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ABSTRACT 

 

Advancements in artificial intelligence over the last decade have transformed 

numerous fields, including biotechnology. Recent developments in deep learning (DL) 

have led to the creation of models capable of generating antibody sequences with 

remarkable efficiency. These models, built on cutting-edge NLP-based architectures 

and trained on extensive datasets of protein sequences, harness the inherent information 

encoded in protein sequences, from structural conformations to binding affinities. By 

leveraging deep learning, these methods can potentially reduce the reliance on 

traditional, resource-intensive experimental procedures for antibody development. 

However, antigen-specific antibody sequence generation is still a problem that needs to 

be addressed. In this study, AbAtT5, a finetuned transformer-based model specifically 

designed for generating antigen-specific antibodies using full-length antigen sequences 

is introduced. AbAtT5 is finetuned on a large protein language model, protT5, 

harnessing the potential of transfer learning by updating the weights and biases of the 

pre-trained model. AbAtT5 demonstrated superior performance compared to existing 

models like HERN and EAGLE, achieving improvements of up to 1.88% in VAAR and 

18.04% in SeqID. These findings underscore the model's potential to accelerate the 

antibody design process by providing more accurate sequence generation. The ability 

of AbAtT5 to generate antibodies with higher sequence identity and alignment rates 

highlights its promise as a powerful tool in the field of computational antibody 

generation, offering a more efficient approach to identifying potent antigen-specific 

antibody candidates.  
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1. CHAPTER 1: INTRODUCTION 

This chapter discusses foundational concepts relevant to this study, including 

proteins, antibodies, and the role of computational methods in antibody engineering. It 

also discusses the emerging applications of generative AI and deep learning in biology, 

leading to the identification of the problem statement and proposed solution 

1.1. Proteins 

Proteins are fundamental macromolecules that perform many functions within 

biological systems. These proteins are made up of amino acids joined together via 

peptide bonds. The linear combination of amino acids determines the structure and 

function of proteins and is based on which proteins are classified into different families. 

The sequence of proteins is known as primary structure forming chains, these chains 

fold into more complex forms, contributing to the formation of secondary, tertiary, and 

quaternary structures  [1] Proteins carry out all the functions in a living body, 

encompassing enzymatic catalysis, providing structural support, facilitating signaling 

pathways, and mediating immune responses [1]  [2], Figure1.1.  

 

Figure 1.1 Various Functions of Proteins in the Body. 

Proteins perform several vital roles, including transport functions (Hemoglobin), structural 

support (Muscles), immune response (Antibodies), catalytic activities (Enzymes), signaling 

molecules, and regulation (Insulin) 

. 

As mentioned earlier, the secondary structure arises from the primary structure, 

which refers to local conformations such as alpha-helices and beta-sheets stabilized by 

hydrogen bonds. These structures further fold into the tertiary structure, representing 
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the overall 3D shape of a single polypeptide chain, stabilized by various interactions 

including hydrogen bonds, and ionic and hydrophobic interactions [3]. In some 

proteins, multiple polypeptide chains (subunits) come together to form the quaternary 

structure, which is critical for the protein’s function. This transition of protein from 

simple primary structure to quaternary structure is illustrated in Figure 1.2 below.  

 

 

 

 

 

 

 

The image illustrates the hierarchical structure of proteins, from the primary amino acid 

sequence to the complex quaternary structure formed by multiple polypeptide chains. Each 

level contributes to the protein's overall shape and function. 

Variations in the amino acid sequence can lead to alterations in the protein’s 

structure and function. Such changes can have significant implications, ranging from 

loss of function to the development of diseases  [4]. For instance, a single amino acid 

substitution, valine replaces glutamic acid, causes sickle cell anemia, and hemoglobin 

loses the ability to carry oxygen [5]. On the other hand, these mutations can lead to 

possible interactions between the antibodies and antigens, which will be discussed 

below in detail. Thus, understanding these relationships between sequence, structure, 

and function is crucial. In the below section, a special class of proteins called antibodies 

is discussed which is the scope of this study. 

1.2. Antibodies 

Antibodies are immunoglobulin proteins produced by the immune system; they 

serve as the first line of defense against the attack of foreign particles known as antigens 

[6]. Antibodies are produced by B cells of the immune system; these B cells produce 

antibodies at a very high rate, approximately 2000 molecules per second, thus 

Figure 1.2 Transition of proteins from primary to quaternary 

structure. 
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generating an army of antibody molecules to fight against the invasion quickly [7]. 

Further details regarding these vital molecules are discussed in the following section.  

1.2.1. Sequence and Structure of Antibodies 

An antibody molecule typically possesses a Y-shaped structure in a globular 

form as shown in Figure1.3 (left), each antibody is made up of four polypeptide chains, 

two identical heavy chains (H) and two identical light chains (L), connected by disulfide 

bonds. The Y-shaped structure has two main regions: the Fab (fragment antigen-

binding) region and the Fc (fragment crystallizable) region also shown in Figure 1.3 

(Right) [8]. 

• Fab Region: This includes the variable regions of the heavy and light chains. The 

tips of the Y-shaped structure contain the antigen-binding sites, which are highly 

variable and allow for the specific recognition of antigens. Each Fab region can 

bind to an antigen, and the specificity is determined by the unique amino acid 

sequence in the variable region. 

• Fc Region: This is the constant region that interacts with cell surface receptors (Fc 

receptors) and other immune molecules like complement proteins. The Fc region 

determines the effector function of the antibody, such as recruiting other immune 

cells or activating the complement system. 

3D structure of an antibody (left) with two heavy chains (blue) and two light chains 

(purple). The schematic (right) highlights the variable region (red) for antigen binding and 

the constant region (blue) for immune function, connected by disulfide bonds 

Regarding the sequential arrangement of the chains, each chain comprises four 

framework regions (FWRs) and three complementarity-determining regions (CDRs). 

             

             

             

             

Figure 1.3 The Y-shaped structure of an antibody. 
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These CDRs are loops by structure and are part of Fab regions where the antigen binds 

and these are variable in lengths whereas CDR3 of heavy chain is the most important 

and hypervariable region, and most of the interactions between the antigen and antibody 

occur at this part of the antibody. This variability in CDR3 of the heavy chain allows 

antibodies to recognize a vast array of antigens. Talking about the length of the chains, 

a single light chain in mammals consists of about 220 amino acids while a heavy chain 

consists of 440 amino acids, however, in most research only the variable domains of 

both chains are considered with the approximate lengths of 110 and 120 for light chain 

and heavy chain respectively. In these chains, the FWRs and CDRs are determined 

using different numbering schemes  [9]. These numbering schemes are systematic 

methods used to label and align the amino acid positions within the variable regions of 

antibody sequences. These schemes provide a standardized way to identify equivalent 

residues across different antibodies, facilitating comparison, analysis, and structural 

modeling. These numbering schemes are discussed below.  

1.2.2. Antibody Numbering Schemes   

Antibody numbering schemes are developed by different research institutes 

over the period. Antibody numbering schemes help in the identification and annotation 

of functional regions, such as CDRs, and are helpful in engineering and optimizing 

antibodies for therapeutic and diagnostic purposes. The most common schemes are as 

follows.  

• Kabat Numbering Scheme: 

Developed by Elvin Kabat, this scheme is based on the variability of amino 

acids in the sequences of antibodies. It assigns numbers to residues in the variable 

regions of both heavy and light chains, considering insertions and deletions observed 

in different antibodies. This scheme is widely used for studying antibody diversity and 

structure-function relationships  [10]. 

• Chothia Numbering Scheme: 

Introduced by Chothia and Lesk, this scheme is based on the structural features 

of antibodies. It aligns sequences according to the positions of the residues in the three-

dimensional structure of antibodies. The Chothia scheme focuses on the 
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complementarity-determining regions (CDRs) and the framework regions, facilitating 

the study of antibody-antigen interactions  [11]. 

• IMGT Numbering Scheme: 

The International ImMunoGeneTics (IMGT) information system developed this 

scheme to provide a standardized and comprehensive framework for numbering 

immunoglobulin and T-cell receptor variable regions. The IMGT scheme aligns 

sequences according to their structural and functional properties, ensuring consistency 

across different antibodies and species  [12]. 

These schemes allow researchers and developers to analyze, compare, and 

optimize antibodies for several applications effectively, ensuring uniformity and 

reliability in antibody research and development. This study follows the IMGT scheme 

because the data from sabdab is renumbered according to this numbering scheme.  

1.2.3. Applications of Antibodies [13] 

As of now, the structure of antibodies has been discussed; in this section, the 

applications of antibodies are briefly mentioned. Naturally, antibodies protect the body 

against malfunctioning proteins within the body as well as foreign invading pathogens. 

Knowing their specificity and efficiency to bind with antigens, many antibodies were 

developed and used for different purposes along with therapeutic purposes. They have 

a vast range of applications in treating different conditions, diagnosis, and research. 

Some of the applications in the said domains are briefly mentioned below but are not 

limited to these.  

Therapeutics  

Monoclonal Antibodies (mAbs) are engineered to target specific antigens, such 

as those found on cancer cells, pathogens, or involved in autoimmune diseases. They 

can function by directly neutralizing a pathogen, blocking a receptor involved in disease 

progression, or marking a diseased cell for destruction by the immune system. For 

example, Trastuzumab (Herceptin) is a monoclonal antibody used to treat HER2-

positive breast cancer. It targets the HER2 receptor, a protein overexpressed in some 

breast cancer cells, inhibiting cell growth and survival. Antibody-drug Conjugates 
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(ADCs), are antibodies linked to a drug or toxic agent, allowing the specific delivery 

of the toxic agent to the targeted cells, minimizing side effects on healthy cells. Ado-

trastuzumab emtansine (Kadcyla) is an ADC where trastuzumab is linked to a 

chemotherapy drug, used to target and kill HER2-positive breast cancer cells  [14]. 

Diagnostics 

Immunohistochemistry (IHC), IHC involves staining tissues with antibodies to 

detect the presence of specific markers. This technique is widely used in diagnosing 

diseases and determining the molecular characteristics of tumors. PD-L1 staining in 

tumor samples helps to identify patients who may benefit from PD-L1 inhibitor 

therapies in oncology. Enzyme-linked Immunosorbent Assay (ELISA), utilizes 

antibodies to detect the presence of antigens in a sample, commonly used for diagnosing 

infections and conditions. ELISA tests for HIV detection measure antibodies against 

HIV in a patient's blood, providing a reliable diagnostic method  [15]. 

Research 

In Flow Cytometry, Antibodies conjugated with fluorescent molecules are used 

to label specific cell populations. This method is fundamental in research for cell 

sorting, biomarker detection, and immune profiling. Antibodies against CD4 and CD8 

are used to identify and quantify T helper cells and cytotoxic T cells in immunological 

studies  [16]. 

The same is true with Western Blotting, in this technique antibodies are used to 

detect specific proteins in a sample, helping in studying protein expression, size, and 

modification. Antibodies against phosphorylated proteins can help in studying the 

activation states of various signaling pathways involved in cancer or other diseases. 

Immunoprecipitation, this technique uses antibodies to precipitate a specific antigen out 

of solution, allowing for the study of protein interactions and function. 

Immunoprecipitation of an oncogene like MYC tagged with an epitope can help to 

identify interacting partners and downstream effects in cellular pathways. 

Each application of antibodies leverages their ability to bind specifically to their 

target antigen, highlighting their versatility and critical role in advancing medical 



7 
 

science, therapeutic interventions, and our understanding of complex biological 

systems. 

1.2.4. Antibody Development: Methods & Limitations 

In the above sections, a brief discussion of the applications of antibodies in 

different domains, these antibodies are developed and optimized for their specific use 

in those domains. Antibody development aims to create antibodies with improved 

specificity, affinity, and stability for therapeutic applications and efficient research 

tools [14]. Two types of approaches are in practice for antibody engineering, Rational 

approach and Empirical methods. In a rational approach, the structural knowledge of 

antibodies acquired from techniques like NMR and X-ray crystallography is used to 

develop and optimize antibodies of interest by generating a few number of potential 

candidates. In the empirical approach, large numbers of potential candidates are 

generated using methods such as hybridoma technology and phage display, and then 

different screening approaches are used to get the potential candidates  [17].  

Hybridoma technology involves immunizing an animal, typically a mouse, with an 

antigen to stimulate an immune response. B-cells producing the desired antibody are 

then harvested and fused with myeloma cells to create hybridomas. These hybridomas 

can be cultured indefinitely, producing monoclonal antibodies that are specific to the 

antigen used for immunization. This method has been foundational in the development 

of many therapeutic antibodies currently in use  [18]. 

Phage display involves expressing antibody fragments on the surface of 

bacteriophages. This allows for the selection of antibodies that bind to a specific antigen 

by exposing the phage library to the antigen and selecting those that bind with high 

affinity. The selected phages are then amplified, and the process is repeated to enrich 

for high-affinity binders. Phage display has been widely used to develop antibodies that 

are difficult to obtain through traditional immunization methods  [19]. 

1.2.5. Limitations of Traditional Antibody Development Methods 

However, these traditional methods are often time-consuming and labor-

intensive. Hybridoma technology, for example, involves several stages: immunizing an 

animal, creating hybridomas, screening for the desired antibody, and scaling up 
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production. This entire process can take several months to complete. Similarly, phage 

display requires multiple rounds of selection and amplification to isolate high-affinity 

binders, making it a lengthy process as well. These methods, while effective, are not 

always efficient, leading to a demand for faster, more automated approaches  [20]. 

1.2.6. Computational Methods in Antibody Engineering 

In recent years, computational methods have emerged as powerful tools in 

antibody engineering. These methods leverage bioinformatics and structural biology to 

predict and design antibody sequences with desired properties. Computational 

approaches can analyze large datasets to identify patterns and make predictions, 

significantly accelerating the antibody development process. Techniques such as 

molecular docking, molecular dynamics simulations, and sequence alignment are 

commonly used to predict antibody-antigen interactions and optimize antibody 

sequences  [20]. 

1.3. Generative AI  

Generative AI is a fascinating and rapidly evolving subset of artificial 

intelligence focused on creating new content, such as images, text, music, and even 

videos. Unlike traditional AI, which typically analyzes existing data to make 

predictions or classifications, generative AI models are designed to generate data that 

mimics the patterns and characteristics of the training data. The core of generative AI 

lies in its ability to learn from vast amounts of data and then use that knowledge to 

produce new, original content. This process often involves complex algorithms and 

neural networks, with some of the most prominent approaches being Generative 

Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformers  

[21]. 

Generative Adversarial Networks, introduced by Ian Goodfellow and his 

colleagues in 2014, consist of two neural networks: a generator and a discriminator. 

The generator creates new data instances, while the discriminator evaluates them. The 

two networks are trained simultaneously in a process where the generator aims to 

produce increasingly realistic data, and the discriminator attempts to distinguish 

between real and generated data. This adversarial setup results in highly realistic 
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outputs, making GANs particularly effective in creating images, videos, and even 

deepfake content [22]. 

Variational Autoencoders, on the other hand, are a type of autoencoder that 

imposes a probabilistic structure on the latent space of the data. VAEs are particularly 

useful for generating new data points that are like the original dataset but introduce 

slight variations. This makes them valuable for tasks such as image synthesis, anomaly 

detection, and data compression. 

Transformers represent a groundbreaking architecture in the realm of generative 

AI, especially for text generation. Introduced in the paper "Attention is All You Need 

[23]" by Vaswani et al. in 2017, Transformers have revolutionized natural language 

processing (NLP) with their ability to handle sequential data more effectively than 

previous models like recurrent neural networks (RNNs) and long short-term memory 

networks (LSTMs). The key innovation of Transformers is the self-attention 

mechanism, which allows the model to weigh the importance of different words in a 

sentence relative to each other, capturing context more accurately [24]. One of the most 

notable advancements using Transformer architecture is the development of large 

language models, such as OpenAI's GPT-3 and GPT-4. These models are capable of 

understanding and generating human-like text based on the context provided. They 

have been used in various applications, from chatbots and virtual assistants to content 

creation and code generation. The scalability of Transformers has enabled these models 

to achieve remarkable performance by training on diverse and extensive datasets [24]. 

Generative AI represents a significant leap forward in the field of artificial 

intelligence, offering new possibilities for creativity and innovation. The introduction 

of Transformer models has further amplified its potential, particularly in natural 

language processing. By understanding and addressing the challenges associated with 

generative AI, one can harness its potential to drive progress across various domains 

while ensuring ethical and responsible use. 

1.3.1. Framework of Generative AI 

Generative AI in Natural Language Processing (NLP) involves creating models 

that can generate human-like text based on given inputs. The process of developing a 
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generative AI model for NLP typically involves several key steps and utilizes specific 

frameworks and architectures, primarily the Transformer model. Transformers, 

introduced by Vaswani et al. in 2017 [21], have become the backbone of many 

advanced NLP models due to their efficiency in handling sequential data and their 

ability to capture context through self-attention mechanisms. The key components of 

Transformers include the self-attention mechanism, which allows the model to weigh 

the importance of different words in a sentence relative to each other, capturing 

dependencies and context more effectively. Positional encoding is used since 

Transformers do not inherently understand the order of words, providing the model 

with information about the position of words in a sentence. Feed-forward neural 

networks are applied to each position separately and identically, processing the 

information after the self-attention mechanism. The Transformer architecture consists 

of an encoder to process input sequences and a decoder to generate output sequences, 

though some models use only the encoder or decoder. 

The first step in developing a generative AI model involves collecting a large 

and diverse dataset of text relevant to the task at hand. This dataset needs to be 

preprocessed to remove noise, handle missing values, and standardize formats. 

Common preprocessing steps include tokenization (breaking down text into individual 

words or sub-words), lowercasing, removing punctuation, and handling special 

characters. Based on the task, the appropriate model architecture is selected. For 

generative tasks, the Transformer architecture is commonly used, with models like GPT 

(Generative Pre-trained Transformer) specifically designed for text generation tasks 

[25]. 

Training a generative AI model involves two main phases: pre-training and fine-

tuning. During pre-training, the model is trained on a large corpus of text in an 

unsupervised manner, learning to predict the next word in a sentence, thereby 

understanding grammar, facts about the world, and some level of reasoning ability. The 

objective is to minimize the difference between the predicted word and the actual next 

word in the sequence. After pre-training, the model is fine-tuned on a smaller, more 

specific dataset tailored to the desired application. Fine-tuning helps the model adapt to 

the specific nuances and requirements of the target task, such as conversational 
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responses or creative writing. This phase typically uses supervised learning, where the 

model is trained with input-output pairs [26]. 

The trained model is then evaluated using metrics relevant to generative tasks. 

Common metrics include perplexity (a measure of how well the model predicts a 

sample), BLEU score (for machine translation), and human evaluations for subjective 

assessments of text quality, coherence, and relevance. Once the model performs 

satisfactorily on evaluation metrics, it can be deployed for inference. During inference, 

the model generates text by sampling from the probability distribution of the next word 

given the previous words. Various techniques, such as beam search, temperature 

sampling, and top-k sampling, can be used to control the diversity and quality of the 

generated text [26]. For example, developing a conversational AI model would start 

with collecting a large corpus of conversational data from sources like chat logs, 

dialogues, and transcriptions of spoken conversations. The text data is then cleaned and 

tokenized, handling contractions and removing irrelevant content. A pre-trained model 

like GPT-3, which is specifically designed for text generation, is chosen and fine-tuned 

on the conversational dataset to learn the nuances of human dialogue. The model's 

responses are evaluated using metrics like perplexity and human evaluations, and once 

satisfactory, the model is deployed in a chatbot framework, integrating it with user 

interfaces and back-end systems for real-time interaction. 

Generative AI in NLP leverages sophisticated models like Transformers to 

create human-like text. The development process involves data collection and 

preprocessing, model architecture selection, training (pre-training and fine-tuning), 

evaluation, and deployment. By understanding and implementing these steps, one can 

build powerful generative models capable of performing a wide range of NLP tasks, 

from conversational agents to creative writing assistants. 

1.4. Deep Learning, NLP & Biology 

Deep learning has revolutionized various fields, including biology, where it has 

enabled significant advancements in understanding complex biological systems. Deep 

learning models originally developed for natural language processing (NLP) have been 

successfully adapted to tackle challenges in proteomics and genomics. These models 

leverage the power of neural networks to analyze and interpret large-scale biological 
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data, providing insights that were previously unattainable [27]. Deep learning models, 

such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 

transformers, have been pivotal in processing biological data. CNNs, known for their 

ability to capture spatial hierarchies, have been widely used in genomics for tasks like 

identifying regulatory motifs in DNA sequences. RNNs, designed to handle sequential 

data, are applied in analyzing time-series data such as gene expression profiles. 

However, transformers, with their attention mechanisms, have shown the most promise 

in capturing long-range dependencies in biological sequences, like their success in NLP 

tasks [28]. 

In proteomics, where the primary focus is on studying the structure and function 

of proteins, deep learning has been instrumental. One of the notable applications is 

protein structure prediction. Traditional methods like X-ray crystallography and nuclear 

magnetic resonance (NMR) spectroscopy are time-consuming and expensive. Deep 

learning models, such as AlphaFold  [29] developed by DeepMind, have drastically 

reduced the time required to predict protein structures with remarkable accuracy. 

AlphaFold uses a deep neural network to predict the distances between pairs of amino 

acids, which are then used to construct the 3D structure of the protein. This model has 

achieved unprecedented success in the Critical Assessment of Protein Structure 

Prediction (CASP) competitions, outperforming all other methods. 

Another significant application in proteomics is protein-protein interaction 

(PPI) prediction. PPIs are crucial for understanding cellular processes and disease 

mechanisms [30]. Deep learning models, like DeepPPI [31], utilize neural networks to 

predict interactions based on protein sequences. These models are trained on known 

PPI datasets and can be generalized to predict interactions in unseen data. The use of 

attention mechanisms in transformers allows these models to capture relevant features 

from long protein sequences, improving prediction accuracy. 

Another notable model is DeepVariant [32], developed by Google, which 

employs deep learning for variant calling in DNA sequencing data. DeepVariant uses a 

CNN to process raw sequencing data and accurately identify genetic variants, such as 

single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). The model 

has demonstrated superior accuracy compared to traditional methods, improving the 

reliability of genomic analyses and aiding in precision medicine. 
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Despite these advancements, several challenges remain in applying deep 

learning to biology. One major challenge is the limited availability of high-quality 

annotated data for training models. Biological data is often noisy and heterogeneous, 

requiring careful preprocessing and curation. Additionally, the interpretability of deep 

learning models is a significant concern. Understanding how these models make 

predictions and identifying the biological relevance of the learned features is crucial for 

gaining trust and acceptance in the scientific community [33]. 

Deep learning has had a profound impact on biology, particularly in the fields 

of proteomics and genomics. Models originally developed for NLP tasks, such as 

transformers, have been successfully adapted to analyze biological sequences, leading 

to breakthroughs in protein structure prediction, variant calling, and gene regulation 

analysis. Despite the challenges, the continued development and application of deep 

learning models hold great promise for advancing our understanding of complex 

biological systems and driving innovations in precision medicine and biotechnology. 

By leveraging the power of deep learning, researchers can uncover new insights, 

identify novel therapeutic targets, and ultimately improve human health.  

1.5. Problem Statement and Solution 

1.5.1. Problem statement 

Despite significant advancements in deep learning and its application to 

biotechnology, the generation of accurate and effective antibody sequences remains a 

complex and resource-intensive task. Traditional methods of antibody development are 

costly and time-consuming, often requiring extensive experimental procedures. Recent 

deep-learning models have shown promise in leveraging the inherent information 

within protein sequences for antibody design, but there is still a need for models that 

can generate antigen-specific antibodies with higher accuracy and efficiency.  

1.5.2. Solution  

To address the challenges associated with generating accurate and efficient 

antigen-specific antibody sequences, this research proposes utilizing a pre-trained deep 

learning model that leverages state-of-the-art natural language processing (NLP) 

architectures. The pre-trained model, originally trained on extensive protein sequence 
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datasets, will be fine-tuned specifically on antibody data to enhance its capability in 

generating antigen-specific accurate antibody sequences. By using full-length antigen 

sequences as input, the fine-tuned model aims to significantly improve the accuracy of 

sequences. This approach seeks to provide a more reliable and resource-efficient 

method for antibody design, reducing the reliance on traditional, resource-intensive 

experimental methods and accelerating the discovery of potent antigen-specific 

antibody candidates.   

1.5.3 Objectives  

This research aims to develop a transformer-based deep-learning model to 

generate antigen-specific antibody sequences. The objectives include: 

• Developing a transformer-based model architecture tailored for antigen-

specific antibody sequence generation by fine-tuning a pLM.  

• Evaluating the model's ability to generate high-affinity, antigen-specific 

antibody sequences. 

By achieving these objectives, the research seeks to address the current 

limitations in antibody sequence generation and provide a more efficient approach to 

developing therapeutic antibodies. 
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2. Chapter 2: LITERATURE REVIEW 

Earlier different types of deep learning models have been discussed along with 

their architecture. In this section, different deep learning models for antibody 

development, their architecture, and results that are reported in the literature will be 

discussed. Our focus will be on language models, especially the ones that generate 

protein or antibody sequences. These models are known as protein language models 

(pLM) [27], most of them are transformer-based models and pre-trained on large data 

sets of protein sequences. These models are discussed in the following section. The 

application of DL in this area leverages vast datasets of protein and antibody sequences, 

combined with structural and functional annotations, to train models that can predict 

and generate new sequences. This advancement holds promise for accelerating drug 

discovery and improving therapeutic efficacy. 

2.1. Transformers in NLP Task 

In the paper "Transformers: State-of-the-Art Natural Language Processing  

[34]" by Thomas Wolf and his team at Hugging Face, the focus is on how transformer 

architectures have revolutionized the field of natural language processing (NLP). 

Introduced in 2017, transformers have overtaken previous models like convolutional 

and recurrent neural networks by handling large-scale data more efficiently, training in 

parallel, and recognizing complex features in text sequences. 

The main contribution of this paper is the introduction of the "Transformers" 

library. This open-source resource has been a game-changer by making cutting-edge 

NLP models accessible to a broader community. The library supports a wide range of 

NLP tasks through its extensive collection of pre-trained models, tokenizers, and 

datasets designed to be adaptable for both research environments and real-world 

applications. 

One of the core challenges discussed in the paper is how to effectively 

implement these models across different platforms, ensuring they are scalable and 

deployable in various settings. The "Transformers" library addresses these issues by 

providing tools that simplify the training, scaling, and deployment processes, making it 

easier for users to leverage transformer models for their specific needs. 
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This paper is essential for understanding how the "Transformers" library is 

democratizing advanced NLP technologies, enabling users to achieve state-of-the-art 

results in various NLP tasks with relative ease. The insights from this study highlight 

the potential of transformer models to enhance and streamline NLP applications, setting 

a new standard in the field. 

2.2.Innovations in Generative Modelling for Protein Design 

The field of developing protein language models is excelling at such a pace that 

every day new models are being reported in scientific journals and model hubs. The 

very first protein models that used simple neural network architecture to generate 

protein sequences were reported in 2018 with the title, “Computational Protein Design 

with Deep Learning Neural Networks” by Jingxue Wang and colleagues  [35]. They 

developed a multi-layer neural network model to predict the likelihood of 20 natural 

amino acids at each residue position within a protein, based on a comprehensive dataset 

of protein structures. By incorporating various structural properties as input features, 

the model achieved an accuracy of 38.3%. 

This research demonstrates the significant role of deep learning in capturing 

complex patterns within large datasets, which traditional methods might miss. By 

applying the network's output as residue type constraints, they enhanced the accuracy 

of protein designs using Rosetta software for three specific proteins. Their results not 

only showed improvements over previous methods but also highlighted the neural 

network's ability to contribute effectively to the field of protein design. 

These findings are vital as they provide a new perspective on utilizing machine 

learning to refine and accelerate the computational design of proteins. The implications 

of this study suggest that deep learning could play a crucial role in developing proteins 

with desired functions and structures, potentially leading to advancements in medical, 

biological, and chemical applications. 

Meantime, Transformer architecture got the attention of researchers, and they 

started to build transformer-based architecture and trained them on protein sequence 

data. The paper titled "ProtGPT2 is a deep unsupervised language model for protein 

design" delves into the capabilities of ProtGPT2, an advanced language model 

specifically crafted for protein design. This model, utilizing the transformer 
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architecture, is trained on an extensive dataset of protein sequences and employs 

autoregressive training methods to generate new, de novo protein sequences that are 

evolutionary distant yet functionally viable [36]. 

ProtGPT2 distinguishes itself by its ability to produce protein sequences that 

are not only structurally akin to natural proteins but also explore uncharted regions of 

the protein space, known as 'dark' areas. This is critical for expanding the diversity of 

protein structures available for scientific study and application. The generated proteins 

predominantly exhibit globular structures with appropriate disorder and secondary 

structure content that aligns closely with those found in nature. A key aspect of 

ProtGPT2's functionality is its potential in high-throughput settings where it can 

generate sequences rapidly, making it an invaluable tool for both research and practical 

applications in fields ranging from biomedicine to environmental science. This model's 

ability to generate proteins that can potentially fold into stable, ordered structures 

similar to those observed in nature underscores its utility in advancing the protein 

engineering field.  

There are some other models too that use transformer/attention-based 

architecture for protein sequence modelling. For example, "Transformer-based Protein 

Generation with Regularized Latent Space Optimization" (ReLSO)  [37] introduces a 

novel approach to protein design, combining transformer-based autoencoders with 

optimization techniques in a structured latent space. In this method, Castro et al. address 

the complexity of protein design by effectively navigating a vast space of potential 

amino acid sequences, allowing for the optimization of specific properties like stability 

and binding affinity through gradient ascent. ReLSO enhances the efficiency of protein 

sequence exploration by avoiding local maxima, a common challenge in traditional 

methods, and employs regularization techniques to maintain a favorable fitness 

landscape. This streamlined approach significantly reduces the experimental demands 

of protein engineering, merging advanced AI strategies with biological research to 

foster developments in biotechnology and therapeutic design. 

Shin et al. (2021) [38] and Shuai et al. (2021) [39] have both leveraged 

generative models to enhance protein and antibody design. Shin et al. developed 

alignment-free autoregressive models that synthesize protein sequences without 

evolutionary constraints, this study is important to generate diverse protein sequences 
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and bypassing the other computational methods that rely on multiple sequence 

alignment. Concurrently, Shuai et al. focused on generating full-length antibody 

sequences with their IgLM-designed libraries, showing favourable outcomes over naive 

baselines. However, the models' performance near variable regions like CDRs still 

requires improvement.  

2.3.Deep Learning for Specificity and Optimization in Antibody Design 

Mason et al. (2021) introduced a deep-learning model that predicts antigen 

specificity and optimizes antibody variants, marking a significant advancement in 

therapeutic antibody development. They generated many antibodies for HER2 by using 

the mutagenesis technique and then classified them as a binder and non-binder. They 

trained CNN on binding data and proposed their model as the optimizer for HER2. 

Their model, specifically effective for HER2, showcases the potential of machine 

learning in narrowing down viable antibody candidates based on complex biological 

parameters [40]. 

2.4.Antibody Engineering Model 

After promising results of different protein language models, the researchers 

started to train the models on antibody data to get more reliable, specific, and efficient 

potential candidates. For this purpose, different deep learning architectures were 

proposed that were pre-trained on different datasets of antibodies. These models have 

shown significant results and served as potential AI tools in antibody development and 

antibody sequence modeling. Below are some deep learning models that coined the 

term antibody models that have merged in the consequence of AI’s development [41],  

[42].  

The first study to discuss here was published in a scientific report by Saka et al. 

(2021). They used LSTM-based architecture for antibody design. This approach 

leverages a phage display library to enhance the affinity maturation of antibodies 

against specific targets. By integrating LSTM models with next-generation sequencing 

(NGS) data, the research team efficiently identified high-affinity antibody sequences, 

significantly streamlining the traditional, labor-intensive process of affinity maturation. 

This method reduced the time and cost associated with antibody development but also 
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improved the potential to find high-affinity antibodies, which is critical for therapeutic 

and diagnostic applications [43].  

Another famous work was done by big brains of John Hopkin’s University and 

the University of California, Berkley, W. Shuai, et al. proposed the model 

Immunoglobulin Language Model (IgLM), [39] a deep generative language model 

optimized for designing synthetic antibody libraries. This model leverages 

autoregressive sequence generation techniques, like text infilling in natural language 

processing, to enhance the development of monoclonal antibodies. IgLM is distinct in 

its ability to redesign variable-length spans of antibody sequences, which significantly 

accelerates the discovery of therapeutic antibody candidates. The model, trained on 

over 558 million antibody heavy and light chain variable sequences, uses this vast 

dataset to generate synthetic libraries that display desirable biophysical properties 

consistent with those of natural antibodies, but with lower immunogenicity and 

increased "humanness." These properties are crucial for reducing the likelihood of 

rejection in therapeutic applications. The study showcases IgLM's capability to 

generate full-length antibody sequences and diversify loops within these sequences, 

maintaining high sequence fidelity to known antibody structures while enabling rapid 

exploration and innovation in antibody design. 

Another study recently published in “Genomics and Proteomics 

Bioinformatics” by Xiaopeng XU and colleagues represented the model “AB-Gen” in 

the study “AB-Gen: Antibody Library Design with Generative Pre-trained Transformer 

and Deep Reinforcement Learning”. They introduced an innovative method using 

reinforcement learning and generative transformers to optimize antibody design, used 

a trained transformer model as the policy network in a reinforcement learning 

framework to explore and generate antibody sequences, particularly focusing on the 

heavy chain complementarity-determining region 3 (CDRH3). The method improved 

the design process by generating sequences that meet multiple property constraints, 

such as specificity to human epidermal growth factor receptor-2 (HER2), solubility, 

and reduced immunogenicity. 

AB-Gen's effectiveness is demonstrated by its ability to produce novel CDRH3 

sequences that not only exhibit desirable biophysical properties but also surpass 

traditional design methods in terms of success rate. The use of deep learning 



20 
 

significantly reduces the experimental burden by filtering out suboptimal candidates 

early in the design process, thus enhancing the efficiency and outcome of preclinical 

antibody discovery and development. 

The reviewed studies demonstrate significant advancements in using artificial 

intelligence for protein and antibody design, showing that these technologies can speed 

up the creation of new biomolecules with potential therapeutic uses. However, these 

studies also face limitations, such as high computational costs and dependence on 

extensive and diverse data sets, which can affect the models' effectiveness and 

accessibility. Additionally, integrating these computational tools into existing scientific 

workflows remains challenging, often requiring substantial experimental validation to 

confirm the computational predictions. Moving forward, improving the efficiency, data 

handling, and integration of these models will be crucial to fully realize their potential 

in practical applications. 

2.5.Antigen-specific models for Antibody Engineering 

Until now the models that are discussed in the above section and a few others 

that were architected for antibody sequence generation are proficient antibody-like 

sequences that preserve the properties of antibodies, their efficacy, and specificity in 

general. But an important aspect to note is that antibodies in nature are produced in 

response to antigens. Meaning when antigens enter the body the immature B cells 

produce antibodies against these pathogens. Similarly, there should be an intelligent 

system that acts like the natural system to produce antibodies against the antigens. After 

an in-depth exploration of the literature, only a few such studies were identified that 

incorporate the antigen/epitope information to model antibody sequences. Two out of 

them are discussed below.  

The first study "Epitope-specific antibody design using diffusion models on the 

latent space of ESM embeddings" by Tomer Cohen and Dina Schneidman-Duhovny 

introduces EAGLE (Epitope-specific Antibody Generation using Language model 

Embeddings), a novel approach for designing antibodies  [44]. Unlike conventional 

methods that rely on a predefined antibody structure, EAGLE employs a diffusion 

process, akin to generative models in image processing, conditioned on the antigen's 

structure and specific epitopes. This allows for the design of antibodies directly in a 
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continuous latent space provided by protein language model embeddings, enabling the 

creation of diverse and unique antibodies with variable loop lengths. 

EAGLE demonstrates substantial advancements by generating antibody 

sequences that exhibit up to 55% identity to known binders, especially in the most 

variable heavy chain loop, without the need for a starting structure. This capability is 

crucial for developing therapies targeting specific antigen aspects, such as conserved 

viral regions, potentially enhancing therapeutic efficacy and reducing resistance 

development. The model's performance is evaluated through metrics like Variable 

Length Amino Acid Recovery (VAAR) and docking scores, with EAGLE showing 

superior performance compared to other methods like HERN, which relies on fixed-

length CDRs. This research signifies a significant step forward in computational 

biology, applying advanced AI techniques to the complex challenge of epitope-specific 

antibody design. By leveraging generative models conditioned on detailed biological 

information, the study not only enhances the understanding and capability of antibody 

design but also opens new avenues for more effective and targeted therapeutic 

interventions. 

And the other study was done in 2023 "Pre-training Antibody Language Models 

for Antigen-Specific Computational Antibody Design" by Kaiyuan Gao et al. 

introduces AbBERT, a pre-trained antibody language model that revolutionizes 

computational antibody design  [45]. By leveraging extensive sequence data, this model 

overcomes the limitations of scarce structural data and focuses on the highly variable 

complementarity-determining region (CDR), essential for binding specificity and 

affinity. AbBERT uses a one-shot generation technique to produce all amino acids of 

the CDR simultaneously, reducing the errors associated with traditional sequential 

methods. This innovative integration enhances both the sequence prediction and 

structural fidelity of the designed antibodies, ensuring their functionality and relevance 

in practical applications. The effectiveness of AbBERT is particularly notable in 

optimizing CDR-H3 regions, crucial for antigen binding, with superior performance 

against challenging targets like SARS-CoV-2. The model's ability to produce 

structurally accurate antibodies with high specificity is demonstrated through its 

excellence in docking scores and Variable Length Amino Acid Recovery (VAAR), 

consistently outperforming existing methods. This paper highlights a significant 
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advancement in antibody design, showing how AI-driven models like AbBERT can 

transform therapeutic developments by optimizing the design process for specific 

antigens, thus offering a promising avenue for creating targeted and efficient therapies. 

These studies incorporated the antigen/epitope information in their model as 

input and generated the antibody CDR sequences and structures but were limited to 

short lengths of input like only the epitope region and only giving the CDRs as output.   

2.6. Significance of the Study 

The development of an antigen-aware generative model holds significant 

potential for the field of antibody engineering. Such a model could revolutionize the 

antibody development cycle by providing a means to rapidly generate candidate 

antibody sequences with high specificity and affinity for target antigens. This capability 

would streamline the initial stages of antibody development, reducing the time and cost 

associated with experimental screening and optimization.  

By addressing the current limitations in antibody sequence generation, this 

research aims to make a significant contribution to the field of computational antibody 

engineering, paving the way for more efficient and targeted therapeutic developments. 

The successful implementation of an antigen-aware generative model would represent 

a major advancement in the ability to design and develop antibodies, with wide-ranging 

implications for healthcare and biotechnology. 
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3. CHAPTER 3: METHODOLOGY 

3.1. Methodology Overview 

In this section, the methodology to achieve the objective of this study is 

discussed briefly. The first step is data acquisition, followed by data curation. In the 

data curation step the data was curated to feed to the model. The next step was the 

selection of an appropriate model, finetuning the selected model on curated data and 

then finally model’s output was evaluated using the Amino Acid Recovery Rate 

between the generated antibody and antigen was performed. All these steps are 

discussed comprehensively below.  

3.2. Data Acquisition  

A secondary dataset was used for this study collected from the SAbDab 

database [46] following the objective of this study only data from proteins as the antigen 

type were retrieved the data was in a protein data bank (pdb) file containing the antibody 

heavy and light chain structures and corresponding antigen structure. Along with the 

pdb files summary files were also retrieved that were used for the curation in the later 

step. The antibodies in this dataset were renumbered by the IMGT numbering scheme 

[12],  [46].  

3.3. Data Curation  

This study is focused on sequences of antibodies and corresponding antigens, 

pdb files were subjected to amino acid sequence extraction and water removal using 

BioPython modules. Once the sequences were extracted, each pdb file had one or more 

antibody heavy and light chain sequences and corresponding antigen sequences. These 

amino acid sequences are labeled with the chain IDs e.g., Chain A, Chain B, Chain C. 

The annotation of these chains is present in the summary file downloaded earlier. This 

summary file was used to curate the data that the CSV files of antibody sequences of 

heavy and light chains along with corresponding antigen sequences in a paired manner.  

To achieve this data curation different Python libraries were used mentioned in the table 

given below.  

https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab
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Table 3.1 Python libraries used for data curation. 

Library Purpose 

BioPython 
A collection of tools for biological computation, providing libraries and 

scripts for working with bioinformatics data. 

os 
Provides functionalities for interacting with the operating system, such 

as file and directory manipulation. 

CSV 
Enables handling of CSV (Comma-Separated Values) files, including 

reading and writing operations. 

Bio.SeqIO 
Supports input and output operations on biological sequence data in 

various file formats. 

PDBParser 
Facilitates parsing and extracting structural information from Protein 

Data Bank (PDB) files. 

Bio.Seq 
Represents and manipulates nucleotide or protein sequences in 

BioPython. 

Bio.SeqRecord 
Manages sequences along with associated metadata, annotations, and 

features within BioPython. 

 

3.4. Model Selection 

After conducting a comprehensive literature review and gaining an in-depth 

understanding of various models, it was concluded that a sequence-to-sequence 

(Seq2Seq) model would be well-suited to achieve the objectives of this study. Seq2Seq 

models are extensively utilized in natural language processing tasks, including machine 

translation. These models typically employ an encoder-decoder architecture, where the 

encoder processes the input sequence and converts it into a context vector. This context 

vector is then provided to the decoder, which generates the output sequence iteratively. 

AlphaFold is a transformer-based Seq2Seq model, which takes protein sequence as 

input and generates the 3-D spatial arrangement of its amino acids. The task was 

approached as a machine translation problem, where antigen sequences are provided as 

input to the model, and antibody sequences are generated as output. The Text-to-Text 

Transfer Transformer (T5), a versatile and robust sequence-to-sequence model 



25 
 

developed by Google Research, was employed for this purpose. Its text-to-text 

framework made it a strong candidate to apply in protein space. This was attempted by 

Elnaggar et al, who developed several different models one of them is 

prot_t5_xl_uniref50(protT5), pre-trained on 45 million protein sequences of the 

Uniref50 dataset [47].  

3.4.1. protT5  

ProtT5 uses an encoder-decoder structure typical of the T5 architecture. The 

encoder processes input sequences and generates context-rich embeddings, which the 

decoder then uses to produce output sequences. This architecture is particularly well-

suited for tasks that require generating sequences, such as predicting protein structures 

or functional annotations. The ProtT5 model comes in two sizes: ProtT5-XL and 

ProtT5-XXL, with 3 billion and 11 billion parameters, respectively. These models were 

trained using a combination of UniRef50 and BFD (Big Fantastic Database) datasets. 

The initial training on the larger, more diverse BFD dataset was followed by fine-tuning 

on the more curated UniRef50 dataset. This two-step training process enhances the 

model's ability to generalize and adapt to specific protein-related tasks.  

3.4.2. Architecture of protT5 

ProtT5 utilizes the "T5ForConditionalGeneration" architecture, optimized for 

tasks that involve generating sequences from input data. This model is characterized by 

a high-dimensional setting, with a model dimension (d_model) of 1024 and a feed-

forward layer dimension (d_ff) of 16384, allowing it to capture complex patterns within 

protein sequences. The model incorporates a robust attention mechanism with key, 

query, and value vectors (d_kv) sized at 128, facilitating focused processing of 

sequence features. To combat overfitting, a dropout rate of 0.1 is employed, alongside 

ReLU activations within the feed-forward projections to enhance non-linear learning. 

ProtT5 is structured as a seq2seq model, featuring both encoder and decoder 

segments that process and generate sequences, respectively. It supports up to 512 

positions in sequence length and utilizes 32 attention heads to manage multiple 

sequence relationships. The model’s vocabulary size stands at 128, allowing it to 
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efficiently handle diverse protein-related data. This configuration highlights ProtT5's 

advanced capabilities in analyzing and predicting complex biological sequences. 

3.5. Model Fine-tuning 

For the finetuning of the original protT5, the model was loaded which is 

available as open source on the Hugging Face platform. From this original model, two 

models were fine-tuned, the Light-chain model and the Heavy-chain model, separately. 

The two finetune models were trained using the transfer learning technique. The 

following steps were followed for transfer learning.  

• Loading a Pre-trained Model: The pre-trained model, ProtT5, was utilized to 

leverage previously learned features from extensive training on a large dataset 

with 3 billion parameters. 

• Customizing the Configuration: The configuration of the model was 

customized by modifying its setup to reduce its complexity, including 

decreasing the number of layers. For the heavy chain model, 4 encoder and 

decoder blocks with 4 attention heads were used along with 3384 feed-forward 

layers. For light chain model, 6 encoder and decoder blocks with 6 attention 

heads along with 16684 feed-forward layers. For both models positional 

encoding of 512 was used.  

• Preparing Data with a DataLoader: The data was prepared using a 

DataLoader to ensure that it was in a format suitable for processing by the 

customized model, along with train and test splits with an adequate batch size 

of 370.  

• Training the Customized Model: The customized model was trained on a 

SabDab and AbDb paired antigen-antibody sequences. to update its weights and 

biases.  

• Saving the Model: After training, the model was saved to preserve its state, 

including all learned weights.  

3.5.1. Cross Entropy Loss 

Cross-entropy loss is a performance metric that quantifies the difference 

between two probability distributions: the predicted probability distribution and the 

actual distribution of the labels. In machine learning, especially in classification tasks, 
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it is used to measure the error between the model's predicted outputs and the actual 

target values.  

Adapted Cross-Entropy Loss Formula 

For such applications, the sequence-based cross-entropy loss is computed as 

follows: 

L = −
1

𝑁
∑ ∑ ∑ 𝑦𝑖,𝑡,𝑐

𝐶

𝑐=1

𝑙𝑜𝑔(𝑝𝑖,𝑡,𝑐)

𝑇𝑖

𝑡=1

𝑁

𝑖=1

 

Where: 

• N represents the number of samples, typically corresponding to the batch size 

during training. 

• Ti denotes the length of the sequence for the i-th sample. 

• C is the total number of classes, equivalent to the size of the vocabulary in 

language models. 

• Y i,t,c  is a binary indicator (0 or 1), specifying whether class label ccc is the 

correct classification for the t-th token in the i-th sequence. 

• pi,t,c represents the predicted probability that the t-th token in the i-th sequence 

belongs to class ccc. 

This formula ensures that the loss is calculated across all tokens in the output 

sequence, comparing the predicted probabilities at each token position against the 

actual token labels in a multi-class setup. By computing the loss in this manner, the 

model is trained to enhance its accuracy across the entire sequence, which is essential 

for achieving high performance in sequential prediction tasks. 

Importance in Training 

The sequence-based cross-entropy loss is integral to the training process as it 

provides a granular measure of the model's prediction accuracy at each token position 

within the sequences. This loss function penalizes incorrect classifications harshly, 

especially when the model assigns low probabilities to the correct classes, thereby 

encouraging significant adjustments in the model's parameters. The logarithmic nature 

of the loss function amplifies the penalties for errors, ensuring that the model not only 

predicts accurately but also with high confidence across the length of the sequence. 
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This methodological approach to loss calculation is crucial for developing 

robust models capable of handling complex sequence generation tasks, thereby 

ensuring that the models perform optimally in real-world applications where accuracy 

and reliability are paramount.  

3.6.Training 

For training purposes, the Pytorch framework was used along with other 

important libraries like Transformer, sklearn, numpy, and pandas. A detailed overview 

of libraries that were imported for the training is given in Table 3.2. All these packages 

were utilized efficiently to achieve the model training.  

 

Table 3.2 List of Libraries/modules used in full finetuning of ProtT5. 

Library/Module Usage 

CUDA 12.1 
To train the model on a Nvidia GPU device, Pytorch utilizes 

CUDA for faster computations during model Training.  

huggingface-hub 

0.19.4 

This package was used to download the ProtT5 original 

model from Hugging Face.  

Jupyter 1.0.0 
Jupyter Notebooks provides an interactive workspace for 

code execution along with the visualization of plots.  

NumPy 1.26 
Used for numerical computations as they are an integral part 

of model training.  

Pandas 2.1.3 
Enables powerful data manipulation and analysis, providing 

DataFrames and tools for working with structured data. 

PyTorch 2.1.1 

Facilitates the creation, training, and optimization of neural 

networks with dynamic computational graphs, widely used 

for deep learning tasks. 

Scikit-learn 

Offers tools for data preprocessing, model evaluation, and 

splitting datasets into training and testing sets, essential in 

machine learning workflows. 

Seaborn 

Used for creating attractive and informative statistical 

graphics, often in conjunction with Pandas and NumPy for 

data visualization. 

Streamlit 

Enables the rapid development of web applications for 

machine learning models, allowing for easy deployment and 

sharing. 

TensorFlow 2.15 

Serves as a deep learning framework for training complex 

neural networks, often used in conjunction with Keras for 

building models. 



29 
 

Tokenizers 0.15 

Provides efficient tokenization of text data for NLP tasks, 

used with transformers for handling large datasets in natural 

language processing. 

TQDM 4.66 

Adds progress bars to loops in Python, which is useful for 

tracking the progress of long-running operations such as 

model training. 

Transformers 4.35 

Provides pre-trained models and tools for fine-tuning them 

on specific tasks, particularly in natural language processing 

and other AI domains. 

 

All the above libraries were utilized, and the training of the model was ensured 

in this study. The process of finetuning the model and the usability of packages is 

discussed as follows.  

3.6.1. Setup and Configuration 

The study utilized the PyTorch framework and the Hugging Face Transformers 

library to configure and train a T5 model specifically tailored for translating antigen 

chain sequences into heavy chain sequences. Initial setup verified GPU availability to 

utilize CUDA 12.1, enhancing computation efficiency critical for deep learning models. 

A custom T5 model configuration was defined (T5Config), with parameters set to 

optimize the model for the specific requirements of the task. These parameters included 

adjustments to the dropout rate, activation functions, and the model's architecture to 

accommodate the sequence complexity and length encountered in the dataset. 

3.6.2. Data Preparation 

Data was sourced from a CSV file containing antigen and heavy chain 

sequences. This dataset was pre-processed to remove any entries with missing data 

(dropna) and to ensure all text data was in string format. Stratified splitting was 

employed to divide the dataset into training (80%), validation (10%), and test (10%) 

sets, maintaining a consistent distribution of data across each set for unbiased model 

training and evaluation. 

3.6.3. Tokenization and Data Loading 

The T5Tokenizer was utilized to tokenize the text data. This tokenizer converted 

sequences into token IDs, compatible with the T5 model's input requirements. Batch 
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encoding (batch_encode_plus=True) was applied to transform both source and target 

texts into padded token tensors, facilitating uniform input sizes for batch processing. 

Custom Dataset and DataLoader classes were implemented to manage this tokenized 

data efficiently, ensuring that data was shuffled for the training set to prevent model 

overfitting and fed in batches to the model during training. 

3.6.4. Model Initialization and Multi-GPU Setup 

The T5 model was instantiated from the pre-trained state with the specified 

custom configuration and then transferred to the appropriate computational device 

(GPU). For environments with multiple GPUs, DataParallel was employed to 

distribute the model's workload across available GPUs, significantly speeding up the 

training process. 

3.6.5. Training Loop 

The model training was conducted over 30 and 15 epochs for heavy and light 

chain models respectively. Each epoch consisted of a forward pass where the model 

predicted the heavy chain sequence from the antigen chain sequence, followed by a 

backward pass where the model's parameters were updated based on the computed loss. 

Loss calculation was performed using the model's outputs against the ground truth 

sequences, with the AdamW optimizer and a learning rate of 0.001 schedulers 

managing the optimization process. 

3.6.6. Evaluation and Checkpointing 

After each training epoch, the model's performance was evaluated on both 

validation and test datasets. This evaluation assessed the model's translation accuracy 

and its ability to generalize. Metrics such as average loss and accuracy were computed 

and stored. Model checkpoints were saved at the end of each epoch, allowing the 

training process to be resumed from specific points and facilitating the selection of the 

best-performing model based on validation data.  
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3.6.7. Final Output 

Upon completing the training epochs, the final model state was saved to a 

designated directory. This model encapsulated all learned parameters and 

configurations, optimized through rigorous training and ready for deployment or further 

fine-tuning. Validation and testing were critical phases conducted at the end of each 

training epoch, where the model’s performance was rigorously evaluated on unseen 

data. These evaluations were performed within a no-gradient context to enhance 

computational efficiency, calculating both loss and accuracy to assess the model's 

generalizability and robustness. 

Checkpointing was systematically implemented, saving the model’s state along 

with the optimizer and scheduler states at the end of each epoch, 35 checkpoints were 

for heavy chain model and 15 checkpoints were for light chain model. This strategy not 

only safeguarded the training progress by providing recovery points but also ensured 

the retention of the best-performing model configuration throughout the training 

sequence. Upon the completion of the training regimen, the fully fine-tuned models for 

both the light and heavy chain configurations were saved to their respective paths. 

This unified training approach provided a structured and replicable framework, 

critical for advancing research in protein chain analysis and ensuring that both models 

were optimized under consistent conditions for subsequent comparative and standalone 

evaluations. 

3.7. Evaluation 

The next in model development after training is evaluation, where the model is 

assessed using different evaluation metrics. Depending on the task and the model 

architecture these evaluation metrics vary from case to case. For this study, in which 

the output of the model is the generated sequence of antibodies three different types of 

evaluation metrics are used by different studies. These evaluation metrics validate the 

generated sequence by comparing them with the original antibody sequences against 

the test data set.  
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3.7.1. Amino Acid Recovery Rate (AAR) 

AAR measures the proportion of amino acids in a predicted sequence that 

exactly matches those in the original sequence, at the correct positions. The formula for 

AAR, based on your description and code, is: 

AAR =
Matching Amino Acids

min(|original_sequence|)
× 100] 

The AlignmentScore calculates the similarity score between two sequences by 

determining the total number of matching characters in the sequences when they are 

aligned optimally. AlignmentScore was calculated by using SequenceMatcher from 

Python's difflib module. 

The alignment score S between two sequences seq1 and Seq2 can be 

mathematically represented as: 

S(seq1,  seq2)  =   ∑ ⬚

blocks

 n 

where each block in the list of matching blocks provided by “SequenceMatcher” 

contributes “n” matched characters to the total score 

AAR is then calculated by dividing this score by the maximum length of either 

the original or recovered sequence, which normalizes the score by the longest sequence 

to account for differences in length. In the context of antibody sequence modelling, 

AAR is important because it evaluates how well the predicted sequence recovers the 

original sequence, larger the value of AAR, better the performance of the model is.  

3.7.2. Variational Amino Acid Recovery Rate (VAAR) 

VAAR extends the concept of AAR to handle sequences of variable lengths, 

which is common in regions like the Complementarity Determining Regions (CDRs) 

of antibodies. The formula for VAAR is: 

𝑉𝐴𝐴𝑅(𝑥, 𝑦) =
AlignmentScore(𝑥, 𝑦)

max(|𝑥|, |𝑦|)
× 100 



33 
 

Similar to AAR, VAAR uses the AlignmentScore but adapts it for sequences 

where the length may vary significantly, such as between different CDRs. By 

normalizing against the maximum length of the two sequences being compared, VAAR 

provides a metric that reflects how well the variable-length sequences are recovered or 

replicated, despite these length differences. The ability to accurately replicate or predict 

variable-length sequences is crucial for designing antibodies with high specificity and 

affinity. VAAR is critical for evaluating how well a computational model can handle 

the inherent variability in antibody sequences, especially in the CDRs, which directly 

interact with antigens. 

3.7.3. Sequence Identity (SeqID) 

SeqID quantifies the percentage of identical amino acids between two aligned 

sequences, normalized by the length of the shorter sequence. The formula for SeqID is: 

𝑆𝑒𝑞𝐼𝐷(𝑥, 𝑦) =
AlignmentScore(𝑥, 𝑦)

min(|𝑥|, |𝑦|)
× 100 

This metric calculates the AlignmentScore divided by the length of the shorter 

sequence, which emphasizes how well the shorter sequence is recovered or represented 

in the alignment. Sequence Identity is an essential metric in bioinformatics for assessing 

the similarity between two sequences, indicating how much of the smaller sequence is 

preserved in the larger one. This is particularly important in validating how well 

predicted CDRs align with known CDRs. 

3.7.4. Test Set 

Model performance is typically evaluated using benchmark datasets that are 

commonly employed in related studies to facilitate comparative analysis of different 

methods. However, in the current study, no such benchmark dataset was available. 

Hence, the common practice of using unseen data for evaluation was utilized. This 

unseen data can be sourced from the same dataset as the training data or from other 

suitable sources deemed appropriate for evaluation purposes. In this study, the test data 

was obtained from the same source, SabDAb. All complexes that were added to the 

database after the retrieval of the initial training data were identified and downloaded 
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for use as the test set. There were more than 300 complexes added to the database, out 

of which 170 complexes were selected as the test set for this study.    
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4. CHAPTER 4: RESULTS  

In this section, the results of the methodology followed for this study will be 

discussed comprehensively.  

4.1.Data Acquisition 

From the SAbDab database, a total of 5091 structures were downloaded along 

with their summary files that record data for each heavy-light chain pairing in each 

Protein Data Bank (PDB) structure. These files include the PDB code, chain identifiers 

for heavy and light chains (noted as 'H' and 'L' respectively, or 'NA' if unpaired), and 

model numbers, typically '0' for X-ray structures. Additional details cover the antigen 

chains and their types (such as protein or peptide), with specifics provided for bound or 

unbound states. The summary also provides a short header describing the molecule, 

deposition date, compound description, and biological sources including organisms and 

species of the antibody and antigen chains. Authorship, publication details, structural 

resolution, and determination methods are also noted. Structural features like 

engineering status and subclass information for chains are included alongside 

biophysical data such as antibody affinity, Gibbs free energy changes, affinity 

determination methods, and experimental conditions. This comprehensive data set 

provides essential insights into the antibody structures housed within the database. 

4.2.Data Curation 

The annotations provided in the summary files were utilized to curate the data, 

ensuring it was properly formatted for input into the model. Given that the base model 

is a T5-like architecture, which requires paired data, various Python libraries were 

utilized to restructure the data into a paired format, as outlined in Table 1.1. This step 

was crucial because the study employed a transfer learning approach, where a model 

pre-trained through unsupervised learning was subsequently fine-tuned using a 

supervised learning approach. Table 4.1 provides a representation of the data used.  
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Table 4.1 Representation of the paired dataset after curating to be used for training. 

PDB_ID Antigen_Sequence Light_Chain_Sequence 

5IKC_1 
 [ A A K K V R F Y R N G D R YG 

D R Y F K G, ...] 

 [ D I V M T Q S Q K L M S T S V G 

D R V S I T C K A S Q I V D ...] 

2I9L_1 
 [ I V Y A V S S D R F R S F D A L 

L A D L T R S L ...] 

 [ D I V M T Q S Q K L M S T S V G 

D R V S I T C K A S Q I V D ...] 

5CZV_1 
 [ R S L S D N I N L P Q G V R Y I 

Y T I D G S R ...] 

 [ D I V M T Q S Q K L M S T S V G 

D R V S I T C K A S Q I V D ...] 

6CBV_1 
 [ K I G S M D E L E E G E S Y V C 

S S D N F F K K V E Y T K, ...] 

 [ D I V M T Q S Q K L M S T S V G 

D R V S I T C K A S Q I V D ...] 

 

4.3. Training  

Model training was performed on the Nvidia P400 GPU, the light_chain model 

took approximately 6 days (6814m) to train on the data set. While the heavy chain 

model took almost 4 days to train on the data. During training the test and validation 

losses were calculated and are shown below.  

 

Figure 4.1 Training and Validation Losses for the light chain model calculated during 

training. 
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The above graphs showed a gradual decrease in training and validation loss 

across the epochs, which indicates that the model was learning efficiently during the 

training. The cross-entropy loss function was adaptively used for calculating the loss as 

described earlier in section 3.5. At the final epoch, the training loss was 0.138 and the 

validation loss was 0.102, at this point, the model was saved. For the heavy chain 

model, the same loss function was used as well, the training loss at the final checkpoint 

was 0.20 and the validation loss was 0.11. Figure 4.2 given below represents the 

training and validation loss during the training.  

 

Figure 4.2 Training and validation loss of Heavy chain model calculated during the 

training. 

Like the light chain model, the training and validation loss for the heavy chain model 

also showed a gradual decrease during the training. These graphs depict that the models are 

smoothly and efficiently trained on the data.  

4.4. Evaluation 

After the training, the models were saved and evaluated on different evaluation 

metrics. These evaluation metrics are AAR, VAAR, and SeqID mentioned in section 

3.6 on the test set. For this purpose, the antigen sequence of the test set was used to 

generate antibody light chain and heavy chain sequences by loading the two respective 

models at the evaluation stage, and the inference was drawn. A dedicated function, 



38 
 

translate, is designed to handle the generation of both chains. This function first 

encodes input antigen sequences into a tensor format suitable for model input. Using 

the model's generate method, it then produces multiple sequence predictions, 

introducing variability and diversity through parameters such as temperature, top-k, and 

top-p sampling. These parameters are important because they help to explore the 

variation in the generated sequences. The value for these parameters can be adjusted to 

generate diverse sequences thus increasing the chances of potential antibody sequences 

which can be narrowed down after further downstream analysis like humanness score 

and solubility. By using the above-mentioned mechanism, 10 sequences were generated 

against each antigen sequence of the test set from both the models, and these 

generated/predicted heavy and light chain sequences were evaluated, the results of 

predicted sequences are given in the following sections.  

4.4.1. AAR 

A total of 1700 antibody light and heavy chain sequences were generated 

against 170 antigen sequences (10 sequences against each antigen), and AAR was 

calculated for both chains. This study reports very promising results with a mean AAR 

of ~ 60% and a maximum reported AAR is ~ 97% for Light chain sequences. For the 

heavy chain sequences, ~ 40% mean AAR is reported, and a maximum AAR of ~76%. 

The distribution of AAR for the test set is shown below in the histograms for both the 

light and heavy chain sequences.   
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Figure 4.3 Histogram of Recovery Rate (%) for Light Chains (LC) 

This histogram displays the distribution of recovery rates for light chain sequences. 

The red dashed line represents the mean recovery rate at 60.80%, while the maximum 

recovery rate is shown by a green dotted line at 97.29%. The distribution is bimodal, with 

significant peaks indicating high efficiency in recovery rates at both moderate and near-

optimal levels, underscoring the enhanced recovery performance of light chain sequences for 

the test data set. 
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Figure 4.4 Histogram of Recovery Rate (%) for Heavy Chains (HC) 

This histogram illustrates the distribution of recovery rates across heavy chain 

sequences. The mean recovery rate is denoted by a red dashed line at 40.03%, and the 

maximum recovery rate is marked by a green dotted line at 76.27%. The distribution 

primarily shows a single peak, reflecting a concentration of recovery rates around the mean, 

indicating moderate efficiency in the recovery of heavy chain sequences. 

4.4.2. VAAR 

To evaluate the variability between the original and predicted antibody 

sequences, VAAR was calculated. This study showed ~ 53% mean and ~ 96% VAAR 

for predicted light chain sequences across the test set. Similarly, for heavy chain 

sequences average VAAR of ~ 44% and maximum VAAR of ~ 76% was calculated. 

The distribution of VAARs for the chains is shown in the below histograms.  
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Figure 4.5 Histogram of VAAR (%) for Light Chain (LC) 

This histogram displays the distribution of VAAR values for light chain sequences. 

The distribution is shown with a mean VAAR of 53.81%, indicated by the red dashed line, and 

a maximum VAAR of 96.15%, marked by the green dotted line. The histogram suggests a 

bimodal distribution, with peaks around 50% and 70% VAAR values. 
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Figure 4.6 Histogram of VAAR (%) for Heavy Chain (HC) 

This histogram illustrates the distribution of VAAR values across heavy chain 

sequences. A mean VAAR of 44.24% is denoted by a red dashed line, while the maximum 

value observed is 76.21%, shown by the green dotted line. The distribution is somewhat 

skewed towards lower VAAR values, with a significant peak around 30%-40%. 

4.4.3. Sequence Identity 

For the test set, the sequence identity for light chain sequences between the 

original and predicted were recorded at the average of ~76% and maximum average of 

~97%. The mean sequence identity of ~60% and maximum of ~84% for predicted 

heavy chain sequences were recorded. SeqID distribution across the test set is 

represented in the histogram below for both the chain sequences.  
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Figure 4.7 Histogram of Sequence Identity (SeqID) for Light Chains (LC). 

This histogram presents the distribution of sequence identity percentages for light 

chain sequences, with a mean SeqID of 76.44% depicted by the red dashed line, and 

the highest recorded SeqID at 97.94%, marked by the green dotted line. 
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Figure 4.8 Histogram of Sequence Identity (SeqID) for Heavy Chains (HC). 

The distribution of sequence identity for heavy chains is showcased in this histogram, 

with the mean SeqID value of 59.86% indicated by the red dashed line and the maximum 

SeqID observed at 84.24%, shown by the green dotted line. 

The above results are concluded with the help of a boxplot (Figure 4.9 & 4.10) 

as well as giving a brief summarization of the distribution of evaluation metrics for the 

test set. For heavy chains, the median VAAR is around 40.33, with the data ranging 

from a minimum of approximately 23.49 to a maximum of around 76.21. This suggests 

that while most heavy chain sequences show moderate variability, some sequences 

exhibit significantly higher or lower variability. The SeqID for heavy chains has a 

narrower distribution, centering around a median of 58.36, with less spread in the data, 

indicating a more consistent level of sequence identity across samples. The Recovery 

Rate for heavy chains shows a mean value near 38.15, with a widespread, which 

suggests varying levels of recovery efficiency among different sequences. 

In contrast, light chains demonstrate higher median values across all three 

metrics, with a median VAAR of approximately 46.24, a median SeqID of around 
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76.42, and a particularly high median Recovery Rate of 66.19. The wider IQR in light 

chains, especially noticeable in the Recovery Rate, highlights a broader distribution of 

outcomes, with some reaching as high as 97.29 in recovery efficiency. The higher 

median and maximum values observed in light chains for SeqID and Recovery Rate 

suggest a generally more effective and consistent antigen-binding capability compared 

to heavy chains. 

 

Figure 4.9 Box Plots of VAAR, SeqID, and Recovery Rate for Light Chains (LC) 

This figure displays box plots summarizing the distribution of VAAR, sequence 

identity (SeqID), and recovery rate for light chain sequences. The plots highlight the median, 

interquartile range, and outliers for each metric. 
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Figure 4.10 Box Plots of VAAR, SeqID, and Recovery Rate for Heavy Chains (HC). 

This figure illustrates the distribution characteristics of VAAR, SeqID, and 

recovery rate across heavy chain sequences through box plots. 

4.5.Comparison with related work  

This study used the full-length sequences of the Fv region of light and heavy 

chains to finetune the models along with incorporating the antigen sequence. While 

previous reported methods predict only the CDRs of heavy and light chains. To 

compare this study with the previous work, CDRs were determined and then AAR was 

calculated for CDRs. Previous studies also used the AAR, VAAR, and SeqID for 

comparison with other related works.  For this purpose, 10 complexes from the test set 

were selected, and their complementarity-determining regions (CDRs) were identified 

using an online tool, Antibody CDR Annotation, available at Novoprolabs 

(https://www.novoprolabs.com/tools/cdr). The annotation for original antibody 

sequences for the selected 10 complexes was also done using the same tool and then 

the evaluation was performed. The following table provides a comparison of reported 

values from this study. This comparison is reported by Cohen et al, in their study. They 

evaluated their model with HERN on the test data. Their test data comprises those 

complexes from SabDAb that became part of the database after time they extracted data 

from SabDab, meaning the data of the test set was unseen.  Building on this foundation, 

the model was evaluated using completely unseen data. This approach was employed 
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in the current study, and the results were compared with those reported by Cohen et al. 

The following table presents a comparison between this study, EAGLE, and HERN for 

the CDR3 of the heavy chain only. 

Table 4.2 Comparison of this study with previous studies. 

 

VAAR% SeqID% 

Method Max Mean Max Mean 

HERN 51.96 40.48 51.96 40.48 

EAGLE 46.4 34.53 60.93 45.18 

AbAtT5 53.84 41.11 70.00 51.82 
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CHAPTER 5: DISCUSSION 

Antibodies act as the first reaction forces against the antigens particularly neutralizing 

the attack by binding with them specifically. Due to their wide application, potential 

lead candidates of antibodies for a specific purpose are developed in laboratories. These 

candidates are the results of a wide range of techniques which are laborious, time, and 

resources. Besides all these laborious works, the lead potential candidates are not 

promising these technologies. To overcome this, different computational methods have 

been developed to give libraries leading potential candidates. With the advancements 

of generative AI and their promising applications in antibody development, researchers 

started to build libraries of candidates that take fewer resources. These generative 

models use typical NLP-based architectures, pre-trained on antibody sequences, and 

generate antibodies. There are mainly two types of these antibody models, which 

generate antibodies without incorporating antigen sequences. For example, IgLM and 

Ankh, models generate antibodies that are very close to natural antibodies, and their 

generated antibodies have been validated. While other models incorporate antigen 

sequential or structural data to generate epitope-specific antibodies. But these models 

are limited to short sequences of antigen i.e. only epitope sequence and generate only 

CDR regions of antibodies. This study uses full-length antigens to generate antibodies 

against them. This study propped a model, AbAtT5, which generates antigen-specific 

antibodies and showed promising results. This model is a transformer-based encoder-

decoder model finetuned on the SabDab dataset. Behind this fine-tuned model, a large 

protein model, ProtT5 is working, which was trained on a large corpus of protein data 

from UniRef and BFD.  

This study demonstrated the ability of a finetuned model on a specific task and took 

this task as Neural Machine Translation (NMT), where antigens are given to the model 

as input and antibody light and heavy chain sequences are taken as the output. The 

generated sequences are then evaluated using the AAR, VAAR, and SeqID and 

compared the results with the previous related model. The test data for these evaluations 

were also taken from SabDab. The study by Cohen et al proposed their model and 

compared it to the HERN model on VAAR and SeqID. The test data in their study was 

also taken from SabDab, this data set was unseen, and the data was retrieved from 

SabDab which was published in the database after the date for training data. The same 
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approach was also used for this study and 170 such complexes were retrieved that were 

published in the SabDab database after the acquisition of training data. For these test 

datasets, 10 antibodies were generated against each antigen resulting in a total of 1700 

predicted antibody light and heavy chain sequences. The average AAR for light chain 

sequences was 60.08% while for heavy chain sequences, it was ~40%. The VAAR and 

SeqID of CDRH3 were compared to the previous study for the top 10 results. This study 

demonstrated that AbAtT5 outperformed both HERN and EAGLE across two key 

metrics. For VAAR, AbAtT5 showed a maximal improvement of 1.88% over HERN 

and 7.44% over EAGLE, with average VAAR increases of 0.63% and 6.58%, 

respectively. In terms of SeqID, AbAtT5 surpassed HERN by 18.04% in maximal 

SeqID and 11.34% in average SeqID, while outperforming EAGLE by 9.07% in 

maximal SeqID and 6.64% in average SeqID.  

It is seen that this study has achieved better results than the previously reported work 

to harness the potential of this study to further extend by incorporating more data. Still, 

improvement can be made to propose more accurate models for CDRH3 in the future 

and this will lead to a more potential antigen-specific lead candidate of antibodies.  
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CHAPTER 6: CONCLUSION 

This study introduced AbAtT5, a finetuned transformer-based model, 

demonstrating its effectiveness in generating antigen-specific antibodies by using full-

length antigen sequences. Compared to previous models like HERN and EAGLE, 

AbAtT5 showed superior performance, with improvements of up to 1.88% in VAAR 

and 18.04% in SeqID. These results highlight the potential of AbAtT5 in accelerating 

the antibody design process by offering higher accuracy in sequence generation. 

The ability of AbAtT5 to generate antibodies with superior sequence identity 

and alignment rates underscores its potential as a powerful tool in antibody design. This 

advancement in computational antibody generation can significantly reduce the time 

and resources required in traditional laboratory methods, offering a more efficient 

pathway to identifying potent antigen-specific antibody candidates. 

Future work will aim to enhance the accuracy of models like AbAtT5 by 

incorporating additional data and refining the model architecture, particularly in the 

generation of CDRH3 regions. These efforts will further improve the precision of 

antigen-specific antibody prediction, leading to the development of more effective 

therapeutic candidates. 
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