

Technical Writing for Software
Developers

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However,
the information contained in this book is sold without warranty,
either express or implied. Neither the author(s), nor Packt
Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned
in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Sawant

Publishing Product Manager: Akash Sharma

Project Manager: Prajakta Naik

Book Project Manager: Manisha Singh

Senior Editor: Rounak Kulkarni

Technical Editor: Jubit Pincy

Copy Editor: Safis Editing

Proofreader: Rounak Kulkarni

Indexer: Hemangini Bari

Production Designer: Prafulla Nikalje

Senior Developer Relations Marketing Coordinator: Shrinidhi
Monaharan

Business Development Executive: Kriti Sharma

First published: March 2024

Production reference: 01220324

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83508-040-5

www.packtpub.com

http://www.packtpub.com/

To everyone in the many tech-writing communities I am involved
in. Keep up the good work.

Contributors

About the author

Chris Chinchilla is a technical writer, blogger, video maker,
and podcaster with over ten years of experience. He has
worked on numerous large and small technical projects and
products, helping them explain what they have built to the
outside world. He is active in many tech writing and non-tech
writing communities, helping mentor new writers. He
maintains a handful of open source tools to help writers create
the best words they can. In his spare time, he writes games,
fiction, and interactive fiction.

About the reviewers

As an experienced technical writer and community leader,
Segun Light Ige-Olumide is passionate about empowering
developers and fostering growth within the tech industry. With
five years of experience, he creates engaging content that

addresses developers’ evolving needs. Segun has also led
multiple successful developer communities, prioritizing
collaboration, learning, and professional development.
Committed to making a meaningful impact, he strives to
contribute to the tech community’s ongoing growth and
innovation.

Fortune Ikechi is a software engineer and technical writer with
extensive experience in enhancing developer relations and
community engagement. His commitment to innovation and
community building and his ability to bridge the gap between
developers and products have driven product adoption and
awareness. Being a tech community advocate, Fortune
continues to share his expertise and insights, contributing to a
better understanding of technology’s potential.

Table of Contents

Preface

1

The Why, Who, and How of Tech
Writing

Why should you care about tech writing?

What can documentarians accomplish?

Marketing

Product

Sales

Support

Developer relations

Engineering

Machine readers

Proofreading for accuracy and safety

Content silos

Writer in the middle

Understanding who you are writing for

Learning by example

Don’t forget the end users and the end-end
users

Summary

2

Understanding Different Types of
Documentation in Software
Development

Templates

Getting started and onboarding

A detailed overview of Getting Started

Learning with an example

Templates for a Getting Started guide

Tutorials

Expanding on the example

Templates for tutorials

Reference

API documentation

Architecture and design details

Security and privacy details

Technical blog posts

Summary

3

Language and the Fundamental
Mechanics of Explaining

Common reasons for not writing confidently

Not a native speaker

Intentionally vague

Marketing and product reasons

Reducing cognitive load

Inclusive language

How to improve your writing

Consistency

Involving the user

Keeping it short

Removing unnecessary words

Don’t show off – let the product speak for
itself

Don’t repeat yourself

Inclusive language: in more detail

Overly negative language

Biased language

Gender

Out-of-date language

Summary

4

Page Structure and How It Aids
Reading

Humans are not your only readers

The principles of good layout

A quick primer on the markup language of
the web

Thinking about pages semantically

Lists

Paragraph breaks

Tables

Admonitions

Tabs

An example of a well-structured page

Creating documentation menus and
navigation

Following menu patterns

Adding internal search

Keeping links working

Summary

5

The Technical Writing Process

Scoping and requirements gathering

What to document

Research and product testing

Drafting and re-drafting

Feedback, testing, and maintenance

Metrics and measuring success

Summary

6

Selecting the Right Tools for
Efficient Documentation Creation

Topic-based documentation

Docs as code

Documentation in the browser

Choosing toolchains and tools

Why docs as code?

Selecting and using a markup language

Adding metadata to markup with YAML

Making Markdown dynamic with MDX

The key tools in docs as code

Text editor

Collaboration

Rendering

Helping less technical writers with headless
CMS

Analyzing documentation performance

Analytics tools

Sentiment

Summary

7

Handling Other Content Types for
Comprehensive Documentation

We are more than technical writers

Code examples

Deciding on a consistent example

Creating and organizing code examples

Testing code examples

Keeping an eye on prerequisites

Screenshots, images, and charts

Screenshots

Adding other images

Making images accessible

Animated GIFs and videos

What to make a video of

What to show

How to record

Audio

What to show

Recording

Interactive experiences

More than final words

8

Collaborative Workflows with
Automated Documentation Processes

Striking the right balance

What is a style guide?

Developer-friendly style guides

Choosing a type of tool to use

Automating image generation

Using test suites

Automating other image types

Automating video

Converting terminal commands to video

Other video automation options

Automating code testing

Other automation options

Converting file formats

Accessibility

Summary

9

Opportunities to Enhance
Documentation with AI Tools

A brief history of AI

Understanding AI and ML

Recent advances in AI

Text and code completion and improvement

Generating documentation

AI for audio and video

Generating media

New ways of interacting

The principles of training and creating your
own AI

Writing for robots

Summary

Index

Other Books You May Enjoy

Preface

Documentation is fundamental to helping potential and current
users understand the amazing projects you build. For many
developers and other technical-minded people, documentation
is a challenging chore. Technical Writing for Software Developers
covers all the important points you need to know to make great
documentation easier and suited to developer workflows and
tools.

Welcome, wordsmiths!

Before I begin, I’d like to start where I always like to begin, with
some history.

My grandfather worked for a long-since-acquired company that
created and laid submarine cables, the long and large network
of cables lurking under the sea that enable communications
between countries worldwide. When he laid them from the
back of the large ships that ran between the UK and Canada, he
was laying gigantic reams of copper wires mostly meant for
telephone and telegram traffic. By the time he retired, the
internet existed in some rudimentary form, telephones were
widespread, and he gave me a nugget of advice that I still

remember today, despite being too young to really understand
what he meant:

“Optic fibers are the future.”

And he was right. Now, there are more submarine cables than
ever, shuttling petabytes of data back and forth per day. Our
work and play rely so much on a relatively small amount of
vulnerable wires that rest on the ocean bed, are prone to
damage and attack, and have disconnected smaller nations
from the world.

I digress. Why am I telling you this in a book about tech writing?

My grandfather started his professional career as a technical
artist. He drew up plans and instructions on how to make and
lay these essential cables, plus how to use the machinery
needed for the task. I can’t imagine he ever anticipated much of
the work you and I do now (he died in 2001), but I could
imagine that he would be amused that we ended up in related
careers and fascinated by some of the projects I have worked
on.

My point is that if we consider “technical writing” to mean
explaining something to someone else so they can understand it
and how to use it to accomplish their goals, then “technical
writing” is everywhere.

What is technical writing?

Safety instructions, appliance, and furniture manuals, online
tutorials and guides, books, technical blogs, high-risk
equipment installation instructions, and even board game
manual instructions are forms of technical writing.

This book is aimed at software developers who want to learn
how to explain better what they build. It doesn’t intend to cover
all the examples above. However, as with many complex topics,
sometimes it’s important to understand how we got where we
are today and the gamut of related work that others undertake.
My grandfather was also more of an engineer at heart at a time
when qualifications were more necessary but harder to get if
you came from a poor family like he did. But he was passionate
about helping those around him understand complex technical
topics. One of his proudest moments was captured in a tattered
old black and white photo of him explaining how the cables
worked to a young Prince Phillip (the last English Queen’s
husband). I studied computer science and spent several years in
development teams before realizing I enjoyed explaining
technical topics more. In short, you’re in good company!

Ok, I’ve explained what technical writing is, but that doesn’t
always help. Sometimes, when figuring out what’s expected or
typical in a role or task, it’s easier to look at what it doesn’t
include.

What technical writing doesn’t
include?

I should say that many of these potential tasks depend on the
team’s size. As possibly the only person on a team or project
with the ability or desire to communicate and explain, you may
find yourself called to undertake tasks you never anticipated.
You might be OK with doing them all, and that’s OK. But maybe
you’re not OK or don’t have the time and the inclination, and
that’s also OK. What I present in this section attempts to get to
the core of what technical writing work should be, so you
shouldn’t feel you have to do any of the other work.

Technical writing isn’t copywriting

Many people you speak to hear “writing” and think you want to
edit their website copy or other assorted text tweaks.
Depending on the topic and the project size, you may still be
interested, and the best-suited for the task, but technical writing

is generally specialized and requires niche technical knowledge.
In short, you’re probably not the most suited and are too
expensive for the job.

Technical writing isn’t interface
copy

I have worked on some teams where technical writers handle
the text that appears on buttons and in Command Line
Interface (CLI) commands, and for a product aimed at
developers, it can make sense. However, there are probably
people more suited to the task whom you can instead advise.

Technical writing isn’t blogging

I need to be careful here. I blog a lot because I like blogging, and
there is also great demand from marketing departments at
technical companies for people who understand the technology
to help them spread that word to other technically minded
people. Marketing teams will be very happy if you do want to
blog, but it doesn’t suit everyone, and you don’t have to feel
obligated.

Technical writing isn’t tech
journalism

This is another one where I don’t help as I also run my own
podcast, reporting on events and interviewing people in the
tech industry. A technical background has helped me a lot with
some subjects, and learning to write more clearly has also
helped me produce clearer content. However, most tech
journalists I encounter aren’t that technical, and I have
frequently taken issue with the level of misunderstanding in
some tech reporting and feel that we should consider much of
what we call “tech journalism” to be more “consumer
journalism”. I doubt many of you reading this book will be
asked to tackle any tech journalism, but surprisingly, it’s what
many think of when you mention “technical writing”.

Technical writing isn’t marketing
copy

Technical writers are often shuffled back and forth within the
corporate structure and occasionally become part of marketing
teams. However, technical writing should only cover facts
(more on that in Chapter 4, Page Structure and How It Aids
Reading), and you shouldn’t ever feel compelled to write press
releases or any other pure marketing copy.

A technical writing definition

Technical writing is any media, mostly words, but not always,
that explains to someone how something works and how they
can use it. This could be as little as a README file, code
comments, or as much as pages and pages of tutorials and
reference material. I laid out what tasks I consider to be outside
of that definition, but some are more outside of it than others,
and if there’s one piece of advice to take away from this section,
it’s this. Your task is to find the best way to explain complex
topics. You will learn through this book and, over time on your
own, the best ways to do this that work for you and your
audience.

Who am I?

Hey there! That last section told you a little about me, but my
name is Chris Ward. More typically known online as “Chris
Chinchilla,” as my real name is so common in English that no
one would ever find me. At the time of writing, I live in Berlin.
However, I was born in London and spent a long time in
Melbourne. I have a degree in Multimedia Computer Science.
After completing my studies, I played in bands for a few years
before settling into the classic programmer job of the early
2000s, building websites for early e-commerce businesses. I
built many of these sites in Drupal, which exposed me to open

source software. Drupal was quite ahead of its time in many
ways, especially when it came to the community. I enjoy
programming, but I realized relatively quickly in my career that
I don’t quite have the mindset to be an excellent programmer.
At Drupal community events, there were often activities for
people who don’t code, and I started contributing by
summarizing issue discussions and writing documentation. I
was much better at this and had never realized it was a job
people would pay you to do! Over the years after that, I moved
in and out of technology ecosystems and between roles in tech
writing and editing, tech blogging, developer relations, and
more. Also, typically, I have a couple of side projects along the
way.

Who can learn from this book?

People who are good at explaining topics often sit between and
have experience in different disciplines and roles. A good tech
writer often has engineering, support, design, product, and
marketing exposure and can help bring insights between these
teams. In short, no matter your experience or your journey to
get that experience, if you are keen to help people understand,
then technical writing is the place for you!

This book is mostly aimed at developers who want to learn how
to explain their creations to the world better. However, anyone
involved with a technical product can find something useful
here. And for any of you reading who are already writing
documentation, welcome! I think you will also find enough new
information to make this book worthwhile reading, especially
from Chapter 7, Handling Other Content Types for
Comprehensive Documentation onwards.

A note on terminology

Much like the terms developers, engineers, and programmers,
practitioners in this field also refer to themselves in ways that
are mostly the same but mean different things to those who use
them.

The two main terms you have likely heard used
interchangeably are “technical writing(er)” and
“documentation”, plus maybe some other terms appended.
These terms mean more or less the same thing, at least more so
than with programming-related role titles, but many of us still
take issue with them and prefer other, more inclusive terms.

For example, as I will cover in Chapter 8, Collaborative
Workflows with Automated Documentation Processes, a lot of

technical explanation is far more than words these days, and
our typical titles reflect a rather out-of-date viewpoint. I also
believe that a documentation portal may not always be the best
place to explain everything. I experimented with “technical
communicator” (which I still have on my LinkedIn profile at the
time of authoring this book). I’ve also heard “documentation
engineer”, which I quite like as it reflects that many of us at
smaller companies also build a lot of tooling for documentation.
However, what a lot of technical writing communities have
settled on to include everyone is “documentarian”. It’s not
perfect, but it reflects that not everyone who contributes to or
cares about good documentation has a full-time role dedicated
to that task. I assume, much like many of the readers of this
book. So, that is the term I will use to refer to you and us
throughout the book. Concerning our work, I will use the most
relevant term to suit the use case and output. For example,
documentation, blog posts, videos, and so on.

I will also use the terms “project” and “product” somewhat
interchangeably to refer to what you are documenting. In my
mind, a “product” is something commercial, whereas a “project”
might not be. However, a few caveats and small differences
aside that I will address when I get to them; they are essentially
the same.

State of the industry

At the time of writing, the tech industry generally finds itself in
an interesting place. The years of wild spending and tech
startup valuations are behind us. The unstoppable growth of
tech has slowed, and the industry can no longer do whatever it
wants and expect no one to question it or everyone to accept it.

No matter what happens in the rest of the tech industry around
us, one statistic glaringly remains in survey after survey of
developer opinions and ecosystems. People want and need
better documentation. The race to build over the past few years
led to a plethora of applications that may or may not be well
built, but often don’t make a lot of sense to internal or external
users. There are budget cuts in the industry at the moment, and
sometimes, roles outside of engineering are some of the first to
go. But if you are open to learning and learning how to learn,
there will be a role for you for a while.

It would be naive and dishonest of me to tell you that the
industry isn’t in the midst of a massive state of change. The last
chapters of this book will cover AI-based tools that have swept
through everything in the past year or so. It remains to be seen
if they are the game changer everyone promises or just another

ride of the hype rollercoaster, but there’s no doubt that they will
affect how we create and consume documentation in the
medium term.

Automated tools for generating some parts of documentation
have existed for a while, but the new wave of AI-powered
options is definitely more powerful and nuanced than anything
before. They can’t cover the complete documentation
requirements yet, but they can fill many gaps and needs. With
regards to the state of the industry and our role in it, even if
everyone decides to replace their documentation platforms
with AI-powered bots, they still need someone to write the
source material that feeds the AI for a while. We may write less
for direct human consumption, but we will still be writing.

Who this book is for

This book is aimed at those who primarily code, be they
developers, support or sales engineers, or existing technically
minded technical writers. It’s full of advice, tips, and tools to
make documentation the best possible with minimal work.

If you’re reading this book, you are someone who cares about
explaining complex topics in the most effective ways. You may
already be an experienced documentarian looking for new
ideas and a knowledge top-up. Or maybe you’re less
experienced but want to do something to improve the current
state of a project you contribute to. Whatever your motivation,
there will be something for you.

I intend to take you on a journey from teaching you the
essentials you need to know to exploring cutting-edge ideas and
practice to raise what you create head and shoulders above
other projects and products.

What this book covers

Chapter 1, The Why, Who, and How of Technical Writing, talks
about all the different stakeholders with an interest in good
documentation and what it can accomplish for them.

Chapter 2, Understanding Different Types of Documentation in
Software Development, explores the different documentation
types that can form documentation.

Chapter 3, Language and the Fundamental Mechanics of
Explaining, covers the grammar fundamentals that make
documentation clearer and more confident.

Chapter 4, Page Structure and How It Aids Reading, explains how
page structure makes content easier for readers.

Chapter 5, The Technical Writing Process, advises on the ideal
process to follow for collaborative technical writing.

Chapter 6, Selecting the Right Tools for E�cient Documentation
Creation, discusses the options and how to pick the tools to help
create, collaborate, and provide documentation to readers.

Chapter 7, Handling Other Content Types for Comprehensive
Documentation, explores other types of media to add to

documentation that complement your words.

Chapter 8, Collaborative Workflows with Automated
Documentation Processes, delves into how you can automate
many common processes in creating documentation.

Chapter 9, The Opportunities to Enhance Documentation with AI
Tools, talks about how the new wave of AI tools can assist and
enhance documentation creation.

Conventions used

There are a number of text conventions used throughout this
book.

Code in text: Indicates code words in text, database table

names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles. Here is an
example: “ For AsyncAPI, you use user and signedup.”

A block of code is set as follows:

var schema = buildSchema(`
 type Query {
 hello: String

 }
`)

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of
this book, email us at customercare@packtpub.com and
mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the
accuracy of our content, mistakes do happen. If you have found
a mistake in this book, we would be grateful if you would report
this to us. Please visit www.packtpub.com/support/errata and
fill in the form.

Piracy: If you come across any illegal copies of our works in
any form on the internet, we would be grateful if you would
provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the
material.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com

If you are interested in becoming an author: If there is a topic
that you have expertise in and you are interested in either
writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts

Once you’ve read Technical Writing for Software Developers,
we’d love to hear your thoughts! Please click here to go straight
to the Amazon review page for this book and share your
feedback.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

Download a PDF copy of this
book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

http://authors.packtpub.com/
https://packt.link/r/1835080405

Is your e-book purchase not compatible with the device of your
choice?

Don’t worry!, Now with every Packt book, you get a DRM-free
PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and
paste code from your favorite technical books directly into your
application.

The perks don’t stop there, you can get exclusive access to
discounts, newsletters, and great free content in your inbox
daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the following link:

https://packt.link/free-ebook/9781835080405

https://packt.link/free-ebook/9781835080405

2. Submit your proof of purchase.
3. That’s it! We’ll send your free PDF and other benefits to your

email directly.

1

The Why, Who, and How of
Tech Writing

Tech writing is fundamentally about helping people understand
concepts that are potentially complex or new to them. To do this
effectively, before you start putting fingers to keys, you need to
start by asking three key questions about your subject and the
audience(s) for it. After doing this, later and more in-depth parts
of the process will become clearer and easier. There are more
audiences for your words than you might think, and different
audiences have different expectations and needs from
documentation. Understanding these will save you hours of
work and countless frustrations later. Finally, to help you
through those frustrating times, I hope to help you understand
how important good tech writing is and what a crucial role you
play, whatever the nature of your work is.

This chapter covers the following main topics:

Why tech writing is important
What documentarians can accomplish

How to understand who you are writing for

Why should you care about
tech writing?

What’s one of the first things you look at when evaluating a
new project or service? If the documentation isn’t the first thing
you look at, I bet it’s in the top three. The primary function of
documentation is to tell people how to use something, but it
also has several crucial secondary purposes that provide value
across a company or project team.

To quote a phrase I’ve used for a while in presentations:

“Documentation isn’t just for developers.”

Documentation gives confidence in a product making it useful
for marketing sales enablement, customer support, search
engine optimization (SEO), and, as we now realize, for myriad
other machine-driven purposes.

This section reinforced what you probably already know and
feel. After all, you’re reading this book! But how can you
convince others of the worth of good documentation?

What can documentarians
accomplish?

Tech writing often sits between and crosses over multiple teams
in a company or project. This means that you have the potential
to impact the work and goals of many, even if it’s not in your
initial job description. This section covers some of the most
common teams and departments you might encounter.

Marketing

If a project’s documentation is open to the public (not behind a
login), it likely fuels a high percentage of searchable text on a
website. High-quality, well-written documentation optimized for
SEO is a goldmine for search engine traffic. No one wants to
read documentation stuffed full of marketing content and
working closely with a marketing team to ensure style
consistency and break down content silos is essential.

Depending on the size and structure of your company or team,
documentarians and marketing teams can work closely
together to help this process. You can collaborate on style
guides, write technical blog posts, review or edit white papers,
and so on.

Product

I’m sure many of you know that good documentation can’t hide
or improve a bad product. However, for the most part, products
and documentation are somewhere between fantastic and
terrible. Good documentation brings confidence in a product to
a potential customer or user. Later chapters in this book will
describe how to make your writing more confident, and this is
one of the justifications for that style of writing. Often, someone
decides between product options by reading their
documentation. The products that sound confident and can do
what their documentation promises are likely to appeal more to
potential users.

Sales

Sales and sales engineers often have some of their own
playbooks and content for working with current and future
customers. However, much like with marketing teams,
documentarians can work closely with them to ensure
materials are consistent and break down those omnipresent
content silos.

Support

Customer success, support, or whatever a company calls the
team of people who help users achieve their goals are often any
documentation team’s biggest allies and sources of knowledge.
They see how people try to use a product daily. They know
where users struggle, what they find confusing, and the
common pitfalls they face. These teams also likely maintain
their own sources of information or documentation. Again, try
to work with them to reduce these silos, but regularly syncing
with them gives you a great source of information for what
documentation is missing and how effective current
documentation is.

Developer relations

Though they are often part of sales or marketing teams,
developer relations teams are typically out speaking with
developers, convincing them, and helping them use a product.
The content they produce could be one of the first things that a
potential user sees, so again, work with them to ensure
consistency of message, reduce silos, and much like support,
find out what they feel is missing from the documentation that
would help users.

Engineering

Fundamentally, documentation exists to make what product
teams created understandable. Or, as I like to say:

“Documentation makes engineering look good.”

If you’re reading this book, then you’re probably an engineer.
So, I phrase this section slightly differently from the other
teams’ sections. Documentarians need to get details from
engineering to explain how a product works and how to use it.
There is frequently a disconnect between what engineering
thinks is important, what documentarians think is important,
and what users think is important. I dig deeper into this topic
throughout the book, but briefly, cast aside your assumptions
and in-depth knowledge and think about how someone
completely new perceives what you have built.

Machine readers

It may or may not surprise you that much of the traffic to your
documentation probably doesn’t come from human readers.
Website scrapers, sitemap builders, and a variety of other
machines trawl your documentation regularly. While
documentarians are typically aware of SEO, the implementation
of best practices can vary. This is another perfect opportunity to
work with marketing teams to improve the visibility of

documentation and surface it to potential customers even more
than it already is.

However, SEO and “traditional” crawlers are old news. The new
machines trawling your documentation in great numbers are
feeding training data for large language models (LLMs)
(https://en.wikipedia.org/wiki/Large_language_model). Whether
you like this or not, if your documentation is public and for a
moderately high-profile product, then until we agree on a
standard way to block this happening, it’s probably already too
late. I cover the rapidly changing topic of artificial intelligence
(AI) and documentation in greater detail later, but right now, be
aware that an increasing amount of people are interacting with
the words you write in myriad ways.

Proofreading for accuracy and safety

Unless my memory fails me, I have never worked documenting
any “mission-critical” product. There were undoubtedly
products that were very important to customers, and any
downtime or poor information would impact their business. But
typically, any product issues are covered by service-level
agreements (SLAs) (https://en.wikipedia.org/wiki/Service-
level_agreement), which don’t often cover documentation
issues.

https://en.wikipedia.org/wiki/Large_language_model
https://en.wikipedia.org/wiki/Service-level_agreement

For the most part, if someone finds an error or inaccuracy, I can
almost immediately fix it and roll out a new version. While that
inaccuracy might have caused inconvenience, it’s unlikely to
have caused a major loss of money, time, or life. Thankfully.
However, I have met many documentarians working on
projects and with toolchains that don’t allow this luxury or
flexibility. I once met someone who created the documentation
for rolling out Google’s data centers. They had to print all
documentation as there was no internet access allowed, and if
someone found an error, they had to print new copies. Any
error – for example, an instruction to plug a cable into the
wrong socket – could cost millions in revenue per day. I also
met documentarians who work for Schindler. Again, their
installation engineers receive hard copies of documentation,
and installing an elevator or escalator incorrectly costs money
and can cost lives.

Content silos

I mentioned content silos several times in previous sections. I
have never worked at a company where these didn’t exist but
keeping them in check is important. Regarding documentation
and documentarians, the content other teams create is an
excellent source of what’s missing from the documentation. I
appreciate that documentation teams are often far

outnumbered by other teams, and this is what causes these
teams to create what they need in the first place. One of the
aims of this chapter is to help you justify your role and,
hopefully, grow its capacity. The fact that other teams are
creating content that they feel is missing can be an effective
justification for increasing documentarian capacity. It’s not the
only reason other teams create what you can consider
documentation (companies are full of politics, after all), but it’s
one potential reason.

Writer in the middle

In summary, as you can hopefully see, documentarians and
their work sit in the middle of many different roles and teams.
This position comes with positives and negatives that are worth
knowing. Even if you don’t intend to move into a full-time
documentation role, it’s worth knowing what they could be, as,
at the very least, it will help you empathize with those who are.

Even if you are one of the most level-headed people, gathering,
processing, and acting on all these potential inputs is
overwhelming. A documentarian can be such a fountain of
knowledge, knowing a small to medium amount about
numerous topics, that it can become frustrating to know what
to do with all this knowledge. You might feel motivated to get

involved in too many activities or try to fix too many things.
Again, attempting this is overwhelming and, depending on your
company, unwelcome. One of the biggest frustrations I have
personally found as a long-term documentarian is that you
often hear internally and externally that documentation is
important. Reading this book, you probably already know and
agree with this. However, the reality of the documentarian role
is that you often don’t feel as important as everyone says you
are. Some of this comes from expectations versus assumptions.
Almost everyone has an opinion on when documentation is
“wrong,” but fewer can tell you what they would do about it or
when it is “right.” Documentation is front and center in nearly
every product but is often created and crafted behind the
scenes by people who like to think in the written word and
don’t always speak up. Documentarians lack the kudos and
credibility of programmers and engineers. They are often not in
a position to push product ideas forward, yet they can tie all of
these teams together.

Switching to the positives, while gathering and processing so
much information can be overwhelming, it is also rewarding.
Documentarians are often the first testers of a new product or
feature, the first to find issues, and the first to follow a user
workflow outside of a development team. If you enjoy
exploring or figuring things out, creating documentation is an

ideal role for you. You are often provided with a sketch or a
draft of a product or feature and need to figure out in more
detail how it works and how to explain it to an audience. In
software documentation, this involves understanding a broad
range of programming languages, frameworks, and techniques
and learning how a user is likely to use those in a real-world
scenario.

The most significant positive is knowing that, even though you
may not always hear from them directly, your words will impact
people as they try to accomplish their goals.

Understanding who you are
writing for

You’re in front of the keyboard, and an editor opens with a
blinking cursor. You have a brief and have experimented with a
prototype. Now comes the task of figuring out how to explain
that prototype to different user groups and profiles.

While reducing a discussion to an acronym may sound like a
cliché, I typically start by thinking of the three Ws:

Who is reading a document?

What do they want to accomplish?
Why do they want to accomplish it?

Even if you haven’t addressed these Ws, other members of your
company likely have, and you can leverage their work in yours.

Your product, project, or feature possibly has multiple user
profiles, and the type of documentation you need to produce
can vary for each one. Functional user profiles are easier to
break down and analyze, as someone whose job involves task A
is more likely interested in documents that describe how to
undertake task A rather than B. The level of complexity and the
content are more subtle than this, and you can make some
general assumptions based on the type of document someone is
reading (I will dig more into what these different document
types can be later).

Someone reading API or reference documentation probably has
an idea of something specific they want to understand and
know the functional facts. Someone reading a quick start is
probably newer to a project and would like an opinionated
introduction. Reference documentation and a quick start guide
are two reasonably clear ends of the documentation spectrum.
In between is the tricky part and the part where you will spend
the most time.

If you are documenting a simpler project or a project with a
focused use case, then this task is easier than something more
broad and general purpose.

I appreciate that, as with many technical topics, everything
depends, and implementation relates to the use case. It’s usually
easier to follow with an example that walks through a thought
process instead of talking in abstractions. So, let’s move on to a
practical example.

Learning by example

For example, a geocoding library has far fewer functions and
applications than a database or a programming language.
Guessing what someone might want to do with any general-
purpose tool is challenging and will take a while to perfect. Let’s
take an example project used throughout the book. I assume
that you are working on a greenfield project, but many of the
same principles apply if you work on a pre-existing project.

Monito is a tool for monitoring application performance and
errors. Monito comes in two versions: a self-hosted version
where you have to connect it to your own backend and analysis
tools to gather, save, and analyze data, and a hosted version
that plugs right into a data store and dashboard service.

My recommendation is to start with the beginning and end of
the journey and slowly fill in the gaps over time. Monito has
two starter paths. There’s only one of you documenting the
project, and time is tight. So, which should you document?
Chapter 5 covers the full documentation process. For now, you
get a strong indication that as much as the project wants to
support everyone’s choice of integration tools, documenting all
those possibilities will take too much time right now. So, you
decide to start with documenting the hosted version.

To get started with the hosted version, a user must choose a
software development kit (SDK) in their application code.
Again, Monito offers SDKs for many languages. User research
shows that the most popular are JavaScript, Python, and Go. So
for now, you decide only to show examples for those but
mention that other options are available.

The user then needs to register an account for an SDK key that
identifies them as the user and instantiate the SDK with that
key, so you show how to do that with the three chosen SDKs.

Next, you show how to trigger key events using the SDK in the
three languages and how they appear in the hosted dashboard.

Finally, you summarize what the guide covered and point
people to the next steps.

That covers the quick start. What about the reference
documentation? For now, as a lot of interaction with the service
is via SDKs and the development team has stuck to well-
established best practices while building the SDKs, you decide to
stick with autogenerated documentation from the SDKs. This is
enough for those who want to dig into what else is possible
after following the quick start.

A week or two after release, you start receiving user feedback.
More users want to know how to self-host than expected, and
many users want to integrate Monito with a popular alerting
tool to know when it detects important errors. So, you need to
document these two guides and any supporting material
around them for your next priorities. The product team also
tells you that they’re shipping a new feature soon that allows
users to define custom data structures to send to Monito, and
that also needs documenting and adding to the quick start.

Thus, the process is ongoing. You slowly fill in missing
documentation gaps based on user requirements, product
requirements, and feedback.

Don’t forget the end users and the
end-end users

I have spent most of my career working on documentation for
developer tools. So, this book’s focus is more geared toward
tools others use to build products for end users. This means
there’s an extra level of interpretation above the
documentation I create that the reader interprets into another
application or code base that might even have its own
documentation. I like to call these users “end-end users.” While
it’s difficult to guess what that end-end use case might be, if you
can find out via support channels, it can help you narrow down
use cases and user journeys when you want some semblance of
focus.

Take the Monito example. Currently, the documentation covers
general use cases for those incorporating the tool into their own
tools. Through user research, you find that Monito has a large
user base in the finance sector. This gives you a slightly clearer
idea about examples you can use in code snippets and
explanations.

Summary

This chapter covered some fundamental building blocks of
technical writing and creating documentation. It looked at why
technical writing and documentation are important and what
stakeholders often look for and expect with documentation.

You learned how to identify intended users reading
documentation and what they want to understand and
accomplish.

Finally, this chapter aimed to inspire you to keep at it when
dealing with and balancing all the different stakeholders, users,
and their needs.

The next chapter looks at the different types of documentation
you might need to create and the purpose of each type.

2

Understanding Different Types
of Documentation in Software
Development

Chapter 1 of this book looked at why you and your project or
product should even care about documentation. With the
convincing and scene setting complete, it’s time to start looking
at the mechanics of good documentation, starting with the types
of documentation you might need to create.

The simplest documentation can be a single README file in a
code repository, while the most complex could be a series of
interconnected sections, topics, and sub-projects. As
documentation expands into more complex territory, it’s likely
to need different sorts of pages that cover different purposes
and have different structures. This chapter covers the common
section types you might typically have in most documentation,
what they are likely to contain, and the templates you can use
to create them.

Different people have different names for these sections, but
the content in each section is loosely the same and fall into the
following categories:

Getting started, onboarding, or QuickStart
Tutorials, guides, or how-tos
Reference
Blogs

So, let’s get started!

Templates

Before getting started, I want to provide a quick diversion that
covers templates and how to apply and use them before you
start documentation from scratch. Content templates typically
consist of headings or sections that you can add to different
content types, optionally with prompts and guidance on what to
add under each heading. Over time, documentarians tend to
create their own templates, adding them to content creation
workflows for all to use. If you’re unsure where to start with
templates, I recommend community resources such as the Good
Docs project (https://thegooddocsproject.dev), which has
worked hard to create many starter documentation templates
for people to pick up and use. For each content type covered in

https://thegooddocsproject.dev/

this chapter, I include links to relevant templates from the
project and/or my thoughts on a template you can start with.

So, let’s actually get started.

Getting started and onboarding

This content type helps people learn how to get started with a
project or features.

Most inexperienced users start their journey with you via a
Getting Started guide or onboarding experience. Getting Started,
sometimes called a QuickStart, is typically a text-based guide
that contains other media or interactive components.

Onboarding is sometimes called a tour or in-app help and is
typically part of an app or product experience. It contains text
that you might be involved in creating (I would say “should,”
but that’s not always the case).

A detailed overview of Getting
Started

I already covered some aspects of creating Getting Started
guides in Chapter 1, but it’s a big topic, so the content you are

likely to spend the most initial time on is worth covering in
more detail. Whether you call it Getting Started, QuickStart, or
onboarding, the first steps a user or potential user makes with a
product are crucial.

Onboarding is slightly different as it’s likely that a user has
already created an account, but in some respects, you have
more to prove, even if people are taking advantage of a free
trial, as they have given personal information to you. Typically,
you have little identity, tracking, or metrics information on
someone reading documentation.

Documentarians are a key part of developer experience (DX), a
growing movement of practices and professionals that focus on
making developers’ technical lives as frictionless as possible.

There is a popular metric in DX called time to first hello world or
time to Getting Started. While a Hello World example is a time-
honored tradition for introducing readers to a technical
product, it’s not always relevant or a particularly good way of
showcasing a product. Whether or not you use an example that
shows a “hello world” message, the term has become a common
term for showing someone the basic steps for using a technical
product.

And why is time important? There are a lot of potential
competitors for business and attention, and wasting people’s
time following a Getting Started guide that doesn’t work, is too
complex, doesn’t show anything useful, is poorly written, or has
a multitude of other problems detract from highlighting what
you’ve built. I provide more detail on how to avoid these
potential issues generally in documentation throughout this
book, particularly in Chapter 3 (for improving language),
Chapter 4 (for improving structure), Chapter 7 (for improving
code examples), and Chapter 8 (for testing code examples). You
should pay extra attention to all these in a Getting Started guide.
While all your documentation will leave a lasting impression on
readers, if a Getting Started guide doesn’t deliver, you won’t
have a chance to leave that impression.

But how do you decide what to include in a Getting Started
guide?

You need to show what makes your project special. What makes
it special among anything similar? And yes, despite how unique
you might think what you’ve built is, there are always other
options in the eyes of a potential user. Often, the most common
alternative is “do it myself.” What makes you the best option
might not always be obvious. Maybe you are faster, more
secure, use fewer dependencies, or are cheaper. These are all

perfectly good points of differentiation to highlight and can be
enough to make someone choose your product over another.

Learning with an example

The example project in this book, Monito, exists in a busy
ecosystem with many other alerting and observability tools.
Here are some features that you can mention to make Monito
stand out in a Getting Started guide:

It’s available as a hosted or self-hosted option
You can use it with many different programming languages
The dashboard allows non-developers to analyze and
prioritize errors

It’s impossible to cover all of these in detail in the Getting
Started guide, but you can mention them when relevant and
provide convenient jumping-off points to those wanting to
learn more. I covered what I thought should be in the Monito
Getting Started guide in Chapter 1, but this explains some of my
thought processes as to why I included what I did, in addition to
the basic and necessary steps, such as creating an account,
installing dependencies, and so on. To reiterate, here are the
two most important things a Getting Started guide should do:

It should highlight what makes your product great and why
someone should use it
The guide should follow an opinionated path that showcases
the first point but can offer links to where to find alternative
paths and more information

That should have given you a lot to think about. So, what
templates can help with this work?

Templates for a Getting Started
guide

Ideally, a Getting Started guide should have content under the
following headings:

Overview: What the reader can expect from the guide.
Prerequisites: What steps the reader needs to take before
starting the guide.
Installation: How to install any components that are needed.
Setup: How to set up the components that are needed.
Parts: A series of tasks that form the guide. These are
individual headings that should actively describe what the
reader will learn and accomplish:

Steps: Each step is under the task. These are individual
headings that should actively describe what the reader will

learn and accomplish.
Summary: What did the reader learn in this guide, and why
is it useful and relevant?
Next steps: Where to go next to build upon the knowledge
learned.

FURTHER READING

Refer to the Good Docs project’s QuickStart template for more
details and ideas:
https://gitlab.com/tgdp/templates/-/blob/main/quickstart/template
-quickstart.md.

Once you’ve introduced a reader to your project, the next steps
are to help them learn more about the features and use cases
that are relevant to them.

Tutorials

If a Getting Started guide showcases what’s best about your
product and gets new users started on their journey with you,
then tutorials, sometimes called how-tos or guides, take them
on the next steps.

https://gitlab.com/tgdp/templates/-/blob/main/quickstart/template-quickstart.md

As you might expect, the breadth and detail of tutorials or
guides depends on your project, but here’s my general advice.

If your product or project has identifiable sections or sub-
projects, they need tutorial sections. Do you support different
ways to use your product – for example, a Command-Line
Integration (CLI) tool, a visual interface, and an Application
Programming Interface (API)? Perhaps you also support
continuous integration (CI) or have applications and plugins in
third-party marketplaces? If so, all of these need at least one
tutorial on how to use them. If one of these sub-areas is
particularly complex – for example, the visual interface has
many different sections, or the Software development kit
(SDK) consists of several components – then again, each needs
at least one tutorial.

There has been a lot of discussion among documentarians
about whether it’s better to organize tutorials and guides by
function or use case – That is, by an internal “what something
does” view or an external “what someone wants to do with it”
view. If you are building a project for a specific purpose or
industry, then you can make more assumptions about what
someone might do with your project, but for more general-
purpose tools, especially to begin with, it can be hard to make
these assumptions until later.

I recommend starting with sections on “what something does,”
as that is easier for you to know where and how to start. Then,
over time, you can add the “what someone wants to do with it”
as you learn from users and their requests, possibly even
replacing the other content. There is some overlap between this
style of content and reference documentation. In my opinion,
most reference documentation is functional and probably even
autogenerated, whereas functional tutorials add more of a
human touch, describing the steps and usage of those
components concerning others. One thing to note is that people
often ask for more “use case-focused” content without knowing
what they mean. Or they are looking for something specific to
them that they assume applies to other users or are looking for
something that answers all their nuanced questions.
Pragmatically speaking, we know that accomplishing those
requirements for everyone is almost impossible, which is why,
despite our best efforts, most people are never entirely satisfied
with documentation, as it can’t answer everyone’s precise
questions and use cases. That’s not to say you shouldn’t try to
meet and exceed people’s expectations – my point is more that
you need time to do so.

Expanding on the example

Let’s continue with the Monito example. The Getting Started
guide took users on an opinionated path and highlighted some
of Monito’s key features. What do you give more detail on?
Chapter 1 mentioned two potential tutorials, one on self-hosting
and one on connecting an alerting tool. That’s two good starting
points. You can also create versions of the QuickStart that cover
the “less popular” programming language options and the
QuickStart mentioned “next step” features, so those also need
tutorials. There’s already an emerging potential structure for
the tutorials. From a functional structural perspective, this
could be as follows:

QuickStart
SDKs:

Python
Go
JavaScript
Ruby
C++

Features:
Hosted dashboard
Advanced alerting
Conditional alerting
Creating custom metadata

iSelf-hosting:

Docker
Kubernetes
Bare metal

Integrations:
Alerting tools
Alternative backends

Exporting data

Templates for tutorials

While the exact headings that form a tutorial vary based on the
topic, here are some suggestions for common ones:

Overview: What the reader can expect from the guide.
Prerequisites: The steps the reader must take before starting
the guide.
Parts: A series of tasks that form the guide. These are
individual headings that should describe actively what the
reader will learn and accomplish:

Steps: Each step under the task. These are individual
headings that should describe actively what the reader will
learn and accomplish.

Summary: What the reader learned in this guide, and why is
it useful and relevant?

Next steps: Where to go next to build upon the knowledge
learned.

FURTHER READING

For more details and ideas, refer to the Good Docs project’s how-
to template
(https://gitlab.com/tgdp/templates/-/blob/main/quickstart/templat
e-quickstart.md) and tutorial template
(https://gitlab.com/tgdp/templates/-/blob/main/tutorial/template-
tutorial.md).

Before leaving the topic of tutorials, there is one slightly
different tutorial worth paying extra attention to: tutorials for
using an API.

API onboarding tutorials

Most API documentation is in the form of reference
documentation, something covered in more detail later in this
chapter. How much more you need to cover APIs in tutorials
depends on the complexity of your APIs and how fundamental
they are to the product.

If your product uses a relatively simple or standard API pattern
and is one similar interaction option among many, you probably

https://gitlab.com/tgdp/templates/-/blob/main/quickstart/template-quickstart.md
https://gitlab.com/tgdp/templates/-/blob/main/tutorial/template-tutorial.md

don’t need many tutorials in addition to the reference
documentation. It’s probably worth mentioning that it’s also
possible to accomplish the tasks you cover in tutorials with an
API and where to go for more details.

If your API is the core way that users interact with your product,
then fill your tutorials with further references on using and
assembling API components. You should also still include the
API reference documentation, as that’s how some would rather
consume information, and you can likely autogenerate it.

If your API is complex or non-standard, you need tutorials to
help people understand how to use it. As someone close to the
project, you may not know if it’s complex or non-standard and
probably think it isn’t. Chapters 3 and 4 cover some ways to
reframe your thinking about what you work on, but in
summary, if you’re not following API standards, then it’s non-
standard and maybe complex.

In my experience, often, one of the more confusing parts of
using an API is the initial and ongoing authentication. Despite
several standard methods for doing so, almost every API I ever
use does something slightly different, and frequently, it makes it
irritatingly hard to figure out what you’re supposed to do.
Details on how to authenticate (and remain authenticated) can

be a part of the reference or tutorial documentation, but make
sure it’s somewhere clear and that wherever else it’s relevant as
a prerequisite, it’s also clear.

Reference

This section includes technical details of how individual
components, functions, or APIs work.

I have always considered the differentiation between reference
documentation and everything else in the following way:

A reference document tells you that a hammer is for hitting
things, wood is from dead trees that you can build things
with, and nails are small, sharp, pointed bits of metal
A guide or tutorial tells you how to build a shed with wood,
hammer, and nails

Depending on the project and technology type, a reference
section could include the following:

SDK function details
API endpoint details
Architecture and design details
Security and privacy details

Whitepapers and academic papers

The terms API and SDK can sometimes be used interchangeably,
depending on the project or product.

I start with SDK documentation, as you can typically build the
reference documentation as you build your code.

Most SDK methods help end users perform certain functions
with your underlying applications, with optional input or
output parameters and variables. Methods are typically building
blocks of applications, so you only need to explain how each
building block works.

As a developer who cares about documentation, I assume
you’re already adding code comments. If not, add that to the to-
do list. It helps a lot with documentation in general as it forces
you to think about how to explain what the different parts of
your code do.

Almost all programming languages support built-in or popular
third-party tools for generating reference documentation from
code comments.

With some languages and tools, you must use certain syntax or
add annotations to code comments to mark out input and

output parameters, while others detect this automatically.

If there are important connections and interactions between
methods, then mention those in the comments, and typically, if
you follow certain language-specific standards, these links
remain when rendering the documentation.

For example, you can use JSDoc (https://jsdoc.app/about-getting-
started) for JavaScript comments:

The preceding code uses the param and return tags above the

method, followed by the type to indicate the input and output
parameters, and renders the rest of the text around these for
further context. It has many other blocks and inline (inside the

/**
 * Represents a book.
 * @constructor
 * @param {string} title - The title of the book.
 * @param {string} author - The author of the book.
* @return {string} book – The full book title

 */
function Book(title, author) {
 return title + ", " + author
}

https://jsdoc.app/about-getting-started

method) tags for other purposes, such as link to reference

other methods.

The Rust language is well known for its focus on documentation
practices and has a comprehensive code documentation tool
built into the toolchain (https://doc.rust-lang.org/rustdoc/how-
to-write-documentation.html). Here’s an example of its code
comments:

Adding good code comments adds more than being rendered as
static documentation on a web page. Different tools make use of
code comments to render help text. For example, your IDE

//! Fast and easy queue abstraction.
//!
//! Provides an abstraction over a queue. When the a
//! there are these advantages:
//! - Fast
//! - [`Easy`]
//!
//! [`Easy`]: http://thatwaseasy.example.com

/// This module makes it easy.
pub mod easy {
 /// Use the abstraction function to do this speci
 pub fn abstraction() {}
}

https://doc.rust-lang.org/rustdoc/how-to-write-documentation.html

often shows them when you hover your mouse over method
names and variables. Package pages, such as details on the node
package manager or PyPi, often show elements of code
comments rendered on web pages or installer tools. New AI
tools use these code comments to make judgments,
assumptions, and patterns about code from questions. In
summary, good code documentation helps many people in
multiple contexts, so it’s worth considering adding it to the best
of your ability as you craft code.

In addition to code, one of the most common sections of
reference documentation is for APIs.

API documentation

Next, I cover API documentation, as it’s one of the options with
many existing well-defined standards, specifications, and
toolchains.

Like SDK methods, API endpoints generally consist of inputs
with parameters and outputs with return values. APIs are the
building blocks behind applications, ferrying requests and
responses between application components and applications
spread around the internet. Therefore, you can also create API
reference documentation that describes the building blocks and

explains how those building blocks fit together with other areas
of documentation.

There are two main ways to autogenerate API reference
documentation. One is from the code methods, which,
depending on the programming language you use and the
structure of your applications, might be the same methods that
form part of the SDK or different ones. Some languages use
special annotations in method comments to denote that they
are used for API endpoints, and you can generate
documentation using the same tools and methods as when
generating SDK documentation.

However, one of the more common approaches is to generate
documentation from an API specification. To confuse matters
even more, these specifications could be written before writing
any code, and you can generate stub code from the specification
or vice versa. It mostly depends on who designs and
collaborates on the API design and if they prefer working in
code or spec files. Whichever method you choose, thankfully, as
there are API specification standards, you end up with the same
set of properties and parameters, so from a documentation
perspective, there are not many changes in what or how to
document, just where.

For the most part, when people think of API specifications, they
think of OpenAPI (https://www.openapis.org) (previously
known as Swagger), and from the “old days” of API specs, it’s
pretty much only OpenAPI and RAML (https://raml.org) that still
survive as far as I know. Technically speaking, these are
Representational State Transfer APIs, better known to many
as REST or HTTP APIs, as they follow the design patterns of
HTTP methods for accessing resources on the internet.
However, the world of API specs has grown in different
directions, and depending on the ecosystem you spend the most
time in, you may be more familiar with newer alternatives, such
as GraphQL (https://graphql.org/) or AsyncAPI
(https://www.asyncapi.com).

This book isn’t the place to discuss why these alternatives exist
or how they work. The most important aspect for
documentation is that the alternatives exist because their
creators felt that HTTP APIs no longer represented increasingly
common application design and architecture methods. This
means that the way you document these standards is also
different.

When documenting REST/HTTP APIs, you generally focus on
input parameters, what the endpoint does with those, and what
it returns as an output variable. It’s fairly similar to

https://www.openapis.org/
https://raml.org/
https://graphql.org/
https://www.asyncapi.com/

documenting SDK methods, just language-neutral. The OpenAPI
spec consists of multiple object types, all with description fields
to add instructive text and provide meaningful parameter
names and error messages. The following example consists of
one users endpoint with a description and a description of the

values it returns:

openapi: 3.0.0
info:
 title: Sample API
 description: Optional multiline or single-line desc
 version: 0.1.9
servers:
 - url: http://api.example.com/v1
 description: Optional server description, e.g. Ma
 - url: http://staging-api.example.com
 description: Optional server description, e.g. In
paths:
 /users:

 get:
 summary: Returns a list of users.
 description: Optional extended description in C
 responses:
 '200': # status code
 description: A JSON array of user names
 content:
 application/json:

Documentation tools take this spec and render it in a more
readable way, using the descriptions to provide context and
present the input and output parameter information:

 schema:
 type: array
 items:
 type: string

Figure 2.4 – The layout of the Swagger UI rendered API
specification

GraphQL

GraphQL looks at querying data in quite different ways, which
can initially be confusing. Instead of presenting a series of
endpoints, it defines a series of types and functions you query.
From a documentation perspective, it promised to make APIs
“self-documenting.” It may not surprise you to hear that this
isn’t strictly true. It’s more than that, though – GraphQL
organizes around data structures, queries, and methods. To
someone who knows what they’re looking at, it’s more
explainable. There is a specification for GraphQL APIs, but
generally, you define it directly in code. The following example
(taken from graphql.org) is a standard “hello world” example,

but it’s defined as a spec and JavaScript code that executes that
spec:

var { graphql, buildSchema } = require("graphql")
// Construct a schema, using GraphQL schema language
var schema = buildSchema(`
 type Query {
 hello: String
 }
`)
// The rootValue provides a resolver function for eac
var rootValue = {
 hello: () => {

As the assumption is that GraphQL is “self-explanatory” for
developers, a GraphQL endpoint typically offers an interactive
“explorer” where developers can explore how to use it. There
are also documentation tools that render the spec in a more
readable way.

However, I have heard from many developers that this is often
not enough, so you might want to consider some guides or
additional reference content.

AsyncAPI

Traditionally, HTTP and REST APIs are reactive. You send a
request and wait for a response. Most modern applications send

 return "Hello world!"
 },
}
// Run the GraphQL query '{ hello }' and print out th
graphql({
 schema,
 source: "{ hello }",
 rootValue,
}).then(response => {

 console.log(response)
})

and receive dozens to hundreds and thousands of requests and
responses per second, and while modern language options for
using HTTP and REST APIs support asynchronous requests (that
is, one request shouldn’t block any other process from
happening), AsyncAPI is one of many new event-driven tools
that react to events generated by applications instead of a series
of requests and responses. While the technical implementation
differs from HTTP and REST APIs, the API specification isn’t too
different from OpenAPI. You write in YAML, but instead of paths
and operations, you use channels and operations as event-
driven architecture is all about “subscribing” to events, and I
think subscribing to a channel is a familiar concept to many.
This does mean that the verbs you use to describe operations
are different. You might use “user” and “signup” for an HTTP
and REST API. For AsyncAPI, you would use user and

signedup. The following example lists the “operations” to

expect requests to and “channels” define the inputs to expect
and the outputs to return:

asyncapi: 3.0.0g
info:
 title: Cool Example
 version: 0.1.0
channels:
 userSignedUp:

The “Generator” (https://www.asyncapi.com/tools/generator) is
AsyncAPI’s official tool for rendering the spec as
documentation, but other community tools also exist.

Other standards

 address: user/signedup
 messages:
 userSignedUp:
 description: An event describing that a user
 payload:
 type: object

 properties:
 fullName:
 type: string
 email:
 type: string
 format: email
 age:
 type: integer
 minimum: 18
operations:
 userSignedUp:
 action: send
 channel:
 $ref: '#/channels/userSignedUp'

https://www.asyncapi.com/tools/generator

Before you start sending feedback, yes, I know there is also
Simple Object Access Protocol (SOAP). The SOAP API is fairly
old in technology terms but still popular in risk-averse
businesses such as finance or bookings. Some of this is due to
not wanting to change something that works, but it’s also more
secure and gives more implementation options. SOAP focuses
on “messages,” and you define the API in XML, which you either
love or hate depending on your background as a programmer
or documentarian. There are a handful of tools for rendering
SOAP specs as documentation.

Finally, other inter-application communication protocols exist,
such as web sockets and Google Remote Procedure Call
(gRPC). However, these don’t have any special documentation
steps beyond following standard code documentation practices
as they are methods for implementing an API, not an API
standard.

Architecture and design details

Less common in reference sections are architecture and
internal design details. These are less common because not all
projects need them, or smaller teams lack the resources to
produce such documentation and point people to code instead.
Reference material such as this is useful for projects consisting

of complex, interrelated parts with numerous combination
possibilities. Good examples are distributed systems with
components you can deploy to different locations or something
such as Kubernetes, which has multiple required and optional
components. Reference documentation of this type shouldn’t
replace essential onboarding or tutorials – that is, how to fit
components together in common use cases – it’s more for
explaining the theoretical underpinnings of these components.

Security and privacy details

These aren’t details about your company or website, such as
regional privacy or legal notices, but about your project’s
internal algorithms or precautions – For example, encryption
methods, what is encrypted, when telemetry data is sent to any
central servers, and how the project writes data to any
databases.

Whitepapers and academic papers

These are one of the least common types of reference
documentation but are common in certain projects such as
blockchain, other cryptographically-heavy projects, or
technically novel projects. These often explain the theory
behind the project before any coding was attempted. They are

often interesting and inspirational to some users and readers. If
you are working on a project that’s a canonical standard or
protocol for others to implement, then your reference section is
crucial, and possibly most of your documentation is of this type.

Templates

Templates for reference sections vary massively, so instead of
presenting ideal headings, refer to the following Good Docs
project templates for ideas:

API reference template:
https://gitlab.com/tgdp/templates/-/blob/main/api-
reference/template-api-reference.md
Concept template:
https://gitlab.com/tgdp/templates/-/blob/main/concept/templa
te-concept.md
Reference template:
https://gitlab.com/tgdp/templates/-/blob/main/reference/templ
ate-reference.md

Technical blog posts

A blog post is an end-to-end, self-contained piece of content,
normally outside of documentation, that teaches the reader a

https://gitlab.com/tgdp/templates/-/blob/main/api-reference/template-api-reference.md
https://gitlab.com/tgdp/templates/-/blob/main/concept/template-concept.md
https://gitlab.com/tgdp/templates/-/blob/main/reference/template-reference.md

practical technical lesson.

While not always a content type a documentarian is asked to
write, you may be asked to help out, especially in smaller
companies where you are one of the few people with the desire
and skills to communicate clearly. Blog posts are often a good
way to learn about a product or feature from start to finish. As
blogs are usually promoted by marketing, outside of
QuickStarts, they are also often the first way someone discovers
a project, so they are worth doing well.

Much of the advice on structure and language presented in this
book for documentation also applies to technical blog posts.
There are a couple of main differences.

People generally read documentation when they need to,
dipping in and out to find the information they need at the time,
whereas most people read a blog post from start to finish,
hopefully trying what they learn as they follow. This means that
while I promote using consistent examples and a structure that
takes people through logical steps in documentation, many
documentarians secretly know that that’s not how most people
consume documentation. With a blog post, you can be more
certain, so using a cohesive narrative is more important.

Generally, documentation is quite dry and uses a neutral
personality. It’s not something covered in this book, but
personality and humor are hard to get right, so it’s often easier
to leave it out. Also, documentation is often an ongoing and
collaborative task, so it’s easier to use a neutral tone and style
that all contributors can align with. However, you can show a
little more personality in a blog post. This is still a technical blog
post, and for reasons I cover in Chapter 3, leaning too far
toward overly chatty or light-hearted can cause a reader to lose
trust in what you’re saying.

I have been explicitly saying “technical blog post” in this
section, as often, a “blog post” from technical companies is
marketing-heavy, and technically minded people are renowned
for – how shall I put it – strongly disliking marketing talk. That’s
not to say that a technical blog post can’t help marketing
achieve its goals, but it should do it by showing something
awesome or by presenting useful information, not by using
overly sales-heavy or unnecessarily positive language.

In summary, present the facts, write well, and add a dash of
personality, and you have a great blog post!

Summary

This chapter covered the different documentation types you
need to create to fully document a project or product. These are
as follows:

Getting started, onboarding, or QuickStart: How people
take the first steps with your project or product and some of
the standout features
Tutorials, guides, or how -tos: Further step-by-step
instructions that cover particular use cases or features
Reference: In-depth details about the function of individual
components or the principles behind them

The next chapters cover how to write the content for these
document types, starting with every writer’s favorite topic…
grammar!

3

Language and the Fundamental
Mechanics of Explaining

How often have you read documentation to be left uncertain if
the recommendations or details you read are what you should
follow? It may have contained plenty of technical details and
code examples that you thought were relevant to you, but you
were left unclear on which to implement and how.

These are likely relevant criticisms of any documentation. As
we all know, documentation is hard. What I mean is, did you
trust it? Were you confident in what it said? Did you believe
what it said was as correct as possible, all caveats aside? Chapter
2 covered the different types of documentation you might need
to produce. This chapter looks at ensuring that all the words
you fill that documentation with are clear, confident, and
trusted by the people you want to read it.

A lot of people write without confidence, especially in technical
documentation. That’s OK! There are many reasons people

aren’t confident when they write, and the next section looks at
them in detail.

This chapter covers the following main topics:

Common reasons for not writing confidently
How to improve your writing
Inclusive language

Common reasons for not
writing confidently

Some are born with a pen in their hands, their fingers on the
keyboard, and words flow from their brains easily. Well, they
appear to anyway. But for many of us, writing can be a slow
process, and different reasons cause our writing not to be the
best it could be. This section looks at some of the most common
and how to improve them.

Not a native speaker

Let’s face it. While a lot of documentation is in English, many of
its readers and writers don’t have English as their native
language. English is wonderfully vague and flexible, which is
one reason it remains popular and successful as a global

language of communication. However, it is full of strange
subtleties, and while many understand it, few understand it to
an advanced level. This includes many of those who have it as a
native language. Many of us learn very little about its grammar
and advanced usage. I had my last formal English grammar
lesson when I was about 15. English has multiple flavours. I
used the non-American spelling there on purpose as I am
primarily a British and Australian English speaker, forced to use
American English most of the time, weeping all the time while
simultaneously realizing that few would even be speaking
English if it weren’t for America… I digress. What I mean is that
even within “English,” there are differences and subtleties that
make no sense to its own speakers.

George Bernard Shaw once said, “England and America are two
countries separated by the same language.”

It took me moving to a country that spoke a different language
(Germany) to start re-analyzing and learning my language. This
coincided with my use and involvement with the Vale language
linter (more on that in Chapters 6 and 9), which meant I needed
to start breaking grammatical rules down and thus understand
them much more.

Anyway, this chapter intends not to be a dry grammar lesson
but to teach you a handful of tips and tricks to lift your
grammar use and increase confidence in your writing.
However, I am still covering grammar, so while I try not to give
you nightmares of school lessons, I might occasionally. It’s
worth it – I promise!

Intentionally vague

Why would you want to make writing intentionally lacking
confidence, unclear, or vague? There are reasons. I won’t say
“valid reasons” as I don’t think they are valid, but there you go.
One is a lack of knowledge, which relates to my earlier point.
Often, when people write English without understanding its
best practices, they tend to stuff their writing with unnecessary
words to compensate or sometimes to show off. I don’t mean
this as a negative criticism. Understandably, someone would
think clever words equal clever writing, but it’s not true. And
remember that I said many documentation consumers aren’t
reading in their native language? Well, stuffing text with
unnecessary words also makes it harder for them to read and
understand.

Returning to showing off, I am sorry to say, developers, but
often you also tend to want to use documentation to show how

clever your coding skills are. I get it! I understand! I cover how
to demonstrate your programming prowess better later.

Marketing and product reasons

This reason is possibly the hardest for writers and developers to
counter. Documentation isn’t the place for marketing
messaging, but often, as it’s one of the most popular
destinations on a website, it’s used for that purpose.
Documentation should deal with cold, hard facts. Marketing –
well, let’s be honest – doesn’t always. This isn’t a book about
marketing writing – quite the opposite – but try your best to
keep marketing-style language out of documentation. Let the
documentation and the quality of the product sell itself, not
unclear writing. The same applies to product decisions. Often, a
product team wants documentation to hide problems or
inadequacies through intentionally vague language or offer
promises that may or may not be true. Again, try your best to
push back on this. Honest, believable documentation sells a
product far more.

Reducing cognitive load

Another common thread that runs through most of the advice
here is about reducing the cognitive load on readers as they try

to understand complex concepts. Everything you can do to
reduce that is a positive. They will probably figure out what you
mean by rereading and trial and error, so initially, these small
issues don’t seem like such a big deal. But multiply them by all
the small issues, and they add up, increasing the confusion and
frustration a user experiences trying to understand your
documentation.

Inclusive language

While it doesn’t directly affect the understandability of
documentation, using inclusive and accessible language
broadens the potential audience and improves readability. In
my opinion, non-inclusive language is a language that is the
following:

Patronizing
Rude
Overly negative
Biased
Outdated
Unhelpful

The writing tips in the upcoming section cover improving your
writing generally and for inclusivity and accessibility. There are,

however, a couple of items from the list above that need more
specific recommendations, and I cover those after the general
tips.

How to improve your writing

The following tips are some common steps I take to make
writing more confident and easier to understand.

Consistency

Decide on the terminology you use to describe and identify
certain terms and stick to it. Figure out your documentation’s
general tone of voice and stick to it. Every inconsistency you
have leaves the reader wondering if you mean the same thing
as you meant before. Does a distributed network consist of
units, nodes, or instances? It doesn’t matter which you pick, but
once you do, stick to it. Once you settle on an example use case
or more, stick to them and build upon them. Are you formal or
friendly in your tone? Do you use humor (if you do, be careful,
but that’s another discussion)? Again, your decision isn’t
important at this level of discussion. What’s important is that
you stick to your decision.

Regarding terminology, technology is full of jargon and
acronyms. That is, single-letter combinations of words (for
example, UI, JSON, and API). Sometimes, we use them so often
that I think many of us aren’t even sure what they stand for
anymore. For less common acronyms, and maybe even some of
those less common than you might think, it’s good practice to
expand the acronym before you start using it.

Here’s an example:

“This guide covers how to use our command-line interface (CLI).”

Similarly, if your chosen terminology or acronyms aren’t
standard, or you’re unsure if they are standard, it’s a good idea
to start with or include a link to a terminology guide.

Chapter 6 covers style guides that take writing consistency to
other levels, but initially, you can start with these basic
decisions, and they help you define and create a style guide
over time.

Involving the user

OK – now comes an actual grammar lesson masquerading as a
conversation about user-focused content. I must try my best,

you know. Look at these two explanations of a hypothetical
product.

Here’s example one:

“A result is returned by the function.”

And this is example two:

“The function returns a result.”

On the surface, they seem similar and explain the same concept,
but they are different.

Example one uses what’s called the passive voice, and example
two uses what’s called the active voice. You might have heard
these concepts before, as they are spoken about often in some
forms of writing, and much has been written and said about
them. However, understanding the difference and, more
importantly, what to change is sometimes complex.

It’s easier to start by explaining active voice. With an active
voice, you make the actor(s) and the subject(s) clear and
specific. In many cases in technical documentation, and in the
preceding example, the actor is the reader, but this is not always
true. The actor could also be another function, a service, a

company department, and so on. The subject is typically what
the reader is interested in understanding – for example, the
function in the example – but not always. The subject could also
be another function, a service, another system, and so on.

And what is passive voice? The subject is often clear in passive
voice, but generally not the actor.

Typically, with technical documentation, you should use active
voice as much as possible. It involves the reader, making your
writing sound more confident as the interactions and actions
are clear to them. Passive voice can obscure details and make it
unclear what is happening with what effect. Often, rephrasing a
sentence into active voice also helps you to rethink in more
detail how the components of a system fit together and
understand it better from a user's perspective. However, it isn’t
always possible to make the actor(s) and subject(s) clear or
making them clear makes a sentence more confusing. For
example, in complex, distributed systems, where actors
influence other actors, what happens in what order and when is
unclear.

Stephen King’s wonderful book On Writing, which is useful for
writers of all flavors, contains many juicy quotes about

confident grammar, especially active versus passive voice. He
has this to say on the subject:

“Verbs come in two types, active and passive. With an active verb,
the subject of the sentence is doing something.

With a passive verb, something is being done to the sentence’s
subject. The subject is just letting it happen. You should avoid the
passive tense.”

The reasons someone uses passive voice relate much to the
points discussed earlier. It’s easier to write in a passive voice for
inexperienced writers. Personally, I tend to start with it in the
first draft and switch to active voice in later drafts. It can be a
more fluid way of writing. Marketing and product teams may
push for using passive voice or at least start using it in any copy
they contribute. This relates to some of my earlier points. Using
passive voice can make you sound less responsible for
something.

If you want a final example of why to avoid passive voice, think
of a time you had to deal with some form of bureaucracy or
service personnel. If you live in a non-English speaking country
where passive and active language is less of an issue, this

example might not fully apply, but I am sure you can at least
identify with it.

How did they deal with and respond to you? It was probably in a
distant and cold, non-committal way. Say, for example, you
made an application request, and you received a response such
as the following:

“Approval will be notified in due course.”

What does that mean? When? By whom? This is an example of
“passive-aggressive” communication, a wonderful term
commonly used in British English to describe a way of
communicating that is intentionally unclear and aggressive
without sounding like it is.

Do you want your documentation to sound like that? I thought
not! Then, try and use active voice.

Another classic quote from On Writing that really pushes the
point about confident writing is this:

“Many writers are attracted to passive verbs. The passive voice is
safe. There is no troublesome action to contend with; the subject
just has to close its eyes and think of England, to paraphrase
Queen Victoria. I think unsure writers also feel the passive voice

somehow lends their work authority, perhaps even a quality of
majesty.”

King then continues criticizing instruction manuals’ writers, so
stop there. Technical writing has improved its reputation in the
20+ years since he wrote the book, so forgive him for now.

Keeping it short

It’s tempting to say “keep it simple” instead, but this is technical
documentation and not always simple, and you should avoid
using words such as “simple” anyway. However, just because
what you are explaining is complex doesn’t mean you need to
write verbose and rambling text. Writing short, concise text is
much harder than writing longer text.

There is a famous and often mis-accredited (Pascal, Locke,
Franklin, Thoreau, Cicero, Wilson?) quote:

“If I Had More Time, I Would Have Written a Shorter Letter”

This could be because you are an inexperienced writer, and
learning the skills to explain yourself concisely takes time and
experience. It could also be because you don’t understand what
you’re explaining as much as you think. I have always argued
that you can summarize any concept, no matter how complex,

into what's called an “elevator pitch” in the business world. That
is a pitch that someone could hear during an elevator ride.
Probably a couple of minutes at most. I imagine many technical
people are reading this and thinking, “That’s impossible. How
could I possibly reduce my amazing, unique, and technically
brilliant idea into a couple of minutes? I need hours!”

You don’t.

Of course, that elevator pitch misses details – a lot of details. But
that’s OK. This is not something you even need to include in the
documentation but is more of an exercise in getting you to
think concisely. Start with what you are documenting to help
people accomplish. When someone first encounters your
project or product, that’s all most people want to know to begin
with. Then, they make their minds up to dig further from there.

Take Kubernetes, for example. It’s an extremely complex and
configurable tool, and if you wanted to explain everything it
was possible to do with it, you would need a long amount of
time. But an elevator pitch for Kubernetes could be something
like the following:

“An open source way for automating the running and
management of large-scale applications to suit user needs.”

Similarly, you can take that elevator pitch and expand
explanations from there. Instead of starting writing from the
technical nitty gritty, you start explaining from the simplest
user-focused perspective.

This covers the conceptual ways to simplify and shorten your
writing, but what about the technical how? Try the following
tips.

Removing unnecessary words

English is a flexible language. You could put an English sentence
in a blender, and it would still make sense at the end (I am sure
this is a quote from somewhere, but I can’t find the source). You
can also cut many words from sentences, and they hold up just
fine. Knowing which words to remove takes time and
experience, but here are a few common candidates, often called
“weasel words.”

Beginning a sentence with the word “so”

It is often common in spoken language to indicate a pause or
beginning of a phrase. It’s typically unnecessary when used at
the beginning of a sentence or phrase in written language,
especially technical writing. It is still useful and valid in other
contexts.

Here are some examples:

“So, now you have the package installed.”

“Authenticate so that you can issue commands.”

The “so” in the first example is unnecessary and has no
purpose. In the second example, the “so” has more purpose and
is OK, used as is, but you could still probably rewrite it in a
clearer way.

Using words such as “simply,” “easily,” and
“just”

Don’t tell readers that something is easy or straightforward. Let
them discover it themselves. If the reader finds that something
isn’t as “simple” or as “easy” as you said it was, that text makes
them feel inferior or stupid, or perhaps it shows that your
product or documentation doesn’t work. Removing these words
also helps you address inclusive language by reducing
patronizing and unhelpful aspects of language.

Using the word “very”

Rarely needed in technical writing, “very” does nothing but
accentuate something you have already said. While this can
work in less formal language, narrative, or fiction writing, it

isn’t needed in technical writing. It can come across as over the
top, “marketing speak,” and – yes – unconfident. You don’t need
to tell someone something is “very fast.” They will figure out if it
is themselves, and if it turns out not “very fast,” then your
writing seems disingenuous.

Adverbs and adjectives

Most words that don’t add value to documentation are
examples of “adverbs” and “adjectives.”

It’s time for a short grammar lesson:

A verb is a word that describes an action, state, or something
that happened. It’s often the main part of a sentence. For
example, in “The function returns value x,” the verb is
“returns.”
A noun is a person, place, or thing. For example, “function” is
a noun.
An adjective is a word that describes a noun, for example, a
“complex function.”
An adverb is a word or phrase that modifies or adds to an
adjective or verb, for example, a “very complex function.”

OK – with that summary out of the way, I can return to my main
point. In technical English, you rarely need adverbs or

adjectives. Generally, they only confirm something you have
already said or add no value to what you need to say.

For example, does a reader need to know if a function is
complex? Maybe they do, but they don’t need to know that it’s a
very complex function. In those examples, “function” is a noun,
“complex” is an adjective, and “very” is an adverb. The only
word documentation usually needs is the noun.

I appreciate that recognizing an English sentence’s various parts
takes time and experience, but tools are available to help.
Chapter 8 covers some of these.

Another great quote from On Writing:

“With adverbs, the writer usually tells us they aren’t expressing
themselves clearly, that they are not getting the point or the
picture across.”

Using shorter phrases and words

As you slowly cut “weasel” words, your text becomes shorter,
but often, there are entire phrases you can replace with one
word and lose maybe some nuance but little meaning. And
technical writing isn’t about nuance but clear, concise language.

Classic examples are some of the following:

“to” instead of “in order to”. Most of the time, “to” does the
job, but sometimes “in order to” can show more purpose or
motivation, but this isn’t often relevant with tech writing.
“Most” instead of “Almost all.”
“Now” instead of “At the present time.”
“Often” instead of” In many cases.”
“Sometimes” instead of “In some cases.”

There are many other “weasel” words (not all commonly used
in technical writing anyway). Some of the the tools covered in
Chapter 9 help will help you identify these words, but for more
comprehensive lists, try the following links:

https://dianaurban.com/words-you-should-cut-from-your-
writing-immediately
https://www.brandeis.edu/writing-
program/resources/faculty/handouts/four-types-unnecessary-
words-phrases.html
https://blog.wordvice.com/avoid-fillers-powerful-writing/

Don’t show off – let the product
speak for itself

https://dianaurban.com/words-you-should-cut-from-your-writing-immediately
https://www.brandeis.edu/writing-program/resources/faculty/handouts/four-types-unnecessary-words-phrases.html
https://blog.wordvice.com/avoid-fillers-powerful-writing/

At the risk of repeating myself, many documentation readers
aren’t native English speakers, so using overly complex
language and phrases likely confuses them as they try to
accomplish their goals. Documentation isn’t the place to show
off your English skills. The same applies to native English
speakers, who need to be especially careful not to overuse
cultural references and colloquialisms that are not only
unfamiliar to non-native speakers but are equally unfamiliar to
native English speakers from other countries.

Documentation is also not the place to show off how good you
think your product or programming skills are. If you need a
place to do that, save it for a blog post.

From an inclusivity perspective, “showing off” can add to rude,
negative, or unhelpful language. While not common, I have
come across documentation that makes dismissive assumptions
about the readers’ education or technical level that comes
across as arrogant and thus rude.

I know I have disappointed many writers when I have chopped
and changed all the wonderful prose they spent hours crafting,
but again, the reader is the most important person.

Don’t repeat yourself

There are certain things worth repeating in tech writing and
certain things you don’t need to repeat.

You don’t need to repeat something you just said to make a
point. Again, this comes back to confident writing. If a reader
just learned that authenticating with your API is “easy,” you
don’t need to tell them again.

Here’s an example (and there are a few things wrong with this
example to illustrate the point):

“Get your access key from the control panel in the top-left corner
of the dashboard to authenticate with the API. Now you have your
API key, you can authenticate with the API.”

However, it is worth repeating yourself to summarize what the
reader has learned in a section or page. As the next chapter
covers, page structure also aids understanding and
documentation. Readers often don’t read pages from start to
finish, so regularly summarizing sections helps a reader know
what they should know but might have scrolled past.

Inclusive language: in more
detail

I promised to revisit the topic of using more inclusive language
that didn’t fit into some of the more general advice. The
following sections cover this, but practically speaking, you can
consider more inclusive writing to be generally better writing.

Overly negative language

Unnecessary negativity is rarely found in documentation but
not completely unheard of. Documentation is not the place for
opinions on your product or anyone else’s. It isn’t the place to
criticize certain approaches or technical decisions or give your
opinions on software development or the tech industry. It’s
certainly not the place to make the reader feel inferior. It’s a
place to help people learn how to use something. If you have
opinions to share, save them for a personal blog post, podcast,
or video.

Another less obvious use of negative language to avoid is when
describing what the reader can and can’t do with what you’re
documenting. If you have any kind of relationship with a
marketing team, they’re likely to push your writing in the
complete opposite direction. If you don’t, it is possible to slowly
slide into a negative viewpoint. What do I mean? I mean that
your writing should be from the perspective of what the reader
can do instead of what they can’t do, for example:

“You can’t use the account page to reset your password. Contact
support instead.”

Instead, try something more positive, such as the following:

“To reset your password, contact support. Use the account page to
update your email address and username.”

Biased language

We are full of biases built upon a lifetime of societal, cultural,
and personal experiences. Most of them probably won’t find
their way into documentation, but some will, and ideally, you
should remove as many as possible that do. This book isn’t the
place for a lengthy discussion on why you should do this, but in
short, it removes as much potential for offense as possible.
Removing biased language has little actual effect on the
effectiveness of your documentation, so why not do it anyway?

Gender

Unlike many other common languages, English is mostly a non-
gendered language in that inanimate objects don’t need a
gender. A table is a table. It isn’t male, female, neutral, or any
other gendered identity. While this makes it easier to remove
gender from English text, it can still sneak in. First, some non-

native speakers sometimes assign a gender to inanimate
objects, for example:

“The API, he responds with x”

In English, that gender isn’t necessary.

A far more common unnecessary use of gender is when
referring to animate objects – that is, people.

First, when referring to individuals, there has traditionally been
a difference of opinion between US and non-US English on this
topic.

Typically, in non-US English, you can use “they/them” almost
anywhere to avoid using gender when referring to an animate
actor. Traditionally, this was grammatically incorrect as it’s
supposed to refer to a group of people, but being the flexible
language it is, English has grown to accept this as correct.

US English tends to pick a gender from a length of text, use it,
and then maybe switch to another, and so on, generally
attempting to balance gender usage. However, I see this
approach used less in writing overall and almost never in
documentation. So, for this chapter’s purposes, I can confidently

say use “they/them” if you need to refer to an animate actor,
singular or plural.

Your options become more nuanced when referring to a
collective of people, especially when using terminology, we
have grown used to using to refer to a job or role in general. It’s
uncommon for you to use these that much in documentation,
but still, it’s worth drawing attention to anyway.

Here’s an example:

“The service operates like a middleman, passing status messages
to other services.”

You should replace “middleman” with something without a
gender, for example, “intermediary.”

Probably the most common offender – again, not used much in
documentation – is “guys.” The argument over whether this
term has transcended gender to mean something else is
ongoing, but it’s one of my daily irritants, and I’m writing this
chapter, so there it is. There are plenty of far better alternatives,
such as “everyone,” “folks,” or “all.”

Out-of-date language

Far more common is the use of out-of-date, possibly even
considered offensive language. What constitutes this is an
evolving discussion. But here are some examples.

To show some examples, I need to use words that some might
find offensive. It’s also worth noting that changing some of the
terminology might be out of your direct control if that’s a term
the product uses. But if so, take a copy of this book and show it
to someone who can.

For example, instead of “Disable the configuration option,” it’s
better to use toggle, turn off, change, and so on, depending on
the use case.

Another classic computing term that still sparks much
discussion around its usage is master and slave in relation to
distributed systems. I don’t want to get too deep into discussions
over this problematic pair of terms but suffice it to say, they
have a loaded history and plenty of alternatives.

You can try “follower” and “leader,” which still has some issues
but is better. “Primary” and “replica” is a much better
alternative. It’s also worth thinking if you need these terms at
all. Without digging into the technical details of distributed

systems, an increasing number of distributed systems use more
fluid hierarchical approaches.

Another problematic word pairing is “black list” and “white list,”
and the arguments for and against are similar to the
aforementioned terms. However, in this case, the alternatives
are more decided upon, with “deny list” and “allow list.”

That’s an example of three words or phrases with better, more
contemporary alternatives, but there are far more.

Here are some links and further resources on the topic and
examples of other terms to add more context to the discussion:

https://www.zdnet.com/article/linux-team-approves-new-
terminology-bans-terms-like-blacklist-and-slave/
https://www.zdnet.com/article/github-to-replace-master-with-
alternative-term-to-avoid-slavery-references/
https://inclusivenaming.org/word-lists/

Summary

Grammar is a subject you could study your entire life and still
be learning. This chapter gave you some building blocks for the
most important aspects you need to know for technical writing.

https://www.zdnet.com/article/linux-team-approves-new-terminology-bans-terms-like-blacklist-and-slave/
https://www.zdnet.com/article/github-to-replace-master-with-alternative-term-to-avoid-slavery-references/
https://inclusivenaming.org/word-lists/

Remember the fundamental things you are trying to improve
for your readers with good grammar choices:

Remove as much of their cognitive load as possible when
trying to understand complex or new topics
Give the reader confidence that what they are reading is the
best practice around a product and that the product can help
them accomplish their goals
Make it as clear as possible to readers how to accomplish a
task they want to understand
Make language as inclusive and unbiased as possible to
broaden your audience and make them feel welcome

The next chapter looks at taking these grammatical building
blocks and assembling them into a well-constructed page. Well-
written words remain unread if they are presented poorly, hard
to read, and hard to find.

4

Page Structure and How It Aids
Reading

Chapter 3 covered crafting better words to help people
understand what you want to explain. Have you ever attempted
to read and understand something complex to be faced with a
solid wall of text that’s hard to parse to the point where your
eyes stop processing any potentially fantastic information?

Crafting the perfect words is a waste of time if you make it
extremely hard for anyone to read them. Thankfully, the
principles of good layout for print and web-based output are
well established, and documentarians can learn much from
them to improve their content layout. In addition to these time-
honored principles, there are a couple of other documentation
and technical writing-specific tips worth considering, making
things easier for your readers.

This chapter covers the following main topics:

Humans are not your only readers
The principles of good layout

A primer on markup languages for the web
Thinking about pages semantically
Creating documentation menus and navigation

But before beginning with the tips, let’s begin with who reads
documentation or, more precisely, what reads it.

Humans are not your only
readers

Unless you put in a lot of work to block them, likely, one of your
documentation’s largest consumers isn’t humans.
“Traditionally,” this was search engine crawlers building an
index of your documentation. In the past two years or so, this
traffic now includes companies trawling material on publicly
available sites to train large language models (LLMs) for
artificial intelligence (AI) tools. As you will see later in this
chapter and Chapters 8 to 9, this isn’t necessarily a bad thing, as
it offers people new interaction options with documentation. By
following the structure tips in this chapter, when you improve
the structure for human eyes, you improve it for machine
consumers, too.

One final advantage of good structure is for humans who use
additional hardware or software to consume content – that is,
those who use screen readers for reading page content out
loud, typically due to poor vision. While those who don’t use
them might be able to infer meaning from a lack of good layout,
a machine reader will quickly get confused. In short, a good
structure and layout help everyone!

The principles of good layout

Most rules for good page structure are similar to those for good
HTML or web page structure. Some of this is because a lot of
documentation is consumed as web pages, and the roots of
good web page structure originate in decades, if not centuries,
of best practices for non-digital and digital printing layout tools.
Despite this long and venerable history and the proven benefits
of using layout best practices, it’s amazing how many tools, site
builders, and sites don’t conform to them. So, with this
knowledge in hand, you can be that person who gets to fix
everything.

Still with me? Good – you like to help!

Good modern layout principles begin with thinking about
semantics. Traditionally, this involves using the correct heading

and sub-heading levels to indicate structure. It involves using
paragraph breaks when relevant, tables to present data, and so
on. But more recently, to reflect the modern web, “semantic”
markup means a lot more.

A quick primer on the markup
language of the web

Without turning this book into a lesson on web development,
HTML stands for Hyper Text Markup Language. Every web
browser has a suite of tools for web developers, but even
without those, you can view the page’s source to see it
differently. What you see when you do is an example of a
markup language. HTML is a series of tags that surround page
elements. These different tags mean different things.

For example, the <p> tag denotes a paragraph:

<p>A paragraph of text.</p>

Similarly, the tab is used for bold text:

Text in bold

You don’t need to worry too much about what’s happening
behind the scenes as a documentarian, as most tools handle the
conversion between how you write and HTML for you.
However, it’s good to have a basic understanding of what’s
happening, as often, working as a solo documentarian involves
a lot of customizing tools. So, you need to understand HTML.

However, tags such as <p> and are old, originating long

before the web. What’s new in terms of semantic thinking are
tags such as <main>, <aside>, and <footer>. While things

such as <p> and render in ways you can probably expect by

default, these new semantic tags won’t render in any particular
way. However, many tools and site builders, including those
Chapter 6 covers, now do. Also, many other integrations and
tools, such as screen readers, recognize these tags for what they
mean and treat them semantically differently.

In the case of the tags mentioned previously, they generally
imply the following:

<main>: The dominant content area of a page

<aside>: A portion of the page related to the content in

<main>

<footer>: Information about the content in an area such as

<main>, such as author and copyright

I appreciate that my explanation sounds vague, and semantic
markup is. What this markup means to tools that know how to
handle it is to “treat these page elements this way,” but what the
tool does with it and how other tools render it is largely up to
the tool and/or you.

What does this all mean to a documentarian? I am encouraging
you to think semantically when you write. Not only is page
structure important, but it’s what most modern tools and
browsers expect. Let’s start at the beginning with a page title.

Thinking about pages
semantically

Any web page – in fact, most pages in any format – begin with a
title or heading. Regarding HTML, this should be an <h1></h1>

heading or heading level 1. Every page should have only one
h1, but unfortunately, many tools and people break this rule to
the page’s detriment.

Typically, right after an h1 is some opening text, and then every
following subheading should be an h2. Then, every subheading
underneath is an h2, an h3, and so on. Most browsers
comfortably handle everything down to an h5, and

theoretically, you could keep going further down the levels.
However, if you have that many subheadings, your content
probably needs reorganizing.

Break up paragraphs as much as possible by a group of topics or
a few sentences at a time. Don’t fear whitespace. It helps people
read and guide their eyes around a page. This is the same with
subheadings. They break up the wall of text and draw people’s
eyes to important information.

Think about the last time you read a web page, especially one
you used to find particular information, such as a page of
documentation. Did you read it from top to bottom, left to right,
taking in all the content? Or did you scroll and scan, looking for
the snippets of information you needed?

I am almost certain that for most of you, it was the latter.
Documentation is not a book. Well, a book can be
documentation, but I think you see my point. People rarely read
documentation from start to finish, at least not in the past 10
years or so since printed manuals became less common. This is
why you need to structure the page with plenty of whitespace
and page elements to draw people’s attention to the most
important information. Don’t bury key details in large

paragraphs. Make sure they stand out in balance with these
elements that draw people’s attention.

Chapter 7 covers more of these non-text elements in detail, but
this includes images, code snippets, tables, GIFs, and anything
else that breaks up a wall of text.

Lists

One common, simpler way of breaking up blocks of text is using
lists to summarize or group small pieces of information. There
are two types of lists: unordered lists, sometimes known as
“bullet points,” and ordered lists, sometimes known as
“numbered lists.”

Use an ordered list if something is a series of short steps that
someone needs to follow in sequence. If you feel some steps
need sub-steps, include those underneath each relevant step,
but try not to get too many sub-levels deep, or it can get
confusing for people to read and follow.

If something is a series of items and the ordering is less
important, use an unordered list, again including a reasonable
number of sub-bullets if need be.

Let’s look at an example of a numbered list.

To start using Monito, follow these steps:

1. Get an access code:
1. Create an account.
2. Add your payment details.
3. Click Get access code and copy the value.
4. Add the access code to environment variables.

2. Install Monito.
3. Run Monito.

Now, let’s look at an example of a bulleted list.

Monito offers the following features:

Customizable alerts
Configurable metadata
A data exporter

Paragraph breaks

While bullet points and numerical lists can help break up walls
of text, don’t overuse them or feel that all paragraphs should be
short.

This is a trend that’s quite popular now.

Especially in clickbait blogs.

And Search Engine Optimization (SEO) farm content, full of
links that tell you nothing.

I guess it works well for algorithms or catching people’s
attention.

But over time, it’s annoying to read.

And I apologize for doing that to you to make my point! I
promise not to do it again.

Sometimes, a page doesn’t need a lot of extra elements, or they
serve no purpose beyond breaking up a wall of text. In this case,
you can create space with paragraph line breaks. There are
different opinions on how often to start new paragraphs, but
typically around 100 to 200 words, or 5 to 6 sentences, is what
you should aim for. But in practicality, a paragraph should
gather the sentences and words most relevant to the topic or
sub-topic at hand and let that guide the length more than
anything. But if you can try to chunk your information together
so that paragraphs don’t become too long, that helps with
readability.

Now, let’s return to the topic of semantic markup. Many
documentation tools offer features to break up text further and

mark it as semantically relevant. Let’s take a closer look at some
of them.

Tables

One of the simplest semantic markup elements you can use is a
table, but it’s easy to overuse and misuse. Before the modern
era of web development, people used to use tables for layout.
Among some of us older web developers, there’s sometimes a
tendency to still think of them that way. A table is meant for
organizing and displaying information. Typically, this is with
rows representing a changing variable and columns showing
data related to that variable.

An obvious use case for tables is comparing file sizes, speeds,
and minimum dependency versions of releases.

A less obvious use case is a feature matrix of what’s available in
the SDKs you maintain.

However, many other components are common in
documentation and documentation tools that may not be as
familiar to you.

Admonitions

One common example is “admonitions” (my preferred term),
“alerts,” or “callouts.” One non-agreed term for the same thing.
A small, marked area of text denotes additional information
relevant to the current topic. Depending on the tool, you can
typically denote an admonition as one of the following types,
which results in the following formatting:

Info: Additional information that could interest the reader
but isn’t essential to know, such as background details or
history. Different tools render this in different colors,
typically gray or blue.
Note: Note and information might sound similar, but they are
more for supplemental information that is useful to some
people in some situations – for example, if you use a network
proxy, an unusual processor architecture, and so on.
Different tools render this in different colors, typically gray or
blue.
Tip: Information that could be useful to most people but not
essential. An example could be updating dependencies before
installing one specific to the project. It’s typically rendered in
green.
Caution or warning: Information that’s somewhat important
for most people to see – for example, to ensure the reader is
connected to the right network before issuing a command.
It’s typically rendered in yellow or orange.

Error or danger: Information that’s essential for people to
notice and read – for example, not reading could cause data
loss, high costs, and so on. It’s typically rendered in red.

The following figure shows how the Docusaurus tool renders
admonitions by default:

Figure 4.1 – An example of rendered admonitions from the
Docusaurus tool

Some tools provide other admonition types, but the ones I’ve
covered here are the most commonly available and used. Used
sparingly, admonitions make information stand out, but if you
find yourself using three in a row, you have only replaced a wall
of text with a wall of admonitions, which has not solved the
problem, and you probably need to reorganize your content.

Tabs

Another classic layout component in documentation is tabs,
which let you group related information together that might not
be relevant to every reader. For example, you have similar
installation steps for Windows, macOS, and Linux in a Getting
Started guide. It’s unlikely that everyone wants to read all three,
so you can segment each instruction set using tabs, keeping the
content in the same source file and page but allowing people to
toggle between what matters to them.

The following screenshot shows a code tab and a content tab
from the Material for MKDocs theme:

Figure 4.2 – A code tab and a content tab from the Material for
MKDocs theme

Not all tools support tabs, and they implement them in different
ways. However, they are a fairly common content
organizational tool and, again, something people’s eyes notice
as they scroll around.

An example of a well-
structured page

Continuing to use the Monito example, here’s a Skeleton of how
I might structure a Getting Started page with plenty of headings,
code tabs, admonitions, and more:

Figure 4.3 – A layout showing an example of a well-structured
page

Creating documentation menus
and navigation

So far, I’ve spoken about how to organize the content of
individual pages but not about how to organize entire pages.
How do you structure a collection of documentation pages?

This is a hard topic, and not even an experienced technical
writing team has all the answers to it. Fortunately, most tools let
you move and rearrange content structures relatively easily, so
it’s typically an ongoing experiment rather than something set
in stone.

If you ask users what they want in terms of document site
navigation, the answer is typically one large Google-style search
box, as in truth, no one is sure what sort of navigation would
help them find what they want and achieve the same for
everyone else. If you ask different team members or teams,
you’d probably end up with a menu with a long list of all the
content. So, in reality, documentation site navigation is a

continual experiment, at best consisting of compromises built
around some standard patterns.

Following menu patterns

One important factor to remember is that readers often don’t
arrive at pages in documentation directly. They often find them
from search engine results, links on third-party websites, and,
possibly from now on, from source links in AI-powered
chatbots.

My point is that people probably won’t follow your carefully
considered and constructed navigation all the time anyway, and
often, they find themselves on random pages. This means that
no matter where people are in your documentation structure,
you also need to consider showing them the ideal path as to
how someone might arrive at that page. What are the ideal
steps they should have followed before reading the page they
ended up at?

To begin with, navigation and structure can follow similar
patterns to the content types covered in Chapter 2:

QuickStart
Guides
Reference

Here, each sub-section and page follows under those loose
sections. Try to use gerund-style verbs – that is, those that end
with “-ing” or that give the impression of “doing” something.
Building on the content needed, as identified in Chapter 2.
Here’s the list again:

QuickStart
SDKs:

Python
Go
JavaScript
Ruby
C++

Features:
Hosted dashboard
Advanced alerting
Conditional alerting
Creating custom metadata

Self-hosting:
Docker
Kubernetes
Bare-metal

Integrations:
Alerting tools
Alternative backends

Exporting data

These are OK titles for pages. They say what they are and are to
the point, but if you wanted to rephrase them in gerund-style
titles, they could be as follows:

Getting started with Monito
Building with Monito SDKs:

Integrating with Python
Integrating with Go
Integrating with JavaScript
Integrating with Ruby
Integrating with C++

Adding features:
Using the hosted dashboard
Adding advanced alerting
Adding conditional alerting
Creating custom metadata

Self-hosting Monito:
Using Docker
Using Kubernetes
Running on bare-metal

Integrating Monito:
Connecting alerting tools
Adding alternative backends

Exporting data

This is a good starting point for a structure. The balance is
having content organized to a point where readers can identify
what they will learn without breaking the documentation into
so many pages that they have to click multiple times to find
anything.

Getting this right will take time and experimentation based on
feedback and metrics. It won’t happen immediately, and that’s
OK. Documentation is typically a loose collection of content files
you can move around. It’s not a book where having the content
structure locked in place before release is more crucial.

Adding internal search

You should add an internal search to documentation to help fill
those times when it may not be obvious to someone where to
find what they’re looking for, especially in a reference section.
Read Chapter 6 and Chapter 9 for further discussion on what
tools you can use. This chapter covers the principles. You do not
have to reinvent Google to add search to documentation. Many
free and commercial tools have existed to help for a long time.
You can add metadata to content (again, Chapter 6 covers that
in more detail) to handle related terms people might search for

that don’t directly map to the content of a page. If you follow the
earlier advice in this chapter, you’re already helping search,
both internal and external. To reiterate, good content and page
structure that follows expected standards and rules help
machine and human readers.

Keeping links working

I mentioned earlier that the nature of documentation means
you may regularly rearrange content. The web is built on
interconnected pages, and we all know how frustrating it can be
to encounter a broken link. Also, search engines tend to
penalize sites with broken links, downranking the site in search
results. Documentation’s main purpose is to inform, not sell, but
still, as many potential readers will find your content via search
engines, it’s good practice to keep links functioning as much as
possible. Different tools and services offer different ways to do
this or check if there are links you need to update.

Regarding internal links, this is an appropriate place to return to
the topic of markup, HTML, and the often misunderstood topic
of link text.

How often have you seen a link with the text Click here? Quite
a lot, I imagine. Maybe you’ve even created a few yourself.

I heard a quote from someone that said, “click here,” “click,”
“more,” or “read more” link text was comparable to shops having
signs that just said “shop.” It only tells you what you already
know and nothing about what will happen when you click the
link (or enter the shop).

Link text should be as descriptive as page titles and menu
entries. Aim for link text that’s at least 3 to 5 words long and
describes what the reader gets from clicking the link.

Here are some examples in documentation:

“How to configure Monito”
“The full list of configuration options”

Using meaningful link text helps human readers, but guess
what? Returning to a theme, it also helps non-human readers. I
cover aspects of accessibility throughout this book, but many
people with poor vision use a screen reader for some
description. Screen readers read page elements out to people,
but imagine hearing the following over and over again:

“Link. Click. Link. Click. Link. More.”

If that’s not enough to motivate you, search engines also use
link text to build an index of what links lead where and what to

expect. What do you think “click here” says to a search engine?
Not much.

The H and T in HTML stand for Hyper Text, and “Hyper Links,”
or, as we now know them, “links,” were the main purpose of the
web’s invention. Keeping them helpful for all keeps the web,
and especially documentation, as helpful as possible to
everyone.

Summary

This chapter looked at how to make your wonderful words
readable to all interested in consuming them. It looked at how
you can use simpler and more complex page elements to add
space and context to the information it presents.

If there are two pieces of advice to take away from this chapter,
they are as follows:

Your content needs to be readable as well as well-written
There are many more readers of your documentation in
addition to human eyes

With some underpinning practical techniques in place, the next
chapter looks at the process you must follow to start and

continue writing.

5

The Technical Writing Process

In the previous two chapters, you learned how to structure
documentation pages and grammar and style fundamentals for
effective communication. With this knowledge, you’re now
ready to tackle this chapter, which covers the process of
working with others to figure out what to document and how
effective it is.

The process of creating technical documentation isn’t too
dissimilar to the process of creating the code that
documentation explains. Creating technical documentation is
never “done” or “finished” and is a constant iterative learning
and improvement process.

The stages of the process, as I see them, are also fairly similar to
software engineering. This chapter covers the following main
topics:

Scoping and requirements gathering
Research and product testing
Drafting and re-drafting

Feedback, testing, and maintenance

These steps apply when creating new content or content for
new features but can also apply when fixing issues or tweaking
existing content, just minus some steps, or much shorter steps.

Scoping and requirements
gathering

Within a company or project, documentation requests can
come from a variety of internal and external sources, including
the following:

A new feature that’s in progress, probably from a product
owner
A new feature that’s already been completed that needs
documentation
A feature gap that’s been identified by you or others
A content gap that’s been identified by you or others
A problem that’s been logged by you or others

When you start filling that content need, the first step is to
figure out the current definition of done. I say “current” as just
because there may be a completion point for the content

needed now doesn’t mean it will remain that way forever.
Likely, it will not be considered done in the future. However,
while there are predictable potential future changes, there are
also others that aren't, and finishing the work as completely as
possible now can save work in the future.

“Done” is a complicated concept and one that different people
have different opinions of and on, which is why it’s important to
define it as clearly as possible from different perspectives. It’s
worth noting that, try as hard as you might, you may still find
that what you thought everyone meant by “done” is not how
things turn out when you think you’re “done.” Depending on
the people you work with and the type of company or project
you work on, how you must mitigate this happening can vary,
but I provide some tips and advice based on my experience.

Ask stakeholders what their expectations for the content is.
These questions vary:

An engineer might want you to cover important technical
aspects they feel are essential for a user to know.
A product owner might want you to cover how a new feature
helps users save time with their daily work.
Someone in a marketing team might want you to cover how
the feature compares to competitors’ feature sets. Any other

content creators might want you to write about the feature in
a particular way.

You need to dig deeper than these one-line summaries of each
stakeholder’s potential requirements, probably asking the same
question in different ways or asking clarifying questions.
Someone in one of those roles might supply you with other
content that gives you some of the details you need or that you
can base follow-up questions on.

While it can sometimes take several rounds of questions to dig
into these expectations, people are usually clearer about them
than their assumptions. What are their assumptions? Well,
that’s hard to say. Often they won’t say them at all:

An engineer might assume that anyone reading the content
knows a key technical detail when they don’t, perhaps
because they were too deep into the code of the feature and
didn’t see the bigger picture or assumed that all other
engineers “must know this”
A product owner might assume a certain flow for the content
because they have been focused on an ideal user flow for
someone using the feature
Someone in marketing might assume that you will describe
the feature in overly positive and sales-heavy language and

not in terms of practical usage

Another content creator might assume that you will write in a
particular style or layout that you haven’t been made aware of.

Directly asking, “What are your assumptions about their
content?” might not unearth them, but learning about the kinds
of assumptions that each stakeholder might make can help you
ask questions about those assumptions.

What to document

If you are starting an entire set of documentation or a major
feature from scratch, you might be wondering what to work on
first and how much documentation you need.

At the risk of repeating myself, documentation is an iterative
process, especially if you are a small team or undertaking
documentation as part of another role. It’s almost impossible for
you to document everything that a product might need at once.
Unless you work in a sector where completeness and full
accuracy are essential at launch, such as medical, sensitive
industrial, and so on, then it’s unlikely you need everything
documented at once.

So, where do you start? And how do you proceed after you
start? If you have some existing metrics or roadmap that
informs you of an order to document a product, then follow it,
but in reality, it’s unlikely you will have any existing guidance,
and it’s mostly “up to you.”

My general advice is to start at the beginning, then the end, and
slowly fill in the gaps in the middle over time based on
feedback.

This means creating a getting started guide or two and then
ensuring that reference documentation is available to cover
resources such as API or SDK functions. With these in place, you
can release “minimum viable documentation.” The getting
started guides will be enough for those who are interested in
experimenting with a product to see if it suits their needs, and
the reference documentation will be enough for those who
know what they want to accomplish and need more details on
the individual components to use.

With that content in place, you can use product roadmaps,
further drafting phases, and the metrics you gather over time to
fill in the gaps, slowly reaching toward “more complete
documentation.”

Research and product testing

If you are documenting something technical, then there is no
replacement for getting your hands dirty experimenting with
and using a product like an end user might do. This process is
easier if you have a technical background or experience, but
you can gain that over time, and sometimes, having a fresh pair
of eyes can help reveal problems no one had anticipated. In
small companies, at least, documentarians are often the first
people to try a product or feature after developers, and our
position between engineering, product, marketing, and support
can give us a unique and broad perspective on a product.

However, I am what I call a “technical” tech writer. I studied
computer science. I dabble in programming. I can throw
together infrastructure as code and databases quite happily.
Don’t ask me to create a large-scale production-ready
application, but I know enough to write examples and, crucially,
ask the right questions.

Few documentarians specialize in documenting one product,
project, or ecosystem in their entire career. As hard as you
might try (and we tend to have curious minds), you can’t learn
and understand everything about any product, project, or

ecosystem, and not more than one of these. But again, to
reiterate, what documentarians do have is a broad overview of
many things, sometimes more than anyone else. It’s the nature
of creating documentation. You need to know how components
fit together to form a flow, even if you’re a writer on a team.

This means that documentarians need to learn how to learn,
what questions to ask, where to probe, and how to figure out
the important bits and pieces that are essential to explaining a
concept. This process leads from asking team members and
collaborators questions to asking questions about the product
itself. You can then take this knowledge and hands-on
experience and ask team members better and more informed
questions during review processes.

You can achieve this experience and exposure by watching
demos and speaking with the team members who built it, but
nothing replaces trying it yourself.

This book is primarily aimed at engineers who want to increase
their documentation skills, but there will likely be people from
other backgrounds and even experienced engineers reading.
Well, sometimes, they assume knowledge of their own and
others.

While this varies from product to product, my process for
learning to learn a product is roughly as follows.

The first step – almost step zero – is to assume nothing about the
end user. This sounds obvious, but we all bring many biases and
assumptions from our knowledge and experiences that vary
wildly, from operating system choice to educational
background, all of which can affect how we might explain
something to someone. Over time, you build an internal list to
check. Here are some ideas:

The operating system used, including its version and
architecture, as well as any security restrictions in place from
an IT team.
Common dependencies such as version control systems and
language runtime versions.

A QUICK ASIDE ABOUT SURPRISING DEPENDENCIES

I have lost hours trying to install JavaScript dependencies that
relied on a Python or C dependency, with no mention of this
anywhere in the documentation. You need to check all
dependencies!

Programming language norms and patterns that are common
to the language the application is written in but not

necessarily for end users
Your common process for setting up a project or
environment

If the project involves the user undertaking some kind of
environment setup to run a programming language or
database, for example, then some tools can help you start from
a clean setup each time. Without getting into too much detail,
look into container runtime technologies such as Docker or
Podman. These tools let you define a set of configurations
around an application and start it isolated from the rest of your
machine, meaning you won’t detrimentally affect the rest of
your local machine. When you’re done, you can delete the
instance of that application and recreate and delete it as you
need. Other options to consider are programming language
version managers, which let you switch between different
versions as relevant for projects. One final option is using a
virtual machine, a completely separate “computer” and
operating system running on your computer. This can be useful
if you want to test software on Windows when you’re using
macOS, for example.

If you’re testing software that runs in isolation, such as in a web
browser or desktop application, then find out if there’s a way to

reset it to its defaults so that you can repeatedly test as a new
user would.

There are also ways to have a development or operations team
set up reproducible environments for you, meaning you can
have a setup that regularly refreshes itself.

With the underpinnings in place for testing and learning, how
do you learn? Like learning in general, often, it’s easier when
you have a practical project to try and learn from. Often,
creating such a project is also useful, and it also helps to have
code in the documentation and downloadable demo projects. If
you don’t have a personal project in mind or one that suits the
project, ask teams in the company that might, such as customer
support, customer success, sales engineers, or developer
relations.

Take that application, start it, break it, experiment with it, and
try to integrate it with other services and tools. Use it like an
end user would. If you can access the code, dig into it and look
around to see how it fits together.

You won’t understand everything, and you don’t need to. This
experimentation just helps you ask better and more informed
questions.

Drafting and re-drafting

Now, it’s time to start writing. Much like any other form of
writing, one draft is rarely enough. Once you have a first draft,
you need to get all involved stakeholders to take a look and give
their input. This process can take some time, but it is important
to ensure the correct balance of technical accuracy, company
priorities, and language clarity.

This chapter won’t focus on tools for doing this, but the process.
There are several well-established toolchains for reviewing
technical copy that influence the advice I give, but I try to
remain as agnostic as possible.

Getting rounds of feedback on documentation can directly
correlate to your ability to extract the expectations and
assumptions mentioned earlier. If these were not clear in the
earlier stages, then this likely becomes evident during feedback.
Sometimes, this is because you misunderstood or incorrectly
assumed something communicated with you, or more often
than not because people are often not sure of themselves until
they see something in front of them.

I have found that feedback on documentation comes at two
extremes: next to no feedback to the point that you’re unsure

what anyone thought, or so much feedback you don’t know
where to start. You must deal with both cases in different ways.

If you don’t receive enough, you may need to set up specific
sessions to get feedback from stakeholders. When faced with
walls of text or a list of changes, people aren’t sure how they
feel about it, so you need to ask specific questions. With a lot of
user testing, you generally don’t want to lead the user, but
content is different as you risk getting lots of feedback about
details you may not need feedback on at this point or
complaints about the product or feature.

Here are some potential questions to ask:

What did you think about what you read?
If you could change anything about what you read, what
would it be?
What was easy or difficult to understand and why?
How would you explain this content to someone else?
Does this address your needs? If not, why not?

If you have clear competitors with similar feature
documentation, ask similar questions about that content.

As you ask these questions and receive answers, people are also
likely to give feedback that, while it’s useful, you didn’t need at

this point – things such as word choice and grammar and
spelling issues. Some of these may be genuine mistakes, while
others have reasons for being the way they are. But for the most
part, these are a distraction in the early stages of review. You
want subject matter experts to give you feedback on their area
of expertise, not a misplaced comma. Of course, when you get
feedback from other writers, then worry about these misplaced
commas, but as I say, you want each subject expert to give
feedback on their area of expertise as much as possible.

Too much feedback doesn’t necessarily mean you did a bad job.
Some reviewers are opinionated or have lots of thoughts they
want to share. The harder part of too much feedback is going
through it and figuring out what to do with it.

Some of it will be useful and similar to what I mentioned
previously, but it might not focus on what you need feedback on
from that person. Make a note of it for a later day and politely
thank the reviewer for their comment. Some of it might just be
thoughts they wanted to share on the product, feature, or
documentation they feel is needed regarding a related concept.
Again, make a note of it for a later day and thank the reviewer
for their feedback. What’s left will be varying levels of
usefulness, and likely, much of it will be contradictory feedback.
Your job is to sift through all that feedback and determine what

you want to act on and when. As a documentarian, you may not
be the expert on the product’s inner workings, but you are an
expert on figuring out how to explain them. It’s OK to push back
on feedback, but do it in a friendly, professional manner and
explain why you choose not to accept it.

Sometimes, that’s enough for a reviewer to accept your counter-
feedback, but sometimes, it’s not. It’s all too easy for rounds of
feedback to get heated, especially when it’s asynchronous and
in writing. I am sure we have all found ourselves in situations
where conversations and discussions turned stressful,
aggressive, petty, or toxic. Without diving too deep into the
topic, as it’s a big discussion in itself, you can apply much of the
advice from Chapter 1 to make all written communication as
nuance-free and inclusive as possible. It’s time-consuming to
write the first thing that comes into your head without thinking
about it, but you will save stress, misunderstanding, and
probably time if you do. Of course, this doesn’t mean that
everyone in a conversation does the same. I have often found
that if you try to be as pragmatic, patient, and open-minded as
possible when dealing with online communication, you can
generally keep a conversation as cordial and productive as
possible.

So, when is a feedback round complete so that you can publish
changes to the documentation?

This can depend on your work sector and the risk of incorrect
documentation. For high-risk sectors such as medical, financial,
or industrial, you probably need to have documentation
changes fully reviewed and signed off before it’s published as
mistakes can potentially cost lives or have a large financial
impact. In these sectors, software release cycles are also often
slower and more considered for the same reason, so
documentation releases might be similar.

For most other sectors, there’s more leeway. As mentioned
several times in this book, much like the software it explains,
documentation is never done. It’s a constant iterative process of
improvement. This means there is a time – often thanks to
external pressures such as release dates and marketing
campaigns – when you need to close feedback and publish.
People tend to get attached to what they worked on and will
never be entirely satisfied with the content you’ve created, but
at the same time, if you asked them what perfection would look
like, they also don’t have an answer. This is all perfectly normal
and something you just get used to during feedback. Then,
typically, in the hours and days after publishing, you get more

feedback that somehow no one had before, and the feedback
cycle starts all over again.

Feedback, testing, and
maintenance

The previous section covered internal feedback before
publishing content. This section covers feedback and usage
from your intended users and how to manage that. Getting and
processing feedback and metrics on documentation is
notoriously difficult. I cover some things I have tried and
worked with and things that I know others have tried.
However, none of these options are perfect, and the
documentarian community is still looking for the “best” way to
handle this. There are a handful of ways you are likely to
receive feedback on documentation:

If your documentation is open source, readers and users may
create issues about problems they find on the repository for
the source of the documentation.
If the code for the application is open source, users may
create issues about problems they have understanding the
documentation for the project in the source repository.

If you add some form of feedback widget (a comments box, a
“was this helpful?” option, rate these docs, and so on), then
readers and users may leave feedback they have. Chapter 6
covers some options for this.
If your product has commercial support via support requests,
users may give feedback on the problems and difficulties
they find with implementing or using the product. If your
product or project has a community forum, then people may
post about their problems or experiences there.

While harder to find and generally only suitable for products
and projects with a larger user base, you can often find
feedback and experiences from the wider community via
community-created blog posts, talks, other forums, and so on.

The challenge with almost all of these options is that the
feedback you receive may not be relevant to the
documentation.

You will probably receive a lot of spam for some of the more
public-facing options mentioned previously, such as feedback
widgets or repository issues. This includes junk messages and
time wasters, especially for larger open source projects, which
are full of people trying to increase their online profiles and

portfolios by registering tiny change requests or irrelevant
comments that don’t serve any purpose.

This aside, documentation is often the largest direct interaction
point people have with a product, so much like internal
feedback, they are likely to use it more as a place to log issues
they have with the product. However, this doesn’t make it a
waste of your time or irrelevant to documentarians. First,
feedback on the product is still useful to someone, and you can
pass it on to relevant people. Second, it can still highlight areas
where documentation needs improvement. If people are
frustrated with a particular feature for not working the way
they expected or wanted, you may not be able to fix the feature
directly or immediately. Still, you can find ways for the
documentation to better explain or factor in these frustrations.

Once you have whittled public feedback down to the useful
remains, figuring out what to do with it differs from internal
feedback for several reasons:

While valid, one person’s feedback from a silent majority of
thousands of users may not be worth addressing. If, however,
multiple users give the same or closely related feedback, it’s
worth addressing.

Opinions and feedback aren’t always the same thing. Again,
you need to assess the number of people who have given the
same or closely related feedback, but remember that
someone thinking something is wrong doesn’t mean it is.
Internal roadmaps, priorities, and agendas can trump
external feedback and requests. This doesn’t mean that you
ignore the external input, but it does mean you need to
communicate this fact with the feedback giver.

You should prioritize addressing externally contributed genuine
errors and mistakes over feedback but still factor in these points
when you do so.

But with all these competing feedback items and priorities, how
do you decide which to tackle, in what order, and if any changes
help? Metrics and measuring the success of documentation is
another complex area.

Metrics and measuring success

An obvious place to start is with metrics such as page views,
bounce rates, and time spent on pages, but these only tell you
some of the story. Is someone spending 30 seconds on a page of
documentation good or bad? Maybe they found the answer they

were looking for and moved on quickly. Maybe they found
nothing and moved on quickly. It’s hard to say.

Similarly, what does a lot of page views mean? You might expect
that on a getting started guide, but what if there’s a traffic spike
on an obscure API reference page? What does that show to you?
You can build up maps of pathways and assumptions based on
traffic sources, search terms, and the pages a user follows, but
they won’t tell you everything and pure page views aren’t that
relevant in knowing if documentation was useful.

A more useful measurement option for documentation is
tracking how people read pages, and a handful of tools are
available. As with many tracking tools, content blockers could
render them useless, and if your audience is developers, they
tend to be a demographic that uses blockers more than others.
But if they do work, they are useful for showing you roughly
how a reader scrolls around the page, where their mouse rests,
the page elements they highlight, and more. They may not
reveal what a reader thinks of your content, but they reveal
patterns of usage and provide more insights into the metrics
mentioned previously.

A better and more popular metric to track is something along
the lines of “time to get started.” This tracks how long it takes

for a reader to complete a getting started guide. How you set up
this tracking depends on your product and its technical stack,
but adding interactivity to documentation in different ways is
another big topic in itself and one covered later in this book.
You can then integrate similar ideas across more
documentation pages, helping you track how many people read
pages and what they do with the knowledge they acquire there.

Another good metric to try and track is how changes in
documentation affect interactions with support. Drawing direct
correlations is difficult, and measuring this is a mix of
quantitative and qualitative metrics, but over time, you can
probably start to see when the quantities of questions relating
to certain topics change.

These inputs help you decide what content you need to update
and prioritize the order to undertake that maintenance. If you
have popular pages that need fixes or updates, then handle
those first over pages that see little traffic. Among those popular
pages, prioritize the more critical bugs in the content over small
linguistic tweaks.

It’s good practice to maintain the most popular pages regularly,
even if no one has mentioned any actual issues. How regularly
you do this depends on the available resources, but you can use

some of the metrics sources mentioned previously to determine
which pages to cast a fresh pair of eyes over.

When you have that list, you need to decide on the kinds of
aspects of the content you should maintain. Here are some
ideas:

Any changes to the company or project style guide since the
page was last updated (more on this topic later)
Software and dependency version updates mentioned in the
content
Follow any technical flows to see if they still work as intended
Render errors in the live version of a page
Screenshot updates for any output changes from the
application or project

You can keep a checklist or template of each item to check as
you work through pages.

Summary

In this chapter, you learned how to kickstart the documentation
process and work with others to figure out what documentation
means to all stakeholders involved.

The chapter covered the typical process to follow when creating
or updating content and what’s involved at each stage. Many of
the details vary, depending on your internal structure and
processes and the nature of the product or project. However,
this chapter presented common advice that almost anyone can
follow.

If there’s one takeaway from this chapter, it’s that
documentation is almost always in flux and progress. Hopefully,
this chapter gave you the skills to keep up with the ongoing
process and keep documentation up to date and as useful as
possible to readers.

So far, the book has mostly covered principles and theory,
which are essential to know as you learn any process in detail.
However, as technically minded people, we all know that, while
not as important as we might like to think, tools are also an
important part of any process to understand. The next chapter
looks at some of the fundamental tools you need and how to
select which to use from the myriad options available.

6

Selecting the Right Tools for
Efficient Documentation
Creation

As technically minded people, there’s one thing we love to
experiment with more than anything: new tools, techniques,
and services. So far, I have avoided touching too much on
tooling as it can easily become a rabbit hole to fall far into and
get distracted by. But before I can move on to other, more
advanced tooling topics, it’s time to cover the basics.

Let’s talk tooling.

This chapter ties together the topics covered so far to highlight
and cover what tools help create, facilitate, and manage what
you’ve learned. As you might expect, there are a lot of options,
and I don’t have enough space to cover them all in detail.
Instead, I cover the general principles of each tool’s
responsibility, highlight some of the most popular or innovative
options, and then suggest other options you can investigate.

The chapter covers tools for the following:

Writing
Collaborating
Managing and rendering
Analyzing and assessing

Before diving into the details, I need to cover the main methods
people currently use to create documentation. Historically, say,
when my grandfather was creating documentation, this would
have also included print and paper. But for the past few
decades, this has almost exclusively been done with the help of
digital creation tools for output on screens. However, engineers
might still read the documentation in print in some risk-averse
industries.

The three main methodologies are as follows:

Topic-based: Conforms to industry-wide standards with
specific specialized tooling.
Docs as code: Uses traditional developer workflows and
tooling. This is the main focus of this chapter.
Browser-based: Uses tools and services in the browser.

Before diving deeper into the main focus of this chapter, let’s
take a quick look at how they all compare.

Topic-based documentation

One of the older digital documentation techniques is “topic-
based.” As far as I am aware, perhaps one of the most well-
known examples of documentation that uses this methodology
is the AWS documentation
(https://docs.aws.amazon.com/index.html). This technique
breaks documentation into discrete “topics” that cover a task.

For example, the Monito Getting Started guide, Which Chapter 1
started looking at in, in the Looking at an example section, could
contain the following topics:

Choose an SDK
Register an account
Get an authentication key
Use an authentication key with an SDK
Add an SDK to your project
Make a call with the SDK

And so on.

When displayed as an unordered list, this doesn’t show you the
unique point of topic-based documentation. Each of these topics
is (essentially) a separate file, or at least a separate section in a

https://docs.aws.amazon.com/index.html

file, depending on the tool you use. To create documentation,
you assemble these individual topics into different output
collections for different purposes. One of topic-based
documentation’s main purposes is content reusability, and
often, the teams that use topic-based processes create
documentation that people consume in different ways and
formats – for example, on a website, in application help, a PDF,
or a printed manual. Topic-based documentation means they
can use the same individual topics in different places, leading to
efficient content reuse or the “write once, use everywhere”
principle.

As topic-based documentation is highly structured and often
uses formats behind the scenes that are equally as structured,
such as Extensible Markup Language (XML), it tends to be
more consistent, has more standard tooling around it, and
suffers less from broken links and other structural issues.

This is one of the key differences between topic-based and docs
as code. With docs as code, you often need to “assemble your
own tooling.” With topic-based, you often get it all in one
(generally for a fee). Whether you consider this a positive or a
negative is largely up to you, your team’s skills, and the size of
your software budget.

XML has been with us for some time. While many younger folks
in technical communities might be forgiven for thinking it’s
something they would never have to deal with anymore, it’s
what gives topic-based documentation the rigid, reliable
structure that its users love.

XML is famous for its standards and specifications, and probably
the most widely used in topic-based documentation is OASIS
Darwin Information Typing Architecture (DITA)
(https://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=dita). DITA defines the XML document type
(something important to XML) and the legal markup it uses. The
specification is an open standard, but this doesn’t mean it’s open
source. Rather, it’s steered by a community of experts who
discuss the standard.

Here’s a DITA example taken from XML Mind
(https://xmlmind.com/tutorials/DITA/index.html). I think most
of the syntax is clear, and as you can see, it looks a lot like
HTML, which has its history in XML:

<topic id="docbook_or_dita">
 <title>DITA or DocBook?</title>
 <shortdesc>Both DITA and DocBook are both mature, f
 so which one to choose?</shortdesc>

<body>

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
https://xmlmind.com/tutorials/DITA/index.html

On the negative side, and despite the open standards it builds
upon, much of the tooling in the space is proprietary and
expensive. Many toolset providers are a closed ecosystem,
making it harder to integrate with other tools and services

 <body>
 <p>DocBook 5 is a mature document type. It is wel
 The Definitive Guide, DocBook XSL: The Complete G
 XSL stylesheets allowing conversion to a variety
 best schema technologies: RELAX NG and Schematron

 <p>DITA concepts (topics, maps, specialization, e
 appeal to the technical writer, making this docum
 than DocBook. However the DocBook vocabulary is c
 well thought out. So choose DITA if its technical
 sufficiently expressive for your needs or if, any
 specialize DITA.</p>
 </body>
 <related-links>
 <link format="html" href="http://www.docbook.org/
 <linktext>DocBook 5</linktext>
 </link>
 <link format="html"
 href="http://www.oasis-open.org/committees/
 scope="external">
 <linktext>DITA</linktext>
 </link>
 </related-links>
</topic>

outside of that ecosystem. This makes having an open source
community around the documentation harder, as contributors
need special tooling and knowledge.

Some popular options for writing topic-based documentation
include the following:

Writerside from JetBrains
(https://www.jetbrains.com/writerside/): A new entrant that
allows for topic-based docs and a mix of the various
methodologies. Its feature set is rapidly increasing, and if you
are already using other JetBrains tools, it will feel familiar.
However, despite some docs as code influences, its content
export options aren’t quite as flexible as other tools in that
methodology.
Framemaker from Adobe
(https://www.adobe.com/products/framemaker.html):
Framemaker has existed for a long time, and while it doesn’t
integrate much with many of the tools Adobe is famous for
(Photoshop and others), it does integrate with the enterprise
tools they are less known for, such as Experience Manager
and RoboHelp. If you publish into the Adobe ecosystem, then
it’s an essential tool.
MadCap Flare
(https://www.madcapsoftware.com/products/flare/): This is

https://www.jetbrains.com/writerside/
https://www.adobe.com/products/framemaker.html
https://www.madcapsoftware.com/products/flare/

probably the most feature-full option for topic-based
documentation, and many of its users are generally positive
about using it. It handles many different output types and a
plethora of templates to support that output.
OxygenXML (https://www.oxygenxml.com): On the rare
occasions I’ve worked with topic-based documentation, this
is the tool I’ve used, mostly as it’s the most affordable and
isn’t tied to an entire ecosystem. It’s not always clear which of
the companies’ many products you should install. But if
you’re interested in experimenting with topic-based
documentation, Oxygen is probably the place to start.

On the complete opposite side of topic-based methodology is
docs as code.

Docs as code

This methodology is a loose set of tools and techniques that
have generally settled on the overarching name “docs as code”
to describe itself. It is what I am most familiar with, what
developers like you are most likely to be familiar with, and what
I cover mostly for the rest of this chapter and book.

Docs as code aims to follow principles for documentation
similar to those of developers. This includes using markup

https://www.oxygenxml.com/

languages in plain text files in a text editor to write, version
control to manage collaboration, testing, continuous processes,
and more. As a developer, you have probably created
documentation using “docs as code” without even realizing it,
as it’s often the default way many developers create
documentation. But for many technical writers, it’s a new
workflow and tools ecosystem.

On the positive side, the barrier to entry is low for those with
development experience. The choice of content creation tool is
largely up to each contributor and is often freely available, thus
meaning it’s easier to have an open source community around
the documentation. It’s easier to integrate docs as code with a
plethora of other tools and services as it is fundamentally “just”
plain text.

On the negative side, the barrier to entry for non-technical
people is high. Flexible tool choice can lead to analysis paralysis,
and largely, there are few hard-enforced standards in “docs as
code.” In short, the flexibility of docs as code is the biggest
positive and drawback.

I cover tool options in the rest of this chapter, but before I do,
there’s one other methodology I need to cover: writing in the
browser.

Documentation in the browser

While topic-based and docs as code are typically local files on a
person’s computer, many teams create documentation straight
into a browser. This could be via a documentation-specific
content management system or a wiki-style system, where
writers can create links between content items on the fly (the
classic example is Wikipedia).

On the positive side, anyone with an account can contribute,
and the toolchain is in place, standard, and kept up to date for
all users at the same time.

On the negative side, user-installed browser extensions aside,
what you’re given is what you get, you generally need to pay,
and while browser tools are far more powerful than ever,
integration options are limited.

Some popular options for writing documentation in the
browser include the following:

GitBook (https://www.gitbook.com): A hybrid of docs as code
and browser-based, GitBook attempts to combine many of the
positives of both into a tool that satisfies team members with
different experiences and knowledge levels.

https://www.gitbook.com/

Confluence from Atlassian
(https://www.atlassian.com/software/confluence): If you use
other Atlassian tools, you may also have access to
Confluence. While it’s primarily designed for internal
documentation, you can also use it for externally-facing
content. I never found it the most optimal option for
technical documentation, but with a large ecosystem of
plugins and integrations, it’s a flexible and widely used
option.
Knowledge Owl (https://www.knowledgeowl.com): Aimed at
less technical products and businesses but nonetheless
popular with an enthusiastic customer base, Knowledge Owl
focuses on “knowledge base”-style documentation resources.
Paligo (https://paligo.net): Full of features for the entire
content workflow, from planning to publication, Paligo also
offers multiple integration options to keep developers and
developers’ managers happy.

I have already presented many options to consider, and I
haven’t even gotten into the docs as code methodology in any
detail yet. So, how do you decide which to use from this
dizzying array?

Choosing toolchains and tools

https://www.atlassian.com/software/confluence
https://www.knowledgeowl.com/
https://paligo.net/

I think tooling should help you with your work and facilitate
what you do. As much as possible, it should get out of the way
and not dictate how you do what you do. In reality, this isn’t
always the case, as tooling has certain opinions, and you often
choose it because you like (most of) those opinions. If you’re
starting from scratch with a toolchain choice or are planning to
switch, how do you decide which approach to follow or which
tools to use as part of that approach?

The key factors to consider in any tools section process are as
follows:

What is your current team’s experience? What are they
comfortable using, what have they used before, and what do
they want to use?
How standard is what you’re considering? This relates closely
to the last point, but it’s important to consider what happens
when a team changes. If you use something less common or
specialized, it could be hard to replace team members.
What’s your budget? I love open source and rolling my own
tooling, but it’s an easy trap to think that means the tooling is
“free.” With paid options, you offload development and
maintenance work to someone else’s team. But when you’re
creating your own tooling, your team has to set up and
maintain it. That takes time, probably more time than you

think, and also has a potential inherent cost, as it’s time they
aren’t spending on doing their core work.
What do you need? You might think this is the most important
point on this list, but I would argue otherwise. While the
overall methodology you choose makes a reasonable
difference, once you get down to the level of individual tool
choice, it becomes less important, as most tools have most
features. In the end, decisions usually come down to the first
three points.

Considering all those factors, why do I suggest docs as code?

Why docs as code?

Why have I chosen to focus on docs as code? For several
reasons. While I have no metrics to back this up, it is
increasingly popular in the documentarian community, and a
large number of documentation projects starting now and in
the past few years are more likely to choose it as their workflow
of choice. In certain fields, especially tools and services aimed at
developers, it’s almost the only process used. The most
important reason I focus on it is because this book is aimed at
developers, and it’s the workflow that most developers will
already be familiar with. Even if you have never written a word

of documentation, I am almost certain that the process of using
some form of text editor and sharing changes with others via
version control is familiar to you.

Docs as code follows almost the same processes as, well, code.
As I move beyond the basics toward the end of this chapter and
into the following chapters, show that automating, testing, and
much more are made possible with docs as code.

For the rest of this chapter, I won’t keep referring to “docs as
code.” You can just assume that unless I specifically mention
one of the other methods mentioned earlier, that’s the method I
am referring to.

But let’s start with the first component needed. How do you
write, and what do you write with?

Selecting and using a markup
language

Plain text for documentation isn’t quite the same as a
“traditional” plain text file. It’s not quite as straightforward as
lines of text in a .txt file. Instead, documentation uses a

“markup” language. I mentioned Hyper Text Markup
Language (HTML) in Chapter 4, but the markup languages used

for documentation are a little different. They’re generally
simpler.

There are three markup languages worth considering for
documentation: markdown, restructured text, and asciidoc.

Markdown

You have probably seen markdown, even if you don’t realize it.
Created by blogger John Gruber and activist Aaron Swartz in
2004, they designed it as a markup language intended to be easy
to read in its source code form.

Markdown syntax is simple but limited. It’s a challenge to learn
and remember at first, but it quickly becomes natural. This
simplicity has led to what is Markdown’s most famous problem.
While there are attempts at “standards,” they are utilized
inconsistently, and many “flavors” exist with different markup
to bring additions people feel are missing from the “standards.”
Much of this is because Markdown wasn’t necessarily designed
for more complex use cases, such as documentation, but as a
more general-purpose markup language for the web. This
meant that people found ways to extend it to suit their needs
instead.

Markdown is well supported by online tools and services, editor
plugins, and more. In most developer-focused tools, and many
not used by developers, you can expect to write markdown, and
there will be features to support it.

While I acknowledge its limitations, due to its widespread
support, the rest of this chapter focuses mostly on tools that use
Markdown. I will note if a tool also supports other markup
options.

Here’s an example of Markdown taken from kilt.io, a project I
do some work with:

KILT Protocol Documentation Website
The KILT Documentation website is built using [Docusa
Hosted at https://docs.kilt.io
Installation
```console 
yarn install 
``` 
Local Development
```console 
yarn start 
``` 
This command starts a local development server and op
Most changes are reflected live without having to res

http://kilt.io/

This results in the following output:

Where to put the code
To add a code example that is executed and tested, ad
Depending on where the code example is used, the code
* Anything in the SDK section -> `code_examples/sdk_e
* The workshop -> `code_examples/sdk_examples/src/wor
* dApp examples -> `code_examples/sdk_examples/src/da
* The Staking guide -> `code_examples/sdk_examples/sr

Figure 6.1 – Markdown rendered as a web page

Restructured text

reStructuredText (RST, ReST, or reST) was created by David

Goodger in 2001 and is a textual data file format. It’s popular in
the Python community for documentation.

As RST was designed for documentation, its feature set is more
fully realized for that use, with richer semantic markup. Some
exceptions aside, it is standard and consistent. However, I have
found some syntax challenging to remember and inconsistent
with its patterns.

RST isn’t so widely supported in tooling and online services, and
I have often struggled to find plugins for popular editors that
match anywhere near the richness of Markdown options.
However, this might have changed since I last looked.

Here’s the same Markdown example converted into RST:

KILT Protocol Documentation Website
===================================
The KILT Documentation website is built using `Docusa
2 <https://v2.docusaurus.io/>`__, a modern static web
Hosted at https://docs.kilt.io

AsciiDoc

AsciiDoc is a human-readable document format that was
created in 2002 by Stuart Rackham. It is semantically equivalent

Installation

.. code:: console
 yarn install
Local Development

.. code:: console
 yarn start
This command starts a local development server and op
window. Most changes are reflected live without havin
server.
Where to put the code
~~~~~~~~~~~~~~~~~~~~~ 
To add a code example that is executed and tested, ad
of the code sections. Depending on where the code exa
code has to be put into a different section in the ``
folder. 
-  Anything in the SDK section -> 
   ``code_examples/sdk_examples/src/core_features/...
-  The workshop -> ``code_examples/sdk_examples/src/w
-  dApp examples -> ``code_examples/sdk_examples/src/
-  The Staking guide -> ``code_examples/sdk_examples/



to DocBook (more part of the topic-based tooling world) but
uses plain text markup conventions.

Again, designed primarily for technical documentation,
AsciiDoc is packed with markup and features to suit. It is further
enhanced by Asciidoctor, a popular addition to AsciiDoc that’s
so commonly used that it’s almost worth considering it a
standard part of an AsciiDoc toolchain.

The syntax is somewhere between Markdown and RST. It is
more memorable than RST and has similar patterns to
Markdown but uses different characters and more semantic
markup.

On the positive side, AsciiDoc offers a good middle-ground
compromise between features and user-friendliness, and
despite its age, it has an active community around it.

On the negative side, while the community around AsciiDoc
and AsciiDoctor work hard to provide quality tooling and
support to common developers tooling, the support still lags far
behind your options when using Markdown.

Here’s the Markdown example converted into AsciiDoc:

 
KILT P t l D t ti W b it



== KILT Protocol Documentation Website 
The KILT Documentation website is built using 

https://v2.docusaurus.io/[Docusaurus 2], a modern sta
generator. 
Hosted at https://docs.kilt.io 
=== Installation 
[source,console] 
---- 
yarn install 
---- 
=== Local Development 
[source,console] 
---- 
yarn start 
---- 
This command starts a local development server and op
window. Most changes are reflected live without havin
server. 
==== Where to put the code 
To add a code example that is executed and tested, ad
of the code sections. Depending on where the code exa
code has to be put into a different section in the `+
folder. 
* Anything in the SDK section -> 
`+code_examples/sdk_examples/src/core_features/...+` 
* The workshop -> `+code_examples/sdk_examples/src/wo
* dApp examples -> `+code_examples/sdk_examples/src/d
* The Staking guide -> `+code_examples/sdk_examples/s



One feature you might miss from other methodologies is
managing metadata around documentation. Fortunately, there
is a standard method for doing this: YAML.

Adding metadata to markup with
YAML

While you can embed data and variables in addition to text and
formatting inline in markup languages through various means,
one of the most common is “front matter.” This is also mostly
always done using yet another markup language (YAML)
syntax at the top of the document. With YAML, you can define a
variety of key-value pairs that you can refer to from inside the
document or in other tools.

Here’s an example of some YAML front matter. It’s always
placed between sets of three dashes:

 
--- 
title: My note-taking and knowledge management proces
publication_url: https://chrischinchilla.medium.com/m
  - writing 
tags: 
  - macos 

version control



To many of you, this all makes reasonable sense. While you
might not have encountered all the markup languages I
mentioned, you’ve likely at least come across them. However,
markup languages can go further into something that looks a
lot more like a programming language.

Making Markdown dynamic with
MDX

As I mentioned previously, Markdown is infamous for endlessly
adding more flavors to scratch someone’s personal itch.
Another recent entry to this list is MDX (https://mdxjs.com), and
I feel it warrants a special mention as a handful of tools I
mention later give you the option to use it. What is MDX, and
why is it useful for documentation?

The modern frontend world – that is, what people interact with
when they use an application through a visual interface –
consists of a tree of cascading components. For example, a
typical web page might contain a menu component containing

  - version control 
image: "../../../assets/images/articles/1*g4XI5TzcxN4
---

https://mdxjs.com/


menu item components. Below that is a content component
containing various other components, and so on.

Conceptually, this is nothing new. Web pages have always
basically been made this way. But the way we create web pages
behind the scenes has changed. Many frontend tools now break
all these page elements into separate files that interact and pass
state to each other. One of the most widely used component-
based frameworks, and the one that kickstarted this trend, was
React (https://react.dev), which was created by Meta Open
Source.

This is where MDX comes in. It allows you to mix Markdown
with components, often React components, but not exclusively.
This means you can add all sorts of frontend elements to the
Markdown, including some of the documentation-specific
formatting options I mentioned in Chapter 4, plus many others,
including those you use in your actual frontend applications.
Even more interesting, MDX also treats content as a component,
meaning you can reuse your content or parts of it in different
places. I call this new technique and practice “dynamic
documentation.” Later chapters cover this concept in a little
more detail.

The key tools in docs as code

https://react.dev/


There can potentially be many connected components and tool
choices when using docs as code. In this chapter, I present the
most fundamental ones, which are as follows:

A text editor: You have to write somewhere
Collaboration: How to work with others, track changes, and
maintain a history of work
Rendering: How people will read the documentation

In the following chapters, I look at additional, optional
components you can add to a docs as code workflow.

Text editor

It’s hard to write anything without somewhere to write. As docs
as code deals with what is essentially plain text, there are an
overwhelming number of options available to write in. So long
as a tool respects plain text, you can use it. This starts to exclude
a lot of more common and popular general-purpose writing
tools such as Microsoft Word, Google Docs, and so on. These
tools tend to mess with a lot of syntax docs as code uses, trying
to make it look “prettier” but spoiling the docs as code
workflow by introducing elements that other tools later in the
process might struggle with. Common offenders are converting
straight quotes into “smart quotes,” converting Markdown



syntax for an unordered list into a rendered list, breaking code
blocks, and so on.

For example, quotes in docs as code should be as follows:

"text"

However, tools such as Word and Google Docs convert them
into the following:

“text”

In theory, it’s possible to change the settings to prevent this
behavior, but there’s not any reason to as there are far better
and more suited tools available, and often for free.

As a developer reading this book, you probably already have a
text editor or IDE of your choice. It’s probably one you have
spent years customizing and configuring just so, and you will
defend using it in forums until the day someone forcibly
removes it from your machine. The good news is that it is
extremely likely you can also use the same tool to write
documentation. I won’t list all the potential ways you could add
plugins and customizations to suit technical writing to every
possible text editor and IDE, as each entry could fill a chapter.
But suffice it to say that options will be available, and you will



find countless blogs giving you recommendations. I even wrote
some of them.

I personally use Visual Studio Code
(https://code.visualstudio.com/) and maintain several writing-
focused plugins for it. But before that, I used Atom (now
deprecated) and also occasionally jumped into using Vim
(https://www.vim.org/) and IntelliJ
(https://www.jetbrains.com/idea/). Despite what many people
want to tell you, whatever text editor or IDE you like and want
to use will be just fine for writing documentation.

My only caveat regarding this statement is that if you want to
use some markup language other than Markdown, it’s worth
checking how well your editor of choice supports it. Similarly,
while less essential, convenience plugins are typically available
for many other tools you may choose. If having one of these
available is also important to you, then also check if there are
options for the editors you are looking at.

Collaboration

I have another piece of good news: as a developer, you probably
(hopefully) already use a version control system such as Git or
SVN. And docs as code does, too. I always argue that version

https://code.visualstudio.com/
https://www.vim.org/
https://www.jetbrains.com/idea/


control designed for code doesn’t suit documentation
particularly well, which means that documentarians often have
to compromise on the writing experience to match developer
workflows better.

For example, enforcing fixed line lengths at a certain character
length or at the end of a sentence might improve reviewing
changes. But it ruins the writing flow and breaks some text-
related editor and IDE tools that expect a sentence to flow as it
typically would structurally. Often, when correcting
documentation, you might change one character, and code-
focused version control focuses mostly on the changes made to
a line. Despite many documentarians bringing up these issues
with version control tool providers, it’s unlikely to change, and
it’s a minor issue that you can often fix with tooling and
automated processes anyway.

I don’t have much more to say about choosing a version control
system or provider since the one you pick will support
documentation. Some of the popular hosted services do a better
job at rendering files containing markup than others. Most
hosted providers also allow people to suggest file changes from
within the browser. This is particularly useful if you do end up
with a complicated toolchain as it means that people can still
suggest small changes without going through a complex setup.



Rendering

One reason plain text markup languages are popular for
creating web-based documentation is that they translate cleanly
and well into HTML. Tools that handle this process are called
static site generators (SSGs).

What does that mean? It means that the tool takes the
Markdown files, plus configuration, theme, and other assets,
and outputs a bundle of HTML files or, in the case of some tools,
JavaScript files.

Typically, they reflect the underlying structure of the Markdown
files, using any folder structure to create a menu structure and
the filenames to create paths.

You can then use a basic hosting provider to host those HTML
or JavaScript files that any browser can display.

An SSG differs from a content management system (CMS),
which is typically a more complex tool, adding a database and
many other infrastructure components to allow for far more
dynamism but an equal amount of complexity. The most
famous CMS is WordPress. Most CMSs can render Markdown if
you use it in a text field, but then you are more in the browser-
based approach and not using docs as code. There are tools



such as Decap CMS (https://decapcms.org) that add a “CMS-
style” interface to the underlying Markdown files, allowing you
to mix both worlds.

I came to SSGs from the CMS world (Drupal, in my case), and
when I first had to use them, I was utterly confused, as they
seemed deceptively simple and inflexible. But the beauty
behind them is that content and the content creator are truly at
the center of the experience. Your content isn’t stuck in a
database with an enforced creation process. Instead, you can
work where you want to and open yourself to the world of docs
as code flexibility that I have outlined so far, and there’s more to
come.

Some SSGs are designed for documentation and others for more
general purposes. I recommend sticking with one aimed
primarily at documentation unless you have a compelling
reason not to, as otherwise, you will probably find yourself
endlessly bolting features on that you could have “got for free.”
Some documentation SSGs are more widely used than others.
Typically, the decision is better made by choosing one written in
a programming language you, your team members, or your
company are most familiar with or already use.

Here’s an overview of some of the more common ones.

https://decapcms.org/


Docusaurus

Actively maintained by the Meta open source team, Docusaurus
(https://docusaurus.io) is written in React-style JavaScript.
(https://react.dev) This makes it modern JavaScript, so it uses
MDX, is component-focused, and is a great fit for any modern
frontend team. However, modern JavaScript is also
complicated, and while it’s one of my favorite tools, you can
easily get lost in dependency hell and other notorious JavaScript
issues. By default, it has several documentation-specific
formatting options, including many of those I mentioned in
Chapter 4, and you can extend them with external components.
It supports document versions for different languages or
releases, single-sourcing content through components, and the
following figure shows a page using Docusaurus:

https://docusaurus.io/
https://react.dev/


Figure 6.2 – A page rendered in Docusaurus

Hugo



Written in Go, Hugo (https://gohugo.io) claims to be the fastest
SSG. It’s not designed solely for documentation, but I have come
across it used with documentation so often that I’d argue that is
what it’s mostly used for. I always found its template system
confusing when I was trying to achieve something more
complex, and I have frequently battled the way it handles
automatically rendering menus and sub-pages. These
confusions aside, Hugo packs a lot of features for asset
processing, output formats, versioning, and a plethora of
convenience functions. By default, Hugo doesn’t ship with any
documentation-specific formatting. Rather, you use Hugo
“shortcodes” that you create yourself or get bundled with an
appropriate theme, such as Docsy (https://www.docsy.dev). The
behavior of these shortcodes varies a lot, but you can find ones
that help with most of the formatting I mentioned in Chapter 4,
plus single-sourcing content and much more.

MKDocs

Written in Python, I have always found MKDoc’s
(http://mkdocs.org/) simplicity refreshing, and it rarely
disappoints me. That simplicity does mean that it doesn’t, by
default, do so much, relying on plugins to achieve many of the
features other SSGs support by default. However, MKDocs’
underlying Python means that you can add standard extensions

https://gohugo.io/
https://www.docsy.dev/
http://mkdocs.org/


to its Markdown handling engine, bringing more options. One
of the most popular additions to MKDocs is the Material for
MKDocs theme (https://squidfunk.github.io/mkdocs-material/),
which provides documentarians with a lot of helpful
functionality, including versioning, but not content single-
sourcing, which you need an additional plugin for.

Astro Starlight

I built my own personal website in Astro, and if something such
as Docusaurus isn’t complex enough for you, then try Astro’s
documentation option, Starlight (https://starlight.astro.build).
When I last tested it, the project was in its early days and was
missing a lot of useful features. However, if it moves as quickly
as Astro, the community will plug those missing features soon.
Still, at the time of writing, Starlight includes features for the
most common documentation-specific formatting, and you can
add many others with external plugin components. It uses some
inconsistent patterns for those features, which I found
confusing when I last tried it. Astro doesn’t use React and
instead uses a similar component-based architecture and MDX.
Astro also lets you consume content from other sources besides
Markdown files, such as APIs, which is one of the reasons I
chose it. The following figure shows a page using Starlight:

https://squidfunk.github.io/mkdocs-material/
https://starlight.astro.build/


Figure 6.3 – A page rendered in Starlight

Eleventy



This is another option that’s built with JavaScript, and not
exclusively for use with documentation, but I know many
documentarians who love it, so I’ve included it as an honorable
mention. Eleventy (https://www.11ty.dev/) claims to be simple
and fast, and it has a friendly community, which helps more
than you might think. Much like Hugo, it doesn’t include many
options for custom formatting; rather, it provides a shortcode
framework, and you pick a theme that ships with shortcodes
that suit documentation needs, such as plugins
(https://www.npmjs.com/search?q=keywords:markdown-it-
plugin).

Sphinx

Any of you already familiar with documentation tools that use
Markdown might wonder why I included Sphinx in this list.
Sphinx (http://sphinx-doc.org/) is primarily designed for use
with RST files but also supports content sources from
Markdown and AsciiDoc. However, because Sphinx doesn’t add
many features and instead leverages those found in RST and
AsciiDoc, you do lose access to many features if you use
Markdown. So, unless you want to use it for compatibility
reasons, it’s probably not the best option for Markdown. It’s a
well-known enough tool, so I thought I should mention it in
passing at least.

https://www.11ty.dev/
https://www.npmjs.com/search?q=keywords:markdown-it-plugin
http://sphinx-doc.org/


REMEMBER THAT SOME PEOPLE JUST WANT TO WRITE

So far, I have only really talked about the positives of docs as code
and all the tools that are part of it. If you have development or
DevOps experience, docs as code probably don’t seem so complex
or challenging. However, in the documentation world, you are
likely to encounter people who don’t have as much experience
with those skills. While many of the docs as code tools and
processes follow familiar patterns and practices, there is still a lot
of initial setup and ongoing maintenance that someone needs to
do. The more complexity you introduce, the more maintenance
work is needed, and the more custom work you introduce, which
means the more likely you are to miss people if they move on from
your project or company.

Helping less technical writers
with headless CMS

Earlier in this chapter, I mentioned other common methods for
creating documentation outside of the docs as code practice,
such as using a CMS or wiki. There is a middle ground that’s
quickly worth mentioning: headless CMS. This method is
especially useful for those in mixed teams with other team
members who might struggle using text editors, markdown,



and version control. Instead, you can mix both, using a CMS to
create and maintain content workflow and markdown files. The
CMS outputs content as JSON APIs that you can consume in
frontend applications to render the content.

Many of the tools in the headless CMS world are commercial,
such as Contentful (https://www.contentful.com/) and DatoCMS
(https://www.datocms.com), but there are a handful of open
source options, such as Strapi (https://strapi.io/) and Ghost
(https://ghost.org), and even traditional CMS that often have
some headless mode these days. I am unsure how popular the
headless CMS trend still is. Whenever I tested a tool, I found the
content creation process relatively smooth, but often, the
ingestion side of frontend tools was more complex than it could
be.

But headless CMS remains a potential option for those of you in
larger mixed companies who want a more cohesive content
experience but would still like to take advantage of some of the
aspects of docs as code.

Analyzing documentation
performance

https://www.contentful.com/
https://www.datocms.com/
https://strapi.io/
https://ghost.org/


After a chapter of discussion on docs as code tools and practices,
the tools for analysis are not particularly different from any
other website. As I mentioned in Chapter 5, the trick with
documentation is figuring out what you want to assess before
choosing a tool.

Analytics tools

There are a lot of potential options for analytics, including
Google Analytics (https://analytics.google.com/analytics),
Matomo (https://matomo.org/), and Mixpanel
(https://mixpanel.com/). And these are just the services I’ve
used. Your hosting provider or tool (if you’re not following docs
as code) may also provide other additional options. This isn’t a
book on analytics setup. Each option would probably take at
least a chapter to cover. Instead, I cover some general
considerations when choosing and setting them up.

Almost all SSGs have variables in configuration by default or via
a plugin for at least Google Analytics. The template takes those
variables and renders them in the right places for the correct
setup. Google Analytics variables are so common by default in
SSG themes that it’s worth checking them as they could be set to
the developer’s account, meaning you’re sending analytics to
someone else’s account!

https://analytics.google.com/analytics
https://matomo.org/
https://mixpanel.com/


First, consider that much of your (technical) audience probably
uses some form of content blocker, which may mean all your
carefully constructed analytics setup is largely bypassed
anyway.

Next, think about what you want to assess. This consideration
isn’t any different from setting up analytics on any other
website, but the aims of a documentation site are quite different
from a marketing or sales site.

If you want to track time to getting started, as I mentioned in
Chapter 2, think about how you could do that. Is it tracking
what an analytics service identifies as an individual from one
start point to a finish point and how long it takes them to get
there? There may be better ways to track this through code
added to your getting started guide. For example, if someone
has to register for an access token, the time difference between
registering and making a request signifies they have reached
the end of a tutorial.

Neither measure is perfect, but my point is that there may be
better ways and tools to measure what’s important to you.
However, this requires you to create custom code and
remember that someone has to maintain it moving forward.



Sentiment

In Chapter 5, I mentioned the things to consider when using
tools that ask readers what they think of your content. What are
the options to implement such a mechanism?

You can create your own in your SSG of choice, but you need to
consider where you want to store results. Are they emails? If so,
how do you search and parse the results? Do you save them to a
file or another data source? This is fairly straightforward for
most developers, but remember my caveat – someone needs to
maintain this over time:





Figure 6.4 – A screenshot of the Next.js feedback widget

Alternatively, you can add a third-party plugin from services
such as HotJar (https://www.hotjar.com), Usersnap
(https://usersnap.com), and Uservoice
(https://www.uservoice.com). But again, remember that many
of your readers may block these and never see them.

One last option to consider is accepting feedback directly, where
your users are already likely to want to engage and give
feedback to you. This is probably in your product or
documentation repository. Many SSG templates provide
convenience links for readers to suggest changes or provide
feedback on a page they’re reading. This also means you end up
with everything in one place. There are even tools such as
Giscus (https://github.com/giscus) and Utterances
(https://github.com/utterance) that add more user-friendly
wrappers around the GitHub API to allow people unfamiliar
with it to add comments.

I have almost always worked on open source documentation or
tools, but I appreciate this won’t be the same for everyone. In
this case, most common project planning tools, such as Jira and
Asana, also allow widgets that send feedback straight into the
tool.

https://www.hotjar.com/
https://usersnap.com/
https://www.uservoice.com/
https://github.com/giscus
https://github.com/utterance


Summary

OK! That was a lot of information and barely scratched the
surface of all the options available. Hopefully, you can see that
the wide world of documentation tooling, while not quite as
wide as developer tooling, offers a lot of options to suit almost
all tastes and requirements.

This chapter covered the essential tools you need for using the
docs as code methodology while also looking closely at two of
the other popular methodologies many documentarians use.

If you want to find more options, take a look at this awesome
list for documentation tooling:
https://testthedocs.github.io/awesome-docs/.

Those essential tools for docs as code are as follows:

A text editor to write in
A markup language to use
A way of collaborating with others
A way to render the documentation you write
Methods for assessing how useful readers find the
documentation

https://testthedocs.github.io/awesome-docs/


I also covered important topics related to these tools, such as
metadata, newer markup language options, and forward-
looking ideas on what documentation could mean. After these
essentials, the final two chapters of this book look at these
future ideas. As a developer, you’ve probably started to realize
that treating documentation in similar ways to code opens it up
to a lot more possibilities than just writing and rendering. And
that’s exactly what Chapter 8 is all about. See you there!



7

Handling Other Content Types
for Comprehensive
Documentation

The last couple of chapters looked at the principles, processes,
and tools involved in the process of creating words that form
documentation. This chapter covers what else you can add to
documentation to help people learn beyond words. It covers the
following topics:

Code examples
Screenshots, images, and charts
Animated GIFs and videos
Interactive experiences

For each of these, the chapter covers what adding those
elements brings to documentation, how to add and maintain
those elements, and the positives and negatives of using those
elements.



We are more than technical
writers

I have always had an issue with the term “technical writer,” as it
implies that all documentation consists purely of the written
word.

Many of you have probably heard the following phrase:

“A picture is worth a thousand words.”

This may not always be true with documentation, as images
aren’t always relevant or useful, but the phrase makes a good
point. The modern web is generally an all-singing, all-dancing
experience, and while documentation needn’t go to extremes,
you can make it far more interesting than pure slabs of text.

One of the many startling facts you discover about the
documentation you invest sweat, blood, and tears into is that
people don’t pay too much attention to the order of the words
you write. They tend to scroll around the page, attracted to
elements that stand out, such as images and code examples.
Chapter 4 covered this in some ways, which is why now, in this
chapter, I reiterate why it’s important to break up walls of text



with other elements. As disheartening as it might initially
sound, you can use this knowledge to your advantage. You can
draw someone’s attention with an image or a code example and
then gently transition their eyes to the text around those
elements containing important information.

With you reassured, I begin with the most common addition to
text in technical documentation: code examples to demonstrate
concepts.

Code examples

This book is primarily aimed at developers, so I assume that
whatever you want to document needs users to create some
code. Explaining a technical concept with code examples is one
of the more common elements to add to documentation and
something readers are used to seeing. They probably expect
them. However, rarely are code examples useful or, worse,
even functional. How often have you followed a tutorial, copied
and pasted a series of code snippets into an editor, to run it and
find that it didn’t work? I would guess it’s quite a common and
frustrating experience.

If someone is motivated to learn (or has no choice) your project
or product, they will continue experimenting and trying to



figure out what’s wrong. But they will give up and move on to a
competitor if they aren’t motivated. If your project is open
source, they might create an issue or a pull request. More often
than not, you may not even know there’s a problem until
someone tells you or you try the tutorial yourself.

How and why do code examples frequently end up in such a
sorry state? There are a few potential reasons that could include
any of the following:

The writer of the examples made too many assumptions
about the reader’s prior knowledge and setup. Chapters 3 and
Chapter 5 covered this topic.
The code snippets were not written for someone to follow
and use but purely as an isolated example.
It’s unclear what a reader should do with the code snippet in
the context of a full application.
The code snippet wasn’t tested.
Dependencies the code snippets use have changed.

I won’t address these issues individually but rather review my
typical workflow for creating and maintaining good code
examples that hopefully reduces as many of these issues as
possible. Some steps of the workflow are more straightforward



than others, so I will identify which you should definitely do
and which you can work on later to improve what you have.

The steps are roughly the following:

1. Decide on a consistent example.
2. Create and organize code examples.
3. Test code examples.

Let’s look at each of these steps in more detail.

Deciding on a consistent example

A consistent example is a step in the process that can wait until
later. Having the first step as a “nice to have” might seem
strange, but there’s a good reason for this. It’s a good practice to
find use-case examples for your code snippets that are
consistent throughout the documentation and meaningful to a
reader in a real-world way. However, figuring out what these
real-world examples could be takes time, especially for new
projects or documentation, when you might not be sure what
those examples could be.

If you are a developer on the project, then you can probably
create those examples yourself. But if you’re not, or you’re not
the subject-matter expert (SME) on the area you’re



documenting, you may need help creating those examples,
which can also take time.

A place for Hello world

When thinking of adding code to a quickstart or getting started
guide, maybe many of you ask, “Chris, what’s wrong with the
time-honored ‘hello world’ code example?”

Well, nothing, per se. But it’s become overused, isn’t always
relevant or helpful, and doesn’t help you pick a consistent
example throughout the documentation.

It’s better to figure out that example use case first and then
think about the equivalent of “hello world.” Think of “hello
world” as a more abstract concept to think about and show the
literal first steps someone needs to take to get something
happening with a project.

With all that aside, how do you decide on a use case?

Picking a use case

If you have some ideas after the scoping process outlined in
Chapter 5, try to align with them as much as possible. As you
build in documentation complexity from getting started



through deeper tutorials and reference documentation, you
should keep the code-example complexity in line to match.

Let’s revisit the geocoding example from Chapter 1 (see – I am
practicing what I preach). It’s made easier in this case as a
geocoding library has a narrower focus than, for example, a
programming language, but still, it helps understand how to
create code examples with a use case in mind.

How about a delivery service company that wants to use the
library to take customers’ addresses and convert them to map
coordinates so that drivers can quickly navigate to the location
to make a delivery?

To begin with the quickstart, you can show the reader how to
write code to install, set up, and authenticate with the library
and then generate a latitude and longitude pair from an
address. That is a good example from which the reader can
follow code snippets, run them, and receive a meaningful
output.

Then, in other tutorials, you can add more in-depth code
snippets that show handling incomplete addresses, routing
information, and traffic details. The reference documentation is
the one place where you might not need to stick to the example,



as an individual application programming interface (API) or
software development kit (SDK) function might be too low-
level to remain relevant to the example. Code examples in SDK
or API references are also often autogenerated, making adding
use cases around them harder.

As you document more complex use cases, you can build upon
each example, almost constructing an entire example
application or a suite of example applications as you do. This
brings us to the topic of how to manage and organize code
examples.

Creating and organizing code
examples

When you add code examples, one approach is to add them in
line with text and other page elements. This is a reasonable
approach, but as mentioned in Chapter 6, some tools let you
create code examples separately and then include them in the
documentation. If and when you have time, creating examples
as separate example applications brings additional benefits:

You can test the code. More on that later, and in Chapter 8.
You can provide downloads to let people experiment outside
of the documentation.



Bonus points if you add comments to the downloadable code,
as many technical people prefer to learn from reading code.
Other team members can also use and contribute to this
code, such as sales engineers and developer evangelists.

When you create code examples, try to use best practices for
the languages and frameworks you show, and use as “real-
world code” as possible. It’s a fine line as unless you are
documenting a programming language or framework, you don’t
want to spend too long on boilerplate code or the nuances of
programming language choice, but you also want to show code
that a developer trusts and has confidence in. If you use code
that is too trivial or “toy,” a reader may not trust the content
they read. It connects directly back to the discussion on
confident writing in Chapter 3. Good technical writing is all
about giving a reader confidence in what the documentation
says and the product.

However, the step you can take to help improve confidence the
most is testing your code examples.

Testing code examples

I mentioned testing code examples in the preceding section, and
this is crucial. Test them thoroughly and test them regularly.



How often have you come across a code example to find it
doesn’t work for some reason, directly or indirectly? By directly,
I mean the code doesn’t work or doesn’t do anything, and by
indirectly, I refer to issues with dependencies that your code
relies on, which is a widespread issue in certain ecosystems.

Testing code examples can take different forms. None
necessarily are better than the others.

Manually

The simplest solution is to test manually every time you make
changes or at regular intervals as part of a maintenance process
outlined in Chapter 5. When you do this, play the part of
someone visiting the page for the first time. Cast aside your
assumptions and preconceptions and imagine the page through
the lens of a complete newcomer.

Try to uninstall any already existing dependencies or
configurations from previous tests. Depending on the project
and its complexity, this can be as simple as deleting any existing
working folders or as complex as using tools such as Docker,
Podman, or virtual machines to recreate a fresh environment
for each test.

Automated



A better approach is to automate testing code examples. There
are a handful of ways to do this, and they overlap with other
automated processes you already use for developing software,
such as continuous integration (CI) tools. The trick is
extracting the code examples to test, and there are a couple of
different approaches to this, depending on your toolchain.
Chapter 5 covered documentation toolchains and it depends on
which options the tool you use offers for handling code
snippets.

One approach is to keep code files separate from the
documentation and include or embed them in documentation
files. This means you can run, test, and treat the code examples
like any other piece of code you work with. But there are some
implementation details to be aware of. There’s often boilerplate
code around the code you want to highlight that’s unnecessary
to show in the documentation. For example, importing
dependencies that the code needs. Sometimes, there are code
examples you want to show in the middle of an explanation
that you would handle differently in a full implementation.

Another approach is to parse the code examples from
documentation and bundle them into a full application. This
comes with implementation details that are almost the opposite



of the first approach. You must add the boilerplate missing from
the documentation that a full application needs to run.

Another approach is to host the code elsewhere in an
embeddable editor such as Replit (https://replit.com/), JSFiddle
(https://jsfiddle.net), or GitHub Gists (https://gist.github.com).
However, these only work for certain languages and move
more toward the domain of interactive experiences, which I
cover later in the chapter. If you choose this option, it shares
many of the same implementation details as the first approach.
That is, how do you hide or show the boilerplate code that is
unnecessary to show in documentation?

Outside of the tools you use to manage and render
documentation, another factor in deciding which option to
choose can depend on the programming languages you want to
show examples for. Different programming languages have
different levels of boilerplate and complexity to run the code.

Keeping an eye on prerequisites

Again, Chapter 2 and Chapter 4 covered this, but it is relevant to
the complexity involved in running code. As you build and test
code examples, remember that people need to run them at
some point. The more complexity and dependencies you add,

https://replit.com/
https://jsfiddle.net/
https://gist.github.com/


the more information you need to give to people who want to
run it. Keep prerequisites and dependencies as simple and
language- and platform-standard as possible.

The second most common element you are likely to add to
technical documentation is screenshots. Screenshots and other
images might be more common than code examples for less
technical documentation. The next section looks at how to
create and maintain helpful images.

Screenshots, images, and charts

Some people are visual learners, and others aren’t, or not as
much as others. Images are a controversial topic among
documentarians, with equal likes and dislikes.

On the positive side, images have the following, they:

Can explain a concept more simply and succinctly than words
Give a reader a confirmation that what they see as a result is
the expected result
Help people whose first language isn’t English (or whatever
the primary language is) understand what they are reading
Help show flows, paths, dependencies, or structures that
would be complicated with words



On the negative side, images have the following disadvantages,
they:

Are harder than text to keep up to date
Aren’t as accessible as text unless accompanied by good alt
text (which is rare)
Increase page weight unless optimized, which, again, is rare
If you use any form of version control for managing your
documentation (more on that in Chapter 6), images and
image changes add to repository size and weight
Can overload a page as much as too much text

Images and text should complement each other, not replace
each other. As you write, decide whether an image would help
clarify your words. When you add an image, think about
whether words help clarify it.

But as this section is about using images, for now, I
acknowledge the negatives and assume that you have done the
same, concluding you think an image is what you need. Let’s
start with screenshots.

Screenshots

First, ask yourself again if you need a screenshot at all to
illustrate a concept, as getting the balance right is tricky. Often,



documentarians start at one extreme of the scale, creating too
many or too few and then slowly removing or adding them to
reach an ideal amount.

If you are documenting a project that most people interact with
via a graphical user interface (GUI), you may need more
screenshots than one that most people interact with via a CLI,
API, or code function. However, this is still not completely clear-
cut. A good rule of thumb is if something is unclear or open to
interpretation from an explanation, then clarify it with a
screenshot.

For example, take an application that uses a GUI, which has an
important preference that many users miss. You could argue
that the application should be better designed, but let’s set that
aside, as it’s not directly our role. In this case, creating a
screenshot highlighting the preference in question is worth
doing, as the following example shows:



Figure 7.1 – An annotated screenshot (layout) of the Postman
interface

However, if an application primarily has a terminal interface,
you likely don’t need an image-based representation of its
output and can use code examples to do the same.

The gray area begins in between these two extremes. If your
project relies primarily on a graphical interface, do you create
screenshots for every window, menu, and panel? The decision
comes down to conversations you have with other
stakeholders, how much you follow the operating system or
framework patterns for design, and your company’s confidence
in how complex you think the application is. The potential risk
associated with improper use of your application also plays a
big factor. If you work in high-risk sectors such as medical or
financial, you might want to be cautious and include many
screenshots to ensure users follow steps as accurately or as



well-informed as possible. With lower-risk software, too many
screenshots may give the impression that a project is more
complex and needs more explicit explanation than it does.

And when you decide that a screenshot is appropriate and
useful, does the screenshot need more? If you create a
screenshot to show an overview of the application interface, do
you need to annotate or mark areas to identify them? Is one
screenshot enough to show an application flow, or do you need
to show several with numbered steps?

Do you use real screenshots from your application or what
some refer to as a simplified user interface (SUI)
(https://en.wikipedia.org/wiki/Simplified_user_interface), a kind
of pseudo-simulation of what the application looks like?

Slack is a big user of SUI-style screenshots in its documentation.
They are often part of an animated GIF, so the following
example is taken from one, making it lower quality:

https://en.wikipedia.org/wiki/Simplified_user_interface


Figure 7.2 – A screenshot of a Slack SUI

And finally, what data do you show in screenshots? Populating
screenshots with realistic data is as important as creating
realistic code examples. If your screenshots are full of nonsense
or inconsistent data, will any reader take them seriously as a
useful aid? Where do you get this data from, and how do you
populate the application instance you use for screenshots with
the data?

Creating screenshots



There are numerous tools for creating screenshots, and they
broadly fall into three categories:

System default tools in macOS, Windows, and Linux. These
have become far more comprehensive in the past few years,
with the ability to add overlays, annotations, crop, and more.
Third-party tools add extra features such as smart removal
of interface elements, customizable styles for annotations,
and export options. Popular options are the following:

Snagit (https://www.techsmith.com/screen-capture.html) is
available for macOS and Windows.
CleanShot (https://cleanshot.com/) is available for macOS.
Flameshot (https://flameshot.org/) is available for
Windows, macOS, and Linux.
Shutter (https://flameshot.org/) is available for Linux.
Loom (https://www.loom.com/), is browser-based.

Automated options that borrow technologies from web
testing to simulate interfaces and capture their output for
screenshots. There isn’t really any off-the-shelf tool for this
option. It involves hooking tools such as Puppeteer
(https://pptr.dev/) and Cypress (https://www.cypress.io/) into
existing CI processes. This isn’t an easy process, but it can be
worth it in the long run, as every time you update the
interface code, you have new screenshots. I cover some of
these ideas more in Chapter 8.

https://www.techsmith.com/screen-capture.html
https://cleanshot.com/
https://flameshot.org/
https://flameshot.org/
https://www.loom.com/
https://pptr.dev/
https://www.cypress.io/


Screenshots aren’t the only images documentation might need
to illustrate a point. Others include flow charts, charts, and
diagrams. These can represent myriad ideas, and it’s hard to
know when one might be more appropriate.

Adding other images

If what you’re documenting has a lot of underpinning theory
that knowledge of would help people understand better, then
consider adding an image of how that theory fits together.

If people often use what you’re documenting as part of a
complex connection of other components and it isn’t obvious to
understand, consider an illustration to show how those
components connect and relate. Similarly, if what you’re
documenting consists of multiple components that can connect
in different ways and understanding those ways is crucial,
consider an image to summarize that.

A good example in the first case is technologies related to
Kubernetes. If the project you work on somehow interacts with
or extends Kubernetes, then there are often different ways to
accomplish this with important subtleties. An image
accompanying a text overview could help people understand



the differences. The following diagram shows how someone
could build a Kubernetes cluster:



Figure 7.3 – An architectural diagram of Kubernetes



A good example in the second case also crosses over with
explaining the theory behind a project. Maybe your project
consists of a component that collects data and another that
analyzes that collected data. These components are important,
so users may want to host and run them on different servers or
regions to allow for performance or regulatory issues. Again, an
image before the text explaining this could help people
understand the possibilities.

The following is another example from the Kubernetes
documentation that shows the conceptual history of containers,
which is useful to understand when using Kubernetes:



Figure 7.4 – A diagram showing the conceptual history of
containers

Finally, charts typically have limited relevance but highly
impact those use cases. Charts compare numerical data, so they
can show certain concepts far clearer than words. A large list of
data is hard for most people to parse and understand, whereas a



chart can quickly show that data in the abstract. It misses details
but communicates a point across to readers. Marketing and
sales teams are notorious for misusing charts to impress people.
A classic example is speed charts, which computer
manufacturers often use to demonstrate performance
increases. They often show a line or bars moving upward with
no context or comparison, which is great for selling products
but not for explaining them to people. If you decide to use a
chart, make sure it’s meaningful and purely to inform. For
example, it might be to show how upgrading to a new version
of a project improves the speeds of some functions over an
older version. Or, it could demonstrate how production mode
versus debug mode compares.

The following example is from the Eleventy documentation and
is a screenshot comparing build speeds between tools:



Figure 7.5 – A screenshot comparing build speeds with Eleventy

Making images accessible

A picture may speak a thousand words, but not if someone can’t
see it. Any image you add needs a way for someone visually
impaired to access the content, too. These users often use
screen reading applications to help them navigate applications
and websites.

At a minimum, you need to add an alt attribute
(https://en.wikipedia.org/wiki/Alt_attribute) to the image that
tells a screen reader what to read in place of that image.
Technical documentation can be poor regarding alt attributes as
many of the tools documentarians use don’t prompt you to add

https://en.wikipedia.org/wiki/Alt_attribute


them or give much advice on what a good value is. We also tend
not to give much thought to what we add to alt attributes, often
entering minimal text or, at best, text that describes what the
image is; for example, “Screenshot of settings.” There are
different schools of thought on what you should use for alt tags,
but the best answer I heard was that an alt attribute should
describe what the image describes. So, in essence, an alt
attribute should tell someone who can’t see it what you wanted
to communicate with the image in the first place.

For example, instead of “screenshot of settings,” use something
like, “The screenshot shows how to change the text size using the
value in settings.”

If you want to take accessibility a step further, remember my
point about images and text complimenting each other. An
image added with little context in the text around it may give
enough information to someone who can see it, but with no
context around an image, even good alt attribute text gives little
help to someone who can’t see the image.

A final word on adding text-based content to and around images
is that, increasingly, humans aren’t the only consumers of your
content. For many years, search engine crawlers have scraped
your text to produce search results, and they also relied on alt



attributes to produce context from the images they also can’t
read. At the time of writing, large language models (LLMs) are
doing the same, as they also can’t always understand what’s
happening in an image. But artificial intelligence (AI)
technology is moving so quickly that by the time you read this,
that could be possible. Until that time, however, remember that
many entities read your documentation (welcome or not) and
can’t appreciate the content of images. A picture may speak a
thousand words, but it often still needs some to describe it.

Traditionally less common but increasingly popular to add to
documentation are animated images or, as they are better
known, “videos.”

Animated GIFs and videos

A series of images can show the steps someone needs to follow
to accomplish a task, but sometimes, it may be easier to show
the steps directly. There is also evidence to show that newer
learners tend to prefer learning by visual means instead of text.
So, for different reasons, a video of some form may be a better
method for explaining a concept.

Animated graphical interchange format (GIFs) and videos
share many of the same positives and negatives of images and



add more besides. Here is a summary of things to consider.

On the positive side, videos and animated GIFs have the
following advantages, they:

Can show someone the steps to follow and the intended
outcome directly
Give someone the chance to follow along, pausing the video
as they do
Allow for some incidental and anecdotal practical advice
while explaining a concept
Depending on how you create and host a video, it can be
more accessible than text with autogenerated transcripts and
captions
Give new learners a format they are more familiar with
Depending on how you host a video, give a project search
optimization, marketing, and discovery opportunities

On the negative side, videos and animated GIFs have the
following disadvantages, they:

Are time-consuming to create and keep up to date.
Can require specialist equipment to do well.
Need different skills and experience from what’s needed for
writing text. Depending on the size and structure of your



company or project, it may not be you who creates the
videos, but instead someone in marketing, developer
relations, or sales engineering. However, as documentation is
likely to host them, you should be as involved in the process
as possible.
The creation and management process exists outside of any
other tooling you use.
More experienced learners find it harder and slower to
access the information they are looking for.
Depending on how you create and host a video, it can be less
accessible than text for those with low vision or hearing.

Once you have balanced all the positives and negatives of the
process and have decided you would still like to make a video of
the process, how do you decide what to show?

Tools and processes for video production, editing, and
distribution are an entire book in themselves. This chapter
covers the general process for creating a video for
documentation.

What to make a video of

Generally, videos and those who watch them like to see
complete end-to-end processes of accomplishing particular use



cases. Ideal candidates for videos are creating versions of
getting started guides and tutorials. If you already have the text
written, you already have the beginnings of a script.
Considering the negatives, it’s best to start with your most
popular content first and measure the performance of a video
before committing to too many.

What to show

Videos do not need to show everything in a process, just the key
steps and outcomes. You don’t need to show the entirety of
progress bars or terminal outputs or wait for processes to
complete. The typical length of an instructional video that
people might be motivated to watch is around 5 minutes. 10 is
considered long. So, for everything you think of including, think
if it’s needed.

How to record

Without covering tools in depth, the first decision to make is
whether you want to include audio and/or video of the
presenter with the content you are showing, which is probably
a screen share or presentation.

Audio



People want to hear someone explaining what the video is
showing. Whoever records this should buy and use a
reasonable quality microphone. These aren’t as expensive as
they used to be and are worth investing in, as anything of
reasonable quality lasts a long time. It may sound contradictory,
but audio – not video – quality is the first thing people pay
attention to when watching a video. Noisy or poor audio
irritates people and cause them to move on quickly, wasting any
other effort you made. Laptop and phone internal microphones
are way better quality than they used to be but use a “proper”
microphone, and you instantly notice the difference. Unless you
buy a high-end non-Bluetooth model, don’t use a wireless
microphone as it adds lag to audio and outputs at a far lower
quality than a wired microphone. Beyond that, almost any other
modern microphone at any price above $30 will probably be
enough. If you have the budget, I suggest spending around
$100. Anything in that bracket will serve you well.

Without going into too much detail, there are two main types of
microphones: analog and digital. An analog or “traditional”
microphone uses older cables to transmit its signal. While they
often offer better audio quality, you need an interface to
translate the signal into a digital signal that a computer
understands. You may already have such a device, but if not,
then use a digital microphone that connects via a USB cable.



You don’t need to set up a professional-grade recording studio
(yet). However, try to reduce background noise or excessive
echo, which are equally as distracting for viewers and listeners
as a poor microphone and are harder to remove during editing.
If you aren’t a natural public speaker, practice what you’ll say
before recording and try to sound as confident in delivery as
possible, paying special attention to nervous vocal ticks far
more apparent in recorded speech than conversational speech.
For example, lots of “ums” and “ahs” are acceptable in
conversation, but they grate and irritate a listener quickly in a
recorded conversation. The same goes for filler phrases and
words such as “like,” “so,” “the thing is,” and so on. Finally,
watch for non-verbal nervous fillers you add. These include
clearing your throat, coughing unnecessarily, smacking your
lips, and other actions that listeners notice far more than people
you have casual conversations with. You can remove all these
in editing, but it adds to the work, and if you also include
speaking to the camera footage, keeping things synchronized
and smoother is more challenging.

Confident speaking is as important as confident writing for
instructional content, and if you don’t sound confident, viewers
may not trust what they are watching.



That’s how to put the words behind what you’re showing. How
do you show what you want to explain?

What to show

In many ways, the content to consider is similar to the other
non-text content presented in this chapter, except that it’s
dynamic and moving instead of static. If a tutorial had
screenshots showing how to accomplish certain steps, that
could be a video. If a conceptual guide had charts, you could
explain the reasoning behind them. If a getting started guide
showed the reader how to build something through code
snippets, you could show how to assemble these and construct
a working application. In all these cases, the video should focus
on what’s important on the screen as much as possible. For
example, if showing code, make sure the code is readable with
regard to font size and contrast. If showing steps through a
graphical interface, make sure your mouse pointer and what
you’re clicking on are visible. Remove as many other
distractions as possible from what you are showing, such as
notifications, other applications, and distracting background
images.

If you are new to making videos, adding footage of yourself is
probably something to leave until later, as it adds extra



complexity you may not need. As much as documentation
readers don’t generally care too much about who wrote it,
viewers of instructional videos are rarely that interested in who
made the video. As you build up a reputation for video content,
it might be worth considering adding more “personality” by
including your face, but to begin with, it can distract from
focusing on what’s important: explaining concepts. If you are
enthusiastic about cultivating a personality as an individual or a
product, it’s worth considering adding face-to-camera footage
earlier. As with creating good audio, crafting good videos is a
large topic, but here are a few small tips to get started.

Hardware is much easier than it used to be. Using a professional
camera instead of the one built into your laptop is preferable.
These are expensive, and laptop internal cameras are far better
than they were even a couple of years ago. However, there are
high-grade cameras that many of us carry around all day that
are easy to forget. Most modern smartphones upward of about
$300 have video cameras capable of resolutions and quality
acceptable for creating video footage that can last you well into
your videomaking journey. All you need is a screen mount or
tripod to position the camera in an appropriate spot for filming.

If you use an iPhone and macOS, then you can use the
continuity camera feature to use the iPhone camera with no



additional software. If you use other combinations of phone and
operating systems, then other options include the following:

Camo (https://reincubate.com/camo/)
Iriun (https://iriun.com/)
DroidCam (https://www.dev47apps.com/)

And there are many others. These are just the options I’ve tried.
The work-from-home shift prompted many similar applications
to emerge to suit your budget and feature requirements.

The hardware aside, my two remaining quick tips are to look at
the camera as much as possible and to pay some attention to
lighting. Looking at the camera is harder than it sounds, as
typically, your script or what you’re explaining is nowhere near
the camera lens. This takes practice, and typically, you need to
memorize what you want to say or spend time perfecting your
setup to get everything in an optimal position.

Good lighting is almost on par with how a reasonable
microphone can lift audio quality. There is little point in using a
great camera if you’re hidden in shadow. You can improve
video lighting by carefully placing lamps and lights you might
already own, but LED lights suitable for video making are also
much cheaper than they used to be. You can probably buy one

https://reincubate.com/camo/
https://iriun.com/
https://www.dev47apps.com/


or two generic ring lights or rectangular LED lights with stands
for a reasonable price that will illuminate you admirably for a
while.

Recording

While I barely scratched the surface, for newcomers to video
making, that was a lot to take in, and you’re likely wondering
how to record all this wonderful audio and video you’re now
ready to make.

Unsurprisingly, there are a few options, and similar to
screenshot tools, they range from operating system default to
varying price levels of third-party tools depending on your
requirements and budget.

Capture

The inbuilt recorders in macOS and Windows are far better
than they used to be and now offer reasonably advanced
features if you’re recording one audio and/or video input at a
time. By this, I mean you can record a screen share and
microphone or face to camera and microphone, but not at the
same time. However, there are certain tricks where you can
launch multiple instances of an application simultaneously to
record multiple inputs. The system default options rarely offer



additional features, such as highlighting mouse clicks, but are
fine for your first steps into recording.

The space for third-party capture options is ample, so I highlight
some of my favorites and common favorites of others:

Open Broadcast Studio (OBS): OBS (https://obsproject.com/)
is free, open source, amazing, and complicated to begin with.
But the price and community around it are compelling
reasons to try and stick with it. It allows you to create scenes
comprising different audio and video inputs to lay out into
one output. You could have a full-screen input of your
screen, with a smaller overlaid version of your camera over
it, plus one or two audio inputs. You can then output that into
a recording or, if you feel bold, even a live stream. OBS has a
plethora of plugins and extensions and is one of those
overwhelming applications, but once you start to uncover its
hidden depths, it offers a lot of power.
TechSmith Snagit and Camtasia
(https://www.techsmith.com/screen-capture.html): While
Snagit is more designed for screenshots and Camtasia for
video, they both offer some similar features relevant to
instructional videos, such as pre-defined layouts for
combining screenshare and face-to-camera footage, mouse

https://obsproject.com/
https://www.techsmith.com/screen-capture.html


highlighting, templates for overlays, basic editing features,
and more.

Compositing and editing

You can try to capture all your videos in one shoot and remove
the need for editing, but this is harder than it sounds, and even
then, you likely still need to make small amendments or
additions to a video and you need some form of video editor in
addition to a capture tool unless your capture tool also offers
editing options.

Again, your operating system possibly has some free options,
such as iMovie or Clipchamp, which won’t offer advanced
features but are enough to get you started. For Linux, there’s
Kdenlive (https://kdenlive.org/en/), which isn’t built into Linux,
but it’s a comprehensive option.

If your company has a Creative Cloud subscription, you can use
Adobe Premiere Pro
(https://www.adobe.com/products/premiere.html) (my editor of
choice, purely because I have a subscription). As with any other
professional editing tool such as Final Cut Pro
(https://www.apple.com/final-cut-pro/) or DaVinci Resolve
(https://www.blackmagicdesign.com/products/davinciresolve),
they are designed to offer features up to a professional editor

https://kdenlive.org/en/
https://www.adobe.com/products/premiere.html
https://www.apple.com/final-cut-pro/
https://www.blackmagicdesign.com/products/davinciresolve


level, so they have a steep learning curve. Regarding DaVinci
Resolve, Blackmagic Design, the company behind it, now offers
its basic version for free, so it is a good option for beginners
who want to build up their skills over time.

Interactive experiences

The final non-text addition to documentation is a little harder to
define, but it builds upon everything else covered in this
chapter. There are certain products and concepts you need to
explain that are harder or more abstract for readers and
potential users to understand. Maybe it’s a new paradigm, or it
consists of many interrelated components, or the sheer number
of possibilities makes it hard for people to understand where to
start.

In these cases, an interactive way of showing concepts can help
as it’s a way for people to experiment with your product and see
results directly. Many people learn by trying and practical
experimentation. While code examples people can copy and
paste are one aspect of this, they are also a place to lose people
as they dive into their text editor and the trials and tribulations
of running applications locally. Replicating a way for people to
do the same directly inside documentation keeps them inside



the documentation. Also, it offers potential methods for
gathering metrics on what people learn and how effectively.

What constitutes an “interactive experience” depends a lot on
your product or project, as what you need to explain and how
it’s possible to show vary greatly depending on that. Here are
some ideas.

If your project is mostly an API, then the good news is that most
API-specific documentation tools include an interactive
component. Your main choice is whether to stick with a
“mocked” option, where the tool emulates request and
response data, or if you want to connect the API to a real
backend and return real data.

If your project’s main dependency is a programming language,
maybe with an SDK, then you’re in luck. The options for hosting
interactive code examples have exploded in recent years, with
everything from platforms that let you embed runnable code
snippets to entire editors now available in the browser. Most of
the time now, these work with programming languages that
need to compile first to run, depending on how niche your
compilation target is. However, these only work with browser
or browser-like frontend applications. If your intended output is



a desktop or mobile application, then while not impossible,
showing interactive output is harder.

For projects requiring more components or infrastructure, you
can use containers to spin up short-lived demo environments.
These containerized environments can contain all your project
needs to function, such as databases, caches, other
infrastructure, and demo data to show examples of your project
in action. The ephemeral nature of these is useful for reducing
costs, but when given an environment to play with, developers
are likely to try to break it. So, no matter what they try to do,
within a few minutes, it’s reset anyway. Again, there are a
variety of providers in this space, or you can create your own
setups.

Adding interactive elements to documentation contributes the
most to something I term “dynamic documentation,” an
encouragement to embrace modern web technologies more in
the documentation and benefit from what they can bring.
Depending on how you architect what you build, your
documentation and applications can share code and data,
opening up your documentation to a whole world of potential
for you and its readers.

More than final words



This chapter looked at how to explain complex concepts with
more than words and how to decide what method works best in
which context. The chapter covered code examples, images,
video, and interactive experiences and the tools and best
practices for creating them. However, you shouldn’t feel limited
to these media types alone or using only one. The nature of
learning and the way people learn is changing rapidly, and
anyone charged with helping people understand something
must find the most effective learning methods their audience
needs and wants.

While not easy to craft, words are relatively easy to create and
maintain. Everyone has access to a text editor of some form. A
lot of the options I covered in this chapter are a lot more work,
and you’re probably wanting some advice now to help you save
time and work more efficiently. That’s exactly what the next two
chapters cover. See you there!



8

Collaborative Workflows with
Automated Documentation
Processes

Chapter 6 covered the tools essential for any documentarian to
work with the docs-as-code methodology. But you probably
started to realize that treating documentation in similar ways to
code opens up many more possibilities for automation,
standardization, and testing. While the potential for automating
aspects of documentation is vast, this chapter focuses on the
following:

Creating more consistent language with style guides and
linting
Maintaining up-to-date images and videos
Testing code to ensure it works and is up to date

After these three main topics, it also covers some smaller,
miscellaneous ideas.

Striking the right balance



While considering documentation automation, or
documentation operations (DocOps) as some call it, it’s too
easy to take things too far. You can automate and test so many
aspects that the documentation becomes almost as complex as a
code base. Documentation is often the first point of call for
people who want to contribute to open source projects or a
place for less technical team members to contribute things that
those with a more technical mindset might have missed. The
key to implementing a good balance for automation and testing
is to add tooling that helps enhance someone’s contributions
without blocking them with unnecessary complexity. If
someone wants to update a spelling error in a document,
should they be required to jump through multiple hoops to do
so?

Many of the same code automation and testing rules also apply
to DocOps. If tests are unreliable, “flakey,” or frequently fail for
unknown reasons, are they useful? Testing and automating for
the sake of it isn’t helpful or constructive. Reducing the amount
of repetitive work people must do to ensure quality and
consistent documentation is helpful.

Let’s begin with one of my favorite DocOps-related topics, which
helps everyone in multiple roles and stages of the



documentation process: testing style guides or testing for
consistent language. But first, what is a style guide?

What is a style guide?

Although Chapter 3 could have covered style guides, I wanted to
save them for this chapter and show you how combining them
with DocOps practices makes them more useful.

A style guide is a combination of things, and while many writers
have encountered them, developers might be less familiar with
them. Think of a style guide as comparable to something such
as a configuration file for defining rules for JavaScript code with
ESLint (https://eslint.org) or Rust with Clippy (https://doc.rust-
lang.org/clippy/) but for human language. ESLint and Clippy are
“linters,” and as a developer, you’re probably familiar with this
code quality improvement concept. Later in this section, I take a
style guide and use a linter to enforce it with documentation.
This is a practice that is less familiar to writers than developers.

Style guides for human language are nothing new, and while
they have existed for centuries in some form, they entered the
writing world at scale during the golden age of print media.
When you have a publication with multiple writers constantly
submitting article copy, you need a way to ensure your

https://eslint.org/
https://doc.rust-lang.org/clippy/


publication has a consistent voice. Even though each writer
brings personality, they should use similar terminology and
phrasing, and all sound like they work for the same publication.

A style guide gathers less obvious rules for how to write. These
can include obvious instructions such as using correct spelling
or grammar but also areas where different options are possible,
and it’s a matter of opinion. A style guide could also include the
tone of voice, preferred terminology in different situations, how
to spell custom branding, formatting, and more.

Different industries generally have different style rules, and
some of the most famous and long-lasting are The Chicago
Manual of Style (https://www.chicagomanualofstyle.org) and the
Associated Press style guide (https://www.apstylebook.com),
both of which are over 100 years old and are still published and
used today.

More relevant to this chapter are the style guides created by
several large tech companies that are typically popular among
documentarians. These include the Microsoft Manual of Style
(https://learn.microsoft.com/en-us/style-guide/welcome/) and
the Google style guide
(https://developers.google.com/style/accessibility), which focus
more on writing style rules for documenting software, including

https://www.chicagomanualofstyle.org/
https://www.apstylebook.com/
https://learn.microsoft.com/en-us/style-guide/welcome/
https://developers.google.com/style/accessibility


guidance on referencing menu items, keyboard shortcuts, and
the myriad jargon that fills the technical space.

Typically, a company or project takes one of these style guides
to determine most of the rules writing should follow and then
adds their own exceptions or additions. For example, I typically
use Google or Microsoft and add extra rules for company
terminology or areas where the project uses specialized
terminology.

So far, so good. Even though human language isn’t always as
clear cut as code, I think most of you reading can understand
why a style guide could be useful for helping you know how to
write. However, the style guides presented so far are often
large, dry documents, sometimes running into hundreds of
pages. Can you really expect someone to consult a document
like that every time they write something?

As much as I like style guides, I might expect a professional
journalist or humble book writer (!) to follow a style guide.
However, it might not be realistic for enthusiastic developers
turned documentarians. Style guide documents aren’t part of a
developer’s world. Tools such as ESLint and continuous
integration (CI) are. How can you make a style guide more
“developer-friendly”? I am glad you asked!



Developer-friendly style guides

Earlier, I mentioned linters, the tools developers use to enforce
style rules for code. It may also surprise you to know that
language linters also exist for human language. Mostly English,
but some of the tools work with other languages.

Before I move on to the options available, I first want to explain
the two main ways these tools work.

The first group of tools typically uses regular expression
(regex) (https://en.wikipedia.org/wiki/Regular_expression), a
common tool in a programmer’s toolbox for matching patterns.
So, for example, if you wanted to check for instances of future
tense, you might look for patterns that contain “will” or “‘ll”.
While there are more complex regex techniques for searching
around instances of patterns to look for other patterns that
might give an idea of context, it has no actual awareness of
what you’ve written. It’s just a sequence of patterns.

On the positive, this means tools using regexes are lightweight,
can run almost anywhere, don’t require communication with a
central service, and preserve privacy. On the negative, you end
up with many false positives without extensive configuration
and tweaking. It’s also not possible to turn every aspect of a

https://en.wikipedia.org/wiki/Regular_expression


style guide into code. For example, the Google style guide has a
section about not making “excessive claims”
(https://developers.google.com/style/excessive-claims). You
could check for instances of certain words that people tend to
use when making “excessive” claims, but in reality, it’s not
completely possible to translate to a configuration file or regex
pattern. You still need another pair of eyes to check for style
guide confirmation in these cases.

The second group of tools uses natural language processing
(NLP) and possibly artificial intelligence (AI) to detect
violations of style rules and consider context. The recent wave
of AI tools has expanded the options in this group, but I save
covering those newer options for the next two chapters and
cover the older NLP-based tools in this chapter. On the positive
side, these tools have a better idea of the actual context of
writing and can detect some of the more “human” rules, such as
the previous “excessive claims” example. I say “better idea”
because these tools can still assume a lot incorrectly, especially
with technical texts. Because of this, they can offer relevant
suggestions to issues instead of broad, uninformed
recommendations. On the negative side, you typically have to
connect to a service that can run the NLP models, which
introduces connectivity and privacy issues and limitations on
where you can run the tool. Another negative is also that unless

https://developers.google.com/style/excessive-claims


you pay a lot of money, you typically can’t customize the rules it
uses much beyond a broad suite of general checks. Finally, NLP-
based tools suffer from the same issues as the recent wave of
generative AI tools. They sound too confident, and people trust
their recommendations too much. So, ironically, while they may
fix a lot of small grammar issues, they may actually cause more
problems with gray-area language than human eyes would
notice.

Choosing a type of tool to use

It may not surprise you to hear that which type of tool is best
depends.

The regex-based options are more developer-friendly and
flexible, so they are better suited to docs as code.

The NLP-based options are better for writing teams consisting of
people with different skills and a mix of docs-as-code and non-
docs-as-code tooling.

The rest of this section covers a mixture of both tooling options.
I personally have more experience with the regex-based tools
and actively contribute to one of the more popular tools
covered.



Regex-based

In the regex-based tool options, there are single-purpose
packages that check a pre-defined set of tools and combination
tools that you can configure to check for what you want.

Single-purpose packages

Popular options include the following:

Write Good (https://github.com/btford/write-good) checks for
several common style and grammar errors that you can
toggle and use via JavaScript, a command-line tool, or IDE
extensions.
Alex (https://github.com/get-alex/alex) specifically checks
language for some of the unhelpful, offensive, and non-
inclusive language mentioned in Chapter 3. It’s highly
configurable, and you can use it via the command line and
many other integration options.

You can combine and configure these individual packages and
tools, but far more useful are tools that bundle many rulesets
and checks together, allowing you to configure the language
aspects you want to check. They add initial complexity but offer
more options in the long run.

https://github.com/btford/write-good
https://github.com/get-alex/alex


Combination tools

Popular options include the following:

TextLint (https://textlint.github.io): If you’re familiar with
ESLint and the wider JavaScript world, TextLint will feel
familiar. After installing the core package, as in the following
snippet, for every check you want to add, you install another
TextLint package. The following code installs the core package
and a rule that checks for any TODO tags left:

npm install --save-dev textlint
npm install --save-dev textlint-rule-no-todo

You toggle and configure all these optional packages with a
.textlintrc file in a project or folder. TextLint has a lot of

optional packages available
(https://github.com/textlint/textlint/wiki/Collection-of-textlint-
rule) that check everything from grammar rules to markup
validation and many of the semantic structural issues
mentioned in Chapter 4. There are also just as many integration
and usage options
(https://textlint.github.io/docs/integrations.html).

https://textlint.github.io/
https://github.com/textlint/textlint/wiki/Collection-of-textlint-rule
https://textlint.github.io/docs/integrations.html


When I first started looking at language linting, I used TextLint.
However, it may not suit you if you’re not so familiar with the
JavaScript ecosystem, and those of you reading who are familiar
with the JavaScript ecosystem will notice issues with the
approach TextLint takes. Adding lots of single-use JavaScript
packages introduces many other JavaScript packages, which in
turn introduces many other issues in terms of security, speed,
and more. Perhaps the biggest issue is that creating a package to
add a check for your custom style rule requires some JavaScript
knowledge.

LanguageTool: While the other tools presented in this section
are open-source and non-commercial, LanguageTool
(https://languagetool.org) isn’t. Sort of. Some of it is open
source, and some of it is free. It’s also a tool that has evolved
significantly over the past 2 years, meaning that LanguageTool
now straddles both the regex and NLP tool worlds. It’s usable in
many different ways, including offering options for desktop
applications and writing tools such as Microsoft Word, which
makes it the only option in this section that does and a good
choice for those of you working in mixed teams who want to
share style guide rules. By default, LanguageTool isn’t optimized
for checking writing in the markup languages commonly used
in technical writing. However, there are in-built and third-party
integrations for common text editors and IDEs (and other less

https://languagetool.org/


technical writing tools) that use LanguageTool, so it is possible
to configure and customize it to use with technical writing. The
free tier doesn’t support custom style guides, but the premium
tier does. However, I can’t find publicly available details on how
to configure those or if it supports standard “off-the-shelf” style
guides.

Vale (https://vale.sh): This is the tool I help maintain, mostly
through the VS Code plugin and contributing to some of the
style guide collections. Unsurprisingly, it’s the one I know best.
The core Vale tool does little, with a handful of in-built checking
rules. But through a series of YAML files that define what you
want to check for in various ways, which are based on regexes
but in a more friendly and flexible way, and a config file, Vale
can accomplish a lot in a lean and efficient way. You can build
your style guide rules based on existing codified versions of
everything from the Microsoft style guide to Write Good to lists
of technical jargon words and add your own additions and
exceptions.

Test and automate everywhere

The three tools mentioned in this section offer many potential
ways to integrate and use them. With great flexibility comes
great confusion and the potential to overwhelm you with how

https://vale.sh/


to integrate these tools into your workflow. As a keen integrator
of language linting tools, I have two main pieces of advice for
setting them up.

Tooling workflow

TextLint, LanguageTool, and Vale all have usage options across
the main areas of a documentarian’s creative workflow,
including an editor, CLI, and CI. To make language linting
useful, you should integrate it consistently at every possible
stage of this workflow. So, when you are writing in an editor,
you should see the same messages as when you push
documentation to version control and CI. You could add your
own local customizations, but at a minimum, you need to
receive what your project has determined as essential checks.

This means that the configuration someone needs to run the
tool with consistent checks also needs to be available.
Thankfully, as all these tools work well alongside the docs-as-
code methodology, this is generally a case of providing a
configuration file, much like using any other linting tool such as
ESLint. The three tools handle dependencies differently.

For example, Vale maintains pre-packaged style guides as
“packages” that you can define in the config file along side



where it can find your custom rules, and it then downloads
them when run:

 
… 
Packages = Microsoft, \ 
custom-rules.zip 
…

For TextLint, every style dependency is another node package,

so you add and install them with a standard package.json file.

Then, each integration path, whether editor, CLI, or CI, picks up
these dependencies and configurations and runs the same
checks, presenting them in a way relevant to the platform:





Figure 8.1 – Vale running in VS Code

Taming results

The other piece of advice is to figure out what checks mean to
you and how you introduce them to a team or project without
overwhelming people. With all of these tools, you can typically
set the error log level for a check to the standard information,
warning, and error logging levels.

For example, is a spelling error the highest level of error? What
about misspelling or formatting company branding? And how
important are grammar errors to you? Should the use of passive
voice cause a major error? Or just inform someone of the
potential problem? Bear in mind that the check may not be
correct due to the nature of checking with regex, especially
with technical language and jargon. Often, something that is
technically incorrect is, well, from a technology perspective,
correct.

Often in CI, the error status also indicates a successful pass of a
build or change request, so again, which checks should you
allow to fail to block a “pass” status?

Leading on from this, one of the reasons many avoid rolling out
a language linter across their entire workflow is because it can



be overwhelming. When you first enable some rules and run
checks, it typically generates a sea of overwhelming messages
that people ignore. I recommend “taming and training” the
configuration and text it checks before rolling out a linter
widely. This could mean tweaking the rules and correcting
errors until you reach a point where the linter only checks new
changes. Even then, it’s worth considering releasing subsets of
configuration until people get used to it. For example, start with
error-level checks and add from there.

NLP-based

All of the NLP-based tools are Software as a Service (SaaS)
models, so the features you get depend on what you pay.
Because of this, in the following round-up of the most popular
options, I try to include options and plans that include the
following features:

The ability to add custom checks and rules
API access for more flexible usage
Variety of editor plugins

There are a lot of choices in this tool space, but here are some I
have tried.

Grammarly



Probably one of the best-known language-checking tools,
Grammarly (https://www.grammarly.com/) has evolved a lot
over the years, and like many tools in this space, it now also
offers AI text generation (Chapter 9 covers this in more detail).
Any of you who currently use, or have used, Grammarly are
probably more familiar with its free and premium tiers, which
do a fairly good job of catching various grammar errors. At
these tiers, Grammarly has a desktop application that can work
system-wide on macOS and Windows, so in theory, it also works
in your IDE or text editor. Perhaps Grammarly’s biggest
drawback is that it’s not so good at handling technical copy. For
example, code blocks confuse it a lot. Grammarly used to have
an SDK, which powered some unofficial extensions, but it will
stop working in August 2024, so while Grammarly is great
during writing, you can’t use it with a CLI, CI, or API, making it
limited for docs and code.

At its most expensive tier, Grammarly offers a centralized style
guide and brand tone to share among users.

LanguageTool

Yes – LanguageTool (https://languagetool.org) gets a mention
here too! At its premium tiers, you get NLP-based rephrasing
and team-wide custom style guides. Combining this with the

https://www.grammarly.com/
https://languagetool.org/


open source underpinnings, HTTP API, and many official and
unofficial integrations make LanguageTool a flexible option.
However, the split between the commercial and open source
tooling is often unclear, and I am unsure if the NLP features
work via the API.

Acrolinx

One of those companies whose product is used by some of the
world’s largest companies, although you’ve probably never
heard of it, Acrolinx (https://www.acrolinx.com) focuses
squarely on large enterprise businesses. Because of this, it’s
quite hard to get details on prices and features. However, it
claims to support documentarians, among others, with support
for docs-as-code and topic-based tools (mentioned in Chapter 7).
It also has a CLI, desktop application, CI options, and more. If
you can afford it or can convince Acrolinx to let you test it, it’s a
comprehensive solution.

ProWritingAid

With a fairly similar feature set to Grammarly, ProWritingAid
(http://prowritingaid.com) differentiates itself by adding
additional features aimed at creative writers, such as an author
comparison and writing reports. It has desktop applications,
plugins for traditional editors (Word, and so on), and an API at

https://www.acrolinx.com/
http://prowritingaid.com/


an additional cost. It has style and terminology management, so
it is a reasonably priced alternative to other tools in this section,
but not so suited to technical writing formats.

Automating image generation

Chapter 7 covered tools for manually generating screenshots of
application frontends. I teased that this chapter would cover
more automated options to make one of the more tedious
processes for documentarians less tedious and more
automated.

I wasn’t completely honest as there’s not actually any “off-the-
shelf” tool to do this. Rather, there are options you can try.
Someone I know did start creating one that wrapped many of
the ideas I cover in this section into something more user-
friendly, but he never completed it, and I have tried to open
source it but haven’t finished the task yet.

In the meantime, like many of the ideas in this chapter, it’s a
case of taking existing tools aimed more at developers and
making them work in the context of documentation. This is why
Chapter 7 suggested following the docs-as-code methodology. As
developers, you can apply many of the tools and processes



already familiar to you to documentation, too. And some that
you’re probably already using.

Using test suites

For example, many software automation tools such as Selenium
(http://selenium.dev/), Cypress (https://www.cypress.io), and
Robot Framework (https://robotframework.org) can generate
screenshots. Testers typically use these screenshots to debug
errors, but you can also use them to generate screenshots of an
application in a known functional state.

Here’s an old example I have from when I experimented with
Robot Framework and Selenium that takes a screenshot of a
particular page element and annotates it:

 
    Highlight Form  css=.sessions-form 
    ${note1} =  Add pointy note 
    ...    css=.sessions-form 
    ...    Login here 
    ...    width=250  position=middle 
    Capture and crop page screenshot  login_page.png 
    ...    css=.sessions-form   ${note1}

http://selenium.dev/
https://www.cypress.io/
https://robotframework.org/


Any of you familiar with browser automation know that this
process involves using CSS or XPath selectors to select elements
on a page. This is a challenge, especially in these days of web
frameworks that autogenerate classes and IDs on page
elements, but with some setup and experimentation, it can
work quite well.

You can do similar things with more modern alternatives to
Selenium. For example, Cypress has the cy.screenshot

method. As many application developers use Cypress as part of
application testing, you can add the method among testing code
at a component level (another concept introduced in Chapter 7,
showing more relevance), meaning you also don’t have to mess
around with trying to track down selectors as with Selenium.

Similarly, Puppeteer (https://pptr.dev) has the
page.screenshot() method, but isn’t quite as precise, as it's at

a page level.

Another single-purpose option is shot-scraper (https://shot-
scraper.datasette.io), which is purely for taking screenshots, and
again, you target areas of a web page through CSS selectors or
JavaScript filters. If you don’t have time to write more complex
test cases or your documentation is too separated from the

https://pptr.dev/
https://shot-scraper.datasette.io/


application code to make it a viable option, it’s a good, simple
option.

The trick with setting up any of these tools is weighing up the
time to implement versus the time you save and configuring
where the tool generates that screenshot so that it becomes part
of the documentation. And remember that in Chapter 7, I also
mentioned that with a lot of documentation tools and web
frameworks now sharing some of the same underlying tools,
you may not even need screenshots anymore. You might be
able to embed UI components directly in the documentation
instead directly.

Automating other image types

You have a couple of options for images that aren’t screenshots,
depending on what the image is. For diagrams, there are several
popular options for defining “images as code,” meaning you can
collaborate on them, add to version control, and so on.

Mermaid (https://mermaid.js.org) is the best known to
developers, and it has good support in many of the editor and
documentation rendering tools covered in Chapter 7. You
define a diagram in a code block, the complexity of which
depends on the diagram type, and any tool with the Mermaid

https://mermaid.js.org/


plugin enabled renders it as a Scalable Vector Graphics (SVG)
image (an SVG is also code, but quite complex to write and
read). Mermaid is fiddly to start with, but as you get near-instant
feedback as you tweak diagrams, you can quickly figure out
what you need to do:





Figure 8.2 – Mermaid syntax and a preview

Before, tools such as Mermaid were in Unified Modeling
Language (UML), and there are still many tools in active
development that use its syntax to do something similar to
Mermaid, such as PlantUML (https://plantuml.com).

Another option is Graphviz (https://graphviz.org), which has a
syntax similar to that of Mermaid but is a little more complex to
render, typically using C code. And finally, Kroki
(https://kroki.io) is an interesting option that actually wraps all
of the options I’ve presented (and more) to provide a universal
API for declaring and, crucially, rendering diagrams from code.

Automating video

Chapter 7 mentioned how many new learners prefer to learn
from videos, and the chapter covered some of the lengthy
requirements and work needed to create a video. Even once
you’ve created one, they are also hard and time-consuming to
keep up to date. Can you automate creating them?

The answer is, as always, it depends. The easiest to automate is
any terminal examples. Let’s start there.

https://plantuml.com/
https://graphviz.org/
https://kroki.io/


Converting terminal commands to
video

Perhaps the best-known is Asciinema
(https://docs.asciinema.org). After you run its terminal
command, it starts “recording” terminal input and output until
you stop recording. You can then either embed that recording
in documentation by loading the local recording file into some
JavaScript or upload it to Asciinema’s site (which is free) and,
again, embed it with some JavaScript. You can configure a lot of
settings when you generate a recording, but even more
interesting is that until you host the recording file with some
JavaScript, it’s actually a text file. Yes, that’s “recordings as
code”! In theory, this means you can change the “recording” by
editing text, collaborating on it, using it in version control, and
so on. Its use is limited to the terminal only, but that might be
enough for a lot of application documentation.

Terminalizer (https://www.terminalizer.com) is similar, except it
saves the recording as a YAML file, and to embed it on a web
page, you need to run a command to render the recording as an
animated GIF first. So, it’s not quite as seamless as Asciinema.

VHS (https://github.com/charmbracelet/vhs) is like Asciinema,
but it also takes inspiration from the automation tools

https://docs.asciinema.org/
https://www.terminalizer.com/
https://github.com/charmbracelet/vhs


mentioned earlier, putting the “code” in “recordings as code”
foremost. Instead of recording the terminal, you write a .tape

file (the tool is full of retro references that anyone the same age
as me will love) with a series of configurations and steps, then
run and output that to a .gif file.

Slightly different, newer entrants are tools such as Warp
(https://www.warp.dev) and Runme (https://runme.dev). These
aren’t technically “terminal recorders” but more tools to share
commands and their expected output among teams. Their
features for sharing commands into public embeddable
locations are new and in development but worth keeping an
eye on for a broader knowledge productivity tool.

Other video automation options

But what about non-terminal recordings? Can you automate
those? The new wave of generative AI tools offers some options
for turning text-based scripts into narration, which Chapter 9
covers, but what about a video demonstrating a graphical
application? At the moment, that’s too niche of a topic for any of
these tools to handle, but give it time. However, some of the
testing automation tools I mentioned in the automating
screenshots section also handle video. There aren’t too many
options, but Cypress

https://www.warp.dev/
https://runme.dev/


(https://docs.cypress.io/guides/guides/screenshots-and-
videos#Videos) for web and BrowserStack
(https://www.browserstack.com/docs/app-
automate/espresso/debug-failed-tests/video-recording) for
multiple platforms offer some automated video capture
features.

Automating code testing

Chapter 9 covered best practices for creating and maintaining
functioning code examples and touched on the importance of
testing to ensure this. As developers, you likely already have a
reasonable idea of the general options available for testing
code, but how do you make this work with code examples in
documentation? And how do you automate it?

Keep the code separate from documentation and test it mostly
as a self-contained application. It may not surprise you that
there are advantages, disadvantages, and tools to help while
doing this. Luckily, for the most part, it uses tools already
familiar to developers.

First, you need to use a markup language or documentation
rendering tool that handles the use of file inclusion and, ideally,
one with extra features for including code files.

https://docs.cypress.io/guides/guides/screenshots-and-videos#Videos
https://www.browserstack.com/docs/app-automate/espresso/debug-failed-tests/video-recording


For example, one potentially useful feature is only to import
certain lines from a file so that you can hide boilerplate code
not useful for an example but needed to test the code. I include
those mentioned in Chapter 4, but bear in mind that if your tool
of choice doesn’t support the feature by default, it’s probably
possible to write a custom component that does.

Both Asciidoc (https://docs.asciidoctor.org/asciidoc/latest/syntax-
quick-reference/#includes) and reStructuredText
(https://docutils.sourceforge.io/docs/ref/rst/directives.html#incl
ude) support file inclusion by default, meaning that any tool you
use on top of them also support it. They also both support
partial file inclusion and many other features. It makes you
realize why the people who use these two markup languages
instead of Markdown are so positive about them!

Docusaurus supports importing code files by default
(https://docusaurus.io/docs/markdown-
features/react#importing-code-snippets), but not partial files, so
you would need to find or create a custom component to do
that.

MkDocs doesn’t allow for file inclusion, but Material for
MkDocs does (https://squidfunk.github.io/mkdocs-

https://docs.asciidoctor.org/asciidoc/latest/syntax-quick-reference/#includes
https://docutils.sourceforge.io/docs/ref/rst/directives.html#include
https://docusaurus.io/docs/markdown-features/react#importing-code-snippets
https://squidfunk.github.io/mkdocs-material/reference/code-blocks/#embedding-external-files


material/reference/code-blocks/#embedding-external-files) and
includes options for including partial code files.

Other automation options

Treating documentation as code means you can automate a
great deal of things. Here are two more ideas that I have tried.

Converting file formats

When anyone asks, “How do I convert format x to format y?” in
the open source and/or docs-as-code world, the answer is
almost always pandoc (https://pandoc.org/). It’s a venerable tool
with decades of history and can convert dozens of formats
between each other, with a dizzying amount of configuration
options. It’s a relatively large installation, and if you want to
convert to PDF, it also depends on LaTeX (https://www.latex-
project.org/), another venerable and large dependency. This
means it’s not always optimal when run in CI systems, but it’s
not impossible. Also, bear in mind that if you want to use it,
convert pages of documentation into formats more suitable for
other not-so-technical teams such as marketing or sales; it’s
possible with pandoc, but you need to factor in how various
documentation-specific formatting options will translate.

https://squidfunk.github.io/mkdocs-material/reference/code-blocks/#embedding-external-files
https://pandoc.org/
https://www.latex-project.org/


Accessibility

Chapter 4 covered some ways to make the final HTML-rendered
version of documentation more accessible to those using screen
readers, navigators, and other accessibility tools. However, how
can you ensure you provide the best experience for any of these
users? Yes – you guessed it, there’s a tool for that: Pa11y
(https://github.com/pa11y/pa11y). Much like some of the linting
tools earlier in this chapter, you provide it with an input, and it
returns an error state that you can use to determine if a build
should pass or fail. Any issues it finds, you can output as CLI,
CSV, or other formats, depending on what you want to do with
them. Pa11y can even launch an instance of a headless browser,
meaning you can integrate it more widely with the rest of a
testing suite.

Summary

Hopefully, this chapter gave you a lot of ideas to help you
reduce the amount of manual work you need to do to ensure
consistent quality documentation.

Some of the tools and ideas in this chapter will be new to many
of you and not so new to others. But at the moment, we find

https://github.com/pa11y/pa11y


ourselves facing a major change in new tool options: AI-based
tools. Used correctly, these tools can significantly change how
you work and write. The next and final chapter of this book
looks at those.



9

Opportunities to Enhance
Documentation with AI Tools

I am writing this book from late 2023 to early 2024, a time when
a new wave of tools and services powered by artificial
intelligence (AI) are disrupting the industry and how people
use technical tools. I want to note the date, as it remains to be
seen if this is another hype cycle doomed to wane out of our
attention or a new paradigm that is truly here to stay.

But at the time of writing, it would be a topic amiss for me not to
cover, as when used correctly, these new tools and services
have a lot of potential. They have the potential to increase your
productivity, bring new ideas and possibilities, and give you
time to work on that long list of tasks you “never have time for.”
They also have the potential to give you incorrect advice, waste
valuable resources, and possibly, in the hands of unscrupulous
employers, replace you.

There are so many tools and services this chapter could cover,
but it would be a long and probably tedious list of links. Instead,



this chapter aims to be a culmination of many of the techniques
and tooling advice presented so far and how new AI tools can
complement those.

This chapter covers the following:

A brief explainer of the current generation of AI tools and
what came before
Tools and techniques that help you write more productively
Tools and techniques that help you work with other media
more productively
Tools and techniques that offer new ways for users to interact
with documentation
The technical underpinnings behind these tools and how you
can build your own
Technical and cost implications of these tools and techniques
Other implications of these tools and techniques

It’s a big topic and a big chapter. Let’s get started!

A brief history of AI

This is not the place, and I am not the writer to go into any great
technical detail on AI. But there has been steady and significant



development in AI for decades, if not centuries, and a little
history is always helpful in understanding where we are now.

Tools that use AI are nothing new. I studied elements of AI at
university in the early 2000s, taught by professors educated in
the 1970s. Even back in the 1950s, Alan Turing proposed the
“Turing test” (https://en.wikipedia.org/wiki/Turing_test), a way
of testing for computing intelligence. As with most recent
advances in the computing space, techniques and ideas aren’t
necessarily new, but the speed and scale of operating them are.

The world of AI tools is littered with impressive and confusing-
sounding jargon and acronyms that often hide something fairly
unimpressive. So, especially at this point in the AI hype cycle,
it’s useful to unpack some of the terminology you are likely to
encounter to better evaluate products.

Understanding AI and ML

AI isn’t one technique or technology. It’s a broad range of
techniques and technologies used to build machines,
computers, and software that mimics functions similar to
human intelligence. Human intelligence itself is a broad term,
but it typically means the ability to process, understand, answer,
and react to the input we receive through our five senses.

https://en.wikipedia.org/wiki/Turing_test


Machine learning (ML) is a subset of AI that gives a system the
ability to learn and (hopefully) improve from its experience. In
some ways, you could argue that ML is one of the more human
parts of AI.

Many tools labeled as AI are actually only using ML, such as
shopping recommendations. Most of the language linting tools
covered in Chapter 8 use natural language processing (NLP).
Again, NLP is just one tool in the AI toolbox, but many
companies now label long-existing tools as “AI” because that’s
what the market demands. This doesn’t make the tool or service
any less impressive or useful, but something that’s good at
learning isn’t necessarily “intelligent.”

The problem is that we often don’t have a good definition of
“intelligence,” thus making it hard to replicate satisfactorily. In
the infamous words of Deep Thought from Douglas Adams’ The
Hitchhiker’s Guide to the Galaxy (I couldn’t write a tech book
without at least one reference), when asked what the answer to
the ultimate question of the meaning of life is, Deep Thought
replies (and I am paraphrasing):

“The problem is that you don’t know what the question is.”



You could spend your entire life studying and working in AI
and/or ML and have barely scratched the surface. There are two
key technical concepts and advances worth understanding in a
little more detail to appreciate the latest wave of tools.

Recent advances in AI

The first advance is large language models (LLMs). Language
models are a far older technique of reducing human language
to something a machine can understand and use for speech
recognition, translation, and more. A “model” in broader AI
terms is something trained on a dataset that another tool or
service can use to recognize patterns and make decisions on
those patterns, typically without human action. So, while a
language model is built to work with language, there are also
models built to recognize sound, video, and more.

Language models were typically built upon relatively small and
specific datasets until the arrival of LLMs around 2017 to 2020.
Google’s “Transformer”, the “T” in GPT
(https://en.wikipedia.org/wiki/Generative_pre-
trained_transformer) proposal in 2017 accelerated the growth
and potential of LLMs, increasing their ability to be trained on
much larger datasets that often include more general-purpose

https://en.wikipedia.org/wiki/Generative_pre-trained_transformer


public datasets. In summary, the recent developments of LLM
and Transformer techniques mean it is now easier to ask
broader questions to a model and get reasonable answers. It
took OpenAI’s “chat interface” (ChatGPT), built on versions 3.5

and 4 of its GPT models, to expose these advances to the world.

And the rest, as they say, is history.

Of course, while the term LLM is one you’ve likely heard a lot of
recently, many of the new “generative AI” (GenAI) tools aren’t
just about text. While there is still a majority of text in
documentation, I hope that throughout this book, I have
demonstrated that other media has a role in helping explain
concepts. This chapter aims to show you tools and techniques
that help your productivity across the gamut of topics covered
throughout the book.

That said, let’s begin by discussing how AI tools can help with
the written word and which tools best suit documentarians.

Text and code completion and
improvement

Many critics of newer AI tools accuse them of being, among
many other things, just a fancy autocomplete. This is a fair
criticism, but even the biggest AI skeptic can see that while



autocomplete is nothing new, those tools that have adopted
these new models and techniques can provide a far better and
more informed autocomplete than ever before. The new AI
tools have increased context and awareness of not just the last
few words you wrote, but the entire document, and depending
on the tool, a great many other data points too.

While I mentioned previously that tools now have a broader
source of knowledge, writing technical copy is still niche in the
grand scheme of things. Chapter 8 already covered this to some
degree in the round-up of NLP-powered (something of the
precursor to these new tools) language linting and proofing
tools. Almost all the commercial tools mentioned in Chapters 7
and 8 have added AI features of some description. They work
reasonably well for technical copy but don’t fully respect the
markup formats or the type of language and terminology we
use, or know about some of the niche projects we might
document.

There are a LOT of tools that generate or rephrase text for you,
most of which are based on OpenAI’s APIs, meaning they all
offer fairly similar features and responses. There are almost too
many to mention. Some run on the web, some are wrapped in
desktop apps, or as part of other tools. Because of this, I try to
focus on those that are part of the tools you’re possibly already



using or are most optimized for technical documentation. But if
you want to search for other options, hundreds of blog posts,
videos, and other resources tell you about many others you can
try. Including plain and simple ChatGPT.

Grammarly (https://www.grammarly.com/ai) bundles features
for improving structure, voice, and content but also an
interesting feature that lets you build your own custom “writing
voice.”

LanguageTool (https://languagetool.org/paraphrasing-tool)
offers less comprehensive paraphrasing tools, but I like how it
presents the different rewriting outputs in a way that allows
you to compare them.

Acrolinx is yet to announce its AI features at the time of writing
(https://www2.acrolinx.com/acrolinx-and-generative-ai). Their
plans seem to involve using your individual content for your
own individual LLM, which is interesting and makes sense for
an enterprise-focused product.

Those three are more general writing tools, but there are
enough AI-powered tools suited to documentarians, some of
which you’ve already seen in this book.

https://www.grammarly.com/ai
https://languagetool.org/paraphrasing-tool
https://www2.acrolinx.com/acrolinx-and-generative-ai


Grazie Pro (https://plugins.jetbrains.com/plugin/16136-grazie-
pro) is a plugin for any IntelliJ IDE, including Writerside,
covered in Chapter 6. In addition to the regex-based linting
features, the pro version adds AI-powered completion,
rephrasing, and translation. Grazie completion isn’t quite as
smart as some of the other tools, but with a more general AI
rollout across other IntelliJ tools (https://www.jetbrains.com/ai/),
it will likely improve, and if you already use those in your work,
then Grazie is a good choice. Grazie doesn’t work anywhere else
apart from inside the IDE right now, but with a browser
extension and browser-based docs feature in progress, it could
soon be part of a wider toolchain.

While its public release is recent, GitHub Copilot
(https://github.com/features/copilot) has actually been in
development for some time, and I’ve had it enabled in VS Code
as a tester almost since development began. As Microsoft now
owns GitHub and Microsoft has significant interests in OpenAI,
it uses a version of GPT-3, as far as I know. Copilot is primarily
designed for autocompleting code, but I have found it does a
surprisingly good job with text, too. It’s trained across all public
GitHub repositories and has an immediate context of the
repository you’re currently working in. It has a tendency to fall
into a repetition cycle, output code examples, and, as with many
other AI tools, make things up occasionally, but on the other

https://plugins.jetbrains.com/plugin/16136-grazie-pro
https://www.jetbrains.com/ai/
https://github.com/features/copilot


hand, it gets a lot right and has helped save me time on a lot of
basic text. If you don’t use VS Code, plugins are also available
for JetBrains IDEs and Vim.

If you’re only interested in code generation, then there are now
a lot of AI tools to help. There are so many it’s hard to evaluate
them against each other. These include the following:

Visual Studio IntelliCode
(https://visualstudio.microsoft.com/services/intellicode/),
which is also available for VS Code
Tabnine (https://www.tabnine.com), which works with almost
all IDEs and editors
Replit (https://replit.com/ai) has its own IDE, but there are
unofficial plugins available for others

Generating documentation

One area where things are more interesting is using AI tools to
write documentation for you. Throughout this book, I have
mentioned tools and ways for automating repetitive and dull
tasks. It’s all too easy to get excited by the new wave of AI tools
as, on the surface, they do some incredible things and can save
you a lot of time. They can also sound overly confident and give

https://visualstudio.microsoft.com/services/intellicode/
https://www.tabnine.com/
https://replit.com/ai


you output that is not only plain wrong but could cause you
problems due to its inaccuracy.

There are two loose groups of tools: for projects based upon
explaining something visual and those that involve explaining
code.

For more visual application documentation, an AI trawling code
or documentation won’t generate anything that useful. That is,
reading the application code of a website doesn’t tell anyone
how to use it, and an AI can’t generate any useful end-user
documentation from the application code. Yet.

Tools such as Scribe (https://scribehow.com) instead provide a
way of recording the steps for a visual process and then
generate documentation for you. None of these tools are very
docs as code friendly existing in their own ecosystem, but they
do offer export options to formats such as Markdown, meaning
that you could still use them to kickstart the process and
continue it elsewhere.

On the opposite end are tools that generate comments based on
code, typically in an editor or IDE. You can then use these
comments to generate reference documentation as mentioned
in Chapter 2. The inbuilt AI tools in IntelliJ-based IDEs and

https://scribehow.com/


Copilot in VS Code offer features to generate code comment
documentation from the code you select or highlight. From my
testing, they both generate different but passable results. There
are other IDE-independent options, too, including Docify AI
(https://www.ai4code.io), Figstack (https://www.figstack.com),
and Codeium (https://codeium.com). There are also tools such
as Swimm (https://swimm.io) aimed more at internal
documentation, a big topic this book hasn’t specifically covered,
but many of the same principles apply, and you can use it to
generate documentation for external users.

AI for audio and video

Throughout this book, I have mentioned ways of creating
documentation that don’t involve pure text including images,
audio, video, and more. Unsurprisingly, there are AI-powered
tools to help with these tasks, too. Similar to every other
category, there’s a lot of choice, and I focus on those that I have
used and fit in well with workflows and toolchains you likely
already use.

Generating media

Generative AI is well suited for creating images, audio, and
video. While many of the tools rapidly appearing in this space

https://www.ai4code.io/
https://www.figstack.com/
https://codeium.com/
https://swimm.io/


are aimed more at marketing purposes, some are better suited
to documentarians. They offer some interesting solutions to
reduce the amount of time you might need to take to create and
maintain content. Again, there are a lot, so I focus on those that
are most suited to documentarians and the “as-code”
methodology.

Generating images

There are a lot of tools for generating images. The more
infamous models and APIs are those such as Midjourney
(https://www.midjourney.com), Stable Diffusion
(https://stability.ai/stable-image), and DALL-E
(https://labs.openai.com). While many have built these models
and APIs into other tools, image generation is now so well
established Adobe has built it into Photoshop and Illustrator,
and Google is starting to offer image generation across its office
applications. While all of these are impressive, none are suited
for technical documentation, but you may find uses for them.

Generating video and audio

One of the areas where Generative AI can get interesting and
time-saving and make video and audio more “as code” is in the
rapidly evolving world of generative audio and video.
Theoretically, you can write a script and feed it into a system. It

https://www.midjourney.com/
https://stability.ai/stable-image
https://labs.openai.com/


outputs AI-generated audio or video you can add in to your
editing software alongside human-generated content.

These tools have several issues, but they are worth keeping an
eye on. Audio quality has improved drastically from the
computer-generated voices you might remember from the past,
but it can still have a slight “robotic” quality. Video suffers from
the same problem, and as a visual species, “non-humans” still
look odd and disconcerting to us, the so-called “uncanny valley”
effect. This will improve, and we will also change and become
used to it, but more practically speaking, most generated videos
are short and expensive to create at the moment. Another
practical consideration for both generated audio and video is
file format and quality. For whatever technical reason, the
output format is generally a lower, compressed format.
However, this isn’t as much of an issue as with “normally”
recorded audio and video, as the footage is pristine and lacks
background noise, so it is easier and cleaner to edit.

I also wonder, and possibly fear, that increasingly people won’t
care. As much as we’ve become conditioned to low-quality
content all over the internet, will we become more accepting of
generated media that gives us the answers or feelings we want?
The same will probably happen for instructional content. It
won’t be as perfect or as human as we content creators might



want, but if users can get the answers they want in the ways
they want, will it matter?

Video

Video generation is much newer, with even OpenAI’s Sora
(https://openai.com/sora) only announced in the weeks before
writing, but other tools are already available. Many of them
cross over into the feature sets of other tools covered in this
chapter, including Canva (https://www.canva.com/features/ai-
video-generator/), invideo AI (https://invideo.io/make/ai-video-
generator/), Veed (https://www.veed.io/tools/ai-video), and
Runway (https://runwayml.com). However, Elai (https://elai.io)
was the only one I could find with an API. None of these are
optimal for technical documentation, with most of the non-
robotic human output looking kind of like a PowerPoint
presentation.

Already mentioned in Chapter 7, Camtasia
(https://www.techsmith.com/camtasia-rev.html) has recently
added AI tools, but mainly for layout, background changing, and
resizing. Loom AI (https://www.loom.com/ai) has many features
that overlap with AI-powered editing, which I will cover next,
such as filler removal and automatically generating titles,
summaries, and chapters. However, showing that it’s more of a

https://openai.com/sora
https://www.canva.com/features/ai-video-generator/
https://invideo.io/make/ai-video-generator/
https://www.veed.io/tools/ai-video
https://runwayml.com/
https://elai.io/
https://www.techsmith.com/camtasia-rev.html
https://www.loom.com/ai


sales and marketing tool, it can also generate social sharing and
call-to-action (CTA) text.

Audio

Text to speech (TTS) is a relatively mature technology but
again benefited from recent developments from OpenAI and
Microsoft (https://www.microsoft.com/en-
us/research/project/vall-e-x/vall-e/) to boost quality and speed.
These newer advances also allow for “voice cloning”; that is,
making a synthetic voice that sounds like a real person. This has
a lot of potential negative repercussions, but on the positive,
you can also create an automated version of – well, of yourself.

However, this doesn’t mean all these tools use those advances.
One of the downsides of a hype cycle is that many vendors jump
on it and make their products seem newer and cooler than
maybe they really are.

If you want to keep things really basic, all the desktop operating
systems have TTS in-built, so through a myriad different ways,
you could even use those to generate audio files.

Voicemaker (https://voicemaker.in) isn’t cheap, but it offers an
API in addition to its visual tools and a highly customizable
feature set for defining tone, emphasis, speed, output medium,

https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/
https://voicemaker.in/


and much more. Reflecting its age, most of the major cloud
vendors have comprehensive TTS APIs, including Google
(https://cloud.google.com/text-to-speech), Azure
(https://azure.microsoft.com/en-us/products/ai-services/text-to-
speech), and AWS (https://aws.amazon.com/polly/). ElevenLabs
(https://elevenlabs.io) is one of the newer generations of TTS
services, with options for voice cloning, long-form projects,
nearly 30 languages, and more.

Editing media

As Chapter 7 mentioned, editing media is time-consuming. I
don’t know about you, but I find editing text far quicker than
editing audio or video. In my mind, one of the AI tools that has
helped me the most in terms of productivity so far has been
text-based audio and video editing. The tool generates a text
version of your media, and you can cut, copy, and paste from
the text version, and it does the same to the media file. Some of
the tools also remove “filler” sounds such as “ums” and “ahs,”
long pauses, and repeated words. On the generative AI side,
some of the tools can voice clone based on the text to help fix
fumbles or glitches.

I use Adobe Premiere Pro
(https://www.adobe.com/products/premiere.html), which has

https://cloud.google.com/text-to-speech
https://azure.microsoft.com/en-us/products/ai-services/text-to-speech
https://aws.amazon.com/polly/
https://elevenlabs.io/
https://www.adobe.com/products/premiere.html


recently added many AI editing functions and is rapidly
improving its features. Descript (https://www.descript.com/),
which introduced text-based editing long before the current
wave of tools, is an all-in-one editing tool that recognizes people
might want to use external tools too, so has a lot of
comprehensive import and export options. It also has a rapidly
expanding amount of generative features, such as voices, text
repurposing of the transcript, and effects.

Not quite an audio editing tool, but audio-related, and worth
trying if all you want is a transcript is OpenAI’s Whisper
(https://openai.com/research/whisper). Again, there are a lot of
speech-to-text (STT) tools available now, but I have never
found any of them as good as Whisper. For macOS users, I
highly recommend MacWhisper
(https://goodsnooze.gumroad.com/l/macwhisper) for little or no
money. It’s a fantastic application for quickly and locally
transcribing audio from various sources.

There are plenty of other tools that support text-based editing
and transcription, but they are part of remote recording tools
aimed at podcasters and video makers, not so much for the kind
of media designed for documentation.

New ways of interacting

https://www.descript.com/
https://openai.com/research/whisper
https://goodsnooze.gumroad.com/l/macwhisper


I proposed the idea of a “docsbot” many years ago at a
conference when the tech industry was deep in the last wave of
“chat interfaces” in 2017/18. The chatbots at the time had very
little actual intelligence and were typically large decision trees
with a dash of NLP. They were basic and frustrating, but
everywhere. In this context, I proposed that users could ask
documentation questions instead of clicking through link after
link or attempting to find what they were looking for through a
search field.

Something like: “Tell me how to install Monito on Linux.”

Followed by: “And how do I run it?”

The bot maintains the context you’ve already provided – the
name of the tool and the operating system – and keeps helping
you with information relevant to you.

In those days of general frustration with the chatbots of the
time, my ideas seemed ludicrous and basically unusable. A few
short years later, it doesn’t seem crazy, and people are jumping
on the idea. If only I’d done something about it then…

In this section, I look at the SaaS options, but there are also
ways to create something similar yourself, where I also dig into
the costs involved.



Mintlify (https://mintlify.com) started as a VS Code plugin for
generating documentation from code with AI but has morphed
into a more general-purpose documentation platform that I
could have also featured in Chapter 6. It also now features a
chat interface to allow users to ask questions about
documentation managed by the platform. Kapa
(https://www.kapa.ai) is probably the best-known independent
tool in this space. If you have ever visited the documentation or
communities of Netlify, Next.js, or OpenAI, you have seen and
possibly used Kapa to ask questions. Mentioned earlier, Swimm
also has a chat interface, providing something of an end-to-end
documentation solution.

The principles of training and
creating your own AI

So far, this chapter has mostly consisted of a lot of services you
can look at and pay for to take advantage of some of the
forward-looking ideas this chapter discussed. Throughout this
book, I have tried to present options that give you as much
flexibility and freedom as possible, preferably open source, free,
and that give you the option to build upon them sustainably and
stably. The current wave of AI tools has a lot of issues, which I
cover throughout this chapter, but relevant to the current

https://mintlify.com/
https://www.kapa.ai/


discussion is that the data sources of LLM-based AI tools are
fundamentally different from what you might be used to. The
code behind an AI tool might be open source, but this doesn’t
necessarily mean the model that powers it is. The LLM data
model behind an open source tool isn’t quite like a database you
can potentially dig into and look at. Unless it’s connected to an
application, you have specialized tools, or the model provider
gives you access, the model is generally an opaque black box.

Many of the mainstream AI tools you know and possibly already
use, such as those provided by OpenAI (https://openai.com),
which often feed many of the tools mentioned so far, use
general data models. This means that if you want to be able to
add a chat-style interface on top of your documentation,
powering it with these sources may not be that useful unless
your project is a well-known, high-profile project that was used
to train these models. Even if it is, then it’s likely that the data it
contains isn’t kept regularly up to date and may refer to sources
outside of your control, such as blog posts about your product,
and so on.

Earlier in the chapter, I mentioned tools such as Kapa and
Mintlify, but what if you wanted to create your own equivalent
that you fully control instead? Bearing in mind what I
mentioned previously, is that possible? Yes, it is, but again, it’s

https://openai.com/


not quite the same as many of the other open source
alternatives I’ve mentioned in other chapters.

You have two decisions to make. Do you use a publicly available
(and possibly open source) model and feed your documentation
to it with open source tooling on top? Or do you build
everything yourself? Often, even to build everything yourself,
you might still need to use non-open tools to do so. While many
of the resultant models might be hard to access, many of the
tools to train models are free to use and often open source. As I
hope is becoming increasingly clear, AI is complicated and not
as easy to access or use as other tools in this book.

The simplest option is to use something such as OpenAI’s
embeddings API directly. OpenAI even has a tutorial on creating

a “docsbot” you can follow instead of me repeating it here
(https://platform.openai.com/docs/tutorials/web-qa-
embeddings). This process doesn’t use OpenAI’s models of data
but rather uses their models of language understanding. Shall I
say it again? AI is complicated! Instead, you use the API to turn
your data source (the documentation) into “embeddings,” a way
of representing text and how different strings relate to each
other.

At this point, an aside about cost is useful.

https://platform.openai.com/docs/tutorials/web-qa-embeddings


Generally, the pricing model from external AI providers is per
token, representing the string you feed into it. So, training and
querying depend on the amount of tokens. This isn’t as clear-cut
as you might expect. One letter or word doesn’t equal one
token. Let’s use OpenAI’s pricing calculator
(https://platform.openai.com/tokenizer) to show some
examples:

“Hello World” equals eleven characters and two tokens

“HelloWorld” equals ten characters, and also two tokens,

because OpenAI recognizes it semantically to mean the same
thing
“Hello World!” is three tokens, as the “!” adds one extra

item of meaning

OpenAI states the following:

“A helpful rule of thumb is that one token generally corresponds
to ~4 characters of text for common English text. This translates
to roughly ¾ of a word (so 100 tokens ~= 75 words).”

Depending on the API settings you use, OpenAI’s embedding
costs are between $0.02 and $0.13 per 1 million tokens. That
doesn’t sound like a lot, but the text of the OpenAI tutorial I
mentioned previously is about 4,500 tokens. Again, it will add

https://platform.openai.com/tokenizer


up over time, but creating and maintaining a traditional search
index can also cost to process resources or pay for an external
service. Using OpenAI’s APIs also has several usage limits to
bear in mind, meaning you need to “chunk the content” into
smaller pieces to stay under that limit, and you need to run the
code that does all of this somewhere, which also has a small
cost. Querying the new embeddings via OpenAI also has an
equivalent cost. However, in a production application, you can
use something like a vector database to query, but again,
running that database has costs too.

OpenAI’s APIs aren’t the only option – far from it. LangChain
(https://github.com/langchain-ai/langchain) is probably one of
the better-known options, and it also allows you to choose
different model “backends,” including OpenAI. Even if you do
use LangChain in conjunction with OpenAI, it does a lot of the
manual work mentioned previously, such as chunking, for you.
Read its chatbot tutorial for more details
(https://python.langchain.com/docs/use_cases/chatbots/quicksta
rt). Haystack (https://haystack.deepset.ai) is another open
source option that allows you to connect to different models
and many other useful integration points, such as databases and
more traditional search tools.

https://github.com/langchain-ai/langchain
https://python.langchain.com/docs/use_cases/chatbots/quickstart
https://haystack.deepset.ai/


If you want to train your own model in addition to the other
steps, then you have many options available. The cost here is
the computing resources needed to undertake the training.
Training a model based on documentation can run on a
powerful machine, including your own, but again, you need to
factor in how often you do this.

Unless you have extremely large documentation, training a
model on it isn’t much work. However, it can still be
surprisingly resource-intensive to train and run. For example,
Google offers a suite of AI tools you can use at almost any stage
of the AI process (https://cloud.google.com/vertex-ai). While
Google was late to the recent wave of AI tools, they’ve been
working on AI generally for a long time. Hugging Face
(https://huggingface.co) has hundreds of AI tooling components
you can run and use almost wherever you want.

Here's a rough cost and usage example based on some of my
experiments using the documentation of a fairly well-known
open source tool as a training experiment. The documentation
was dozens of pages, adding up to tens of thousands of words at
most. I used OpenAI’s APIs to create the model, which cost
about five or six cents. That’s not terrible. Even if you train it
once or twice a day, it’s affordable. Then, querying that model
costs another couple of cents for each query. That, again,

https://cloud.google.com/vertex-ai
https://huggingface.co/


doesn’t sound like much in isolation, but if your documentation
has thousands of visitors per day and even only 10% use the
feature, that adds up quite quickly. You also need to factor in
that many people will likely mess around with the feature, try to
break it, spam it, or generally use it for searches that waste
resources.

Multiply these few cents by thousands of users per day, and the
cost starts to add up. I have heard from a few people using chat-
style interfaces to their docs and similar resources that it can
cost hundreds per month.

Is this a lot of money? It depends, of course. The more you
optimize, the cheaper it gets. Maybe using these tools reduces
your support costs, which are probably a lot more than a couple
of hundred dollars per month.

Interestingly, based on trends I’ve observed over the past few
months, many of those projects that started by creating their
own “docsbot” switched to using SaaS options instead, switched
back to traditional search, or moved bot interfaces away from
their websites to community platforms such as Discord. I am
not sure why this is, but I can imagine it’s because it offers more
control and gatekeeping over the usage of these potentially
expensive tools.



Writing for robots

All the technical and financial complexities and concerns aside,
I think many of you reading this agree that a “docsbot” solves a
lot of problems. Creating menu structures that make sense to
everyone has always been a challenge for documentarians with
a constantly moving definition of success. We add search on top
of this to fill the gaps and hopefully allow people to find what
they need. But all of this is fraught and non-ideal, as while we
organize documentation around our internal ideas of the
project or product and how we think people should access it, in
reality, all most people want to do is find a way of answering a
question they have and possibly don’t even fully understand
how to ask or what the right answer is. Implemented well, the
idea of a “docsbot” that can answer these questions is incredibly
helpful and worth considering.

Where is the place for the humble writer in all of this change?
Actually, we’re better placed than ever. In the medium term, at
least. If this chapter hasn’t made it clear enough already, the
models behind all of these AI tools are content-hungry. They
need huge amounts of data to feed them and provide answers.
Specifically, they need huge amounts of well-formatted and
machine-readable data; that is, content.



Chapter 3 covered advice for good, concise language, and
Chapter 4 covered how to structure content. Both of these
chapters hinted at how humans aren’t the only ones who read
documentation. Traditionally, search engine crawlers might
have been smarter than any kind of search you could add to
documentation. However, they were still based on the notion of
“find this resource for me,” and then what you found when you
got there, hopefully, in a sea of SEO-generated rubbish, was
going to tell you what you wanted to know, and if not, you were
back to navigating menus and internal search.

The AI tools now more readily available have far more context
about your documentation. Chapter 8 mentioned regex versus
NLP-based tools. Traditional search mostly just looks for
patterns. The AI tools have a partial understanding of the
content. Actually, they don’t really. The “intelligent” part of “AI”
is often misleading, but they do enough relational mapping of
the content to know how terms relate to each other and when
they generally occur, which gives enough context to seem like
they understand what you’re asking.

This means that more than ever, content needs to follow much
of the advice presented in Chapters 3 and 4, and you can use the
tools from Chapter 8 to ensure it does. Your good writing makes
it possible for these tools to work. It remains to be seen if



“docsbot” tools will replace all the other tooling
documentarians use fully or partially, but quality content will
remain as important for a while yet.

Where documentarians need to be careful moving forward is
feeding the machine with content that’s also overly AI-
generated. Maybe this is more of a problem in the wider world
than in documentation, but as we become overly reliant on
these tools to help us fill gaps, we risk propagating “truths”
throughout the system. You accept one suggestion, and it
becomes part of the corpus of knowledge that feeds and
answers someone else’s question, thus becomes a correct
suggestion, and on it goes. generative AI tools are powerful and
useful and can help our productivity, but we need to remain in
control and always be the final gatekeeper of our own words.

Summary

This chapter covered a lot. In some respects, it could have been
an entire book itself, but I hope it provided you with enough
topics for further research.

The chapter began with some history and context, dug into
tools and services you can pay for, and explained how you
might build everything yourself. Throughout the chapter, I also



tried to represent the caveats and problems of this growing
space. I am not an AI skeptic. I am an AI pragmatist. I think it’s a
fascinating space, but it’s currently so full of hype and nonsense,
overwhelming terminology and complexity, that it’s important
to understand what you’re getting into.

That aside, if the recent wave of AI tools is here to stay, they
offer documentarians completely new ways to work and
provide information to our users. It’s easy to fear change, but if
your true and prime reason for documenting and reading this
book is to help people understand how to use something, and
change is what makes that easier for them, then it’s hard to
resist it.



Index

As this ebook edition doesn't have fixed pagination, the page
numbers below are hyperlinked for reference only, based on the
printed edition of this book.

A

Acrolinx 113

URL 113

admonitions

caution or warning 44

error or danger 44

info 44

note 44

tip 44

Adobe Premiere Pro

URL 126



AI tools

documentation generation 123

for audio and video 124

media generation 124

text and code completion and improvement 121-123

Alex

reference link 108

alt attribute

reference link 97

analytics tools 83

Google Analytics 83

Matomo 83

Mixpanel 83

animated GIFs 98

benefits 98



disadvantages 99

API documentation 18, 19

AsyncAPI 21, 22

GraphQL 20, 21

SOAP API 22

Application Programming Interface (API) 12

artificial intelligence (AI) 4, 40, 107, 120

advances 121

history 120

principles of training and creating 127-129

AsciiDoc 74, 75

example 75, 76

Asciinema

URL 116

Astro Starlight 81



URL 81

AsyncAPI 21, 22

URL 18

Atom 78

audio 100

capturing 102

compositing 103

editing 103

recording 102

automation options

accessibility 118

file formats conversion 118

B

blog post 23, 24

browser-based documentation 69



options for writing 69, 70

C

call-to-action (CTA) text 125

Camo

URL 101

Camtasia

URL 125

Canva

URL 125

chatbots 127

CleanShot 95

code examples 88

automated testing 91

consistent example 89

creating 90



hello world 89

organizing 90

testing 91

testing, manually 91

use case, picking 89

Codeium

URL 123

code testing

automating 117

Command -Line Integration (CLI) tool 12

Confluence 70

Contentful

URL 83

content management system (CMS) 79

content silos 4



continuous integration (CI) tools 91, 107

Cypress

URL 95, 113

D

DALL-E

URL 124

DatoCMS

URL 83

DaVinci Resolve

reference link 103

Decap CMS

URL 79

Descript

URL 126

developer experience (DX) 10



developer-friendly style guides 107

DITA example from XML Mind

reference link 67

Docify AI

URL 123

docs as code methodology 69

benefits 71

key tools 77

Markdown, making dynamic with MDX 76, 77

markup language, selecting 71

metadata, adding to markup with YAML 76

Docsy

URL 80

documentarians 10

documentation 1



audience 5

practical example 6, 7

documentation, impact on teams and departments 2

content silos 4

developer relations 3

engineering 3

machine readers 3

marketing 2

product 2

proofreading, for accuracy and safety 4

sales 2

support 3

writer in the middle 5

documentation operations (DocOps) 105

documentation pages



internal search, adding 50

links functioning, keeping 50, 51

menu patterns 48-50

menus and navigation, creating 47, 48

documentation performance

analyzing 83-85

Docusaurus 79

URL 79

DroidCam

URL 102

E

Elai

URL 125

ElevenLabs

URL 126



Eleventy 82

URL 82

ESLint

URL 106

F

Figstack

URL 123

Final Cut Pro

reference link 103

Flameshot 95

Framemaker from Adobe 68

G

generative AI (GenAI) tools 108, 121

Getting Started guide 10

example 11



overview 10, 11

templates 12

tutorials 12, 13

Ghost

URL 83

Giscus

URL 85

GitBook 69

GitHub Copilot

URL 122

GitHub Gists

URL 91

Go 7

Google Analytics

URL 83



Google Remote Procedure Call (gRPC) 22

Google style guide 107

Grammarly 112

URL 112, 122

graphical user interface (GUI) 93

GraphQL 20, 21

URL 18

Graphviz

URL 115

Grazie Pro

URL 122

H

Haystack 129

headless CMS 82

HotJar



URL 85

Hugging Face 129

Hugo 80

URL 80

Hyper Text Markup Language (HTML) 40, 41, 71

I

image generation automation 113

image types, automating 114, 115

test suites, using 113, 114

images

adding 95-97

making accessible 97

inclusive language, technical writing 34

biased language 34

gender 35



out-of-date language 35, 36

overly negative language 34

IntelliJ

URL 78

IntelliJ tools

URL 122

interactive experience 103, 104

invideo AI

URL 125

Iriun

URL 102

J

JavaScript 7

JSDoc

reference link 16



JSFiddle

URL 91

K

Kapa 128

URL 127

Kdenlive

reference link 103

Knowledge Owl 70

Kroki

URL 115

Kubernetes 30

L

LanguageTool 110, 112

reference link 109, 112, 122

large language models (LLMs) 40, 98, 121



reference link 4

LaTeX

URL 118

Loom 95

Loom AI

URL 125

M

machine learning (ML) 120

MacWhisper

URL 126

MadCap Flare 68

Markdown 71

example 72

making dynamic, with MDX 76

markup languages, for documentation



AsciiDoc 74-76

Markdown 71, 72

metadata, adding with YAML 76

reStructuredText 73, 74

Matomo

URL 83

MDX

URL 76

media generation, AI

audio 124, 125

images 124

media, editing 126

video 125

Mermaid 115

URL 115



Midjourney

URL 124

Mintlify 128

URL 127

Mixpanel

URL 83

MKDocs 81

URL 81

Monito 6

N

natural language processing (NLP) 107, 120

NLP-based tools 112

Acrolinx 113

Grammarly 112

LanguageTool 112



ProWritingAid 113

O

OASIS Darwin Information Typing Architecture (DITA)

reference link 67

onboarding 10

OpenAI

URL 128

OpenAPI

URL 18

Open Broadcast Software (OBS) Studio 102

options, for writing browser-based documentation

Confluence from Atlassian 70

GitBook 69

Knowledge Owl 70

Paligo 70



options, for writing topic-based documentation

Framemaker from Adobe 68

MadCap Flare 68

OxygenXML 68

Writerside from JetBrains 68

OxygenXML 68

P

Pa11y

reference link 118

page structure

admonitions 44, 45

documentation, creating 47, 48

example 46

lists 42

paragraph breaks 43



principles 40

tables 43, 44

tabs 45, 46

Paligo 70

pandoc

URL 118

PlantUML

URL 115

ProWritingAid 113

URL 113

Puppeteer

URL 95, 114

R

RAML

URL 18



React

URL 77

React-style JavaScript

URL 79

reference section 15-17

API documentation 18, 19

architecture and internal design details 22

security and privacy details 23

templates 23

whitepapers and academic papers 23

regex-based tool options 108

combination tools 109

single-purpose packages 108

taming results 111, 112

tooling workflow 110



regular expressions (regexes) 107

Replit

URL 91, 123

Representational State Transfer APIs 18

reStructuredText 73

example 74

Robot Framework

URL 113

robots

writing for 130, 131

Runme

URL 116

Runway

URL 125

Rust language



reference link 17

Rust with Clippy

URL 106

S

Scalable Vector Graphics (SVG) image 115

screenshots 92-94

benefits 92

creating 95

system default tools 95

third-party tools 95

Scribe

URL 123

search engine optimization (SEO) 2

Selenium

URL 113



service-level agreements (SLAs)

reference link 4

shot-scraper

URL 114

Shutter 95

Simple Object Access Protocol (SOAP) 22

simplified user interface (SUI)

reference link 94

Slack 94

Snagit 95

SOAP API 22

software development kit (SDK) 7, 13

Sora

URL 125

speech-to-text (STT) 126



Sphinx 82

URL 82

Stable Diffusion

URL 124

static site generators (SSGs) 79

Strapi

URL 83

style guide 106

automation 110

developer-friendly style guides 107

NLP-based tools 112

regex-based tool options 108

testing 110

tool selection 108

subject-matter expert (SME) 89



Swimm

URL 123

T

Tabnine

URL 123

technical blog posts 23, 24

technical documentation

content, deciding 55

drafting 57

feedback 60, 61

maintenance 62

metrics 61

re-drafting 58, 59

research and product testing 55-57

scoping and requirements gathering 53-55



testing 60, 61

technical writing

common reasons for not writing confidently 25-27

inclusive language 34

technical writing, improvement tips

consistency 28

don’t repeat yourself 33, 34

short text, writing 30

show off, avoiding 33

unnecessary words, removing 31-33

user involvement 28-30

TechSmith Snagit and Camtasia 102

tech writing 1

templates 10

Terminalizer



URL 116

text editor 77, 78

TextLint 110

reference link 109

text to speech (TTS) 125

tools, in docs as code 77

collaboration 78

rendering 79

text editor 77, 78

tools section process

key factors 70

topic-based documentation 66-68

options for writing 68

Transformer

reference link 121



tutorials, Getting Started guide 12, 13

API onboarding tutorials 15

Monito example 13

templates 14

U

Unified Modeling Language (UML) 115

Usersnap

URL 85

Uservoice

URL 85

Utterances

URL 85

V

Vale 110

reference link 110



Veed

URL 125

VHS

reference link 116

video automation 116

options 116

terminal commands, converting to video 116

videos

contents 99

recording 99

showing 99, 101

Vim

URL 78

Visual Studio Code

reference link 78



Visual Studio IntelliCode

URL 123

Voicemaker

URL 126

W

Warp

URL 116

Whisper

URL 126

Write Good

reference link 108

Writerside from JetBrains 68

X

XML (Extensible Markup Language) 66

Y



yet another markup language (YAML) 76



packtpub.com

Subscribe to our online digital library for full access to over
7,000 books and videos, as well as industry leading tools to help
you plan your personal development and advance your career.
For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for
you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade
to the eBook version at packtpub.com and as a print book

http://packtpub.com/
http://packtpub.com/


customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more
details.

At www.packtpub.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and
receive exclusive discounts and offers on Packt books and
eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other
books by Packt:

mailto:customercare@packtpub.com
http://www.packtpub.com/


Security-Driven Software Development

https://packt.link/1835462839


Aspen Olmsted

ISBN: 978-1-83546-283-6

Find out non-functional requirements crucial for software
security, performance, and reliability
Develop the skills to identify and model vulnerabilities in
software design and analysis
Analyze and model various threat vectors that pose risks to
software applications
Acquire strategies to mitigate security threats specific to web
applications
Address threats to the database layer of an application
Trace non-functional requirements through secure software
design



Developer Career Masterplan

https://packt.link/1801818703


Heather VanCura | Bruno Souza

ISBN: 978-1-80181-870-4

Explore skills needed to grow your career
Participate in community and mentorship programs
Build your technical knowledge for growth
Discover how to network and use social media
Understand the impact of public speaking
Identify the critical conversations to advance your career
Participate in non-technical activities to enhance your career

Packt is searching for authors
like you

If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community.
You can make a general application, apply for a specific hot
topic that we are recruiting an author for, or submit your own
idea.

Share Your Thoughts

http://authors.packtpub.com/


Now you’ve finished Technical Writing for Software Developers,
we’d love to hear your thoughts! If you purchased the book
from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a
review on the site that you purchased it from.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

Download a free PDF copy of
this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

Is your e-book purchase not compatible with the device of your
choice?

Don’t worry!, Now with every Packt book, you get a DRM-free
PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and
paste code from your favorite technical books directly into your

https://packt.link/r/1835080405


application.

The perks don’t stop there, you can get exclusive access to
discounts, newsletters, and great free content in your inbox
daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the following link:

https://packt.link/free-ebook/9781835080405

2. Submit your proof of purchase.
3. That’s it! We’ll send your free PDF and other benefits to your

email directly.

https://packt.link/free-ebook/9781835080405

	Technical Writing for Software Developers
	Contributors
	About the author
	About the reviewers
	Preface
	Welcome, wordsmiths!
	What is technical writing?
	What technical writing doesn’t include?
	Technical writing isn’t copywriting
	Technical writing isn’t interface copy
	Technical writing isn’t blogging
	Technical writing isn’t tech journalism
	Technical writing isn’t marketing copy

	A technical writing definition
	Who am I?
	Who can learn from this book?
	A note on terminology
	State of the industry
	Who this book is for
	What this book covers
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a PDF copy of this book

	Chapter 1: The Why, Who, and How of Tech Writing
	Why should you care about tech writing?
	What can documentarians accomplish?
	Marketing
	Product
	Sales
	Support
	Developer relations
	Engineering
	Machine readers
	Proofreading for accuracy and safety
	Content silos
	Writer in the middle

	Understanding who you are writing for
	Learning by example
	Don’t forget the end users and the end-end users

	Summary

	Chapter 2: Understanding Different Types of Documentation in Software Development
	Templates
	Getting started and onboarding
	A detailed overview of Getting Started
	Learning with an example
	Templates for a Getting Started guide

	Tutorials
	Expanding on the example
	Templates for tutorials

	Reference
	API documentation
	Architecture and design details
	Security and privacy details

	Technical blog posts
	Summary

	Chapter 3: Language and the Fundamental Mechanics of Explaining
	Common reasons for not writing confidently
	Not a native speaker
	Intentionally vague
	Marketing and product reasons
	Reducing cognitive load
	Inclusive language

	How to improve your writing
	Consistency
	Involving the user
	Keeping it short
	Removing unnecessary words
	Don’t show off – let the product speak for itself
	Don’t repeat yourself

	Inclusive language: in more detail
	Overly negative language
	Biased language
	Gender
	Out-of-date language

	Summary

	Chapter 4: Page Structure and How It Aids Reading
	Humans are not your only readers
	The principles of good layout
	A quick primer on the markup language of the web
	Thinking about pages semantically
	Lists
	Paragraph breaks
	Tables
	Admonitions
	Tabs

	An example of a well-structured page
	Creating documentation menus and navigation
	Following menu patterns
	Adding internal search
	Keeping links working

	Summary

	Chapter 5: The Technical Writing Process
	Scoping and requirements gathering
	What to document
	Research and product testing
	Drafting and re-drafting
	Feedback, testing, and maintenance
	Metrics and measuring success

	Summary

	Chapter 6: Selecting the Right Tools for Efficient Documentation Creation
	Topic-based documentation
	Docs as code
	Documentation in the browser
	Choosing toolchains and tools
	Why docs as code?
	Selecting and using a markup language
	Adding metadata to markup with YAML
	Making Markdown dynamic with MDX

	The key tools in docs as code
	Text editor
	Collaboration
	Rendering

	Helping less technical writers with headless CMS
	Analyzing documentation performance
	Analytics tools
	Sentiment

	Summary

	Chapter 7: Handling Other Content Types for Comprehensive Documentation
	We are more than technical writers
	Code examples
	Deciding on a consistent example
	Creating and organizing code examples
	Testing code examples
	Keeping an eye on prerequisites

	Screenshots, images, and charts
	Screenshots
	Adding other images
	Making images accessible

	Animated GIFs and videos
	What to make a video of
	What to show
	How to record
	Audio
	What to show
	Recording

	Interactive experiences
	More than final words

	Chapter 8: Collaborative Workflows with Automated Documentation Processes
	Striking the right balance
	What is a style guide?
	Developer-friendly style guides
	Choosing a type of tool to use

	Automating image generation
	Using test suites
	Automating other image types

	Automating video
	Converting terminal commands to video
	Other video automation options

	Automating code testing
	Other automation options
	Converting file formats
	Accessibility

	Summary

	Chapter 9: Opportunities to Enhance Documentation with AI Tools
	A brief history of AI
	Understanding AI and ML
	Recent advances in AI
	Text and code completion and improvement
	Generating documentation
	AI for audio and video
	Generating media

	New ways of interacting
	The principles of training and creating your own AI
	Writing for robots
	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book


