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Abstract

In this thesis, main objective to develop reliable and effective numerical methods for solving fractional
differential equations. In this work wavelets play a key role in developing numerical methods for solving
linear fractional ordinary differential equations with boundary conditions, as well as fractional partial
differential equations with both initial and boundary conditions. Also we develop a numerical scheme
using operational matrices to solve Caputo and Caputo-Hadamard fractional differential equations.
Furthermore, we reproduce a technique called Fast Evaluation, which handles these equations with
initial conditions without using operational matrices. A Hadamard-Gegenbauer wavelet method is
proposed for the solution of Caputo-Hadamard fractional differential equations. It is applied to solve
linear Caputo-Hadamard fractional differential equations for both initial and boundary value problems.
Using the Haar wavelet method, we solve fractional ordinary differential equations (ODEs) with initial
and boundary value problems. We then present a novel numerical scheme to find approximate solutions
for fractional partial differential equations (PDEs). This method combines Haar wavelets with a fast
evaluation technique, known as the fast Haar wavelet method. To demonstrate the applicability and
accuracy of the method, we solve several examples of Caputo fractional partial differential equations.
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Chapter 1

Introduction

The differential calculus, which was invented by G. W. Leibniz and Newton, is the source of fractional
calculus, which is equally as old as classical calculus. For the first time, the nth order derivative symbol
dn

dxn was introduced by G. W. Leibniz. How does this operator function if n is 1
2 , L’Hospital questioned

Leibniz. This question inspired S. F. Lacroix, who used the gamma function in his well-known book,to
give the formula for the arbitrary order derivative [2]. Lacroix’s formula is Γ(κ+1)

Γ(κ−γ+1)x
κ−γ for the γ

order derivative for xκ. Joseph Liouville extended integer order derivative to fractional order γ.
Dγx−κ = (−1)κ Γ(γ+κ)

Γ(κ) x−γ−κ is the additional formula Liouville developed to expand on his initial
definition for fractional order derivative for κ > 0. The definition only applicable on rational functions.
Lacroix’s definition is supported by Peacock, while Liouville’s is preferred by the majority of scientists.
A function’s integral representation and its derivatives were obtained by J. Fourier in order to avoid
this conflict. Using Liouville’s original formulation, Greer developed the fractional derivative for
trigonometric and hyperbolic functions. In the 20th century, a number of mathematicians, published
a great deal of research on fractional integral and derivative[3, 4].

The philosophy and evolution of fractional calculus have been covered in a number of books
[5, 6, 7, 8]. The fractional derivative is introduced via the fractional integral in fractional calculus.
Several scholars [5, 6, 7, 8], have been researching and writing a lot on these applications. A novel kind
of fractional integral operator, recently presented by multiple mathematicians into a single form[9, 10].
The fractional calculus is now a necessary ingredient in many science and engineering recipes. The
fundamental value of fractional calculus is in its ability to be a tool with improved accuracy and to
produce exact conclusions in a variety of contexts. The fractional calculus has the unique advantage
that these fractional differential operators are no longer local. Thus, the topic considers both non-local
dispersed effects and history [11, 12, 13]. The core of fractional differential equations is found in a
number of physical issues [14, 15, 16, 17]. Many scholars have been working hard lately to discover
strategies and approaches for solving equations for practically useful applications. Researchers are
investigating situations that exhibit fractional order behavior on a daily basis. Fractional calculus has
essentially been used for simulating heat transfer in heterogeneous media [18], fluid dynamics [19],
bioengineering [20] and electromagnetism [21].

We will go over a few essential definitions and special features for your convenience. These are
some fractional calculus preliminary notes that will help with future chapters.
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1.1 Gamma function

A sort of special function, the gamma function (represented by the Greek sign Γ) is essential to
fractional calculus. The expanding of factorial appears to have been originally considered in the 1720s
by Daniel Bernoulli and Christian Goldbach. Function, which was initially exclusively defined for
positive integers, to the parameters that are non-negative integers. A later discovery of the "Gamma
function" was given by Leonhard Euler in 1729 using an integral form with an extended domain that
included both real and complex values in addition to positive integers. It was researched by numerous
mathematicians after Euler in order to improve the expression of the gamma function. For each
positive number p, Gamma function is defined as

Γ(p) = (p− 1)!

Definition 1.1.1. [22] The function Γ : (0,∞) → R, is defined by,

Γ(p) =

∫ ∞

0

sp−1e−sds.

Euler’s Gamma function, and for p ∈ R+, the above improper integral converges.The gamma function
has a wide range of features, some of which we will address below.

1.1.1 Properties of Euler’s Gamma Function

1. Γ(p) = (p− 1)Γ(p− 1), for all p > 1,

Proof. According to the definition of gamma function,

Γ(p) =

∫ ∞

0

sp−1e−sds,

by parts integration of above equation yields

Γ(p) =
{
−sp−1e−s

}∞

0
+

∫ ∞

0

(p− 1)sp−2e−sds,

= 0 +

∫ ∞

0

(p− 1)sp−2e−sds,

= (p− 1)

∫ ∞

0

sp−2e−sds,

= (p− 1)Γ(p− 1),

If p is an integer, p = 1, 2, 3, . . ., then,

Γ(p) = (p− 1)Γ(p− 1),

= (p− 1)(p− 2)Γ(p− 2),

= (p− 1)(p− 2)(p− 3)Γ(p− 3),

= (p− 1)(p− 2)(p− 3), . . . , 1,

= (p− 1)!.

Therefore, for a positive integer argument the gamma function can be reduced into factorial function.
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1.1.2 Extension of Gamma Function’s Domain

Domain of gamma function can be extended, we rewrite equation,

Γ(p) = (p− 1)Γ(p− 1), as [22],

Γ(p+ 1) = (p)Γ(p), for p > 0

Γ(p) =
Γ(p+ 1)

p
. (1.1)

For p+ 1 > 0, p > −1, p ̸= 0, function on right hand side is defined. Now from equation (1.1),

Γ(p+ 2) = (p+ 1)pΓ(p),

Γ(p) =
Γ(p+ 2)

p(p+ 1)
.

After repeating the above process m-times, we get,

Γ(p) =
Γ(p+m)

p(p+ 1)(p+ 2)(p+ 3), . . . , (p+m− 1)
, m ̸= 0,−1,−2, · · · ,

1.2 Riemann-Liouville Integral

The integral formula of Cauchy is used to define fractional integrals and derivatives.

xInaΦ(x) =
∫ x

a

(x− τ)n−1Φ(τ)

(n− 1)!
dτ, (1.2)

where n ∈ N, and Φ ∈ L1[a, b], a, b ∈ R.
The definition of fractional integral is obtained by changing the factorial in (1.2) to the gamma func-
tion.

Definition 1.1.2 [23] The fractional integral of Riemann-Liouville of order γ is defined as, let γ ∈ R+,
and the operator xIγa, defined on L1[a, b] by,

(xIγaΦ) (x) =
1

Γ(γ)

∫ x

a

(x− τ)γ−1Φ(τ)dτ, (1.3)

for a ≤ x ≤ b, the operator xIγa is known as the fractional integral operator of Riemann-Liouville or
precisely R - L operator.
For γ = 0, we have xI0aΦ = Φ which is the identity operator, if γ ∈ N, then xIγaΦ coincides with the
classical integral.

1.2.1 Riemann-Liouville Derivative

We discuss the concepts that lead the definition of the fractional differential operator. The funda-
mental theorem of integer order calculus yields xDnaInaΦ = Φ, where n ∈ N denotes the order of the
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differential and integral operators. For n1, n2 ∈ N, we can alternatively write xDn1−n2
a xIn1−n2

a Φ = Φ.
Consequently, we may write,

xDn2
a Φ = xDn1

a xIn1−n2Φ. (1.4)

Relation (1.4) holds true for a certain class of functions if n2 is replaced with any γ > 0, unless
n1 − n2 > 0. The Riemann-Liouville fractional definition of differential operator follows from this.

Definition 1.1.3. [23] For γ ∈ R+ Considering γ ∈ R+, The fractional derivative of Riemann-
Liouville is;

xDγaΦ(x) =
1

Γ(n− γ)

(
d

dx

)n ∫ x

a

(x− τ)n−γ−1Φ(τ)dτ, (1.5)

where n− 1 < γ ≤ n.

1.3 Caputo Fractional Order Derivative

Caputo used the definition of fractional integral to define fractional derivative.

Definition 1.1.4[1] If f : R+ → R and γ ∈ ⟨n− 1, n), n ∈ N, then,

C
xD

γ
0Φ(x) =

1

Γ(n− γ)

∫ x

0

Φ(n)(τ)

(x− τ)γ−n+1
dτ, (1.6)

where the gamma function is represented by Γ, is called the Caputo fractional derivative of order γ,
provided it exists.

According to Caputo, the integral of Riemann-Liouville of fractional order is found by first com-
puting the ordinary derivative of natural order and then using the function that is obtained to define
the fractional order derivative. For γ ∈ ⟨n− 1, n), CxD

γ
0Φ(x), then Φ ∈ Cn(⟨0, x⟩) if and only if. The

Caputo fractional derivative is a non-local operator as it is defined in integral form.

Theorem 1.1.5.[1] The Caputo derivative is a linear operator, i.e. for any a, b ∈ R,

C
xD

γ
0 (aΦ1(x) + bΦ2(x)) = aCxD

γ
0Φ1(x) + bCxD

γ
0Φ2(x),

Proof. Let CxD
γ
0Φ1(x),

C
xD

γ
0Φ2(x) be the Caputo derivatives of functions Φ1 and Φ2, respectively. Then

C
xD

γ
0 (aΦ1(x) + bΦ2(x)) =

1

Γ(n− γ)

∫ x

0

(aΦ1(x) + bΦ2(x))
(n)

(x− τ)γ−n+1
dτ,

=
1

Γ(n− γ)

(
a

∫ x

0

Φ
(n)
1 (x)

(x− τ)γ−n+1
dτ + b

∫ x

0

Φ
(n)
2 (x)

(x− τ)γ−n+1
dτ

)
,

=
1

Γ(n− γ)
a

∫ x

0

Φ
(n)
1 (x)

(x− τ)γ−n+1
dτ +

1

Γ(n− γ)
b

∫ x

0

Φ
(n)
2 (x)

(x− τ)γ−n+1
dτ,
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= aCxD
γ
0Φ1(x) + bCxD

γ
0Φ2(x).

Theorem 1.1.6.[25] The Caputo fractional derivative of the order γ = 0 for Φ is equal to Φ, i.e.
C
xD

γ
0Φ(x) = Φ(x).

Proof. For any Φ, let the Caputo derivative of order γ = 0 exist. n = 1 as a result, and from
(1.3.1) it follows,

C
xD

γ
0Φ(x) =

1

Γ(1)

∫ x

0

Φ′(τ)

(x− τ)−1+1
dτ =

∫ x

0

Φ′(τ)dτ = Φ(x).

Theorem 1.1.7.[24] For the Caputo derivative of arbitrary order, the index law is valid, i.e.

C
xD

γ
0
C
xD

β
0Φ(x) =

C
x Dγ+β

0 Φ(x),

for any γ, β ∈ ⟨n− 1, n), n ∈ N.
Alternatively known as the semigroup property of the Caputo fractional operator CxD

γ
0 .

1.4 Hadamard Fractional Integral and Derivative

The Hadamard fractional integral was introduced in 1892 by Jacques Hadamard and stated as
Definition 1.1.8.[26] For γ ∈ R+and the function f(τ) ∈ Lp[a, b]. Then the Hadamard fractional
integral operator is defined as,

(xIγaΦ) (x) =
1

Γ(γ)

∫ x

a

(
ln
x

τ

)γ−1

Φ(τ)
dτ

τ
, x > a, (1.7)

and if Φ(x) ∈ ACn[a, b] then the Hadamard derivative is introduced as(
H
x DγaΦ

)
(x) =

1

Γ(n− γ)

(
x
d

dx

)n ∫ x

a

(
ln
x

τ

)n−γ−1

Φ(τ)
dτ

τ
, x > a. (1.8)

1.5 Wavelets

Joseph Fourier, a French mathematician has been discovered that the complex functions may be ap-
proximated and represented as a weighted sun of fundamental trigonometric functions in 1807. Such
approximations and representations have a number of advantages, since they offer comprehensive
analysis of complex functions. Fourier transformation is a powerful tool for data analysis, which uses
sinusoidal waves as basis functions. However, forever oscillation of sinusoidal waves obstructs the
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representation of abrupt changes efficiently. Moreover, sinusoids are not localized in time domain,
instead they are perfectly localized in frequency domain which is the major drawback of sinusoidal
representation. Therefore, non-stationary signals cannot be approximated by Fourier transformation.
Consequently, the analysis of images and non-stationary signals require a representation in which func-
tions are well localized in not only time but also in frequency domain. The modification of Fourier
transform into short time Fourier transform was firstly presented by Dennis Gabor in 1946 [27]. Short
time Fourier transform sectioned a signal to a time-localized window and for every window section
of signal, Fourier transform was computed. It had a major flaw that the analysis of entire signal
through the fixed width of window function resulted in a fixed resolution. Jean Morlet, in 1982, was
firstly presented the idea of utilizing distinct window function for distinct frequency bands, generating
by scaling and shifting of a single window function in time-frequency domain. Morlet referred these
basis functions as wavelets of constant shape because the window functions are tiny and oscillatory
by nature.
Wavelets are special types of compactly supported oscillatory functions that act as the foundation for
numerous significant spaces. These functions exhibit oscillatory behaviour for a short time period and
then die out. They has been used to solve various problems in the field of science and engineering.
Several specific properties of wavelets make them very useful [28]. Wavelets are frequently used in
numerical analysis [29], signal analysis for waveform representation and segmentation [30], system
analysis, optimal control and time-frequency analysis [31]. Recently, wavelet methods for solving dif-
ferential and integral equations have been getting more attention. Differential equations were first
solved using Haar wavelets and Legendre wavelets in [32] and [33] respectively.
Wavelets are formed by a family of functions which are constructed from translation and dilation of a
single function, known as mother wavelet ϕ(s). A family of continuous functions where the translation
parameter b and the dilation parameter a vary continuously, defined as

ϕa,b(s) = |a|− 1
2ϕ

(
s− b

a

)
, a, b ∈ R, a ̸= 0. (1.9)

The wavelet compresses by taking |a| < 1 with small support in time domain and higher support in
frequency domain. On the contrary, when |a| > 1 the wavelet expands and has less support in the
frequency domain along with greater support in the time domain. By restricting the parameters as
a = γ−k0 and b = nγ1γ

−k
0 , γ0, γ1 > 0 for n, k ∈ Z+, following family of discrete wavelets is obtained [34]

ϕk,n(s) = |γ0|
k
2 ϕ
(
γk0 s− nγ1

)
. (1.10)

In the above equation ϕk,n(s), forms a wavelet basis of L2(R).

1.5.1 Types of Wavelets Transforms

There are two different kinds of wavelet transforms discrete and continuous. Wavelet transformations
are used to transform a signal from the time domain to the time-frequency domain through Wavelets.

Continuous Wavelet Transform

Let g(s) ∈ L2(R) and the mother wavelet ϕa,b(s) ∈ L2(R), then the continuous wavelet transform [28]
is defined as

7



CWTg(a, b) = |a|− 1
2

∫ ∞

−∞
g(s)ϕ

(
s− b

a

)
, (1.11)

where |a|− 1
2 is normalization factor. Time frequency analysis and filtering of frequency components in

localized time are basic applications of continuous wavelets transforms (CWT). Since, the analytical
wavelets have non negative frequency components, they are best suited wavelets for time frequency
analysis. Analytical Morlet wavelet, Bump wavelets and Morse wavelet are some of the examples
that are adapted for continuous wavelet analysis [35]. The output of CWT appears in the form of
coefficients that are functions of time and frequency. By using CWT the oscillatory behaviour of
signals is characterized adequately.

Discrete Wavelet Transform

Since the function g(s) and the wavelet ϕ
(
s−b
a

)
are correlated in continuous wavelets transform while

the wavelet is translated and scaled, hence the continuous wavelet transform (CWT) is not more prac-
ticable. Infinitely many unessential coefficients in CWT are obtained during calculations, therefore
discretization is performed. Furthermore, continuous wavelet transforms mainly use wavelet func-
tions, whereas discrete wavelet transforms use scaling and wavelet functions simultaneously. Discrete
wavelet transform is an ideal case of denoising and compressing of naturally occurring signals and
images without redundant coefficients. The continuous representation of a function in (1.5.1) may
turned into discrete form by considering only integer values of a and b. Discrete wavelet transform
can be described by setting a = 2−j and b = k2−j , defining j as the refinement level and k controls
the shifting of wavelet being an integer variable [28].

ϕj,k(s) = |a|
j
2ϕ
(
2js− k

)
. (1.12)

These wavelets for j, k = 1, 2, · · · , generate an orthogonal basis, referred to the mother wavelet.
Through translation and dilation of mother wavelet further wavelets can be generated. Discretization
of wavelets based on scaling and translation, along with unaltered time domain. The basic applica-
tions of discrete wavelet analysis are denoising and scaling the images and signals. We will further
discuss some important properties and types of wavelets in this section.

1.5.2 Properties of Wavelets

There are many important properties of wavelets, some of which are described here.

Admissibility

The admissibility and regularity conditions have been considered the most important properties of
wavelets, by which different wavelets are distinguished. For a wavelet ϕ the admissibility condition is
defined as [36]

Aϕ =

∫ +∞

−∞

|ζ(x)|2

|x|
dx < +∞, (1.13)
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where ζ(x) is the Fourier transform of ϕ(s). According to the admissibility condition, ζ(x) vanishes
quickly as x→ 0, i-e;

ζ(0) =

∫ +∞

−∞
ζ(x)dx = 0.

Regularity Condition

The wavelet transform’s time-bandwidth product is the square of the input signal, which is undesir-
able in most practical applications. As a result, some extra constraints are imposed on the wavelet
functions to make the wavelet transform shrink rapidly with decreasing scale a. The regularity criteria
imply that the wavelet function should be smooth and concentrated in both the frequency and tem-
poral domains. We can explain regularity by using the concept of vanishing moments. The vanishing
moment is a criterion for determining how a function g(s) decays to infinity. Using the integration
below, we can compute the decay rate, [∫ ∞

−∞
sqg(s)ds

]
= 0, (1.14)

where q is the decay rate. Also if a wavelet ϕ(s) has N vanishing moments, then the wavelet trans-
form’s approximation order is also N. Through a number of vanishing moments, one can discuss the
regularity of wavelets. A wavelet with more vanishing moments will be considered more regular.

Multiresolution Analysis

There exists a finite number of wavelet coefficients in any discretized wavelet transform for a given
enclosed rectangular area in the plane’s upper half. Nevertheless, each coefficient involves the calcu-
lation of an integral. This numerical complexity can be eliminated under certain cases if the wavelets
constitute a multiresolution analysis. The multiresolution signal analysis is performed by wavelet
transform, through the varying scale factor a. In account to process the signal differently and in-
dependently in each frequency band, the multiresolution signal analysis decomposes the signal into
numerous frequency bands. Therefore, the wavelet must be localized in the timefrequency domain [37].

Linear Transform Property

Wavelet transform is a linear operation according to its definition. For a given function g(s), its
wavelet transform ϕg(a, b) has the following property

ϕg1+g2(a, b) = ϕg1(a, b) + ϕg2(a, b).

9



For translation and scaling parameters, we have

ϕg(b−b0)(a, b) = ϕg(s) (a, b− b0) ,

ϕ
β

1
2 g(βs)

(a, b) = ϕg(s)(βa, βb).

For g(s) = C, where C is any constant function, by admissibility condition its wavelet transform is
zero.

1.5.3 Some Famous Wavelets

There are various kinds of wavelets, out of which some famous wavelets are mentioned below.
Daubechies was the first to proposed compactly supported wavelets with orthonormal bases for L2(R)
space in 1988. These wavelets follow the Galerkin approach to discretize the differential equation and
possess various desirable properties, such as compact support, orthogonality, an exact representation
of polynomials to a certain extent, and the capability to express functions at multiple resolution levels.
But due to lack of an explicit expression in Daubechies’ wavelets, they were not efficient to provide
analytical differentiation or integration.

Haar Wavelets

The Haar wavelets proposed in 1909 by Alfred Haar, serves as the basic orthonormal wavelet with
compact support. On the interval of [0, 1), family of Haar wavelets is defined as [38]

Hi(s) =


1, β1 ≤ s < β2,

−1, β2 ≤ s < β3,

0, elsewhere,
(1.15)

where β1 = k
m , β2 = k+0.5

m , β3 = k+1
m . In the above definition i = 2j + k + 1, j = 1, 2, · · · , J is the

scaling parameter, where J is maximum resolution level. Also m = 2j and k = 1, 2, · · · ,m − 1, is
translation parameter. In 1980s, it was found that, Haar wavelets are in fact the first order Daubechies
wavelet and known as Db1. The Haar wavelets are further divided into two categories i-e; Uniform
Haar wavelets and Non-Uniform Haar wavelets bases on wavelet’s behaviour [39]. The major draw-
back of Haar wavelets is that they disobey continuity as well as differentiability.

Legendre Wavelets

These wavelets are compactly supported and derived from orthogonal Legendre polynomials through
translation and expansion. Legendre wavelets with respect to the independent variable s are defined
on [0, 1], as [42]

ϕlk,n(s) =


√
l + 1

22
k
2 Pl

(
2ks− 2n+ 1

)
, 2n−2

2k
≤ s < 2n

2k
,

0, elsewhere,
(1.16)
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where m = 1, 2, · · · , 2n−1,is the Legendre polynomials’ order, n = 1, 2, · · · , 2k−1, k ∈ Z+, and
√
l + 1

2

is the factor of standardization. These wavelets are also referred as spherical harmonic wavelets.
The Legendre wavelets use linear phase finite impulse response (FIR) filter during multiresolution
analysis, which enhance their uses in various physical phenomenons. Legendre wavelets have been
used to address fractional delay differential equations numerically in [40], and also used to inspect
heat transfer and Unsteady flow of tangent-hyperbolic fluid in [41].

Chebychev Wavelets

The Chebychev wavelets are defined over the interval [0, 1), as,

ϕn,m(s) =

{
2

k
2 Θ̃m

(
2ks− 2n+ 1

)
, n̂−1

2k
≤ s < n̂

2k
,

0, elsewhere,
(1.17)

where

Θ̃m(s) =


1√
π
, m = 0,√
2
πΘm(s), m > 0,

(1.18)

andm = 0, 1, 2, . . . ,M−1, k = 1, 2, . . . , 2k−1, whereM and k are positive integers. Chebyshev wavelets
utilize shifted Chebyshev polynomials Θ̃m(s), transforming the domain of Chebyshev polynomials
θm(s) from [−1, 1] to [0, 1]. Chebyshev polynomials are also orthogonal polynomials and have gained
popularity in approximation theory. The all four types of Chebyshev polynomials are special cases of
Jacobi polynomials. Some recent applications of Chebychev wavelets in the field of medical science is
presented in [43].
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Chapter 2

Fast Evaluation Technique

In recent years, fast evaluation techniques for Caputo and Caputo-Hadamard fractional differential
equations have become very important for solving complex mathematical problems. These methods
help solve the problems caused by fractional derivatives, which are difficult to compute because they
depend on the entire history of the solution. For the Caputo fractional derivative, which is often used
to model processes with memory effects, there have been significant improvements with fast finite
difference methods. Jiang et al.[44] have developed stable, fast time-stepping methods that make
handling these operators more efficient, especially in applications like fractional diffusion equations.
These advancements make it easier to simulate processes such as diffusion, which are important
in various scientific and engineering fields. For Caputo-Hadamard fractional differential equations,
new numerical methods have also been developed to improve computational efficiency. The Caputo-
Hadamard derivative, combining features of the Caputo and Hadamard derivatives, is particularly
useful for initial value problems. Methods like the predictor-corrector approach, which use graded
and non-uniform meshes, have shown great promise in achieving optimal convergence even under
weak smoothness conditions. Green et al.[50] have shown the effectiveness of these methods through
numerical experiments, demonstrating significant performance improvements. Moreover, Gohar et
al.[43] have developed finite difference methods specifically for Caputo-Hadamard fractional differential
equations, further improving computational efficiency.

Overall, these advances in fast evaluation techniques help us better understand fractional differ-
ential equations.They also expand the practical uses of fractional differential equations in fields like
physics, engineering, and applied mathematics. The methods and insights from these studies are
important for developing more efficient and accurate solutions for these complex equations.

2.1 Fast Evaluation Technique of Caputo Fractional Derivative
of Order γ

In this section, we will consider one of the fast evaluation techniques, to solve the Caputo fractional
derivative for 0 < γ < 1. Suppose we want to evaluate the Caputo fractional derivative on the
interval [0, T ] over a set of grid points Ωζ := {ζn, n = 0, 1, · · · , NT }, with ζ0 = 0, ζNT

= T , and
∆ζn = ζn − ζn−1.

Caputo fractional derivative defined as,

C
ζ D

γ
0y(ζ)

∣∣∣
ζ=ζn

=
1

Γ(1− γ)

∫ ζn

0

y′(s)ds

(ζn − s)
γ . (2.1)
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Splitting the convolution integral (2.1) into two components: a local part and a history part.

=
1

Γ(1− γ)

∫ ζn

ζn−1

y′(s)ds

(ζn − s)
γ +

1

Γ(1− γ)

∫ ζn−1

0

y′(s)ds

(ζn − s)
γ ,

C
ζ D

γ
0y(ζ)

∣∣∣
ζ=ζn

:= L (ζn) +H (ζn) , (2.2)

where Ln = 1
Γ(1−γ)

∫ ζn
ζn−1

y′(s)ds
(ζn−s)γ and Hn = 1

Γ(1−γ)
∫ ζn−1

0
y′(s)ds
(ζn−s)γ , are history and local parts, respec-

tively. For the local part, we approximate y′(s) by a constant
y(ζn)−y(ζn−1)

∆ζn
to get,

L (ζn) ≈
1

Γ(1− γ)

∫ ζn

ζn−1

(ζn − s)
−γ
[
y (ζn)− y (ζn−1)

∆ζn

]
ds.

As the result,

L (ζn) ≈
1

Γ(1− γ)

[
y (ζn)− y (ζn−1)

∆ζn

] ∫ un

ζn−1

(ζn − s)
−γ

ds,

L (ζn) ≈
1

Γ(2− γ)

[
y (ζn)− y (ζn−1)

(∆ζn)
γ

]
. (2.3)

Now for calculating the history part, we employ the integration by parts to substitute y′(s) and obtain.

H(ζn) =
1

Γ(1− γ)

∫ ζn−1

0

y′(s)ds

(ζn − s)
γ ,

H (ζn) =
1

Γ(1− γ)

[
y (ζn−1)

(∆ζn)
γ − y (ζ0)

(ζn)
γ − γ

∫ ζn−1

0

y(s)

(ζn − s)
γ ds

]
. (2.4)

To formulate efficient sum-of-exponentials(SOE)[46], we will use the approximations for the kernel
ζ−α(0 < α < 2) on the interval [δ, T ] with δ = min1≤n≤N ∆ζn and the absolute error ϵ. There exist
positive real numbers si and ωi

(
i = 1, . . . , Nexp

)
such that for 0 < α < 2.∣∣∣∣∣∣ 1ζα −

Nexp∑
i=1

ωie
−siζ

∣∣∣∣∣∣ ≤ ϵ, ζ ∈ [δ, T ], (2.5)

where the order of Nexp defined as,

Nexp = O

(
log

1

ϵ

(
log log

1

ϵ
+ log

T

δ

)
+ log

1

δ

(
log log

1

ϵ
+ log

T

δ

))
. (2.6)

Lemma 2.1.1. For α > 0,
1

ζα
=

1

Γ(α)

∫ ∞

0

e−ζ.ssα−1ds. (2.7)

Lemma 2.1.2. For ζ ≥ α > 0,∣∣∣∣∣ 1

Γ(α)

∫ ∞

p

e−ζssα−1 ds

∣∣∣∣∣ ≤
e

−δp pα−1

Γ(α)
1
δ , 0 < α ≤ 1,

e−δp2α−1
(

pα

Γ(α) +
1
δα

)
, 1 < α < 2.

(2.8)
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To approximate the history part (2.4), we will modify the convolution kernel ζ−1−γ with SOE.

H (ζn) ≈
1

Γ(1− γ)

y (ζn−1)

(∆ζn)
γ − y (ζ0)

(ζn)
γ − γ

Nexp∑
i=1

wi

∫ ζn−1

0

e−(ζn−s)siy(s)ds

 , (2.9)

H (ζn) =
1

Γ(1− γ)

y (ζn−1)

(∆ζn)
γ − y (ζ0)

(ζn)
γ − γ

Nexp∑
i=1

wiyhist,i (ζn)

 . (2.10)

The new function yhist,i (ζn) introduced as,

yhist,i (ζn) =

∫ ζn−1

0

e−(ζn−s)siy(s)ds. (2.11)

For n = 1, 2, . . . , NT , this forms a recurrence relation:

yhist,i (ζn) =

∫ ζn−2

0

e−(ζn−s)siy(s)ds+

∫ ζn−1

ζn−2

e−(ζn−s)siy(s)ds. (2.12)

By utilizing equation (2.11), we will obtain a simplified expression.

yhist,i (ζn) = e−(si∆ζn)yhist,i (ζn−1) +

∫ ζn−1

ζn−2

e−(ζn−s)siy(s)ds, (2.13)

where ∫ ζn−1

ζn−2

e−(ζn−s)siy(s)ds =
e−(si∆ζn)

si2∆ζn−1

[(
e−si∆ζn−1 − 1 + si∆ζn−1

)
y (ζn−1)+(

1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (ζn−2)

]
. (2.14)

By applying equation (2.14) within equation (2.13), we obtain

yhist,i (ζn) =e
−(si∆ζn)yhist,i (ζn−1) +

e−(si∆ζn)

si2∆ζn−1

[(
e−si∆ζn−1 − 1 + si∆ζn−1

)
y (ζn−1)+(

1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (ζn−2)

]
. (2.15)

Obtaining the history part by applying equation (2.15) to equation (2.10),

Hn (ζn) ≈
1

Γ(1− γ)

y (ζn−1)

(∆ζn)
γ − y (ζ0)

(ζn)
γ − γ

Nexp∑
i=1

wi

(
e−(si∆ζn)yhist,i (ζn−1) +

e−(si∆ζn)

si2∆ζn−1[
(e−si∆ζn−1 − 1 + si∆ζn−1)y(ζn−1) +

(
1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (ζn−2)

]) . (2.16)

Through the combination of equations (2.3) and (2.16), we achieve a Fast evaluation technique for
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the Caputo fractional derivative.

C
0 D

γ
ζ y(ζn) ≈ 1

Γ(2− γ)

[
y (ζn)− y (ζn−1)

(∆ζn)
γ

]
+

1

Γ(1− γ)

[
y (ζn−1)

(∆ζn)
γ − y (ζ0)

(ζn)
γ

−γ
Nexp∑
i=1

wi

(
e−(si∆ζn)yhist,i (ζn−1) +

e−(si∆ζn)

s2i∆ζn−1

[
(e−si∆ζn−1 − 1

+si∆ζn−1)y(ζn−1) +
(
1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (ζn−2)

]) . (2.17)

Remark. However, we will continue to use a uniform temporal mesh with equal intervals, denoted
as ∆ζn = ∆ζ. We have discovered that the Caputo fractional derivative works best for non-uniform
meshes.

2.2 Error analysis

Here, we will perform an error analysis of the fast evaluation method. This analysis aims to assess
the accuracy and stability of the method in computing the desired values, offering valuable insights
into its reliability and effectiveness.

Lemma 2.1.3.[45] Suppose that y(ζ) ∈ C2 [0, ζn] and let

FRny := C
0 D

γ
ζ y(ζ)

∣∣∣
ζ=ζn

− FC
0 Dγζ y

n, (2.18)

where 0 < γ < 1. Then,

∣∣∣FRny∣∣∣ ≤ ∆ζ2−γ

Γ(2− γ)

(
1− γ

12
+

22−γ

2− γ
−
(
1 + 2−γ

))
max

0≤ζ≤ζn

∣∣y′′(ζ)∣∣+ γεζn−1

Γ(1− γ)
max

0≤ζ≤ζn−1

|y(ζ)]. (2.19)

Proof. Only difference between our approximation FC
0 Dγζ yn and the L1 approximation C

0 D
γ
ζ y
n lies

in the convolution kernel’s and an absolute error bound of ε in its sum-of-exponentials approxima-
tion(2.5). ∣∣∣FC0 Dγζ y

n − C
0 D

γ
ζ y
n
∣∣∣ ≤ γε

Γ(1− γ)

n−1∑
j=1

∫ ζj

ζj−1

∣∣Π1,jy(s)
∣∣ds, (2.20)

where Π1,jy(ζ) = y
(
ζj−1

) ζj−ζ
∆ζ + y

(
ζj
) ζ−ζj−1

∆ζ , and leading the triangle inequality,

∣∣∣FRny∣∣∣ ≤ ∣∣∣CRny∣∣∣+ γε

Γ(1− γ)

n−1∑
j=1

∫ ζj

ζj−1

∣∣Π1,jy(s)
∣∣ds, (2.21)

where,
n−1∑
j=1

∫ ζj

ζj−1

∣∣Π1,jy(s)
∣∣ds ≤ max

0≤ζ≤ζn−1

|y(ζ)|ζn−1. (2.22)

15



Lemma 2.1.4. [45]For any mesh functions h =
{
hi | 0 ≤ i ≤ N

}
defined on Ωζ , the following in-

equality holds:

∆ζ

n∑
i=1

(
FC
0 Dγζh

i
)
hi ≥ ζ−γn − 2γεζn−1

2Γ(1− γ)
∆ζ

n∑
i=1

(
hi
)2

− ζ1−γn + γ(1− γ)εζn−1∆ζ

2Γ(2− γ)

(
h0
)2
. (2.23)

As our fast evaluation approach is used to compute the Caputo fractional derivative, the results in
Lemmas 2.1.3 and 2.1.4 can be used to demonstrate the convergence and stability characteristics of
the entire numerical scheme for solving time-fractional ODEs.

2.3 Numerical Results and Discussion

This section we apply the fast evalaution of Caputo derivative for solving fractional differential equa-
tions here we provide example to assess the accuracy of the method.

Example 1. A linear fractional differential equation of order γ is given as,

C
0 D

γ
ζ y(ζ) + µ (ζ) y (ζ) = g (ζ) , 0 < γ < 1, 2 < ν < 3, (2.24)

with initial condition

y(0) = 0,

For µ (ζ) = cos (ζ) + 0.5ζ, g(ζ) = (1 + γ)( Γ(ν+1.75)
Γ(ν+1.75−γ) (ζ)

(ν−γ+0.75) + µ (ζ) (ζ)(ν+0.75)). The exact
solution to this problem is y (ζ) = (1 + γ)(ζ)ν+0.75. By applying the fast evaluation approach with
time size 64 on the equation (2.24).(

1

Γ(2− γ)∆ζn
γ − µ(ζn)

)
y(ζn) ≈ g(ζn) +

1

Γ(2− γ)

[
y (ζn−1)

(∆ζn)
γ

]
− 1

Γ(1− γ)

[
y (ζn−1)

(∆ζn)
γ − y (ζ0)

(ζn)
γ

−γ
Nexp∑
i=1

wi

(
e−(si∆ζn)yhist,i (ζn−1) +

e−(si∆ζn)

si2∆ζn−1

[
(e−si∆ζn−1 − 1 + si∆ζn−1)y(ζn−1)

+
(
1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (ζn−2)

]) . (2.25)

The results are illustrated in Figure (2.1), by demonstrating the effectiveness of the approach.
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Figure 2.1: The approximate and exact solution at different values of γ and ν.

2.4 Fast Evaluation of Caputo Hadamard Fractional Derivative
of Order γ.

In this section, we will consider the fast evaluation technique of the Caputo-Hadamard fractional
derivative for a < γ < ae. Suppose that we would like to evaluate the Caputo-Hadamard fractional
derivative on the interval [a, T ] over a set of grid points Ωζ := {ζn, n = 0, 1, · · · , NT }, with ζ0 = 0,
ζNT

= T , and ∆ζn = ζn − ζn−1.

Caputo-Hadamard fractional derivative defined as,

H
ζ D

γ
ay(ζ)

∣∣∣
ζ=ζn

=
1

Γ(n− γ)

∫ ζn

a

(
log

ζn
s

)n−γ−1

δny(s)
ds

s
. (2.26)

For a < γ < ae, we have

H
ζ D

γ
ay(ζ)

∣∣∣
ζ=ζn

=
1

Γ(1− γ)

∫ ζn

a

(
log

ζn
s

)−γ

δy(s)
ds

s
, (2.27)

we can rewrite the equation (2.27) as follows[44],

H
ζ D

γ
ay(ζ)

∣∣∣
ζ=ζn

=
1

Γ(1− γ)

∫ ζn

a

(
log

ζn
a

− log
s

a

)−γ

δy(s)
ds

s
, (2.28)

we can see equation (2.28) can be written as un = log
(
ζn
a

)
and χ = log

(
s
a

)
,

H
ζ D

γ
ay(ζ)

∣∣∣
ζ=ζn

=
1

Γ(1− γ)

∫ un

0

(un − χ)
−γ dỹ(χ)

dχ
dχ. (2.29)

Convolution integral separated as following part: history and local part.

H
ζ D

γ
ay(ζ) |ζ=ζn =

1

Γ(1− γ)

∫ un−1

0

(un − χ)
−γ dỹ(χ)

dχ
dχ

+
1

Γ(1− γ)

∫ un

un−1

(un − χ)
−γ dỹ(χ)

dχ
dχ, (2.30)
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H
ζ D

γ
ay(ζ)

∣∣∣
ζ=ζn

:= Hn + Ln, (2.31)

where
Hn (un) =

1

Γ(1− γ)

∫ un−1

0

(un − χ)
−γ dỹ(χ)

dχ
dχ,

Ln (un) =
1

Γ(1− γ)

∫ un

un−1

(un − χ)
−γ dỹ(χ)

dχ
dχ,

Hn (un) and Ln (un) are history and local part, respectively. For the local part, we approximate ỹ′(χ)

by a constant
ỹ(un)−ỹ(un−1)

∆un
to get,

Ln (un) ≈
1

Γ(1− γ)

∫ un

un−1

(un − χ)
−γ
[
ỹ (un)− ỹ (un−1)

∆un

]
dχ, (2.32)

since
Ln (un) ≈

1

Γ(1− γ)

[
ỹ (un)− ỹ (un−1)

∆un

] ∫ un

un−1

(un − χ)
−γ

dχ, (2.33)

Ln (un) ≈
1

Γ(2− γ)

[
ỹ (un)− ỹ (un−1)

(∆un)
γ

]
. (2.34)

Let Ln (un) = Ln

(
log ζn

a

)
,

Ln (un) ≈
1

Γ(2− γ)

y
(
log ζn

a

)
− y

(
log ζn−1

a

)
(
log ζn

a − log ζn−1

a

)γ
 . (2.35)

For the history part,

Hn (un) =
1

Γ(1− γ)

∫ un−1

0

(un − χ)
−γ dỹ(χ)

dχ
dχ, (2.36)

by applying integration by parts to equation (2.36),

Hn (un) =
1

Γ(1− γ)

[
ỹ (un−1)

(∆un)
γ − ỹ (u0)

(un)
γ − γ

∫ un−1

0

ỹ(χ)

(un − χ)
γ dχ

]
. (2.37)

To approximate the history part using the Sum-of-Exponential (SOE) approximation for the convolu-
tion kernel u−1−γ , as discussed in section (2.5), we aim to represent the kernel as a sum of exponentials
to simplify the computation of convolution integrals.

Hn (un) ≈
1

Γ(1− γ)

 ỹ (un−1)

(∆un)
γ − ỹ (u0)

(un)
γ − γ

Nexp∑
i=1

wi

∫ un−1

0

e−(un−χ)si ỹ(χ)dχ

 , (2.38)

Hn (un) =
1

Γ(1− γ)

 ỹ (un−1)

(∆un)
γ − ỹ (u0)

(un)
γ − γ

Nexp∑
i=1

wiỹhist,i (un)

 , (2.39)
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we introduce a new function ỹhist,i (un) defined as follows:

ỹhist,i (un) =

∫ un−1

0

e−(un−χ)si ỹ(χ)dχ. (2.40)

To evaluate ỹhist,i (un) for n = 1, 2, . . . , NT , we will observe the following simple recurrence relation:

ỹhist,i (un) =

∫ un−2

0

e−(un−χ)si ỹ(χ)dχ+

∫ un−1

un−2

e−(un−χ)si ỹ(χ)dχ. (2.41)

Simplified form of Equation (2.43).

ỹhist,i (un) = e−(si∆un)ỹhist,i (un−1) +

∫ un−1

un−2

e−(un−χ)si ỹ(χ)dχ, (2.42)

where ∫ un−1

un−2

e−(un−χ)si ỹ(χ)dχ =
e−(si∆un)

si2∆un−1

[(
e−si∆un−1 − 1 + si∆un−1

)
ỹ (un−1)+(

1− e−si∆un−1 − e−si∆un−1si∆un−1

)
ỹ (un−2)

]
. (2.43)

By using equation (2.43) into equation (2.42), we get

ỹhist,i (un) =e
−(si∆un)ỹhist,i (un−1) +

e−(si∆un)

si2∆un−1

[(
e−si∆un−1 − 1 + si∆un−1

)
ỹ (un−1)+(

1− e−si∆un−1 − e−si∆un−1si∆un−1

)
ỹ(un−2)

]
. (2.44)

By applying (2.44) within (2.39) to obtain the history part.

Hn (un) ≈
1

Γ(1− γ)

 ỹ (un−1)

(∆un)
γ − ỹ (u0)

(un)
γ − γ

Nexp∑
i=1

wi

(
e−(si∆un)ỹhist,i (un−1)

+
e−(si∆un)

si2∆un−1

[
(e−si∆un−1 − 1 + si∆un−1)ỹ(un−1) +

(
1− e−si∆un−1

−e−si∆un−1si∆un−1

)
ỹ(un−2)

]) . (2.45)
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Let Hn (un) = Hn

(
log ζn

a

)
,

Hn (un) ≈
1

Γ(1− γ)

 y
(
log ζn−1

a

)
(
log ζn

a − log ζn−1

a

)γ −
y
(
log ζ0

a

)
(
log ζn

a

)γ − γ

Nexp∑
i=1

wi

e−si(log tn
a −log

ζn−1
a

)

yhist,i

(
log

ζn−1

a

)
+

e
−si

(
log ζn

a −log
ζn−1

a

)

si2
(
log ζn−1

a − log ζn−2

a

)

e−si(log

ζn−1
a −log

ζn−2
a

)
− 1

+si

(
log

ζn−1

a
− log

ζn−2

a

))
y

(
log

ζn−1

a

)
+

1− e
−si

(
log

ζn−1
a −log

ζn−2
a

)

−e
−si

(
log

ζn−1
a −log

tn−2
a

)
si

(
log

ζn−1

a
− log

ζn−2

a

) y

(
log

ζn−2

a

)

 . (2.46)

By the combining the equations (2.46) and (2.35), we will get the Fast evaluation technique for the
Caputo-Hadamard fractional derivative.

H
ζ D

γ
ay(ζ)

∣∣∣
ζ=ζn

≈ 1

Γ(2− γ)

y
(
log ζn

a

)
− y

(
log tn−1

a

)
(
log ζn

a − log ζn−1

a

)γ
+

1

Γ(1− γ)

 y
(
log ζn−1

a

)
(
log ζn

a − log ζn−1

a

)γ
−
y
(
log ζ0

a

)
(
log ζn

a

)γ − γ

Nexp∑
i=1

wi

e−si(log ζn
a −log

ζn−1
a

)
yhist,i

(
log

ζn−1

a

)
+

e
−si

(
log ζn

a −log
ζn−1

a

)

si2
(
log ζn−1

a − log ζn−2

a

)

e−si(log

ζn−1
a −log

ζn−2
a

)
− 1 + si

(
log

ζn−1

a

− log
ζn−2

a

))
y

(
log

ζn−1

a

)
+

1− e
−si

(
log

ζn−1
a −log

ζn−2
a

)
−

e
−si

(
log

ζn−1
a −log

ζn−2
a

)
si

(
log

ζn−1

a
− log

ζn−2

a

) y( log
ζn−2

a




 . (2.47)

2.5 Numerical Results and Discussion

This section deals with solving fractional differential equations using the fast evaluation of Caputo-
Hadamard derivative. and provide one numerical example to assess the accuracy of the method.
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Example 1. A linear fractional differential equation of order γ is given as,

H
ζ D

γ
ay (ζ) + v1 (ζ) y (ζ) = g (ζ) , 0 < γ < 1, 0 < ν < 2, (2.48)

with initial condition

y(a) = 0,

where v1 (ζ) = sin (ζ) and g (ζ) = (γ + 2ν)

(
Γ(ν+2)

Γ(ν+2−γ)

(
log ζ

a

)(ν−γ+1)

+ v1 (ζ)
(
log ζ

a

)(ν+1)
)

. The

exact solution of the equation is y (ζ) = (γ + 2ν)

((
log ζ

a

)ν+1
)

. By applying the current technique

with time size 64 on the equation (2.48), the results are illustrated in Figure (2.2), by demonstrating
the effectiveness of the approach.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y
(

)

Solution at different values of  and 

Approximate =1.93 =0.93

Exact =1.93 =0.93

Approximate =1.82 =0.82

Exact =1.82 =0.82

Approximate =1.64 =0.64

Exact =1.64 =0.64

Approximate =1.40 =0.40

Exact =1.40 =0.40

Figure 2.2: The numerical and exact solution at different values of γ and ν.

2.6 Conclusion

The Caputo and Caputo-Hadamard fractional differential equations were effectively solved using fast
evaluation techniques. The accuracy plots in Figures 2.1 and 2.2, comparing exact and numerical solu-
tions, demonstrated that our method maintains considerable reliability with the exact solutions. From
the results, it is shown that our technique is reliable for solution of fractional differential equations.
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Chapter 3

Hadamard Gegenbauer Wavelets
Method

Gegenbauer wavelets, derived from Gegenbauer polynomials, are effective method for solving frac-
tional differential equations (FDEs) due to their orthogonality and strong approximation capabilities.
Bhrawy et al. [54] demonstrated the effectiveness of Gegenbauer wavelets in solving multi-term FDEs,
showing their accuracy in discretizing fractional derivatives. The Hadamard fractional derivative,
which includes a logarithmic kernel, creates specific challenges in solving initial value problems. How-
ever, Gegenbauer wavelets have proven effective in addressing these problems. Doha et al. showed
how to use Gegenbauer wavelets for Hadamard derivatives, improving the precision of solutions to
initial value problems. Additionally, Aboodh et al. [58] combined Gegenbauer wavelets with the
Galerkin method to solve nonlinear differential equations, resulting in better accuracy and stability.
Applications of Gegenbauer wavelets in solving Hadamard fractional differential equations in various
fields. For instance, El-Gamel et al. [57] used them for electromagnetic wave propagation, and Zhu
et al. [56] applied them to fluid dynamics problems, demonstrating their efficiency and effectiveness
in practical scenarios.

3.1 Gegenbauer Polynomails

The Gegenbauer polynomails also known as ultraspherical harmonics polynomials Cρn, with order n,
are defined for ρ > −1/2 and n ∈ Z+, with in the interval [0, 1].

Cρn(x) =
Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)
(x)i. (3.1)

To utilize these polynomials over the interval [0,1], introduce the Fractional Gegenbauer polynomials.
By transformation, where the new variable s is introduced as x = sγ ,

Cρ,γn (s) =
Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)
(s)iγ . (3.2)

3.1.1 Hadamard Gegenbauer Wavelets

We have developed new wavelets, by using the transformation from Gegenbauer polynomials, modi-
fying the interval from [0, 1) to [a, ae). These newly developed wavelets are referred to as Hadamard
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Gegenbauer wavelets (HGW).

Φρ,γm,n(ζ) =

2
k
2Cρ,αn

(
2k log ζ

ae
m
2k

)iγ
, ae

m

2k < ζ ≤ ae
m+1

2k ,

0, elsewhere,
(3.3)

where k = 0, 1, 2, . . ., is the level of resolution and m = 0, 1, 2, . . . , 2k−1, is the translation parameter,
while n = 0, 1, 2, . . . , N − 1, N+ is the order of Gegenbauer polynomials and ρ > −1/2.

3.2 Function Approximations and the Hadamard Gegenbauer
Matrix.

A function y(ζ) ∈ Lp[a, ae) can be represented by a truncated series of HGW.

y(ζ) ≈
2k−1∑
m=0

N−1∑
n=0

cρm,nΦ
ρ,γ
m,n(ζ) = CρΦρ,γ(ζ), (3.4)

where matrices Cρ and Φρ,γ(ζ) have order of p̂× 1, and 1× p̂, p̂ = 2k(M + 1), as follows,

Cρ =
[
cρ10, c

ρ
11, · · · , c

ρ
1N−1, c

ρ
20, c

ρ
21, · · · , c

ρ
2N−1, · · · , c

ρ
2k−10

, cρ
2k−11

, · · · , cρ
2k−1N−1

]
,

Φρ,γ(ζ) =
[
Φρ,γ0,0 (ζ),Φ

ρ,γ
0,1 (ζ), · · · ,Φ

ρ,γ
1,N−1(ζ),Φ

ρ,γ
1,0 (ζ),Φ

ρ,γ
1,1 (ζ), · · · ,Φ

ρ,γ
1,N−1(ζ), · · ·

Φρ,γ
2k−1,0

(ζ),Φρ,γ
2k−1,1

(ζ), · · · ,Φρ,ρ
2k−1,N−1

(ζ)
]t
,

ζi = ae
2i−1
2p̂ , i = 1, 2, ...p̂, are collocation points for HGW. The HGW matrix Φρ,γp̂,p̂ is given by,

Φρ,γp̂×p̂ =

[
Φρ,γ

(
ae

1
2p̂

)
,Φρ,γ

(
ae

3
2p̂

)
, . . . ,Φρ,γ

(
ae

2p̂−1
2p̂

)]
. (3.5)

or
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Φρ,γ
p̂×p̂ =



Φρ,γ1,0

(
ae

1
2p̂

)
Φρ,γ1,0

(
ae

3
2p̂

)
· · · Φρ,γ1,0

(
ae

2p̂−1
2p̂

)
Φρ,γ1,1

(
ae

1
2p̂

)
Φρ,γ1,1

(
ae

3
2p̂

)
· · · Φρ,γ1,1

(
ae

2p̂−1
2p̂

)
...

... · · ·
...

Φρ,γ1,N−1

(
ae

1
2p̂

)
Φρ,γ1,N−1

(
ae

3
2p̂

)
· · · Φρ,γ1,N−1

(
ae

2p̂−1
2p̂

)
Φρ,γ2,0

(
ae

1
2p̂

)
Φρ,γ2,0

(
ae

3
2p̂

)
· · · Φρ,γ2,0

(
ae

2p̂−1
2p̂

)
Φρ,γ2,1

(
ae

1
2p̂

)
Φρ,γ2,1

(
ae

3
2p̂

)
· · · Φρ,γ2,1

(
ae

2p̂−1
2p̂

)
...

... · · ·
...

Φρ,γ2,N−1

(
ae

1
2p̂

)
Φρ,γ2,N−1

(
ae

3
2p̂

)
· · · Φρ,γ2,N−1

(
ae

2p̂−1
2p̂

)
...

... · · ·
...

Φρ,γ
2k−1,0

(
ae

1
2p̂

)
Φρ,γ

2k−1,0

(
ae

3
2p̂

)
· · · Φρ,γ

2k1 ,0

(
ae

2p̂−1
2p̂

)
Φρ,γ

2k−1,1

(
ae

1
2p̂

)
Φρ,γ

2k−1,1

(
ae

3
2p̂

)
· · · Φρ,γ

2k1 ,1

(
ae

2p̂−1
2p̂

)
...

... · · ·
...

Φρ,γ
2k−1,N−1

(
ae

1
2p̂

)
Φρ,γ

2k−1,N−1

(
ae

3
2p̂

)
· · · Φρ,γ

2k1 ,N−1

(
ae

2p̂−1
2p̂

)



.

By fixing the values of the parameters a = 1 > 0, γ = 0.5, M = 1, and k = 2, we attain m = 0, 1,
n = 0, 1, 2, 3, and i = 1, 2, . . . , 8. Then, the HGW matrix for ρ is given as:

Φ1.567,m,n
8×8 =



2.0 2.0 0 0 0 0 0 0
0 0 2.0 2.0 0 0 0 0
0 0 0 0 2.0 2.0 0 0
0 0 0 0 0 0 2.0 2.0
0 4.5885 0 0 0 0 0 0
0 0 0 4.5885 0 0 0 0
0 0 0 0 0 4.5885 0 0
0 0 0 0 0 0 0 4.5885


.

Similarly, various HGW can be obtained by choosing different values for ρ and γ.

3.3 The HGW Operational Matrix of Fractional order Integral

Apply HGW fractional order integral operator of order η over HGW as:

ζI
η
aΦm,n(ζ) = 2

k
2
ζI
η
a
Cρ,γn

(
2k log

ζ

ae
m

2k

)iγ
. (3.7)
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By using the equation (3.2), we get.

ζI
η
aΦm,n(ζ) = 2k(0.5+iγ)

Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5) ζ
Iηa

(
log

ζ

ae
m

2k

)iγ
. (3.8)

After applying the Caputo-Hadamard fractional integral, we obtain.

ζI
η
aΦm,n(ζ) = 2k(0.5+iγ)

Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)

Γ(iγ + 1)

Γ(iγ + η + 1)

(
log

ζ

ae
m

2k

)iγ+η
.

(3.9)

For ζ ≥ ae
m+1

2k ,

ζI
η
a,aeΦm,n(ζ) = 2k(0.5+iγ)

Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5) ζ
Iηa,ae

(
log

ζ

ae
m

2k

)iγ
, (3.10)

= 2k(0.5+iγ)
Γ(ρ+ 0.5)

Γ(2ρ)Γ(η)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)

∫ ae
m+1

2k

ae
m
2k

1

τ

(
log

(
ζ

τ

))η−1

log

 τ

ae
n

2k

)


iγ

dτ,

(3.11)

= 2k(0.5+iγ)
Γ(ρ+ 0.5)

Γ(2ρ)Γ(η)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)
w(ζ), (3.12)

where w(ζ) =
∫ aem+1

2k

ae
m
2k

1
τ

(
log
(
ζ
τ

))η−1
(
log

(
τ

ae
m
2k

))iγ
ds, It can be assessed using the global adap-

tive technique with different parameter values of m and n in MATLAB R2024a. Generally, we have
the following expression for the η-order Caputo-Hadamard fractional integral of HGW.

ζI
η
aΦm,n(ζ) = 2k(0.5+iγ)

Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)
Γ(iγ+1)

Γ(iγ+η+1)

(
log ζ

ae
π
2k

)iγ+η
, ae

m

2k ≤ ζ < ae
m+1

2k ,

1
Γ(η)w(ζ), ζ ≥ ae

m+1

2k .

(3.13)

Let Bηm,n(ζ) = ζIηaΦm,n(ζ). We can represent. (3.13) in vector form as,

Bη
m,n(ζ) =

[
Bη0,0(ζ), B

η
0,1(ζ), · · · , B

η
0,R−1(ζ), B

η
1,0(ζ), B

η
1,1(ζ), · · · , B

η
1,N−1(ζ),

· · · , B2k−1,0(ζ), B
η
2k−1,1

(ζ), · · · , Bη
2k−1,N−1

(ζ)
]T
. (3.14)

Evaluate (3.14) at the collocation points ζi = ae
2i−1
2p , i = 1, 2, . . . , p̂, we get,

Bη,m,n
p̂×p̂ =

[
Bη
m,n

(
ae

1

2p̂

)
,Bη

m,n

(
ae

3

2p̂

)
, · · · ,Bη

m,n

(
ae

2p̂−1

2p̂

)]
. (3.15)
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In particular, for the parameters a = 1 > 0, k = 2, M = 1, ρ = 1, and η = 1.5, with n = 0, 1, 2, 3 and
m = 0, 1, 2, the Caputo-Hadamard fractional integration matrix of order η for the HGW is given as
follows.

B1.5,m,n
8×8 =



0.0235 0.1222 0.2393 0.3132 0.3719 0.4223 0.4672 0.5080
0 0 0.0235 0.1222 0.2393 0.3132 0.3719 0.4223
0 0 0 0 0.0235 0.1222 0.2393 0.3132
0 0 0 0 0 0 0.0235 0.1222

−0.0376 −0.0977 −0.0564 −0.0426 −0.0358 −0.0315 −0.0284 −0.0261
0 0 −0.0376 −0.0977 −0.0564 −0.0426 −0.0358 −0.0315
0 0 0 0 −0.0376 −0.0977 −0.0564 −0.0426
0 0 0 0 0 0 −0.0376 −0.0977


.

3.4 The HGW Operational Matrix of Caputo-Hadamard frac-
tional integration for BVP

It is important to apply an additional operational matrix of Caputo-Hadamard fractional integration
to control the boundary conditions in order to solve the Caputo-Hadamard fractional boundary value
problem. Using the η Caputo-Hadamard fractional integral from a to ae on Φm,n(ζ), we achieve the
following:

ζI
η
a
Φρ,γm,n(ζ) =

1

Γ(η)

∫ ζ

a

(
1

τ
) log(

ζ

τ
)η−1Φρ,γm,n(τ)dτ, (3.16)

ζI
η
a
Φρ,γm,n(e) =

1

Γ(η)

∫ ae
m+1

2k

ae
m
2k

(
1

τ
) log(

e

τ
)η−1Φρ,γm,n(τ)dτ, (3.17)

=
1

Γ(η)
2k(0.5+iγ)

Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)

∫ ae
m+1

2k

ae
m
2k

(
1

τ
) log(

e

τ
)η−1 log(

τ

a
)iγdτ, (3.18)

=
1

Γ(η)
2k(0.5+iγ)

Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)
uη,k,m,n, (3.19)

where uη,k,m,n =
∫ aem+1

2k

ae
m
2k

(
1
τ

)
log
(
e
τ

)η−1
log
(
τ
a

)iγ
dτ , form = 0, 1, 2, . . . , 2k−1, and n = 0, 1, 2, . . . , N−

1, with N ∈ Z+. The vector form of uγ,k,m,n is given as follows:

Uη,k,m,np̂×1 =[uη,k,0,0, uη,k,0,1, · · · , uη,k,0,N , uη,k,1,0, uη,k,1,1, · · · , uη,k,1,N , · · · , uη,k,2
p−1,0, uη,k,2

p−1,1

, · · · , uη,k,2
p−1,N

]T
. (3.20)

We can evaluate the components of Uη,m,np̂×1 using the global adaptive technique in MATLAB R2024a.
Given the parameters a = 1, k = 2, γ = 0.68, p = 2, M = 1, and ρ = 1.465, with the integral order
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defined as η = 1.789, we obtain the following:

U1.789,m,n
8×1 = [0.4844, 0.3712, 0.2476, 0.1008,−0.0534,−0.0573,−0.0640,−0.0837]T .

Consider any function d(ζ) ∈ L2[0, 1], we have

d(ζ)IηaΦ
ρ,γ
m,n(e) = d(ζ)

1

Γ(β)
2k(0.5+iγ)

Γ(ρ+ 0.5)

Γ(2ρ)

n∑
i=0

(−1)i+nΓ(2ρ+ i+ n)

(i)!(n− i)!Γ(i+ ρ+ 0.5)
uη,k,m,n. (3.21)

Expand (3.21) at the collocation points to get.

Q
b(ζ),η,m,n
p̂×p̂ = Uη,m,np̂×1 D1×p̂,

where D1×p̂ =
[
d (ζ1) , d (ζ2) , · · · , d

(
ζp̂
)]

. For d(ζ) = sin(ζ), ρ = 2,M = 1, k=2 and γ = 0.787, The
order of integral is defined as η = 1.768, we obtain.

Q1.768,m,n
8×8 =



0.4272 0.4564 0.4783 0.4883 0.4802 0.4464 0.3790 0.2710
0.3297 0.3522 0.3692 0.3769 0.3706 0.3446 0.2925 0.2091
0.2222 0.2374 0.2489 0.2541 0.2498 0.2322 0.1972 0.1410
0.0924 0.0987 0.1034 0.1056 0.1038 0.0965 0.0819 0.0586
−0.0626 −0.0668 −0.0701 −0.0715 −0.0703 −0.0654 −0.0555 −0.0397
−0.0677 −0.0723 −0.0758 −0.0774 −0.0761 −0.0707 −0.0600 −0.0429
−0.0764 −0.0816 −0.0855 −0.0873 −0.0858 −0.0798 −0.0677 −0.0484
−0.1027 −0.1097 −0.1150 −0.1174 −0.1154 −0.1073 −0.0911 −0.0651


.

3.5 Error analysis

In this section, we will conduct an error analysis of the Hadamard Gegenbauer wavelet method.

Theorem 3.1.1.[47] Assume that n, k approaches to ∞, then
2k−1∑
m=0

N−1∑
n=0

Cρm,nΦ
ρ,γ
m,n(ζ) given in (3.4),

converges to G(ζ). Proof. Consider the inner product of Φρ,γm,n(ζ) and G(ζ), we have

fm,n =
〈
G(ζ),Φρ,γm,n(ζ)

〉
ψH2(J)

=

∫
J

G(ζ)ηρ,γm,n(ζ)g
′(ζ)dζ, (3.22)

let we define,

Sk,N =

r∑
m=1

s∑
n=0

Cρm,nΦ
ρ,γ
m,n(ζ),

where r = 2k − 1 and s = N − 1. Firstly, we prove that Sk,N is a Cauchy sequence in the Hilbert
space ψH2(J), J = [0, 1]. Then, we show that when k and N approach ∞, Sk,N converges to G(ζ).
Let

B = {0, 1, 2, · · · , s∗, s∗ + 1, · · · , s− 1, s} ,

and

Sk∗,N∗ =

r∗∑
m=1

s∗∑
n=0

CρmnΦ
ρ,γ
m,n(ζ),
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with r > r∗ and s > s∗.

∥∥Sk,N − Sk∗,N∗
∥∥2 =

∥∥∥∥∥∥
r∑

m=r∗+1

∑
n∈B

Cρm,nΦ
ρ,γ
m,n(ζ)

∥∥∥∥∥∥
2

,

=

r∑
m=r∗+1

∑
n∈B

r∑
m∗=r∗+1

∑
n∗∈B

CρmnC
ρ
m∗n∗

∫
J

Φρ,γm,n(ζ)η
ρ,γ
m∗,n∗(ζ)(g)′(ζ)dζ,

=

r∑
m=r∗+1

∑
n∈B

∣∣∣Cρm,n∣∣∣2 . (3.23)

By Bessel’s inequality,
∑r
m=r∗+1

∑
n∈B

∣∣∣Cρm,n∣∣∣2 is convergent, and
∥∥Sk,M − Sk∗,M∗

∥∥2 → 0 as k,N, k∗, N∗ →
∞,
The sequence Sk,N is given by:

Sk,N =

r∑
m=1

s∑
n=0

CρmnΦ
ρ,γ
m,n(ζ),

We claim that this sequence {Sk,N} is a Cauchy sequence in H2(J), and it converges to some function
l(ζ) ∈ H2(J). Formally, we write:

lim
k,N→∞

r∑
m=1

s∑
n=0

CρmnΦ
ρ,γ
m,n(ζ) = l(ζ),

We show that l(ζ) = G(ζ).
Let 〈

l(ζ)−G(ζ),Φρ,γm,n(ζ)
〉
=
〈
l(ζ),Φρ,γm,n(ζ)

〉
−
〈
G(ζ),ΦΦ,γ

m,n(ζ)
〉
,

= lim
m,n→∞

〈
Sk,N ,Φ

ρ,γ
m,n(ζ)

〉
− fn,m, (3.24)

= 0.

3.6 Initial Value Problems

The suggested approach is implemented for Caputo-Hadamard fractional initial value problems (IVPs).

Consider the general form of linear Caputo-Hadamard fractional IVP DE from the following,

H
ζ D

η
ay(ζ) + v1(ζ)

H
ζ D

γ
ay(ζ) + v2(ζ)

H
ζ Day(ζ) + v3(ζ)y(ζ) = h(ζ),

a < ζ ≤ ae, 1 < η ≤ 2, 0 < γ ≤ 1, (3.25)

y(a) = s1,
H
ζ Day(a) = s2.

Applying the Gegenbauer wavelet series to approximate the higher order term, as explained in (3.4).

H
ζ D

η
ay(ζ) =

2k−1∑
m=0

N−1∑
n=0

cρm,nΦ
ρ,γ
m,n(ζ). (3.26)
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Take fractional integration of (3.26) and after utilizing the Gegenbauer wavelets, we have

y(ζ) =

2k−1∑
m=0

N−1∑
n=0

cρm,nζI
η
aΦ

ρ,γ
m,n(ζ) + s2(ln(ζ)− ln(a)) + s1, (3.27)

Differentiate equation (3.27), we obtain

H
ζ Day(ζ) =

2k−1∑
m=0

N−1∑
n=0

cρm,nζI
η−1
a Φρ,γm,n(ζ) + Γ(2)s2, (3.28)

and

H
ζ D

γ
ay(ζ) =

2k−1∑
m=0

N−1∑
n=0

cρm,nζI
η−γ
a Φρ,γm,n(ζ) +

s2Γ(2)

Γ(2− γ)
(ln(ζ))1−γ . (3.29)

Substitute the values of Hζ D
η
ay(ζ), y(ζ),

H
ζ D

1
ay(ζ), and H

ζ D
γ
ay(ζ) from equations (3.26), (3.27), (3.28)

and (3.29) in (3.25), we get

2k−1∑
m=0

N−1∑
n=0

cρm,n

[
Φρ,γm,n(ζ) + ζI

η−γ
a (ζ)Φρ,γm,n(ζ)v1(ζ) + ζI

η−1
a (ζ)Φρ,γm,n(ζ)v2(ζ) + ζI

η
a(ζ)Φ

ρ,γ
m,n(ζ)v3(ζ)

]
= h(ζ)

− s2Γ(2)

Γ(2− γ)
(ln(ζ))1−γv1(ζ)− Γ(2)s2v2(ζ)−

(
s2(ln(ζ)− ln(a)) + s1

)
v3(ζ), (3.30)

where

F (ζ) = h(ζ)− s2Γ(2)

Γ(2− γ)
(ln(ζ))1−γv1(ζ)− Γ(2)s2v2(ζ)−

(
s2(ln(ζ)− ln(a)) + s1

)
v3(ζ),

In vector notation, the above equation at collocation points, ζi = 2i−1
2p̂ , where l = 1, 2, . . . , ρ̂, takes

the following form,

Cρ
[
Φρ,γ
p̂,p̂(ζ) +Bη−γ

p̂,p̂ (ζ)v1(ζ) +Bη−1
p̂,p̂ (ζ)v2(ζ) +Bη

p̂,p̂(ζ)v3(ζ)
]
= F1×p̂(ζ), (3.31)

F1×p̂ =
[
F (ζ1) , F (ζ2) , . . . , F

(
ζp̂
)]

, and the diagonal matrices v1,v2 & v3 are given as

v1 =


v1 (ζ1) 0 · · · 0

0 v1 (ζ2) · · · 0
...

...
. . .

...
0 0 · · · v1

(
ζp̂
)
 ,v2 =


v2 (ζ1) 0 · · · 0

0 v2 (ζ2) · · · 0
...

...
. . .

...
0 0 · · · v2

(
ζp̂
)


and

v3 =


v3 (ζ1) 0 · · · 0

0 v3 (ζ2) · · · 0
...

...
. . .

...
0 0 · · · v3

(
ζp̂
)


where Φρ,γ
p̂,p̂(ζ), B

η−γ
p̂,p̂ (ζ), Bη−1

p̂,p̂ (ζ) and Bη
p̂,p̂(ζ) are the operational matrices which are discussed in

section (3.2), (3.3) and Cρ is 1 × p̂ matrix. We can solve the equation (3.31), by matrix inversion
method for Cρ and use it in (3.27) to attain y(ζ) at collocation points.
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3.7 Boundary Value Problems

The suggested approach is implemented for Caputo-Hadamard fractional boundary value problems
(BVPs) in this section.

Consider the following general form of linear Caputo-Hadamard fractional BVP DE,
H
ζ D

η
ay(ζ) + µ1(ζ)

H
ζ D

γ
ay(ζ) + µ2(ζ)y(ζ) = h(ζ),

a < ζ ≤ ae, 1 < η ≤ 2, 0 < γ ≤ 1, (3.32)
y(a) = α1, y(ae) = α2.

Approximating the higher order term using the Gegenbauer wavelet series, as described in (3.4).

H
ζ D

η
ay(ζ) =

2k−1∑
m=0

N−1∑
n=0

cρm,nΦ
ρ,γ
m,n(ζ) = CρΦρ,γ(ζ). (3.33)

After Caputo-Hadamard fractional integration of (3.30), and by using the BCs, we get

y(ζ) = CρζI
η
aΦ

ρ,γ(ζ)− c1 ln(ζ)− c2. (3.34)

Using the boundary conditions, we have c1 = 1
(ln(a)−ln(ae))

[
CρζI

η
aΦ

ρ,γ(ae)− (α1 − α2)
]

and c2 =

−α1 − ln(a)
(ln(a)−ln(ae))

[
CρζI

η
aΦ

ρ,γ(ae)− (α1 − α2)
]
.

y(ζ) =CρζI
η
aΦ

ρ,γ(ζ)− 1

(ln(a)− ln(ae))

[
CρζI

η
aΦ

ρ,γ(ae)− (α1 − α2)
]
ln(ζ)

+
ln(a)

(ln(a)− ln(ae))

[
CρζI

η
aΦ

ρ,γ(ae)− (α1 − α2)
]
+ α1, (3.35)

and

H
ζ D

γ
ay(ζ) = CρζI

η−γ
a Φρ,γ(ζ)− 1

(ln(a)− ln(ae))

[
CρζI

η
aΦ

ρ,γ(ae)− (α1 − α2)
] Γ2

Γ(2− γ)
(ln(ζ))(1−γ).

(3.36)

By substituting equations (3.33), (3.34) and (3.35), in (3.32), we obtain

Cρ
[
Φρ,γ(ζ) +ζ I

η−γ
a Φρ,γ(ζ)A0 +ζ I

η
aΦ

ρ,γ(ζ)A1 +ζ I
η
aΦ

ρ,γ(ae)A2

]
= h(ζ)− µ1(ζ)(α1 − α2)

(ln(a)− ln(ae))

Γ2

Γ(2− γ)
(ln(ζ))(1−γ) − µ2(ζ)(α1 − α2)

(ln(a)− ln(ae))
(ln(ζ)) +

ln(a)

(ln(a)− ln(ae))
µ2(ζ)(α1 − α2)(ln(ζ)), (3.36)

where

R =h(ζ)− µ1(ζ)(α1 − α2)

(ln(a)− ln(ae))

Γ2

Γ(2− γ)(ln(ζ))(1−γ)
− µ2(ζ)(α1 − α2)

(ln(a)− ln(ae))
(ln(ζ))

+
ln(a)

(ln(a)− ln(ae))
µ2(ζ)(α1 − α2)(ln(ζ)).

Expanding equation (3.36) at collocation points, ζi = ae2i−1

2p , i = 1, 2, . . . , p̂, we have

Cρ
[
Φρ,γ
p̂,p̂(ζ) +Bρ,η−γ

p̂,p̂ (ζ)A0 +Bρ,η
p̂,p̂(ζ)A1 +Qρ,η

p̂,p̂(ζ)A2

]
= R1×p̂. (3.37)
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The vector R1×p̂ =
[
R (ζ1) ,R (ζ2) , . . . ,R

(
ζp̂
)]

is known, and the matrices A0, A1, and A2 are
diagonal matrices of order p̂× p̂, given by

A0 =


a0 (ζ1) 0 · · · 0

0 a0 (ζ2) · · · 0
...

...
. . .

...
0 0 · · · a0

(
ζp̂
)
 , A1 =


a1 (ζ1) 0 · · · 0

0 a1 (ζ2) · · · 0
...

...
. . .

...
0 0 · · · a1

(
ζp̂
)


and

A2 =


a2 (ζ1) 0 · · · 0

0 a2 (ζ2) · · · 0
...

...
. . .

...
0 0 · · · a2

(
ζp̂
)
 .

The operational matrices Φρ,γ
p̂,p̂(ζ), Bρ,η−γ

p̂,p̂ (ζ), Bρ,η
p̂,p̂(ζ), and Qρ,η

p̂,p̂(ζ), as detailed in the referenced
section (3.2), (3.3) and (3.4) along with the 1 × p̂ matrix Cρ, are used to solve equation (3.37). By
employing the matrix inversion method to solve for Cρ, we can then substitute this solution into
equation (3.34) to determine y(ζ) at the collocation points.

3.8 Numerical Results and Discussion

This section shows how the present numerical technique, which is based on fractional integration op-
erational matrices for Hadamard Gegenbauer wavelets, is implemented by taking two examples.

Example 1. A linear IVP Caputo-Hadamard fractional differential equation with variable coeffi-
cient is considered as,

H
ζ D

η
ay(ζ) + µ1(ζ)

H
ζ D

1
ay(ζ) + µ2(ζ)y(ζ) = g(ζ), 1 < η ≤ 2, 1 < ζ < e. (3.38)

Initial conditions

y(1) = 0, H
ζ D

1y(1) = 0,

where µ1(ζ) = cos(ζ) + 2ζ2 and µ2(ζ) = ln(ζ). In this case function g(ζ) = Γ(κ+2)
Γ(2+κ−η) (ln(ζ))

1+κ−η +

µ1(ζ)
Γ(κ+2)
Γ(1+κ) (ln(ζ))

κ + µ2(ζ)ln(ζ))
κ+1, and exact solution is y(ζ) = (ln(ζ))κ+1. After applying the

Hadamard Gegenbauer wavelets method to (3.38), we obtain

Cρ
(
Φρ,γ(ζ) +ζ I

η−1
a Φρ,γ(ζ)µ1(ζ) +ζ I

η
aΦ

ρ,γ(ζ)µ2(ζ)
)
= G, (3.39)

where Φρ,γ(ζ), ζI
η−1
a Φρ,γ(ζ) and ζI

η
aΦ

ρ,γ(ζ) are operational matrices, G =
[
g (ζ1) , g (ζ2) , . . . , g

(
ζp̂
))]

is 1 × p̂ matrix and µ1(ζ), µ2(ζ) is diagonal matrix. We solve the above equation (3.39) for Cρ and
substitute it in equation (3.38) to get y(ζ) at collocation points. After utilizing the collocation points,
the solution is given as

y = CρζIηaΦρ,γ(ζ), (3.40)

31



0 0.2 0.4 0.6 0.8 1
0

0.5

1

y
(

)

Comparison of Exact and Approximate solution

Exact at =1.75

Approximate at =1.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

A
b

s
o

lu
te

 E
r
r
o

r

10
-5

Figure 3.1: The approximate and exact solution for η = 1.75 when M = 4 & k = 3.

Figure 3.2: Numerical solution by choosing
η ∈ [1.70, 1.90] when k = 4 & M = 5

Figure 3.3: Absolute errors by choosing η ∈
[1.70, 1.90] when k = 4 & M = 5

where y = [y(ζ1), y(ζ2), ..., y(ζp̂)].
In Figure 3.1, the proposed scheme’s approximate solution is represented by a dotted line, while the
exact solution, obtained by selecting k = 3, M = 4, and η = 1.75, is shown by a solid line. Figures 3.2
and 3.3 show the graphs for the approximate solution and absolute errors, respectively, for varying η
within the range [1.70, 1.90], with k = 4 and M = 5. Table 3.1 provides the absolute error for various
combinations of k and M . It is evident that increasing k and M values while maintaining η constant
results in a reduction in error.

Example 2. Consider the following boundary value problem (BVP) involving the Caputo-Hadamard
fractional derivative.

H
ζ D

η

a
y(ζ) + e1(ζ)

H
ζ D

γ

a
y(ζ) + e2(ζ)y(ζ) = f(ζ), 1 < η ≤ 2, 0 < γ < 1. (3.41)

Boundary conditions.
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Table 3.1. The current scheme’s absolute errors at a constant η vary with different choices of k
and M .

η = 1.2 M = 2, k = 3 M = 3, k = 4 M = 5, k = 6 M = 6, k = 6
ζ Eabs Eabs Eabs Eabs
0 7.9565e− 05 5.1516e− 06 1.1343e− 07 7.6368e− 08
0.2 6.7067e− 05 6.5223e− 06 1.8506e− 07 1.1916e− 07
0.4 9.1782e− 05 6.7561e− 06 1.8028e− 07 1.1238e− 07
0.6 9.2381e− 05 6.7457e− 06 1.6906e− 07 9.9450e− 08
0.8 9.1114e− 05 6.6763e− 06 1.5118e− 07 7.7517e− 08
1 9.0910e− 05 6.5983e− 06 1.4254e− 07 7.0908e− 08

y(1) = 0, y(e) = 1.

For e1(ζ) = ln(ζ) and e2(ζ) = sin(ζ), f(ζ) = Γ(κ+1)
Γ(1+κ−η) (log(ζ))

κ−η + e1(ζ)
Γ(κ+1)

Γ(1+κ−γ) (log(ζ))
κ−γ +

e2(ζ) ln(ζ))
κ, The exact solution is given by y(ζ) = (ln(ζ))κ. Figures 3.4 and 3.5 display the graphs for

the approximate solution and absolute errors, respectively, for varying η within the range [1.75, 1.95],
with k = 4 and M = 5. By selecting different values for η and γ, and fixing k = 3 and M = 4,
both exact and approximate solutions, along with their absolute errors are plotted in Figure 3.6. This
illustrates different errors at various orders. The absolute errors provided in Table 3.2, it can be
reduced by increasing k and M values.

Figure 3.4: Numerical solution by choosing
η ∈ [1.75, 1.95] when k = 4 & M = 5

Figure 3.5: Absolute errors by choosing η ∈
[1.75, 1.95] when k = 4 & M = 5
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Table 3.2. The current scheme’s absolute errors at a constant η and γ vary with different choices
of k and M .

η = 1.9, γ = 0.2 M = 3, k = 2 M = 4, k = 3 M = 5, k = 4 M = 6, k = 5
ζ Eabs Eabs Eabs Eabs
0 2.5548e− 06 3.0013e− 07 4.2945e− 08 5.2131e− 09
0.2 2.0041e− 05 4.8707e− 06 1.6790e− 06 4.6841e− 07
0.4 3.2651e− 05 9.3996e− 06 2.9654e− 06 8.3860e− 07
0.6 3.8315e− 05 1.1611e− 05 3.5139e− 06 9.9142e− 07
0.8 3.4037e− 05 9.8320e− 06 3.0032e− 06 8.3546e− 07
1 1.8673e− 05 5.0044e− 06 1.3531e− 06 3.6485e− 07
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Figure 3.6: Exact solutions and solutions generated by hadamard Gegebauer Wavelet scheme for
k = 3 and M = 4, at different orders.
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3.9 Conclusion

The Caputo-Hadamard Gegenbauer wavelets method has proven to perform well when used to solve
various fractional initial value problems (IVPs) and boundary value problems (BVPs). Numerical
solutions of these problems converged to the exact solutions by increasing the values of k and M .
From the numerical examples, it is shown that the Caputo-Hadamard Gegenbauer wavelets technique
is capable of addressing a variety of fractional order differential equations effectively, providing good
results.
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Chapter 4

Fast Haar Wavelets Method

The Haar wavelet method is now a key tool for solving both initial value problems (IVPs) and bound-
ary value problems (BVPs) involving Caputo fractional differential equations and Caputo partial
fractional differential equations. Researchers have made important advancements in this area by de-
veloping efficient and accurate methods that take advantage of the unique features of Haar wavelets.
The ψ-Haar wavelets method [51] has been created to extend its use to nonlinear fractional differen-
tial equations using a technique called quasi-linearization. This method has shown high accuracy and
efficiency in various numerical examples, making it useful for solving both linear and nonlinear frac-
tional differential equations. Jafari has made significant contributions to this field by applying Haar
wavelets to solve fractional differential equations. For example, his work on using Haar wavelet oper-
ational matrices to solve generalized Caputo-Katugampola fractional differential equations has shown
better accuracy and efficiency. This approach works well for generalized fractional boundary value
problems [52], proving to be more effective than previous methods. Haar wavelet methods combined
with Green’s functions have also been used to solve partial differential equations of arbitrary order,
showing better accuracy than standard Haar wavelet methods. This combined method has success-
fully solved complex equations like nonlinear Burger’s equations [53]. Zhang et al, [54] introduced a
fast Euler-Maruyama method for nonlinear fractional stochastic differential equations, which improves
computational efficiency and achieves strong convergence. Their method uses a sum-of-exponentials
approximation and has been effective in numerical tests. Additionally, Jiang et al. [44] showed how
fast evaluation methods for Caputo fractional derivatives work well in fractional diffusion equations,
highlighting the potential of these techniques to improve numerical solutions of PDEs. Fast evaluation
methods, known for their speed and accuracy, enhance the Haar wavelet approach by speeding up
the numerical solution process. This combination offers the potential for significant improvements
in the numerical treatment of complex fractional models, providing powerful tools for engineers and
scientists.
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4.1 Haar wavelet

The father and mother wavelets [48] for the Haar wavelet family are defined as,

Φ0(τ) =

{
1, 0 ≤ τ < 1,

0, otherwise,
(4.1)

Φ1(τ) =


1, 0 ≤ τ < 1

2 ,

−1, 1
2 ≤ τ < 1,

0, otherwise.
(4.2)

According to. With the help of integer translations and dyadic dilations of the mother wavelet Φ1,
the other functions in the family of Haar wavelets are produced as follows:

Φi(τ) =


2j , ρ1(i) ≤ τ ≤ ρ2(i),

−2j , ρ2(i) ≤ τ ≤ ρ3(i),

0, otherwise.
(4.3)

Let ρ1(i) = k
m , ρ2(i) = k+0.5

m , and ρ3(i) =
k+1
m , where i = 2j + k + 1, j = 0, 1, 2, · · · , J represent the

dilation parameter. Here, m = 2j and k = 0, 1, 2, · · · , 2j − 1 are the translation parameters. While J
stands for the maximal level of resolution. The Haar wavelets’ collocation points are typically denoted
as τj = j−0.5

m , where j = 1, 2, . . . ,m.

4.2 Integral of Haar Wavelets

We find the integrals of the Haar function. By integrating the Haar function γ times, we obtain

P γ,i(τ) =
2j

(γ − 1)!

∫ τ

a

(τ − s)γ−1Φi(s)ds. (4.4)

These integrals can generally be evaluated using equation (4.1). If τ ∈ [ρ1, ρ2) then, based on equation
(4.3), we have the following:

P γ,i(τ) =
2j

(γ − 1)!

∫ τ

ρ1(i)

(τ − s)γ−1Φi(s)ds =
2j

γ!

[
τ − ρ1(i)

]γ
.

If τ ∈ [ρ2, ρ3),

P γ,i(τ) =
2j

(γ − 1)!

∫ τ

ρ1(i)

(τ − s)γ−1Φi(s)ds,

=
2j

(γ − 1)!

[∫ ρ2(i)

ρ1(i)

(τ − s)γ−1Φi(s)ds+

∫ τ

ρ2(i)

(τ − s)γ−1Φi(s)ds

]
,

=
2j

γ!

{[
τ − ρ1(i)

]γ − 2
[
τ − ρ2(i)

]γ}
.
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If τ ≥ ρ3(i),

P γ,i(τ) =
2j

(γ − 1)!

∫ τ

ρ1(i)

(τ − s)γ−1Φi(s)ds,

=
2j

(γ − 1)!

[∫ ρ2(i)

ρ1(i)

(τ − s)γ−1Φi(s)ds+

∫ ρ3(i)

ρ2(i)

(τ − s)γ−1Φi(s)ds

+

∫ τ

ρ3(i)

(τ − s)γ−1Φi(s)ds

]
,

=
2j

γ!

{[
τ − ρ1(i)

]γ − 2
[
τ − ρ2(i)

]γ
+
[
τ − ρ3(i)

]γ}
.

Therefore, the integrals of the Haar wavelet functions of order γ in equation (4.2) can be expressed
as,

P γ,i(τ) =



0, for τ < ρ1(i),
2j

γ!

[
τ − ρ1(i)

]γ
, for τ ∈

[
ρ1(i), ρ2(i)

]
,

2j

γ!

{[
τ − ρ1(i)

]γ − 2
[
τ − ρ2(i)

]γ}
, for τ ∈

[
ρ2(i), ρ3(i)

]
,

2j

γ!

{[
τ − ρ1(i)

]γ − 2
[
τ − ρ2(i)

]γ
+
[
τ − ρ3(i)

]γ}
, for τ > ρ3(i).

(4.5)

Above equation (4.5) hold for i > 1. For the case i = 1 we have ρ1(1) = ρ1, ρ2(1) = ρ3(1) = ρ2 and

P γ,1(τ) =
2j

γ!
(τ − ρ1)

γ , (4.6)

4.3 Function Approximation by the Haar Wavelets

The function y(τ) is defined on the interval, it can be decomposed in terms of the haar wavelet as
follows,

y(τ) =

∞∑
i=1

CiΦi(τ), (4.7)

with i as an integer index for the finite or infinite sum, where Ci represents the Haar wavelet coefficient
and Φi(τ) are the basis functions, let us consider the first m.

yM (τ) =

m∑
i=1

CiΦi(τ), i = 2j + k + 1, j = 0, 1, 2, . . . , J, k = 0, 1, 2, . . . , 2j − 1. (4.8)

The approximation function defined as yM (xi),

yM (τi) =

m∑
i=1

CiΦi (τi) . (4.8)

Equation (4.8) in matrix form.
y = CΦ, (4.9)

where C =
[
C1 C2 · · · Cm

]
and y =

[
y1 y2 · · · ym

]
are row vactors of m dimensional

and
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Φm×m =


Φ1

(
x(1)

)
Φ1

(
x(2)

)
· · · Φ1

(
x(m)

)
Φ2

(
x(1)

)
Φ2

(
x(2)

)
· · · Φ2

(
x(m)

)
...

...
. . .

...
Φm

(
x(1)

)
Φm

(
x(2)

)
· · · Φm

(
x(m)

)

 .

In particular, for J = 3, we get m = 8 and the Haar matrix is given as,

Φ8×8 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


,

with C determined by,
C = y[Φ]−1, (4.10)

where Φ−1 is the inverse of Φ and equation (4.10) gives the Haar coefficients Ci which are used in
(4.7) to get the solution y(x). Among various methods to evaluate the error function of the wavelet
estimations, one such error function is defined as follows:

E =

∫ 1

0

[y(τ)− yM (τ)]2dτ. (4.11)

Within the class of piecewise functions are the Haar wavelets. The rate of convergence for the piecewise
constant function is shown to be O

(
1
M2

)
, provided that the function is sufficiently smooth.

4.4 Fractional Integration Operational Matrix of Haar Wavelet

The defined infinite series can be used to approximate the function y(τ),

y(τ) =

∞∑
i=0

CiΦi(τ), (4.12)

with taking first m-terms of above (4.12) equation,

yM (τ) =

m∑
i=0

CiΦi(τ), (4.13)

by substituting the collocation points into equation (4.13), we have

yM (τi) =

m∑
i=0

CiΦi (τi) ,

by applying the integral, we obtain

τ Iγρ1yM (τ) = Cmτ Iγρ1Φm(x) = CmP γ
m×mΦm(τ). (4.14)
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We used equations (4.5) and (4.6) to compute xIγρ1Φm(x) = P γ
m×mΦm(x). The expression in equation

(4.14) represents the required fractional integral of yM (x) using Haar wavelets.

Pm×m =


pγ,1

(
τ(1)

)
pγ,1

(
τ(2)

)
· · · pγ,1

(
τ(m)

)
pγ,2

(
x(1)

)
pγ,2

(
τ(2)

)
· · · pγ,2

(
τ(m)

)
...

...
. . .

...
pγ,m

(
τ(1)

)
pγ,m

(
τ(2)

)
· · · pγ,m

(
τ(m)

)

 .
In particular, we fix J = 3 and γ = 0.95, resulting in m = 8. The Haar wavelet operational matrix of
fractional integration is.

P8×8 =



0.0733 0.2081 0.3380 0.4653 0.5908 0.7149 0.8378 0.9598
0.0733 0.2081 0.3380 0.4653 0.4443 0.2988 0.1618 0.0292
0.1036 0.2942 0.2708 0.0696 −0.0169 −0.0109 −0.0081 −0.0065

0 0 0 0 0.1036 0.2942 0.2708 0.0696
0.1465 0.1230 −0.0097 −0.0053 −0.0037 −0.0028 −0.0023 −0.0019

0 0 0.1465 0.1230 −0.0097 −0.0053 −0.0037 −0.0028
0 0 0 0 0.1465 0.1230 −0.0097 −0.0053
0 0 0 0 0 0 0.1465 0.1230


.

4.5 Operational Matrix of Fractional Integration with Haar
Wavelet for Boundary Value Problems

The fractional integral is applied to obtain another operational matrix, which helps us solve the
fractional boundary value problem[50]. Suppose that [0, η] is the compact support of Haar functions
and that f : [0, η] → R is a continuous function with η > 0.

Iγ0Φ1(η) = 2j
∫ η

0

(η − s)γ−1ds, (4.15)

by simplifying,

f(τ)Iγ0Φ1(η) = f(τ)
2jηγ

Γ(γ + 1)
. (4.16)

By assigning Cγ,l = 2jη
γ

Γ(γ+1) ,

sγ,η,1 = f(τ)Cγ,1, (4.17)

and

f(τ)Iγ0Φi(η) = 2jf(τ)

[∫ ρ2(i)

ρ1(i)

(η − s)γ−1ds−
∫ ρ3(i)

ρ2(i)

(η − s)γ−1ds

]
, (4.18)

f(τ)Iγ0Φi(η) = f(τ)
2j

Γ(γ + 1)

[
(η − ρ1(i))

γ − 2(η − ρ2(i))
γ + (η − ρ3(i))

γ
]
, (4.19)
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Cγ,i =
2j

Γ(γ+1)

[
(η − ρ1(i))

γ − 2(η − ρ2(i))
γ + (η − ρ3(i))

γ
]
,

sγ,η,i = f(τ)Cγ,i. (4.20)

For sγ,η,1 = f(τ)Iγ0Φ1(η) and sγ,η,i = f(x)Iγ0Φi(η), where i = 2j + k + 1, j = 0, 1, 2, · · · , J , and
k = 0, 1, 2, · · · , 2j − 1, let τ(i) = i−0.5

m , i = 1, 2, · · · ,m. Define a matrix S using the collocation points
τ as described in (4.19) and (4.20).

Sγ,ηm×m =


f
(
τ(1)

)
Iγ0Φ1(η) f

(
τ(2)

)
Iγ0Φ1(η) · · · f

(
τ(m)

)
Iγ0Φ1(η)

f
(
τ(1)

)
Iγ0Φ2(η) f

(
τ(2)

)
Iγ0Φ2(η) · · · f

(
τ(m)

)
Iγ0Φ2(η)

...
...

. . .
...

f
(
τ(1)

)
Iγ0Φm(η) f

(
τ(2)

)
Iγ0Φm(η) · · · f

(
τ(m)

)
Iγ0Φm(η)

 .
In particular, for η = 1, 25, f(τ) = cos(τ), γ = 0.25, J = 3, we get

S1.25,1
8×8 =



1.1011 1.0839 1.0498 0.9994 0.9333 0.8526 0.7587 0.6529
−0.7507 −0.7390 −0.7158 −0.6813 −0.6363 −0.5813 −0.5173 −0.4452
−0.0316 −0.0311 −0.0302 −0.0287 −0.0268 −0.0245 −0.0218 −0.0188
−0.8928 −0.8788 −0.8512 −0.8103 −0.7567 −0.6913 −0.6151 −0.5294
−0.0082 −0.0081 −0.0078 −0.0075 −0.0070 −0.0064 −0.0057 −0.0049
−0.0149 −0.0147 −0.0142 −0.0135 −0.0127 −0.0116 −0.0103 −0.0089
−0.0376 −0.0370 −0.0359 −0.0341 −0.0319 −0.0291 −0.0259 −0.0223
−1.0617 −1.0451 −1.0122 −0.9636 −0.8999 −0.8221 −0.7315 −0.6295


.

The Haar matrices Φ, P, and S are formulated for addressing initial and boundary value problems
involving fractional orders.

4.6 Error analysis

In this section, we explain an inequality in [49]. This inequality provides an upper bound, demon-
strating the convergence of the Haar wavelet technique.

Theorem 3.1.1. Suppose that we have differentiable function y(τ) and its first derivative is bounded
by M > 0 on the interval (0, 1) that is,

∣∣y′(τ)∣∣ ≤M ; for all τ ∈ (0, 1), and ym(τ) is the approximation
of y(τ). Then we have ∥∥y(τ)− ym(τ)

∥∥ = O

(
1

m

)
.

Proof. As the function y(τ), which is defined over [0, 1) can be expressed as,

y(τ) =

∞∑
i=0

CiΦi(τ), (4.21)

where Ci =< y(τ),Φi(τ) >. Let us consider the first m-terms of the above equation (4.21), which is
denoted by ym(τ) and is the approximation of the function y(τ), that is

y(τ) ∼= ym(τ) =

m∑
i=0

CiΦi(τ), (4.22)
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where, m = 2j , j = 0, 1, 2, 3, · · · . So the difference becomes,

y(τ)− ym(τ) =

∞∑
i=0

CiΦi(τ)−
m∑
i=0

CiΦi(τ), (4.23)

=

∞∑
i=m

CiΦi(τ).

Taking norm of equation (4.23), we have

∥∥y(τ)− ym(τ)
∥∥2 =

∫ 1

0

(
y(τ)− ym(τ)

)2
dx,

=

∫ 1

0

 ∞∑
i=m

CiΦi(τ)

2

dτ,

=

∞∑
i=m

∞∑
i=m′

CiC i̇

∫ 1

0

Φi(τ)Φi̇(τ)dτ. (4.24)

By using orthogonality condition, (4.24) becomes,

∥∥y(τ)− ym(τ)
∥∥2 =

∞∑
i=m

C2
i =

∞∑
i=2j

C2
i , (4.25)

where Ci =< y(τ),Φi(τ) >=
∫ 1

0
y(τ)Φi(τ)dτ . Since

Φi(τ) = 2
j
2


1, for τ ∈

[
k2−j , (k + 0.5)2−j

]
,

−1, for τ ∈
[
(k + 0.5)2−j , (k + 1)2−j

]
,

0, otherwise,

by substituting, we obtained

Ci = 2
j
2

{∫ (k+0.5)2−j

k2−j

y(τ)dτ −
∫ (k+1)2−j

(k+0.5)2−j

y(τ)dτ

}
.

By mean value theorm, there exit ξ, η in such a way that

k2−j ≤ ξ < (k + 0.5)2−j , (k + 0.5)2−j ≤ η < (k + 1)2−j .

Therefore

Ci = 2
j
2

{(
(k + 0.5)2−j −

(
k2−j

))
y(ξ)−

(
(k + 1)2−j (4.26)

−
(
(k + 0.5)2−j

))
y(η)

}
.

After simplifying equation (4.26), we obtained

Ci = 2
j
2−j−1(y(ξ)− y(η)),
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Ci = 2
−j
2 −1(η − ξ)y′(ζ); ξ < ζ < η,

≤ 2
−j
2 −12−jM, ∵ y(ζ) ≤M,

= 2
−3j
2 −1M.

Therefore the equation (4.52) becomes,

∥∥y(τ)− ym(τ)
∥∥2 =

∞∑
n=2j

C2
i ,

splitting the sum we have,

∥∥y(τ)− ym(τ)
∥∥2 =

∞∑
j=k+1

2j+1−1∑
i=2j

C2
i

 ,

≤
∞∑

j=k+1

2j+1−1∑
i=2j

(
2−

3j
2 −1M

)2 =

∞∑
j=k+1

2j+1−1∑
n=2j

2−3j−2M2

 ,

=
∞∑

j=k+1

2−3j−2M2
2j+1−1∑
i=2j

 ,

=

∞∑
j=k+1

2−3j−2M2
(
2j+1 − 1− 2j + 1

)
=

∞∑
j=k+1

2−2j−2M2,

=M2
∞∑

j=k+1

2−2j−2.

Using sum of the geometric series formula in above equation we have,

∥∥y(τ)− ym(τ)
∥∥2 =

2−2k−2

3
M2,

=
(m)−2

3
M2 ∵ m = 2k+1.

Hence, ∥∥y(τ)− ym(τ)
∥∥ = O

(
1

m

)
.

So, one can manage to find the exact value of error bound 2−2k−2

3 M2, for the given partial sum in
equation (4.22), if numerical value of M is given.
To estimate the value of M , suppose that we have a differentiable function y(τ) which is continuous
on the interval [0, 1]. As first derivative of y(τ) is bounded and continuous on the interval [0, 1], also
y′ ∈ L2[0, 1]. So y′(τ) can be estimated as,

y′(τ) ∼=
m∑
i=0

CiΦi(τ), (4.27)

where Ci =
〈
y′(τ),Φ(τ)

〉
, also (4.27) can be written in the form of matrix as,

y′(τ) ≃ CTΦ, (4.28)
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where C = [C0,C1,C2, · · · ,Cm−1]
T , and Φ = [Φ0,Φ1,Φ2, · · · ,Φm−1]. Integration of equation

(4.27), we have

y(τ)− y(0) ≃
m−1∑
i=0

Ci

∫ τ

0

Φi(τ)dτ. (4.29)

As τ ∈ [0, 1], let us define the points

τj =
j − 0.01

m
, j = 1, 2, 3, · · · ,m.

By substituting τj in equation (4.29) we obtain,

y
(
τj
)
− y(0) ≃

m−1∑
i=0

Ci

∫ τj

0

Φi(τ)dτ, (4.30)

we can write (4.30) in the form of matrix, as

Y − Y (0) = CF , (4.31)

where F =
[∫ τj

0
Φi(τ)dτ

]
0≤i≤m−1,1≤j≤m

,C = [C0,C1,C2, · · · ,Cm−1]
T
,

Y (0) = [y(0), y(0), y(0), · · · , y(0)]T1×m, and Y =
[
y (τ1) , y (τ2) , y (τ3) , · · · , y (τm)

]T . We can deter-
mine the vector C, putting this vector C into equation (4.27), y′(τ) can be calculated for each τ ∈ [0, 1].
Assume τi ∈ [0, 1] and y′ (xi) can be calculate for i = 1, 2, 3, · · · , l, where l be the equidistant, then
estimation of M may be considered as ϵ+max

∣∣y′ (xi)∣∣1≤i≤l.
4.7 Numerical Results and Discussion

The numerical results and analysis of the suggested method for solving differential equations of frac-
tional order are covered in this section. We study both initial value problem (IVP) and boundary
value problem (BVP) problems using fractional order differentiable equations to demonstrate the ef-
fectiveness of this method.

Example 1. Consider the composite fractional oscillation equation.

C
τ D

γ
0y(τ) + y(τ) = f(τ), 0 < γ < 1. (4.32)

Initial condition

y(0) = 0,

where
f(τ) = τ2 +

Γ(3)

Γ(3− γ)
τ2−γ , (4.33)

equation. (4.32) has the exact solution y(τ) = τ2. Let

C
τ D

γ
0y(τ) = CmΦm(τ), (4.34)
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applying the initial condition y(0) = 0, we have

y(τ) = CmτI
γ
0Φm(τ) + y(0), (4.35)

substituting equations (4.34)-(4.35) in equation (4.32), we get

Cm
[
Φm(τ) + P γm×mΦm(τ)

]
= fmΦm(x), (4.36)

where fm is the evaluation of function f(τ) at collocation points, we plot the approximate and exact
solutions at various γ values. The results are shown numerically in Table 4.1. It is evident from
Figures 4.1, 4.2, 4.3, and 4.4 that, for each of the values of γ = 0.15 and γ = 0.55, the approximate
solution agrees very well with the exact solution. By raising J , a good approximate solution for this
problem can be found.
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Figure 4.1: Approximate and exact solution
for γ = 0.15 when J = 4
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Figure 4.2: Absolute errors at γ = 0.15 when
J = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
(

)

Approximate Solution

Exact Solution

Figure 4.3: Approximate and exact solution
for γ = 0.55 when J = 4
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Figure 4.4: Absolute errors at γ = 0.55 when
J = 4
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Table 4.1. The Haar wavelet’s absolute errors at γ = 0.9 with different choices of J .

γ = 0.9 J = 6 J = 7 J = 8 J = 9
τ Eabs Eabs Eabs Eabs
0 5.9465e− 05 1.4957e− 05 3.7514e− 06 9.3950e− 07
0.2 5.1550e− 05 1.3152e− 05 3.3707e− 06 8.6827e− 07
0.4 4.3229e− 05 1.1070e− 05 2.8559e− 06 7.3803e− 07
0.6 3.6537e− 05 9.4378e− 06 2.4325e− 06 6.2896e− 07
0.8 3.1132e− 05 8.0553e− 06 2.0861e− 06 5.4031e− 07
1 2.7038e− 05 6.9657e− 06 1.8014e− 06 4.6724e− 07

Example 2. Consider a fractional differential equation with boundary conditions:
C
τD

η
0y(τ) + b(τ)y(τ) = f(τ), τ ∈ [0, 1], 0 < γ ≤ 1, 1 < η ≤ 2, (4.37)

with boundary conditions.

y(0) = 0, and y(1) =
1

Γ(2)
.

For b(τ) = 1, f(τ)= Γ(1+κ)
Γ(2)Γ(1+κ−η)x

κ−η + b(τ) 1
Γ(2)τ

κ, the exact solution of the differential equation is
y(τ) = τκ

Γ(2) . To find a approximate solution of equation (4.37) by taking the approximation.

C
τ D

η
0y(τ) = CmΦm(τ), (4.38)

integrating equation (4.38) on both sides, we have

y(τ) = CmτI
η
0Φm(τ) + c1τ + c2, (4.39)

by applying boundary conditions,

y(τ) = CmτI
η
0Φm(τ) +

[
1

Γ(2)
− CmτI

η
0,1Φm(1)

]
τ, (4.40)

using (4.39) and (4.40) in (4.38) yields

Cm
[
Φm(τ) +AP ηm×mΦm(τ)−BP ηm×mΦm(1)

]
= fmΦm(τ), (4.41)

where fm is the evaluation of function f(τ) at collocation points and the matrices A, B are diagonal
matrices of order m×m, given by

A =


a (τ1) 0 · · · 0
0 a (τ2) · · · 0
...

...
. . .

...
0 0 · · · a (τm)

 , B =


b (τ1) 0 · · · 0
0 b (τ2) · · · 0
...

...
. . .

...
0 0 · · · b (ζm)

 .
By appling Haar wavelet method. In Figure 4.6, we examine absolute error at η = 1.9. We also
discuss the exact and approximate solutions using the Haar wavelets approach at η = 1.9 in Figure
4.5. In Table 4.2, the numerical results are shown. A good approximation solution for this problem
can be reached by raising J , as can be seen from Table 4.2, where the approximate answer is in
strong agreement with the exact solution.
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Figure 4.6: The absolute error at η = 1.9,
κ = 4 when J = 5

Table 4.2. The current scheme’s absolute errors at a constant η vary with different choices of J .

η = 1.3, κ = 4 J = 5 J = 6 J = 7 J = 8
τ Eabs Eabs Eabs Eabs
0 3.4534e− 06 5.7024e− 07 8.4577e− 08 1.6138e− 09
0.2 1.8360e− 05 7.9851e− 06 2.6809e− 06 8.1013e− 07
0.4 9.5687e− 06 3.8729e− 06 2.2837e− 06 8.4842e− 07
0.6 8.7858e− 05 1.1096e− 05 6.9566e− 07 2.1654e− 07
0.8 1.8719e− 03 3.5078e− 05 6.0659e− 06 9.8426e− 07
1 3.1021e− 03 6.3665e− 05 1.3010e− 05 2.6518e− 06

4.8 Fast Algorithm with Haar Wavelet

In this section, we describe our approach to solving Caputo fractional partial differential equation
with one dimension by combining a fast technique with Haar wavelets. Specifically, we discuss the
intial and boundary conditions of the following Caputo fractional partial differential equation.

4.8.1 Fast Haar Wavelet method for solving Caputo Partial fractional dif-
ferential equation with one dimension

Consider the following general form of Caputo partial fractional differential equation with one
dimensions,

C
ζ D

γ
0y(τ, ζ) =

C
τ D

η
0y(τ, ζ) + y(τ, ζ) + f(τ, ζ),

y(τ, o) = y0, (4.42)
y(a1, ζ) = ya1 , y(a2, ζ) = ya2 ,

47



where −∞ < a1 < τ ≤ a2 <∞, 0 ≤ ζ <∞. Approximating the Caputo fractional derivative’s
highest order with a series of one-dimensional Haar wavelets,

C
ζ D

η
0y (τ, ζn) ≈

m∑
r=1

m∑
k=0

Cnr,kΦr,k(τ) = CmΦm(τ), (4.43)

integral representation of equation (4.43) becomes

y(τ, ζ) = Cmτ Iηa1Φm(τ) + τc1 + c2, (4.44)

with the help of the boundary conditions, we get:

y(τ, ζn) = Cmτ Iηa1Φm(τ) +
τ

a2
((ya2 − ya1)−Cmτ Iηa1,a2Φm(1)) + ya1 , (4.45)

we used the formula shown in equation (2.48),

C
ζ D

γ
0y(τ, ζn) ≈ 1

Γ(2− γ)

[
y (τ, ζn)− y (τ, ζn−1)

(∆ζn)
γ

]
+

1

Γ(1− γ)

[
y (τ, ζn−1)

(∆ζn)
γ − y (τ, ζ0)

(ζn)
γ

−γ
Nexp∑
i=1

wi

(
e−(si∆ζn)yhist,i (τ, ζn−1) +

e−(si∆ζn)

si2∆ζn−1

[
(e−si∆ζn−1 − 1 + si∆ζn−1)

y(τ, ζn−1) +
(
1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (τ, ζn−2)

]) . (4.46)

Subtitute equations (4.43), (4.45) and (4.46) in equation (4.42), we get

Cm

[(
1

∆ζγΓ(2− γ)
− 1

)
τ Iηa1Φm − (

τ

a2
)(

1

∆ζγΓ(2− γ)
− 1)τ Iηa1,a2Φm(a2))−Φm(τ)

]
=

f(x, ζn)−
(

1

∆ζγΓ(2− γ)
− 1

)[
y(a2)− y(a1)

]
(
τ

a2
) +

γ

Γ(1− γ)

Nexp∑
i=1

wiyhist,i (τ, ζn)

+
y(τ, ζ0)

(ζn
γ)Γ(1− γ)

− y(τ, ζn−1)

(∆ζ)γ

(
1

Γ(1− γ)
− 1

Γ(2− γ)

)
, (4.47)

Cm

[
Φm(τ) +AτI

η
aΦm(τ) +BτI

η
a1,a2Φm(a2)

]
= FmΦm(τ), (4.48)

where fm is the evaluation of function f(τ) at collocation points and the matrices A, B are diagonal
matrices of order m×m, given by,

A =


a (τ1) 0 · · · 0
0 a (τ2) · · · 0
...

...
. . .

...
0 0 · · · a (τm)

 , B =


b (τ1) 0 · · · 0
0 b (τ2) · · · 0
...

...
. . .

...
0 0 · · · b (τm)

 .
The equation (4.48) is referred to as the Sylvester equation. To determine the value of Cm for each
time step. Afterward, we can substitute the obtained value of Cm into either equation (4.45) in
order to obtain an approximate solution.
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4.9 Numerical Results and Discussion

In this section, we apply the proposed technique to solve some problems. Furthermore, we conduct a
comparative analysis of the results, presented in a table, to evaluate the accuracy and efficiency of
the suggested approach.
Example 3. Consider the Caputo fractional partial differential equation.

C
ζ D

γ
0y(τ, ζ) = b(τ, ζ)Cτ D

η
0y(τ, ζ) + c(τ, ζ)y(τ, ζ) + f(τ, ζ), 0 < γ < 1, 1 < η ≤ 2, (4.49)

with initial and boundary conditions

y(τ, 0) = cos(π)(τ3), y(0, ζ) = cos(π)(ζ3) and y(1, ζ) = cos(π)(1 + ζ3).

For fixed value of η = 1.8, γ = 0.5, b(τ, ζ) = (1 + τ2)Γ(1− γ) and c(τ, ζ) = 1,
f(τ, ζ) = cos(π)( Γ(4)

Γ(4−γ)ζ
3−γ − Γ(4)

Γ(4−η)τ
3−η − (τ3 + ζ3))., then the exact solution to the problem is

y(τ, ζ) = (τ3 + ζ3)cos(π). To find approximate solution of the equation (4.49) by the fast Haar
wavelets method.

C
τ D

η
0y(τ, ζ) = CmΦm(τ). (4.50)

The integral representation of equation (4.50) becomes

y(x, ζ) = Cmτ I
η
0Φm(τ) + τc1 + c2, (4.51)

utilizing the boundary conditions in equation (4.61) we get the values of
c1 = cos(π)−Cmτ I

η
0,1Φm(1) and c2 = cos(π)ζ3, we get:

y(τ, ζn) = Cmτ I
η
0Φm(τ) + τ(cos(π)−Cmτ I

η
0,1Φm(1)) + (cos(π))ζ3. (4.52)

By using the formula which introduced in equation (2.49),

C
ζ D

γ
0y(τ, ζn) ≈ 1

Γ(2− γ)

[
y (τ, ζn)− y (τ, ζn−1)

(∆ζn)
γ

]
+

1

Γ(1− γ)

[
y (τ, ζn−1)

(∆ζn)
γ − y (τ, ζ0)

(ζn)
γ

−γ
Nexp∑
i=1

wi

(
e−(si∆ζn)yhist,i (τ, ζn−1) +

e−(si∆ζn)

si2∆ζn−1

[
(e−si∆ζn−1 − 1 + si∆ζn−1)

y(τ, ζn−1) +
(
1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (τ, ζn−2)

]) . (4.53)

Subtitute equations (4.51), (4.52) and (4.53) in equation (4.49), we get

Cm

[(
1

∆ζγΓ(2− γ)
− c(τ, ζ)

)
τ I
η
0Φm(τ) +

τ

∆ζγΓ(2− γ)
(τ I

η
0,1Φm(1))− b(τ, ζ)Φm(τ)

]
=

f(x, ζn)−
(

1

∆ζγΓ(2− γ)
− c(τ, ζ)

)[
cos(π)(1 + (ζn)

3)
]
+

γ

Γ(1− γ)

Nexp∑
i=1

wiyhist,i (τ, ζn)

+
y(τ, ζ0)

(ζn
γ)Γ(1− γ)

− y(τ, ζn−1)

(∆ζ)γ

(
1

Γ(1− γ)
− 1

Γ(2− γ)

)
, (4.54)
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Cm

[
Aτ I

η
0Φm(τ) + (Bτ I

η
0,1Φm(1))−CΦm(τ)

]
= fm (4.55)

where fm is the evaluation of function f(τ) at collocation points and the matrices A, B and C are
diagonal matrices of order m×m, given by,

A =


a (τ1) 0 · · · 0
0 a (τ2) · · · 0
...

...
. . .

...
0 0 · · · a (τm)

 , B =


b (τ1) 0 · · · 0
0 b (τ2) · · · 0
...

...
. . .

...
0 0 · · · b (ζm)


and

C =


c (τ1) 0 · · · 0
0 c (τ2) · · · 0
...

...
. . .

...
0 0 · · · c (τm)

 .
The equation (4.55) is known as the sylvester equation and the exact their approximate solution for
η = 1.5 ,γ = 0.4 and j = 9 are shown respectively in Figure 4.7 and Figure 4.8 and absolute error is
also ploted for the values η = 1.5,γ = 0.4 and j = 6 in Figure 4.9 with time step 64.

Figure 4.7: Exact solution at η = 1.5, γ = 0.4
and J = 6

Figure 4.8: Approximate solution at η = 1.5,
γ = 0.4 and J = 6
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Figure 4.9: The absolute error at η = 1.5, γ = 0.4 and J = 6

Table 4.3. The fast Haar wavelet’s absolute errors at η = 1.5, γ = 0.4 with different values of J .

η = 1.5, γ = 0.4 J = 3 J = 4 J = 5
(ζ, τ) Eabs Eabs Eabs
(0.2,0.1) 1.1330e− 03 1.3103e− 04 1.3536e− 05
(0.4,0.1) 1.0887e− 03 1.2710e− 04 1.1067e− 05
(0.6,0.1) 1.0847e− 03 1.2467e− 04 8.2889e− 06
(0.8,0.1) 1.0801e− 03 1.2269e− 04 5.9243e− 06
(1.0,0.1) 1.0785e− 03 1.2092e− 04 3.5627e− 06

Example 4. Consider the Caputo fractional partial differential equation.

C
ζ D

γ
0y(τ, ζ) = m(τ, ζ)Cτ D

η
0y(τ, ζ) + n(τ, ζ)y(τ, ζ) + s(τ, ζ), 0 < γ < 1, 1 < η ≤ 2, (4.56)

with initial and boundary conditions

y(τ, 0) = 2(γ + 1) y(0, ζ) = (γ + 1)(ζη + 2) and y(1, ζ) = (γ + 1)(ζη + 2)

For fixed value of η = 1.5, γ = 0.2, m(τ, ζ) = (τη + η + cos(2)), n(τ, ζ) = 1 + η and
s(τ, ζ) = (γ + 1)

(
Γ(η+1)

Γ(η+1−γ) (ζ
η−γ)− n(τ, ζ)(ζη + 2)

)
, then exact solution to the problem is

y(τ, ζ) = (γ + 1)(ζη + 2), find the approximate solution of the equation (4.56) by the fast Haar
wavelets method.

C
τ D

η
0y(τ, ζ) = CmΦm(τ). (4.57)

The integral representation of equation (4.57) becomes,

y(x, ζ) = Cmτ I
η
0Φm(τ) + τc1 + c2, (4.58)

utilizing the boundary conditions in equation (4.58) we get the values of
c1 = (γ + 1)ζη −Cmτ I

η
0,1Φm(1) and c2 = (γ + 1)(ζη + 2), subtituting these values into equation

(4.58), we get:
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y(τ, ζn) = Cmτ I
η
0Φm(τ) + τ((γ + 1)ζη −Cmτ I

η
0,1Φm(1)) + (γ + 1)(ζη + 2), (4.59)

by using the formula which introducted in equation (2.58),

C
ζ D

γ
0y(τ, ζn) ≈ 1

Γ(2− γ)

[
y (τ, ζn)− y (τ, ζn−1)

(∆ζn)
γ

]
+

1

Γ(1− γ)

[
y (τ, ζn−1)

(∆ζn)
γ − y (τ, ζ0)

(ζn)
γ

−γ
Nexp∑
i=1

wi

(
e−(si∆ζn)yhist,i (τ, ζn−1) +

e−(si∆ζn)

si2∆ζn−1

[
(e−si∆ζn−1 − 1 + si∆ζn−1)

y(τ, ζn−1) +
(
1− e−si∆ζn−1 − e−si∆ζn−1si∆ζn−1

)
y (τ, ζn−2)

]) . (4.60)

Subtitute equations (4.57), (4.59) and (4.60) in equation (4.56), we get

Cm

[(
1

∆ζγΓ(2− γ)
− n(τ, ζ)

)
τ I
η
0Φm(τ) +

τ

∆ζγΓ(2− γ)
(τ I

η
0,1Φm(1))−m(τ, ζ)Φm(τ)

]
=

f(x, ζn) +

(
1

∆ζγΓ(2− γ)
− n(τ, ζ)

)[
(γ + 1)(ζn + 2)

]
+

γ

Γ(1− γ)

Nexp∑
i=1

wiyhist,i (τ, ζn)

+
y(τ, ζ0)

(ζn
γ)Γ(1− γ)

− y(τ, ζn−1)

(∆ζ)γ

(
1

Γ(1− γ)
− 1

Γ(2− γ)

)
, (4.61)

Cm

[
Aτ I

η
0Φm(τ) +Bτ I

η
0,1Φm(1)−CΦm(τ)

]
= Sm, (4.62)

where Sm is the evaluation of function S(τ) at collocation points and the matrices A, B and C are
diagonal matrices of order m×m, given by

A =


a (τ1) 0 · · · 0
0 a (τ2) · · · 0
...

...
. . .

...
0 0 · · · a (τm)

 , B =


b (τ1) 0 · · · 0
0 b (τ2) · · · 0
...

...
. . .

...
0 0 · · · b (ζm)


and

C =


c (τ1) 0 · · · 0
0 c (τ2) · · · 0
...

...
. . .

...
0 0 · · · c (τm)

 .
The equation (4.62) is known as the sylvester equation and the exact their approximate solution for
η = 1.4 ,γ = 0.4 and j = 6 are shown respectively in Figure 4.10 and Figure 4.11 and absolute error
is also ploted for the values η = 1.4,γ = 0.4 and j = 6 in Figure 4.12 with time step 64.

52



Figure 4.10: Exact solution by choosing η =
1.4, γ = 0.4 and J = 6

Figure 4.11: Approximate solution at η = 1.4,
γ = 0.4 and J = 6

Figure 4.12: Absolute error at η = 1.4, γ =
0.4 and j = 6

Table 4.4. The fast Haar wavelet’s absolute errors at η = 1.3, γ = 0.3 with different values of J .

η = 1.3, γ = 0.3 J = 3 J = 4 J = 5

(ζ, τ) Eabs Eabs Eabs

(0.2,0.70) 2.7355e− 06 2.7040e− 06 2.7121e− 06

(0.4,0.70) 1.7408e− 06 1.8974e− 06 1.9827e− 06

(0.6,0.70) 1.0263e− 06 8.4308e− 07 7.6310e− 07

(0.8,0.70) 1.0177e− 07 1.5103e− 07 1.1287e− 07

(1.0,0.70) 1.5100e− 08 1.9957e− 08 1.2774e− 08
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4.10 Conclusion

It has been found that the Haar wavelets method performed well when used to solve various Caputo
fractional differential equations, including initial value problems (IVPs) and boundary value problems
(BVPs). Numerical solutions of these equations converged to the exact solutions in our examples. The
fast Haar wavelets method also proved effective in solving partial differential initial boundary value
equations. From the examples and comparisons shown, it is demonstrated that both the Haar wavelets
and fast Haar wavelets techniques are capable of handling a variety of fractional order differential
equations effectively, providing reliable and accurate results.
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Chapter 5

Summary

In first chapter, we cover the history and basics of fractional calculus. We also explain the Gamma
function in detail, highlighting its key properties. The chapter introduces several important fractional
operators. Additionally, we provide an overview of wavelet analysis, discussing its properties and
different types of wavelets. In second chapter, we explore a fast evaluation technique for solving Caputo
fractional differential equations and demonstrate its reliability. We also discuss another approximation
method for the Caputo-Hadamard differential equations using the fast evaluation technique, focusing
on a specific problem to illustrate its applicability. In third chapter, we introduced a numerical
technique for solving linear ordinary fractional differential equations with initial value problems (IVPs)
and boundary value problems (BVPs). This method, known as the Hadmarad Gagenbauer wavelets
method, was developed to evaluate its effectiveness and accuracy. We present graphical and tabular
results from various numerical experiments and compare our method with exact solutions. Based on
this evidence, we conclude that the Hadmarad wavelets method is not only computationally efficient
but also sound and accurate.

In fourth chapter, we explored numerical methods for solving Caputo Ordinary and Partial frac-
tional differential equations. For Caputo Ordinary fractional differential equations, we utilized the
Haar wavelet method, presenting figures and tables that demonstrate the effectiveness of this ap-
proach. Additionally, we introduced a novel approach called the Fast Haar Wavelet Method, which
we applied to solve partial fractional differential equations examples. By comparing the exact and
approximate solutions through figures and tables, we observed good reliability in the Haar wavelet
method for Ordinary fractional differential equations examples. Furthermore, we concluded that the
Fast Haar Wavelet Method is both reliable and closely aligned with exact solution.

The accuracy of the proposed scheme is then verified by making comparisons. It has been ob-
served that the accuracy of the approximate solution provided by the proposed Haar wavelets method
enhances by increasing the values of J . In the case of partial fractional differential equations, the
solution by the proposed scheme converges to the exact solution as the values of J increase.
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