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ABSTRACT 

The exploration of rotational dynamics within fluid motion holds profound importance across 

diverse fields such as industrial chemical processes, advancements in food processing 

technologies, the optimization of turbomachinery, efficient cooling techniques for computer 

storage drives and various other applications. This study assesses entropy creation in MHD 

viscoelastic flow using the intriguing Walters-B and Jeffery model over a linearly deforming plate 

within a rotating frame of reference. The inclusion of Coriolis and centrifugal forces due to the 

rotating frame introduces additional terms in the momentum balance equation. Furthermore, the 

energy equation, which includes terms for viscous dissipation and Joule heating, is examined. The 

representative non-linear problem is analyzed through optimal homotopy analysis method 

(OHAM) available within the “MATHEMATICA” package “BVPh 2.0”. This routine is 

implemented to retrieve the optimal auxiliary parameters and corresponding averaged squared 

residuals for varying homotopy approximations. The drag on the plate and the surface cooling rate 

are assessed under the rotating fluid assumption, with varying material parameter of the Walters-

B and Jeffery model. Additionally, the impact of heat dissipation on the overall heat transport 

phenomenon is thoroughly examined. 

Keywords: Coriolis force; Walters-B model; Jeffery model; Optimal homotopy method (OHAM); 

Squared residual
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CHAPTER 1: 

Introduction 

This chapter comprises key concepts, definitions and principles related to the problems narrated 

in this thesis. The equations governing the dynamics of Walters-B and Jeffrey fluids within a 

rotating frame of reference are outlined here. Furthermore, an extensive review of the literature 

related to the flow situations addressed in the following chapters has been carried out. 

Additionally, a brief discussion is provided on the optimal homotopy scheme and its 

implementation using Mathematica's BVPH 2.0 routine. 

1.1 Fundamental definitions 

1.1.1.  Compressible and incompressible flows 

In compressible flows, there are substantial variations in fluid density with respect to time, 

temperature, and pressure. The flows in which fluid density remains unchanged by variations in 

time and spatial coordinates are classified as incompressible flows. A dimensionless measure 

known as Mach number distinguishes between compressible and incompressible flows. A flow is 

categorized as compressible if its Mach number is greater than 0.3 and incompressible if it is less 

than 0.3. 

1.1.2.  Steady and unsteady flows 

A steady flow is the one in which all flow conditions including velocity, pressure, and 

density are consistent with time. In unsteady flow, any fluid property may vary over time. In 

mathematical terms, 

𝜕𝛼

𝜕𝑡
= 0, (1.1) 

here, 𝛼 represents any fluid’s physical property. 

1.1.3.  Laminar and turbulent flows 

            Smooth fluid motion in parallel, ordered layers with no interruption between them is 

regarded as laminar flow. In this kind of flow, the fluid tends to travel without mixing and 
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streamlines do not overlap one another. On contrary, turbulent flows occurs when at relatively 

higher velocities the adjacent layers mix and intersect, creating an erratic and disordered flow 

behavior. Flows are likely to be laminar at low Reynolds number (𝑅𝑒 < 2300) whereas turbulent 

flows have comparatively higher Reynolds number (𝑅𝑒 > 4000). 

1.1.4.  Newtonian fluids 

In Newtonian fluids, the stress-strain curve shows a linear relationship and does not contain origin 

in general. These fluids satisfy the following relationship: 

𝜏 = 𝜇𝐀1, (1.2) 

 

in which 𝜇 shows the dynamic viscosity, 𝐀1 = (𝛁𝑽) + (𝛁𝑽)𝑡 represents the first Rivlin-Ericksen 

tensor and 𝜏 denotes the stress tensor. Well-known examples of Newtonian fluids are water, air, 

and synthetic oils.  

1.1.5.  Non-Newtonian fluids 

Contrary to Newtonian fluids, non-Newtonian fluids do not obey Newton’s law of viscosity. In 

these fluids, viscosity alters with the variations in share rate. Numerous non-Newtonian fluids 

follow a pattern that can be characterized by a power law equation in unidirectional flow: 

𝜏𝑦𝑥 = 𝜉
𝑑𝑢

𝑑𝑦∗
, (1.3) 

here 𝜉 = 𝛾(𝑑𝑢 𝑑𝑦⁄ )𝑚−1 represents fluid apparent viscosity where 𝜉 indicates the consistency 

index and 𝑚 shows the flow behavioral index. Eq. (1.3) corresponds to the Newtonian fluid 

situation for 𝑚 = 1. 

Shear-thinning fluids: For 𝑚 < 1, fluid is characterized as shear-thinning or pseudoplastic as it 

exhibits an inverse relationship between stress and shear rate.  Ketchup, paints, blood, shampoo 

and certain gels are some of examples.  

Shear-thickening fluids: When 𝑚 > 1, the fluid’s viscosity increases at a higher shear rate and it 

is classified as shear-thickening or dilatant fluid. Interesting dilatant-type fluids are oobleck, 

whipped cream and quicksand.  

   1.1.6.  Viscoelastic fluids 
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Viscoelastic fluids are classified as special type of non-Newtonian fluid that possesses both viscous 

and elastic properties while experiencing deformation. These fluids therefore have the 

characteristics of both solid and liquid illustrating the traits including viscosity, elasticity, and 

deformation ability. Paints, slurries, polymeric liquids and some biological fluids including blood 

are well-known viscoelastic fluids. A viscoelastic fluid behaves like a Newtonian fluid and exhibits 

solid-like behavior when subjected to high stress and returns to its original position upon removal 

of stress. 

  1.2.  Boundary layer flows 

 Boundary layer flow is described as the flow of fluid in thin layer adjacent to surface, where 

the viscous effects are substantial due to existence of frictional forces. The fluid’s velocity is zero 

due to non-slip condition near stationary surface within boundary layer and it increases 

continuously from zero to free-stream velocity. The thermal boundary layer is a region in fluid 

flow where temperature gradients are developed due to heat transfer between the fluid and the 

surface. Basically, in the thermal boundary layer the conduction and convection influences the 

temperature near the surface.  

 
Fig 1.1: Boundary layer formations over a flat surface (Source: Internet). 

1.2.1.  Boundary layer thickness 

Boundary layer thickness is described as the distance from the surface at which the fluid’s velocity 

is zero to the point where the velocity attains free-stream velocity where the fluid’s velocity is 
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approximately equal to ambient velocity such as 𝑢 =  0.99𝑈∞, here 𝑢 is the flow velocity and 𝑈∞ 

is the free stream velocity. Boundary layer thicknesses that are most frequent are: 

 Momentum thickness 

 Thermal thickness 

1.3.   Boundary layer flow over stretching surface in a rotating fluid  

We considered the problem in which incompressible and steady fluid flows over a stretchable 

surface that extends horizontally in the 𝑥-direction with velocity 𝑢 = 𝑎𝑥, where 𝑎 > 0 is constant. 

Let 𝑢, 𝑣 be the corresponding representative velocities along the deforming surface and 𝑤 normal 

to the surface. Since we have assumed the flow in a rotating frame of reference, Coriolis and 

centrifugal forces will emerge as a result.   

Coriolis force: 𝐹𝑐 = 2𝛀 × 𝐯 = [−2Ω𝑣, 2Ω𝑢, 0] 

Centrifugal  force:𝐹𝑏 = 𝛀 × (𝛀 × 𝒓) = [−Ω2𝑥, −Ω2𝑦, 0] 

Surface and ambient temperatures are expressed as 𝑇𝑠 and 𝑇∞ respectively. This problem is 

governed by the following equation: 

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0, (1.4) 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧 − 2Ω𝑣 = 𝜈𝑢𝑧𝑧 −
𝜎𝐵0

2𝑢

𝜌
, (1.5) 

𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑤𝑣𝑧 + 2Ω𝑢 = 𝜈𝑣𝑧𝑧 −
𝜎𝐵0𝑣

𝜌
 , (1.6) 

𝑢𝑇𝑥 + 𝑣𝑇𝑦 + 𝑤𝑇𝑧 =
𝜅

𝜌𝐶𝑝
𝑇𝑧𝑧  +

𝜈

𝐶𝑝

(𝑢𝑧
2 + 𝑣𝑧

2) +
𝜎𝐵0

2

𝜌𝐶𝑝

(𝑢2 + 𝑣2). (1.7) 

Eqs. (1.4)-(1.7) are solved by taking in account the following boundary conditions: 

𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥,   𝑣 = 0,   𝑤 = 0,   𝑇 = 𝑇𝑤(𝑥)  at  𝑧 = 0, (1.8) 

𝑢 → 0,   𝑢𝑧 → 0,   𝑣 → 0,   𝑣𝑧 → 0,   𝑇 → 𝑇∞   as   𝑧 → ∞. (1.9) 

A similar solution to the problem is given as follows; 
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𝑢 = 𝑎𝑥𝑓′(𝜉),   𝑣 = 𝑎𝑥𝑔(𝜉),   𝑤 = −𝑓(𝜉)√𝑎𝜈,   𝜃(𝜉) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, (1.10) 

where 𝜉 represents the similarity variable. The system of Ordinary differential equations (ODEs) 

is obtained by substituting transformation in Eqs. (1.4)-(1.9): 

𝑓′′′ − 𝑓′2 + 𝑓𝑓′′ + 2𝜆𝑔 − 𝑀𝑓′ = 0, (1.11) 

𝑔′′ − 𝑓′𝑔 + 𝑓𝑔′ − 2𝜆𝑓′ − 𝑀𝑔 = 0, (1.12) 

𝜃′′ + 𝑃𝑟(𝜃′𝑓 − 2𝜃𝑓′) + 𝑃𝑟𝐸𝑐(𝑓′′2 + 𝑔′2 + 𝑀(𝑓′2 + 𝑔2)) = 0, (1.13) 

𝑓 = 0,   𝑔 = 0,   𝑓′ = 1,   𝜃 = 1    at    𝜉 = 0, (1.14) 

𝑓′ → 0,   𝑓′′ → 0,   𝑔 → 0,   𝑔′ → 0,   𝜃 → 0      as      𝜉 → ∞. (1.15) 

where 𝑃𝑟 = 𝜇𝐶𝑝 𝜅⁄  represents Prandtl number, 𝐸𝑐 = 𝑎2 𝐶𝑝𝑏⁄  signifies Eckert number, 𝑀 =

𝜎𝐵0
2 𝜌𝑎⁄  is magnetic field parameter, 𝜆 = Ω 𝑎⁄  is termed as rotation parameter.  

1.3.1. Optimal homotopy analysis method (OHAM) 

The Homotopy Analysis Method (HAM) was developed by Liao in his 1992 PhD dissertation. 

This technique is capable of addressing a broad range of nonlinear boundary value problems. 

Furthermore, it possesses several advantages that set it apart from other analytical methods. For 

example, unlike the traditional perturbation schemes, the HAM does not depend upon the presence 

of small/large parameter in the differential equation. The HAM offers significant flexibility in 

choosing suitable base functions, linear operators and initial estimates. Additionally, it has a 

distinct method for fine-tuning and managing the convergence of the series solution by choosing 

specific auxiliary parameters. Here we demonstrate the application of homotopy scheme for the 

non-linear problem stated through Eqs. (1.11)-( 1.13). We begin with selecting the following non-

linear operators: 

ℒ𝑓(𝑓) =
𝑑3𝑓

𝑑𝜉3
−

𝑑𝑓

𝑑𝜉
,   ℒ𝑔(𝑔) =

𝑑2𝑔

𝑑𝜉2
− 𝑔,   ℒ𝜃(𝜃) =

𝑑2𝜃

𝑑𝜉2
− 𝜃, (1.16) 

The initial approximations for 𝑓, 𝑔 and 𝜃 are stated in the following form that satisfies the 

boundary condition given by Eqs. (1.14) and (1.15): 

𝑓0(𝜉) = 1 − 𝑒−𝜉 ,   𝑔0(𝜉) = 0 ,  𝜃0(𝜉) = 𝑒−𝜉 , (1.17) 
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The zeroth order deformation equations related to Eqs. (1.11)-(1.13) with boundary condition Eq. 

(1.14)-(1.15) are presented below where 𝑝 ∈ (0,1) is an embedding parameter and ℏ𝑓, ℏ𝑔 and ℏ𝜃 

are the non-zero auxillary parameters. 

(1 − 𝑝)ℒ𝑓{𝑓(𝜉; 𝑝) − 𝑓0(𝜉)} = 𝑝ℏ𝑓𝑁𝑓{𝑓(𝜉; 𝑝), �̂�(𝜉; 𝑝)}, (1.18) 

(1 − 𝑝)ℒ𝑔{�̂�(𝜉; 𝑝) − 𝑔0(𝜉)} = 𝑝ℏ𝑔𝑁𝑔{𝑓(𝜉; 𝑝), �̂�(𝜉; 𝑝)}, (1.19) 

(1 − 𝑝)ℒ𝜃{𝜃(𝜉; 𝑝) − 𝜃0(𝜉)} = 𝑝ℏ𝜃𝑁𝜃{𝑓(𝜉; 𝑝), 𝜃(𝜉; 𝑝)}, (1.20) 

𝑓(𝜉; 𝑝)|𝜉=0 = 0,   
𝜕𝑓(𝜉; 𝑝)

𝜕𝜉
|𝜉=0 = 1,   �̂�(𝜉; 𝑝)|𝜉=0 = 0,   𝜃(𝜉; 𝑝)|𝜉=0 = 1,  (1.21) 

𝜕�̂�(𝜉;𝑝)

𝜕𝜉
|

𝜉→∞
=  

𝜕2�̂�(𝜉;𝑝)

𝜕𝜉2
|

𝜉→∞
= 0,   �̂�(𝜉; 𝑝)|𝜉→∞ =  

𝜕�̂�(𝜉;𝑝)

𝜕𝜉
|

𝜉→∞
= 0,   𝜃(𝜉; 𝑝)|

𝜉→∞
= 0,  (1.22) 

where the non-linear operators are mentioned below: 

𝒩𝑓 =
𝜕3𝑓

𝜕𝜉3
− (

𝜕𝑓

𝜕𝜉
)

2

+ 𝑓
𝜕2𝑓

𝜕𝜉2
+ 2𝜆�̂� − 𝑀

𝜕𝑓

𝜕𝜉
, (1.23) 

𝒩𝑔 =
𝜕2�̂�

𝜕𝜉2
− �̂�

𝜕𝑓

𝜕𝜉
+ 𝑓

𝜕�̂�

𝜕𝜉
− 2𝜆

𝜕𝑓

𝜕𝜉
− 𝑀𝑔,̂ (1.24) 

𝒩𝜃 =
𝜕2𝜃

𝜕𝜉2
+ 𝑃𝑟 (𝑓

𝜕𝜃

𝜕𝜉
− 2𝜃

𝜕𝑓

𝜕𝜉
) + 𝑃𝑟𝐸𝑐 {(

𝜕2𝑓

𝜕2𝜉
)

2

+ (
𝜕�̂�

𝜕𝜉
)

2

+ 𝑀 ((
𝜕𝑓

𝜕𝜉
)

2

+ �̂�2)}. (1.25) 

It's important to mention that Eqs. (1.18)-(1.20) represent the initial estimates 𝑓0, 𝑔0 and 𝜃0 at 𝑝 =

0, with the final solutions being obtained when 𝑝 = 1. Let us expand the functions 𝑓, 𝑔 and 𝜃 

using the Taylor series about 𝑝 = 0: 

𝑓(𝜉; 𝑝) = 𝑓0(𝜉) + ∑ 𝑓𝑘

∞

𝑘=1

(𝜉)𝑝𝑘, (1.26) 

�̂�(𝜉; 𝑝) = 𝑔0(𝜉) + ∑ 𝑔𝑘

∞

𝑘=1

(𝜉)𝑝𝑘, (1.27) 

𝜃(𝜉; 𝑝) = 𝜃0(𝜉) + ∑ 𝜃𝑘

∞

𝑘=1

(𝜉)𝑝𝑘, (1.28) 

where 
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𝑓𝑘(𝜉) =
1

𝑘!

𝜕𝑘𝑓(𝜉; 𝑝)

𝜕𝑝𝑘
|

𝑝=0

,   𝑔𝑘(𝜉) =
1

𝑘!

𝜕𝑘�̂�(𝜉; 𝑝)

𝜕𝑝𝑘
|

𝑝=0

,   𝜃𝑘(𝜉) =
1

𝑘!

𝜕𝑘𝜃(𝜉; 𝑝)

𝜕𝑝𝑘
|

𝑝=0

. (1.29) 

where 𝑓𝑘(𝜉), 𝑔𝑘(𝜉) and 𝜃𝑘(𝜉) are calculated through the deformation equations, which are 

obtained by differentiating the zeroth-order deformation equations k-times and then setting 𝑝 = 0: 

ℒ𝑓{𝑓𝑘(𝜉) − 𝒳𝑘𝑓𝑘−1(𝜉)} = ℏ𝑓ℛ𝑘
𝑓(𝜉), (1.30) 

ℒ𝑔{𝑔𝑘(𝜉) − 𝒳𝑘𝑔𝑘−1(𝜉)} = ℏ𝑔ℛ𝑘
𝑔(𝜉), (1.31) 

ℒ𝜃{𝜃𝑘(𝜉) − 𝒳𝑘𝜃𝑘−1(𝜉)} = ℏ𝜃ℛ𝑘
𝜃(𝜉), (1.32) 

𝑓𝑘(0) =
𝜕𝑓𝑘(0)

𝜕𝜉
= 0,   𝑔𝑘(0) = 𝜃𝑘(0) = 0, (1.33) 

𝜕𝑓𝑘

𝜕𝜉
|

𝜉=∞

=  
𝜕2𝑓𝑘

𝜕𝜉2
|

𝜉=∞

= 0,  𝑔𝑘|𝜉=∞ =  
𝜕𝑔𝑘

𝜕𝜉
|

𝜉=∞

= 0,   𝜃𝑘|𝜉=∞ = 0, (1.34) 

here, 𝒳𝑘 = {
0 , 𝑤ℎ𝑒𝑛 𝑘 ≤ 1
1, 𝑤ℎ𝑒𝑛 𝑘 > 1

, 

and 

ℛ𝑘
𝑓(𝜉) = 𝑓𝑘−1

′′′ + ∑ (𝑓𝑘−1−𝑚𝑓𝑚
′′ − 𝑓𝑘−1−𝑚

′ 𝑓𝑚
′ )

𝑘−1

𝑚=0

+ 2𝜆𝑔𝑘−1 − 𝑀𝑓𝑘−1
′ , (1.35) 

ℛ𝑘
𝑔(𝜉) = 𝑔𝑘−1

′′ + ∑ (𝑓𝑘−1−𝑚𝑔𝑚
′ − 𝑔𝑘−1−𝑚𝑓𝑚

′ )

𝑘−1

𝑚=0

− 2𝜆𝑓𝑘−1
′ − 𝑀𝑔𝑘−1, (1.36) 

ℛ𝑘
𝜃(𝜉) = 𝜃𝑘−1

′′ + ∑ {

𝑃𝑟(𝜃𝑘−1−𝑚
′ 𝑓𝑚 − 2𝜃𝑘−1−𝑚𝑓𝑚

′ )

+𝑃𝑟𝐸𝑐 (
𝑓𝑘−1−𝑚

′′ 𝑓𝑚
′′ + 𝑔𝑘−1−𝑚

′ 𝑔𝑚
′

+𝑀(𝑓𝑘−1−𝑚
′ 𝑓𝑚

′ + 𝑔𝑘−1−𝑚𝑔𝑚)
)

}𝑘−1
𝑚=0 .  (1.37) 

The averaged squared residuals of Eqs. (1.11)-(1.13) are defined as follows: 

𝐸𝑓,𝑘 =
1

20
∫ {𝒩𝑓 (∑ 𝑓𝑖(𝜉) 

𝑘

𝑖=0

, ∑  𝑔𝑖(𝜉)

𝑘

𝑖=0

)}

2
20

0

𝑑𝜉, (1.38) 

𝐸𝑔,𝑘 =
1

20
∫ {𝒩𝑔 (∑ 𝑓𝑖(𝜉) 

𝑘

𝑖=0

, ∑  𝑔𝑖(𝜉)

𝑘

𝑖=0

)}

2
20

0

𝑑𝜉, (1.39) 

𝐸𝜃,𝑘 =
1

20
∫ {𝒩𝜃 (∑ 𝑓𝑖(𝜉) 

𝑘

𝑖=0

, ∑  𝜃𝑖(𝜉)

𝑘

𝑖=0

)}

2
20

0

𝑑𝜉. (1.40) 
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The total average squared residual is determined as: 

𝐸𝑇,𝑘 = 𝐸𝑓,𝑘 + 𝐸𝑔,𝑘 + 𝐸𝜃,𝑘. (1.41) 

The above stated procedure is implemented within BVPH 2.0, and total averaged squared residuals 

in some cases are presented in Figs. 1.2 (a) & 1.2(b). 

  
Figs. 1.2(a) &1.2(b): Graphical representation of overall averaged squared residual 𝐸𝑇,𝑘 versus 

approximation order 𝑘 for (a) 𝜆 = 0 and (b) 𝜆 = 0.2. 

1.4.  Viscoelastic Fluid Model 

 Walters-B fluid model 

The Walters B fluid model is developed specifically to analyze viscoelastic behavior. The stress 

tensor 𝜏 for Walters-B model is presented below: 

𝐒 = 𝜇𝐀1 − 𝑘0 {
𝑑𝐀1

𝑑𝑡
− 𝐋𝐀1 − 𝐀1𝐋t}, (1.42) 

 

where 𝑘0 is the material parameter of Walters-B model, 𝑝 gives the pressure and the first Rivlin-

Ericksen tensor is given by: 𝐀1 = (𝛁𝐕) + (𝛁𝐕)𝑡. 

The continuity equation, momentum equations and energy equation for a three-dimensional MHD 

flow of an incompressible Walters-B fluid, considering boundary layer approximations, are 

detailed below. 

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0, (1.43) 

(a) (b)
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𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧 − 2Ω𝑣

= 𝜈𝑢𝑧𝑧 +
𝑘0

𝜌
{

2𝑢𝑦𝑧𝑣𝑧 + 2𝑢𝑧𝑣𝑦𝑧 + 4𝑢𝑥𝑧𝑢𝑧

−𝑣𝑢𝑦𝑧𝑧 − 𝑢𝑢𝑥𝑧𝑧 − 𝑤𝑢𝑧𝑧𝑧

+𝑢𝑦𝑣𝑧𝑧 + 𝑣𝑦𝑣𝑧𝑧 + 2𝑢𝑧𝑧𝑤𝑧 + 3𝑢𝑧𝑤𝑧𝑧

} −
𝜎𝐵0

2𝑢

𝜌
, 

(1.44) 

𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑤𝑣𝑧 + 2Ω𝑢

= 𝜈𝑣𝑧𝑧 +
𝑘0  

𝜌
{

2𝑣𝑥𝑧𝑢𝑧 + 2𝑣𝑧𝑢𝑥𝑧 + 4𝑣𝑦𝑧𝑣𝑧

−𝑢𝑣𝑥𝑧𝑧 − 𝑣𝑣𝑦𝑧𝑧 − 𝑤𝑣𝑧𝑧𝑧

+𝑣𝑥𝑢𝑧𝑧 + 𝑣𝑦𝑣𝑧𝑧 + 2𝑣𝑧𝑧𝑤𝑧+ + 3𝑣𝑧𝑤𝑧𝑧

} −
𝜎𝐵0𝑣

𝜌
 , 

(1.45) 

𝑢𝑇𝑥 + 𝑣𝑇𝑦 + 𝑤𝑇𝑧 =
𝜅

𝜌𝐶𝑝
𝑇𝑧𝑧 −

𝑘0

𝜌𝐶𝑝
{

𝑢(𝑢𝑥𝑧𝑢𝑧 + 𝑣𝑥𝑧𝑣𝑧) + 𝑣(𝑢𝑦𝑧𝑢𝑧 + 𝑣𝑦𝑧𝑣𝑧)

+𝑤(𝑢𝑧𝑧𝑢𝑧 + 𝑣𝑧𝑧𝑣𝑧) − 3𝑢𝑥𝑢𝑧
2 − 3𝑢𝑧𝑣𝑧𝑢𝑦

−3𝑢𝑧
2𝑤𝑧 − 3𝑣𝑥𝑢𝑧𝑣𝑧 − 3𝑣𝑦𝑣𝑧

2 − 3𝑣𝑧
2𝑤𝑧

} +

𝜈

𝐶𝑝
(𝑢𝑧

2 + 𝑣𝑧
2) +

𝜎𝐵0
2

𝜌𝐶𝑝
(𝑢2 + 𝑣2).  

(1.46) 

Here, 𝜌 is the fluid density, Ω represent the angular velocity, electrical conductivity is given by 𝜅 

and 𝐶𝑝 signifies the specific heat capacity. 

 Jeffrey fluid model 

Another important viscoelastic model is the Jeffrey model which accounts for the stress relaxation 

time and retardation time phenomena in a fluid motion. This fluid model effectively comprehends 

some non-Newtonian fluids with time scale memory effect. Stress tensor 𝜏 for the Jeffrey fluid has 

the following form: 

𝜏 =
𝜇

1 + 𝜆2
(𝐀1 + 𝜆1

𝑑𝐀1

𝑑𝑡
), (1.47) 

where 𝜆2 shows the ratio of relaxation to the retardation time while 𝜆1 denotes the retardation time. 

For a three-dimensional motion, the above equation (1.47) produces the following conservation 

equations under boundary layer approximations: 

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0, (1.48) 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧 − 2Ω𝑣 =
𝜈

1 + 𝜆2
{𝑢𝑧𝑧 + 𝜆1 (

𝑢𝑢𝑥𝑧𝑧 + 𝑣𝑢𝑦𝑧𝑧 + 𝑤𝑢𝑧𝑧𝑧

+𝑢𝑧𝑢𝑥𝑧 + 𝑣𝑧𝑢𝑦𝑧 + 𝑤𝑧𝑢𝑧𝑧
)} −

𝜎𝐵0
2𝑢

𝜌
, (1.49) 

𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑤𝑣𝑧 + 2Ω𝑢 =
𝜈

1 + 𝜆2
{𝑣𝑧𝑧 + 𝜆1 (

𝑢𝑣𝑥𝑧𝑧 + 𝑣𝑣𝑦𝑧𝑧 + 𝑤𝑣𝑧𝑧𝑧

+𝑢𝑧𝑣𝑥𝑧 + 𝑣𝑧𝑣𝑦𝑧 + 𝑤𝑧𝑣𝑧𝑧
)} −

𝜎𝐵0
2𝑣

𝜌
. (1.50) 
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𝑢𝑇𝑥 + 𝑣𝑇𝑦 + 𝑤𝑇𝑧 =
𝜅

𝜌𝐶𝑝
𝑇𝑧𝑧 +

𝜈

1+𝜆2 
[𝑢𝑧

2 + 𝑣𝑧
2 + 𝜆1 {

𝑢(𝑢𝑥𝑧𝑢𝑧 + 𝑣𝑥𝑧𝑣𝑧)

+𝑣(𝑢𝑦𝑧𝑢𝑧 + 𝑣𝑦𝑧𝑣𝑧)

+𝑤(𝑢𝑧𝑧𝑢𝑧 + 𝑣𝑧𝑧𝑣𝑧)

}] +

𝜎𝐵0
2

𝜌𝐶𝑝
(𝑢2 + 𝑣2).  

(1.51) 

1.5.  Entropy Generation 

In thermodynamics, entropy generation refers to the quantity of entropy generated due to 

irreversible processes in a system. It reflects the energy that is dispersed and no longer accessible 

to do useful work. The concept of entropy was first proposed by Rudolf Clausius in the 19th 

century. The idea of entropy has evolved to be an integral part of the Second principle of 

thermodynamics which states that the total entropy of an isolated system is either increasing or 

remains constant, but it never decreases. In a reversible process, entropy generation is always zero 

whereas there is a high rate of entropy generation in irreversible processes. The efficiency and 

sustainability of systems can be enhanced by minimizing entropy generation. This is a crucial idea 

in thermodynamics with an extensive range of applications across numerous areas such as in 

engineering, biomedical systems and in fluid mechanics. Power plants, Boilers, heat exchangers, 

solar panels, and combustion systems are some of its applications. The entropy generation analysis 

for the boundary layer flows has been extensively investigated by many recent authors including 

[1-4]. The entropy generation phenomenon for the above system is: 

𝑆𝐺 =
𝜅

𝑇∞
2

(𝑇𝑧)2 +
𝜇

𝑇∞

{(𝑢𝑧)2 + (𝑣𝑧)2} +
𝜎𝐵0

2

𝑇∞

(𝑢2 + 𝑣2), (1.52) 

Eq. (1.52) in its non-dimensionalized form is given below where 𝑁𝐺(𝜉) = 𝑆𝐺𝑇∞𝜈/𝜅𝑎(𝑇𝑤 − 𝑇∞) 

is entropy generation number. 

𝑁𝐺(𝜉) = 𝛼𝜃′2 + 𝑃𝑟𝐸𝑐(𝑓′′2 + 𝑔′2) + 𝑃𝑟𝐸𝑐(𝑓′2 + 𝑔2), (1.53) 

and 𝛼 = (𝑇𝑤 − 𝑇∞) /𝑇∞ signifies temperature difference parameter. 

1.6.   Dimensionless numbers 

1.6.1. Prandtl number 
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The significance of momentum diffusivity in relation to thermal diffusivity in fluid flow is 

represented by Prandtl number. It is expressed as: 

𝑃𝑟 =
𝜇𝐶𝑝

𝜅
, (1.54) 

in which 𝜇 represents the dynamic viscosity, 𝐶𝑝 is the specific heat capacity and 𝜅 is the thermal 

conductivity. 

1.6.2. Eckert number 

The Eckert number signifies the relation between the flow’s kinetic energy and enthalpy 

difference. It is utilized to analyze the heat dissipation.  It is given as: 

𝐸𝑐 =
𝑢2

𝐶𝑝∆𝑇
, (1.55) 

where 𝑢 is the average velocity, 𝐶𝑝 shows specific heat capacity and ∆𝑇 gives the temperature 

difference. 

1.6.3. Reynolds number 

The Reynolds number, represented by 𝑅𝑒, compares the inertial forces to viscous forces. 

Mathematically, one has  

𝑅𝑒 =
𝑣𝐿

𝜈
, (1.56) 

here 𝑣 is the velocity, 𝐿 is the characteristic length and 𝜈 is the kinematic viscosity. 

1.6.4. Nusselt number 

The Nusselt number evaluates the relationship between convective heat transfer and conductive 

heat transfer. It is expressed as: 

𝑁𝑢 =
ℎ𝐿

𝜅
, (1.57) 
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in which ℎ shows convective heat transfer, 𝐿 is the characteristic length and 𝜅 represents the 

thermal conductivity. 

1.7.   Literature review 

Non-Newtonian fluid dynamics is one of the most prominent disciplines of applied mathematics 

in modern times. Non-Newtonian fluids are identified by their deviation from Newton's law of 

viscosity, typically exhibiting nonlinear stress-strain relationships that generally do not intersect 

at the origin. Non-Newtonian fluid motion is frequently witnessed in real-world applications like 

pharmaceutical applications, processing of polymer melts, slurry transport, wastewater treatment, 

coating applications, physiological processes and geophysical and oil exploration processes. Non-

Newtonian fluids can be mainly categorized into three forms: shear thinning or pseudoplastic, 

shear thickening or dilatant and viscoelastic. Shear-thinning fluids (e.g. paints, ketchup, yogurt 

etc.) demonstrate a reduction in apparent viscosity as the rate of deformation rises. A fluid that 

exhibits shear-thickening behavior, where its viscosity increases with the shear strain rate, can be 

illustrated by mixtures like cornstarch in water or honey. Viscoelastic fluids, a unique subclass of 

non-Newtonian fluids, display both viscous and elastic properties, deforming under stress and 

returning to their original shape once the force is removed. Examples include polymer melts, 

biological fluids, hydrogels, slurries, paints etc. Due to their unique properties, viscoelastic fluids 

have a vast range of applications in polymer processing, food industry, the textile industry and 

material science. The Weissenberg effect, driven by the elastic nature of viscoelastic fluids, causes 

the fluid to climb up a rod when stirred, unlike Newtonian fluids which form a dip. The well-

known second-grade and Walters-B models are two distinct theoretical frameworks used to 

describe the behavior of certain viscoelastic materials. In recent years, these models have been 

extensively applied to characterize viscoelastic behavior in various flow scenarios which include 

peristaltic flows [5-10], channel flows [11,12], flows induced by stretching sheets/cylinders [13-

17] and flows developed by rotating disks [18-21]. 

Examining flow characteristics of molten polymers during molding process, the production of 

metal and plastic sheets and the creation of glass fibers are key applications involving non-

Newtonian flow above a deformable boundary. Furthermore, modeling of rotating flows holds 

profound significance across several applications: optimizing energy transfer in turbomachinery, 
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understanding cyclones and hurricanes dynamics, boosting the efficiency of wind and 

hydroelectric turbines, enhancing industrial mixing and stirring processes and designing better 

aeration systems for wastewater treatment, to mention a few. Wang's intriguing work [22] explored 

the dynamics of fluid motion across a deforming boundary within a rotating frame. In [22], the 

introduction of the Coriolis force added a new parameter 𝜆 representative of the ratio between the 

rotation rate and the surface deformation rate. Wang [22] derived perturbation results for small 

values of 𝜆 and asymptotic results for large values, both of which aligned well with exact numerical 

integration results. Rajeswari and Nath [23] incorporated time-dependent surface stretch rate to 

introduce unsteadiness into Wang’s formulation. Using the Keller-Box numerical scheme, the 

authors in [23] provided computational results for this dynamic scenario. Subsequently, Nazar et 

al. [24] employed the Keller-Box treatment to explore the unsteady motion across a plate 

undergoing sudden deformation within a rotating frame. Wang's mathematical framework is 

investigated using various viscoelastic models, considering different physical effects (see, for 

instance, [25-29]) 

Heat transfer refers to the transport of thermal energy from one item to another owing to 

temperature gradient between them. Understanding the principles of heat transfer in fluid dynamics 

is crucial for engineering applications like boosting heat exchangers efficiency in power plants and 

industrial operations, refining cooling rates in metal forming and polymer extrusion processes for 

achieving the desired product, developing better heating and cooling systems for buildings and 

enhancing cooling mechanisms in solar panels, among other applications. Moreover, viscous 

dissipation refers to the process in which mechanical energy alters into heat because of fluid’s 

viscosity. The velocity gradient, fluid’s viscosity and elasticity are some of parameters that 

determine how much heat is produced by viscous dissipation. This effect is significant and cannot 

be overlooked in scenarios involving high-speed or highly viscous flows. Moreover, the inclusion 

of stresses in viscous dissipation introduces additional terms in the energy equation when assuming 

viscoelastic fluid behavior, which can require efficient computational methods. For a deeper 

understanding of recent studies on viscous heating mechanisms in non-Newtonian flows, readers 

should consult the referenced papers [30-33] and the articles cited within them. 

The cited literature clearly indicates a renewed interest among researchers in investigating the 

rotational effects on viscoelastic fluids under various physical conditions. As per authors’ 
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information, no existing study has explored the rotational flow of Walters-B fluid and Jeffery fluid 

over a steadily stretching plate within a rotating frame. This thesis addresses the issue by 

examining the heat transport mechanism, incorporating the effects of viscous heating and Joule 

heating.  
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CHAPTER 2:  

Exploring entropy production in MHD Walters-B fluid motion in a rotating frame with 

frictional heating using OHAM based package BVPh 2.0 

 

Introduction 

This chapter addresses the rotational flow of Walters B fluid by examining the heat transport 

mechanism, incorporating the effects of viscous heating and Joule heating. Furthermore, an 

analysis and evaluation of the entropy production expression are conducted under different 

considered factors. Here, the well-proven optimal analysis method (OHAM), which is included in 

the MATHEMATICA package BVPh 2.0, is used as the solution methodology. To verify the 

precision of the obtained simulations, we generated plots showing the total squared residuals in 

relation to the approximation order. The primary aim of this chapter is to analyze subtle physical 

variables like the skin friction factor and wall cooling rate under novel effects, specifically 

viscoelasticity, frictional heating and fluid rotation. 

 

Fig. 2.1: A graphical visualization of the flow situation along with coordinate system. 
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2.1.  Mathematical Modeling 

Consider a non-Newtonian fluid—like paint, synthetic polymers like silly putty, slime etc., some 

food products such as cheese, yoghurt, mayonnaise etc. or polymer melts—conforming to the 

Walters-B model, interacting with a flat elastic surface, depicted in Fig. 2.1. The surface positioned 

in the 𝑧 = 0 plane extends along the 𝑥-direction with velocity 𝑢 = 𝑎𝑥, where 𝑎 > 0 is the constant. 

By considering a rotating frame of reference characterized by the angular velocity 𝛀, we 

incorporate two extra forces, Coriolis and Centrifugal, into the conservation equations. The surface 

is regarded to be in a non-isothermal state with temperature 𝑇𝑤(𝑥) = 𝑇∞ + 𝑏𝑥2, where 𝑇∞ denotes 

the temperature's ambient value. Accounting the assumptions of incompressibility and steadiness, 

the flow problem translates into the following equations [29]: 

𝛁 ∙ 𝐕 = 0, (2.1) 

𝜌{(𝐕 ∙ 𝛁)𝐕 + (2𝛀 × 𝐕) + 𝛀 × (𝛀 × 𝐫)} = −𝛁𝑝 + 𝛁 ∙ 𝐒 + 𝐉 × 𝐁, (2.2) 

𝜌𝐶𝑝 {(𝐕 ∙ 𝛁)𝑇} = 𝜅𝛻2𝑇 + 𝐒: 𝛁𝐕 + 𝜎𝐵0
2(𝐕 ∙ 𝐕), (2.3) 

where the fluid density is designated by 𝜌, while the velocity vector is indicated by 𝐕. The angular 

velocity vector is given by 𝛀, current density is denoted by 𝐉, magnetic field strength is symbolized 

by 𝐁, electrical conductivity is represented by 𝜅 and specific heat capacity is referred to as 𝐶𝑝. 

For visco-elastic fluids, Beard and Walters [34] suggested the following stress tensor: 

𝐒 = 𝜇𝐀1 − 𝑘0 {
𝑑𝐀1

𝑑𝑡
− 𝐋𝐀1 − 𝐀1𝐋t}. (2.4) 

The dynamic viscosity is represented by 𝜇 and the first Rivlin-Ericksen tensor is given by: 𝐀1 =

(𝛁𝑽) + (𝛁𝐕)𝑡. 

By applying the stress tensor components from Eq. (2.4), and considering the boundary layer 

assumptions, Eqs. (2.1)-(2.3) become: 

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0, (2.5) 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧 − 2Ω𝑣

= 𝜈𝑢𝑧𝑧 +
𝑘0

𝜌
{

2𝑢𝑦𝑧𝑣𝑧 + 2𝑢𝑧𝑣𝑦𝑧 + 4𝑢𝑥𝑧𝑢𝑧

−𝑣𝑢𝑦𝑧𝑧 − 𝑢𝑢𝑥𝑧𝑧 − 𝑤𝑢𝑧𝑧𝑧

+𝑢𝑦𝑣𝑧𝑧 + 𝑣𝑦𝑣𝑧𝑧 + 2𝑢𝑧𝑧𝑤𝑧 + 3𝑢𝑧𝑤𝑧𝑧

} −
𝜎𝐵0

2𝑢

𝜌
, 

(2.6) 
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𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑤𝑣𝑧 + 2Ω𝑢

= 𝜈𝑣𝑧𝑧 +
𝑘0  

𝜌
{

2𝑣𝑥𝑧𝑢𝑧 + 2𝑣𝑧𝑢𝑥𝑧 + 4𝑣𝑦𝑧𝑣𝑧

−𝑢𝑣𝑥𝑧𝑧 − 𝑣𝑣𝑦𝑧𝑧 − 𝑤𝑣𝑧𝑧𝑧

+𝑣𝑥𝑢𝑧𝑧 + 𝑣𝑦𝑣𝑧𝑧 + 2𝑣𝑧𝑧𝑤𝑧+ + 3𝑣𝑧𝑤𝑧𝑧

} −
𝜎𝐵0𝑣

𝜌
 , 

(2.7) 

𝑢𝑇𝑥 + 𝑣𝑇𝑦 + 𝑤𝑇𝑧 =
𝜅

𝜌𝐶𝑝
𝑇𝑧𝑧 −

𝑘0

𝜌𝐶𝑝
{

𝑢(𝑢𝑥𝑧𝑢𝑧 + 𝑣𝑥𝑧𝑣𝑧) + 𝑣(𝑢𝑦𝑧𝑢𝑧 + 𝑣𝑦𝑧𝑣𝑧)

+𝑤(𝑢𝑧𝑧𝑢𝑧 + 𝑣𝑧𝑧𝑣𝑧) − 3𝑢𝑥𝑢𝑧
2 − 3𝑢𝑧𝑣𝑧𝑢𝑦

−3𝑢𝑧
2𝑤𝑧 − 3𝑣𝑥𝑢𝑧𝑣𝑧 − 3𝑣𝑦𝑣𝑧

2 − 3𝑣𝑧
2𝑤𝑧

} +

𝜈

𝐶𝑝
(𝑢𝑧

2 + 𝑣𝑧
2) +

𝜎𝐵0
2

𝜌𝐶𝑝
(𝑢2 + 𝑣2).  

(2.8) 

The following boundary conditions will be invoked to solve the 2 equations: 

𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥,   𝑣 = 0,   𝑤 = 0,   𝑇 = 𝑇𝑤(𝑥)  at  𝑧 = 0, (2.9) 

𝑢 → 0,   𝑢𝑧 → 0,   𝑣 → 0,   𝑣𝑧 → 0,   𝑇 → 𝑇∞   as   𝑧 → ∞. (2.10) 

Choosing the transformations: 

𝑢 = 𝑎𝑥𝑓′(𝜉),   𝑣 = 𝑎𝑥𝑔(𝜉),   𝑤 = −𝑓(𝜉)√𝑎𝜈,   𝜃(𝜉) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, (2.11) 

in which 𝜉 = 𝑧 (𝑎 𝜈⁄ )1 2⁄   is indicating similarity variable, 𝑓(𝜉) indicates the non-dimensional 

form of stream function whereas 𝜃(𝜉) defines the non-dimensional temperature, Eq. (2.5) is 

inherently satisfied, while Eqs. (2.6)-(2.8) are recast as follows: 

𝑓′′′ + 𝐾(𝑓′′2 − 2𝑓′𝑓′′′ + 𝑓𝑓𝑖𝑣) − 𝑓′2 + 𝑓𝑓′′ + 2𝜆𝑔 − 𝑀𝑓′ = 0, (2.12) 

𝑔′′ + 𝐾(𝑓′′𝑔′ − 3𝑓′𝑔′′ + 𝑔𝑓′′′ + 𝑓𝑔′′′) − 𝑓′𝑔 + 𝑓𝑔′ − 2𝜆𝑓′ − 𝑀𝑔 = 0, (2.13) 

𝜃′′ + 𝑃𝑟(𝜃′𝑓 − 2𝜃𝑓′) +

𝑃𝑟𝐸𝑐 {
−𝐾(𝑓′𝑓′′2 + 4𝑓′𝑔′2 − 𝑓𝑓′′𝑓′′′ − 𝑓𝑔′𝑔′′ − 3𝑓′′𝑔𝑔′)

+𝑓′′2 + 𝑔′2 + 𝑀(𝑓′2 + 𝑔2)
} = 0.  

(2.14) 

Eq. (2.11) converts the boundary conditions (2.9) and (2.10) as below:  

𝑓 = 0,   𝑔 = 0,   𝑓′ = 1,   𝜃 = 1    at    𝜉 = 0, (2.15) 

𝑓′ → 0,   𝑓′′ → 0,   𝑔 → 0,   𝑔′ → 0,   𝜃 → 0      as      𝜉 → ∞. (2.16) 

Eqs. (2.12)-(2.14) encompass the following parameters: 

 𝑃𝑟 represents the Prandtl number, calculated as 𝑃𝑟 = 𝜇𝐶𝑝 𝜅⁄ . 

 𝑀 = 𝜎𝐵0
2 𝜌𝑎⁄  is mentioned as magnetic field parameter. 
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 𝐾 = 𝑘0𝑎 𝜇⁄  is proportionate with the material parameter 𝑘0 and is thus identified as the 

elasticity parameter. 

 𝜆 = Ω 𝑎⁄  is associated with the angular velocity Ω and is consequently termed the rotation 

parameter. 

 𝐸𝑐 signifies the Eckert number, defined as 𝐸𝑐 = 𝑎2 𝐶𝑝𝑏⁄ . 

The engineering entities of significance encompass the skin friction coefficients, 𝐶𝑓𝑥 and 𝐶𝑓𝑦, as 

well as the local Nusselt number, 𝑁𝑢𝑥. These quantities are characterized by the following 

expressions: 

𝐶𝑓𝑥 =
𝜏𝑧𝑥|𝑧=0

𝜌𝑢𝑠
2

 ,   𝐶𝑓𝑦 =
𝜏𝑧𝑦|𝑧=0

𝜌𝑢𝑤
2

 ,   𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
, (2.17) 

in which the stresses 𝜏𝑧𝑥 and 𝜏zy,  can be evaluated from Eq. (2.4): 

𝜏𝑧𝑥 = 𝜇(𝑢𝑧) − 𝑘0(𝑢𝑢𝑥𝑧 + 𝑣𝑢𝑦𝑧 + 𝑤𝑢𝑧𝑧 − 𝑢𝑥𝑢𝑧 − 𝑢𝑦𝑣𝑧 − 3𝑢𝑧𝑤𝑧), (2.18) 

𝜏𝑧𝑦 = 𝜇(𝑣𝑧) − 𝑘0(𝑢𝑣𝑥𝑧 + 𝑣𝑣𝑦𝑧 + 𝑤𝑣𝑧𝑧 − 𝑣𝑦𝑣𝑧 − 𝑣𝑥𝑢𝑧 − 3𝑣𝑧𝑤𝑧), (2.19) 

and 𝑞𝑤 = −𝑘(𝜕𝑇 𝜕𝑧⁄ ) denotes the heat flux through the wall. It can be verified that the quantities 

in Eq. Using Eq. (2.11), one can derive the following forms of the quantities in Eq. (2.17): 

𝑅𝑒𝑥

1

2𝐶𝑓𝑥 = (1 − 3𝐾)𝑓′′(0), 𝑅𝑒𝑥

1

2𝐶𝑓𝑦 = (1 − 4𝐾)𝑔′(0), 𝑅𝑒𝑥

−
1

2𝑁𝑢𝑥 = −𝜃′(0),  (2.20) 

where 𝑅𝑒𝑥  

1

2 = 𝑢𝑤𝑥 𝜈⁄  is expressing the local Reynold’s number. 

2.1.1. Special case of Newtonian fluid flow 

Eqs. (2.12) through (2.16) collapse to the viscous flow situation when 𝐾 = 0 is substituted. The 

following system is pertinent in this scenario: 

𝑓′′′ − 𝑓′2 + 𝑓𝑓′′ + 2𝜆𝑔 − 𝑀𝑓′ = 0, (2.21) 

𝑔′′ − 𝑓′𝑔 + 𝑓𝑔′ − 2𝜆𝑓′ − 𝑀𝑔 = 0, (2.22) 

𝜃′′ + 𝑃𝑟(𝜃′𝑓 − 2𝜃𝑓′) + 𝑃𝑟𝐸𝑐(𝑓′′2 + 𝑔′2) + 𝑀𝑃𝑟𝐸𝑐(𝑓′2 + 𝑔2) = 0, (2.23) 

along with the same conditions (2.15) and (2.16). 
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2.2. Assessment of entropy creation 

Entropy rise quantifies the irreversibility and efficiency loss in mechanical systems, occurring 

because of heat transfer and frictional heating effects. Therefore, shear stresses and temperature 

gradients are responsible for entropy formation within boundary layer flows. Mathematically, the 

entropy generation rate 𝑆𝐺 is defined as follows: 

𝑆𝐺 =
𝜅

𝑇∞
2

(𝑇𝑧)2 +
𝜇

𝑇∞

{(𝑢𝑧)2 + (𝑣𝑧)2}

−
𝑘0

𝑇∞
{

𝑢(𝑢𝑥𝑧𝑢𝑧 + 𝑣𝑥𝑧𝑣𝑧) + 𝑣(𝑢𝑦𝑧𝑢𝑧 + 𝑣𝑦𝑧𝑣𝑧) +

𝑤(𝑢𝑧𝑧𝑢𝑧 + 𝑣𝑧𝑧𝑣𝑧) − 3𝑢𝑥𝑢𝑧
2 − 3𝑢𝑧𝑢𝑦𝑣𝑧 −

3𝑣𝑥𝑢𝑧𝑣𝑧 − 3𝑣𝑦𝑣𝑧
2 − 3𝑣𝑧

2𝑤𝑧

} +
𝜎𝐵0

2

𝑇∞

(𝑢2 + 𝑣2), 

(2.24) 

The first term represents the local entropy formation occurring because of heat transport through 

finite temperature gradient. The second and third terms correspond to local entropy production 

because of viscous dissipation and the final term accounts for the impact of Joule heating. 

Defining the entropy generation number as 𝑁𝐺(𝜉) = 𝑆𝐺𝑇∞𝜈/𝜅𝑎(𝑇𝑤 − 𝑇∞), the similarity 

transformations (2.11) are used to obtain the following result: 

𝑁𝐺(𝜉) = 𝛼𝜃′2 + 𝑃𝑟𝐸𝑐(𝑓′′2 + 𝑔′2) − 𝑃𝑟𝐸𝑐𝐾(𝑓′ 𝑓′′2
+ 4𝑓′𝑔′2 − 𝑓𝑓′′𝑓′′′ − 𝑓𝑔′𝑔′′ −

3𝑓′′𝑔𝑔′) + 𝑀𝑃𝑟𝐸𝑐(𝑓′2 + 𝑔2), 
(2.25) 

where 𝛼 = (𝑇𝑤 − 𝑇∞)/𝑇∞ measures the temperature difference. 

Bejan number: Bejan number gives the ratio between the irreversibility owing to heat transfer and 

the total irreversibility within a system. It is therefore crucial for evaluating the effectiveness of 

heat transmission. The Bejan number is defined below: 

𝐵𝑒 =
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑎 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛
 (2.26) 

Using Eq. (2.25), Eq. (2.26) attains the following form: 

𝐵𝑒 =
𝛼𝜃′2

𝛼𝜃′2+𝑃𝑟𝐸𝑐(𝑓′′2+𝑔′2)−𝑃𝑟𝐸𝑐𝐾(𝑓′𝑓′′2
+4𝑓′𝑔′2

−𝑓𝑓′′𝑓′′′−𝑓𝑔′𝑔′′−3𝑓′′𝑔𝑔′)+𝑃𝑟𝐸𝑐(𝑓′2+𝑔2) 
.  (2.27) 
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It is obvious from above equation that 0 < 𝐵𝑒 < 1. When 𝐵𝑒 = 0, the irreversibility effects due 

to viscous and Joule heating effects dominate the heat transfer irreversibility. For 𝐵𝑒 = 1/2, both 

viscous heating and heat transfer effects contribute equally to the entropy rise. 

2.3. Optimal homotopy analysis method (OHAM) 

Homotopy analysis approach, founded by Liao [35], is known for handling a variety of non-linear 

problems. In 2010, Liao [36] pioneered an optimal homotopy technique, which generates 

approximate solutions by identifying the best possible auxiliary parameters, thereby minimizing 

the problem's least squared residual. 

The following base functions are selected, taking into consideration the constraints (2.15) and 

(2.16): 

𝜉𝑞 exp(−𝑚𝜉);    𝑞, 𝑚 ≥ 0 (2.28) 

To construct zeroth-order deformation problems, we specify the linear operators and initial guesses 

by examining the governing equations and boundary constraints, as follows: 

ℒ𝑓(𝜑) = 𝜑′′′ − 𝜑′ ,  ℒ𝑔(𝜑) = 𝜑′′ − 𝜑  ,  ℒ𝜃(𝜑) = 𝜑′′ − 𝜑, (2.29) 

𝑓0(𝜉) = 1 − 𝑒−𝜉 ,   𝑔0(𝜉) = 0 ,  𝜃0(𝜉) = 𝑒−𝜉 , (2.30) 

The associated non-linear operators are chosen as follows: 

𝒩𝑓[𝑓(𝜉), 𝑔(𝜉)] = 𝑓′′′ − 𝑓′2 + 𝑓𝑓′′ + 2𝜆𝑔 − 𝑀𝑓′ + 𝐾(𝑓′′2 − 2𝑓′𝑓′′′ + 𝑓𝑓𝑖𝑣), (2.31) 

𝒩𝑔[𝑓(𝜉), 𝑔(𝜉)] = 𝑔′′ − 𝑓′𝑔 + 𝑓𝑔′ − 2𝜆𝑓′ − 𝑀𝑔 + 𝐾(𝑓′′𝑔′ − 3𝑓′𝑔′′ + 𝑔𝑓′′′ +

𝑓𝑔′′′),  
(2.32) 

𝒩𝜃[𝑓(𝜉), 𝜃(𝜉)] = 𝜃′′ + 𝑃𝑟(𝜃′𝑓 − 2𝜃𝑓′) + 𝑃𝑟𝐸𝑐[𝑓′′2 + 𝑔′2 − 𝐾(𝑓′𝑓′′2 + 4𝑓′𝑔′2 −

𝑓𝑓′′𝑓′′′ − 𝑓𝑔′𝑔′′ − 3𝑓′′𝑔𝑔′)] + 𝑀𝑃𝑟𝐸𝑐(𝑓′2 + 𝑔2).  
(2.33) 

Utilizing the non-linear operators outlined in Eqs. (2.34)-(2.36), we compute the average squared 

residuals over the interval [0, 20]: 

𝐸𝑓,𝑘 =
1

20
∫ (𝒩𝑓[𝑓(𝜉) , 𝑔(𝜉)])

2
20

0

𝑑𝜉, (2.34) 

𝐸𝑔,𝑘 =
1

20
∫ (𝒩𝑔[𝑓(𝜉) , 𝑔(𝜉)])

2
20

0

𝑑𝜉, (2.35) 
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𝐸𝜃,𝑘 =
1

20
∫ (𝒩𝜃[𝑓(𝜉) , 𝜃(𝜉)])2

20

0

𝑑𝜉. (2.36) 

The overall residual is thus evaluated from the following formula:  

𝐸𝑇,𝑘 = 𝐸𝑓,𝑘 + 𝐸𝑔,𝑘 + 𝐸𝜃,𝑘. (2.37) 

MATHEMATICA's “BVPH 2.0” solver is applied to evaluate the series solutions. The best 

possible auxiliary parameters—those for which the total squared residual is lowest—are 

automatically determined by this solver.  

2.4. Computational results and discussion 

Using the analytical solutions from the method described in the preceding section, graphical results 

are produced for different control parameters. For a range of elastico-viscous parameter 𝐾 values, 

graphical representations of the overall squared residual 𝐸𝑇,𝑘 are shown against 𝑘, the 

approximation order. These graphs (Figs. 2.2(a) to 2.2(d)) illustrate a significant decline in 𝐸𝑇,𝑘 

with the increase in OHAM approximation order, thereby demonstrating the series solutions' 

convergence. The computational data also shows inverse correlations between 𝐸𝑇,𝑘 and the 

parameters 𝐾 and 𝜆. It is concluded that for 𝑀 = 1, 𝑃𝑟 = 1, 𝑎𝑛𝑑 𝐸𝑐 = 0.5, 15th-order series 

solutions are sufficiently accurate for ranges of 𝐾 and 𝜆 in 0-0.5. Higher order approximations for 

the solutions would be necessary for 𝐾 and 𝜆 values beyond this range. 

Table 2.1 showcases the computational results for the skin friction factor 𝐶𝑓𝑥𝑅𝑒𝑥

1

2, 𝐶𝑓𝑦𝑅𝑒𝑥

1

2 across 

various values of 𝐾, 𝜆 and 𝑀 and table 2.2 shows the local Nusselt number 𝑅𝑒𝑥

1

2𝑁𝑢𝑥 values for 

different values of 𝐾, 𝜆, 𝑀 and 𝐸𝑐. Notably, a higher elasticity parameter provides a considerable 

decay in the surface drag coefficient. An elastico-viscous fluid has a lower drag coefficient 

compared to a standard Newtonian fluid. The replacement of Newtonian fluid with the viscoelastic 

one also results in a decline in the local Nusselt number 𝑁𝑢𝑥, which measures the surface cooling 

rate. Moreover, as the fluid's rotational velocity increases, the stretching wall demands a greater 

force. Conversely, when the fluid's rotational or angular velocity increases, the surface's cooling 

rate decreases noticeably. Increase in magnitude of magnetic field parameter leads to an increase 

in skin friction coefficient. This happens due to the retarding impact of Lorentz force which 
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produces higher the velocity gradient at the surface. Similarly, it decreases the convective heat 

transfer’s effectiveness in contrast to conduction.  

Figs. 2.3(a) through 2.3(c) display visual depictions of the velocity fields 𝑓′, 𝑔 and 𝑓, each 

corresponding to various values of the elasticity parameter 𝐾. For higher values of 𝐾, the 𝑢-

velocity profile (denoted as 𝑓′) diminishes over a shorter vertical range, suggesting that the depth 

of momentum penetration is inversely related to the parameter 𝐾. The negative value of 𝑔 is 

representative of fluid motion towards the negative 𝑦-direction. The source of this 𝑦-direction flow 

is the rotating frame of reference. The impact of parameter 𝐾 on the vertical flow is next 

demonstrated through Fig. 2.3(c). The vertical flow is reduced due to decelerated horizontal flow 

caused by increasing 𝐾-values. With increasing 𝐾, the 𝜃-profile shifts away from the boundary, 

suggesting an expansion of the thermal layer thickness or weakening of heat convection effect, a 

phenomenon resulting from the slowed vertical motion due to the enhanced 𝐾 (see Fig. 2.3(d)). 

At various values of parameter 𝜆, which specifies the intensity of the Coriolis force, the similarity 

profiles 𝑓′, 𝑔, 𝑓 and 𝜃 are next illustrated in Figs. 2.4(a) through 2.4(d). Because the parameter 𝜆 

gives the ratio between rotation and stretch rates, increasing it is therefore expected to slow down 

the stretching surface driven flow in the 𝑥-direction, as noticed through Fig. 2.4(a). Furthermore, 

for the satisfaction of mass conservation constraint, the vertical flow is accordingly reduced. It 

may be noted that while the parameter 𝜆 affects the boundary layer in a similar manner to 𝐾, 

increasing 𝐾 has a greater impact on the velocity components variation than altering 𝜆. As the 

rotational speed increases, the 𝑦-direction flow produced by the fluid's rotation is naturally 

expected to accelerate, as shown in Fig. 2.4(b). Increasing 𝜆 considerably reduces the heat 

convection effect due to the decreased 𝑓, which boosts heat conduction and causes the thermal 

boundary layer to progress, as seen in Fig. 2.4(d).  

In Figs. 2.5(a) through 2.5(d), the Lorentz force behavior on the rotating viscoelastic fluid over a 

deforming plate is demonstrated. It is anticipated that the flow created by the deforming wall will 

be resisted by the magnetic field acting normal to the surface. That is why, with increasing 𝑀, the 

velocity curves depicted in Figs. 2.5(a)-2.5(d) reach far-field conditions at reduced vertical 

distances. The resistive behavior of the Lorentz force as a result of the magnetic field consideration 

is indicated by the decrease in velocity distributions with rising 𝑀-values. Here, we shall discuss 
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a fascinating phenomenon called Joule heating, which is based on the fundamental notion that heat 

is released as electric current flows through a conductor due to its resistance. As 𝑀 increases, more 

heat is produced as a result of the Joule heating factor in Eq. (2.8), improving the thermal layer 

thickness (see Fig. 2.5(d)). 

By altering the values of 𝑃𝑟, the Prandtl number, Fig. 2.6 demonstrates how the temperature curve 

varies. Because liquids have a higher viscosity to heat conductivity ratio than gases, 𝑃𝑟 is chosen 

higher for liquids (𝑃𝑟>=1).  Given the inverse relationship between 𝑃𝑟 and thermal conductivity, 

it is anticipated that a growth in 𝑃𝑟 will result in a decrement in temperature profile, as seen in 

Fig. 2.6. As 𝑃𝑟 enlarges, heat convection effect represented by the term 𝑃𝑟 (𝑓𝜃′ − 2𝑓′𝜃) increases, 

enhancing the cooling rate at the boundary.  

Fig. 2.7 illustrates the temperature profiles across various Eckert numbers through a graphical 

representation. The Eckert number, which compares the kinetic energy with enthalpy, is significant 

when dealing with highly viscous fluids or high-speed flows. A rise in Eckert number contributes 

to the translation of kinetic energy into internal energy as a result of the work done against the 

fluid’s viscous forces. As the Eckert number increases, the boundary layer generates more heat, 

leading to an elevated temperature profile. 

Graphical visualizations of skin friction factor and local Nusselt number as functions of rotation 

parameter 𝜆 are provided at different elasticity parameters in the Figs. 2.8 and 2.9 respectively. 

Firstly, parameter 𝐾 has a significantly stronger influence on the required surface force compared 

to parameter 𝜆. Secondly, by raising the elasticity parameter 𝐾, the dominance of viscous forces 

is subdued resulting in a reduced skin friction coefficient. When we increase the values of the 

elasticity parameter, the convection phenomenon becomes prominent, resulting in an elevated 

local Nusselt number. 

Figs. 2.10(a) and 2.10(b) illustrate how the entropy generation number varies across the boundary 

layer as the temperature difference parameter (𝛼) and the elasticity parameter (𝐾) change. A 

significant increase in entropy generation occurs as the temperature gradient becomes steeper. 

Conversely, increasing the elasticity parameter results in a reduction in entropy production. From 

a physical perspective, raising the material parameter 𝑘0 reduces the contribution of viscous 

heating towards entropy production resulting in a lower entropy generation number 𝑁𝐺 . 



24 

 

To compare the irreversibility effects due to heat transfer and frictional heating, we generate Bejan 

number profiles for changing values of 𝛼 and 𝐾 in the Figs. 2.11(a) and 2.11(b) respectively. The 

Bejan number is lower near the wall where temperature is higher, and it converges to unity outside 

the boundary layer. It suggests that irreversibility effects due to frictional heating are prominent 

near the wall and vanish as 𝜉 → ∞. We noticed a direct correlation between the Bejan number with 

both parameters: 𝛼 and 𝐾. 

  

  
 

Figs. 2.2(a)-2.2(d): Graphical representation of overall averaged squared residual 𝐸𝑇,𝑘 versus 

approximation Order 𝑘 for various elasticity parameter K-values when 𝜆 = 0.1. 

 

(a)
(b)

(c) (d)



25 

 

Table 2.1: Analysis of skin friction variations with rotation parameter 𝜆, elasticity parameter 𝐾 

and magnetic interaction parameter 𝑀 for given conditions: 𝑃𝑟 =  1 and 𝐸𝑐 =  0.5. 

𝜆 𝐾 𝑀 (1 − 3𝐾)𝑓′′(0) (1 − 4𝐾)𝑔′(0) 

0.1 0.2 1 -0.63343 -0.02524 

0.2   -0.63631 -0.05019 

0.25   -0.63842 -0.06248 

0.3   -0.64093 -0.07459 

0.4   -0.64708 -0.09824 

0.1 0.1 1 -1.04514 -0.05667 

 0.2  -0.63343 -0.02524 

 0.3  -0.16931 0.04418 

 0.4  0.36736 0.58456 

 0.5  1.00023 0.19514 

0.1 0.1 0.5 -0.90650 -0.06793 

  0.75 -0.97819 -0.06154 

  1 -1.04514 -0.05667 

  1.25 -1.10813 -0.05281 

  1.5 -1.16777 -0.04965 

Table 2.2: Analysis of local Nusselt number variations with rotation parameter 𝜆, elasticity 

parameter 𝐾, magnetic interaction parameter 𝑀 and Eckert number 𝐸𝑐 for given condition: 𝑃𝑟 =

1. 
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𝜆 𝐾 𝑀 𝐸𝑐 −𝜃′(0) 

0.1 0.2 1 0.5 0.79261 

0.2   
 

0.78263 

0.25   
 

0.77530 

0.3   
 

0.76650 

0.4   
 

0.74486 

0.1 0.1 1 0.5 0.80249 

 0.2  
 

0.79261 

 0.3  
 

0.78000 

 0.4  
 

0.76626 

 0.5  
 

0.74019 

0.1 0.1 0.5 0.5 1.00466 

  0.75 
 

0.87869 

  1 
 

0.80249 

  1.25 
 

0.73108 

  1.5 
 

0.66377 

0.1 0.1 1 0.25 0.99788 

   0.5 0.80249 

   1 0.41136 

   1.5 0.02094 

   2 0.36955 
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Figs. 2.3(a)-2.3(d): Impact of Elasticity parameter 𝐾 variation on the velocities (𝑓′, 𝑔 and 𝑓) and 

temperature (𝜃) patterns. 
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Figs. 2.4(a)-2.4(d): Impact of rotation parameter 𝜆 variation on the velocities (𝑓′, 𝑔 and 𝑓) and 

temperature (𝜃) patterns. 
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Figs. 2.5(a)-2.5(d): Behavior of magnetic influence parameter 𝑀 variation on the velocities (𝑓′, 𝑔 

and 𝑓) and temperature (𝜃) patterns. 

  
Fig. 2.6: Impacts of Prandtl number 𝑃𝑟 on the 

temperature (𝜃) dynamics. 

Fig. 2.7: Impacts of Ecker number 𝐸𝑐 on the 

temperature (𝜃) dynamics. 
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Fig. 2.8: Impact of elasticity parameter 𝐾 

variation on the skin friction factor. 

Fig. 2.9: Impact of elasticity parameter 𝐾 

variation on the local Nusselt number. 

  
Figs. 2.10(a) & 2.10(b): Influence of temperature difference parameter 𝛼 and elasticity parameter 𝐾 

on the entropy formation assessment. 
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Figs. 2.11(a) & 2.11(b): Influence of temperature difference parameter 𝛼 and elasticity parameter 𝐾 

on the Bejan number. 
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CHAPTER 3 

      Entropy formation analysis for rotating flow of Jeffery fluid over a stretching surface 

 

Introduction 

This chapter analyzes the behavior of boundary layer flow of Jeffery fluid in three dimensions. We 

examine the effects of rotation, magnetic field and viscous dissipation on the deforming surface 

we have considered. By utilizing the MATHEMATICA's “BVPH 2.0”, we have obtained the 

numerical results. The acquired results are depicted through the graphical results. 

3.1. Problem formulation 

We investigate the three-dimensional rotational flow of Jeffery fluid induced by a stretching 

surface. We adopt Cartesian coordinates in which a surface is in 𝑥𝑦- plane and viscoelastic fluid 

is restricted in the space 𝑧 ≥ 0. In the x-direction, the surface is expected to deform linearly with 

velocity 𝑢 = 𝑐𝑥, where 𝑐 > 0, is constant. Moreover, fluid experiences rotation along the 𝑧- axis 

with constant angular velocity 𝛀. The surface temperature is 𝑇𝑤 = 𝑇∞ + 𝑏𝑥2, here 𝑇∞ signifies 

the fluid’s ambient temperature. The stress tensor for Jeffery fluid model [37] is expressed as: 

𝜏 =
𝜇

1 + 𝜆2
(𝐀1 + 𝜆1

𝑑𝐀1

𝑑𝑡
), (3.1) 

where 𝜇 is the dynamic viscosity, 𝜆2 represents the ratio of relaxation to retardation time, 𝜆1 shows 

retardation time and 𝐀1 = (𝛁𝐕) + (𝛁𝑽)𝑡 signifies the Rivlin-Ericksen tensor, while 𝐕 represents 

the velocity vector. Under the assumption of steady and incompressible flow, the problem is 

characterized by the following equations by taking the boundary layer assumption into account: 

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0, (3.2) 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧 − 2Ω𝑣 =
𝜈

1 + 𝜆2
{𝑢𝑧𝑧 + 𝜆1 (

𝑢𝑢𝑥𝑧𝑧 + 𝑣𝑢𝑦𝑧𝑧

+𝑤𝑢𝑧𝑧𝑧 + 𝑢𝑧𝑢𝑥𝑧

+𝑣𝑧𝑢𝑦𝑧 + 𝑤𝑧𝑢𝑧𝑧

)} −
𝜎𝐵0

2𝑢

𝜌
, (3.3) 

𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑤𝑣𝑧 + 2Ω𝑢 =
𝜈

1 + 𝜆2
{𝑣𝑧𝑧 + 𝜆1 (

𝑢𝑣𝑥𝑧𝑧 + 𝑣𝑣𝑦𝑧𝑧

+𝑤𝑣𝑧𝑧𝑧 + 𝑢𝑧𝑣𝑥𝑧

+𝑣𝑧𝑣𝑦𝑧 + 𝑤𝑧𝑣𝑧𝑧

)} −
𝜎𝐵0

2𝑣

𝜌
, (3.4) 
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𝑢𝑇𝑥 + 𝑣𝑇𝑦 + 𝑤𝑇𝑧 =
𝜅

𝜌𝐶𝑝
𝑇𝑧𝑧 +

𝜈

1+𝜆2 
[𝑢𝑧

2 + 𝑣𝑧
2 + 𝜆1 {

𝑢(𝑢𝑥𝑧𝑢𝑧 + 𝑣𝑥𝑧𝑣𝑧)

+𝑣(𝑢𝑦𝑧𝑢𝑧 + 𝑣𝑦𝑧𝑣𝑧)

+𝑤(𝑢𝑧𝑧𝑢𝑧 + 𝑣𝑧𝑧𝑣𝑧)

}] +

𝜎𝐵0
2

𝜌𝐶𝑝
(𝑢2 + 𝑣2).  

(3.5) 

here 𝜌 is the fluid density, the angular velocity vector is indicated by 𝛀, magnetic field strength is 

shown by 𝐁, thermal conductivity is given by 𝜅 and 𝐶𝑝 is referred to as specific heat capacity. 

These equations will be solved by applying the following boundary conditions: 

𝑢 = 𝑢𝑤(𝑥) = 𝑐𝑥,   𝑣 = 0,   𝑤 = 0,   𝑇 = 𝑇𝑤(𝑥) 𝑎𝑡 𝑧 = 0, (3.6) 

𝑢 → 0,   𝑢𝑧 → 0,   𝑣 → 0,   𝑣𝑧 → 0,   𝑇 → 𝑇∞ 𝑎𝑠 𝑧 → ∞. (3.7) 

using the following transformation: 

𝑢 = 𝑐𝑥𝑓′(𝜉),   𝑣 = 𝑐𝑥𝑔(𝜉),   𝑤 = −𝑓(𝜉)(𝑎𝜈)1 2⁄ ,   𝜃(𝜉) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, (3.8) 

where 𝜉 = 𝑧(𝑐 𝜈⁄ )1 2⁄  signifies the similarity variable, 𝑓(𝜉) and 𝜃(𝜉) representing the non-

dimensionalized form of stream function and temperature respectively. Eq. (3.2) is satisfied 

identically and Eqs. (3.3)-(3.5) are transformed as given below: 

𝑓′′′ + (1 + 𝜆2)(𝑓𝑓′′ − 𝑓′2
+ 2𝜆𝑔) + 𝛽(𝑓′′2 − 𝑓𝑓𝑖𝑣) − (1 + 𝜆2)𝑀𝑓′ = 0, (3.9) 

𝑔′′ + (1 + 𝜆2)(𝑓𝑔′ − 𝑓′𝑔 − 2𝜆𝑓′) + 𝛽(𝑓′′𝑔′ − 𝑓𝑔′′′) − (1 + 𝜆2)𝑀𝑔 = 0, (3.10) 

(1 + 𝜆2)𝜃′′ + (1 + 𝜆2)𝑃𝑟(𝑓𝜃′ − 2𝜃𝑓′) + 𝑃𝑟𝐸𝑐{𝑓′′2 + 𝑔′2 + 𝛽(𝑓′𝑓′′2 + 𝑓′𝑔′2 −

𝑓𝑓′′𝑓′′′ − 𝑓𝑔′𝑔′′) + 𝑀(1 + 𝜆2)(𝑓′2 + 𝑔2)} = 0.  
(3.11) 

The boundary conditions Eqs. (3.6)-(3.7) are transformed by using Eq.(3.8) as follows: 

𝑓(0) = 𝑔(0) = 0, 𝑓′(0) = 𝜃(0) = 1, (3.12) 

𝑓′(∞) → 0, 𝑓′′(∞) → 0, 𝑔(∞) → 0, 𝑔′(∞) → 0, 𝜃(∞) → 0. (3.13) 

The following parameters are included in Eqs. (3.9)-(3.10): 

 𝜆 = Ω 𝑐⁄  is the rotation parameter corresponds to angular velocity Ω. 

 𝛽 = 𝜆1𝑐 represents the Deborah number associated with retardation time. 
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 𝑀 = 𝜎𝐵0
2 𝜌𝑐⁄  gives magnetic field parameter. 

 𝑃𝑟 = 𝜇𝐶𝑝 𝜅⁄  signifies the Prandtl number. 

 𝐸𝑐 = 𝑐2𝐶𝑝 𝑏⁄  is regarded as Eckert number. 

The wall skin friction 𝐶𝑓𝑥, 𝐶𝑓𝑦 and the local Nusselt number 𝑁𝑢𝑥 are characterized by the 

following expressions: 

𝐶𝑓𝑥 =
𝜏𝑧𝑥|𝑧=0

𝜌𝑢𝑠
2

 ,   𝐶𝑓𝑦 =
𝜏𝑧𝑦|𝑧=0

𝜌𝑢𝑤
2

 ,   𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
, (3.14) 

here 𝜏𝑧𝑥 and 𝜏𝑧𝑦 represent the stress tensors which can be evaluated directly from Eq. (3.1) as 

follows: 

𝜏𝑧𝑥 =
𝜇

1 + 𝜆2
{(𝑢𝑧) + 𝜆1(𝑢𝑢𝑥𝑧 + 𝑣𝑢𝑦𝑧 + 𝑤𝑢𝑧𝑧)}, (3.15) 

𝜏𝑧𝑦 =
𝜇

1 + 𝜆2
{(𝑣𝑧) + 𝜆1(𝑢𝑣𝑥𝑧 + 𝑣𝑣𝑦𝑧 + 𝑤𝑣𝑧𝑧)}. (3.16) 

and 𝑞𝑤 = −𝜅(𝜕𝑇 𝜕𝑧⁄ ) represents the surface heat flux. By using eq. (3.8), Eq. (3.14) will 

transformed in the following form: 

𝑅𝑒𝑥

1

2𝐶𝑓𝑥 =
(1 + 𝛽)

1 + 𝜆2
𝑓′′(0),   𝑅𝑒𝑥

1

2𝐶𝑓𝑦 =
(1 + 𝛽)

1 + 𝜆2
𝑔′(0),   𝑅𝑒𝑥

−
1

2𝑁𝑢𝑥 = −𝜃′(0), (3.17) 

in which 𝑅𝑒𝑥

1

2 is representing the local Reynold number. 

3.1.1. Newtonian fluid case: 

The Newtonian fluid flow induced by the deforming surface is restored when 𝜆2 = 𝛽 = 0. Eqs. 

(3.9)-(3.13) will presented as follow: 

𝑓′′′ + (𝑓𝑓′′ − 𝑓′2
+ 2𝜆𝑔) − 𝑀𝑓′ = 0, (3.18) 

𝑔′′ + (𝑓𝑔′ − 𝑓′𝑔 − 2𝜆𝑓′) − 𝑀𝑔 = 0, (3.19) 

𝜃′′ + 𝑃𝑟(𝑓𝜃′ − 2𝜃𝑓′) + 𝑃𝑟𝐸𝑐{𝑓′′2 + 𝑔′2 + 𝑀(𝑓′2 + 𝑔2)}. (3.20) 

with the same conditions expressed in Eqs. (3.12)-(3.13). 
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3.2. Evaluation of entropy creation 

The following equation gives entropy production rate per unit volume in Jeffrey fluid motion 

within a rotating frame of reference, considering the effects of viscous dissipation and Ohmic 

heating:  

�̇�𝑔𝑒𝑛 =
𝜅

𝑇∞
2

(𝑇𝑧)2 +
𝜇

(1 + 𝜆2)𝑇∞
[(𝑢𝑧)2 + (𝑣𝑧)2 + 𝜆1 {

𝑢(𝑢𝑥𝑧𝑢𝑧 + 𝑣𝑥𝑧𝑣𝑧) + 𝑣𝑢𝑦𝑧𝑢𝑧

+𝑣𝑣𝑦𝑧𝑣𝑧 + 𝑤(𝑢𝑧𝑧𝑢𝑧 + 𝑣𝑧𝑧𝑣𝑧)
}]

+
𝜇

𝑇∞

(𝑢2 + 𝑣2). 

(3.21) 

The right hand side of Eq. (3.21) consists of three parts: the initial term represents irreversibility 

caused by heat transfer that reflects entropy formation due to conduction; the second term depicts 

irreversibility due to fluid friction and the final term accounts for irreversibility effect arising from 

Ohmic heating. 

The dimensionless entropy generation number, 𝑁𝐺(𝜉) = �̇�𝑔𝑒𝑛𝑇∞𝜈/𝜅𝑎(𝑇𝑤 − 𝑇∞), is introduced, 

and by applying Eq. (3.21) along with the similarity transformations (3.8), it assumes the following 

form: 

𝑁𝐺(𝜉) = 𝛼𝜃′2 +
𝑃𝑟𝐸𝑐

1 + 𝜆2
{𝑓′′2 + 𝑔′2 − 𝛽 (

𝑓′𝑓′′2 + 𝑓′𝑔′2

−𝑓𝑓′′𝑓′′′ − 𝑓𝑔′𝑔′′)} + 𝑀𝑃𝑟𝐸𝑐(𝑓′2 + 𝑔2), (3.21) 

 

in which 𝛼 = (𝑇𝑤 − 𝑇∞)/𝑇∞ signifies the temperature difference. 

Bejan number:  

An intriguing Bejan number 𝐵𝑒 is often computed to scrutinize entropy creation in boundary layer 

flows. It is defined as follows: 

𝐵𝑒 =
Entropy created by heat transfer

overall entropy production
. (3.22) 

In view of the above, the Bejan number 𝐵𝑒 in the current scenario is obtained as follows: 

𝐵𝑒(𝜉) =
𝛼𝜃′2

𝛼𝜃′2 +
𝑃𝑟𝐸𝑐

1+𝜆2
{𝑓′′2 + 𝑔′2 − 𝛽 (

𝑓′𝑓′′2 + 𝑓′𝑔′2

−𝑓𝑓′′𝑓′′′ − 𝑓𝑔′𝑔′′)} + 𝑀𝑃𝑟𝐸𝑐(𝑓′2 + 𝑔2)
, 

(3.23) 
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It is evident from Eq. (3.23) that the Bejan number (𝐵𝑒) ranges from 0 to 1. When 𝐵𝑒 approaches 

0, heat transfer irreversibility is minimal. At 𝐵𝑒 = 1/2, both conduction and viscous (or Ohmic) 

heating contribute equally to the entropy generation. As 𝐵𝑒 approaches 1, irreversibility is 

predominantly driven by conduction. 

3.3. Results and Discussion 

Figs. 3.1(a)-3.1(d) depicts the graphical representations of total squared residual 𝐸𝑇,𝑘 versus 𝑘 for 

various values of 𝜆2, the ratio of relaxation to retardation time. With an increase in the order of 

OHAM approximations, these graphs shows a substantial decrease in 𝐸𝑇,𝑘. Consequently, 

demonstrating the accuracy of HAM solutions. 

Table 3.1 shows Comparsion of computational outcomes of skin friction coefficient and local 

Nusselt number using OHAM and the MATLAB scheme bvp5c for distinct values of controlling 

parameters. This data shows that the analytical results obtained by OHAM agrees very well with 

the numerical results obtained by bvp5c. Table 3.2 and Table 3.3 presents the numerical results by 

varying the values of different parameters. As the magnitude of 𝜆2, the ratio of relaxation to 

retardation time increases, the fluid has lower drag force that the least force needed to maintain 

linear deformation of surface drops. With increasing the values of Deborah number, the drag at 

surface will significantly enhances. Similarly, the stretching wall requires more force with an 

increase in rotational velocity. With an increase in 𝜆2, 𝜆 and 𝐸𝑐, the local nusselt number 

corresponding to surface cooling rate decreases. Conversely, 𝑁𝑢𝑥 increases by raising the values 

of 𝛽. 

 Analytical results are worked out for the rotational motion of a Jeffrey fluid over a deforming 

plate, considering the effects of viscous dissipation. The physical explanation of the impact of 

various regulating parameters on the solution profiles is assigned in this section. In Figs. 3.2(a) 

through 3.2(d), graphical depictions of velocities 𝑢, 𝑣 and 𝑤 as well as temperature are presented 

across varying Deborah numbers. The Deborah number is associated with the retardation time, 

which is a measurement of how long it takes for a fluid to respond elastically to stress. The data 

suggests that extending the retardation time decreases momentum diffusion. This is evidenced by 

the velocity curves, which reach far-field conditions at greater distances from the plate as the 𝛽 
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values increase. Fig. 3.2(d) illustrates the impact of altering the Deborah number on the 

temperature profile. With an increment in 𝛽, the heat conduction effect diminishes because of 

increased convection apparent from the increased 𝑓 in Fig. 3.2(c). For such reason, the temperature 

distribution appears to reduce as retardation time progresses. 

 Fig. 3.3(a)-3.3(d) illustrates how the relaxation to-retardation time ratio influences the velocity 

and temperature profile. When the relaxation time is longer, stress relaxation is slower and fluid 

tends to behave like elastic solid. The stream wise momentum diffusion is therefore shorter for a 

higher relaxation time. The reduction in momentum diffusion results in lower velocity 

distributions, as evidenced from the Figs. 3.3(a)-3.3(c). A decrease in the vertical velocity 

component suggests diminished convection, leading to a thicker thermal layer (refer to Fig. 3.3(d)). 

 Figs. 3.4(a)- 3.4(d) illustrate the rotational effects on the viscoelastic motion over the stretching 

plate. An increase in fluid's angular velocity is anticipated to offer more resistance to the stretching 

induced motion. Due to this, the horizontal and vertical velocities are reduced whenever rotation 

parameter 𝜆 is increased. Additionally, the rotating frame assumption causes the initiation of 

motion in the negative 𝑦-direction. As a result, this 𝑦-direction motion accelerates as the fluid's 

rotational speed increases. Because the vertical flow gets slower upon increasing rotation rate, the 

convection effect becomes less pronounced. This in turn boosts heat conduction resulting in a rise 

in thermal diffusion above the plate (see Fig. 3.4(d)). 

Figs. 3.5(a)-3.5(d) include the plots of velocities and temperature across different magnetic 

interaction parameters. Lorentz force, which tends to resist the flow, induces a drag when a 

transverse magnetic field is set up in a direction normal to the flow. The viscous forces tend to rise 

as a result. Therefore, the decline in velocity in the boundary layer is observed in Fig. 3.5(a)-3.5(c). 

In Fig. 3.5(d) the intriguing phenomenon, known as Joule heating is introduced which is based on 

the concept that due to resistance heat is produced as the electric current flows through the 

conductor. An increment temperature profile results from an increase in 𝑀, which physically 

enhances the Joule heating effect, increasing the thermal layer thickness and permitting more heat 

generation. 

Next, the impact of Prandtl number variation on the temperature curve is discussed via Fig. 3.6. 

Increasing Pr is expected to reduce the thickness of the thermal layer and increase the pace of 
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cooling since it quantifies the significance of momentum diffusion over thermal diffusion. This 

effect is shown in Fig. 3.6, where curves tend to grow steeper as Pr increases and move farther 

from the plate. 

Fig. 3.7 demonstrates that the temperature profile progressively increases as the Eckert number 𝐸𝑐 

rises. A higher Eckert number can be interpreted as a more pronounced viscous dissipation term. 

Viscous dissipation which indicates the conversion of mechanical energy into thermal energy due 

to fluid’s friction. In highly viscous fluids, the impact of viscous dissipation on the temperature 

profile should be more significant. Heat generation from frictional effects increases with increasing 

Eckert number. This results in an enhanced temperature profile. 

Impact of varying 𝛽 and 𝜆2 on local Nusselt number is demonstrated through Figs. 3.8(a) and 

3.8(b). By raising the values of 𝜆2, the convection effects become more pronounced. This leads to 

increase in surface cooling rate. While opposite behavior is observed by varying the values of 𝛽. 

Figs. 3.9(a) and 3.9(b) shows the profiles of entropy generation number for various values of 

temperature difference parameter 𝛼 and Deborah number 𝛽. Figs. 3.10(a) and 3.10(b) shows the 

profiles of Bejan number for various values of temperature difference parameter 𝛼 and Deborah 

number 𝛽. 

  

 (a)
(b)
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Figs. 3.1(a)-3.1(d): Graphical representation of overall averaged squared residual 𝐸𝑇,𝑘 versus 

approximation Order 𝑘 for various elasticity parameter K-values when 𝜆 = 𝛽 = 0.1. 

Table 3.1: Comparsion of computational outcomes of skin friction coefficient and local Nusselt 

number using OHAM and the MATLAB scheme bvp5c for distinct values of controlling 

parameters by keeping 𝑃𝑟 =  1, 𝐸𝑐 =  0.5, 𝑀 =  1 and 𝜆2 =  0.2. 

𝛽 
𝜆 

𝑅𝑒𝑥

1

2𝐶𝑓𝑥 𝑅𝑒𝑥

1

2𝐶𝑓𝑦 𝑅𝑒𝑥

−
1

2𝑁𝑢𝑥 − 𝜃′(0) 

OHAM Bvp5c OHAM Bvp5c OHAM Bvp5c 

0.1 0.2 -1.36239 -1.36238 -0.14990 -0.14990 0.79475 0.79465 

0.3  -1.48069 -1.48067 -0.16645 -0.16645 0.80646 0.80643 

0.5  -1.59021 -1.58982 -0.18162 -0.18157 0.81398 0.81378 

0.7  -1.69264 -1.69263 -0.19566 -0.19567 0.81872 0.81869 

0.2 0.1 -1.41638 -1.41636 -0.07964 -0.07964 0.80976 0.80971 

 0.2 -1.42277 -1.42275 -0.15837 -0.15837 0.80125 0.80119 

 0.3 -1.43303 -1.43301 -0.23538 -0.23538 0.78755 0.78749 

 0.4 -1.44666 -1.44663 -0.31010 -0.31010 0.76978 0.76924 

(c)

(d)
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Table 3.2: Analysis of skin friction variations with 𝜆2, the ratio of relaxation to retardation time, 

Deborah number 𝛽 and rotation parameter 𝜆 for given conditions: 𝑀 =  1, 𝑃𝑟 =  1 and 𝐸𝑐 =

 0.5. 

𝜆2 
𝛽 𝜆 

𝑅𝑒𝑥

1

2𝐶𝑓𝑥 =
(1 + 𝛽)

(1 + 𝜆2)
𝑓′′(0) 𝑅𝑒𝑥

1

2𝐶𝑓𝑦 =
(1 + 𝛽)

(1 + 𝜆2)
𝑔′(0) 

0 0.3 0.2 -1.62202 -0.18234 

0.2   -1.48069 -0.16645 

0.4   -1.37085 -0.15410 

0.6   -1.28231 -0.14415 

0.2 0.1 0.2 -1.3624 -0.1499 

 0.3  -1.48069 -0.16645 

 0.5  -1.59021 -0.18162 

 0.7  -1.69265 -0.19566 

0.2 0.2 0.1 -1.41639 -0.07964 

  0.2 -1.42278 -0.15837 

  0.3 -1.43303 -0.23538 

  0.4 -1.44666 -0.31010 

Table 3.3: Analysis of local Nusselt number variations with 𝜆2, the ratio of relaxation to 

retardation time, Deborah number 𝛽, rotation parameter 𝜆, and Eckert number 𝐸𝑐 for given 

condition: 𝑃𝑟 = 1 and 𝑀 =  1. 

𝜆2 
𝛽 𝜆 𝐸𝑐 −𝜃′(0)  

0 0.3 0.2 0.5 0.81557 

0.2   
 

0.80661 

0.4   
 

0.79614 

0.6   
 

0.78488 

0.2 0.1 0.2 0.5 0.79513 

 0.3  
 

0.80661 

 0.5  
 

0.81404 

 0.7  
 

0.81872 

0.2 0.2 0.1 0.5 0.80995 

  0.2 
 

0.80149 

  0.3 
 

0.78789 

  0.4 
 

0.76978 

0.2 0.2 0.1 0 1.21453 

   0.5 0.80995 

   1 0.40537 

   1.5 0.00079 
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Figs. 3.2(a)-3.2(d): Impact of Deborah number 𝛽 variation on the velocities (𝑓′, 𝑔 and 𝑓) and 

temperature (𝜃) patterns. 
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Figs. 3.3(a)-3.3(d): Impact of ratio of relaxation to retardation time 𝜆2 variation on the velocities (𝑓′, 𝑔 

and 𝑓) and temperature (𝜃) patterns. 
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Figs. 3.4(a)-3.4(d): Impact of rotation parameter 𝜆 variation on the velocities (𝑓′, 𝑔 and 𝑓) and 

temperature (𝜃) patterns. 
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Figs. 3.5(a)-3.5(d): Behavior of magnetic influence parameter 𝑀 variation on the velocities (𝑓′, 𝑔 and 

𝑓) and temperature (𝜃) patterns. 

  

Fig. 3.6: Impact of Prandtl number 𝑃𝑟 on the 

temperature (𝜃) dynamics. 

Fig. 3.7: Impact of Eckert number 𝐸𝑐 on the 

temperature (𝜃) dynamics. 

  

Figs. 3.8(a) and 3.8(b): Impact of Deborah number 𝛽 and ratio of relaxation to retardation time 𝜆2 

variation on the local Nusselt number. 

 

  



45 

 

  

Figs. 3.9(a) and 3.9(b): Influence of temperature difference parameter 𝛼 and Deborah number 𝛽 on the 

entropy formation assessment. 

 

 

 

 

Figs. 3. 10 (a) and 3.10(b): Influence of temperature difference parameter 𝛼 and Deborah number 𝛽 on 

the Bejan number. 
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CHAPTER 4 

Conclusion and future works 

Analytical explorations of entropy production in Walters-B fluid and Jeffery fluid motions in a 

rotating frame are made through a well-known OHAM scheme. The obtained solutions are shown 

to be accurate through the computation of overall squared residuals of the governing system. The 

main observations of the study are summarized as follows: 

o In Walters B fluid model, as the elasticity parameter 𝐾-values increase, a significant decline 

in the surface driving force is observed. On the other hand, the driving force variation with a 

higher 𝜆 is relatively minimal. 

o The surface cooling rate declined because of raising elasticity parameter K. However, the 

fluid’s rotational speed is found to assist the surface cooling rate. 

o Increasing 𝐾 leads to a significant reduction in momentum penetration, while simultaneously 

accelerating the y-direction flow generated by the rotating fluid. 

o An appreciable augmentation in thermal penetration is witnessed as elasticity parameter rises.  

o Interestingly, the inclusion of rotational effects leads to oscillations in the velocity profiles. 

Furthermore, a noticeable rise in local fluid temperature is observed as one raises parameter 𝜆. 

o By intensifying either viscous dissipation or the Joule heating effect, additional heat is 

produced within the boundary layer, resulting in increased thermal layer thickness. 

o Enhancing the elasticity parameter 𝐾 results in an increase in both entropy production rate and 

the Bejan number. A similar upward trend is observed when 𝜆 is increased. 

o To attain convergent OHAM results, a 15th-order series solution is sufficient for both 𝑓 and 𝑔, 

while a 25th-order approximation is required for 𝜃, considering the specified range of 

parameters used in this study.  

o The analytical method’s precision becomes evident as the graph of the total squared residual 

decreases with increasing approximation order. 

o The velocity profiles become increasingly thicker for growing increasing fluid’s retardation 

time whereas opposite effect is witnessed as the ratio of relation to the retardation time grows.  

o Enhancing the retardation time intensifies the vertical flow towards the plate, leading to a 

reduction in the 𝜃 −profile and an increase in the cooling rate at the surface. 
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o The higher the temperature difference, greater the volumetric entropy generation rate. In 

contrast, the entropy production rate declines considerably as retardation time progresses. 

o For sufficiently higher ratio of rotation rate to the stretch rate, the velocity curves are oscillatory 

decaying function of vertical distance.  

o Consistent with earlier studies, incorporating the rotating frame results in motion along the 

negative y-axis. The effect of the fluid's rotation causes the momentum diffusion to decrease, 

while the temperature profile experiences a slight increase. 
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