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ABSTRACT 

Demand of ethylene is surging at unprecedented rate and therefore conversion of methane into 

these important value-added chemicals using one-step processes such oxidative coupling of 

methane is of paramount importance. It would be beneficial and significant to design a catalyst 

which can suppress undesired over  reactions which lead to the production of COx gases 

resulting in issues of yield and selectivity. To this end, in this study, Machine learning (ML) 

models integrated with genetic algorithm (GA) have been developed to predict, evaluate, and 

analyze adsorption energies of methane related species on Cu-based Alloys. Comparative study 

of different ML algorithms integrated with Genetic Algorithm (GA) were performed to 

improve the ML model’s architecture and parameters selection. The results proposed that 

Categorical boosting (Catboost) model outperformed all other models and effectively predicts 

adsorption energies compared to other models (RMSE = 0.0977, CC = 96.5 %). Permutation 

importance score was utilized to asses prediction performance and accuracy which revealed 

that group number and surface energy contributed the highest to the model. The partial 

dependence plots (PDPs) analysis shows the potential effects of each influencing parameter 

impact on the prediction of the respective adsorption energies and as well as shows that how 

these factors will interact during oxidative coupling of methane (OCM). Finally, in order to 

analyze the distribution of the data points of the features and how they affect the model’s 

predictions, bee swarm plot was employed.   

 

 

Keywords: Heterogenous Catalysis, Machine Learning, Genetic Algorithm (GA), Boosting, 

Artificial Intelligence, Oxidative Coupling of methane (OCM),  
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CHAPTER 1: INTRODUCTION 

1.1  Background  

Methane can be extracted from natural gas and as the reserves of petroleum diminish, it will 

eventually become an essential and significant raw material for manufacture of fuels and 

chemicals [1]. Research has shown that methane will last us 60 years once we exhaust oil 

reserves [2]. Its potential as a feedstock has not been tapped to its extent. Methane can either 

be converted directly or indirectly to fuels and chemicals. The indirect pathway utilizes 

synthesis gas while directly it can be converted methanol and C2 hydrocarbons [3]. As of today, 

the economically viable pathway is via the indirect route. Synthesis gas can be produced using 

methane through steam reforming, dry reforming and partial oxidation. Commercially, mass 

production of synthesis gas is done using steam reforming which is endothermic in nature [4]: 

𝐶𝐻4 + 𝐻2𝑂  → 𝐶𝑂 + 3𝐻2      ∆𝐻°298 = 206𝑘𝐽/𝑚𝑜𝑙  [5]  (1.1) 

However, this process has its drawbacks. Depending on the catalyst used, the temperatures can 

range from 700K to 1050K requiring increased heat fluxes [6]. Elevated pressure is also needed 

which may reach 25 bars [7].  Therefore, the reactor must be able to withstand these demanding 

conditions.  

Stringent heat regulation is also paramount as huge quantities of heat are required to carry out 

this process [8]. This leads to greater energy requirements and higher costs [9]. Furthermore, 

the efficiency of this reaction is low, and the process suffers from stability issues [10]. 

In contrast, the direct conversion of Methane in the presence of an oxidant into value-added 

chemicals such as methanol and ethylene present a greater opportunity [11]. The reason being 

that ethylene is one of the most sought-after chemicals and it can be transported with ease in 

its liquid state. Additionally, it is an environment-friendly process which will contribute to the 

decarbonization of the industry [12]. Extensive research was carried out in the 1980s on 

oxidative coupling of methane (OCM), but certain drawbacks relating to catalysis of the 

process led to its decline.  

OCM has 2 components. Heterogeneously, CH4 is first activated on the metal-oxide surface. 

Conversely, in the homogenous gas-phase coupling of free radical occurs [13]. Methyl radicals 

(CH3
*) are formed when hydrogen is ejected from Methane by the activated oxygen molecules 

present on the catalyst surface. Resultantly, Ethane (C2H6) is produced as a result of coupling 
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of CH3
* radicals in the gaseous phase. In the final step, ethane is dehydrogenated to form 

ethylene (C2H4). OCM reactions are highly exothermic requiring temperatures of 950-1200 K 

as vast quantities of energy is required to cleave the C-H bond (429 KJ mol-1) [14, 15]. Figure 

1.1 represents a schematic  overview of oxidative coupling of methane (OCM) process. 

 

Figure 1.1: Schematic overview of oxidative coupling of methane (OCM) process.[12] 

However, OCM suffers from serious shortcoming of low C2 yield. This is primarily due to 

secondary reactions of CH3
* radicals. OCM is a fairly complex reaction as vigorously reactive 

radical species along with oxygen occupy the reactor [12]. Oxygen acts as an oxidant and a 

multitude of oxidation and dehydrogenation steps occur.  Catalyst capable of activating CH4 

also activates the Ethane at the same rate which causes production of COx  gases which are 

undesirable and particularly stable. Furthermore, vacant surface oxygen sites present on the 

catalyst are refilled by gas-phase oxygen and adsorption of oxygen occurs which enhances COx  

formation [11]. According to thermodynamic standpoint the formation of partial and total 

oxidation products (COx) is favorable which restricts C2 yield.  Complete and partial oxidation 

occurs according to the following reaction respectively: 

𝐶𝐻4 + 𝑂2 → 𝐶𝑂 + 𝐻2 + 𝐻2𝑂                ∆𝐻298
° =  −278 𝐾𝐽. 𝑚𝑜𝑙−1  [15]  (1.2) 

𝐶𝐻4 + 2𝑂2 → 𝐶𝑂2 +  2𝐻2𝑂                 ∆𝐻298
° =  −802 𝐾𝐽. 𝑚𝑜𝑙−1   [15]  (1.3) 

It can be seen that both oxidation pathways are exothermic with the former take precedence 

over the latter at similar conditions. Coupling those results in ethylene forms by the following 

route: 

2𝐶𝐻4 + 𝑂2 → 𝐶2𝐻4 +  2𝐻2𝑂                 ∆𝐻298
° =  −282 𝐾𝐽. 𝑚𝑜𝑙−1   [15]  (1.4) 
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The enthalpy of the above reaction is near to partial oxidation of methane but dwarfs in 

comparison to full oxidation of ethylene: 

𝐶2𝐻4 + 2𝐻2𝑂 → 2𝐶𝑂 +  4𝐻2                 ∆𝐻298
° =  210 𝐾𝐽. 𝑚𝑜𝑙−1  [15]  (1.5) 

This points to the fact that the conditions that favor formation of ethylene at these temperatures 

are not favorable in for the activation of methane using oxygen [15]. Nonetheless, when viewed 

through a thermodynamic lens, partial oxidation and total oxidation are significantly more 

thermodynamically favorable compared to the oxidative coupling of methane.  

The principal and rate-limiting step in OCM reaction is the splitting of C-H bond in in CH4 

endothermically. A study was conducted regarding the kinetics of the reaction, and it revealed 

that an increase in C2 yield was the result of an increase in the initial formation rate of methyl 

radical. Additionally, they discovered that the highest number of methyl radicals were present 

due to oxygen-attacked hydrogen abstraction of CH4 rather than from hydrogen abstraction 

occurring in the gas phase. This shows the paramount importance of catalyst’s ability to 

generating surface oxygen species which are crucial for formation of methyl radicals in OCM 

reaction [16]. 

Consequently, it is of utmost importance to stabilize CH3 so that dehydrogenation to reactive 

intermediates such as CH2 and CH is prevented which end up as oxides of carbon impacting 

the yield significantly[17] . On the surface of the catalysts, Methyl radical forms Methoxide 

ion by electron acceptance which acts as surface intermediates in the production of COx. The 

methylene radical (CH2) also couples with CO in gas-phase to form Ketene (CH2CO). 

Eventually, these reactions affect yield and selectivity. Therefore, an optimum catalyst should 

aid in the formation of methyl radicals while suppressing its secondary oxidations reactions 

which are a source of COX. 

Furthermore, there are other crucial aspects that are required to be taken into consideration in 

order to understand OCM reaction and design novel catalysts for this purpose. First and 

foremost are the active sites that activate C-H bond of methane which are widely accepted to 

be reactive oxygen species on the catalyst surface. The nature and impact of these different 

oxygen species is subject to opinion. In recent times, the development of DFT calculations is 

an endeavor to elucidate the discrete functions of the different oxygen species in the OCM 

reaction. This is crucial for assisting in the development of an effective OCM catalyst that 

suppresses COX production and improves C2 product selectivity [18]. 
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After the activation of CH4 on these active sites and the release of H2O or COx oxygen 

vacancies evolve on the catalyst. Oxygen vacancy concentration in oxide catalysts, especially 

at high temperatures, is strongly related to the abundance of lattice oxygen and its availability 

for reactions. The energy needed for hydrogen removal to generate a methyl radical drastically 

reduces with the concentration of oxygen vacancies on the catalyst. Additionally, depending on 

the location and ability of the oxygen vacancies, they could also have an effect on the refilling 

of these vacancies by oxygen from the gas phase. Figure 1.2 depicts the conversion of gas 

phase oxygen into lattice oxygen species on the catalyst.[19] 

 

Figure 1.2: Schematic illustration of active site renewal on the oxide surface through replacing the 

oxygen vacancy formed by methane activation 

The oxide catalysts' surface reducibility is a crucial component that influences OCM reaction. 

The availability of a particular lattice oxygen species is determined by the oxide catalyst's 

extent and likelihood of reduction. Increased surface reducibility resulted in higher OCM 

activity, whereas C2 selectivity eventually declined. Furthermore, methane oxidation becomes 

disturbed at a certain point, leading to increased amounts of COx. The particular type of lattice 

oxygen species that are present on the catalyst has a significant impact on the oxide surface 

reducibility. It's likely that a more electrophilic lattice oxygen will result in less surface 

reducibility. Figure 1.3 depicts the impact of surface reducibility on the activity of the catalyst 

and it impacts on C2 yield as well as showing the increased selectivity of COx beyond a certain 

point. 
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Figure 1.3: Impact of surface reducibility on the activity of the catalyst and it impacts on C2 yield as 

well as showing the increased selectivity of Cox [12] 

In heterogeneous catalysis, the essential condition for it to take place typically involves the 

adsorption of molecules from the reacting substances onto the inner or outer surface of the 

catalyst [20].  Now ML is used in the study because the industry undergoing a transformation 

towards AI-driven smart manufacturing, commonly referred to as Industry 4.0, machines are 

now capable of autonomous communication and collaboration. 

Machine learning is at the forefront of AI, allowing systems to create mathematical models 

from training data. This helps them learn and make predictions, even in unfamiliar situations 

[21]. The precision comes from carefully selecting features and effective training, making ML 

a valuable tool for understanding complex environmental phenomena with variations over time 

and space [22-24]. 

ML has a wide impact, touching all aspects of life and being a key part of Industry 4.0. Inspired 

by how the human brain learns, ML gives computers the ability to handle complex problems 

by learning and adapting to different inputs. It has many advantages, like dealing with 

complexity, improving computational efficiency, handling uncertainty, and aiding decision-

making [24]. ML’s progress has benefited various scientific and engineering fields, including 

materials science, bioengineering, construction management, and transportation engineering 

[25]. 
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Numerous studies have explored the diverse applications of AI and machine learning in various 

industries. These encompass real-time monitoring [26, 27], predictive maintenance [28, 29], 

quality control [30, 31], energy efficiency enhancements [32, 33], data mining and analytics 

[34], drug discovery and development [35], streamlining industrial processes [36], defending 

against process-aware assaults on industrial control systems [37], optimization [38], 

monitoring and diagnosing faults in supervised processes [39], IoT-based Smart Agriculture 

systems [40], industrial tomography [41], predicting Heart Failure Disease [42], earthquake 

engineering [25], and more. 

This study aims to develop a machine learning model that has the ability to accurately predict 

the adsorption energies of CH4 related species which are CH3, CH2, CH on Cu-based alloys. 

The effect of doping of copper with various transition metals for use as a catalyst in OCM is 

evaluated.  

The electric charge distribution of the individual components within the oxide significantly 

affects their catalytic behavior. If a dopant is integrated within the crystal structure of the metal, 

the morphology is modified leading to defects in  the lattice and electronic structure of the 

oxide is also changed [43]. Charge transfer would be facilitated, and an improved energy flow 

would take place. The characteristics and properties of the different components synergize so 

as to contribute to the aforementioned functionalities [44].  

To this end gradient boosting algorithms were employed which are eXtreme Gradient Boosting 

(XGboost), CatBoost (Categorical Boosting) and light gradient boosting. The goal of 

conducting a comparative analysis of the models was to avoid pitfalls of overfitting and 

underfitting, with the ultimate aim of improving predictive model performance. The 

hyperparameters were tuned using genetic algorithm.   The results achieved will provide insight 

into the role of catalysis and its ability to suppress undesired over-reactions. 

1.2  Objectives 

The objectives of the thesis are given below,  

• Development of machine learning models for calculating adsorption energies of 

Methane on Cu-based alloys. 

• Optimization of the model’s hyperparameters using Genetic Algorithm for accurate 

predictions of adsorption energies of Methane. 
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• Comparison of ML models to assess advantages and drawbacks based using different 

metrics. 

1.3  Thesis outlines 

The Thesis follows the following pattern: In Chapter 1, we provide an Introduction and 

background to the research topic. This is followed by Chapter 2, where we give a detailed 

literature for the assessment of adsorption energies of Methane on Cu-based alloys. Chapter 3 

delves into the research methodology employed in the development of optimization framework 

for adsorption energies of Methane on Cu-based alloys. Moving on to Chapter 4, we present 

the outcomes of our research, including different machine learning model comparison based 

on the advantages and drawback of different metrics. 

 

 

  



8 

CHAPTER 2: LITERATURE REVIEW 

2.1  Literature review 

With a global natural gas reserves of approximately 208 x 1012 cubic feet [45, 46] and the 

exhaustion of fossil fuels, research on converting methane into useful compounds using 

innovative technologies is rapidly rising.  Currently, the industrial-scale conversion of methane 

to olefins involves reforming CH4 into CO and H2, followed by Fischer-Tropsch synthesis [47, 

48] or direct conversion of syngas to light olefins using bifunctional catalysts like ZnCrOx-

SAPO [47]. However, this process consumes huge amounts of energy as the cleavage of all 4 

C-H bonds in the first step doesn’t lead to yielding of CH2 or CH3 radicals which is integral to 

the production of C2+ species. Furthermore, it doesn’t utilize carbon properly due to conversion 

to CO2.  

This has led to an enhanced interest in the recent decades for direct conversion of methane into 

value added chemicals such as ethylene, formaldehyde etc. This is due to its lower costs and 

greener process. Initially, Methane was converted into these compounds by passing it over 

iron-embedded silica matrix without the presence of oxygen. It resulted in high selectivity to 

the required C2 and C3 hydrocarbons however, the catalyst would quickly deactivate leading to 

decline in its application to commercial use [49].    

Therefore, oxidative coupling of methane (OCM) has sparked the highest interest. This was 

pioneered by Keller and Bhasin in 1982 [50]. Beyond that, extensive research has been carried 

out to optimize this process and increased its yield and selectivity. With the research of Baerns 

in 1984, it was found that suitable C2 yields can be attained through this process. He attained 

58 % selectivity at 5 % conversion of Methane by utilizing a PbO/ Al2O3 catalyst [13]. 

Following this, Ito et al. achieved 50 % C2 selectivity at 28 % conversion by using a lithium 

promoted MgO catalyst (LiMgO) [13]. Initial research was aimed at maximizing C2 yield by 

modifying catalyst properties and composition however, economic considerations have shown 

that C2 selectivity is more integral than yield given that there is acceptable CH4 conversion.  

Since then, multitude of catalysts which may include pure oxides, alkaline earth, or other metals 

have been subject to experiment to achieve the desired results for OCM reaction. With the 

advent of 1990s, alkaline earth metal oxides were tested to find suitable candidates for the 

OCM reaction with focus on either basis of MgO or CaO. These showed improved C2+ 
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selectivity according to their basicity. Li/MgO was found to be a good catalyst. Gao et al. 

integration of 3 wt.% Li onto MgO resulted in catalyst that gave substantial CH4 conversion 

and C2+ selectivity at 30% and 62% respectively [51]. This catalyst faced a drawback of losing 

its metal ions at its reaction conditions of 780 ℃ so it had an inherent weakness of catalytic 

stability [52]. Adversely, pure CaO powder showed greater CH4 conversion of 40 % and C2+ 

selectivity of 50 %. In comparison, CaO- fully coated silica particles exhibited a more reliable 

and stable catalytic activity [53]. Lastly, alkali metal-doped CaO catalysts, Na-CaO catalysts 

showed best results with 24.7 methane conversion and 68.8 % C2+ selectivity.  

Rare-earth metal oxides were also researched to find potential catalyst among them. It was 

found that La2O3- based catalysts were best performing as they showed very good activity of 

catalyst as well as stability while at low temperature reaction condition [54]. Hou et al, studied 

La-based catalysts and achieved C2+ yield of around 18 % over a Li-ZnO/ La2O3 catalyst [55].  

Some recent studies involving doped and undoped lanthanide catalysts have shown that Sr-

doped La2O3 is the most suitable catalyst among the rare-earth metal oxides. They argued that 

as oxygen concentration is essential for enhanced C2+ selectivity, La augmented the surface 

oxygen species during the reaction [56]. The doping of La2O3 with an ion that has lower 

valency like Sr produced a p-type semiconductor that has vacancies for oxygen resulting in 

easy diffusion of oxygen through these vacancies to create oxygen ions that activated methane 

in a very reactive manner at lower temperatures of around 400 ℃ [57].  

Extensive studies have been performed on Mn-Na-W-SiO2 catalyst due to its good C2+ 

selectivity. Wu et al. put forward that W-O-Si bond caused the breaking of C-H bond in CH4 

as the lattice oxygen associated with H in CH4 [58]. Furthermore, Ji et al. concluded that the 

methane conversion is directly proportional to W concentration by experimenting on different 

W concertation using Mn-Na-W catalyst. The catalytic activity enhanced with increase in W 

content [59]. Even though increased C2+ selectivity has been attributed to Na-W-Mn-SiO2 

catalysts, they suffer from significant deactivation due to reduction in their surface area, 

displacement of Na2WO4 from the catalyst and the formation of inactive phases [60, 61]. 

Another catalyst widely prevalent are perovskites (ABO3) due to their redox properties which 

are controllable. As there is a huge selection of elements that can be introduced in either A or 

B position to create different compositions with various redox potentials for the OCM reaction. 

Sim et al. considered main factors that affected the C2+ yield in OCM by testing ten ABO3 

catalysts. He concluded that conductivity of oxygen ion can be used as a benchmark for 
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deducing performance of the catalyst. Those perovskites that had greater oxygen ion 

conductivity resulted in greater methane conversion. On the contrary, higher binding energies 

of some perovskites are more favorable to the formation of CO and further oxidation to CO2 

by adsorbed oxygen species [61].  

Recently, collaborated research efforts have been made to explore other aspects of OCM 

including nature of active sites, oxygen vacancy, acid-base properties and surface oxide 

reducibility. Active sites that activate C-H bond of CH4 are generally accepted as oxygen 

species present on the catalyst surface. Although, the exact nature of these active is debated as 

there are different types of oxygen species present on the surface of the catalyst which play 

their unique role in oxidation [62]. Gordienko et al. studied the properties and the role of these 

oxygen species using NaWMn/ SiO2 catalyst. He showed that bounded oxygen species were 

present on the catalyst which were both strong and weakly bounded in nature. They also found 

that selectivity was dependent on the reduction temperature therefore different species of 

oxygen aided the reaction using different routes. Weakly bounded oxygen specie were 

concluded to be the main contributor to the overall stability and activity of the OCM reaction 

[63]. Apart from the oxygen species, oxygen itself considerably enhanced CH4 conversion but 

with a serious drawback of greater COX formation [64].  

Lately, focus of the research has also been on oxygen vacancy which is due to the hydrogen 

abstraction of methane resulting in release of H2O or COX. The catalyst’s oxygen vacancy 

concentration, particularly at high temperatures, is closely related to the amount of lattice 

oxygen and their availability for reaction. Efficient OCM catalysts should have a high 

concentration of oxygen vacancies at normal OCM temperatures. Cheng et al. experimented 

on systems of iron oxide to discover the role of these vacancies by utilizing DFT computation. 

It was revealed that there was a notable decrease in the energy required to form methyl radicals 

via hydrogen abstraction if there were a higher number of oxygen vacancies [65]. In addition, 

the relative position along with stability of the oxygen vacancies could impact their 

replenishment by the gas phase oxygen or through migration of the vacancies [25].  This 

refilling of the oxygen vacancies causes the re-oxidation of the reduced cations. As a 

consequence, the active sites get restored in order for the next catalytic cycle to proceed. 

Research has shown that vacancies present on at the outer surface have been found to be more 

stable relative to those that are at the subsurface therefore, the more energetically favorable 

pathway is from the later to former [66].  
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It is widely known that methane is activated heterogeneously at the oxide catalyst surface. The 

behaviors of the component species of the oxide in catalyzing processes are greatly influenced 

by their distribution of electric charge, with the surface oxide anions (oxygen and hydroxyl 

groups) and surface metal cations being regarded as basic and acidic centers, respectively. 

Various studies have shown that acid-base property is central to the improved performance of 

the OCM reaction [67]. Zavyalova et al. performed an in-depth analysis of the data available 

on OCM catalysts revealing that in cases where the basic character was strong and greater, it 

led to a good C2 selectivity [43]. When a dopant metal is introduced into the crystal structure, 

the lattice as well as the electronic configuration is altered of the host oxide creating a hybrid 

material. Electronic or charge transfer among the constituents of the hybrid could become more 

facilitated via a synergy of properties of the individual components [68]. A notable finding by 

Song et al. showed that basicity of catalysts used in OCM could be modified by proper doping. 

By utilizing Sr-doped La2O3 nanofibers, they discovered that sites with strong basic character 

are essential for heightened OCM performance specifically at temperatures beyond 600 ℃. 

Furthermore, with the introduction of greater Sr, the quantity along with their robustness of the 

basic sites was also enhanced [44].   

Another pivotal factor that impacts the catalytic activity as well as C2 selectivity is the surface 

reducibility of the oxide catalysts. The degree and ease of reduction of the oxide catalyst 

determines the availability of the specific lattice oxygen species. By utilizing  DFT technique, 

Kumar et al. attempted to investigate doped and undoped catalysts and figure out the impact 

their surface reducibility had on the performance of OCM reaction [69]. It was revealed that 

greater surface reducibility led to enhanced OCM activity although the selectivity of C2 

gradually decreased. Moreover, after a certain point, the oxidation of methane is disrupted 

resulting in greater quantities of COx. The oxide surface reducibility is highly dependent on the 

type of lattice oxygen species present on the catalyst. A more electrophilic lattice oxygen is 

probably going to cause surface reducibility to be lower. According to a study, the oxygen 

present in the lattice of LaAlO3 showed better C2 selectivity as it had more electrophilic 

character [64]. Those catalysts whose reduction temperature is low and simultaneously surface 

reducibility is high are supposed to show improved and enhanced oxidation and vice versa [70]. 

This indicates that there may be a limit to just how low the reduction temperature can be set 

for a specific oxide catalyst in order to increase C2 selectivity. Therefore, determining how to 

properly optimize the surface reducibility is essential to constructing effective OCM oxide 

catalysts.  
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OCM reaction has immense potential to convert methane directly into value-added chemicals 

therefore, in order to design and synthesize novel catalysts that can bring the process to an 

industrially sustainable scale in terms of C2 yield, more innovative and different approaches 

must be pursued. Hence, to this end, different novel approaches have been employed such as 

analyzing reaction kinetics of the various OCM pathways, utilizing computational techniques 

to optimize catalyst composition along with experimentation  focusing on fundamentals of the 

reaction [56, 71, 72].  

Most recently, as computational power has significantly advanced, computational tools have 

been employed to design new and innovative catalysts by varying compositions of the catalysts 

materials as well as other crucial factors and parameters influencing OCM. Kondratenko et al. 

used an innovative technique where they researched on the role of individual components of 

the catalyst utilizing well planned and developed experiments thereafter optimizing the catalyst 

composition [73]. Nonetheless, for a more realistic catalyst design, common conditions of the 

OCM reaction need to be considered in both experimental or computational approach.  
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CHAPTER 3: METHODOLOGY AND MODELLING OF 

ALOGRITHMS 

3.1  Methodology 

The figure 3.1 represent the overall methodology of this study, and is briefly explained below  

 

Figure 3.1: Methodology 

Phase I: Data Cleaning and Preprocessing 

In order to remove inefficiencies and standardize the data, preprocessing was carried out. 

Feature scaling was carried out to transform all value to similar scale so that all features 

contribute equally to the model.  The dataset was divided into 90% training and 10% testing 

dataset so that more data points are available for enhanced training and validation.  

Phase II: Application of boosting algorithms 

In this phase, application of 3 boosting models was carried out. The parameters of the models 

were defined and given specific ranges.  Furthermore, to avoid the pitfalls of overfitting 5-fold 

cross validation was carried out. This will also prevent premature generalization of results as 

each time different set of data points would be taken for training and testing.  Hyperparameters 

were also initiated and defined so as to optimize them in the next phase. For evaluating the 
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results, Root Mean Squared Error (RMSE) and Correlation Coefficient (CC) were utilized 

which will quantify the accuracy of the model.  

Phase III: Genetic Algorithm based Optimization   

GA framework was used in optimization of hyperparameters of different Machine leaning 

models. Optimization was enhanced by utilizing different functionalities such as crossover and 

mutation probability allowing us to reach at the optimal solution over successive generations. 

For more stringent optimization, 5-fold cross validation was carried out again. Elitism was 

chosen so that the best solutions are preserved for next generation.   

Phase IV: Comparison of Models using Explainable Machine learning     

In this phase comparison of different Machine learning models were carried out. ML model 

were assessed on the bases of advantages and drawbacks of different metrics. It was done in 

order to compare the advantages and disadvantages of different models and to select the 

appropriate model for the process. For this purpose, partial dependence plots, permutation 

importance score and bee swarm plot were chosen to comprehend a model’s operations and 

provide complete understanding. 

Model’s performance and validation 

The model’s performance was calculated by two measures: root-mean-squared error (RMSE) 

and correlation coefficient (CC/R). These values were determined using the following equation 

(3.1) and (3.2). 

𝑅2 = 1 −
∑ (𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖)𝑛
𝑖=0

∑ (𝑌𝑖
𝑒𝑥𝑝 − 𝑌𝑎𝑣𝑔

𝑒𝑥𝑝)𝑛
𝑖

                              (3.1) 

                          

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖)
2 

𝑛

𝑖

                        (3.2) 

Yi
exp  and Yi stand for the actual and the expected outcomes results, and n indicates the total 

test samples. 

The coefficient of determination, typically denoted as R-squared, falls within the range of 0 to 

1. A value of 0 suggests that the output variable cannot be effectively predicted from the 

regressor variables, while a value of 1 signifies that the response variable is entirely predictable 
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from the regressor variables. The RMSE (Root Mean Square Error) is always a non-negative 

value, and a smaller RMSE indicates more accurate model predictions. 

3.2  Dataset and existing research 

The dataset consisted of 46 transition metal and their respective physico-chemical and 

electrical properties were considered which makes 12 as the total number of descriptors. Table 

3.1 shows the values of the 12 features of each element used for prediction of the adsorption 

energies. The data was taken from [17]. They performed Density Functional Theory (DFT) 

using Vienna ab initio simulation package (VASP) to calculate the adsorption energies of the 

various Cu-based alloys.  The DFT modelling and parameters can be found in [17].  As for the 

model construction of the Cu-based alloys, these 46 elements replaced the Cu atom present at 

the center of the surface layer of the slab model. Toyao et al. [17] modelled 9 different 

algorithms and concluded that extra tree regression (ETR) gave superior results with the root 

mean squared error (RMSE) in the range of 0.24-0.27 eV. Moreover, Zhang et al. (2021). [74] 

applied Gaussian process regression in conjunction with Bayesian optimization for 

hyperparameter tuning. They restricted the RMSE in the range of 0.12-0.154 eV.  

3.2.1  Data visualization 

Data visualization can be defined as presenting information in form of graph or pictures 

making it understandable and interpretable [75]. For this purpose, boxplots were constructed 

for the descriptors as shown in Fig 3.2. They allow us to visualize the measures of central 

tendency as well as range and quartiles. Comprehending the structure of boxplot allows 

improved evaluation and assessment of the data [76]. We can clearly see the interquartile range 

as well as outliers. Skewness in the data can also be noticed in some of the parameters.  

Table 3.1: Input features (descriptors) used for prediction of adsorption energies 

Element  AN  
AM / g 

mol-1  
G  P  

R / 

Å  
EN  

m. p. 

/ K  

b. p. 

/ K  

∆fusH 

/ kJ 

mol-1  

ρ / g 

cm-3  

IE 

/eV  

SE / 

J m-

2 

Mg  12 24.31 2 3 1.45 1.23 923 1363 8.5 1.74 7.65 0.54 

Al  13 26.98 13 3 1.18 1.47 933 2792 10.8 2.7 5.99 0.8 

Si  14 28.09 14 3 1.11 1.74 1687 3538 50.2 2.33 8.15 1.28 

Ca  20 40.08 2 4 1.94 1.04 1115 1757 8.5 1.54 6.11 0.46 

Sc  21 44.96 3 4 1.84 1.2 1814 3109 14.1 2.99 6.56 1.2 

Ti  22 47.87 4 4 1.76 1.32 1941 3560 14.2 4.51 6.83 1.93 

V  23 50.94 5 4 1.71 1.45 2183 3680 21.5 6 6.75 2.38 

Cr  24 52 6 4 1.66 1.56 2180 2944 21 7.15 6.77 3.2 

Mn  25 54.94 7 4 1.61 1.6 1519 2334 12.9 7.3 7.43 3.39 
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Fe  26 55.85 8 4 1.56 1.64 1811 3134 13.8 7.87 7.9 2.45 

Co  27 58.93 9 4 1.52 1.7 1768 3200 16.1 8.86 7.88 2.11 

Ni  28 58.69 10 4 1.49 1.75 1728 3186 17 8.9 7.64 1.92 

Cu  29 63.55 11 4 1.45 1.75 1358 2835 12.9 8.96 7.73 1.31 

Zn  30 65.38 12 4 1.42 1.66 693 1180 7.1 7.14 9.39 0.35 

Ga  31 69.72 13 4 1.36 1.82 303 2477 5.6 5.91 6 0.48 

Ge  32 72.64 14 4 1.25 2.02 1211 3106 36.9 5.32 7.9 0.87 

Se  34 78.96 16 4 1.03 2.48 494 958 6.7 4.81 9.75 0.05 

Sr  38 87.62 2 5 2.19 0.99 1050 1650 7.4 2.64 5.69 0.34 

Y  39 88.91 3 5 2.12 1.11 1795 3618 11.4 4.47 6.22 0.96 

Zr  40 91.22 4 5 2.06 1.22 2128 4682 21 6.52 6.63 1.57 

Nb  41 92.91 5 5 1.98 1.23 2750 5017 30 8.57 6.76 2.07 

Mo  42 95.96 6 5 1.9 1.3 2896 4912 37.5 10.2 7.09 2.8 

Tc  43 99 7 5 1.83 1.36 2430 4538 33.3 11 7.28 2.23 

Ru  44 101.07 8 5 1.78 1.42 2607 4423 38.6 12.1 7.36 2.58 

Rh  45 102.91 9 5 1.73 1.45 2237 3968 26.6 12.4 7.46 1.99 

Pd  46 106.42 10 5 1.69 1.35 1828 3236 16.7 12 8.34 1.34 

Ag  47 107.87 11 5 1.65 1.42 1235 2435 11.3 10.5 7.58 0.77 

Cd  48 112.41 12 5 1.61 1.46 594 1040 6.2 8.69 8.99 0.2 

In  49 114.82 13 5 1.56 1.49 430 2345 3.3 7.31 5.79 0.3 

Sn  50 118.71 14 5 1.45 1.72 505 2875 7.2 7.26 7.35 0.54 

Sb  51 121.76 15 5 1.33 1.82 904 1860 19.8 6.68 8.61 0.16 

Te  52 127.6 16 5 1.23 2.01 723 1261 17.5 6.24 9.01 0.08 

La  57 138.91 4 6 1.95 1.08 1191 3737 6.2 6.15 5.58 0.7 

Ce  58 140.12 5 6 1.85 1.08 1071 3716 5.5 6.77 5.54 1.02 

Pr  59 140.91 6 6 2.47 1.07 1204 3793 6.9 6.77 5.47 0.78 

Nd  60 144.24 7 6 2.06 1.07 1294 3347 7.1 7.01 5.53 0.82 

Hf  72 178.49 4 6 2.08 1.23 2506 4876 27.2 13.3 6.83 1.71 

Ta  73 180.95 5 6 2 1.33 3290 5731 36.6 16.4 7.55 2.34 

W  74 183.84 6 6 1.93 1.4 3695 5828 52.3 19.3 7.86 3.23 

Re  75 186.21 7 6 1.88 1.46 3459 5869 60.4 20.8 7.83 2.58 

Os  76 190.23 8 6 1.85 1.52 3306 5285 57.9 22.59 8.44 2.92 

Ir  77 192.22 9 6 1.8 1.55 2719 4701 41.1 22.5 8.97 2.28 

Pt  78 195.08 10 6 1.77 1.44 2042 4098 22.2 21.5 8.96 1.48 

Au  79 196.97 11 6 1.74 1.42 1337 3129 12.7 19.3 9.23 0.74 

Tl  81 204.38 13 6 1.56 1.44 577 1746 4.1 11.8 6.11 0.22 

Pb  82 207.2 14 6 1.54 1.55 601 2022 4.8 11.3 7.42 0.25 

 

Atomic number (AN), group (G), period (P), atomic radius (R) in Å, atomic mass (AM) in g 

mol-1, electronegativity (EN), melting point (m.p.) in K, boiling point (b.p.) in K, enthalpy of 

fusion (∆fusH) in kJ mol-1, density at 25 °C (ρ) in g cm-3, ionization energy (IE) in eV, surface 

energy (SE) in eV 
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3.2.2:  Machine learning algorithms  

In this study, we employed eXtreme Gradient Boosting (XGboost),CatBoost 

(Categorical Boosting) Regression, and Light Gradient Boosting Model (LGBM) to accurately 

and precisely estimate the adsorption energies. of the methane related species-CH3, CH  

and CH on the 46 unique Cu-based alloys. The design, training and testing of these models 

were carried out using Python software. For the purpose of hyperparameter optimization, we 

utilized Genetic Algorithm.  

3.2.3:  Gradient Boosting Algorithms 

In recent decades, boosting algorithms have emerged as a propitious and promising 

technique for constructing machine learning models. The theoretical basis behind this approach 

is to merge or combine the solutions of weak learners to form a strong learner which has 

enhanced prediction capability and superior accuracy [77]. This strong learner can be achieved 

by iteratively improving (boosting) the weak base-learners. According to research, gradient 

boosting decision tree (GBDT) is a popular ML technique because of its effectiveness, 

efficacy, precision, and interpretability [78]. An analogy can be constructing an adequate and 

satisfactory hypothesis from a comparatively mediocre hypothesis [79].  

 

Figure 3.2: Boxplot of the feature variables 
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The first boosting algorithms were developed by Schapire and Fruend who labelled its concept 

as ‘’garnering wisdom from a council of fools” [80, 81]. The uncomplicated base learners are 

the fools; however, these simple, inaccurate base learners have some useful information 

regarding the structure and framework of the problem. With every iteration, the base learner 

will gradually move towards the improved solution. In the case of regression, each new learner 

will attain an importance according to its contribution to reaching the optimum solution and it 

will be represented accordingly. For example, the weak learner will be given a specific weight 

(AdaBoost) and the higher weight learners will be given more importance in the final solution. 

In contrary, scaling will be employed according to some parameter such as learning rate 

(Gradient boosting, XGboost) and each weak learner will contribute equally to the solution 

with each basic learner taking us to the  required results in an iterative way. Finally, the 

predictions of the individual learners are combined into more precise and accurate estimations. 

With regards to boosting in regression, the relationship between the descriptors (x)  and the 

expectation of the response E(Y)  is quantified using an interpretable function E(Y |X = x) = 

f(x). if there are multiple descriptors, an additive model is formed by adding the effects of the 

individual predictors:  

      [77]  (3.3) 

In this equation, β0 is the intercept. The descriptors are x1, …., xp forming component X.  

h1(·),...,hp(·) perform the function of integrating and incorporating the effect of the predictors. 

eXtreme Gradient Boosting (XGboost) 

Xgboost is a scalable ensemble algorithm, which is based on gradient boosting. It is an effective 

and reliable approach to addressing problems involving machine learning [82]. XGBoost 

constructs an additive extension of the objective function by mitigating the loss function similar 

to gradient boosting. A different loss function is utilized to regulate the complexity and 

intricacy of the trees as XGBoost utilizes decision trees as its basic estimator. 
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In the above equations, B is total leaves in the tree and W  refers to the scores of the output of 

the leaves. Pruning can also be utilized. Gamma which is denoted by  is the minimum loss 

reduction that will create a new split. The trees complexity can be reduced by adjusting depth 

of the trees, using L1 and L2 regularization and tuning the learning rate to prevent overfitting.  

Randomization is another feature of Xgboost which further mollifies overfitting and enhance 

computational speeds. The parameters for this purpose are random subsampling and column 

subsampling. 

The success of XGBoost is mostly due to its scalability in all situations. It operates more than 

10 times quicker than currently used solutions. Furthermore, in scenarios where there are 

memory constraints, it scalable to billions of samples. The scalability of XGBoost may be 

directly attributed to a number of significant algorithmic and systemic enhancements [83]. 

One of these enhancements is a unique tree learning approach for managing sparse data. 

Learning is accelerated by parallel and distributed computing, which speeds up model search. 

Moreover, XGBoost uses out-of-core processing to process extremely large datasets. 

CatBoost (Categorical Boosting) Regression 

Catboost Regression is a relatively new gradient boosting algorithm.  This algorithm has the 

ability to handle categorical descriptors in a novel way tackling them at the training stage rather 

than during preprocessing [10]. Furthermore, it introduces a new framework in order to 

approximate leaf values while choosing structure of the tree that avoids or combats overfitting. 

It has also integrated GPU implementation that allows swift and accelerated training than 

XGBoost and LightGBM on ensemble of similar sizes.  

Categorical features are characterized by a discrete collection of values known as categories, 

which are not always similar with one another. One-hot encoding is the commonly used 

technique which is used for categorical features which have low cardinality. CatBoost employs 

a more effective method that minimizes overfitting and permits the utilization of the entire 

dataset for training purposes. Specifically, we randomly permutate the dataset and calculate the 

average label value for the instance with the identical category value placed before the provided 

one in the permutation for each example. 
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Taking a dataset dn= {(Xi , Yi)}i=1..n, in which Xi=( x
i,1,…., x

i,s) is a vector with s 

features, and Yi ϵ  ℝ is the value of the label. If the permutation is σ= (σ1,,σn), then substitution 

of kjx ,  occurs with  
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      [85]   (3.6) 

where we additionally add the previous value P and a parameter a >0 with a value greater than 

zero that represents the prior's weight. The technique of adding prior is rather common, and it 

contributes to the reduction of noise that is produced from low-frequency categories [86].  

Oblivious trees are the foundation of CatBoost's base predictors. When it comes to trees like 

this, the criteria for splitting are consistent throughout the whole level of the tree. These trees 

are finely balanced and are less likely to become overfit.  

3.2.4:  Light Gradient Boosting Model 

The efficiency and scalability of models when dealing with high dimensionality and 

large datasets is still subpar. This is due to the reason that for every feature, all the data points 

have to be examined in order to calculate the information gain caused by splitting. To counter 

this issue, an improved gradient boosting decision tree (GBDT) called ‘LightGBM’ was 

created. It has integrated two novel methods called Gradient-based One-Side Sampling (GOSS) 

and Exclusive Feature Bundling (EFB).  

When GOSS is utilized, a substantial portion of the data instances that have modest gradients 

are left out and the remaining are used to calculate the information gain. GOSS is able to 

produce a sufficiently accurate estimate of the information gain with the smaller dataset by 

exploiting the fact that data points that have greater gradients play a more significant part in 

the calculation of the information gain. However, this will cause a bias issue in favor of the 

sample with bigger gradients and alter the initial data distribution. GOSS does a random 

sampling on the data with low gradients while maintaining all the samples with higher gradients 

in order to address this problem. When calculating the information gain, GOSS boosts the 

weights (i.e., by applying a constant multiplier) of the data points with small gradients because 

the selection would still be skewed toward the data with higher gradients [87]. In order to 

decrease the features, EFB groups together features that cannot normally take non-zero values 
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concurrently (that is, they are mutually incompatible). This greedy algorithm can achieve a 

reliable and accurate approximation ratio and, as a result, can successfully reduce the number 

of features without significantly compromising the accuracy of split point determination. The 

integration of these techniques substantially decreases the memory consumption and enhances 

computational speed [88]. Another reason behind these improvements is that LightGBM 

transforms continuous values of features into discrete bins which boost the training process 

[89]. 

3.3  Genetic Algorithm 

Established by John Holland in the 1970s, genetic algorithm (GA) is an adaptive heuristic 

search method which derives its basis from genetics of population [90].  Under the hood, it is 

following principle of “Survival of the fittest” introduced by Charles Darwin [91]. Natural 

selection is a key idea behind GA.  

The functions of all the genetic operators are as follows: 

3.3.1  Population 

The initial population was randomly generated, and each conceivable solution is 

referred to as a chromosome, as demonstrated in Table 1. 

P = {p1, p2, … , ppop_size }                                                           (3.7) 

pi = [pi1
 pi2

 ⋯ pij
 ⋯ pino−vars 

 ]                                            (3.8) 

 para min
j

≤ pij
≤  para max

j
                                                       (3.9) 

 

Table 3.2: Chromosomes 

Chromosome No. 1 1011000101110010 

Chromosome No. 2 1001010110111001 

 

In equation (3.7), pop_size represents the total population size, while in equation (3.8), no_vars 

denotes the number of variables to be optimized. The symbols 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑗

 and 𝑝𝑎𝑟𝑎𝑚𝑎𝑥
𝑗

 

correspond to the minimum and maximum values of the parameter 𝑝𝑖𝑗
 in equation (3.9). 
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It is an evolutionary algorithm which is initiated by providing solutions which form the 

population. A solution is an individual and the individual solutions comprise to form 

chromosomes. Every chromosome is defined by a set of genes. Each chromosome can be a 

probable solution in the search pool [92]. The optimum solution is selected after multiple 

generations. At a particular instant, a population is defined as a generation. For each generation, 

the chromosome is assessed according to their fitness value. As for the next generation, the 

chromosomes are chosen probabilistically in accordance with their respective fitness values 

[93]. Then GA employs the objective function to evaluate the population. If the benchmark or 

specifications of the objective function is met, the model stops. Conversely, offspring may be 

produced. The chromosome’s fitness is the criteria which is used for reproduction of offspring 

[94]. The individuals which have adapted appropriately are retained while others are removed 

[95].   

Individuals that comprise the mating pool are known as parents. The parents are selected 

sequentially, or random selection may take place. For a pair of parents chosen, in order to 

introduce diversity, variation operators are applied.  

Firstly, crossover operator pairs parental features and produces newer generations that carry 

genes (features) from both parents. As GA is based on randomness, the genes are selected 

randomly. The crossover can be one-point, two-point, or homologous in order to exchange 

genes. As the next step, the mutation operator takes over. This variation operator mutates some 

genes and changes their value. This way, new individuals are introduced into the population. 

This will introduce diversity which is essential for reaching the optimum solution.  

3.3.2  Determination of Parents and Offspring 

  During the selection process, the algorithm identifies which chromosomes will serve as 

parents for reproduction and mating. Additionally, it determines the number of offspring that 

each selected chromosome will generate. 

Objective of Selection: The primary objective of the selection process is to give preference to 

individuals with higher fitness levels. This is often summarized by the principle that "the better 

an individual's fitness, the greater its likelihood of becoming a parent [96]. Several well-known 

selection methods are as follows: 

Tournament Selection: This method is widely regarded as one of the most common and 

efficient techniques in the field of genetic algorithms due to its simplicity and effectiveness 
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[97]. The tournament selection process involves randomly selecting individuals from the 

broader population. These selected individuals then engage in a competition to determine 

which one possesses the highest fitness value. The victor of this competition is chosen as a 

parent for the next generation. Typically, individuals compete in pairs, forming binary 

tournaments or "tournament size." Tournament selection ensures diversity by offering an equal 

opportunity to all individuals, although it may slightly slow down convergence. Notably, 

tournament selection is adept at utilizing computational resources, particularly when 

implemented in parallel. It also demonstrates resilience against domination by a few 

individuals, thus enhancing its robustness. Moreover, it eliminates the need for fitness scaling 

or sorting procedures [98]. 

 

Figure 3.3: Schematic representation of Genetic Algorithm 

Proportional Roulette Wheel Selection: In this approach, potential solutions are depicted as 

segments on a roulette wheel, where the size of each segment corresponds to its fitness value. 

Random spinning of the wheel is then employed to select the solutions that will contribute to 

generating the next generation, as illustrated in Figure 3.4. Rank-based selection is a variation 
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of this approach where individuals are assessed based on their ranks rather than their absolute 

fitness values, ensuring that every individual has a chance of being chosen [99]. 

Rank Selection: It is employed for parent selection, involving the utilization of a ranking 

mechanism. Within this context, the fitness value is utilized to assign rankings to individuals 

within the population. The individual with the highest fitness receives the highest rank (n), 

while the lowest-ranked individual is assigned a rank of 1. Each chromosome's ranking is 

determined based on its expected value [100]. 

 

Figure 3.4: Roulette wheel selection 

3.3.3  Crossover 

This process involves merging the genetic data from two or more parents to generate 

offspring. Genetic algorithms often utilize crossover operators like single-point, double-point, 

and uniform. In the Single-Point Crossover method, a random crossover point is selected, and 

genetic data exchange between two parents occurs beyond that particular point, as illustrated 

in Figure 3.5 [101]. 
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Figure 3.5: Single point crossover 

Double Points Crossover: In this method, entails the random selection of two or more crossover 

points. The exchange of genetic information between parents occurs based on the segments 

created, as exemplified in Figure 3.6 [101]. 

 

Figure 3.6: Double points crossover 

Uniform crossover: The parental individual cannot be divided into separate segments. Instead, 

each parent is considered to represent each gene independently. The choice of whether to swap 

a gene with its corresponding gene at the same position in another chromosome is determined 

through a random process, as depicted in Figure 3.7 [101]. 

 

Figure 3.7: Uniform crossover 
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3.3.4  Mutation 

Mutation plays a vital role in preserving genetic diversity from one generation to the 

next. During the mutation process, genes within the chromosomes undergo changes. This 

alteration can lead to variations in the characteristics of chromosomes inherited from their 

parents. Notably, the mutation process generates three additional offspring  [93]. In practice, 

within the Genetic Algorithm (GA), this operator prevents solutions from becoming identical 

and enhances the likelihood of avoiding local optima. Refer to Figure 3.8 for a conceptual 

depiction of this operator. After the crossover (replication) stage, minor modifications in some 

randomly selected genes can be observed in the diagram [102]. 

 

Figure 3.8: After the crossover phase, the mutation operator changes one or more genes in the 

children's solutions. 

 

3.4   Modelling Parameters and Hyperparameter tuning 

Preprocessing techniques were applied to the different algorithms. As a first step, the data was 

standardized. As different features have value ranges which vary relative to each other, 

therefore feature scaling should be performed to learn a precise regressor [93].  The dataset 

was divided into training (90%) and testing (10%) datasets. Due to the small size of the dataset, 

5-fold cross validation was utilized. This will also avoid the issue of overfitting. The various 

hyperparameters utilized in the models can be seen in table 3.3. 
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Table 3.3: Hyperparameters utilized in the various boosting models 

Algorithm Parameters Optimized Values 

Xgboost max depth 2 

 n_estimators 116 

 learning rate 0.054 

 gamma 0.064 

Catboost Iterations 123 

 learning rate 0.039 

 depth 2 

 l2_leaf_reg 0.26 

LightGBM num_leaves 2 

 max depth 4 

 min_data_in_leaf 3 

 num_iterations 55 

 

As the various models have unique hyperparameters, therefore for the algorithms, ranges were 

specified for each and then fed to genetic algorithm for optimization. Finally, these 

hyperparameters were used for testing of the models. The evaluation was done using Root 

Mean Squared Error (RMSE) and Correlation Coefficient (CC).  
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Table 3.4: Genetic algorithm parameters used to optimize the hyperparameters of Catboost Model. 

Parameter Value 

Number of Generations 20 

Population Size 10 

Crossover Probability 0.7-02 

Mutation Probability 0.3-0.7 

Criteria Max Fitness 

Cross Validation 5-fold 

Elitism FALSE 
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CHAPTER 04  RESULTS AND DISCUSSION 

4.1  Models evaluation and comparison 

Various machine learning (ML) models, including XGBoost, Catboost, LightGBM were 

trained in Python programming language in order to predict adsorption energies of CH3, CH2, 

CH on Cu-based alloys. Other than CH3, remaining in supplementary files. 

 For the purpose of assessing the performance of the ML models, the predicted adsorption 

energies were plotted against the actual adsorption energies as shown in fig 4.1.  The line in 

the figure represents the actual values of the adsorption energies. Therefore, points that lie close 

to the line indicate enhanced and superior prediction capability. The model prediction 

performance for predicting adsorption energies of CH3 on Cu-base alloys was evaluated using 

CC and RMSE as shown in table 4.1. It is evident that Catboost outperformed LightGBM and 

Xgboost with an RMSE of 0.09772 and CC of 96.5%. It was followed by LightGBM and 

Xgboost whose RMSE and CC values are 95.4%, 93.5% and 0.1071, 0.116 respectively. 

CatBoost has both CPU and GPU implementations. The GPU implementation allows for much 

faster training. It uses an efficient method called ordered boosting, which is specifically 

designed to deal with categorical features directly. Another advantage of this algorithm is that 

it uses a new schema for calculating leaf values when selecting the tree structure, which helps 

to reduce overfitting. It also includes built-in mechanisms to handle outliers and missing values.  

It is evident that incorporating boosting with optimization algorithms allows for enhanced 

accuracy and substantial decrease in errors such as RMSE. Rather than conducting 

experiments, adsorption energy of CH3 and other compounds can be predicted using the various 

boosting algorithms which will effectively reduce the elapsed time and costs associated with 

experiments.    

Table 4.1: Comparison of ML methods 

Model CC RMSE 

LGBM 95.4% 0.1071 

Catboost 96.5% 0.0977 

Xgboost 93.5% 0.1116 
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Figure 4.1: DFT-calculated adsorption energies of CH3 on Cu-based alloys and their predicted values  

(a) Catboost  (b) LightGBM  (c) XGBoost 

(c) 

(b) 

(a) 
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Opacity lies at the core of black box problem, therefore, as a consequence, it is difficult to 

interpret how they function and what actually goes on [103].  Gradient boosting methods are 

black box models and their lack of explainability poses a challenging task. The goal of 

explainability in ML is to provide humans with a thorough comprehension of a model's 

operation and decision-making process, without requiring them to fully comprehend every 

nuance of the algorithm [104]. Furthermore, it provides comprehensive understanding to the 

users, offering them information they need to assess if they should act and enforce a model's 

advice [105]. Different techniques are employed in explainable ML.  

 

Figure 4.2: Permutation importance scores of the feature variables 

The statistical significance and relevance of each variable to a model's performance is 

calculated by variable importance methods (also known as "feature importance" in the ML 

domain). During model construction, it is common practice to utilize variable importance 

approaches to evaluate whether the model is learning appropriately and what variables have 

the most impact on the target variable. Permutation importance assesses a black-box model's 

prediction performance after shuffling a single variable. Permutation importance retests 

the model with variable values repeatedly which are random and different. If rearranging a 

variable's values doesn't affect prediction accuracy, the variable's contribution isn't significant 

to the model’s output. Adversely, if randomizing a variable's values reduces the ability to 

generalize, that variable is more essential to the model's predictions [106].  
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Permutation importance scores in the case of CH3 can be seen in fig 4.2. It is evident that the 

group number has the highest impact with a score of 0.346. It is followed by surface energy 

(0.23) and boiling point (0.12).  

Partial dependency is the response of the target function when one or two features are varied. 

Partial dependence plots (PDPs) show how a model's projected result shifts in response to a 

change in a set of features. PDPs have a significant benefit over other explainability methods 

since they can show the interaction between the variables and the predictions, even if the 

relationship is nonlinear. Fig.4.3 shows the PDPs.  

The PDP that relates group number to the output shows a continuous and steep decline in 

adsorption energy.  This can be attributed to the acid-base properties of the catalyst. As we go 

across the periodic table, the basicity of the element decreases. Dopants with high 

electropositivity can modify the morphology and create defects in the structure of the host 

oxides [43].   Zavyalova et al. research on an abundance of data on OCM catalysts showed that 

high basicity is paramount for improved C2 selectivity as it directly influences the bond formed 

between the anions and cations [107]. Smaller atomic size and higher electropositivity 

contribute to basicity.    

With respect to the atomic radius, the PDP show reveals a fairly constant value of the output 

till 1.6 R/Å and then it falls and rises again. At 1.9 R/Å, a sharp downward descent continues 

till 2.0 R/Å where it eventually becomes constant. In the case of AN, there is sudden increase 

in the adsorption energy at 12 atomic number. Then it rises gradually and becomes fairly 

constant at 43 AN.  The atomic mass PDP shows a rapid rise at approximately 25 g/mol-1. 

Beyond this, the output value remains between -1.61 and -1.62.  The change in adsorption 

energy with respect to atomic radius and AN can be explained by surface reducibility which is 

a critical factor in OCM. The presence of selective lattice oxygen species is contingent upon 

both the degree to which the oxide catalyst can be reduced and the ease with which this 

reduction process occur. Kumar et al. discovered that improved OCM activity takes place at 

higher surface reducibility [43].  

The electronegativity PDP shows a downward trajectory till 1.25 and then a steep vertical 

ascent till 1.75. Beyond this, it becomes flat.  This was expected as weak electronegative cation 

will result in a high partial charge on oxygen and therefore strong basic character. Therefore, 

the probability of finding oxygen vacancies containing at least one electron increases with 
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increasing electropositive character of the cation, creating an adsorption site for gaseous 

oxygen. The higher the difference in electronegativity between cation and oxygen, the more 

basic is the oxide [108].  The PDP of surface energy show a consistent increase in adsorption 

energy as the surface energy of the doped element increases.  
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Figure 4.3: Partial Dependence Plots of the feature variables to the prediction of the adsorption energies 



39 

This is anticipated because higher surface energy is a precursor to stronger adsorption. As high 

surface energy is conducive for wettability, hence the gas molecules will spread on the catalyst 

surface, adhering to the surface resulting in improved adsorption [109]. The adsorption of 

methane on the catalyst surface is a critical, rate-determining step which is activated by binding 

to the catalyst’s surface. Furthermore, adsorption of oxygen will be facilitated by it leading to 

improved CH3 radical formation. The decrease in the overall energy of the system leads to 

better adsorption.  

The PDP of ionization energy shows better adsorption at low ionization energies. As it is 

apparent that metal with low ionization energies are more beneficial for forming reactive 

species. High ionization energy will inhibit electron transfer affecting its interplay with 

adsorbates. Active sites that activates and cleaves C-H bond are reactive oxygen species present 

on the catalyst surface. These oxygen species include chemisorbed oxygen (O-1), dissociative 

adsorbed oxygen (O-1), adsorbed oxygen ions (O-2), and lattice oxygen (O-2) [69, 110].  Both 

strongly and weakly bounded oxygen species are present in the catalyst. However, a study 

conducted by Gordienko et al  revealed that weakly bounded oxygen species were responsible 

for the activity and stability of OCM [43]. The CH4 related species will readily react with 

oxygen too. Therefore, low ionization energy is paramount to increase in the performance of 

the process. However, after 7.5 eV, it starts climbing again.  

The PDP of melting point shows an exponential decrease after approximately 1250K. It reaches 

its lowest point at 3300K. The boiling point chart is similar to that of melting point as initially 

it remains constant and then a rapid decrease starts at around 4000K and stops at 5500K. As 

the enthalpy of fusion increases the adsorption energy falls steeply and reaches its lowest point 

at 28 KJ/mol-1. The PDP of density shows an interesting relation with the output. At 2.5 g/cm-

3 it starts a nearly vertical climb. Moving on, it starts falling and becomes constant at 7.5 g/cm-

3. 

The relationship between features and the target variable can be further explored using two-

way partial dependence plot which will allow us to analyze how the adsorption energy varies 

with the operational variables. We can extract complex or convoluted patterns from the data. 

Furthermore, it will be crucial during the optimization of the process.  

A game theory-based extension of Shapely values, SHAP (SHapley Additive exPlanations) is 

a pragmatic approach for explaining the outcomes of machine learning predictions. Shapley 
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values provide an approach that is both mathematically just and distinctively different for 

attributing the payoff of a cooperative game to the individuals who participated in the game 

[111]. In order to successfully apply the Shapley values approach to ML models, the most 

important step is to establish a cooperative game in which the players represent the input 

parameters and the outcome is the model prediction [112].  In the Figure 4.4, a beeswarm 

summary plot is visible which shows feature importance and the effect of the various features 

on the outcome of prediction. On the y-axis, the characteristics are ordered from highest to 

lowest based on the aggregate SHAP value magnitudes of all of the occurrences. You can also 

view the distribution of the affects that each feature has on the model's predictions along the x-

axis for each feature. These distributions are shown for each feature individually. The values 

of the parameters are signified by the colors of the dots as follows: High in red, and low in 

blue. However, as higher adsorption energies tend be more negative, therefore red will be 

interpreted as lower while blue occurrences are to be interpreted as higher. For example, it is 

clearly visible in figure 4.4 surface energy ranks second in the importance of features and it 

relevance to the model predictions. Values of higher magnitude of surface energy (blue dots) 

contribute in positive manner to the output while the lower values (red dots) contribute 

negatively. This is accurate as adsorption has a direct relation with surface energy.  

 

Figure 4.4: SHAP beeswarm summary plot 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

In this research, three distinct boosting machine learning models were employed. These models 

were fine-tuned through the application of a genetic algorithm, aiming to optimize and forecast 

the adsorption energy of CH4-related species namely CH3. Catboost model outperformed other 

models with CC and RMSE of 96.5% and 0.0977 respectively. By utilizing advanced and state-

of-the-art machine learning algorithms, the accuracy and precision of the results can be 

enhanced with low computational cost. The results were interpreted using permutation 

importance, partial dependence plots and bee swarm plot, valuable methods for gaining insights 

into individual feature significance and illustrating variable-outcome relationships. Analysis of 

the features revealed that group number and surface energy were the highest contributors to 

predicting the adsorption energies. By leveraging machine learning models, one can potentially 

enhance the understanding of adsorption processes on catalyst surfaces, which is crucial for 

optimizing OCM reactions. Accurate predictions of adsorption energies can contribute in 

identifying optimal catalyst materials with favorable adsorption properties, leading to 

improved catalytic performance in OCM reactions. Predicting adsorption energies helps in 

understanding the thermodynamics of the adsorption process, guiding the selection of reaction 

pathways that lead to higher yields of desired products, such as ethylene and ethane. By 

accurately predicting adsorption energies, machine learning models can assist in designing 

catalysts that efficiently adsorb and activate methane and suppress undesired over reactions of 

other species, enhancing the overall efficiency of the OCM process. Predictive models can 

potentially reduce the need for extensive experimental testing by providing valuable insights 

into the adsorption behavior of different catalysts, allowing researchers to focus on the most 

promising candidates. Machine learning can facilitate the screening of a large number of 

potential catalysts, accelerating the discovery of materials with superior adsorption 

characteristics for OCM applications. Understanding adsorption energies provides insights into 

the underlying mechanisms of OCM reactions, helping researchers optimize conditions for 

higher selectivity and yield of desired products. 
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