead, the standard error is calculated first and then can be used
to form a reliability-like coefficient.1

In IRT, the information function is used to calculate the stan-
dard error of measurement and the reliability. The test informa-
tion is a function of proficiency (or whatever trait or skill is
measured) and the items on the test. Thus, test information
varies with the proficiency level, as shown in Figure 1.1. The
standard error of measurement is the inverse of the square root
of information, so that the greater the information, the smaller the
standard error and the greater the reliability. An advantage of IRT
is that the information function can also be defined at the item
level, and the item information functions sum to the test informa-
tion function. This is useful because items from different test
forms can be assembled in different configurations, and the test
information can be calculated for each new test form before the
test is administered. In CTT, the new test forms would need to be

1 For readers familiar with generalizability theory, the mean of this error
variance is equivalent to the absolute error variance (Feldt & Brennan, 1989,
p. 131), so the resulting reliability coefficient is the f-coefficient, not the
G-coefficient.
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administered to new samples to estimate the reliability, unless a very
careful sampling design were used such that all pairwise item corre-
lations could be estimated. Also, in IRT, subsets of items can be
removed from a test form and the corresponding item information
functions can be subtracted to quickly calculate the new test infor-
mation. In CTT, reestimating the reliability after removing subsets
of items would require more complicated calculations than simple
subtraction. Finally, if a reliability estimate of the IRT scores is
desired for a sample or population of examinees, it can be estimated
based on the item parameters and the distribution of the trait in that
group of examinees. (Calculations are detailed in Chapter 4.)

Parameter Invariance

Another advantage of IRT is population invariance of the item
parameters. This means that the item parameters should be the
same in different populations of examinees. In CTT, the item
difficulty P (or item mean score) depends entirely on the profi-
ciency or trait level of the population of examinees. If another
examinee population with higher trait levels took the test, the item
difficulties would be higher (remember, higher difficulty means
easier items in CTT). In IRT, the item difficulty, b, is the same
(invariant) across samples, up to a linear transformation. A linear
transformation means that the b’s from one population of exam-
inees are multiplied/divided by a constant and another constant is
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added or subtracted, to put them on the same metric as the b’s
from another population of examinees. A linear transformation
cannot be used to put the CTT item difficulties on the samemetric.
This is easiest to see by comparing a middle difficulty item and a
very easy item. The easy item might have a P of .98 in the less-able
population and .99 in the more-able population: a small difference
because of the limits of the CTT metric. But the middle difficulty
itemmight have a P of .50 in the less-able population and .80 in the
more-able population. The differences are not constant. A third
item would be needed to prove that the relationship is not linear,
but the general idea is evident with these two items. Item discri-
minations, a’s, in IRT are also invariant across populations after a
linear transformation. Classical test theory point-biserial item-
total correlations depend on the item difficulty in the examinee
population, as well as on the underlying correlation. An item will
have a lower point-biserial item in the population in which its
difficulty is most extreme.

However, the difference between IRT and CTT with regards to
population invariance should not be overstated. If the items are
not too extreme or the populations are not too different, CTT
indices should show a mostly linear relationship across popula-
tions. Empirically, Fan (1998) found that linear correlations
between CTT item estimates from different samples were generally
comparable to the correlations between IRT item estimates from
different samples. Additionally, if the CTT true scores underlying
the observed responses can reasonably be assumed to be normally
distributed, and if there is minimal correct guessing, a nonlinear
transformation can be used to put the P’s from two different
populations on the same metric (for example, educational testing
service (ETS) used the D-scale before IRT was in common use).

Under the same assumption of normality and no correct gues-
sing, the point-biserial correlations can be transformed to biserial
correlations, which are theoretically not sensitive to the average
ability in the population, although like any correlation they
depend on the variance of ability. The biserial correlation is an
estimate of what the item-total correlation would be if the
item were measured on a continuous scale, rather than on a
dichotomous scale. In measurement, the item responses are con-
ceptualized as caused by underlying continuous traits, so the
biserial correlation is reasonable conceptually if the trait can be
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assumed to be normally distributed. (As a counter example, an
instrument designed to measure clinical levels of a trait would be
unlikely to yield normally distributed scores in a nonclinical
population.) These nonlinear transformations require very large
samples for accurate estimation, but IRT models require large
samples for accurate estimation, too. The IRT models, however,
do not require the assumptions of normality or no-guessing
required for the most commonly used formulas for calculating
the biserial correlation.

A final note on invariance: the invariance only strictly applies to
the parameters in the populations, not to the sample estimates of
the parameters. Due to estimation error, the estimates from two
samples of the populations (or two samples of the same popula-
tion) will not be identical even after the appropriate transforma-
tion. After the best transformation is estimated and applied to the
item parameter estimates, the two sets of estimates should be
similar but they will not be identical.

In the next two sections, some of the most common IRTmodels
are described. As noted earlier, IRT can be used with both dichot-
omous (two-category) and polytomous (more than two category)
items, so a section is devoted to each type. All of the models show
how the response probability is a function of the trait measured by
the instrument, such as a proficiency or disposition. In this book,
the trait is symbolized by y, using typical IRT notation. This
symbol is the Greek letter theta, and it will be useful not only
when equations are necessary. but also in the text to avoid the
repetition of proficiency or ability or trait or attitude or disposition.
The reader can substitute whatever term is appropriate.

Models for Dichotomous Items

Because there are only two categories, dichotomous models show
the probability of a score of 1; the probability of a score of 0 is 1
minus the probability of a score of 1. On academic tests, correct
responses are scored 1. On attitudinal or psychological tests, the
category that indicates higher levels of the construct is scored 1. For
example, on a depression scale, if agree indicates more depression,
then agreewould be scored 1. Other items on the same scalemight be
written to be reverse-scored: on these items, disagreemight indicate
higher levels of depression, so disagree would be scored 1. To keep
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the text readable, the simple phrase probability of correct responsewill
often be used; the reader can substitute a more appropriate phrase if
correct response is inapplicable to a particular construct.

The probability of a correct response is expressed as a function
of y. When the probability is calculated for a specific value of y, it
can be interpreted as the probability of a correct response for an
examinee randomly selected from a group of examinees with that
value of y. The typical models used for dichotomous items are the
three-parameter logistic (3PL), 2PL, and 1PL. These models are
named by the number of item parameters used in the function that
models the relationship between y and the item response (0/1).

An example of an item characteristic curve (ICC, also known as
the item response function [IRF]) is shown in Figure 1.2. The
empirical ICC is shown with a dashed line. This empirical curve
is based on a sample of 2,726 examinees. Examinees were grouped
into 20 intervals based on y (x-axis), and the proportion in each
group who answered the item correctly was plotted on the y-axis
(vertical axis). This proportion is the observed or empirical prob-
ability of correct response, given y (“given y ” is a statistical term
that means “for a particular value of y.” Sometimes this is
expressed as “conditional on y”). The ICC based on the 3PL
model is shown with a solid line. The model provides a smooth
curve because it is a simple function using only three item para-
meters: discrimination, difficulty, and lower asymptote. These
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Figure 1.2. Model-based and empirical ICCs. The empirical ICC is based on the

observed proportion—correct for sets of examinees grouped by proficiency

level.
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parameters are typically labeled a, b, and c. The object of para-
metric IRT is to describe the data using just these parameters. As
can be seen in Figure 1.2, the data can often be approximated well
with a smooth curve. The remaining example figures will illustrate
only this model-based smooth curve.

The discrimination parameter, or slope2, a, tells how steeply the
probability of correct response changes at the steepest point on the
curve. Figure 1.3 shows two items with different a parameters;
item 1 has a higher discrimination than item 2. Thus, item 1 can
better differentiate (discriminate) between an examinee with a
moderately high y and a moderately low y. Using CTT, the item-
total point-biserial correlation would also be higher for item 1
than for item 2, assuming that both items have similar proportion-
correct in the sample3 as they do in this example.

The difficulty parameter, b, tells how difficult the item is (for
attitudinal or psychological scales, difficulty indicates the amount
of the trait that is needed to be more likely to choose the response
scored 1 than the response scored 0). Its value equals the y value
where the slope of the function is steepest. About 50% (or a little
more, depending on the value of c) of examinees with y¼ b would
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Figure 1.3. Items with different a-parameters. Item 1 is more discriminating.

2 The slope at y¼ b actually equals the a-parameter times a constant, but the
a-parameter is often referred to simply as the slope.

3 Point-biserial correlations are sensitive to the item difficulty, whereas IRT
discrimination indices are not.
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score 1. Figure 1.4 shows two items with different b parameters.
Item 1 is more difficult than item 2; for any given value of y, the
probability of getting item 1 right is lower than the probability of
getting item 2 right. Difficult items have higher values of b; recall
that this is the opposite of CTT, in which difficult items have lower
difficulty indices, P. P and b are generally highly (but negatively)
correlated.

The lower asymptote parameter, c, provides the probability that
an examinee with a very low level of ywill answer the item correctly.
Figure 1.5 shows two items with different c parameters. The lower
asymptote is lower for item 1 than for item 2. The term lower or left
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Figure 1.4. Items with different b-parameters. Item 1 is more difficult.
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Figure 1.5. Items with different c-parameters. Item 2 has a higher
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asymptote is used to describe the value that the function
approaches as y approaches negative infinity. The term upper
asymptote is used to describe the value that the function
approaches as y approaches positive infinity. In the models
described in this book, the upper asymptote is 1 and will not
be discussed further. The c-parameter is sometimes called a
guessing parameter because examinees with very low y would
be expected to get the item correct only by guessing. Lord
(1974) stated that in well-developed standardized tests, the
c-parameter tends to be somewhat lower than chance because
good distractors draw low-ability examinees away from the
correct answer. However, if an item contains poor distractors
that even a low-ability examinee can eliminate as possibilities,
the c-parameter may be higher than chance.

The mathematical form of the 3PL model is:

PðyÞ¼ ci þ ð1� ciÞ e1:7ai ðy�bi Þ

1þ e1:7ai ðy�bi Þ ð1Þ

where P(y) indicates the probability of correct response given y
and the item parameters (more fully expressed as P(x¼ 1|y, a, b,
c)). The subscript i indicates the item, i. Sometimes the subscript j
is added to y to indicate the examinee:

PðyjÞ¼ ci þ ð1� ciÞ e1:7ai ðyj�bi Þ

1þ e1:7ai ðyj�bi Þ : ð2Þ

Often either or both of these subscripts are implicit, rather than
explicitly shown.

The e in the function is a mathematical constant, the exponen-
tial function. Its value is approximately 2.718. Its counterpart is the
natural log function; the natural log of e¼ 1.4 The 1.7 is a scaling
parameter; it is not necessary, but omitting it would change the
scale of the a-parameter. It is often included for historical reasons
that will be explained in the discussion of the 2PL model.

4 In mathematics, the symbol ln is often used for the natural log function. In
statistics and measurement, the symbol log is often used for the natural log
function. This can be confusing for those used to the mathematical convention
of using log for the base-10 log function.
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The 2PL and 1PL IRT models are special cases, or constrained
versions, of the 3PL model. To constrain a model means to fix the
value of one or more of the parameters. For the 2PL model, the
lower-asymptote’s value is fixed to zero. Thus, the model
becomes:

PðyÞ¼ e1:7ai ðy�bi Þ

1þ e1:7ai ðy�bi Þ : ð3Þ

In Figure 1.6, items 1 and 2 are 2PL items. They have different
a and b parameters, but both functions approach a lower-
asymptote of zero. The 2PL model approximates a cumulative
normal distribution, called a normal ogive. Use of the normal
ogive function to model item responses predates use of logistic
functions. The disadvantage of normal ogives is that they
require mathematical integration—the probability of a correct
response is calculated by finding the area under the curve
below the value a(y� b). Logistic functions are thus simply
easier to work with. The 1.7 in Equations 1 through 3 puts the
logistic parameters into the same metric as the normal ogive
model’s parameters. Without the 1.7, the a parameters would
be larger (by a factor of 1.7). The 1.7 merely makes the a
parameters more interpretable to those used to the normal
ogive metric. The use of this constant is typical but not
universal.

Item 1
2

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3

θ

Figure 1.6. 2PL items. The items have different a-parameters and different

b-parameters.
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For the 1PLmodel, the value of c is fixed to zero, and a is fixed to
the same value across items. Thus, the model becomes:

PðyÞ¼ e1:7a ðy�bi Þ

1þ e1:7a ðy�bi Þ : ð4Þ

Notice that there is no subscript on the a-parameter, because it is
the same for all items. In Figure 1.7, items 1 and 2 have the same
difficulties as the items in Figure 1.6, but instead of different a
parameters, they have the same a-parameter. Notice that the
function representing the probability of correct response for item
1 never crosses the function for the probability of correct response
for item 2, although they approach each other because they have
the same upper and lower asymptotes (1 and 0, respectively).

The Rasch model (Rasch, 1960/1980) is mathematically equiva-
lent to the 1PL IRTmodel, but it was developed separately and was
not specified as a special case of the 2PLmodel; most users of Rasch
models prefer not to use the label IRT. The Rasch model was
originally specified in terms of odds [probability/(1 – probability)]
or log-odds (the natural log of the odds, also called logits), but it is
now often specified in terms of probability. When specified this
way, the model is the same as Equation 4, except that generally the
1.7 is omitted and the a-parameter is dropped from the model,
effectively fixing it to 1. The only consequence of this is to change
the size of the measurement units. The notational system is also
typically different, using d in place of b and b in place of y.

Item 1
2

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

–3 –2 –1 0 1 2 3

θ

Figure 1.7. 1PL items. The items share the same a-parameter but have

different b-parameters.
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Obviously, this has no effect on the mathematical function, but
readers should be aware of the change in symbols. A typical way of
specifying the Rasch model thus would be:

PðbÞ ¼ e ðb�di Þ

1þ e ðb�di Þ ; or ð5Þ

ln
PðbÞ

1� PðbÞ
� �

¼ b� di ð6Þ

Parallel to Equation 1, P(b) is the probability of correct response
given b and d, and would be more fully expressed as P(x¼ 1|b, d).
For consistency with the rest of this book, the symbol y is used in
the following discussion, but this symbol likely would not be used
in an article or book focused on the Rasch model.

The Rasch model, and equivalently the 1PL model, has some
desirable mathematical properties that cannot be obtained with
the 2PL and 3PL models. The number-correct (raw or observed)
score is a sufficient statistic for y (symbolized b in the Rasch
model) (Schumacker, 2004; Wright, 1997; Wright & Stone, 1979,
p. 20). This means that all examinees with the same number-
correct score will have the same estimated y (assuming they all
were given the same test items), while in the 2PL and 3PL models,
two examinees with the same total number of items correct but
with different patterns of items correct will have somewhat dif-
ferent estimates of y5. Similarly, the proportion correct (P in CTT)
is a sufficient statistic for the item difficulty. This means that if the
number of examinees responding correctly is the same for two
items, the items will have the same Rasch difficulty estimate,
regardless of which examinees responded correctly. Note that suf-
ficiency does not imply a linear relationship. If it did, there would
be no advantages to using the 1PL and Rasch models instead of
number-correct scores. But sufficiency greatly simplifies the pro-
cess of estimating the item and trait parameters. It also has practical
advantages. For a given test form (fixed set of items), there is a

5 Essentially, more discriminating items are weighted more highly in 2PL and
3PL estimates of y, and items which are relatively difficult for an examinee (low
value for y – b) are weighted less in the 3PL model because the c-parameter has a
bigger influence on the probability in this range.
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one-to-one correspondence between the number-correct score
and y. Test users, such as teachers, can be given a simple chart
that shows the estimated y for each number-correct score. Also, if
number-correct scores are provided along with y-based standar-
dized scores on a large-scale test, there is no possibility that
examinees (or parents of examinees) will compare scores and
complain because two examinees with the same number-correct
score obtained different standardized scores.

Again, even though the number-correct score is a sufficient
statistic for y, y is not a linear transformation of the number-
correct score. As Wright and Stone (1979) or Wright (1997)
explained, the units on the number-correct score metric are not
necessarily at equal intervals relative to the units on the y scale
(most typically, the number-correct units are stretched out at the
extremes and squeezed together in the middle). An example of a
relationship between these metrics for one test is shown in
Figure 1.8. Notice how, relative to the y units, the number-correct
units are spaced more widely at the upper end of the metric.
Clearly, if the y scale is interval-level, the number-correct scale is
only ordinal level. In terms of the log-odds (logits), the Rasch and
1PL metrics are interval-level. If two examinees differ by 1 logit,
the difference in their log-odds of getting an item correct is 1,
regardless of the item difficulty or the location of the examinees on
the metric. But on the number-correct metric, the log-odds (logit)
difference between an examinee with a score of 10 and an exam-
inee with a score of 11 is not equal to the log-odds difference
between an examinee with a score of 18 and an examinee with a
score of 19.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number Correct

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

θ

Figure 1.8. Relationship between y and number-correct (observed) score.

Relative to the y metric, the number-correct scores are not spaced at equal

intervals.
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Another mathematical property of the Rasch (and 1PL) model
is that the ICCs from two different items will never cross. When
the probabilities are transformed to log-odds (logits), this means
that the difference in log-odds is constant across the y scale, as
explained earlier. Figure 1.9 shows this property for the Rasch
model, and Figure 1.10 shows that this property does not hold
for the 2PL model. Figure 1.10 (or the earlier Fig. 1.6) shows what
may be a considered a problem with the 2PL model (Wilson, 2004,
2005; Wright, 1997): Item 1 is more difficult for low-ability exam-
inees, but item 2 is more difficult for high-ability examinees.
Which item is more difficult? The situation is even more
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Figure 1.9. Log-odds for Rasch items. The log-odds functions are parallel.
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Figure 1.10. Log-odds for 2PL items. The log-odds functions are not parallel

because the items have different a-parameters.
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complicated with the 3PL model, in which the relationship
between log-odds and y is nonlinear (Fig. 1.11). This issue could
also be considered in terms of differences between examinees.
Again examining Figure 1.10, if two examinees differ in y by x
units, their difference in log-odds of correct response will be
greater on item 1 than item 2. If the data followed the Rasch or
1PL model, the difference between these examinees would be
constant in log-odds units. Rasch proponents consider this issue
a serious shortcoming of the 2PL and 3PL models.

Thissen and Orlando (2001) discussed the philosophical differ-
ences between Rasch modeling and IRT from the point of view of
IRT proponents. They explained that their objective is to find the
model that fits the data. They advised “Items are assumed to
measure as they do, not as they should” (p. 90). They contrasted
this with followers of the Rasch model, who begin with properties
central to the Rasch view of measurement, design items to fit
these properties, and discard those that are found empirically
not to fit the desired model. Thissen and Orlando noted that both
sides understand the approach of the other; where they differ “is on
the relative evaluation of these two approaches” (p. 91).

Probabilities versus Log-odds

Logistic models, except for the 3PL, can easily be written in terms
of log-odds instead of probabilities. The odds of correct
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Figure 1.11. Log-odds for 3PL items. The log-odds functions are particularly

close at the low end of the y continuum due to the lower asymptote.
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response¼P(y)/(1 – P(y)). The log-odds is the natural log of the
odds. For example, the 2PL can be written as:

ln
PðyÞ

1� PðyÞ
� �

¼1:7aiðy� biÞ: ð7Þ

The equation looks similar to a logistic-regression equation,
except that in logistic regression the predictor or independent
variable is an observable quantity, such as number-correct score,
rather than a latent variable that must be estimated. When the log-
odds are graphed, they are a linear (straight-line) function of y for
the 1PL and 2PL models, as shown earlier in Figures 1.9 and 1.10.
The c-parameter introduces nonlinearity in the log-odds for the
3PL model, as shown in Figure 1.11.

In the 1PL, the log-odds are parallel for all items. The ICCs for
1PL items are often said to be parallel, even though it is clear from
Figure 1.7 that the curves approach the same upper and lower
asymptotes, and thus come closer together at these points. What
wemean when we say the 1PL ICCs are parallel is that the log-odds
are parallel. As noted above, Rasch formulated his model in terms
of odds and log-odds (Rasch, 1960/1980), although it can be
equivalently specified in terms of probabilities.

Interpreting Parameter Values for Dichotomous Items

The metric of the parameters is somewhat arbitrary. The metric is
indeterminate until we fix the center (zero-point) of the scale and
the unit size. Most frequently, in a reference population (perhaps
represented by the norming sample) the estimated mean of y is set
to 0 and the estimated standard deviation of y is set to 1. y can then
be interpreted similarly to a z-score. Because y is not a linear
function of the number-correct (raw or observed) score, y will
not be exactly the same as the z-score on the number-correct
metric, but the interpretation is similar. When an examinee is 1
standard deviation above the mean in the reference population,
the examinee’s y¼ 1. There is no assumption that the scores are
normally distributed, so the y does not necessarily translate to a
percentile score in the normal distribution. Values for y theoreti-
cally range from –1 to þ1; most examinees will have values
between –3 and 3.
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The item difficulty, or b-parameter, is on the same metric as y.
When b¼ y, the probability of correct response is 50% for the 1PL
and 2PL models (somewhat higher for the 3PL model). The items in
Figure 1.6 were 2PL items, and the items in Figure 1.7 were 1PL items,
but they had the same difficulty. Item 1’s b¼ –0.2, so 50% of exam-
inees with y¼ –0.2 would answer item 1 correctly. Item 2’s b¼ 0.2, so
50% of examinees with y¼ 0.2 would answer item 2 correctly.
Notice that the ICC is steepest at b. Like y, b’s have a theoretical
range from –1 toþ1 but are generally between –2 and 2 so as to
not be too easy or too hard for the intended test population.

Themetric for the item discrimination, slope, or a-parameter, is
less intuitive and takes experience to get used to. The theoretical
range is again from –1 toþ1, but the practical range is from 0 to
perhaps 2 or 3. Items with negative discrimination may be
screened out by some estimation programs, and they should
certainly be removed by the test developers. A negative discrimi-
nation, like a negative discrimination in CTT, would mean that
examinees with higher ys were less likely to answer the item
correctly. Such items should be checked for errors in the scoring
key, and unless the item is keyed incorrectly it should be revised or
dropped from the test. Similarly, discriminations less than 0.4 or
so are unlikely on an operational test because they should have
been screened out during the test development process. Looking
back at Figure 1.6, item 1 has a discrimination of 1.4 and item 2 has
a discrimination of 0.7.

The lower asymptote, or c-parameter, is the probability of correct
response for examinees with infinitely low y. It could theoretically
range from 0 to 1, but would more realistically range from 0 to .3 or
so. As noted, it might be a little below or above the probability of
random guessing, depending on the quality of the distractors.
Looking back at Figure 1.5, the lower asymptote for item 1 is .05
and the lower asymptote for item 2 is .30.

The Test Characteristic Curve

The ICCs can be summed to form the test characteristic curve
(TCC) (also known as the test characteristic function, TCF). Each
ICC ranges from the lower asymptote to 1, so the TCC will
range from the sum of the lower asymptotes (0 for 1PL or 2PL
models) to the number of items. The TCC thus shows the expected
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number-correct score as a function of y; expected is used here in
the mathematical sense of expected value or mean conditional on
y. An example is shown in Figure 1.12. There were 40 items on the
test. Examinees with y¼ –1, for example, would be predicted to
have a number-correct score of approximately 19. Because most of
the items had lower asymptotes of .2 to .3, even those with y¼ –3
would be predicted to have scores of approximately 10.

Models for Polytomous Items

Items that have more than two categories are labeled polytomous,
or polychotomous, items. Weiss (1983) provided a short essay
explaining why polytomous is more correct given the etymology
of the term, but both terms should be used when conducting a
literature search. Several models have been proposed and used for
polytomous items. This book focuses on two of these models (and
their variants): Samejima’s (1969) Graded Response (GR) model
and Muraki’s (1992) Generalized Partial Credit (GPC) model, a
generalization of Master’s (1982) Partial Credit (PC) model. These
models are for items in which the categories are ordered; they
cannot be used to determine the empirical ordering of the cate-
gories post hoc. They are appropriate for items or products (pre-
sentations, portfolios, essays, etc.) scored using a scoring rubric.
They are also appropriate for Likert-type items, items with an
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Figure 1.12. Test characteristic curve. The vertical axis indicates the expected

number-correct test score as a function of y.
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ordered response scale such as: strongly disagree, disagree, neutral,
agree, strongly agree.

In these models, a function analogous to an ICC can be plotted
for each category. Unfortunately, the term used to label these
curves is not universal, so the reader must infer from the context
which function is plotted.

In the graded response model, the probability of scoring in or
selecting each category or higher is modeled. An example is shown
in Figure 1.13. The categories depicted are scored 0–3 (they could
be labeled 1–4 instead). The probability of scoring 0 or higher is of
course 1, so only categories 1 through 3 are shown. The functions
are parallel; otherwise, the probability of scoring 1 or higher would
at some point be lower than the probability of scoring 2 or higher.6

From these functions, the probability of scoring/selecting cate-
gory x can be calculated from the probability of scoring x or higher.
These probabilities are illustrated in Figure 1.14. Note that this figure
depicts all four categories, including the score of 0. Samejima called
these functions operating characteristics. Likewise, de Ayala (1993)
labeled the curves in Figure 1.14 operating characteristic curves
(OCC) and used the term category characteristic curves (CCC) for
the curves in Figure 1.13. Embretson and Reise (2000, Chapter 5)
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Figure 1.13. GR model for a 4-category item (scored 0–3), probability of each

category/score or higher.

6 Samejima (1969, p. 19) proposed another version of the model that allowed
this, but it is used infrequently if ever, because of this logical contradiction.
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used nearly opposite labels: operating characteristic curves (OCC)
for Figure 1.13 and category response curves (CRC) for Figure 1.14.
Several other terms have been used for these types of functions in
various polytomous models. Sijtsma and Meijer (2007) used the
designations category response function (CRF) for the probability of
scoring x and item step response function (ISRF) for the probability
of scoring x or higher. Wilson (2005, Chapter 5) also used the term
category response function (CRF) but applied the term cumulative
category response function (CCRF) for the probability of scoring x
or higher. Other labels include item category response function
(ICRF; Muraki, 1992) and option response function (ORF; de
Ayala & Sava-Bolesta, 1999) for the probability of scoring x, or
boundary response function (BRF; Oshima & Morris, 2008) for
the probability of scoring x or higher. Thus, a research report
should define whatever terms are chosen.

The mathematical function for the GR model looks very much
like the function for the 2PL. The only difference is that there are
multiple b-parameters, one for each category except the first.

P�ikðyÞ¼
e1:7ai ðy�bik Þ

1þ e1:7ai ðy�bik Þ ; ð8Þ

where P�ikðyÞ is the probability of scoring in or above category k of
item i (given y and the item parameters), ai as before is the item
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Figure 1.14. GR model for a 4-category item, probability of each category/

score. These probabilities were calculated by subtracting adjacent probabilities

in Figure 1.13.
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slope, and bik is the category boundary or threshold for category k
of item i. For example, in Figure 1.13, bi1¼ –1.0, which means that
50% of examinees with y¼ –1.0 have scores of 1 or higher. The
subscript i for item i is sometimes dropped when it is clear from
the context. An * or þ is typically added to P to indicate it is the
probability of scoring/selecting the category or higher, not the
probability of scoring/selecting the category.

In the GR model, the b-parameters are typically called thresh-
olds, because they indicate the threshold at which examinees
have equal probabilities of scoring/choosing a category lower
than k versus k or higher. The thresholds are not fixed at equal
intervals within an item; the model takes into account that
observed scores are not necessarily interval-level. In a special
case of the GR model, the spacing of the categories can be fixed
across (not within) items. In this special case, for different items,
the centering of the categories is shifted based on the item
difficulty, but the spacing of the thresholds is constant across
items. Thus, the model requires a smaller number of item para-
meters. This is called the modified GR model (Embretson &
Reise, 2000) or the rating scale version of the GR model
(Muraki, 1990). It might be appropriate if the respondents or
raters use the scale in the same way across all items.

The a-parameter can be interpreted similarly to the a-parameter
for dichotomous items. In another special case of the GRmodel, the
a-parameter can be fixed constant across all items. Some authors
prefer not to use the label discrimination for the a-parameter for
polytomous items (Embretson & Reise, 2000, p. 102). In polyto-
mous items, the degree to which the item discriminates among
examinees with different ys is a function of both the a-parameter
and the relative locations of the b-parameters. Thus, slope, or simply
a-parameter, may be a less controversial label. However, the label
discrimination is in common use as well.

In the GPCmodel, the probability of scoring in or selecting each
category is modeled directly (instead of the category or higher). An
example is shown in Figure 1.15, which looks quite similar in
general form to Figure 1.14. de Ayala (1993) labeled these curves
operating characteristic curves (OCC) and Embretson and Reise
(2000, Chapter 5) labeled them category response curves (CRC).
As noted earlier for the GR model, many different terms may be
applied, and there is not yet one term in predominant usage. The
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categories depicted are again labeled 0–3 but arbitrarily could have
been labeled 1–4.

The mathematical function for the GPC model is a bit more
complicated than the GR function:

PikðyÞ¼ e

Pk
x¼0

1:7aiðy�bixÞ

Pmi

j¼0

e

Pj

x¼0

1:7aiðy�bixÞ
; ð9Þ

Like the GR model, there is one b-parameter for each category
except the first; the number of categories for item i is mi. As there
is no bi0, y – bi0 is defined as 0, so the numerator for the lowest
category¼ e0¼ 1. These category parameters are often called item
step difficulties. The step difficulties indicate the point at which the
probabilities for adjacent categories are equally likely. For example,
in Figure 1.15, bi1¼ –1.0, which means scores 0 and 1 are equally
likely for examinees at y¼ –1.0. In other words, the curves intersect
at this point. The a-parameter, as in the GR model, indicates how
rapidly the response probabilities change as y changes.

When there are only two categories, both the GR and GPC
models are equivalent to the 2PL model. With three or more
categories, however, the parameters in these two models are not
comparable. A category threshold in the GR model is the location
at which the probability of scoring/choosing that category or
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Figure 1.15. GPCmodel for a4-category item,probability of eachcategory/score.
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higher is 50%. A category step difficulty in the GPC model is the
location at which the probabilities of two adjacent categories are
equal. To see why these are not equivalent, look back at Figures
1.13 and 1.14. These curves were based on the GR model, with the
values in Figure 1.14 obtained by subtracting the probability of
category k – 1 or higher from the probability of category k or
higher in Figure 1.13. Notice that the 50% points in Figure 1.13 do
not match the intersection points in Figure 1.14. Further, compare
the GR model in Figure 1.14 to the GPCmodel in Figure 1.15. The
item parameter values are the same in both models, but the curves
look quite different. Different parameters are needed to make the
curves from the two models more similar.

To minimize the difference between the models, the item para-
meters in the GPC model were changed, and the GPC model with
these new parameters is displayed in Figure 1.16. These GPC
curves in Figure 1.16 are fairly close to the GR curves in Figure
1.14. However, in Figure 1.14 ai¼ 1, bi1¼ –1, bi2¼ 0, bi3¼ 2 but in
Figure 1.16 ai¼ 0.70, bi1¼ –0.76, bi2¼ –0.35, bi3¼ 2.58. The dif-
ference between the curves in the two models was minimized most
at the center of the graph because that is where most of the
examinees would be; the curves have greater differences at either
end, but this would have little practical effect because few exam-
inees are located at the extremes. Although Figure 1.16 does not
match Figure 1.14 perfectly, it is much closer than Figure 1.15 was.
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The point of this display is to show that, while the GR and GPC
models can both approximate the same curves, the parameters
used to do so may be quite different. Item parameters should not
be compared across these families of models.

The GPC is called the generalized partial credit model because
Muraki (1992) developed it as a generalized version of the partial
credit (PC) model. Masters (1982) developed the PC model as an
extension of the Rasch model. In the PCmodel, the a-parameter is
constant across items (or fixed to equal 1, so that it drops out of the
model), just as the a-parameter is constant across items in the 1PL
model (or fixed to equal 1 in the Rasch model). In the generalized
model, the a-parameters may vary across items.

The rating scale (RS) model (Andrich, 1978) is a related model
in this family of models. It is equivalent to a restricted version of
the PC model, where the distances between adjacent step difficul-
ties are the same across all items (as in the modified GR model
described above). Again, each item has a location parameter to
indicate how much the mean of the set of step difficulties is offset
from zero, but a single set of step difficulties is used for all items,
decreasing the total number of item parameters needed. Like the
PC model, the a-parameter does not vary across items.

The OCCs (CCCs, ORFs, whatever terminology is preferred)
can be summed across categories to display the ICC (IRF); for the
GR model, the P*(y) is converted to P(y) before summing. An
example is shown in Figure 1.17, based on the option curves in
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Figure 1.17. Item response function for GR item. The vertical axis indicates

the expected number-correct item score as a function of y.
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Figure 1.14. The y-axis is now scaled from 0–3 instead of 0–1, and
labeled Expected Score instead of Probability. The label expected is
used to indicate the mathematical expectation, or mean. For
dichotomous items, the mean score is the same as the probability
of scoring 1, so it is conventional to use the term probability instead
of expected score. The ICCs of all of the test items, dichotomous or
polytomous, can be summed together to form the test character-
istic curve (TCC) or test response function (TRF), as was illu-
strated for dichotomous items. The TCC is scaled from 0 to the
maximum score on the test. Or, if the first category in each item
was scored 1 instead of 0, the TCC is scaled from the number of
items to the maximum score on the instrument.

Choosing a Model

Among the dichotomous models, the 3PL model is the most
common choice for multiple-choice items because it seems
reasonable to assume that low-ability examinees have some
non-zero probability of choosing the correct answer. The 2PL
model might be more appropriate for dichotomous attitudinal
items. It might also be useful for multiple choice items with very
effective distractors, where low-ability examinees would tend to
think a particular distractor was right rather than to guess
randomly. This might occur for domains in which there are
particular errors or misconceptions that low-ability examinees
consistently make. Such distractors would likely require the
expertise of both content specialists and cognitive psychologists,
but would be very useful if they could be written effectively. The
1PL model has desirable mathematical properties, as discussed
earlier. The Rasch model or 1PL is often chosen to obtain these
properties. According to this philosophy, items that do not fit
the model are not considered useful for measurement. Those
who do not strictly hold the Rasch philosophy, however, some-
times use the 1PL model for simplicity, or because they do not
have enough data to estimate a more complex model well. Using
a simple model that is estimated more accurately can sometimes
produce better results than using a complex model that is
estimated poorly, even if the complex model fits the data
better (Barnes & Wise, 1991; Lord, 1980). Similar considerations
apply when choosing between a polytomous model that allows
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the a-parameter to vary across items (GPC or GR models) or
one that constrains the a-parameter to be equal for all items
(PC or GR constrained to have equal a’s).

The fit of the model should also be considered. This will be
discussed in much greater detail in Chapter 3 (in this volume). For
now, it is important to understand that the model that appears to
fit best in a sample is not necessarily the best-fitting model in the
population, so the conceptual considerations described here
should be considered along with empirical fit.

Chapter Summary

To recap, this chapter has compared IRT and CTT in terms of item
parameters, conceptualization of reliability and standard error of
measurement, and population invariance. The 3PL, 2PL, and 1PL
dichotomous models were introduced, along with the GR and
GPC polytomous models. In Chapter 2, the types of questions
for which IRT is useful are described, along with the data require-
ments needed to apply IRT appropriately.
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2
requirements

some of the questions that item response theory
(IRT) can be used to address include:

• What is the spread of item difficulties (and category
difficulties, for polytomous items)?

• How discriminating is each item?
• What is the distribution of abilities/traits in this group of
examinees/respondents? How does the ability distribution
compare to the item difficulty distribution?

• Howmuch information does the test provide over the ability/
trait range?

• How does each item contribute to the test information?
• For a given population or sample distribution, how reliable
are the ability/trait estimates?

These questions, although vitally important to the test developer
and test users, are not the sort of research questions commonly
addressed in journal articles. Rather, they are questions covered in a
test/item analysis report or technical documentation for a testing
program. They deal with a specific assessment instrument rather
than generalizable research problems. Item response theory research



questions for psychometric journals include more advanced topics
such as the development or comparison of estimation methods,
procedures for checking assumptions and fit, new models, or
equating techniques. These questions are outside the scope of this
book. Here, I focus on the application of IRT, not methodological
research in IRT. Further, the focus is on test development and
scoring. Details on more advanced applications, such as equating/
linking, differential item functioning, and adaptive testing, will be
left to other volumes in the series. These applications show the
power of IRT, but before exploring these advanced applications,
one must first understand the basics of IRT.

Data Sample Design

In Chapter 1, the property of invariance was introduced. In clas-
sical test theory (CTT), the item parameters depend on the popu-
lation, so the data should be randomly sampled from the
population to obtain accurate estimates. In IRT, because of the
invariance property, the sample theoretically does not need to be a
random sample from the population of interest. A nonrandom
sample could be used, and the estimated parameters could later be
put on the population metric through a linear transformation.
One limitation to the sampling is that the examinee sample does
need to span the range of item difficulties for accurate estimation
(calibration) of the item parameters. If an item is very easy or very
difficult for a sample of examinees, it is difficult to estimate how
easy or difficult it is. In other words, the b-parameter will have a
large standard error. In Chapter 1, the standard error of y, called
the standard error of measurement, was explained. Each of the item
parameters also has a standard error—the standard deviation of
the estimates of the parameter if it were estimated repeatedly with
different random samples of data. The standard error of b depends
both on how many examinees were used in the estimation and on
how close their y values were to the location of the b-parameter.
Item parameters have information functions just like ys do,
although unless otherwise stated the term information function
can be assumed to refer to information as a function of y.

The standard error of b will be smaller (information will be
larger) when there are more examinees with y values near b. The
a-parameter is estimated best when there is a range of y values
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among the examinees. Just as it would be difficult to estimate a
regression line accurately if all of the data points were bunched
together, it is difficult to estimate the a-parameter without a range
of y values. For the c-parameter, it is particularly important to have
examinees with y values in the range at which the ICC flattens out
and approaches the lower asymptote. Otherwise, it is difficult to
know whether the item is easy or “easy to guess” (Patz & Junker,
1999, p. 354). For this reason, items that are easy for a sample, or
items that are not very discriminating, can often be fit well with
either a two-parameter logistic (2PL) or three-parameter logistic
(3PL) model (Wells & Bolt, 2008; Yen 1981), but if the wrong
model is used it may not fit well in a sample or population with
lower ys. Thus, although the sample does not need to be random,
the ys in the sample need to cover a broad range. Over-representa-
tion of high and low ys might be ideal for accurate parameter
estimations, as long as the parameters could be scaled to a
random sample from the population to give the metric of the
parameters meaning in the population. However, very skewed
distributions can increase the standard errors of the item para-
meters (Sass, Schmitt, & Walker, 2008).

The metric of the item parameters and ys is indeterminant. The
center point and the unit size must be fixed. Typically, this is done
by fixing the mean y to 0 and the standard deviation of the ys to 1
in some population of interest, such as a norming sample. If the
sample used to calibrate the items is a convenience sample or is
intentionally selected to overrepresent the lowest and highest y
values, the resulting metric is not very meaningful. The exception
is the Rasch metric, where traditionally the center point is set by
fixing the mean item difficulty to 0 (thus leaving the mean y as a
free parameter to be estimated) and the a-parameter to 1 (thus
leaving the variance of the ys as a free parameter to be estimated).
With this scaling, the metric depends on the items but not on the
examinees, if population invariance holds.

As discussed, if the parameters are population-invariant; they
can be estimated using different samples and will differ only by a
linear transformation and random error. However, item para-
meters very well may not be population-invariant. As with any
models, there is nothing magical about IRT modeling that will
make the parameters population-invariant. For example, Cook,
Eignor, and Taft (1988) found that the item parameter estimates
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for an SAT test in biology depended on how recently the students
had completely the biology course. If the items had been popula-
tion-invariant, the relative difficulty of the items would have
remained constant across group. In this context, this was false
for both the CTT and IRT item difficulties.

Data Requirements

Large samples of examinees are required to accurately estimate the
IRT item parameters, and longer tests provide more accurate y
estimates. To a lesser extent, increasing the test length can also
improve the accuracy of the item parameter estimation. This
results from either improved estimation of the ys or improved
estimation of the shape of the y distribution. In addition,
increasing the number of examinees can somewhat improve the
estimation of y through improved estimation of the item
parameters.1

Turning first to the items parameters, the b-parameter is easiest
to estimate. Rasch or one-parameter logistic (1PL) models are
often used with samples as small as 100 or 200 examinees.
Sample size requirements for the a- and c-parameters depend
somewhat on the estimation method (estimation is discussed in
Chapter 4).With the estimationmethod currently usedmost often
for the 2PL and 3PL models (marginal maximum likelihood
[MML], often with Bayesian priors), the a-parameter generally
seems to be well estimated with samples of 500 or even fewer if the
items are of moderate difficulty and the ys are normally distrib-
uted (see Drasgow, 1989; Harwell & Janosky, 1991; or Stone, 1992
for more specific findings). Reasonably accurate estimation of the
c-parameter requires larger samples than are needed for the a and b
parameters, and inaccurate estimation of the c-parameter can bias
the estimation of the a and b parameters. The accuracy of the
estimation of the 3PL ICC as a whole improves noticeably as
sample size increases to 2,000, but does not necessarily improve
much with samples as large as 4,000 (Woods, 2008b). The

1
Estimation is covered in Chapter 4, and the relationship between the accu-

racy of y-estimation and accuracy of item-parameter estimation is explained
there.
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c-parameter can be difficult to estimate for easy or less-discrimi-
nating items (Gao & Chen, 2005; Mislevy, 1986; Patz & Junker,
1999), so sometimes the c-parameter is fixed to a constant value or
constrained to a reasonable range of values. It is difficult to
recommend specific sample sizes needed to estimate the c-para-
meter; if the standard error seems large for an item’s c, either the
sample size should be increased or some constraints should be
added, as discussed in Chapter 4. In general, I recommend samples
of at least 1,000 to estimate the c-parameter, with the caution that
for some of the easier or less-discriminating items the c-parameter
may have to be fixed rather than estimated.

Because larger samples are needed to estimate models with more
parameters, with small samples more parsimonious models (the
1PL instead of the 2PL or the 2PL instead of the 3PL) may produce
more stable parameters, although those parameters may be system-
atically biased.2 For example, Lord (1980, p. 190) suggested that the
1PLmodelmight bemore accurate with small samples, even when it
was not the model underlying the data. Sometimes with small
samples the a-parameter or c-parameter are fixed or constrained
to have a small variance to avoid estimation problems (Barnes &
Wise, 1991; Parshall, Kromrey, Chason, & Yi, 1997).

Using an older estimation technique (joint maximum likeli-
hood, [JML]), the number of items had a larger impact on the
estimation of item parameters, and test lengths of at least 40
(Wingersky, 1983) or 60 (Hulin, Lissak, & Drasgow, 1982) were
recommended for accurate estimation of the 3PL model. The test
length has a lesser impact on item parameter estimation when
using the currently popular MML procedure (Drasgow, 1989;
Stone, 1992). Fifteen to twenty items appears to be acceptable for
item parameter estimation, although more items might be needed
to obtain y estimates with small standard errors, as discussed later
in this section. Also, if the y distribution is skewed, more items,

2
For example, when 3PL data are fit with a 2PLmodel the a- and b-parameters

are underestimated (Yen, 1981). If the estimation samples are randomly drawn
from a single population, this effect will be systematic, so that the estimates will be
stable from sample to sample—they will be wrong in a consistent way. If the
estimation samples represent populations with different ability distributions, in
contrast, the underestimation of the a- and b-parameters will vary and the
estimates will show greater variance.
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perhaps at least 40, are needed even for MML estimation. With
smaller numbers of items, the y distribution is not estimated as
accurately, which can in turn impact the estimation of the item
parameters (Woods, 2008b).

For polytomous models, the number of examinees per category
can make a difference in the accuracy of the category parameter
estimation (DeMars, 2003a), and the thresholds are more accu-
rately estimated for middle categories than for extreme categories
(Reise & Yu, 1990). The category parameters are also estimated
better when examinees are distributed more evenly across cate-
gories (de Ayala & Sava-Bolesta, 1999). For the partial-credit
model (polytomous Rasch model), Choi, Cook, and Dodd
(1997) found that samples as small as 250 appear adequate for
three-category items, but samples may need to include 1,000
examinees to accurately recover the step difficulties for the more
extreme categories of six-category items. For the Graded Response
(GR) model, Reise and Yu’s (1990) findings suggested a minimum
of 500 examinees, with the error continuing to decrease for even
larger samples. The Generalized Partial Credit (GPC) model has
the same number of parameters as the GR model, so similar
sample sizes would likely be required. All of these recommenda-
tions are based on MML estimation.

The accuracy of estimating y increases with the number of items
(as well as the nearness of the item difficulty to the y location). The
number of items necessary to estimate y well can vary, depending
on the match of the item difficulty to y and on the item discrimi-
nation. Better-quality items will be more discriminating and more
useful for estimating y. In short, the number of items needed
depends on the information functions of those items, so general
rules are difficult to formulate. The information function may be
estimated for an existing pool of items, and then items may be
added to attempt to increase the information at selected points.
The accuracy of the item parameter estimates obviously has some
impact on y estimation as well, so increasing the examinee sample
size and thus increasing the item parameter accuracy can increase
the precision of y estimation. However, this effect is small (Choi,
Cook, & Dodd, 1997; Reise & Yu, 1990).

In summary, for a 2PL model or 3PL model with fixed
c-parameters, if the y distribution is reasonably normal and the
items are highly discriminating, samples of 500 examinees and 20
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items would likely be adequate for estimating both item para-
meters and ys. Minimum samples of at least 1,000 examinees
and 40 items would be a more cautious guideline for situations
in which the y distribution may not be normal or the items may
not be very discriminating, or if the c-parameter is estimated
rather than fixed or tightly constrained. Increasing the sample
size and number of items will decrease the standard errors of the
parameter estimates, although the increase may be negligible
beyond about 2,000–3,000 examinees or 50–80 items.

One additional note on data requirements: IRT models in no
way assume a normal distribution. The estimation procedures do
not require any assumption of normally distributed examinee
ability or normally distributed item parameters. The standard
errors of the estimated y and item parameters are asymptotically
normal, but the examinees and item parameters do not need to
follow a normal distribution. Severely non-normal distributions
may present some practical problems to estimation, as discussed
earlier, but this is not due to model assumptions.

Assumptions

Chapter 3 will provide an in-depth discussion of the following
three statistical assumptions:

• Unidimensionality. All of the models discussed in this book
only include a single dimension (y), so the models are based
on the assumption of unidimensionality. Multidimensional
IRT models are outside the scope of this book.

• Local independence. If the correct dimensionality of the data is
specified in the model, the responses to one item will be
independent of the responses to another item, conditional on
(controlling for) y. In other words, the correlations among
pairs of items are due only to the primary trait or ability
measured by the set of test items and are not influenced by
some unmodeled trait or ability that impacts both items.

• Correct model specification. The data follow the model used in
the analysis, such as the 1PL, 2PL, 3PL, GPC or GR models.
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3
assumptions

in chapter 2 , three assumptions of item response theory
(IRT) were introduced: unidimensionality, local independence,
and correct model specification. In this chapter, each of these
assumptions is described more fully, with a focus on procedures
for testing each assumption.

Unidimensionality

A test that is unidimensional consists of items that tap into only one
dimension. Whenever only a single score is reported for a test, there
is an implicit assumption that the items share a common primary
construct. Multidimensional IRT models exist, but they are not
addressed here. Unidimensionality means that the model has a
single y for each examinee, and any other factors affecting the item
response are treated as random error or nuisance dimensions unique
to that item and not shared by other items. Violating this assump-
tion may lead to misestimation of parameters or standard errors.

One caution concerning unidimensionality: sometimes test
responses can be mathematically unidimensional even when the
itemsmeasure what psychologists or educators would conceptualize
as two different constructs. For example, test items may measure
both knowledge and test-taking motivation. Or, items on a science



test may measure both reading and science. Or, items may measure
both test-taking speed and knowledge. If all items measure both
constructs in the same relative proportion, then mathematically
they will measure a single y that is a hybrid of both constructs
(Reckase, Ackerman, & Carlson, 1988). Further, if examinees do
not vary on one of the constructs, all individual differences will be
due to the other construct, and the responses will be mathematically
unidimensional. For the test responses to be multidimensional,
different items have to tap into different combinations of the con-
structs, and examinees have to vary on both constructs. In the
example here, if some items need lots of motivation but only
moderate levels of knowledge (they take some perseverance to
work through, but are not difficult if the examinee takes the time
to do the work) and other items take little motivation but a high
level of knowledge (an examinee either knows the answer or not),
then the test will likely not be unidimensional, as long as examinees
vary on both motivation and knowledge. If all examinees are suffi-
ciently motivated, motivation will no longer be a factor, and the test
responses will be unidimensional (assuming the knowledge mea-
sured is unidimensional). For another example, when a test has
restrictive time limits even though its intended purpose is to mea-
sure content knowledge, the items at the end of the test may
measure the construct of test-taking speed more than the items at
the beginning, creating multidimensionality. If the test were admi-
nistered to a group of examinees who were all relatively quick at
responding to test items, the test would bemore unidimensional. In
short, dimensionality may be context- and sample-dependent.

Many methods have been proposed for testing unidimensionality.
Hattie (1984) compared 87 methods. More recently, Tate (2003)
compared nine of the most commonly used methods. Three common
methods are discussed here: analysis of the eigenvalues of the
inter-itemcorrelationmatrix,Stout’s testof essentialunidimensionality,
and indices based on the residuals from a unidimensional solution.

Eigenvalues

One simple method of testing unidimensionality is based on the
eigenvalues (roots) of the inter-item correlation matrix. This tech-
nique, however, was developed under the assumption of continuous
variables. The categories of the items used in IRT are discrete (often
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dichotomous), not continuous. One problem with this approach
with dichotomous data is that difficulty factors may be associated
with large eigenvalues. Thismeans that items of similar difficulty tend
to have high loadings on the same factor. This is particularly likely to
occur when the f correlation matrix is analyzed (when Pearson
correlations are calculated for pairs of dichotomous variables, they
are often calledf correlations—the terms are equivalent). Tomitigate
this problem, tetrachoric (or polychoric for polytomous items) cor-
relations are often used in place of thef correlations. However, when
the item responses follow a model with a non-zero lower asymptote,
such as the three-parameter logistic (3PL) IRT model, analysis of the
tetrachoric correlation matrix also can produce difficulty factors and
often yieldsmatrices that are nonpositive definite (Hattie, Krakowski,
Rogers, & Swaminathan, 1996; Nandakumar & Stout, 1993). Further,
tetrachoric correlations are appropriate when the underlying variable
is continuous and normally distributed but the observed variable
(correct or incorrect response) is dichotomous. This assumption is
the same as described for the biserial correlation in Chapter 1: recall
that normality is not an assumption of IRT, so this is a stronger
assumption than needed for IRT analysis.

Research on using eigenvalues of the correlationmatrix to judge
dimensionality for dichotomous responses has yielded mixed
results. One commonly used way of judging the number of dimen-
sions is to plot the first few ordered eigenvalues (Fig. 3.1), called a
scree plot because the eigenvalues trail off like the scree (loose rock)
at the foot of a mountain. One looks for a steep drop followed by a
leveling-off in the values: the number of eigenvalues before the
drop represents the dimensionality. In Figure 3.1, there is one
eigenvalue before the drop, so we would conclude that there is
one dominant dimension. Examining results using this method,
Hambleton and Rovinelli (1986) concluded that scree plots of
eigenvalues of either the f or tetrachoric matrices were likely to
evidence too many factors. In contrast, with de Ayala and
Hertzog’s (1991) data sets, examination of scree plots and other
indices (including percent of common variance accounted for and
magnitude of factor loadings) based on either type of correlations
accurately identified the number of factors when the correlation
between the traits was low. When factors were more highly corre-
lated (r¼ .60), too few, not too many, factors were likely to be
retained. In other contexts, with continuous variables, Zwick and
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Velicer (1986) describe the scree test as “generally accurate but
variable” (p. 432). When in error, use of the scree test tended to
overestimate the number of dimensions. Zwick and Velicer’s
results likely generalize to polytomous items with at least five
categories, because ordered responses approach a continuous
metric as the number of categories increases.

To describe the scree plot in Figure 3.1, the following explana-
tion could be included in the report, along with the plot:

Often, the point at which the scree begins is more equivocal. If
that is the case, a sample write-up might be:

E
ig

en
va

lu
e

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Figure 3.1. Scree plot. The scree clearly begins at the second eigenvalue.

To assess the dimensionality of the data, a scree plot of the

eigenvalues of the tetrachoric correlation matrix was graphed.

The scree plot appeared to show one dominant factor, so the

assumption of unidimensionality was deemed reasonable.

To assess the dimensionality of the data, a scree plot of the eigen-

valuesof the tetrachoric correlationmatrixwasgraphed. Therewas

a big drop between the first and second eigenvalues, but there was

another, smaller drop between the second and third eigenvalues,

and again between the third and fourth eigenvalues, before

leveling off. This could be interpreted as either one or three factors.

There seems to be one dominant factor and two smaller factors.
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Note that there is no statistical test to report. If there were a
statistical test, the assumption would be met if we failed to
reject the null hypothesis. This language should be avoided
here because the scree plot is a heuristic procedure used to
make a judgment about whether the responses are reasonably
unidimensional; it is not a statistical hypothesis-testing
procedure.

Another common rule, sometimes implemented by default in
statistical software, is to retain factors or components with eigen-
values greater than 1. Reckase (1979) examined this rule for a few
simulated data sets, and its use tended to retain extra factors with
either the f or tetrachoric correlation matrix. This is not sur-
prising, given that studies in other contexts have generally found
this rule leads to the identification of too many factors. Zwick and
Velicer (1986) reached this conclusion and cited several studies
with similar findings.1 An examination of the scree plot is likely to
be more helpful than retaining dimensions with eigenvalues
greater than 1. Although the number of large eigenvalues on the
scree plot is often debatable, if the plot clearly shows one eigen-
value before the scree, it seems reasonable to conclude there is
likely one dominant factor, or, as in de Ayala and Hertzog’s (1991)
study, correlated dimensions that might conceptually represent
one dimension.

Only a brief summary of the use of eigenvalues for assessing
dimensionality has been provided here. The reader is encouraged
to reference other texts dedicated to factor analysis to learn more
about this particular method.

Other methods for testing the dimensionality of the responses
will give more definitive (less subjective) results than methods
based on the eigenvalues of the inter-item correlation matrix.
Two of these methods will be discussed next.

1 However, Zwick and Velicer (1986) reported more positive results for
another method based on the magnitude of the eigenvalues: parallel analysis.
Parallel analysis involves comparing the eigenvalues to those from a simulated
data set. For continuous variables, Zwick and Velicer (1986) found this to be
more accurate than scree plots or the eigenvalue> 1 rule, and Drasgow and Lissak
(1983) have applied a modified version to dichotomous items.
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Stout’s Test of Essential Unidimensionality

Another frequently used procedure is Stout’s test of essential
unidimensionality (Stout, 1987). It is sometimes simply labeled
the DIMTEST procedure because it can be calculated using the
DIMTEST 2.0 (Stout, 2005) software for dichotomous items or the
POLY-DIMTEST (Stout, 1999) software for polytomous items.
Although I have tried to avoid citing specific software in this
book, in this case the procedure is often synonymous with the
software name. This method provides a statistical test of the null
hypothesis of essential unidimensionality. Essential unidimen-
sionality holds when the mean absolute value of the pairwise
item covariances, conditional on y, is approximately 0 (Stout,
1987). This definition highlights the relationship between local
independence and unidimensionality. Note the phrase “condi-
tional on y” in this definition. In the population, the pairwise
item covariances should be high and positive if the scores are
measuring a meaningful construct. But for examinees with the
exact same level of that construct, the pairwise item covariances
should be near 0. After controlling for the construct, only random
error remains, and these errors are uncorrelated if the test is
essentially unidimensional. The y is not necessarily the IRT y; it
is used here as a generic symbol for the underlying trait, and
Stout’s procedure does not assume an IRT model underlies the
data.

To perform the test, the items are divided into two subtests that
are as dimensionally distinct as possible, the Partitioning Subtest
and the Assessment Subtest. The Assessment Subtest is composed
of items that potentially measure a secondary dimension. This
dimension might be identified based on item content. If there is
no conceptual or theoretical reason to propose which items might
form a secondary dimension, empirical methods can be used to
find the best candidate for a possible secondary dimension.
DIMTEST 2.0 (Stout, 2005) will optionally use a clustering algo-
rithm to find a secondary dimension, and an earlier version
optionally used factor analysis of the tetrachoric correlation
matrix. If the items for the secondary dimension are selected
empirically, different subsets of examinees should be used to
select the items and to perform the dimensionality test, to avoid
overcapitalizing on chance (Stout, 1987). After the items for the
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possible secondary dimension are identified, examinees are
grouped by the raw score on the remaining items, the
Partitioning Subtest, to calculate the test of unidimensionality.
In essence, the procedure tests whether the sum of the pairwise
item covariances within score groups is near 0. The number
correct on the Partitioning Subtest is used as an estimate of the
value on the primary trait measured by the test. Because examinees
within each group have the same estimated score on the primary
dimension, the covariances between items on the assessment
subtest should be near 0 if these items do not share a secondary
dimension. After correction for bias, the test statistic, T, is assumed
normally distributed. The null hypothesis for T is that the
responses are unidimensional (the average covariance within
groups¼ 0), so failure to reject the null hypothesis indicates that
the assumption of unidimensionality is tenable.

To describe nonsignificant test results, the following explana-
tion could be included in the report:

When unidimensionality is not rejected, if the items for the
Assessment Test were chosen by empirical methods rather than
based on content, there is no need to report which items formed
the secondary dimension because the dimension was likely
formed by chance. If the items for the Assessment Test were
chosen based on content, the report should include a description
of why this subset was suspected of possibly tapping a secondary
dimension.

Stout’s test of essential unidimensionality, implemented in

DIMTEST 2.0 (Stout, 2005), was used to test the assumption of

unidimensionality. Items that might form a secondary dimension,

the Assessment Subtest, were selected empirically, using the HCA/

CCPROX cluster procedure and DETECT statistic in DIMTEST, and

this candidate cluster was tested to see if it was dimensionally

distinct from the remainder of the test. A random sample of 30%

of the examinees was used to select the Assessment Subtest, and

the remaining sample was used for the dimensionality test.

T¼ 0.386 (p¼ .3562, one-tailed); therefore the assumption of

unidimensionality was not rejected.
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To describe significant test results, the following explanation
could be included in the report:

If unidimensionality is rejected, the report should detail what deci-
sion was made and why. If the secondary dimension has many
items, perhaps two separate subscales could be formed or a multi-
dimensional model, outside the scope of this book, could be used. If
the secondary dimension has only a few items, perhaps those items
could be dropped. Or, if those items appear to measure a desired
dimension of the construct, perhaps enough similar items could be
added to create a reliable subscale. The reader can judge the reason-
ableness of the decision if the rationale for it is described.

Analysis of Residuals from a Unidimensional Model

Another set of methods in current use involves analysis of the
residuals of the bivariate proportion-correct matrix from a uni-
dimensional IRT model. These methods do not seem to be in
widespread practical use at the time of this writing, but they are
included here because they are currently the subject of much
research and may be used more frequently in the future. In
Stout’s procedure, the primary dimension was held constant by

Stout’s test of essential unidimensionality, implemented in

DIMTEST 2.0 (Stout, 2005), was used to test the assumption of

unidimensionality. Using a sample of 30% of the examinees,

items 3, 8, 15, and 28 were empirically identified by the HCA/

CCPROX cluster procedure as the cluster most likely to form a

secondary dimension. Using the remainder of the sample for the

test of essential unidimensionality, T¼2.538 (p¼ .0056, one-

tailed), so the assumption of unidimensionality was rejected.

Consideration of the content of items 3, 8, 15, and 28 suggested

these items could be dropped without appreciably changing the

content of the test. When the remaining items were tested, again

choosing candidate secondary clusters empirically with a sub-

sample of the examinees, the results were not statistically

significant (T¼ .8957, p¼ .1852), thus the assumption of unidimen-

sionality was not rejected. Remaining analyses were conducted

on this unidimensional set of items.
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grouping examinees on Partitioning Subtest number-correct
scores. In this alternative procedure, the residuals are instead
based on the matrix of residual proportions from an IRT
model.2 For an item, the residual proportion correct is the
observed proportion minus the proportion expected from the
model—these values are the diagonal elements of the matrix. For
a pair of items, the residual is the proportion of examinees who
answered both items correctly, minus the proportion predicted by
the model—these values are the off-diagonal elements of the
matrix. Under the assumption of unidimensionality, the predicted
bivariate proportion correct is the product of the predicted pro-
portion correct for each item in the pair. Typically, the model-
based proportions are estimated by integrating P(y) across the
estimated y distribution. More simply, this could be conceptua-
lized for a large sample as estimating y for each examinee, calcu-
lating P(y) based on the estimated item parameters, and averaging
P(y) across examinees. After the residual difference between the
observed and predicted bivariate proportion correct is calculated,
the residual correlation can then be calculated from these residual
proportions (see Finch & Habing, 2007, for more details). The
residual bivariate–proportion-correct matrix is provided by one
IRT program, NOHARM 3 (Fraser & McDonald, 2003). Thus,
sometimes these residual analyses are referred to as NOHARM-
based methods, just as Stout’s procedure is sometimes called the
DIMTEST procedure after the software that calculates it. The
residuals could instead be calculated based on the item parameter
estimates from any IRT software, although this would take some
additional work.

Several indices based on the residual correlations or residual
proportions (covariances) have been proposed. Gessaroli and De
Champlain (1996) suggested a w2 index based on the squared
residual correlations. For data generated to fit the two-parameter
logistics (2PL) model, this index had type I error rates below the
nominal a. The power rates for rejecting unidimensionality for two
uncorrelated dimensions were higher than the power rates for

2 To date, this procedure has only been used with dichotomous items. Item
means or a series of submatrices of proportions for each item category would
have to be substituted to generalize this to polytomous items.
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Stout’s procedure when the tests were short. Results were compar-
able to those of Stout’s procedure when the tests were long. Another
index, Ts (which is completely unrelated to the T in Stout’s proce-
dure), is based on the squared residual proportions (Maydeu-
Olivares, 2001) and can be scaled to follow an approximate w2

distribution. Finch and Habing (2007) compared Gessaroli and
De Champlain’s w2, Ts, a log-likelihood-type w2 index based on
the residual proportions, and Stout’s procedure. When the data
followed a 2PL model, all of these indices had acceptable type I
error rates and roughly equal power. But when the data followed a
3PLmodel, only Stout’s procedure and Ts had type I error rates near
the nominal a. For the other two measures, type I error rates were
inflated more for longer tests and larger sample sizes.3 Computing
Ts is complicated, and this index is unlikely to be included in a test
development report. If there is unlikely to be guessing in the
responses, perhaps for a constructed-response test or a noncognitive
instrument, the simpler Gessaroli and De Champlain w2 index
might be provided. Although this index is not in widespread use,
it was described here because this type of index has been the focus of
a number of recent articles and conference papers. Perhaps after the
distributional properties are better known, either this type of index
may be more widely used in the future or it may be rejected as
ineffective. To describe this w2 test, the following explanation could
be included in the report:

To test the unidimensionality of the item responses, a unidimen-

sional 2PL model was estimated using NOHARM 3 (Fraser &

McDonald, 2003). Gessaroli and De Champlain’s (1996) w2 index

was calculated. The test was not statistically significant

(w21222¼1280, p¼ .121), so the assumption of unidimensionality

was not rejected.

3 De Champlain (1999), using 3PL data, found type I errors for the w
2
index

below the nominal a for sample sizes of 250 or 500, but approaching and perhaps
exceeding the nominal a for sample sizes of 1,000. De Champlain’s largest sample
size, 1,000, was the same as Finch and Habing’s smallest sample. De Champlain’s
type I error rate was somewhat lower, but with only 100 replications, the rate was
not estimated very precisely.
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Local Independence

Another assumption of IRT is local independence. If the item
responses are not locally independent under a unidimensional
model, another dimension must be causing the dependence.
With tests of local independence, however, the focus is on depen-
dencies among pairs of items. These dependencies might not
emerge as separate dimensions, unless they influenced a larger
group of items, and thus might not be detectable by tests of
unidimensionality. Consequently, separate procedures have been
developed to detect local dependencies.

If items are locally independent, they will be uncorrelated after
conditioning on y. Again, note that the items can (and should) be
correlated in the sample as a whole. It is only after controlling for y
that we assume they are uncorrelated. Yen (1984) proposed a
simple test, Q3, to check pairs of items for local dependence.
First, the item parameters and person parameters for a one-dimen-
sional IRT model are estimated. The model can be the one-para-
meter logistic (1PL), 2PL, or 3PLmodel for dichotomous items, or
the Graded Response (GR), Partial Credit (PC), or Generalized
Partial Credit (GPC) model for polytomous items—whichever
model will be used in the rest of the analyses. Based on these
item parameter estimates, a residual is calculated for each person’s
response to each item. The residual is the difference between the
predicted item response and the observed response. For dichoto-
mous items, e¼P(y) – u, where e is the residual; P(y) is the
probability of correct response, given the estimated item para-
meters and estimated y; and u is the observed response (0 or 1).
For polytomous items, the predicted item score replaces the prob-
ability of correct response, and the observed response may cover a
larger range. After calculating the residuals, Q3 is computed as the
linear correlation between the residuals from item i and the resi-
duals from item j. The correlation matrix is then examined to find
pairs of items with large residual correlations. Yen (1993) focused
on the effect size (the correlation) rather than statistical signifi-
cance (with the large sample sizes used in IRT, a correlation large
enough to cause concern would also be statistically significant, as
would many correlations not large enough to cause concern). She
suggested that test developers focus on correlations greater than
.20 as problematic (p. 211).
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Notice that the tests for unidimensionality (Stout’s procedure
and the residual analysis tests) and this test for local independence
both center on residual (conditional) covariances or correlations.
However, the tests for unidimensionality focus on the sum or
average, whereas Yen’s test for local independence focuses on
individual item pairs. Two items that violate local independence
may not be enough to form another dimension, so Yen’s test
would be more powerful than tests for undimensionality.
However, a subset of items may form a secondary dimension
without having any pairs of items with correlations large enough
to be flagged by Yen’s procedure. Thus, unidimensionality and
local independence are often tested separately. Local dependency
may be a concern when one item builds on the answer to a
previous item, or when items are grouped around a reading
passage or a common scenario that provides context for all of
the items. The violation of local independence in such a case might
also be detectable by a test for unidimensionality, but the sec-
ondary dimension would be viewed as a nuisance dimension or
simply shared error because it is not substantively meaningful.

If a pair of items (or a small group of items) have a large residual
correlation, then test developers could choose to drop one of the
items from the test, combine the items into a single item, or use a
testlet model that allows for small groups of items to measure
secondary dimensions. Summing the items is an approach that
may be applied to either classical test theory (CTT) or IRT4; Yen
(1993) illustrated this approach. Instead of two dichotomous
items, the sum would be a single polytomous item with 0, 1, or 2
points. The GR or GPC model could be used to estimate the
parameters for this item. A small amount of information is lost,
because these models do not take into account the different ways
an examinee could score 1 point, but the dependency is elimi-
nated. Alternatively, if several items in a subset have elevated
residual correlations, the testlet model (Wainer, Bradlow, &
Wang, 2007; Wainer & Wang, 2000) can be used. The testlet
model essentially includes a shared error term for each small set

4 Correlated residuals can be a problem in CTT, too, because they can lead to
misestimation of reliability (Sireci, Thissen, & Wainer, 1991).
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of items, which allows the reliability and parameters for the pri-
mary dimension to be estimated more accurately.

To describe the Q3 test, the following explanation could be
included in the report:

Additional indices have been proposed for testing local inde-
pendence (for example, Chen & Thissen, 1997, examined four
indices). Q3 is one of the more commonly used.

Fit

The fit between the model and the data can be assessed to check for
modelmisspecifications. For example, if a 1PLmodel is used and the
data follow a model with varying slopes or a non-zero lower asymp-
tote, then many of the items will not fit the 1PL model. If the
function is not monotonically increasing, none of the common
models will fit. Typically, IRT practitioners focus on the fit of
individual items, not the overall fit of the model across all items,
which will only be addressed briefly at the end of this section. For
item fit, the concept of a residual, or the difference between an
observed and model-predicted (expected) proportion is key. This
residual is conditional on y, meaning it is calculated for groups of
examinees with approximately the same y. Figure 3.2 shows an item
characteristic curve (ICC); the ICC represents the model expecta-
tion. Each dot represents a large group of examinees with similar
estimated y. If the model fits, the observed proportion correct

Yen’s Q3 (1984) was used to check for any large violations of local

independence. After controlling for y, a group of three items had

pairwise residual correlations near or greater than .2. The residual

correlations were .34 between items 11 and 12, .28 between items

11 and 13, and .19 between items 12 and 13. These items were all

centered around a short description of a basketball game andmay

have inadvertently tapped into basketball familiarity, as well as

the intended mathematics construct. These three items were

summed and treated as a single item worth 3 points. The GPC

model was used to model the responses to this summed item in

the remainder of the analyses.
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in each y-group should be close to the model expectation. The resi-
dual is the vertical distance from the observed proportion to the
expected proportion, just as in linear regression the residual is the
vertical distance between the regression line (expected score) and
observed score. Figure 3.3 shows another plot, with somewhat more
misfit.

For polytomous items, there are two ways the residuals could be
calculated and graphed. The residual could be calculated for each
category separately; the plot for category k would show the pre-
dicted proportion of examinees choosing/scoring k as a function
of y (the option response function) and the observed proportion
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Figure 3.3. Somewhatmisfitting data. The observed proportions deviatemore

from the ICC than the observed values in Figure 3.2 did.
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Figure 3.2. Data that fit the model well. The observed proportion-correct

values, calculated for sets of examinees grouped by y level, are close to the ICC.
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in each y group choosing/scoring k. An example is shown in Figure
3.4. The solid lines show the predicted probabilities, and the open
circles show the observed proportions. Alternatively, the residual
could be calculated as the difference between the predicted mean
score (the item response function) and the observed mean score
for each y group, as illustrated in Figure 3.5. The latter plot is easier
to examine, but it provides less information about which cate-
gories misfit. For both dichotomous and polytomous items, exam-
ining these plots is a very helpful method for analyzing fit. Indices
that summarize the fit are also available.
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Figure 3.4. Fit of each category for a polytomous item. The open circles

indicate observed proportions.
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Figure 3.5. Fit of the mean item score for a polytomous item. Observed and

predicted scores have been summed over score categories to simplify the

graph.
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The w2 indices used to summarize fit fall into two classes:
Pearson w2 or log-likelihood w2, often symbolized G2 to avoid
confusion with Pearson w2. Bock (1972) and Yen (1981) suggested
Pearson-type w2 indices; Yen’s index was labeled Q1. Examinees
are grouped based on estimated y, and within each group the
difference between the observed and expected score is squared
and divided by its variance. These terms are then summed across
score groups. The observed and expected proportions for poly-
tomous items are calculated within each category and then
summed across categories as well as score groups. G2 is similar,
except that the quantities involved are the natural logs of the
expected and observed proportions. G2 is part of the output of
BILOG (Zimowski, Muraki, Mislevy, & Bock, 2003) and
PARSCALE (Muraki & Bock, 2003). These indices might be
expected to follow a w2 distribution. However, with large samples
and short tests, they can have inflated type I errors (Glas & Suárez
Falcón, 2003; Orlando & Thissen, 2000; Orlando & Thissen, 2003;
Reise, 1990; Sinharay & Lu, 2008; Wells & Bolt, 2008), especially
for polytomous items (DeMars, 2005; Kang & Chen, 2008; Liang &
Wells, 2007; Stone & Hansen, 2000). Thus, many items may be
falsely rejected as misfitting, which would waste good items and
increase test development costs.

One reason for the inflated type I error rate is that ymay not be
well-estimated, especially for short tests. Orlando and Thissen
(2000; 2003) and Stone (2000) proposed different approaches to
address this problem. Orlando and Thissen (2000) developed
modified w2 and G2 indices, labeled S-w2 and S-G2, for dichot-
omous items. They grouped examinees based on observed
number-correct score, not on y. Although calculating the
expected item score for a particular y is straightforward when
given the item parameters, calculating the expected item score for
a particular number-correct score is not. Each possible score
pattern that sums to score X corresponds to a different likelihood
function for y, so these functions must be summed across score
patterns. After multiplying the resulting likelihood function by
the density of y, the expected (mean) y for examinees with score
X can be computed and in turn used to compute the expected
item score. Orlando and Thissen (2000) described an algorithm
for these calculations. With samples of 1,000, S-w2 maintained an
empirical type I error rate near the nominal rate (Orlando &
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Thissen, 2000). S-G2 showed a somewhat inflated error rate, but
not nearly as bad as the unmodified version for short tests. For a
very long test (80 items), S-G2 did not improve much over the
unmodified version, although with the long test even the unmo-
dified version rejected at a rate of only two to three times the
nominal a (compared to nearly 100% false rejection for a 10-item
test). However, Glas and Suárez Falcón (2003) found comparable
performance for S-w2 and S-G2. In their studies, both indices
rejected too often with very large samples of 4,000, or even
samples of 1,000 when the test was short (10 items). Despite
this, the modified indices performed much better than the
unmodified versions. Additionally, these indices have been
extended to polytomous items. For the GPCmodel and restricted
versions of the GPC model, Kang and Chen (2008) found S-w2

controlled the type I error rate accurately for most sample sizes
and test lengths, whereas the unmodified G2 had inflated type I
error for short tests, especially with large samples.

Another approach, developed by Stone (2000; 2003; Stone &
Hansen, 2000), is to avoid assigning each examinee to a single y
group. Instead, each examinee is assigned fractionally to each level
of y proportional to the likelihood of y given the examinee’s
response pattern. When the standard error of y is small (reliability
is high), the examinee may weight mostly in one y group, perhaps
90% in one group, 5% in each of the adjacent groups, and
approaching 0% along the rest of the distribution. But when the
standard error of y is big (reliability is low), there is less confidence
about the examinee’s y, and the examinee’s weights are spread out
over a broader range of y, reflecting that uncertainty. Once these
weights are estimated, the w2 or G2 are calculated. These indices are
distributed as scaled-w2. Stone (2000) provided methods for cal-
culating the scaling constant and modified degrees of freedom.
Using data that followed the 2PL or graded-response model, Stone
(2003) found type I error rates close to the nominal rates, even
with short tests (6 or 12 items) and large samples (2,000).
Additionally, Sinharay and Lu (2008) studied Stone’s procedure
with 3PL data and found inflated type I error rates with large
samples (N¼ 2,000). This finding suggests that this procedure
may control type I error rates much better when the true under-
lying model has a lower asymptote of 0 (2PL or most polytomous
models).
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A different approach was taken by Douglas and Cohen (2001)
and Wells and Bolt (2008) for dichotomous items and Li and
Wells (2006) and Liang and Wells (2007) for polytomous items.
They compared the ICC to a nonparametric ICC, which is
basically a smoothed line connecting the observed score-propor-
tions for the y groups. Finding the probability values for each
item requires bootstrapping procedures (simulating a distribution
using the estimated item parameters). Additionally, other item
fit indices or modifications have been developed (for example:
Donoghue & Humbo, 2003; Glas & Suárez Falcón, 2003).
Because most of these indices are not in widespread use, it is
important to include information about the properties of
whichever index is chosen, such as type I error and power to
detect particular types of misfit.

Given the inflated type I error rate of the unmodified w2 and G2,
especially with large sample sizes and short tests, the modified
indices are more appropriate if statistical significance testing
is desired. But if the focus is on effect size (how badly does the
item misfit?), a visual inspection of the residual plot, as shown in
Figure 3.2, may be adequate. Although a visual inspection does not
give a statistical test of fit, it may be enough to make a determina-
tion of whether the model fits reasonably well. As Lord (1968)
noted, “The appropriate question is not whether the model holds
exactly—this can hardly be expected—but whether it can provide
trustworthy approximate answers to important questions”
(p. 990). An example write-up of this simple approach follows:

The log-likelihood fit index, G2, was obtained from BILOG-MG

(Zimowski, Muraki, Mislevy, & Bock, 2003), along with item para-

meter estimates. Two items had large G2 indices, suggesting they

may not fit themodel well. Because G2 sometimes has a high type

I error rate, plots of the observed and predicted responses (ICC)

were examined. These plots are provided in Figures 3.2 and 3.3.

The item in Figure 3.2 appears to fit reasonablywell andwas left in

the item pool. The item in Figure 3.3 shows an unusual pattern,

with examinees of moderate proficiency scoring unexpectedly

low. This item will be referred to content experts for possible

explanation of the misfit and revision of the item.
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One additional note: because the type I error rate of the unmodi-
fied w2 and G2 is high for large samples, it might be tempting to
conduct fit tests with a smaller subset of the sample. This would be
problematic because the item parameter estimates would be less
accurate (higher standard errors) and the residual plots would
have more error as well.

Users of Rasch models apply different fit indices than do users
of IRT models. For two common indices, instead of grouping
examinees, a residual is calculated for each examinee: the differ-
ence between the observed response (0/1 for dichotomous items,
or item score for polytomous items) and the model-predicted
response (P(y) for dichotomous items). The residual is standar-
dized by dividing it by its standard deviation. The squared stan-
dardized residuals can be averaged over persons, for item fit, or
over items, for person fit (Wright & Masters, 1982, Chapter 5).
Outfit mean square (MS) is an unweighted average of the squared
standardized residuals. For Infit MS, the squared standardized
residuals are weighted by the variance (equivalent to summing
the squared unstandardized residuals). Infit is less sensitive to
residuals from people whose abilities are far from the item diffi-
culty. Infit MS and Outfit MS are not distributed as w2, but they
can be transformed to a t-distribution for statistical testing
(Wright & Masters, 1982, Chapter 5). Others use Infit/Outfit MS
as effect sizes: items are flagged if Infit/Outfit MS is greater than 1.5
(or < 0.6); sometimes other cut-offs are used, such as 1.3, in part
depending on the proposed use of the score and type of item
(Engelhard, 1992; Linacre, 2006; Wright & Linacre, 1994).
Wilson (2005, Chapter 6) recommended using the statistical test
and examining MS effect sizes for the statistically significant items,
as is done in many areas of statistics. This does not seem to be
frequent practice; a choice between statistical significance and
effect sizes appears to be more common among Rasch model
users (for example, Smith, Schumacker, & Bush, 1998).

Rasch model users also frequently focus on person fit. The Infit
and Outfit indices can be calculated for each examinee by sum-
ming the squared weighted or unweighted residuals across items,
within an examinee. Linacre (2006) provides explanations for
common patterns of misfit, such as fatigue effects. Misfitting
examinees can be removed before recalibrating the item para-
meters, and the scores of misfitting examinees may be flagged as
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invalid. This is a fairly typical part of Rasch modeling. Many
person-fit indices have been proposed for IRT or CTT analysis as
well (for example, see Karabatsos, 2003, for a description of 36
different indices). However, they are typically used in an effort to
detect a particular type of misfitting response, such as cheating or
responding randomly. Person fit generally is not a routine step in
IRT analysis as it is in Rasch modeling, but perhaps more accurate
item parameters could be estimated if the data were screened for
misfitting examinees.

Finally, the overall fit of the model could be considered instead
of or in addition to item fit. Overall model fit is not nearly as
commonly reported as item fit. One straightforward procedure is
to compare the observed total score distribution to the model-
predicted score distribution (Swaminathan, Hambleton, & Rogers,
2007). The distributions could be visually compared or the differ-
ence between them could be assessed with a statistical test such as
the w2 test. Tests are also available for comparing the fit of different
models. When maximum likelihood estimations procedures are
used, a model deviance index can be calculated to compare two
nested models. For each model, –2 times the natural log of the
overall likelihood of the observed response patterns, given the
estimated item parameters and the estimated y distribution (for
short, the log-likelihood)5 is calculated. When models are nested,
the difference between their –2 log-likelihoods is theoretically
distributed as w2 with degrees of freedom equal to the number of
additional item parameters in the larger model. This is sometimes
called a likelihood ratio test—the log of the ratios of the squared
likelihoods is the same as 2 times the difference in the log-like-
lihoods. Models are nested when one model is a special case of the
other model, with some parameters constrained to be equal to
each other or to zero. For example, the 1PL model is nested within
the 2PL model because all a-parameters are constrained to be
equal. The 2PL is nested within the 3PL because all c-parameters
are constrained to be zero. The PC model is nested within the GPC

5Whenmarginal maximum likelihood is used, the likelihood of each response
pattern is integrated over the y distribution, so the likelihood is conditional on
the estimated y distribution, not on the individual y estimates. Under direct
maximum likelihood, the likelihood would be conditional on both the estimated
item parameters and the y estimates.
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model. But the PC model is not nested within the GR model. The
PCmodel has fewer parameters to be estimated than the GRmodel,
but it is of a completely different functional type so it is not nested.

Although use of the difference in log-likelihoods to compare
nested models has been described for IRT (Embretson & Reise,
2000, Chapter 9; Thissen, Steinberg, & Gerrard, 1986), it does not
seem to be widespread, and its properties do not seem to have been
explored in detail. Kang, Cohen, and Sung (2005) found this index
was accurate for identifying whether data were generated from the
GPC, PC, or rating scale model. For dichotomous models, Kang
and Cohen (2007) found that this index yielded correct decisions
for 1PL and 2PL data, but 3PL data appeared to fit the 2PL model
when the test was relatively easy compared to the y distribution.6

For comparing unidimensional and two-dimensional IRT models,
this test seems to have inflated type I error rates for the 3PL model
(De Champlain & Gessaroli, 1998; DeMars, 2003b). However, this
is a different application than comparing nested unidimensional
models, so the results may not generalize.

Other indices of overall model fit have been proposed to com-
pare non-nested models. Again none of these indices is in wide-
spread use. Maydeu-Olivares, Drasgow, andMead (1994) used the
ratio of the likelihoods of the data under different models to
compare the fit of the GR and GPC models, and found that the
GPC and GRmodels often fit the data about equally well regardless
of which model was used to generate the data. Kang and Cohen
(2007) and Kang, Cohen, and Sung (2005) used two indices based
on the likelihood (AIC and BIC).7 In their 2005 study, data
generated to fit the GPC model fit the GPC model better than
the GR model, but data generated to fit the GR model was also

6 This can be true for item fit as well. Using Q1, Yen (1981) showed that easy
items tended to fit the 2PL model because there were few examinees in the region
where the non-zero lower asymptote determined the ICC. Using the 2PL, the
a-parameters were underestimated, so that the ICC could slope less steeply and
reach down to a lower asymptote of 0. Wells and Bolt (2008) showed that easy or
less-discriminating 3PL items tended to fit the 2PL well. Mislevy (1986) also
discussed this “trade-off” between item parameter estimates, but in the context of
parameter estimation, not item fit.

7 They also compared two indices based on Markov chain Monte Carlo
(MCMC) estimation, which will not be discussed here because these indices are
even less likely to be encountered in routine reports.
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identified as better fitting the GPCmodel when the item threshold
distribution did not match the y distribution well. The 2007 study
involved dichotomous items. Like the test for the difference in
log-likelihoods, the AIC and BIC were accurate when the data were
generated by the 1PL or 2PL, but they tended to identify the 2PL
model for 3PL data when the test was relatively easy (BIC tended to
select the 2PL model in all conditions).

In short, comparison of the fit of non-nested models, like
comparison of the fit of nested models, needs more research
before it becomes routine. Overall model fit might seem to be a
reasonable consideration when two models are under considera-
tion, but more often the models are selected based on other
considerations, as described in Chapter 1, where the most com-
monly used models were introduced. The content and purpose of
the test should be considered when choosing reasonable models
(Kang & Cohen, 2007; Thissen, Steinberg, & Gerrard, 1986).

If two models fit the data equally well, it might seem to be a
matter of indifference which is chosen. The problem is that the
model fit may be population-specific. For dichotomous items, Yen
(1981) suggested that selecting the 2PL model when the data
were generated under a 3PL model yielded item parameters that
might not generalize to a less-able or more-able population. The
a-parameter and b-parameter estimates of the 2PL are adjusted to
take into account any data at the low end of the distribution (low
relative to the item difficulty), so that the proportion of examinees
in the lower range impacts how much these parameters are mis-
estimated. Additionally, because using the wrong model affected
the more difficult items more than the easier items, the correlation
between the true and estimated 2PL a-parameters was relatively
low in Yen’s study, and the 2PL a- and b-parameters were nega-
tively correlated. Similarly, Bolt (2002) showed that GR item
parameters could be selected to fit GPC data well in a particular
population. However, they were not invariant to the population; in
a less-able or more-able population, different GR item parameters
would better fit the GPC data. The problem is that using the wrong
model does make a difference if the item parameters will be used for
populations that vary in mean y, but this is difficult to detect when
data are only available from one population. Additionally, when the
shape of the population distribution is estimated empirically along
with the item parameters (see Chapter 4), misspecification of the
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model may be compensated for by errors in the estimation of the
population distribution, so that the wrong model appears to fit well
(Woods, 2008a).

Chapter Summary

In this chapter, three assumptions of IRT analysis have been
described: unidimensionality, local independence, and correct
model specification. Some of the many tests for these assumptions
have been explained. For each assumption, a number of statistical
tests have been proposed and explored in the literature. Only a few
of these could be detailed here. Weaknesses of some common
approaches and indices have been noted, and newer alternative
procedures have been described. Unfortunately, some of these
procedures are quite complex and not easily implemented.

Chapter 4 returns to the questions posed at the beginning of
Chapter 2. Most of these questions can be addressed by examining
the item or y parameters, so the chapter begins with an explanation
of parameter estimation.
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4
results

this chapter returns to a discussion of the research ques-
tions noted at the beginning of Chapter 2. Each of the questions is
addressed in turn, with an explanation of how the output can be
used to find answers. Most of the questions relate to the item or
examinee parameter estimates. Before examining how the ques-
tions can be answered, the next section gives a brief, conceptual
explanation of how the parameters are estimated.

Estimation

Estimation of y

The simplest case occurs when the item parameters have been
estimated in a previous sample and are used to estimate an indivi-
dual examinee’s y score or the y-distribution of a group of exam-
inees. This would be the case for on-demand testing, in which
examinees take the test at different times and receive a score imme-
diately. It would also be the case for standardized tests in which all of
the operational items have been calibrated previously in another
sample(s). Score estimation utilizes the likelihood function. For an
item, the likelihood function for a correct response is P(y), the item



characteristic curve (ICC) discussed in Chapter 1 (see Figures 1.2–
1.7, in this volume). The likelihood function for an incorrect
response is 1 – P(y), producing a backward “S” shape. The like-
lihood function for an examinee’s response pattern for all of the
items on the test is the product of the response patterns for the
individual items, due to the assumption of local independence.
Figure 4.1 shows the individual item likelihood functions for six
item responses with the pattern 111100. Figure 4.2 shows the like-
lihood function for the entire pattern. The maximum likelihood
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Figure 4.1. Likelihood for 6 item responses (111100), as a function of y. As y
increases, the likelihood of each of the 4 correct responses increases but

the likelihood of each of the 2 incorrect responses decreases.
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Figure 4.2. Joint likelihood of the response pattern 111100.
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(ML) estimate of y is the y value at which the likelihood function
reaches a maximum. In Figure 4.2, the ML estimate of y would be
0.5. Notice that the focus is on the relative value of the likelihood, to
find the y that corresponds to the maximum value. The numerical
value of the likelihood is of little concern. In fact, as more items are
added to the test, the likelihood for any one response pattern gets
smaller and smaller. But the maximum value becomes much larger
relative to the remainder of the function. The maximum could be
found by using a grid search, evaluating the function at intervals of,
for example, 0.01. With modern computers, this would not be very
time-consuming. However, the maximum can be found even faster
using calculus. Most item response theory (IRT) programs use the
Newton-Raphson procedure (described briefly in the Appendix to
this chapter).

Sometimes it is useful to consider information about how y is
distributed in the population, called the prior distribution. For
example, if the ML estimate of y for a response pattern is –5, this is
a very unlikely value if the examinee is amember of a population that
is approximately normally distributed with amean of 0 and standard
deviation of 1. It would be reasonable to adjust the estimate of y for
this response pattern a little closer to the mean. Additionally, if an
examinee answers all the items correctly (or incorrectly), the like-
lihood function continually increases with y and never reaches a
defined maximum. In this case, it would be practical to obtain an
estimate above the population mean but within a reasonable range.
The use of a prior distribution can help in these cases. In Bayesian
statistics, the prior distribution is multiplied by the likelihood func-
tion based on the observed data. The product is called the posterior
likelihood.1 Figure 4.3 shows the posterior likelihood for a standard
normal prior multiplied by the likelihood in Figure 4.2. Notice that
the location of themaximum is a bit closer to 0, and the dispersion of
the likelihood is somewhat less (which indicates a smaller standard
error). To estimate y, we can either find the maximum of this
function or the mean. The y estimates based on the maximum are
often calledmodal-a-posterior (MAP) estimates because the function

1
The posterior distribution is rescaled to have a density of 1. The posterior

distribution can be interpreted as the likelihood of y, given the data and the prior
distribution. The likelihood function, in contrast, is the likelihood of the data
given y, which is less intuitively useful for estimating y.
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reaches its maximum at the modal value. The mean estimates are
often called expected a-posterior (EAP) estimates because the expected
value is a statistical term for the mean over an infinite number of
replications. These Bayesian estimates are biased, meaning that at a
fixed value of y, the expected value of the estimate does not equal y. If
the true y is lower than the mean of the prior distribution, the
expected value of the estimate is positively biased (i.e., too high),
and if the true y is greater than the mean of the prior, the expected
value of the estimate is negatively biased. In other words, the estimate
is biased toward the mean of the prior. The more data points (item
responses, in this case) that are available for an examinee, the less
influence the prior will have. Also, the closer the true y is to the prior
mean, the less biased the estimates will be. Additionally, the use of a
prior will produce a likelihood with a defined maximum even when
an examinee answers all items correctly (or incorrectly). The stan-
dard error of y will be large for such an examinee because this set of
items does not provide much information about precisely how high
y is, but the function will have a maximum.

Often, researchers or policy consumers may be interested in the
distribution of y within a group or subgroup of examinees. When
using number-correct scores, the distribution is typically estimated
by estimating a score for each examinee and then finding the dis-
tribution of these scores, with the distribution usually characterized
by the mean and standard deviation of the score estimates. In IRT,
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Figure 4.3. Posterior likelihood of y, given the response pattern 111100 and a

standard normal prior distribution. Compared to Figure 4.2, the maximum of

the function occurs somewhat closer to y = 0.
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the groupmean of y is well estimated by themean of either theMLor
Bayesian (EAP or MAP) estimates. However, the standard deviation
of y is overestimated by the standard deviation of the ML estimates
and underestimated by the standard deviation of the Bayesian esti-
mates.2 The standard deviation of y can be estimated directly,without
estimating the individual y scores. The details of this procedure are
beyond the scope of this book (see Baker&Kim, 2004, Chapter 10, or
Mislevy, 1984). The important point here is that directly estimating
the standard deviation will be more accurate than indirectly esti-
mating it through the estimates of the individual examinees’ scores.
The direct estimate of the variance is analogous to true score variance
in classical test theory (CTT).

Item Parameter Estimation

Estimating either the y distribution or the ys for individual exam-
inees is thus fairly straightforward after the items are calibrated.
Estimating the item parameters is somewhat more complicated.
One of the most common estimation methods for the item para-
meters is marginal maximum likelihood (MML, Bock & Aitkin,
1981).3 In statistics, the marginal distribution is the distribution of
one variable after marginalizing (averaging) over the distribution
of another variable. In this case, the marginal likelihood referred to
in MML is the likelihood of the item parameters after margin-
alizing over y. By marginalizing over the y distribution, this
procedure greatly reduces the number of unknowns to be esti-
mated. The process begins by assuming an initial distribution for
y, usually standard normal.4 Then, the marginal likelihood of the

2 As discussed, the Bayesian estimates are biased toward the mean, so their
standard deviation will be lower than the standard deviation of the true ys.

3Wainer, Bradlow, and Wang (2007, p. 84) noted that this procedure is more
appropriately labeled maximum marginal likelihood because it involves maxi-
mizing the marginal likelihood. Both terms are now used in the literature, and
they have the same acronym.

4 This is sometimes called the “prior distribution,” because it is assumed a
priori, without reference to the data. It should not be confused with the prior
distribution used in the EAP or MAP estimates—unfortunately, it is the same
label for a different concept. It would be less confusing to reserve the term prior
for the prior distribution of the parameter we are estimating and not for the
distribution of the incidental parameters.
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item parameters is estimated, given this y distribution and the item
responses. The likelihood function for a two-parameter logistic
(2PL) item is shown in Figure 4.4 (the likelihood function for a
three-parameter logistic [3PL] item is more difficult to illustrate
because it would require a fourth dimension). The object is to find
the a- and b-parameter estimates where the likelihood function
reaches a maximum. Because of the assumption of local indepen-
dence, we can work with the likelihood function for each item
separately, just as we could work with the likelihood function for
each examinee separately when we were estimating y. However,
within each item a, b, and c are not independent. For example, if c
is underestimated, b will be underestimated (the item will seem
easier because guessing is not taken into account) and a will be

b
a

likelihood

Figure 4.4. Likelihood as a function of a and b jointly.
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underestimated (the slope will be less steep so that the ICC can
approach a smaller lower asymptote). The maximums must be
found simultaneously, but sometimes multiple combinations of a,
b, and c have similar likelihoods. Prior distributions for the item
parameters can be useful in these situations.

Just as Bayesian priors may be used for estimating y, Bayesian
priors may be used for the item parameters. This procedure could
be called Bayesian MML or simply MML with priors. The reason
for using priors on the item parameters is that, as Mislevy (1986)
explained, sometimes very unreasonable values for one parameter,
when combined with unusual parameters for the other para-
meters, can fit the ICC as well as another, more reasonable triplet
of parameters. This is because, as described earlier, the parameter
estimates within an item are not independent; mis-estimation of
one parameter can compensate for mis-estimation of another.
Using priors helps avoid very odd sets of item parameters. Priors
have the biggest impact on the item parameters when the examinee
sample is small (Gao & Chen, 2005). They also have a bigger effect
when an item’s parameters are far from the mean. When all
examinees answer an item correctly (or incorrectly), multiplying
the likelihood by a prior will yield a product with a defined
maximum, parallel to the context of estimating y for an examinee
who answers all items correctly. Very restrictive priors can be used
when little information is available from the data, such as for the
c-parameter for easy items.

After the item parameters have been estimated once, the y
distribution can be updated. Either a normal distribution can
be assumed, or the distribution can be approximated as a histo-
gram.5 If the distribution is assumed to be normal, the mean and
standard deviation of y are estimated, given the current item
parameter estimates. As described earlier, the mean and standard
deviation are estimated directly, not through estimating the
individual ys and finding their mean and standard deviation. If
the distribution is instead characterized by a histogram, the
proportion of the population within each bar of the histogram

5Other methods for estimating the shape of the y distribution have been
developed, such as the use of Ramsay curves (Woods, 2006), but the histogram
method is implemented in commercial software and is easiest to explain.
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is estimated (see Baker & Kim, 2004, Chapter 10, or Mislevy,
1984, for details). Then the mean and standard deviation can be
found using procedures for grouped data. The mean and stan-
dard deviation will likely be slightly off 0 and 1 at this point, so a
linear transformation is used to make the mean 0 and the stan-
dard deviation 1, and this same transformation is applied to the
item parameters. This step is not strictly necessary, but it is the
typical way to define the metric. Then the item parameters are
reestimated, followed by reestimation of the y distribution. This
continues until any changes in the item parameter estimates meet
the convergence criterion, perhaps .01. The final estimate of the y
distribution is called the posterior distribution. This should not be
confused with the posterior distribution obtained for an exam-
inee by multiplying the examinee’s likelihood by the group’s
distribution. In that context, the group’s posterior distribution
serves as the examinee’s prior distribution. Again, unfortunately,
the same label is used.

After the item parameters and the y distribution have been
estimated, the examinees’ ys can be estimated through ML, EAP,
or MAP estimation. These are not a by-product of the item para-
meter estimation but a separate step.

An alternative to MML is joint maximum likelihood (JML).
Joint maximum likelihood uses the individual y estimates instead
of marginalizing over the y distribution, alternating between
item parameter estimation and y estimation. The ys are thus
estimated along with the item parameters, instead of estimated
in a separate step afterward. This works very well with the one-
parameter logistic (1PL) or Rasch models, and was historically
used with the 2PL and 3PL models as well. With JML, because the
individual ys are estimated, typically the metric is scaled so that
the observed standard deviation of the estimates is 1. Because the
variance of the ML estimates tends to overestimate the true
variance of y, the units on the y metric will be slightly wider.
The metric is arbitrary, and this difference is noted here only to
alert the reader that the metric will be slightly different depending
on whether the items are calibrated through MML or JML
procedures.

After estimating (calibrating) the item parameters and the y
distribution and perhaps the examinees’ ys, the research questions
described in Chapter 2 can be addressed.
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Research Questions

What Is the Spread of Item Difficulties (and Category Difficulties,
for Polytomous Items)?

The item difficulties can be used to judge whether the test or survey
items are targeted to the level of y where measurement precision is
desired. In Chapter 1, the meaning of each of the parameters was
described. The values of the item parameters can be used to examine
this question. To assess the item difficulty, the b-parameters can be
inspected. For the 1PL and 2PL models, the b-parameter is the
location at which an examinee has a 50% probability of answering
the item correctly, or of endorsing the item. For the 3PL model, the
probability is slightly higher than 50%. For all three dichotomous
models, the b-parameter is the location at which the probability is
changing most rapidly.

The b-parameters, or category thresholds, in the Graded
Response (GR) model have a similar interpretation. The threshold
for category x is the point at which the examinee has a 50%
probability of scoring in category x or higher, and it is also the
point at which the probability of category x or higher is changing
most rapidly. The b-parameters, or step difficulties, in the
Generalized Partial Credit (GPC) model have an entirely different
interpretation. The step difficulties indicate the location at which
the probabilities for adjacent categories intersect. Another way of
thinking about it is that the step difficulty is the location at which
adjacent categories are equally likely. Conditional on scoring in one
of the two categories and no other, the examinee at that point has a
50% probability of scoring in each. If thresholds are transformed to
step difficulties, or vice versa, the values of the parameters may be
quite different. Thus, they should not be compared unless one set of
parameters is first transformed to make them comparable.

Knowing the estimated b-parameters is useful in judging the
difficulty or appropriateness of the instrument for a given group.
An instrument that is intended to measure y across a wide range
should have a range of b-parameters, perhaps from –2 to 2. To
measure equally well at all points, the b-parameters should be uni-
formly distributed across the desired range, but more often a greater
number of middle-difficulty items are selected to measure most of
the examinees more precisely while losing some measurement
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precision for the smaller number of examinees at the extremes. Each
polytomous item can measure across a wider range of y, if the b-
parameters within the item are spread out. If the b-parameters for a
polytomous item are in a narrow range, it functions more like a
dichotomous item. This idea will be revisited in the information
(reliability) section. Sometimes one of the middle categories
will contain very few of the examinees. This can happen when the
first step of an item is fairly difficult, but the next step is simple once
the first step is solved correctly. Or, a rubric category may describe a
stage that is possible, but rarely seen. If the GR model is used,
the thresholds for the adjacent categories will be very close, and the
confidence intervals around the b-parameters will likely overlap,
suggesting that the categories are indistinguishable. If the GPC (or
Partial Credit [PC]) model is used in this situation, a step reversal
may result. A step reversal means that the step difficulties are not in
sequential order. For example, if the step difficulties were (–0.2, –0.6,
0.3, 1.4), the intersection between scores 1 and 2would be at a lower y
value than the intersection between scores 0 and 1. Figure 4.5 shows
an item with these GPC parameters and a¼ 1. Figure 4.6 shows the
closest-fitting GR parameters for this item—notice how the first two
thresholds are very close together, corresponding to the step reversal
for the GPC parameters, although the steps are not literally reversed
using theGRmodel. Each of these thresholds will have large standard
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Figure 4.5. GPC item with a step reversal. The second step difficulty

(intersection of scores 1 and 2) is located at a lower y than the first step

difficulty (intersection of scores 0 and 1).
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errors because the adjacent categories are difficult to distinguish.
Andrich’s view (2002) is that step reversals indicate a problem with
the scale or the way the respondents or raters are using the scale. The
test content experts should examine the item to see if the category
causing the reversal is redundant with the next category and make
sure it is worded clearly for the respondents or raters.

Figures 4.7 and 4.8 show several dichotomous items, calibrated
with the 3PL model. In Figure 4.7, the b-parameters are spread out,
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Figure 4.6. GR item corresponding to data in Figure 4.5. The first two

thresholds are located close together.
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Figure 4.7. ICCs for 6 dichotomous items with difficulties distributed over the

y range. Compare the spread of the functions here to the clustering of the

functions in Figure 4.8.
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and in Figure 4.8 the b-parameters are grouped in a narrower
range. The wider range would be useful for many achievement
tests in which the test user wants to estimate each examinee’s
y well. The narrower range might be useful for a test in which
the user only wants to know whether the examinee passed or
failed. All of the items in Figure 4.8 are easy, so the user can
obtain a good measure of what those examinees who are near
the low end of the ability continuum know. However, the
user can not get a very good idea of what higher-scoring
students know—all that can be inferred from the test score
is that they know more than the level of items on this test. If
the passing score were near the low end of the y range, this
set of items would be useful for determining whether an
examinee’s y was above or below the passing score. If the
item difficulties were grouped at the other end of the scale,
the test would be more useful for high cut-scores, such as a
merit scholarship test or a clinical diagnosis that is met by
only a small proportion of the population with such a high
level of the construct. Low scores could only be used to infer
that the examinee or respondent was nowhere near the merit
level or clinical diagnosis; they would not tell us more pre-
cisely what the examinee knows or how psychologically well
the examinee is.
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Figure 4.8. ICCs for 6 dichotomous items with difficulties clustered at the low

end of the y range. Due to the small variance in difficulty, the ICCs are located

close together.
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Figures 4.9 and 4.10 each show a polytomous item, calibrated
with the GR model. The categories in Figure 4.9 are spread out
further, so this item would be more appropriate across a wider
range of y. When the categories are located closer together, as in
Figure 4.10, the item is more useful for a narrow range of y. Each
polytomous item in essence functions as a set of dichotomous
items, and the categories may be spread out to measure across a
wide range or grouped together to measure more precisely in a
narrow range.
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Figure 4.9. Polytomous item with broadly spaced categories.
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Figure 4.10. Polytomous item with narrowly spaced categories. This item

differentiates well only among respondents at the low end of the y range.
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Standard errors should be reported along with the b-para-
meters. The sampling distribution for each item parameter is
asymptotically normal, so 95% confidence intervals can be
formed by adding/subtracting 1.96 times the standard error to/
from the estimate of the parameter (a, b, or c).

How Discriminating Is Each Item?

The a-parameter tells how steep the item slope is, or how rapidly
the probability is changing at the item difficulty level. For the 1PL
and PC models, the discrimination is assumed to be the same for
all items within a test. For the 2PL, 3PL, GR, and GPC models, the
itemswithin a test have varying a-parameters. As noted inChapter 1,
discrimination is an important attribute. If an item is not very
discriminating (low value for the a-parameter), then the prob-
ability of correct response (or item endorsement) will not increase
very much with increasing levels of y. The item will not help
measure the examinee’s y. Figure 4.11 shows an example of a
GPC model item with a high a-parameter and Figure 4.12 shows
an item with a low a-parameter. Notice how flat the curves are in
Figure 4.12.

With polytomous items, sometimes the term discrimination is
used to refer not to the item’s a-parameter but instead to the item’s
maximum information. Information was introduced briefly in
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Figure 4.11. Polytomous item with a high a-parameter.
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Chapter 1 and will be discussed in a later section. The relevant
point here is that the maximum information depends not just
on the a-parameter but also on the spacing of the category
parameters.

The next question moves away from the item parameters and
focuses on the examinees.

What Is the Distribution Of Abilities/Traits in this Group of
Examinees/Respondents? How Does the Ability Distribution
Compare to the Item Difficulty Distribution?

As noted at the beginning of this chapter (and in Chapter 1, in this
volume), the metric of the measurements must be defined by
choosing a center point and a unit size. If the items have not
been calibrated (the item parameters have not been estimated)
before, then typically, in the calibration sample, the metric is set by
defining the y distribution to have a mean of 0 and standard
deviation of 1. If the calibration sample is a meaningful norming
sample, this metric will probably be used later to estimate the ys of
new examinees to a constant metric. Otherwise, it would be pos-
sible to redefine the metric later, but all of the item parameter and y
estimates for the original sample would need to be transformed to
the new metric. This is relatively easy because of the property of
invariance introduced in Chapter 1. Only a linear transformation
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Figure 4.12. Polytomous item with a low a-parameter.
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(a multiplicative constant and an additive constant) is needed and,
as long as the same transformation is applied to both the item and y
estimates, the probability functions will not change.

When the metric is centered on the examinee sample of interest,
comparisons between the itemparameters and the y distribution are
straightforward because the y distribution has an estimatedmean of
0 and estimated standard deviation of 1. If the y distribution is more
or less normal, even if it is a bit skewed or kurtotic, most of the
examinees’ ys will be within 2 or 3 units of 0, with a denser
distribution near 0 and fewer and fewer examinees at the extremes.
Given this, if the mean item difficulty is near 0, the test is well-
matched to the examinees’ ys. From an examinee perspective, the
test might be perceived as quite hard, because the average examinee
would have about a 50% probability (a bit more with guessing) of
correct response for the average item. But from a measurement
perspective, y and b would be considered well-matched. Similarly,
if the b-parameters have a higher mean, the test is difficult; if they
have a lower mean, the test is easy for these examinees.

If the difficulties of individual items are of interest, graphical
displays can illustrate the relative difficulties. The y distribution
can be plotted on the same graph for comparison. This is routine
in Rasch analyses, but it is sometimes used in IRT reports as well.
In Rasch analysis, the metric is often centered not around the ys,
but around the item difficulties. If the test is easy for the sample of
examinees, the mean y will be greater than zero. If the test is hard
for the sample of examinees, the mean y will be less than zero. If
the y distribution has a large variance, these items discriminate
among examinees in this sample well, and, conversely, if the y
distribution has a small variance.6 Another way of thinking about
this is: If the examinees have a large variance, they are more
accurately separated (discriminated) from each other than they
would be if they had a small variance.

Rasch users produce item maps (sometimes calledWright maps,
Wilson, 2005) to show these relationships. Figure 4.13 shows an

6 Because of the relationship between the a-parameter and the variance of y, if
the variance were greater than 1 and the metric were redefined such that the
variance was 1, the transformed a-parameter would then be greater than 1. This is
why the mean a-parameter and the variance of y cannot both be fixed; either one
alone sets the unit size.
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item map. The item numbers are plotted on one side, at the values
of their item difficulties. The step difficulties could be plotted for
polytomous items, indicating step 1 for item 1 with the label 1.1,
and so forth. The ability distribution is shown in the other half of

Figure 4.13. Item map. The vertical axis indicates the difficulty or proficiency

scale. The left half of the chart depicts the distribution of the examinees, and

the right half of the chart shows the item difficulty locations.
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the graph. Each X represents a person (or persons). An examinee
(or teacher or parent) might want to focus on his or her score value
and its relationship to the item difficulties. The examinee likely got
most of the items below that value right, and would be quite
challenged by most of the items above that value. This could
help an examinee decide what to study next. For the sample as a
whole, one can look at the distribution of y and see which items fell
toward the low end (most examinees would answer these cor-
rectly) and which items fell toward the high end (few examinees
would get these right). This could be used to help plan instruction
for a group of students or as summative assessment of a group’s
progress. Another use for Rasch itemmaps is to examine the order
of the item difficulties for validity purposes. If the items have been
written based on a construct map (a structured, ordered definition
of the skills or theoretical trait intended to be measured by the
instrument), the item map should follow the construct map. This
can be used as evidence of content validity (Wilson, 2005, Chapter 8).
This purpose might be most clear for measures of psychological
traits, where there is a strong theory of which characteristics
require higher levels of the trait for endorsement.

Item maps can also be created for items calibrated with the 2PL
or 3PL models (or the polytomous GR or GPC models). To
construct the map, a response probability (RP) must be selected
by which to locate the items. Rasch item maps typically map the
item by the item’s difficulty, which is the location at which the
probability of correct response is 50%. If data follow the Rasch
model, the order of the items would remain the same if they were
mapped to 67% or 75% probability. Only the scale value would
change; a constant would be added to each item’s location as the
chosen response probability increased. But recall that the ICCs for
2PL and 3PL data can cross. For low ys, item 1 might be more
difficult than item 2, whereas for high ys, item 2 might be more
difficult than item 1. Thus, the choice of the response probability
for the item map can make a difference in how the items are
ordered. Item response theory users have been criticized by
Rasch proponents because the item order depends on the RP
chosen. For example, Wilson (2004, p. 137) has criticized the
idea behind this process of mapping 2PL or 3PL items to a selected
RP, suggesting that this approach ignores the problem of
RP-dependent ordering. Item maps are used in some methods of
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standard setting, so the implications of the RP choice have been
described in the standard-setting literature (Beretvas, 2004;
Karantonis & Sireci, 2006), as well as in the context of choosing
appropriate items for public descriptions of performance levels
(Zwick, Senturk, Wang, & Loomis, 2001).

It is important for the documentation to specify the response
probability chosen for the mapping. For example, the documenta-
tion might say:

Formany audiences, the explanation of why the itemmap does not
always order items in the same way as the b-parameters would
seem excessive. However, if no explanation is included, someone
may notice the discrepancy, think it is a mistake, and get side-
tracked on this issue. Including an explanation may help prevent
this. Of course, if a 1PL or Rasch model were used, the order of the
items would be constant regardless of the RP, so this statement and
explanation would not be relevant or appropriate.

As with the Rasch item maps, examinees or their parents can
compare IRT scores to the item map for feedback on the types of
skills they have likely mastered. Policy makers can compare the
score distribution to the item map to get a more global view of
what students know. For example, the National Assessment of
Educational Progress (NAEP) provides item maps and marks the
transitions between below basic, basic, proficient, and advanced
on the item map (for example, see http://nces.ed.gov/nationsre-
portcard/itemmaps). Currently, NAEP uses a 65% response

In the item map, each item is located at the y level at which two-

thirds of the examinees “know” the item (after correcting for

chance guessing). The order of the items roughly corresponds

to the order of their b-parameters but may sometimes be

inconsistent due to differences in the a-parameters. (The

b-parameters are based on the proficiency level at which about

50% of the examinees “know” the item, after correcting for

guessing. If an item is very discriminating, the two-thirds

location will be reached soon after the b-parameter, but if the

item is not very discriminating the two-thirds location may be a

long proficiency distance from the b-parameter.)
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probability for constructed-response items and a 72%–74%
response probability for five- or four-option multiple-choice
items, which is equivalent to 65% after accounting for guessing,
if guessing is assumed to be 1/(number of options).

How Much Information Does the Test Provide over the Ability/Trait
Range? How Does Each Item Contribute to the Test Information?

The test information functionwas described briefly in Chapter 1. It is
the sum of the item information functions. Item information
depends on the item parameters. For dichotomous items, within an
item, the information reaches its highest value at or near where y¼ b.
The item information is more peaked when the a-parameter is high
and flatter when the a-parameter is low. Figure 4.14 shows the
information function for two items with the same b-parameter of
0.3, but different a-parameters (a¼ 1.2 for item1, a¼ 0.7 for item2).
Near y¼ 0.3, the more discriminating item has more information,
but for y values further away, the less discriminating item has slightly
more information. This is because the ICC for a discriminating item
changes rapidly near b but is essentially flat, near 0 or 1, for ys further
away. But the probability for a less discriminating item changesmore
gradually over y, providing a small amount of information across a
broader range. A non-zero value for the c-parameter decreases the
information, particularly for low-ability examinees, and shifts the
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Figure 4.14. Item information functions for items with different a-parameters.

For both items, b = 0.3, but a is higher for Item 1 than for Item 2.
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point of maximum information a bit above b. Figure 4.15 shows the
information for a 2PL item (a¼ 1.2, b¼ –0.5, c¼ 0.00) and a 3PL
item (a¼ 1.2, b¼ –0.5, c¼ 0.25).

The information function is the negative of the expected
value of the second derivative of the log-likelihood function.7

For the 3PL model, the item information function is: IiðyÞ ¼
1:72a2i

ð1�PiÞ ðPi� ci Þ 2
ð1� ci Þ 2Pi , which simplifies to IiðyÞ ¼ 1:72a2i ð1� PiÞðPiÞ

for the 2PL or 1PL models.
For polytomous items, each category provides information. The

item information can be partitioned to obtain the category infor-
mation share functions. If categories within an item are close
together, the item information will be peaked near the center of
the b-parameters. But if the categories are spread further apart,
each can add information at a different location. Thus, the item
information for a polytomous item can have multiple peaks and
can be spread over a broader extent of the y range. Thus, a
polytomous item can potentially provide much more information
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Figure 4.15. Item information functions for an item with c = 0.00 and an item

with c= 0.25. For both items, a= 1.2 and b =�0.5. Information is lower when c

is greater.

7 For the 3PL model, the second derivative depends on whether the response
was correct/incorrect, so the expectation (average) is taken by weighting the
second derivative for a response (0/1) by the probability of that response. For
the 1PL and 2PL models, the “expected value” part of the phrase can be dropped
because the second derivative does not depend on the response.
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than a dichotomous item. In Figure 4.16, the categories for item 1
are spread further apart than the categories for item 2.

The item information functions can be summed to form the test
information function: I(y)¼SIi(y). The standard error ofmeasure-
ment (or standard error of y) for ML scores is the square root of 1/I
(y). The information increases additively with each additional item,
but the standard error of measurement is not decreased propor-
tionally, because the square root function is a nonlinear transforma-
tion. When the standard error of measurement is large, adding
another item has a bigger impact than when the standard error of
measurement is smaller. This is analogous to CTT; adding an item
to a short test has a bigger impact on reliability and standard error of
measurement than adding an item to a long test (consider the
Spearman-Brown prophecy formula). An information function
and the corresponding standard error of measurement function
were illustrated earlier in Chapter 1, Figure 1.1 (in this volume).
When the information is larger, the standard error ofmeasurement is
smaller. Information is thus analogous to reliability, except that it is a
function of y and is applicable to an individual score, whereas
reliability is a summary index used for a group of scores.

Like the binomial-based standard error, the IRT standard error
of measurement depends on the trait level. However, the IRT
standard error is larger for extreme scores while the binomial
standard error is smaller for extreme scores. This is because the
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Figure 4.16. Item information functions for polytomous items with different

category spacings. The thresholds for Item 1 are spread further apart.
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IRT scale is infinite. When an examinee or respondent scores high
on the instrument, we know that the examinee is high on the trait
but we do not have a very precise estimate of how high—it could
be considerably higher than the instrument’s scale reaches. The
number-correct scale, in contrast, is limited to the range between 0
and the maximum score on the test. When the observed score is at
the top of the instrument’s scale, it would likely remain at the top
of the scale over repeated administrations of test forms composed
of items drawn randomly from a pool of similar items. Thus, the
incongruity is simply a consequence of differences in the number-
correct and IRT scale metrics.

When MAP scores are used instead of ML scores, the log of the
prior distribution is added to the log-likelihood function and thus
the second derivative of the log of the prior is added to the
information. If a normal distribution is used as the prior distribu-
tion, the second derivative of the log is simply the standard devia-
tion. Thus, a constant equal to 1/variance (often 1) is added to the
information function at all levels of y. MAP scores therefore have
slightly more information (and smaller standard errors) than ML
scores, especially in regions where the information was lower,
because the constant will have a relatively larger impact when
information is low. For EAP scores, the standard error is the
standard deviation of the examinee’s posterior distribution,
which can be approximated by the square root of the inverse of
the information for MAP scores (Thissen & Orlando, 2001, p. 118).
The posterior standard deviation of the EAP score is typically a bit
smaller than the square root of the inverse of the MAP information
function. They approach equality as the test length increases.
Software programs estimate the posterior standard deviation
directly, not by approximation through the information function.
But the information function is more useful than the posterior
standard deviation for test development because it is a direct func-
tion of the item parameters.

For a Given Population or Sample Distribution, How Reliable Are
the Ability/Trait Estimates?

In many ways, the information and standard error functions are
more helpful than a reliability index because these functions pro-
vide more detail. The Standards for Educational and Psychological
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Testing (American Educational Research Association, et al., 1999)
recommend reporting conditional standard errors at multiple
score levels (Standard 2.14). This is straightforward using IRT.
Additionally, the test information, unlike a reliability index, is the
sum of the item information and is thus easy to compute for any
test form that may be created. However, sometimes test users want
a single index instead of a function. Further, the units of reliability
are easier to interpret. Reliability can be explained as an estimate of
the proportion of variance due to true differences among exam-
inees, not random error. Or, it can be explained as the estimated
squared correlation between the score estimates and the true/
universe score. With either explanation, the index is on a 0–1
scale, in contrast to the standard errors, which are on the same
scale as the ys. Thus, sometimes reliability is estimated for the ys.
The reliability is sometimes called the marginal reliability (Green,
Bock, Humphreys, Linn, & Reckase, 1984) because it is margin-
alized (averaged) over the y distribution. Similar indices have also
been labeled theoretical or empirical reliability (Zimowski, Muraki,
Mislevy, & Bock, 2003, pp. 33–34). Rasch users typically employ
the term reliability of person separation (Wright & Masters, 1982,
chap. 5) or simply separation reliability (Bond & Fox, 2001,
Chapter 3; Wilson, 2005, Chapter 7). These seem apt descriptors
because reliability is an index of how accurately the scores separate
or discriminate among examinees. All of these indices are based on
the basic CTT definition of reliability as the ratio of true score
variance to observed variance.

Different researchers have proposed different ways of calcu-
lating these variance terms, but the results should be very close.
The Appendix explains some of the proposed indices. For ML
scores, recall that the variance of the estimated scores overesti-
mates the true score variance. Thus, the variance of the score
estimates is analogous to observed score variance, and the average
squared standard error is the error variance. For Bayesian (EAP or
MAP) scores, recall that the variance of the score estimates under-
estimates the true score variance. Thus, in the reliability formulas
used with Bayesian scores, the variance of the score estimates is
more analogous to the true score variance, with the observed score
variance replaced with either the direct estimate of the y variance
or the variance of the score estimates plus the average squared
standard error. (Again, details are available in the Appendix.)With
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any of these formulas, the estimated reliability of the IRT scores
will generally be slightly higher than the estimated reliability of the
number-correct scores (for example, coefficient a). The IRT scores
are usually more reliable because the score estimation essentially
weights more discriminating items more highly. Even in the 1PL
model, where all items have equal a-parameters, the IRT reliability
may be a bit higher because the scale units are sized more uni-
formly than the number-correct score (raw-score/observed) units
(recall from Chapter 1 that the 1PL scores are not simply a linear
transformation of the number-correct scores).

As in CTT, the reliability for IRT scores must be with reference
to a particular group of examinees (or more accurately, with
reference to a particular score distribution). In both IRT and
CTT, if the mean standard error of measurement stays constant
but the score variance increases (group heterogeneity), the relia-
bility will increase.

Sample Write-Up: Dichotomous Items

The following write-up describes the results for an analysis of
dichotomous items. Comments on the write-up and further expla-
nations are provided following the example report.

Results

The American Experience test was designed to measure

university students’ knowledge of U.S. history and political

science. It had 40 multiple-choice items. Each item had four

options and was scored as incorrect (0) or correct (1). A group of

2,692 students participated in the test. Most (70%) of the

examinees had completed either a U.S. history course or a

political science course at the college level.

The data were checked for unidimensionality to ensure a single

score was appropriate. Using DIMTEST 2.0 (Stout, 2005) the

assumption of unidimensionality was not rejected. Thus, these

data appeared essentially unidimensional. In this procedure, a

sample of 30% of the examinees was used to search for clusters of

(continued)
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items thatmight be influencedby a secondary dimension. Themost

likely cluster was tested using the remaining examinees, and this

cluster did not share a statistically significant secondary dimension

(T¼0.386, p¼ .3562, one-tailed). Additionally, after the IRT

calibration (described next) all pairs of items were checked for

local independence using Yen’s Q3 (1984). None of the pairwise

residual correlations were greater than .10 in absolute value, which

is below Yen’s suggested cut-off of .20. Local dependence did not

appear to be a problem.

The items were calibrated with a three-parameter logistic (3PL)

model. In thismodel the probability of correct response ismodeled

by: PðyÞ ¼ ci þ ð1� ciÞ e1:7ai ðy� bi Þ
1þe1:7ai ðy� bi Þ , where y is the examinee’s

demonstrated proficiency in the area of history/political science, a

is the item discrimination (also called the item slope), b is the item

difficulty, and c is the lower asymptote (the probability that

someone with a very low proficiency will answer the item

correctly, perhaps by guessing). In this context, the term

proficiency should not be interpreted as the examinee’s true,

inner level of knowledge. All that can be measured with the test is

the proficiency that the examinee demonstrated on the test, which

could be confounded with motivation and situational factors.

The parameters were estimated using maximum marginal

likelihood (MML) in BILOG-MG 3 (Zimowski, Muraki, Mislevy, &

Bock, 2003). Priors for the item parameters were estimated

empirically from the previous step. The proficiency distribution

was estimated empirically using 20 quadrature points. The

estimation converged after 13 cycles. All items fit the model

reasonably well. Using the log-likelihood-ratio w2 (G2) provided

in BILOG-MG, item 7 misfit at a .05 a-level (G2(9)¼19.4, p¼ .02).

Because 40 itemswere tested for fit, one or twomight be expected

to misfit at this level by chance. A plot of the expected and

observed values for item 7 is shown in Figure 4.17. The

observed probabilities were not far from the expected

probabilities, so no further action was taken for this item.

Table 4.1 provides the estimates of the item parameters

(standard errors in parentheses).

(continued)
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(continued)
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Figure 4.17. Fit for Item 7. This was the worst-fitting item, but the misfit does

not appear to be severe.

Table 4.1

Item Parameters

Item Discrimination (SE) Difficulty (SE) Asymptote (SE)

1 0.82 (0.07) –1.47 (0.14) 0.15 (0.06)

2 0.57 (0.07) 0.11 (0.19) 0.26 (0.06)

3 0.81 (0.08) –0.75 (0.14) 0.26 (0.06)

4 0.68 (0.09) 1.15 (0.09) 0.15 (0.03)

5 0.69 (0.08) 0.18 (0.14) 0.26 (0.05)

6 0.77 (0.06) –1.10 (0.12) 0.12 (0.05)

7 1.14 (0.12) 0.00 (0.08) 0.32 (0.03)

8 1.42 (0.14) 0.05 (0.06) 0.28 (0.03)

9 0.79 (0.09) �1.53 (0.24) 0.37 (0.08)

10 0.59 (0.07) �0.59 (0.23) 0.28 (0.07)

11 0.79 (0.08) 0.69 (0.07) 0.14 (0.03)

12 0.48 (0.05) �2.11 (0.30) 0.21 (0.08)

13 0.89 (0.09) �0.55 (0.13) 0.29 (0.05)

14 0.80 (0.09) –0.43 (0.16) 0.33 (0.06)

15 0.82 (0.08) 0.15 (0.10) 0.22 (0.04)

(continued )
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Table 4.1 (Continued)

Item Discrimination (SE) Difficulty (SE) Asymptote (SE)

16 0.70 (0.08) �0.45 (0.16) 0.25 (0.06)

17 1.01 (0.11) 0.47 (0.07) 0.25 (0.03)

18 0.60 (0.07) �0.15 (0.18) 0.24 (0.06)

19 0.83 (0.07) �2.11 (0.16) 0.14 (0.06)

20 0.64 (0.05) �1.87 (0.22) 0.19 (0.08)

21 0.82 (0.08) �0.01 (0.10) 0.21 (0.04)

22 0.76 (0.07) �1.12 (0.17) 0.25 (0.07)

23 0.89 (0.08) �0.62 (0.11) 0.20 (0.05)

24 0.95 (0.09) 0.01 (0.08) 0.19 (0.04)

25 0.69 (0.07) 0.08 (0.13) 0.23 (0.04)

26 0.74 (0.07) 0.05 (0.10) 0.15 (0.04)

27 0.75 (0.07) �0.92 (0.16) 0.23 (0.06)

28 0.77 (0.08) �0.03 (0.11) 0.21 (0.04)

29 1.07 (0.08) �1.31 (0.11) 0.17 (0.05)

30 0.75 (0.08) �0.04 (0.12) 0.23 (0.04)

31 0.56 (0.06) 0.38 (0.14) 0.15 (0.04)

32 0.71 (0.06) �1.58 (0.20) 0.21 (0.07)

33 0.68 (0.08) 0.29 (0.13) 0.23 (0.04)

34 0.90 (0.08) 0.07 (0.08) 0.15 (0.03)

35 0.82 (0.07) 0.01 (0.08) 0.12 (0.03)

36 0.90 (0.11) 0.99 (0.07) 0.18 (0.02)

37 0.62 (0.08) 0.68 (0.13) 0.24 (0.04)

38 0.46 (0.04) �2.06 (0.28) 0.18 (0.08)

39 0.54 (0.07) 0.44 (0.15) 0.17 (0.05)

40 0.67 (0.09) 0.68 (0.12) 0.26 (0.04)

(continued)

For item discrimination, a higher value indicates that the item

discriminates (differentiates) between high and low proficiency

examinees better. For this test, the highest discrimination was

(continued)
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(continued)

1.42 for item 8, and the lowest discriminationwas 0.46 for item 38.

The item characteristic curves (ICCs) for these two items are

shown in Figure 4.18. In this graph, proficiency on the test runs

along the x-axis (the horizontal axis). The average proficiencywas

set to 0, with a standard deviation of 1. Approximately 95% of the

examinees’ proficiency scores were between –2 and 2. When an

item has a high discrimination, high-proficiency examinees have

a much higher probability of answering it correctly than low-

proficiency examinees. Thus, the ICC curves in a sharp ‘S’

shape, as for item 8 in Figure 4.18. A less-discriminating item,

such as item 38, slopes more gradually. In other words, the

performance of low-ability and high-ability students is not very

different. A low-discriminating item thus does not give as much

information about an examinee’s proficiency. Similar graphs are

available for all items in the Appendix to this report. Items 2, 12,

31, 38, and 39 were the least discriminating.

The item difficulty column indicates how easy or hard the item

was for these students. Easier items have lower (negative)

difficulty indices and harder items have higher (positive) indices.

On this test, item 12 was the easiest item and item 4 was the

hardest. Items 12, 19, 20, and 38 were so easy that nearly all

examinees chose the correct answer.

(continued)

Item 8
38

In
fo

rm
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

Proficiency

–3 –2 –1 0 1 2 3

Figure 4.18. ICCs for the most and least discriminating items on the test.

Performance on Item 8, the most discriminating item, increases rapidly as

proficiency increases.
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The lower asymptote represents the proportion of very-low-

proficiency examinees who would get the item correct. For

example, about 15% of very low proficiency examinees would

be predicted to choose the right answer for item 1. Because

these are multiple-choice items, this could be due to random

guessing. To decrease the possibility of random guessing,

distractors (wrong answers) that are appealing to low-

proficiency examinees could be designed. This would only be

effective for examinees who read the item and attempt to

choose the most reasonable response.

The standard error for each parameter estimate conveys the

degree of estimation precision. For example, the standard error of

the difficulty estimate was high for item 12. This was a very easy

item, so it was hard to estimate precisely how easy it was.

The distribution of examinees’ demonstrated proficiencieswas

also estimated. A graph of the distribution is shown in Figure 4.19.

Notice that there is a heavier lower tail than would be expected in

a normal distribution. In this low-stakes context, this may be due

to examinees who obtained very low scores because they were

not bothering to read the question or response options. Themean

proficiency was set to 0, and the standard deviation of the

proficiency scores was set to 1. This determined the metric of

the item parameters reported in Table 4.1. For an item with a

difficulty parameter near 0, such as item 7, after discounting

guessing about 50% of this group of students answered the item

correctly. The item difficulties in Table 4.1 can be compared to the

proficiency distribution; at the point where the difficulty matches

proficiency, a little more than half of the examinees at that

proficiency answered the item correctly. Among the examinees

above that proficiency level, a greater proportion answered the

item correctly.

A proficiency score was estimated for each individual

examinee as well, using maximum likelihood estimation. It is

important to know how precisely the proficiency scores are

estimated. The information function indicates the precision of

the proficiency estimates. The square-root of the inverse of the

(continued)
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information function is the standard error of the proficiency

score. The information function and standard error are plotted

in Figure 4.20. Notice that there is more information, and thus

smaller standard errors, for middle ranges of proficiency. The

information function is the sum of the item information

functions. Each item gives more information near its difficulty

parameter than at proficiencies further from its difficulty. Items

with higher discrimination indices give more information. In

Figure 4.21, the information function is plotted for the two

items whose ICCs were previously shown in Figure 4.18. Notice

that item 8 gives more information than item 38. Also, item 38’s

information peaks at a much lower proficiency level because it is

an easier item than item 8. Information functions for other items

are provided in the Appendix.

An average index of reliability can be based on the mean

standard error. As in classical test theory, the reliability can be

calculated as: (observed variance – error variance)/(observed

variance). For this group, the average reliability was .87.

(continued)
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Figure 4.19. Estimated distribution of proficiency.
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(continued)
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Figure 4.20. Test information and standard error of the proficiency estimates.
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Figure 4.21. Item information functions for Items 8 and 38. Information is

greater for the more discriminating Item 8.
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Comments on the Write-Up

This write-up began with some background on the test. The amount
of background needed will depend on the audience, but it should at
a minimum include information on the number of items, the test
format, and the data sample used for the item calibration.

This write-up was addressed to an audience that knows nothing
about IRT. If one can assume that the reader knows IRT, one can
simply note that the 3PL model was used and skip an explanation
of the model and the parameters. The estimation procedure was
noted, even though it was not explained, partly to maintain thor-
ough documentation for future reference, and partly in case the
reader knows enough about IRT to question the parameter esti-
mation. The software used was noted, not to advocate a particular
package, but because estimation procedures vary depending on the
software and version. Referencing the software thus gives the
reader additional details about the estimation. This is not neces-
sary for basic statistical procedures that will not vary with the
software, such as a t-test, but is important for more complicated
procedures.

In some cases, the ys might be transformed to avoid negative
scores. If a transformation is applied to the ys, the same transfor-
mation should be applied to the item parameters. For example, if
the ys are multiplied by 100 and a constant of 500 is added, so that
the scale has a mean of 500 and standard deviation of 100, the
a-parameters must be divided by 100 and the b-parameters must
be multiplied by 100 and a constant of 500 must be added. This
was avoided in the sample write-up to prevent confusing readers

In summary, these test items were well-matched to these

students’ proficiencies, and the maximum likelihood proficiency

estimates were reasonably reliable. Items 2, 12, 31, 38, and 39

contributed less than the other items to the information

(reliability) because they were not very discriminating, and

items 12, 19, 20, and 38 did not add much information because

theywere very easy. These itemsmight be considered for deletion

or replacement.

(continued)
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who are just becoming comfortable with the usual IRT scale, but in
some reports it may be preferable.

Instead of using the symbol y, the term proficiency was used
throughout this write-up. This was a test of knowledge, so labels
like ability or proficiency are more appropriate than trait. Ability is
somewhat more likely than proficiency to be misinterpreted as the
examinee’s exact knowledge state that we could measure under ideal
conditions. This misinterpretation might also apply to proficiency, so
the phrase demonstrated proficiency was used and defined in the
beginning to better convey the idea that y is simply the knowledge
that the examinee showed on one occasion, and it is bound together
with such things as motivation and temporary mood or physical
states. Remember, as long as these attributes are relatively constant
throughout the test, in a mathematical sense they are not separate
dimensions but are instead bundled together with y and will not
emerge as a separate factor in the dimensionality analyses.

The write-up referred to an appendix with the ICCs and infor-
mation functions. To save space, this appendix was not provided
here.

Sample Write-Up: Polytomous Items

The next write-up describes the results for an analysis of polyto-
mous items. Again, comments and further explanations are pro-
vided following the example report.

Results

The Motive to Avoid Failure scale (Hagtvet & Benson, 1997) was

administered to 2,747 incoming first-year university students.

This instrument has six items with four response options:

Almost Never, Sometimes, Often, and Almost Always. It is

intended to measure students’ fear of failure and discomfort

with working in situations where success is uncertain.

The eigenvalues of the correlation matrix were extracted for a

rough check on the assumption of unidimensionality. The

ordered eigenvalues were 3.53, 0.74, 0.68, 0.46, 0.40, and 0.36.

The big drop between the first and second eigenvalue, followed

(continued)
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by a leveling off of the remaining eigenvalues, suggested there

was one dominant dimension. More rigorous tests of

dimensionality were not practical due to the short test length.

The items were calibrated with a graded response model using

MML estimation in PARSCALE 2.0 (Muraki & Bock, 2003). The item

fit index G2 available in this software has an extremely high false

rejection rate with short instruments and large samples, so, not

surprisingly, the fit of each item was rejected at the .01 level using

this index. Instead of relying on this index, fit was judged by

examining the plot of expected and observed scores. This plot is

shown for the worst-fitting item, item 2, in Figure 4.22 and for the

other items in the Appendix. The line shows the expected response

from 0 (Almost Never) to 3 (Almost Always) as a function of

Motivation to avoid failure. Respondents were grouped into 10

levels of failure avoidance; the open circle indicates the observed

average response for eachgroup. The observed responses seem to

fit the model predictions reasonably well; the biggest difference

was for the second-lowest group, where respondents chose lower

(continued)
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Figure 4.22. Item fit for Item 2. The misfit does not appear to be severe. AN =

almost never, S = sometimes, O = often, AA = almost always.
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(continued)

(almost never) responses somewhat less often than predicted by

the model. The moderate to high groups chose slightly higher

levels of endorsement than predicted by the model. Overall,

model fit appeared adequate.

Table 4.2 shows the estimated item parameters. The slope is an

index of how rapidly the response probability changes as failure

avoidance increases. The thresholds each indicate the point at

which 50% of respondents would choose the designated option

or higher. Everyone has a 100% probability of choosing Almost

Never or higher, so there is no threshold for that option. For item 1,

the probability of choosing at least Sometimes is 50% for those

with failure avoidance¼�3.08; the probability of choosing at least

Often is 50% for those with failure avoidance¼�.05; and the

probability of choosing Almost Always is 50% for those with

failure avoidance¼ 1.65. The metric of these values is set by the

failure avoidance distribution. The average failure avoidance was

set to 0, with a standard deviation of 1. The thresholds may be

interpreted relative to this distribution.

The item parameters can also be interpreted graphically. For

items 1 and 6, the probability of choosing each category or higher

are shown in Figures 4.23 and 4.24 as a function of failure

(continued)

Table 4.2

Graded Response Parameters

Item Slope SE

Threshold

for S SE

Threshold

for O SE

Threshold

for AA SE

1 0.75 0.02 �3.08 0.09 �0.05 0.04 1.65 0.05

2 1.16 0.02 �2.04 0.05 �0.12 0.03 1.24 0.04

3 1.05 0.02 �1.48 0.04 0.81 0.04 2.25 0.06

4 1.41 0.03 �0.81 0.03 0.81 0.03 2.00 0.05

5 1.76 0.04 �1.27 0.03 0.57 0.03 1.76 0.04

6 1.54 0.03 �1.37 0.03 0.27 0.03 1.26 0.03

Note: S¼Sometimes, O¼ often, AA¼Almost Always
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avoidance. Similar graphs are shown for other items in the

Appendix. The functions increase more steeply for item 6

because the discrimination is higher.

The category thresholds are well spread across the failure

avoidance range. Within each item, the distance between the

highest and lowest threshold is 2.6–4.7 units. Notice in Figures

4.23 and 4.24, the categories are spaced closer together for item 6

than for item 1. The categories are closer together for item 6 than

for the other items, but are spread reasonably far apart even for

this item. There are somewhat more thresholds above the

midpoint of the failure avoidance range, so this scale will

measure higher failure avoidance levels particularly well.

All of the standard errors are reasonably small. The item

parameters are estimated with good precision.

The score distribution was estimated (using 20 quadrature

points) along with the item parameters, on the same metric as

the item parameters. The metric was set such that the mean

failure avoidance level was 0 with a standard deviation of 1. A

graph of the estimated distributed is available in Figure 4.25.
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Figure 4.23. Probability of choosing each option or higher, Item 1.
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Although the distribution is not exactly normal, the students are

concentrated toward the middle of the continuum. The

distribution is somewhat bimodal, with the largest mode just

below the mean and a smaller mode above the mean, near 1.

A score on the motive to avoid failure scale was estimated for

each respondent as well. Bayesian (expected a posterior) scoring

was used, with a normal prior applied to the likelihood. This

pulled extremely high or low scores in slightly toward more

realistic levels. Bayesian scoring also provides more information

for extreme scores than maximum likelihood scoring. It is

important to know how precisely the failure avoidance scores

are estimated. The information function indicates the precision

of the failure avoidance estimates. The standard error of the failure

avoidance score can be approximated by the square root of the

inverse of the information function. The information function and

standard error are plotted in Figure 4.26. Notice that there is more

information/smaller standard errors just above the middle ranges

of motivation to avoid failure, with a smaller peak near –1. This is
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Figure 4.24. Probability of choosing each option or higher, Item 6.
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Figure 4.25. Estimated distribution of motivation to avoid failure.

because the information function is the sum of the item

information functions. Each item gives more information near

(although not precisely at) its thresholds. Because there were

more thresholds just above the mean, there is more information

in that range. Also, items with higher discrimination indices give

more information. In Figure 4.27, the information function is

plotted for item 6 (corresponding to the characteristic curve in

Figure 4.24). The solid line shows the item information, and the

dotted lines show the response category information functions,

which sum to the item information. Information functions for

other items are provided in the Appendix.

Standard errors, as shown in Figure 4.26, are useful for

understanding the precision of a respondent’s score. To

summarize the precision with which examinees’ scores can be

differentiated, an average index of reliability can calculated. For

Bayesian scores, the reliability can be calculated as: 1 – (error

variance)/(observed variance þ error variance), with the average

squared standard error used for the error variance. For this group,

the average reliability was .89. In comparison, the estimated

(continued)
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Figure 4.26. Test information and standard error of measurement.
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Comments on the Write-Up

Like the dichotomous write-up, this sample write-up referred to
an appendix with additional figures, which was omitted to save
space and because it would be of little interest except to the test
developers or reviewers.

There were not enough items to run a statistical test of unidi-
mensionality in POLY-DIMTEST because six items cannot reason-
ably be divided into an Assessment Subtest and a Partitioning
Subtest. Instead, the eigenvalues of the correlation matrix were
computed for a sense of whether unidimensionality was tenable, as
discussed in Chapter 3 (this volume). Although less definitive, this
provides some check on the assumption. This method is based on a
linear model, but as the number of categories per item increases,
linear models approximate ordinal item scores with increasing
accuracy if the response distribution is reasonably normal (Bollen,
1989, Chapter 9; Finney & DiStefano, 2006). Examination of the
eigenvalues provides only a rough check on unidimensionality, and
the results should not be overinterpreted. Multivariate item
response models (equivalently known as full-information factor ana-
lysis models) would be more appropriate for a more extensive study
of dimensionality. Factor analysis of the polychoric correlation
matrix is another advanced analysis method that often gives results
similar to full-information factor analysis (see Finney & DiStefano,
2006, for a discussion of appropriate estimation methods and soft-
ware for analysis of polychoric correlations).

Maximum likelihood scores were used in the dichotomous
example, and EAP scores were used in the polytomous example
to provide a sample write-up of each. Unfortunately, Bayesian
scores require a bit more explanation. If the standard deviation
of the score estimates (as opposed to the estimated standard
deviation) had been presented in the example, it would have
been smaller than 1. As explained in the beginning of the chapter,

reliability of the raw scores was .84; the IRT scores were somewhat

more reliablebecause IRTscoring takes intoaccount thedifferential

discrimination and category spacings of the items.

(continued)
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the Bayesian scores are shrunken inward, and thus the standard
deviation of the y estimates is less than the direct estimate of the
standard deviation. Typically, the metric is set based on the direct
estimate of the population distribution, although it could option-
ally be based on the distribution of the y estimates instead. Also,
this write-up stated that the Bayesian information function (which
includes the prior distribution) can be used to approximate the
standard errors. Recall that this is only an approximation. The
Bayesian information function is the inverse of the squared stan-
dard error for the MAP scores, not the EAP scores. This seemed a
bit too much detail for this illustration.

Figure 4.22 in this example could have shown the residuals for
the proportions in each category instead of the residual for the
expected item score. An example was shown in Chapter 3 in Figure
3.4 (in this volume). This would have corresponded to the resi-
duals used in calculating G2. Although this figure would provide
more information, it would also be more difficult for the reader to
integrate and interpret that information, particularly with larger
numbers of response options or scoring categories.

The threshold parameters in Table 4.2 for this GR model could
have been separated into the location and category parameters.
The parameters and an explanation of these parameters (omitting
the explanation of the a-parameter because it is unchanged) would
have been:

Table 4.3

Decomposed Graded Response (GR) Parameters

Item Slope SE Location SE c1 SE c2 SE c3 SE

1 0.75 0.02 �0.49 0.03 2.59 0.08 �0.44 0.03 �2.14 0.05

2 1.16 0.02 �0.31 0.02 1.74 0.05 �0.19 0.02 �1.55 0.03

3 1.05 0.02 0.53 0.02 2.00 0.04 �0.28 0.03 �1.72 0.05

4 1.41 0.03 0.67 0.02 1.47 0.02 �0.15 0.02 �1.33 0.04

5 1.76 0.04 0.35 0.02 1.63 0.03 �0.22 0.02 �1.41 0.04

6 1.54 0.03 0.05 0.02 1.42 0.03 �0.22 0.02 �1.21 0.03

(continued)
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The advantage of separating the threshold parameters this way is
that the item location summarizes the overall item difficulty. The
disadvantage is that the category parameters must then be subtracted
from the location to find the thresholds. Notice that the standard
errors of the category parameters are smaller when the thresholds are
decomposed, because the standard errors are also decomposed.

These items could have been calibrated with the GPC model
instead of the GR. Primarily, this would change the meaning of the
b-parameters, which would be step difficulties instead of thresh-
olds. The a-parameters are lower in the GPCmodel when there are
more than two categories, so with three or more categories,
a-parameters from different models should not be compared.
However, the basic interpretation of the a-parameter as an

The item location is the mean of the thresholds and indicates the

overall difficulty of the item. Item 1 was the easiest to endorse,

and item 4 was the most difficult. To find the point on the

Motivation to Avoid Failure scale at which 50% of examinees

choose a given category or higher, subtract the category

parameter from the location. The resulting threshold indicates

the score value at which 50% of respondents choose the

designated option or higher. Everyone has a 100% probability of

choosing Strongly Disagree or higher, so there is no threshold for

that option. For item 1, the probability of choosing at least

Disagree is 50% for those with failure avoidance¼�0.49

�2.59¼�3.08; the probability of choosing at least Agree is 50%

for those with failure avoidance¼�0.49� (�0.44)¼�.05; and the

probability of choosing Strongly Agree is 50% for those with

failure avoidance¼�0.49� (�2.14)¼ 1.65.

The data were calibrated with a Generalized Partial Credit (GPC)

model. The constant 1.7 was used in the model, so that the scale

would approximate the normal metric. Table 4.4 shows the

estimated item parameters. The slope is an index of how rapidly

the response probability changes as failure-avoidance motivation

(continued)
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indicator of how much the response probability changes as a
function of y is the same. An example follows.

The write-up would then have continued in a manner similar to
thewrite-upfor theGRmodel,withdetailsonfit, information, andso
forth. As for the GR model, the step difficulties for the GPC model
couldhavebeenseparatedinto locationandcategoryparameters.The
examplewouldbe similar, except that the categoryparameterswould
be used to calculate step difficulties instead of thresholds.

Chapter Summary

This chapter began with an explanation of how the item para-
meters and ys are estimated. The text that followed explained how

increases. The step difficulties (b-parameters) indicate the point on

the failure avoidance scale at which two adjacent responses are

equally likely. For example, at the first step difficulty Almost Never

and Sometimes are equally likely; before the step difficulty Almost

Never is more likely and after the step difficulty Sometimes is more

likely. For item 1, the probabilities of Almost Never and Sometimes

are equal at failure avoidance¼ –3.35; the probabilities of

Sometimes and Often are equal at failure avoidance¼ 0.20; the

probabilities of Often and Almost Always are equal at failure

avoidance¼1.35.

Table 4.4

Generalized Partial Credit Model Parameters

Item Slope SE Step 1 SE Step 2 SE Step 3 SE

1 0.57 0.02 –3.35 0.12 0.20 0.06 1.35 0.07

2 0.96 0.03 –2.08 0.06 –0.02 0.04 1.11 0.04

3 0.87 0.02 –1.54 0.05 0.93 0.04 1.94 0.07

4 1.21 0.04 –0.78 0.03 0.87 0.03 1.78 0.06

5 1.64 0.04 –1.27 0.03 0.61 0.03 1.61 0.04

6 1.33 0.04 –1.38 0.04 0.36 0.03 1.11 0.04

(continued)
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each of the questions introduced in Chapter 2 (in this volume)
could be answered. The examples in this chapter have shown
some of the ways that the results could be described in a report.
The next chapter provides examples of a brief discussion of the
results.
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Appendix

Technical Details

Maximum Likelihood Estimation of y. The natural log of a func-
tion reaches its maximum at the same point at which the function
reaches its maximum. In IRT, the log-likelihood is easier to work
with than the likelihood because the log-likelihood is the sum of
the log-likelihoods for the individual responses. Recall that the
likelihood function is the product of the likelihoods for the indi-
vidual responses. Sums are easier to compute than products,
especially given that each likelihood is less than 1, so the product
quickly gets very small. To find the maximum, we use the principle
that a function reaches a maximum (at least a local maximum,
relative to the nearby region) at the point where its first derivative
is 0. Near this point, the second derivative is large, relative to the
first derivative. So, if the derivatives of the log-likelihood functions
are evaluated at a y near the maximum, the ratio of the first
derivative to the second derivative will be small. Also, in this
close region, the signs of the derivatives will be the same if the
estimate of y is too high, and they will be opposite if the estimate of
y is too low. Thus, the ratio can be used to estimate how far off an
estimate is and in which direction it should change. At the first step
of the estimation, an initial guess for y can be based on a transfor-
mation of the number-correct score. Or, it can simply be 0. For this
value of y, we find the ratio of the first derivative to the second
derivative and update the estimate of y by subtracting this ratio. If
the previous estimate of ywas close to where the function would be
maximized, y will be updated by only a small amount. The first
and second derivatives are then evaluated at the updated y value.
The process continues, or iterates between these steps, until the
change in ymeets some specified stopping criteria, such as 0.01. At
that point, the iterations are said to converge, because the value is
nearly unchanged between iterations.

For Bayesian estimation, the likelihood is multiplied by the prior
distribution of y (usually based on the group’s or subgroup’s y
distribution). The product is rescaled to have a density of 1; this is
the posterior distribution of y (the posterior distribution for the
individual examinee, or individual response pattern—not to be
confused with the group-level posterior distribution resulting
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from the MML item calibration). For MAP estimation, the max-
imum (mode) of the posterior (or of the log of the posterior) is
then found as described above forML estimation. Finding the mean
of the distribution, or the EAP estimate of y, requires a different
step. The posterior distribution is approximated using the method
of quadratures. Along a plausible range of y, perhaps –4 to 4, a
series of points (quadrature points) are specified at equal intervals
(they do not have to be at equal intervals—Gaussian quadrature
points, for example, are spaced more tightly in the center where the
normal density is higher—but for this discussion, we will use equal
intervals for simplicity). In Figure 4.28, the points are spaced every
0.2 units. A rectangle can be envisioned, with width equal to 0.2 (0.1
on either side) and height equal to the value of the function. The
mean (expected value) of y can be found by taking a weighted
average, weighting each quadrature point by the area of the rec-
tangle drawn around that point (or simply the height, if the points
are evenly spaced, so that all the widths are equal). For the distribu-
tion in Figure 4.28, Table 4.5 shows the calculations. The weights
were scaled to sum to 1, so the weighted mean is the sum of y times
the weight. The EAP estimate for this examinee is 0.35. The
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Figure 4.28. Posterior likelihood of y, approximated by the method of

quadratures.
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standard deviation of the posterior can also be calculated from these
value—this is the standard error of the EAP score.

Group Reliability Estimates

To calculate marginal reliability, Green and colleagues (1984)
proposed integrating the squared standard error of measurement
(from the information function) over the y distribution.
The reliability for the ML y scores can then be calculated as:

reliability¼ s2
ŷ
�s2e

s2
ŷ

, where s2
ŷ
is the variance of the score estimates

Table 4.5

Expected A-Posterior Estimation

q Density (weight) q � weight

�3.0 0.00002 �0.00006

�2.6 0.00005 �0.00013

�2.2 0.00022 �0.00048

�1.8 0.00094 �0.00169

�1.4 0.00417 �0.00584

�1.0 0.01833 �0.01833

�0.6 0.06715 �0.04029

�0.2 0.17047 �0.03409

0.2 0.26984 0.05397

0.6 0.25504 0.15302

1.0 0.14538 0.14538

1.4 0.05269 0.07377

1.8 0.01300 0.02340

2.2 0.00233 0.00513

2.6 0.00032 0.00083

3.0 0.00003 0.00009

sum 1.00000 0.35467
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(in other words, the observed score variance) and s2e is the mar-
ginal (average) squared standard error. Because Rasch model users
most commonly use ML scores, reliability of person separation is
calculated using this formula, too (Bond & Fox, 2001, Chapter 3;
Wilson, 2005, Chapter 7; Wright & Masters, 1982, Chapter 5). If
the metric is standardized such that the variance of the score
estimates, instead of the direct estimate of the variance of y, is
fixed to 1, then the reliability is more simply: 1 – s2e (Thissen &
Orlando, 2001, p. 119).

Similar indices are available in BILOG-MG (Zimowski, Muraki,
Mislevy, & Bock, 2003, pp. 33–34). For the empirical reliability of
ML scores, s2e for the formula above is calculated as the mean of the
squared standard errors for the examinees in the sample. (More
precisely, the mean of 1/(squared standard error) is calculated, and
then s2e ¼ 1/(this result). This value will be close to, but not pre-
cisely equal to, the mean of the squared standard errors). For the
sample write-up of the history/political science test, s2e ¼ 0.1430,
and s2

ŷ
¼ 1.1135. Reliability¼ (1.1135� 0.1430)/1.1135¼ .872,

providing the value given in the example. The empirical reliability
for Bayesian scores is calculated slightly differently, because the
variance of the score estimates underestimates the y variance. The
reliability index for Bayesian scores in BILOG-MG is: reliability ¼

s2
ŷ

s2
ŷ
þ se

2 . For the Bayesian scores for the sample data (not discussed in

the write-up because ML scores were used there), s2
ŷ
¼ 0.8773

and s2e ¼ 0.1401. Reliability¼ 0.8773/(0.8773 þ 0.1401)¼ .862.
Mislevy, Beaton, Kaplan, and Sheehan (1992) showed a similar
formula, substituting the direct estimate of the y variance (usually
1) for the denominator. On average, this will be equivalent because
the expected value (average over many samples) of the variance of
the Bayesian score estimates plus the error variance¼ the direct
estimate of the variance. In other words, the Bayesian estimates are
shrunken proportionally to their reliability. If the metric is scaled
such that the direct estimate of the variance of y¼ 1, then the
variance of the Bayesian score estimates is an estimate of the
reliability.

For the theoretical reliability optionally reported in BILOG-MG,
s2e is found by integrating the information function over a normal
distribution of y; s2e is then 1/mean information. The theoretical
reliability index is: reliability¼ 1

1þs2e
, because the true score
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variance is defined to be 1. When the direct estimate of the
variance (estimated true score variance) of the y distribution is
fixed to 1, the calculated value of this index should be close to the
value obtained from Green and colleagues’ definition, because the
expected value of the variance of the ML estimates¼ the variance
of y þ error variance. For the data used in the sample write-up,
s2e ¼ 0.1401. The s2e used in the empirical reliability formula was a
bit larger because of the non-normality of the y distribution; the
heavy left tail was in a region of low information. The theoretical
reliability¼ 1/1.1401¼ .877. In summary, each of the estimation
methods gives slightly different results in this sample, but the
estimates are not far apart.
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5
discussion

as in chapter 4 , the focus of this chapter is limited to a
technical report or test development summary. These reports
would be directed to the test development team or test users
because they are focused on a particular test. They would not be
designed to answer generalizable research questions that might
interest journal readers or research conference attendees. The
Discussion section for an item response theory (IRT) analysis
should include recommendations about which items should be
deleted/modified, and about appropriate uses of the instrument.
The Discussion, like the Results, can be organized around the
research questions.

Four of the questions should be considered together:

• What is the spread of item difficulties (and category
difficulties, for polytomous items)?

• How discriminating is each item?
• What is the distribution of abilities/traits in this group of
examinees/respondents? How does the ability distribution
compare to the item difficulty distribution?

• How does each item contribute to the test information?



The difficulty of the items should be considered in relationship
to the distribution of the ys in the population for which the
instrument is intended. Difficulty (b-parameters) should be dis-
cussed in terms of information relative to the y distribution. For
many instruments, it is desirable to have items throughout the y
range where most examinees/participants are, perhaps –2 to 2 if
the sample used to establish the scale metric is similar to the
intended population. For some instruments, it might be important
to have many items with b-parameters in a particular range. For
example, if there is a cut-score, such as a passing standard or a
value for clinical diagnosis, it is important to have high informa-
tion near that score, so that ys near that value can be estimated
with small standard errors. As detailed in Chapter 4 (in this
volume), items reach their highest information at the location of
the item difficulty or near the category thresholds or step difficul-
ties. Thus, items should be clustered near the cut-score. However,
this design limits the test use to discriminating between students
close to the cut-score, while ys in other parts of the range may be
estimated far less precisely. For example, a psychological well-
being test for university students may initially be intended to
identify students who have relatively low levels of well-being
because they may benefit from additional student services. If the
test is targeted to these students, it will not be as useful for
monitoring minor changes in the well-being of most members of
the student population. Even if students experience a drop in
psychological well-being, most will still remain in the range
where there are not enough items to detect the change. The test
developers may have a broader market if they select a wider range
of item difficulties. But the instrument may be more useful to a
niche market if the b-parameters have a narrow range but provide
very precise scores within that range. Licensure/certification tests,
for example, are typically intended to determine whether the
applicant has the competency to practice in a career field. They
are not necessarily intended to differentiate among examinees at
other levels.

As these examples show, the contextmust be carefully considered
when recommending which items are of appropriate difficulty. If
items are too easy or too difficult for the intended use, they will
contribute little to the information for (reliability of) the scores.
A test that is not well-matched to the intended examinee population
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will require many more items (and thus testing time and test-
development costs) to achieve the same information (reliability)
as a test well-matched to the population and intended use.

This discussion has focused on how the item difficulties, relative
to the y distribution, affect the measurement properties of the test
scores. In addition, the item difficulties and y distribution could be
examined with a focus on content. Item maps could be used to
illustrate which types of skills most examinees have mastered and
which types of skills few examinees have mastered. Or, for a
psychological trait or attitude, the item map would show which
statements are endorsed by respondents at different levels of the
trait.

Item discrimination (slope) should also be considered in the
recommendations concerning which items are acceptable. If the
probability of correct response (endorsement) is not much higher
for examinees who have high ys than for those who have low ys,
the item can not help measure y very well. It might instead be
measuring an uncorrelated construct or be poorly written. Low-
discriminating items take testing time that could instead be used
for more informative items (or for nontesting activities, such as
instruction if the test is administered during school time). If the
lack of discrimination is due to a confusing question or response
options, examinees’ performance on other test items could pos-
sibly be impacted. In short, items that do not discriminate well
should seldom be left on the test. They should be referred back to a
content committee or group of item writers for suggestions on
whether each item should be rewritten or discarded.

How Much Information Does the Test Provide over
the Ability/Trait Range?

Here the Discussion section moves from discussion/recommenda-
tions for individual items to discussion at the score level. The
implications of the information function reported in the Results
section can be explained. For example, does the test provide
information throughout the y distribution? If not, is this the
result of an intentional instrument design decision, such as tar-
geting a particular y level, or does the test need more items in a
particular y range? This discussion might be tied to the considera-
tion of item information as well.
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For a Given Population or Sample Distribution, How Reliable Are
the Ability/Trait Estimates?

The reliability estimate provided in the Results section should be
interpreted relative to the intended test use. The guidelines com-
monly used for other reliability estimates, such as KR-20/coefficient
a, can be used for the IRT-based marginal reliability as well. For
example, Traub (1994, p. 39) noted that high-stakes educational
tests typically have reliabilities at least in the .80s, although psycho-
logical/attitude scales sometimes have lower reliability. Roid (2006)
recommended .80 as a minimum for subtest scores and .90 as a
minimum for total scores. Buckendahl, Impara, and Plake (2002)
suggested as low as .70 might be acceptable if the results were used
only for group-level inferences, not for individual student
inferences.

The following sample Discussion sections would accompany
the Results sections in Chapter 4 (in this volume). The first
example is for the multiple-choice U.S. history and political
science test, and the second example is for the Motivation to
Avoid Failure scale.

Discussion and Recommendations

Most of the item difficulties were in a reasonable range for

productive measurement. A few items were so easy that they

provided no information about what examinees know—items 12,

19, 20, and 38. These items might be useful if the test will be used

with a less-knowledgeable population, such as a pre-test for

students before they take the courses associated with the test.

Otherwise, the time spent reading and responding to these items

would be better utilized on more difficult items. Most of the item

discriminations were adequate. More information could be

obtained if items 2, 12, 31, 38, and 39 were replaced with more

discriminating items.Of these items, 12 and38were alsovery easy.

The item difficulties (b’s) shown in the Results indicated which

itemsare typically challenging for thehighest-proficiency students,

which are challenging for middle-proficiency students but

mastered by most higher-proficiency students, etc. From a

psychometric perspective, these are simply empirical alignments

(continued)
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and not useful for recommendations. However, the course

instructors and other content experts should examine these

alignments to see if they are reasonable. If the instructors believe

that a difficult item should be easier, they should consider how the

item is worded. Is one of the distractors unnecessarily misleading?

Is the question stem or the correct answer too confusing? If the

instructors are surprised that an item is easier than expected based

on the concept, they shouldmake sure that no extraneous clues in

the item made the correct answer too obvious. For example, the

correct answer should not be considerably longer than the other

options, and all options should be grammatically parallel. The

distractors should appear reasonable to a student who has not

learned the course material. Such flaws may be empirically

detected if they lead to lower item discriminations, but content

experts are needed to explore whether the empirical item

difficulty is consistent with the predicted difficulty of the item

content. Further, course instructors can consider whether the

conflict between expectations and empirical difficulty might be

due to course emphasis rather than flaws in the item. Such

consideration might reveal information about how students learn;

if students aremissing foundational concepts that seemobvious to

the instructors (and thus are not covered in the course), instructors

might want to spend some initial time making sure students

understand the basic concepts before they attempt to build on

them.

The test information function shows that the test is reasonably

informative for most examinees. It is more informative for

middle-proficiency levels. Averaging across all examinees, the

estimated reliability of .87 is acceptable for program

assessment. Somewhat higher reliability would be desirable if

the test had high stakes for individual students, such as a

mandatory passing standard or assignment to further

coursework. The test is fairly short, and adding more items

would likely increase the reliability (assuming the additional

items measured the same construct). This is not needed for the

current use of the test scores, and given that the test is currently

given in low-stakes conditions it is probably better to keep it short

to better maintain the attention of the examinees.

(continued)
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In the first paragraph of the write-up, it was noted that two of the
less-discriminating items were also quite easy. Sometimes it can be
difficult to estimate the a-parameters for very easy or difficult items.
The standard errors for the a-parameters for these items were not
unusually large, though, so it does not seem to have been a problem
here and thus was not mentioned in the write-up.

In this write-up, references were made to the course instructors
and to the course grades. For many standardized tests, the content is
not geared toward a particular course and content experts would be
substituted for course instructors. Committees of content experts, such
as experienced teachers (for aK–12 test) or faculty and employers (for
a certification/licensure exam) or counselors (for a psychological
survey) are typically convened by test-development companies at
various points throughout the test development. Similarly, the
context of the test administration and use of the scores was an
important consideration in the Discussion. These will, of course,
vary, so recommendations need to take context into account.

The next example is a follow-up to the Results section for the
failure-avoidance motivation scale.

Discussion and Recommendations

For each of these items, the response scale covered a reasonable

spread of the failure avoidance continuum for this group of

respondents.

Experts on motivation to avoid failure should examine the

locations of the items to ensure that the items are ordered

consistently with definitions of the construct. If any item seems

empirically mis-ordered, the item should be examined for clarity.

Each of the items had reasonable discrimination and provided

information about the degree to which the respondent was

motivated to avoid failure. While item 1 had the lowest slope, it

made the greatest contribution to information at the lowest levels

of the failure avoidance motivation continuum because it had the

lowest threshold.

The information covered the failure avoidance motivation

spectrum for this population well. The overall reliability,

averaged over all failure avoidance levels, was .89. This is quite

good for such a short instrument.
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In this write-up, there was less to say than in themultiple-choice
write-up because the results were good. Recommendations for
removal of items or addition of new items would of course have
been made if such recommendations were warranted. The
a-parameter for item 1 might have been considered a bit low for
dichotomous items, but when combined with dispersed thresholds
within the item, as in this example, a polytomous itemwith a lower
a-parameter can still provide substantial information. Thus, these
a-parameters were not highlighted in the Discussion.

Chapter Summary

This chapter described how the findings in the Results could be
summarized, discussed, and used for further recommendations.
The context of the test administration, the examinee population,
and the use of the scores are important considerations in the
Discussion. The sample write-ups gave examples in two particular
contexts. This chapter concludes the text. The next chapter will
provide some suggestions for further reading.
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6
additional reading

for more advanced general information on item response
theory (IRT) that is fairly easy to understand, consider R.J. de
Ayala’s The Theory and Practice of Item Response Theory (New
York: Guilford Press, 2009). This book provides an excellent
balance of conceptual explanations and mathematical detail. In
addition to explaining various IRT models and estimation proce-
dures, it presents introductions to equating, differential item
functioning, and computerized adaptive testing.

R.K. Hambleton, H. Swaminathan, and H.J. Rogers’s
Fundamentals of Item Response Theory (Newbury Park, CA: Sage,
1991) provides introductions to differential item functioning,
scaling/equating, and computerized adaptive testing. These applica-
tions show the advantages of IRT. A related text with somewhat
more detail is R.K. Hambleton andH. Swaminathan’s ItemResponse
Theory: Principles and Applications (Boston: Kluwer, 1985).

Another comprehensive IRT text is S.E. Embretson and S.P.
Reise’s Item Response Theory for Psychologists (Mahwah, NJ:
Lawrence Erlbaum Associates, 2000).

A good on-line introduction to IRT is found in F.B. Baker’s The
Basics of Item Response Theory, ERIC Clearinghouse on Assessment
and Evaluation (2001). Available at http://edres.org/irt/.



There is also a very clear introduction to IRT in Chapter 3 (pp.
24–43) of H.Wainer, E.T. Bradlow, and X.Wang’s Testlet Response
Theory and Its Applications (New York: Cambridge University
Press, 2007). This text contains much more advanced material
on more complex models, but the first chapters are introductory.
Chapter 3 contains a brief but lucid explanation of estimation
procedures.

An easy-to-read comparison of polytomous models is available
in R.J. de Ayala’s article (1993) “An introduction to polytomous
item response theory models” (Measurement and Evaluation in
Counseling and Development, 25, 172–189.)

The current text only briefly touched on Rasch modeling. Two
comprehendible books on Rasch modeling are M. Wilson’s
Constructing Measures: An Item Response Modeling Approach
(Mahwah, NJ: Lawrence Erlbaum Associates, 2005); and T.G.
Bond and C.M. Fox’s Applying the Rasch Model: Fundamental
Measurement in the Human Sciences (Mahwah, NJ: Lawrence
Erlbaum Associates, 2001). Both of these books explain the philo-
sophy of Rasch modeling and how it can be used throughout the
test development process.

Rasch-modeling users should also consider E.V. and R.M.
Smith’s edited text, Introduction to Rasch Measurement: Theory,
Models, and Applications (Maple Grove, MN: JAM Press, 2004). In
particular, the chapters by Wilson and by Schumacker provide
basic explanations and examples. Some of the other chapters
provide more advanced models and applications.

A variety of different IRT-related software is described at: http://
www.umass.edu/remp/remp_software.htm.

This book introduced only the most commonly used IRT
models. Many more models are described by various authors in
W.J. van der Linden and R.K. Hambleton’s edited text Handbook
of Modern Item Response Theory (New York: Springer, 1997).

Before attempting such an advanced book, readers will want to
study some of the more basic texts listed above.
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