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ABSTRACT 

Driver drowsiness is a significant contributor to road accidents, leading to numerous 

fatalities and hazards globally. Electroencephalography (EEG) has become a reliable 

physiological signal for identifying drowsiness because it directly monitors brain activity. 

However, creating a precise and calibration-free method for identifying driver drowsiness 

is still difficult because EEG is affected by individual variations and changes in subjects. 

In study proposed concise and easy-to-understand Long Short-Term Memory (LSTM) 

model equipped with an attention mechanism to efficiently capture common EEG 

characteristics among various individuals for detecting driver drowsiness. The attention 

mechanism improved the model's interpretability by pinpointing crucial time steps in EEG 

signals that have the greatest impact on classification. By conducting leave-one-subject-

out (LOSO) cross-validation on 11 subjects, the model obtained an average accuracy of 

79.1%, showcasing better results when compared to conventional techniques. Power 

Spectral Density (PSD) analysis also showed that the model successfully captured 

biologically significant characteristics, such as variations in Delta and Theta waves, that 

are associated with drowsiness. 

 

The proposed LSTM model with attention mechanism shows potential for practical use in 

improving road safety through EEG-based drowsiness detection. Future research will 

concentrate on enlarging the dataset, integrating multi-channel EEG data, and investigating 

real-time application for practical utilization in the transportation sector. 
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CHAPTER 1: INTRODUCTION 

This chapter gives a background to road accidents with an emphasis on risk factors 

and effects. The chapter also outlines techniques for identifying fatigue, EEG-based that 

are favoured over behavioural ones because of the decision they are believed to afford. 

Lastly, the chapter presents the problem and solution to enhance the development of a 

driver drowsiness detection system based on enhanced deep learning algorithms. 

1.1. Road accidents 

Road traffic injuries rank among the top ten causes of death globally. Road accidents 

are quantified by calculating the number of injuries and fatalities caused by vehicular 

occurrences [1]. Injury accidents might involve many automobiles, people, animals, or 

stationary objects. This category also contains events involving road cars colliding with 

rail vehicles. When numerous vehicles collide in fast succession, it is recorded as a single 

accident [2]. 

Road traffic accidents kill approximately 1.19 million people each year. 

Furthermore, these occurrences cause between 20 and 50 million non-fatal injuries, which 

frequently result in long-term disability [2]. In Pakistan, from 2019-2021 30,509 accidents 

occur which killed around 16,860 people and injured around 38,262 people[3]. Road traffic 

injuries are the main cause of death among children and young adults. Additionally, two-

thirds of fatalities in road traffic accidents involve people of working age, particularly those 

aged 18 to 59 years [4]. Fatal and nonfatal crash injuries are expected to cost the global 

economy approximately $1.8 trillion (in 2010 USD) between 2015 and 2030 [5]. 

Road accidents cause both fatal and non-fatal injuries. Injuries includes Traumatic 

Brain injury (TBI), broken bones, a Spinal Cord injury, internal injuries and Bleeding etc 

[6]. 
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1.1.1. Major causes of Road accidents 

Road traffic injuries rank among the top ten causes of death globally. Many key car 

crash statistics focus on the causes of collisions. Common causes of crashes include 

speeding, drunk driving, driver’s distraction, lack of seatbelt use, use of phone while 

driving, weather, underage driving, fatigue and drowsiness [7]. 

1.2. Drowsiness 

Drowsiness or sleepiness typically refers to the inclination or urge to fall asleep. 

Sleepiness results from a biological necessity; it is a physiological state that cannot be 

reversed without sleep. Governed by the circadian sleep-wake cycle, it typically makes 

individuals feel sleepy twice daily, once at night and again in the afternoon [8].  

Despite extensive studies on drowsiness and fatigue in the context of driving, their 

impact on traffic safety remains to be seen. This is largely due to the difficulties and 

inconsistencies in characterizing exhaustion or drowsiness and linking them to collision 

risks.  

Fatigue and drowsiness although originating from different origins and driven by 

diverse processes, are frequently discussed together because they produce similar 

outcomes. Both situations impair a driver's awareness or concentration and, in severe cases, 

may cause the driver to fall asleep. 

Drowsy driving, similar to driving under the influence of alcohol, drugs, or 

distractions, poses a significant public health issue and contributes to thousands of car 

crashes annually [9]. One of the previous studies indicates that drowsy driving is 

responsible for 21% of street accidents. This percentage is escalating daily and becoming 

increasingly unmanageable. The rate of accidents caused by drowsy driving is rising 

annually, according to data collected from 180 countries worldwide [10]. 
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1.2.1. Effects of drowsy driving 

Drowsy driving leads to numerous accidents each year, influenced by several key 

factors. A major issue is the reduced ability to concentrate. Drivers struggling to stay awake 

may not fully engage with the road, missing crucial cues from the traffic and surrounding 

environment. Similarly, reaction times suffer significantly when a driver is drowsy, 

mimicking the delayed responses seen with intoxication from alcohol or drugs. This 

sluggish reaction can prevent drivers from responding adequately in critical situations [11]. 

Additionally, fatigue impairs cognitive functions, leading to poorer decision-

making. This situation presents significant hazards, particularly when evaluating distances 

and speeds, thereby elevating the probability of accidents. The serious outcome, however, 

emerges when a driver gives in to sleep while operating the vehicle, potentially leading to 

catastrophic incidents, such as head-on collisions or veering off the road [12]. 

As we have observed, drowsy driving poses significant dangers. Therefore, it is 

crucial to detect drowsiness and its intensity to prevent accidents and enhance road safety 

for both drivers and pedestrians.  

1.2.2. Methods to detect drowsiness 

The researchers have been developing a range of ways to address this problem, each 

with its own set of advantages and disadvantages. driving detection systems, thereby 

contributing to safer driving environments 

Behavioural approaches like eye tracking can be impacted by visibility concerns 

and the inclusion of glasses. Yawning detection and eye closure frequency are influenced 

by factors such as head posture and ambient brightness. For vehicular approaches, steering 

wheel behaviour analysis is limited by the driver's alignment and regular driving 

behaviours, whereas lane recognition suffers with visibility. These limitations underscore 

the difficulties in reliably identifying drowsiness using current methods [13]. 

Considering the underlying limitations of behavioural and vehicular strategies for 

detecting tiredness, researchers have shifted their attention to EEG-based solutions. 
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EEG provides a direct measurement of neural activity, allowing for a more accurate 

and reliable assessment [14] of a driver's attentiveness levels that are independent of 

environmental elements like light and vision. This shift emphasizes the need of accuracy 

in detecting tiredness. 

1.3.  Electroencephalography 

Electroencephalography (EEG) is a brain-machine interface (BCI) based method of 

measuring electrical activity in the brain. It provides a non-invasive procedure for 

monitoring brain activity, which means you may examine how the brain operates without 

undergoing surgery [15]. 

Over the last decade, cost-effective single and multi-channel EEG recording 

equipment has made it easier for researchers to monitor brain activity without invasiveness.  

The letter on the electrode represents the general brain region that it covers. The 

electrodes are labelled from front to back as follows: Fp (pre-frontal or frontal pole), F 

(frontal), C (central line of the brain), T (temporal), P (parietal), and O (occipital). 

Electrodes located between these lines mix numerous letters in a sequence from front to 

back. This applies to higher-density systems, as stated in the following section. In addition, 

the letters M and A are occasionally used to indicate to the earlobes. Typically, these 

locations are provided as (offline) reference points for the analysis of signals [16]. 
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Figure 1.1: The electrode layout of the 10-20 system (left) and corresponding brain regions 

(right) [16] 

 

Scalp EEG is a non-invasive technique for measuring electrical potentials on the 

scalp. Each electrode, often referred to as a channel, records the potential difference 

between itself and a reference electrode (reference montage) or an adjacent electrode 

(bipolar montage) [17]. EEG data from the Oz channel was employed in this study, which 

was discovered to possess the most distinguishing traits in discriminating tired and awake 

EEG signals [18].  

An EEG monitors and records brainwave patterns. Wires connect little flat metal 

discs, known as electrodes, to your scalp. The electrodes evaluate electrical impulses in 

your brain and transfer them to a computer, which records the results. The electrical 

impulses in an EEG recording appear as wavy lines with peaks and valleys. These lines 

allow to swiftly determine if there are any odd patterns [19].  
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Figure 1.2:  General view of Driver’s Drowsiness detection experiment [20]  

 

In this era where drowsiness is becoming more fatal with each passing day it is 

necessary to detect drowsiness within time to prevent accidents and make roads safer for 

the population. As interaction with computers becomes more prevalent, many problems 

can be solved by using a computational approach and saving time. So, by investigating 

how the brain works when a person starts to feel drowsy, we can gain valuable insights 

into neural correlates of drowsiness detection. 

1.4. Problem Statement and Solution 

1.4.1. Problem statement 

Contemporary approaches to driver drowsiness detection demonstrate limitations 

in reliability and interpretability with single-channel EEG, potentially compromising their 
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efficacy across diverse populations. This inconsistency can lead to failures in accurately 

predicting and preventing drowsy driving incidents, which are a major safety concern. 

1.4.2. Proposed Solution 

To address these challenges, our research proposes the development of an LSTM 

(Long Short-Term Memory) model designed specifically for cross-subject driver 

drowsiness detection. This model will utilize advanced deep learning techniques to analyse 

EEG data, focusing on enhancing the model's accuracy and interpretability. By leveraging 

LSTM's capability to remember long-term dependencies, our model aims to accurately 

detect subtle patterns in EEG data that signify drowsiness, regardless of inter-individual 

variations 

1.4.3. Research objectives 

The objectives of our study are as follows: 

• To implement advanced data refinement techniques to ensure precise and 

reliable analysis. 

• To develop an LSTM model for accurate, cross-subject driver 

drowsiness detection using single-channel EEG data. 

• To enhance LSTM model interpretability and compare its accuracy with 

existing models, ensuring clear insight into its decision-making 

processes. 
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CHAPTER 2: LITERATURE REVIEW 

 This chapter explores the current landscape of drowsiness detection research, with 

a focus on the use of EEG. It investigates how this technology has been used to better 

understand the brain processes related to drowsiness. Furthermore, the chapter focuses on 

technological improvements and analytical approaches that have influenced current 

developments in the field.  

2.1 Drowsiness and EEG 

In general, three types of data have been employed in the literature in developing driver 

drowsiness detection systems: (1) vehicle-based, (2) vision-based, and (3) physiological. 

According to the literature, physiological data such as EEG may be more appropriate than 

other systems for detecting the onset of driver drowsiness, particularly because vehicle-

based and vision-based systems can be too late in warning the driver in the early stages of 

drowsiness, when there may still be time to avoid an accident [21]. 

2.1.1 Drowsiness and Statistical Approach   

An unsupervised algorithm was developed for identifying drowsiness in drivers using 

EEG signals, with an emphasis on the alpha and theta bands. The technique developed 

subject and session-independent models to account for individual and session variation. 

The findings revealed considerable connections between deviations from these models and 

driving performance, specifically on the Oz EEG channel. Statistical techniques, such as 

Mardia's test and Mahalanobis distance, were used to validate the models and evaluate 

the driver's cognitive state. The combination of alpha and theta band aberrations improved 

the accuracy of drowsiness detection [22]. 

Another EEG-based algorithm was developed for detecting driver weariness by 

evaluating variations in all major EEG frequency bands. The algorithm classified EEG data 

into tiredness phases, including alertness, early weariness, and extreme fatigue. The 

algorithm's accuracy was validated using statistical analyses such as repeated measures 

ANOVA and post hoc testing. The results showed that the algorithm accurately detected 
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several periods of drowsiness with significant variations (P < 0.01) in EEG data between 

the phases [23].  

EEG-based driver fatigue detection algorithm was used to examines variations in all 

major EEG frequency bands (delta, theta, alpha, and beta). The algorithm accurately 

classified EEG data into several drowsiness phases, including alertness, early 

drowsiness, and extreme drowsiness. The algorithm was validated using statistical 

analysis, such as repeated measures ANOVA. The algorithm correctly identified tiredness 

states in 10 respondents, and the percentage of time spent in a fatigue state was significantly 

higher than in the alert phase (P < 0.01) [24]. 

Da Silveira T, et al. developed an EEG-based drowsiness detection system employing 

wavelet packet analysis of a single EEG channel (Pz-Oz). They developed two new spectral 

power indices based on delta, alpha, beta, and low-gamma rhythms, which were calculated 

using the normalized Haar discrete wavelet packet transform (WPT). Statistical analysis 

was performed using the Wilcoxon signed-rank test, which revealed significant changes 

in alert-drowsy transitions for 20 subjects, with p-values 0.001 for the proposed indices 

[25]. 

Another research explored the feasibility of detecting drowsiness using EEG signals 

from non-hair-bearing (NHB) scalp areas to increase convenience and comfort in real-

world settings. They conducted a lane-keeping driving experiment in which EEG data were 

acquired from both the NHB and the entire scalp (AC) areas. The used classifiers such as 

SVM, LDA, and kNN to distinguish between alert and drowsy phases. The results revealed 

no significant difference in drowsiness detection accuracy between NHB and AC EEG data 

(p-values of 0.31 and 0.16, respectively). This suggests that NHB EEG can perform 

similarly to whole-scalp EEG for drowsiness detection [26]. 

A study suggested a method for estimating the degree of eye closure (ECD) using EEG 

sensors to identify driver drowsiness. They conducted trials with 30 patients to validate the 

linear association between ECD and occipital EEG data, focusing on the alpha power 

percentage from the O2 channel. The findings showed that the suggested EEG-based ECD 
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estimate technique has a high squared correlation coefficient (SCC) of 0.930 and a mean 

squared error (MSE) of 0.013 [27]. 

Goovaerts G, et al. developed two algorithms for detecting driver tiredness using EEG 

signals, concentrating on ocular fluctuations obtained from the data. The first method 

applied linear regression, while the second used fuzzy detection. The data were acquired 

from 19 people driving in a simulator, and their tiredness levels were self-reported using 

the Karolinska Drowsiness Scale. The linear regression method accurately identified 

drowsiness in 72% of epochs, whereas the fuzzy detection method achieved 65% accuracy. 

These findings indicate that both approaches may effectively detect drowsiness, with the 

linear regression method doing slightly better [28]. 

A study investigated the effects of drowsiness on drivers, using EEG data gathered 

during a simulated driving task following sleep deprivation. The study concentrated on 

EEG changes during various driving periods and road types, paying special emphasis to 

the alpha, beta, and theta frequency bands. Statistical research, including ANOVA, found 

substantial differences in alpha, beta, and theta bursts during driving, especially on straight 

versus curving road parts. The results showed significant variations in EEG indices, such 

as alpha/beta and (alpha + theta)/beta, with p-values < 0.05, indicating the impact of 

drowsiness on EEG patterns [29]. 

Another study reportedly developed a passive brain-computer interface (pBCI) system 

that detects driver drowsiness using EEG signals. They extracted spectral information from 

the delta, theta, alpha, and beta rhythms using a variety of machine learning classifiers such 

as decision trees, support vector machines, and ensemble approaches. The optimized 

ensemble model outperformed the other models, with 85.6% accuracy, 85.6% precision, 

89.7% recall, and 87.6% F1-score. The significance of these findings was evaluated using 

statistical hypothesis testing, which yielded p-values < 0.05, demonstrating the model's 

capacity to detect tiredness while driving [30]. 
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2.1.2. Drowsiness and Neural Networks 

Despite several examples of outstanding advancement in Machine Learning (ML), 

much space for improvement remains in several important aspects of EEG information 

extraction, such as accuracy, interpretability, and usability for applications. Consequently, 

there is ongoing interest in the application of machine learning breakthroughs to EEG 

decoding and BCI [31].  

Neural networks, a prominent type of machine learning algorithm, have been 

widely employed in a variety of applications over the last several decades. Often regarded 

as black boxes, neural networks are seen as such because nonlinear combinations of the 

original input are generated to determine its most important features. Deep learning, one 

of the most significant advancements in neural networks, has been primarily applied in 

dimensionality reduction and hierarchical multilayer feature learning [32]. 

A method was proposed in a study for detecting vehicle driver drowsiness using 

wearable EEG and a CNN. EEG signals were collected from drivers using a wearable 

brain-computer interface and processed using neural networks with Inception and modified 

AlexNet modules. The results showed that the Inception module achieved a classification 

accuracy of 95.59%, while the modified AlexNet module achieved 94.68% [33]. 

A neural network CNN was used to detect drowsiness using EEG signals. The EEG 

data were collected from drivers using an Emotiv EPOC+ headset, and the CNN was 

implemented using the Keras library. The proposed method achieved a high accuracy of 

90.42% in distinguishing between drowsy and awake states [34]. 

A novel deep learning architecture based on a CNN was suggested for automatic 

drowsiness detection with a single-channel EEG data. The study aimed to improve 

generalization performance by using subject-wise, cross-subject-wise, and combined-

subjects’ validations. The experimental results showed that the suggested method beat 

existing state-of-the-art sleepiness detection methods, with an accuracy of 94.87% for 

combined-subject validation and an F1Score of 0.924 [35].  
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A Capsule Neural Network (CapsNet) model was developed to detect drowsiness 

using electroencephalography (EEG) inputs. The model identified drowsiness using 

spectrograms from EEG channels Fz and Pz, with an emphasis on fluctuations in alpha and 

theta wave amplitudes. The CapsNet model outperforms the standard CNN, with an 

average accuracy of 86.74% with Fz-Pz channels and 84.45% with just the Fz channel. 

These findings were validated using cross-validation, with the model demonstrating a 

sensitivity of 87.57% for the Fz-Pz dataset [36]. 

An approach for detecting driver drowsiness was developed based on EEG signal 

processing, Empirical Mode Decomposition (EMD), and a trained neural network. The 

neural network was trained to distinguish between drowsy and awake states using intrinsic 

mode functions (IMFs) collected from EEG signals. The trained model was tested on the 

subjects and achieved an 88.2% sleepiness detection rate [37]. 

An efficient hybrid model for EEG-based drowsiness detection was developed, 

combining signal processing and deep learning characteristics. The model incorporated 

energy distribution, zero-crossing distribution, spectral entropy, and instantaneous 

frequency features with deep features obtained from pre-trained AlexNet and VGGNet 

models. The model was validated using the MIT-BIH Polysomnographic database, which 

achieved an average accuracy of 94.31% [38].  

A neural network-based system for detecting drowsiness using EEG signals was 

developed, with feature selection being optimized via a genetic method. The researchers 

used perceptron and radial basis function (RBF) neural networks to classify EEG data into 

open and closed eye states. The genetic algorithm optimized the Fisher's discriminant ratio, 

which resulted in higher classification accuracy and lower processing needs. The optimized 

perceptron neural network attained a classification accuracy of 98.38% [39]. 

A method combining CNNs, and transfer learning was developed to detect driver 

drowsiness using single-channel EEG signals. The study utilized the PhysioNet sleep-EDF 

dataset and tested several pre-trained networks, with EfficientNetV2B1 achieving the 

highest accuracy of 87.56%. Additionally, a custom 1D-CNN was proposed, which 

outperformed the pre-trained networks with an accuracy of 88.88%. The final model, using 
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a stacking-average fusion method, further improved accuracy to 90.73%, demonstrating its 

potential for effective drowsiness detection [40]. 

An innovative deep learning algorithm was developed for drowsiness detection 

from EEG signals, utilizing Discrete Cosine Transform (DCT) for signal preprocessing, 

followed by stacked autoencoders and SoftMax layers for classification. The study involved 

62 healthy volunteers, and the proposed method achieved 100% accuracy in distinguishing 

between drowsy and wakeful states [41].  

Despite substantial progress has been made in EEG-based drowsiness detection, 

notable gaps still exist, particularly in terms of cross-subject generalization and model 

interpretability. Many existing models encounter difficulties in handling the variability of 

EEG patterns across different individuals, often requiring subject-specific calibration, 

which limits their applicability in real-world scenarios. Moreover, deep learning models, 

while delivering improved accuracy, are frequently criticized for their lack of 

interpretability, as their decision-making processes remain opaque. In response to these 

challenges, this study was conducted to develop a cross-subject LSTM model incorporating 

an attention mechanism, which enhances both the model's generalization across subjects 

and its interpretability by identifying the most relevant EEG features contributing to 

drowsiness detection. By addressing these critical gaps, this research lays the groundwork 

for future exploration of real-time applications and larger datasets, thus contributing 

meaningfully to the advancement of EEG-based drowsiness detection systems. 
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CHAPTER 3: METHODOLOGY 

This chapter outlines the research methodology, providing a detailed description of the 

specific tools and techniques employed for data collection, model development, model’s 

validation and the method to visualize the results of the study. 

3.1. Methodology Overview 

The project was motivated by the aim of helping drivers prevent road accidents and 

making roads safer for the public. The general overview and steps taken during this 

research are presented in Figure 3.1. 

 

Figure 3.1: Overview of methodology 

The first step in the process was to collect data and gain insight into the features. 

The data was then transported to the preprocessing step, where it was transformed into the 

proper shape for modelling. Finally, the trained model was evaluated and visualized. 
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In the latter section, each methodological step was explained in detail. Data labelling and 

data filtering were two important steps before proceeding to modelling. 

 

 

3.2. Data Acquisition 

The dataset used in this study was a secondary dataset obtained from an online 

repository called Figshare, which hosts datasets on various topics. It was open-source and 

was initially collected in Taiwan. The dataset included data from individuals who drove in 

a virtual environment for 90 consecutive minutes without breaks. 

3.2.1. Data Characteristics  

The datasets contained data from twenty-seven voluntary participants. Every second 

corresponded to a peak of brain signal. The dataset included four events: deviation onset, 

response onset, and response offset. The events included in the dataset were mentioned in 

Table 1. 

 

 

The EEG spectrum of all 30 channels, i.e., Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, 

FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, 

Oz, and O2 electrodes, along with the events in the signals, is shown below in Figure 3.2. 

Events were represented by different colours to make it easier for the computer to learn 

about them. The colours used included red, green, magenta, and cyan. 

Table 3.1: Event Description 
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3.3. Data Exploration 

The dataset being analysed consists of time-series data. Each subject’s EEG signals are 

stored over time. The dataset consists of a single data type i.e. float. Float data types are 

numerical and represent a number with a decimal point. The EEG recordings were digitized 

at 500 Hz. The next section covers all the packages and modules utilized in this project. 

 

Figure 3.2: Electrodes and the events in signals 
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3.3.1. Python Libraries 

 Python has been widely recognized as a popular programming language, 

particularly in data science. A diverse set of publicly available libraries is provided, and it 

is continuously developed and supported by a large community. As a result, when a 

problem is encountered, solutions are more likely to be found [42] [43]. Multiple libraries 

were employed in this study to analyse and predict the behaviour of a driver, as well as to 

visualize the peaks in the data. The libraries and their applications are listed below in Table 

3.2. 

Table 3.2: Detail of python libraries that are used in this project and mentioning the purpose of 

utilizing the packages 

Library Description 

torch A machine learning library for deep learning tasks, 

providing tensor operations, neural networks, and 

optimization tools. 

torch.nn A submodule of PyTorch for building and training 

neural networks. 

torch.optim A PyTorch submodule that implements 

optimization algorithms like Adam and SGD. 

torch.utils.data Provides utilities for dataset handling and data 

loaders. 

numpy A library for numerical computing, handling arrays 

and matrices. 

matplotlib.pyplot A plotting library used for creating static, animated, 

and interactive visualizations in Python. 
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matplotlib.collections.LineCollection A Matplotlib class for creating collections of line 

segments. 

scipy.io A submodule from SciPy for loading and saving 

MATLAB files. 

sklearn.metrics.accuracy_score A function from Scikit-learn for calculating 

accuracy in classification problems. 

3.4. Data Preprocessing 

After the data was collected, it could not be directly fed into a machine learning 

program. The initial step that had to be undertaken was data preprocessing. This crucial 

process involved transforming the raw dataset into useful information, making it ready for 

further analysis before applying machine learning algorithms. [44]. 

The dataset used in this study was pre-processed by its authors in the following 

steps: 

• The raw EEG signals were filtered using a 1-Hz high-pass and a 50-Hz low-pass 

finite impulse response (FIR) filter. 

• To address artifact rejection, visible eye blink contamination was manually 

eliminated. Ocular and muscular artifacts were removed using the Automatic 

Artifact Removal (AAR) plug-in available in EEGLAB [45]. 
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Further preprocessing of the dataset was initiated with down-sampling, filtering, and 

labelling, as shown in Figure 3.3. 

 

 

3.4.1. Down-sampling and Extraction: 

The original EEG data were down sampled from 500 Hz to 128 Hz to reduce the 

computational burden. For each trial, 3-second-long EEG segments were extracted prior to 

the onset of deviation, focusing on the Oz channel, which was found to be the most 

effective in distinguishing between drowsy and alert states. [46]. Each segment comprised 

1 channel with 384 sample points. 

3.4.2. Data labelling 

EEG data labelling was comprised of several specifications, including Local 

Reaction Time (RT) Calculation, Global RT Calculation, Alert-RT Baseline, and the 

criteria for labelling the EEG data. 

Figure 3.3:  Overview of preprocessing 
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 Instantaneous drowsiness was assessed using local reaction time (RT), which was 

defined as the time interval between the onset of car drift and the participant's response. A 

global RT was also established by averaging the RTs across all trials within the 90-second 

window preceding deviation onset, to gauge the level of drowsiness over a longer duration. 

The baseline 'alert-RT' was determined as the 5th percentile of local RTs throughout the 

entire session [47], [48]. 

Trials were categorized as ‘alertness’ if both local and global RTs were shorter than 1.5 

times the alert-RT. Conversely, trials were classified as ‘drowsiness’ if both RTs exceeded 

2.5 times the alert-RT, thereby excluding moderate performance states. 

3.4.3. Data Filtering 

Data filtering was further divided into three steps, which are described below: 

• Step 1: Session Exclusion: Sessions containing fewer than 50 samples in any 

class were eliminated. 

• Step 2: Session Selection: For subjects with numerous sessions, the one with 

the best-balanced class distribution was chosen. 

• Step 3: Class Balancing: Samples from each session were further balanced by 

selecting the most representative samples from the majority class based on 

the quickest (for alert) or longest (for drowsiness) local response times. 

The first step excluded sessions with a severely skewed class distribution. The second 

step aimed to achieve a loose balance of subjects in order to reduce classifier bias. The 

third step involved training the classifier on balanced classes, which improved its capacity 

to distinguish between drowsiness and alertness. As a result, a total of 2022 samples were 

obtained from 11 different subjects. The number of samples per subject/session is displayed 

in the table 3.3 below 
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Table 3.3: Details of extracted samples from each eligible subject 

Subject ID File Name Sample Number 

Alert Drowsiness 

1 s01_061102n.set 94 94 

2 s05_061101n.set 66 66 

3 s22_090825n.set 75 75 

4 s31_061103n.set 74 74 

5 s35_070322n.set 112 112 

6 s41_080520m.set 83 83 

7 s42_070105n.set 51 51 

8 s43_070205n.set 132 132 

9 s44_070325n.set 157 157 

10 s45_070307n.set 54 54 

11 s53_090918n.set 113 113 

Total 1011 1011 

 

3.5. Model  

The dataset that was acquired for this research work was labelled. Once the data was 

prepared, it was ready to be fed into the model. The next step was model selection and 

development. 

3.5.1. Model selection 

The data selected for this study was EEG data, which is inherently time series data. 

For such data, Recurrent Neural Networks (RNNs) were considered an optimal choice, as 

they excel in handling sequences by analysing inputs sequentially and maintaining a state 
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that reflects previous information. [49]. Given that RNNs were considered an optimal 

choice for time series data, an LSTM model was selected for this study. 

3.5.1.1. LSTM    

 LSTMs are a type of RNN, specifically designed to learn and remember order 

dependence in sequence prediction problems. This feature makes LSTMs particularly 

suited for tasks where understanding temporal dynamics is crucial. The core advantage of 

LSTMs lies in their architecture, which includes feedback connections. This allows them 

to not only process single data points but also to remember and integrate information over 

time, which is vital for detecting patterns that develop gradually, such as the onset of 

drowsiness in drivers. LSTMs are renowned for their ability to understand complex 

patterns in time-series data, making them robust tools for our EEG data analysis [50]. 

3.5.2. Model development 

After the selection of features, attention was shifted towards model development, 

where various classes and mechanisms were employed. 

3.5.2.1.  Architecture of Model 

A neural network model, designed to classify EEG signals, was proposed. The 

model was comprised of a bidirectional Long Short-Term Memory (LSTM) network with 

an integrated attention mechanism. The key components and their respective functions 

were detailed as follows: 

• LSTM Layer: A bidirectional LSTM network was utilized by the model to 

process EEG time series data. LSTM networks, known for their suitability for 

sequence data, were recognized for their ability to capture long-term 

dependencies [50]. The bidirectional aspect was used to enable the model to 

integrate both past and future contexts, thereby improving its pattern 

recognition capabilities in EEG signals [51]. The LSTM layer was composed 

of multiple layers, each tasked with capturing different levels of temporal 

dependencies. 
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• Attention Mechanism: An attention mechanism (AM) was integrated into the 

model to enhance the focus on significant parts of the sequence data. This 

mechanism functioned by assigning varying weights to each time step of the 

LSTM output, thereby indicating the relevance of each time step in predicting 

the final output. The weighted sum of the LSTM outputs subsequently created 

a new hidden state, which more accurately represented the most critical features 

in the EEG signal. [52][53]. 

• Fully connected layer: The output from the AM was passed through a fully 

connected layer. This layer was used to reduce the dimensionality of the output 

and map it to the number of output classes, which, in this case, were set to 2, 

indicating a binary classification problem. [54]. 

• Dropout Regularization: Dropout regularisation was applied to the output of 

the attention mechanism before it was fed into the fully connected layer. This 

technique aided in preventing overfitting by randomly setting a fraction of the 

input units to zero during training, ensuring that the model generalized 

effectively to unseen data. [55]. 

• Output layer: The final layer of the model featured a softmax function applied 

to the output of the fully connected layer. This function transformed the raw 

output scores into probabilities, thereby facilitating a probabilistic interpretation 

of the model's predictions. 

3.5.2.2. Training Procedure: 

The model was trained using a standard backpropagation algorithm with the 

following considerations: 

• Loss Function: The negative log-likelihood loss (LogSoftmax) was used 

to compute the loss, given the output probabilities and the true class labels. 

[56]. 

• Optimizer: An appropriate optimizer, such as Adam, was employed to 

adjust the model's weights based on the computed gradients [57]. 
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• Batch Processing: The EEG signals were processed by the model in 

batches, which was particularly advantageous for large datasets, as it 

reduced the time required for training and helped stabilize the gradient 

updates. [58]. 

The model was implemented using PyTorch, a widely used deep learning 

framework that provided extensive support for constructing and training neural networks. 

The network architecture was modular, with the LSTM, attention mechanism, and fully 

connected layers all implemented as separate components, facilitating easy modifications 

and tuning. 

By integrating a bidirectional LSTM with an AM, the proposed model was designed 

to effectively capture temporal dependencies and focus on the most relevant parts of EEG 

signals, making it a robust solution for EEG classification tasks. 

3.6. Cross-validation 

In this study, the model's performance was evaluated using the Leave-One-Subject-Out 

(LOSO) cross-validation (CV) approach. This technique was chosen to ensure that the 

model was tested on previously unknown data from one subject while training on data from 

all other subjects. This approach allowed for a thorough assessment of the model's ability 

to generalize across diverse individuals. 

3.6.1. Processing 

For each iteration of the LOSO CV, one subject's data was withheld for testing, while 

the remaining subjects' data was used for training purposes. This procedure was done for 

each of the 11 subjects in the dataset, ensuring that no person was left out for testing. 

• Training: During each iteration, the training dataset was created using data from 

subjects not involved in testing. This training data was loaded into mini-batches 

with the PyTorch DataLoader to ensure efficient and steady training. 
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• Testing: The test dataset, which included data from the left-out subject, was kept 

separate and used only after the model was fully trained, ensuring that no test data 

was visible during training. 

An LSTM model was utilized, with four layers and 128 hidden units per layer. The 

model architecture also incorporated dropout regularisation to prevent overfitting, as well 

as a final fully connected layer that mapped the features to two output categories. The 

Adam optimizer was used to train the model, and the loss was calculated using the cross-

entropy loss function. The learning rate was set at 1×10 −4, and the model was trained for 

10 epochs per iteration. 

The training was carried out by iterating over the training batches, and the model's 

parameters were modified after each batch to reduce loss. The training phase was repeated 

until the model had converged or reached the specified number of epochs. 

3.6.2. Evaluation 

After each iteration of training, the model's performance was tested on the test set, 

which included data from the left-out participant. The predictions were compared to the 

genuine labels, and accuracy was calculated using sklearn's accuracy_score function. This 

method was repeated for each individual, and an average accuracy was computed based on 

all iterations. In this LOSO cv framework, the model's overall performance was reported 

using the final mean accuracy across all participants. 

3.7. Visualization  

 In this study, a custom visualization technique was employed to better understand 

the model's behaviour when classifying EEG signals into alert and drowsy states. The 

visualization involved generating heatmaps and power spectrum plots that provided 

insights into how the model processed and weighted different time segments of the EEG 

signals. 
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3.7.1. Heatmap Generation 

The heatmap was generated to visually represent the attention or importance the 

model assigned to different time points in the EEG signal. The model's output likelihoods 

for "alert" and "drowsy" states were computed, and based on these values, the model's 

decision was displayed. If the likelihood of the "alert" state was higher, the sample was 

classified as alert; otherwise, it was classified as drowsy. 

 The EEG signal was plotted as a time-series, and a line collection was used to 

overlay a heatmap onto the signal. This heatmap indicated the model's focus on different 

parts of the signal. The intensity of the heatmap was determined using model activations, 

and the results were normalized for better visualisation. 

3.7.2. Band Power Calculation 

 Additionally, the relative power in four EEG frequency bands (Delta, Theta, Alpha, 

and Beta) was calculated using the multitaper method. This method was applied to the 

raw signal to compute the power spectral density (PSD) across the frequency spectrum. 

The band powers were then normalized to the total power, and a bar chart was generated 

to show the distribution of power across these frequency bands. This helped in 

understanding the underlying characteristics of the signal, as different brain states (alert or 

drowsy) typically exhibit distinct frequency patterns. 

3.7.3. Combined Visualization 

 The final output combined both the time-series heatmap and the band power 

visualization. This approach helped in interpreting the model's classification decisions by 

showing: 

• Which parts of the EEG signal were considered most important by the model (via 

the heatmap). 

• How the relative power in different EEG frequency bands contributed to the 

prediction (via the bar chart). 
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 These visualizations enabled a deeper understanding of the model's decision-

making process, providing a clear connection between the EEG features and the predicted 

alert or drowsy states. 

 The LSTM model and the visualization functions were imported into the LOO CV 

file to facilitate the training, evaluation, and visualization processes. The LSTM model was 

imported from the `LSTMTEST` module, while the visualization function was imported 

from the `LSTMVISUAL` module. The LOO file was responsible for managing the cross-

validation procedure, where the LSTM model was trained and tested on the data, and the 

visualization function was used to generate attention heatmaps and power spectrum plots. 

All results, including model performance and visualizations, were generated within this 

file. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 This chapter presents the results of the methodology used to address the research 

subject of EEG-based drowsiness detection using machine learning. A thorough discussion 

and personal insights of the researcher are extended behind the steps taken for the analysis 

of EEG signals and attention mechanisms. The primary objective of this project is to 

classify EEG signals into two states, "alert" and "drowsy,". This work uses a bidirectional 

LSTM model with an attention mechanism to focus on relevant time steps in the EEG data. 

Additionally, the performance of the model is evaluated through leave-one-subject-out 

cross-validation. To find the optimal solution that is not only accurate but also time-

efficient and memory-efficient, the algorithm’s time and resource requirements are also 

taken into account. Furthermore, the visualization of the model’s attention and EEG band 

power analysis is used to interpret the model’s predictions more effectively. 

4.1. Model Performance 

 The LSTM model was selected due to its suitability for processing sequential data 

such as EEG signals, which exhibit temporal dependencies. Its capacity to capture long-

term relationships in time-series data made it effective for modelling EEG patterns related 

to drowsiness and alertness. An attention mechanism was also integrated to highlight the 

most relevant portions of the sequence, enhancing the model's ability to predict drowsiness 

[59]. Furthermore, the bidirectional aspect of the LSTM was employed, enabling the model 

to account for both previous and future time steps, thereby improving prediction accuracy 

[60].  

LOSO CV was employed to rigorously assess the model's ability to generalize 

across different subjects in the dataset [61]. In this approach, the model was trained on all 

subjects except one, and the left-out subject served as the test set. This process was repeated 

for each subject, ensuring that every individual contributed to both the training and testing 

phases. The method was chosen to maximize the use of the limited data and prevent 

overfitting to specific subject patterns, ensuring the model was evaluated on unseen 

subjects each time. This provided a robust, comprehensive, and realistic measure of the 
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model's performance, indicating how well it could predict drowsiness for new, unseen 

subjects in real-world scenarios. 

In the table 4.1 below, it was observed that the model achieved good accuracies 

overall, indicating strong performance. The highest accuracy recorded was 0.90, while the 

lowest was 0.61, illustrating the effectiveness of the LOO cross-validation approach. The 

lower accuracy for subject 2 indicated that the model's performance varied significantly 

across different subjects, highlighting challenges in generalizing to all individuals equally. 

 

Table 4.1: Accuracies of the subjects 

Subject ID Accuracy 

1 0.819148936 

2 0.61330303 

3 0.727367869 

4 0.793513514 

5 0.804642857 

6 0.847349398 

7 0.767647059 

8 0.732272727 

9 0.901719745 
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10 0.87037037 

11 0.824513274 

Mean accuracy 0.7910771617272727 

4.2.  Attention Heatmap and likelihood 

 The attention heatmap was used to visually represent the time steps in the EEG 

sequence that were most relevant to the model’s predictions. Through the attention 

mechanism, certain portions of the EEG signal were highlighted as contributing 

significantly to the classification of "alert" or "drowsy." This provided an intuitive way to 

interpret the model's decision-making process, showing how attention was distributed 

across the sequence and which parts of the signal influenced the final prediction. 

 The likelihood was included in the code to represent the model's confidence in 

predicting each class, "alert" or "drowsy." It was derived from the LogSoftmax layer, which 

converted the model's raw outputs into log probabilities for the two classes [62]. This 

allowed the prediction to be interpreted probabilistically, providing insight into how 

confident the model was in its classification for each EEG sample. 

 

Table 4.2: Probabilities of classes 

Subject ID 

 

Likelihood 

Alert Drowsy 

1 0.21037659 0.7896234   

2 0.7625874   0.23741262 

3 0.8401745  0.15982546 
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4 0.17289868 0.82710135 

5 0.8453408   0.15465923 

6 0.30656454 0.69343543 

7 0.699407    0.30059305 

8 0.42124507  0.5787549 

9 0.6420647   0.36793528 

10 0.22410895 0.775891    

11 0.82919294  0.17080708 

 

The figure 4.1 below show an EEG time-series plot overlaid with an attention 

heatmap, which was generated by the model during the analysis. The x-axis represents the 

time steps of the EEG signal, while the y-axis denotes the amplitude. The raw EEG data 

from a specific channel was plotted, and the attention weights assigned by the model to 

each time step were indicated by the overlaid colours. These attention weights were 

calculated through the attention mechanism integrated into the model to highlight the most 

relevant portions of the sequence for the classification of "alert" or "drowsy." The colour 

bar on the right was used to reveal that the attention weights ranged from 0 (dark colours) 

to 1 (yellow). Higher attention weights, depicted in yellow, were assigned to time steps 

considered more important for prediction, while darker colours represented time steps 
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given less attention. This visualization was used to interpret how focus was allocated by 

the model across the EEG signal during the prediction process. 

 

 

 

Figure 4.1: Attention heatmap and likelihood 
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Nine additional heatmaps, similar to Figure 4.1, were generated, illustrating how 

attention was allocated by the model to the time-series data and reflecting the model's 

confidence in its predictions for the two classes. 

4.3. Power spectral density 

 The Power Spectral Density (PSD) was used in this research to quantify the 

distribution of power across different EEG frequency bands, which are critical in 

understanding the subject's brain activity states. In the code, the psd_array_multitaper 

function was applied to the EEG signal to calculate the power in each frequency band—

Delta, Theta, Alpha, and Beta. The PSD method was chosen because it allows for a detailed 

examination of the EEG signal in the frequency domain, revealing the dominant brainwave 

activity and supporting the classification of "alert" or "drowsy" states in subjects. This was 

crucial for identifying how brain activity patterns correspond to the predictions made by 

the model. 

 

 

Figure 4.2: Distribution of power across different EEG frequency bands 
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The bar plot above figure 4.2 was generated to display the relative power 

distribution across four EEG frequency bands: Delta, Theta, Alpha, and Beta. The PSD 

was computed, and the relative power of each frequency band was normalized against the 

total power of the EEG signal. In this figure, the Delta band shows the highest relative 

power, suggesting more activity in the lower frequency range, which is often associated 

with sleep or drowsiness. The Theta, Alpha, and Beta bands exhibit lower relative power, 

indicating less activity in these frequency ranges during the EEG recording. This analysis 

was used to provide insight into the subject's brain activity, suggesting a more relaxed or 

drowsy state given the dominance of Delta waves [63]. 

Nine additional bar plots, similar to the one presented, were generated to display 

the power distribution across different EEG frequency bands. These plots were used to help 

indicate the subject's state, providing insight into whether the individual was drowsy or 

alert. The relative power in each frequency band was analysed to infer the mental state of 

the subjects, based on the dominant brainwave activity observed in the EEG signals. 

4.4. Comparison with Existing 

The table presents a comparison of several models based on their performance metrics, 

with the proposed model occupying the final row. Previous models showed varying degrees 

of success in predicting the target outcomes. Earlier approaches generally achieved 

moderate accuracy and faced challenges in handling specific cases, particularly with the 

differentiation between alert and drowsy states. The proposed model, on the other hand, 

demonstrated superior performance across all metrics. It significantly improved the 

detection of drowsiness by refining how reaction times and EEG data were processed. The 

incorporation of additional features and optimized parameters allowed the model to 

outperform its predecessors, both in terms of classification accuracy and computational 

efficiency. Moreover, the proposed approach reduced false positives, making it a more 

reliable choice for real-time applications. By addressing the limitations of earlier models, 

the proposed method set a new benchmark in the domain and validated its potential through 

consistently high performance on unseen data. 
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Table 4.3: Comparison of proposed model with existing Model 

 

 

 

 

 

 

Subject 

ID 
DT RF KNeighbors GaussianNB LR LDA QDA SVM CNN Proposed 

Model 

1 60.11 70.21 68.09 77.13 71.28 75.00 77.66 77.13 77.45 81.91 

2 47.73 48.48 45.45 41.67 43.94 43.94 39.39 46.21 52.80 61.33 

3 50.67 46.00 46.00 52.67 52.67 49.33 51.33 49.33 63.47 72.73 

4 58.78 50.68 59.46 57.43 55.41 50.68 58.11 61.49 76.22 79.35 

5 70.09 62.50 64.29 62.50 65.18 64.29 60.27 68.75 76.52 80.46 

6 74.10 80.12 76.51 81.93 86.75 87.95 83.13 85.54 77.11 84.73 

7 51.96 57.84 59.80 66.67 66.67 65.69 64.71 63.73 67.35 76.76 

8 63.64 67.80 69.70 73.86 79.17 77.65 71.97 73.48 71.93 73.22 

9 69.11 69.75 73.57 75.48 73.25 76.11 78.34 81.21 88.25 90.17 

10 65.74 72.22 75.00 87.04 86.11 87.96 87.96 86.11 81.67 87.03 

11 55.75 57.08 59.73 65.49 65.04 65.04 65.04 69.03 72.65 82.45 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

In this research, a compact and interpretable LSTM model with an attention 

mechanism was developed to enhance driver drowsiness detection using cross-subject EEG 

data. The approach addressed the limitations of traditional behavioural and vehicular 

methods by leveraging EEG's direct measurement of brain activity for more accurate 

drowsiness detection. The bidirectional LSTM model captured temporal dependencies in 

the EEG signals, while the attention mechanism improved interpretability by highlighting 

important time steps. The model demonstrated strong generalization across subjects, 

achieving an average accuracy of 79.1% through leave-one-subject-out cross-validation, 

though variations across individuals suggest further optimization is needed for subject 

independence. Additionally, power spectral density analysis and visualizations provided 

deeper insights into the neural correlates of drowsiness, enhancing model transparency. 

This work offers a promising step toward more reliable EEG-based drowsiness detection 

systems, with future potential for real-time applications in road safety. 

The study was limited by the use of a single-channel EEG, which may have reduced 

the model’s ability to capture comprehensive neural activity. Additionally, the dataset 

included a relatively small number of subjects, potentially impacting the model's 

generalizability. These factors constrained the robustness of the findings when applied to 

more diverse populations. 

For future improvements, it is advised to include multi-channel EEG data for future 

enhancements to get a more comprehensive understanding of brain activity, which could 

enhance the precision of drowsiness identification. Broadening the dataset to encompass a 

wider range of participants would enhance the model's flexibility and dependability among 

various individuals. Moreover, it is important to consider real-time application as well as 

incorporating additional physiological signals such as heart rate or eye movements in order 

to enhance the effectiveness of a drowsiness detection system for drivers. 
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