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Abstract

This thesis investigates a charged anisotropic stellar model in paraboloidal geometry, using
the Chaplygin equation of state. We develop a new solution to Einstein’s field equations
that investigates the interaction of electromagnetic fields and, anisotropic pressures. This
solution satisfies all physically admissible conditions. This model also fulfills all stability
conditions, including hydrostatic equilibrium, the adiabatic index and, Abreu’s criterion.
By assuming the values of parameters, we can develop detailed profiles of the compact
stars in our model. These profiles show how density, pressure, and electric field vary
throughout the star.

II



Contents

ABSTRACT II

LIST OF TABLES IV

LIST OF FIGURES VI

1 Introduction 1
1.1 General Relativity: Principles And Foundations . . . . . . . . . . . . . . . 1

1.1.1 Role Of Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2.1 Equivalence Principle . . . . . . . . . . . . . . . . . . . . 3
1.1.2.2 Principal of General Covariance . . . . . . . . . . . . . . . 4

1.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Curvature Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 The Einstein Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 The Maxwell Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Spacetime Curvature And Geodesics . . . . . . . . . . . . . . . . . . . . . 9
1.4 The Maxwell Equation in Relativity . . . . . . . . . . . . . . . . . . . . . . 9
1.5 The Energy Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 The Einstein Field Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Exact Solutions for Anisotropic Compact Stars in General Relativity 13
2.1 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Compact Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 White Dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Exploring Notable Exact Solutions of Einstein’s Field Equations . . . . . . 15
2.3.1 Schwarzschild Solution . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Reissner-Nordstrom Solution . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Admissible Conditions for Compact Objects . . . . . . . . . . . . . . . . . 18
2.5 Review of Model of a Static Spherically Symmetric Anisotropic Fluid Dis-

tribution in Paraboloidal Spacetime Admitting a Polytropic Equation of
State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Polytropic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III



3 Charged Anisotropic Model with Chaplygin’s Equation of State 23
3.1 Chaplygin’s Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Exact Solutions with Chaplygin’s Equation of State . . . . . . . . . . . . . 24

3.2.1 Chaplygin’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Physical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Stability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Conclusion 42

BIBLIOGRAPHY 43

IV



List of Figures

3.1 Graph of Metric Potentials are plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . 27

3.2 Graph of Electric Field Intensity is plotted for the constants: L = 1.8,
a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . 28

3.3 Graph of Energy Density is plotted for the constants: L = 1.8, a = 1.08977,
ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . . . . . . 28

3.4 Graph of Pressures are plotted for the constants: L = 1.8, a = 1.08977,
ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . . . . . . 29

3.5 Graph of Pressure-Density Ratios are plotted for the constants: L = 1.8,
a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. The green
curve represents the ratio of radial pressure to energy density and the blue
dashed curve represents the ratio of tangential pressure to energy density. 30

3.6 Graph of Energy Tensor Trace is plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . 30

3.7 Graph of Anisotropic Factor is plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . 31

3.8 Graph of Density Gradient is plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . 33

3.9 Graph of Radial Pressure Gradient is plotted for the constants: L = 1.8,
a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . 33

3.10 Graph of Tangential Pressure Gradient is plotted for the constants: L =
1.8, a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . 34

3.11 Graph of Mass is plotted for the constants: L = 1.8, a = 1.08977, ζ = 0.01,
and α = 0.06184373 with respect to r. . . . . . . . . . . . . . . . . . . . . 35

3.12 Graph of compactness Factor is plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . 35

3.13 Graph of Surface and Gravitational Redshifts are plotted for the constants:
L = 1.8, a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . 36

3.14 Graph of Radial and Tangential Speed of Sounds are plotted for the con-
stants: L = 1.8, a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect
to r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.15 Graphs of Energy Conditions are plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. . . . . . . . . . . 39

3.16 Graph of Radial and Tangential Adiabatic Index are plotted for the con-
stants: L = 1.8, a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect
to r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

V



3.17 Graph of Forces is plotted for the constants: L = 1.8, a = 1.08977, ζ =
0.01, and α = 0.06184373 w.r.t r. Where, the green curve depicts the
anisotropic force, the blue dashed curve represents the hydrostatic force,
the brown dashed curve represents the electric force, and the red doted
curve represents the gravitational force. . . . . . . . . . . . . . . . . . . . 41

VI



Chapter 1

Introduction

1.1 General Relativity: Principles And Foundations

The concept of space and time has been studied by several scientists. Aristotle, in the
fourth century BC, approached this from the standpoint that space is comparable to the
substance of matter and time to the series of events. He came to the conclusion that time
is the potentiality of the motion of matter [1]. The discoveries and significant contribu-
tions of Galileo Galilei and especially Isaac Newton caused this word’s meaning to change
over the 17th and 18th centuries.
In 1632, Galileo Galilei provided a direct connection between past theories by introducing
the concept of relativity, which stated that the laws of motion are the same in all inertial
frames of reference, regardless of the observers’ relative positions or motions. He articu-
lated the idea that every rule of physics is equivalent in any inertial reference frame.
Newtonian mechanics also gave rise to new theories regarding the laws of motion, gravity,
and the absoluteness of space and time. Newton’s laws of motion and universal gravitation
became the cornerstones of classical mechanics following the publication of his Principia
in 1687. From the motion of planets to the behavior of objects on Earth, Newton’s work
established a mathematical framework that explained a wide range of physical phenom-
ena.
After Isaac Newton’s work in the late 17th century, the 18th and early 19th centuries
witnessed significant developments in the study of natural phenomena. During the 18th
century, also referred to as the Age of Enlightenment, scientists like Benjamin Franklin,
Hans Christian Ørsted, and Michael Faraday made significant advancements in mechan-
ics, astronomy, and the early fields of electricity and magnetism. These paved the way for
Maxwell’s development of Maxwell’s equations in the middle of the 19th century, which
united electricity, magnetism, and light and fundamentally transformed our knowledge of
physics to create modern theories.

1.1.1 Role Of Electrodynamics

Maxwell discussed the conditions demonstrating the characteristics of electricity, mag-
netism, and light into a single framework known as electromagnetic field in 1864 [5].
Electric charge (Q) and current (I) are the two primary sources of the electromagnetic
field, fixed charges provide an electric field, and moving charges produce a magnetic field.
To quantify the effects of fields, Maxwell’s equations use charge and current densities [6].
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The equations split up in two pairs the "source equations"

∇ · E = ρ, (1.1)

∇×B− ∂tE = j, (1.2)

and the "internal equations"
∇ ·B = 0, (1.3)

∇× E− ∂tB = 0, (1.4)

where E is the electric field, B is the magnetic field, ∂ is the partial derivative, ρ is the
electric charge density, and j is the current density [7]. Since these equations were not
Galilean-invariant, Maxwell’s theory of electromagnetism could not be applied, and it was
only effective in the limit |v| << c, where v is velocity of moving object and c is speed
of light. One of the main questions about incompatibility was brought up by Michelson
and Morley’s unsuccessful attempt to determine the speed of the earth about the ether
in 1887. This gives rise to two possible outcomes: either the ether is physically bonded
to the earth, which would cause further issues, or there is no ether at all, in which case
the speed of light would be the basic quantity of the medium [8].
Furthermore, energy is thought to likewise exist in the form of waves and to have existed
continuously in waves. The contradiction associated with the wave-based theory, however,
suggested that the energy conveyed was, in reality, unlimited. The previously established
law of thermodynamics was called into doubt by these proven advances. Planck, there-
fore, clarified the remarkable results related to light and pioneered theories that light
may consist of wave particles or quanta, rather than just waves [3]. However, there was
still no satisfactory explanation until Einstein’s suggestion came to fruition, which com-
pletely eliminated any frameworks for reference about space and time and significantly
undermined the ether theories.

1.1.2 Special Relativity

With his four groundbreaking publications in 1905—The Photoelectric Effect, the Equiv-
alency of mass and energy, the special relativity theory presented in the paper "On the
Electrodynamics of Moving Bodies," and his work on "Brownian Motion" Einstein revo-
lutionized physics in an instant [9]. He provided evidence that there is no such thing as
universal space and that nothing can move faster than the speed of light. His findings
meant that space and time were combined to form a single entity known as space-time,
with all measurements being related to the observer’s position and speed. The main focus
of Einstein’s thought was electrodynamics. He deduced that a special theory of relativity
was necessary to satisfy Maxwell’s condition for electromagnetic.
The two postulates of the special theory of relativity are [2]
1. The rules of physics take on the same shape, and all observers are equal in all inertial
reference frames.
2. Observers in all the frames of the inertial reference will agree to measure equal speed
of light from any light source, irrespective of the motion of the observer.
This theory has several ramifications that include lengths being contracted, time being
dilated, and mass being increased.
Minkowski in 1907 then came up with a way of describing events in the universe, which
he described as the four-dimensional hyperspace event or spacetime event. This required
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the new values defining the position of the point and time as well as the transformation
equations that became known as the Lorentz transformations in the same way as the
Galilean transformations were used in the theory of classical mechanics. These trans-
formations are called linear coordinate transformations and act like two frames that are
moving at a constant speed to each other. The Minkowski line element represents the
square of the infinitesimal interval between two events (ct, x) and (ct+ c dt, x+ dx) that
are infinitesimally separated in spacetime (without acceleration). This interval remains
invariant under Lorentz transformations [2]

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.5)

The fact that the Maxwell equations remain invariant under these changes is one of their
main contributions to the special theory of relativity. However, this was not the end
since shortly after this ground-breaking study, Einstein started to question gravity and
if Newton’s theory of gravitation, which states that gravity works as an attracting force
when two large objects meet, is entirely consistent with his theory or not, given that the
notion of gravitational propagation seemed a little strange when seen within the context
of special relativity. The most significant consequences of the theory of special relativity,
which has been experimentally tested and validated are:
1.Time Dilataion: Objects, in motion experience time passing slower relative to ob-
server.
2.Length Contraction: When compared to an observer at rest, objects in motion look
shorter in the direction in which they are moving.
3. Mass Variation: An object’s mass increases with its velocity according to special
relativity. This depends on the object’s velocity and is commonly referred to as relativistic
mass.
Over the next decade, these ideas gradually solidified, into what would form the foun-
dation of the General Theory of Relativity or GR as Einstein presented in 1915 [10]. In
contrast to GR, Newton’s law explained the reaction to gravity as pure math through
the basic equations of physics, but GR concerned itself with the consequences of gravity
as shaping the structure of spacetime itself, asserting that spacetime is not just an un-
changing canvas with objects exerting influence and thereby changing its geometry. Thus,
in the ‘grand unified’ theory called GR, forces are not as in Newtonian physics; they are
replaced by the warping of space and time. This theory is based on the following premises:
1. Equivalence Principle
2. Principle of General Covariance

1.1.2.1 Equivalence Principle

The equivalence principle is a fundamental concept in GR. It consists of two principles,
the weak equivalence principle, first observed by Galileo Galilei, which states that the
composition of an object does not impact its free fall in a gravitational field, and the
Einstein equivalence principle, developed by Albert Einstein, which extends this idea to
assert that the laws of physics in a freely falling frame are identical to those in special
relativity. This implies that gravity results from spacetime curvature caused by matter
and energy [12].
1. Weak equivalence Principle: According to the weak equivalency principle, an
object’s interior composition and structure has no bearing on how it falls freely in a grav-
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itational field. Put another way, regardless of their mass or internal makeup, all objects
fall at the same rate in the same gravitational field. Galileo Galilei initially noticed this
idea, sometimes referred to as the universality of free fall, in his well-known experiments
with falling objects.
2. Einstein Equivalence Principle: A generalization of the weak equivalency concept
is the Einstein equivalence principle. It asserts that all of the rules of physics, not simply
those pertaining to gravity, assume their special relativistic forms in a freely falling refer-
ence frame. Stated differently, local experiments cannot discriminate between a uniformly
accelerated reference frame and a uniform gravitational field.
The EEP suggests that instead of being a force in the conventional sense, gravity is a
result of spacetime’s curvature brought on by the presence of matter and energy. The
shortest pathways, or geodesics, in curved spacetime, are followed by objects, and their
velocity is determined by this curvature.

1.1.2.2 Principal of General Covariance

A key idea in GR is the concept of general covariance, which says the following:"The laws
of physics must be specified in tensorial form as they remain constant regardless of the
coordinate transformations used." In simpler words, general covariance indicates that the
principles of physics are expressed in a way that is independent of any particular choice
of coordinates, making the mathematical explanations of physical processes universally
applicable [7].

1.2 Tensors

Tensors are mathematical entities that have transformation features that fully characterize
them in their corresponding coordinate systems. Since tensor formalism provides the
language needed to explain how quantities transform under coordinate transformation
since they are true in all systems, it is studied in relativity to get a deeper understanding
of the geometry of spacetime. Fundamentally, dual vectors and vectors are generalized
into tensors. If T is (r, s) tensor then in component notation, it is written as

T = T i1...ir
j1...js

êi1 ⊗ · · · ⊗ êir ⊗ v̂j1 ⊗ · · · ⊗ v̂js , (1.6)

where
êi1 ⊗ · · · ⊗ êir ⊗ v̂j1 ⊗ · · · ⊗ v̂js , (1.7)

is the basis of (r, s) tensor, given by the tensor product of vectors and dual vectors.
Components of covariant and contravariant tensors with all upper and lower indices,
respectively, may also be determined in this way.
The transformation law for the components of mixed tensor is defined as

T
i′1···i′r
j′1···j′s

= T i1···ir
j1···js

∂xi′1

∂xi1
· · · ∂x

ir

∂xir

∂xj1

∂xj′1
· · · ∂x

js

∂xj′s
. (1.8)

While the product of two tensors provided by its components, whose upper and lower
indices include of all upper and lower indices of the original tensor components, is valid,
basic operations like addition and subtraction are only valid for tensors if they have the
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same rank and type. It is expressed as follows

T ab
c = Uab

c ± V ab
c , (1.9)

T abc
ef = Uab

e V c
f . (1.10)

Tensor would not hold the transformation rules if contraction were not the sum of an
upper and a lower index (of the same kind).
As an example consider

Sab
c = T adb

cd . (1.11)

Given a tensor, its symmetric and skew-symmetric parts are defined as follows

T(i1···in) =
1

n!

(
Ti1···in +

∑
over permutations of indices i1 · · · in

)
, (1.12)

T[i1···in] =
1

n!
(Ti1···in + alternating sum over permutations of indices i1 · · · in) . (1.13)

1.2.1 Metric Tensor

A key concept in relativity is the metric tensor, which is particularly important for study-
ing the geometric characteristics of manifolds in any finite number of dimensions. It is
necessary to define parameters inside the manifold, such as curvature and distance. It’s
components are defined in terms of basis vector ea

gab = ea · eb. (1.14)

Since the dot product ea ·eb = eb ·ea, this implies the symmetry of the second-rank tensor,
i.e.

gab = gba. (1.15)

The metric tensor is also defined as the square of infinitesimal distance between two points
R(xa) and S(xa + dxa) on a manifold given as

ds2 = gab dx
a dxb. (1.16)

The tensor gab is the inverse metric of gab since gabgbc = δac . where δac is Kronecker delta.
The metric determinant g is the determinant of the n × n symmetric non-degenerate
matrix, i.e.

g = det(gab).

Properties
1. It is used in causing the index to rise or fall.
2. The law of transformation for second rank tensor (gab) can be easily figured out from
equation (1.8).
3. The condition gab;c = 0 implies that the metric tensor is consistent with the covariant
derivative, indicating that the metric is conserved when differentiating along any direction.
This condition is crucial in defining a link or a technique to differentiate tensors in curved
spacetime.
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1.2.2 Curvature Tensor

The general theory of relativity revealed a deep relationship between gravity and accel-
erated observers. It is suggested that the existence of mass is what causes spacetime to
distort. These masses cause spacetime to curve, as opposed to having a flat structure,
this curvature is explained by the Riemann tensor.
The generalization of partial derivative ∂, for a curved spacetime, is the covariant deriva-
tive (”; ”). The components of a tensor of rank (1, 1)’s covariant derivative, for instance,
are defined as

Aa
b;c = Aa

b,c + Γa
bdA

d
c − Γd

cbA
a
d. (1.17)

Here, Γa
bc, the Christoffel symbol, is defined as

Γa
bc =

1

2
gad
(
∂gcd
∂xb

+
∂gbd
∂xc

− ∂gbc
∂xd

)
. (1.18)

The Christoffel symbol is symmetric, i.e. Γa
bc = Γa

cb.
In contrast to partial derivatives, which are commutative (meaning that the differentiation
order is irrelevant), covariant derivatives are not necessarily commutative since spacetime
is curved. This non-commutativity is what give rise to tha Reimann curvature tensor.

Aa
;d;c − Aa

;c;d = Aa
;d,c + Γa

ceA
e
;d − Γe

dcA
a
;e − Aa

;c,d − Γa
deA

e
;c + Γe

cdA
a
;e, (1.19)

Aa
;d;c − Aa

;c;d =
(
(Γa

bd),c − (Γa
bc),d + Γa

ceΓ
e
db − Γa

deΓ
e
cb

)
Ab. (1.20)

Aa
;d;c − Aa

;c;d = Ra
bcdA

b. (1.21)

where
Ra

bcd = (Γa
bd),c − (Γa

bc),d + Γa
ceΓ

e
db − Γa

deΓ
e
cb. (1.22)

Non-commutativity of covariant derivative characterizes the deviation from flat spacetime,
which is expressed by the Riemann curvature tensor Ra

bcd. In simple terms

• If Ra
bcd = 0, the geometry is flat, meaning spacetime is not curved.

• If Ra
bcd ̸= 0, the geometry is curved, reflecting the influence of mass and energy on

the structure of spacetime.

Ra
bcd can be transformed into covariant tensor form by using the transformation

Rabcd = gaeR
e
bcd, (1.23)

In general Ra
bcd ̸= Rabcd. The components in explicit form, by performing some algebra,

can be written as

Rabcd =
1

2

(
gda,bc + gbc,da − gbd,ac − gca,bd

)
+ gpe

(
Γe
daΓ

p
cb − Γe

caΓ
p
db

)
. (1.24)

The properties of the curvature tensor are as follows
1. It is skew-symmetrical either in the final two indices order or in the first two indices
order.

Rabcd = −Rbacd, Rabcd = −Rabdc. (1.25)
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2. It is symmetric if the first two pairs of indices are swapped with the last two

Rabcd = Rcdab. (1.26)

3. It satisfies Bianchi’s identities of first and second kind given as

Ra
[bcd] = Ra

bcd +Ra
dbc +Ra

cdb = 0, (1.27)

Ra
p[bc;d] = Ra

pbc;d +Ra
pdb;c +Ra

pcd;b = 0. (1.28)

One may obtain the components of Ricci tensor by contracting the components of the
Riemann tensor.

Rab = Rc
acb, (1.29)

The Ricci tensor depends on the metric tensor and is known to be a symmetric tensor.
Likewise, the Ricci scalar, also known as the curvature scalar, is the trace of the Ricci
tensor as shown below

R = gabRab. (1.30)

Ricci scalar has the interesting property that it does not depend on the particular coor-
dinate system used to study the kind of singularity which may exist at some point. The
singularity is either coordinated or essential, the first one appears when there is a bad
choice of coordinates and could be removed, and the second is tied up with some problems
in geometry, which are impossible to avoid. The following invariant are used to determine
the nature of singularities either coordinate or essential.

R1 = R, (1.31)

R2 = Rab
cdR

cd
ab, (1.32)

R3 = Rab
cdR

cd
efR

ef
ab, (1.33)

R4 = Rab
cdR

cd
efR

ef
ghR

gh
ab. (1.34)

.

1.2.3 The Einstein Tensor

The symmetric, linear, and divergence-free function of the curvature is provided by the
Einstein tensor. Using the second form of Bianchi identity given by equation (1.27)

Ra
pac;d +Ra

pda;c +Ra
pcd;a = 0. (1.35)

Substituting Ra
pac = Rpc and Ra

pda = −Ra
pad = −Rpd into equation (1.21)

Rpc;d −Rpd;c −Ra
pcd;a = 0, (1.36)

Multiplying the above equation by gpc gives

Rc
c;d −Rc

d;c −Ra
d;a = 0, (1.37)

R;d −Ra
d;a −Ra

d;a = 0, (1.38)
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1

2
R;d −Ra

d;a = 0, (1.39)

Carrying out some contractions in equation (1.39) by multiplying with δaa reduces to(
Ra

d −
1

2
δadR

)
;a

= 0, (1.40)

where
Ga

d = Ra
d −

1

2
δadR. (1.41)

Here, equation (1.41) provides the Einstein tensor G in component form, where equation
(1.40) suggests that Ga

d;a = 0. The covariant form of the Einstein equation is

Gab = Rab −
1

2
Rgab. (1.42)

which is symmetric and divergence-free.

1.2.4 The Maxwell Tensor

The Maxwell tensor, sometimes referred to as the electromagnetic field tensor, is con-
structed by first defining the skew-symmetric tensor F = Fabea ⊗ eb and the four-vector
potential A.

Aa = (ϕ,A), (1.43)

Fab = ∂aAb − ∂bAa. (1.44)

Here, A represents the 3-vector potential and ϕ is the scalar potential. In terms of ϕ and
A, the electric and magnetic fields become

E = −∇ϕ− ∂tA, (1.45)

B = ∇×A. (1.46)

We define F0i = −Ei and Fij = εijkB
k by using equations (1.45)–(1.47), where i, j, k =

1, 2, 3, and εijk is the Levi-Civita symbol (0, 3) defined as

ϵijk =


+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 if any two indices are equal

. (1.47)

The covariant components of the electromagnetic field tensor are

Fab =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (1.48)

The contravariant form of the electromagnetic field tensor can be obtained as F ab =
gacgbdFcd [14].
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1.3 Spacetime Curvature And Geodesics

A key concept in GR, spacetime curvature, describes how mass and energy cause the
four-dimensional structure of spacetime to distort. The motion of objects in spacetime is
directly influenced by this curvature. The metric tensor provides a mathematical descrip-
tion of the geometry of spacetime. This tensor defines the interweaving of time and space
by giving a means of measuring lengths and angles in curved spacetime. A key concept
in GR, spacetime curvature, describes how mass and energy cause the four-dimensional
structure of spacetime to distort. The motion of objects in spacetime is directly influenced
by this curvature. The metric tensor provides a mathematical description of spacetime’s
curvature. This tensor defines the interweaving of time and space by giving a means of
measuring lengths and angles in curved spacetime. The Riemann curvature tensor is used
by GR to represent the precise curvature at each location in spacetime. The degree to
which spacetime is bent around a mass is measured by this tensor [11].
Geodesics: The pathways that particles and light beams take in spacetime when they
are traveling just due to gravity and not under the influence of any other forces are known
as geodesics. These are the flat space analogs of straight lines in GR. Geodesics are the
naturally occurring paths that particles take in curved spacetime.
1. Moving through spacetime, particles essentially "choose" the path requiring the least
amount of effort, which in the case of curved spacetime is the geodesic.
2. For example, a planet’s orbit around a star may be thought of as a geodesic path inside
the curved spacetime that the star’s mass has formed. These paths are mathematically
described by the geodesic equation, which is derived from the Euler–Lagrange equation.
It connects the motion of particles across spacetime to its curvature [7]. This concept
substitutes the geometric attribute of curvature for the traditional conception of forces
operating at a distance, such as gravity. Because of this, an object traveling in a gravi-
tational field does so by adhering to the curved spacetime geometry that the universe’s
mass and energy have determined.

1.4 The Maxwell Equation in Relativity

Currently, the primary objective is to observe electromagnetism in relation to relativity.
To demonstrate the necessity of converting equations (1.1)-(1.4) into tensor notation,
the electromagnetic field tensor, represented by equation (1.48), and the four-vector ja,
defined as ja = (ρ, j), are used. Consequently, the set of conventional Maxwell equations
in tensor form is simplified to the following two equations:

∂bFab = ja, (1.49)

∂bFac = 0. (1.50)

The source equation (1.50), which may be expressed in coordinate invariant (arbitrary
coordinates) ways, is valid in Minkowski space (inertial coordinates).

F ab
;b = ja, (1.51)

Conversely, since Fac;b = ∂bFac = 0 does not change, the internal equation (1.50), which
is subject to the continuity equation, is satisfied automatically. These covariant tensor
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equations hold true for all coordinate systems if they hold true for only one.

1.5 The Energy Momentum Tensor

The energy-momentum tensor T plays a key role in constructing gravitational field equa-
tions. It is related to Einstein’s tensor G and describes the distribution and motion of
matter and energy in spacetime.
The conservation equation of energy and momentum is given as

T ab;b = 0. (1.52)

For flat spacetime, this becomes
∂bT

ab = 0. (1.53)

1.Energy Momentum Tensor for a Dust: The most well-known energy-momentum
tensor is that of "dust," whose distribution is defined by the matter density ρ and the
four-velocity ua of the fluid at a given coordinate xa as

T ab = ρuaub. (1.54)

2. Energy Momentum Tensor for a Perfect Fluid: A perfect fluid is characterized
by the absence of viscosity and heat conduction in the inertial reference frame, as well
as forces between the particles [11]. It can be characterized by adding scalar pressure p
along with energy density ρ and flow vector ua as

T ab = (ρ+ p)uaub + pgab. (1.55)

where gab is the component of the metric tensor of spacetime.
T ab is a symmetric rank-2 energy-momentum tensor and note that a perfect fluid

becomes dust if p → 0.
The physical meanings components and a detailed description are given as [11]:

• T 00 represents the energy density ρ.

• T i0 is the flow of the ith component of momentum, called the momentum density
(momentum per unit volume).

• T 0i is the flow of energy across the surface xi, called the energy flux.

• T ij is the flow of the ith component of momentum crossing the interface in the jth

direction, which gives the force per unit area called stress.
For this reason, the stress-energy tensor is another name for the energy-momentum
tensor. The ideal fluid tensor is an alternative representation of the energy-momentum
tensor that has to do with matter dispersion.

4. The Maxwell energy-momentum tensor: The Maxwell energy-momentum tensor
is given as:

T ab = F acF b
c −

1

4
gabF cdFcd. (1.56)
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1.6 The Einstein Field Equation

Define the generic form of the Einstein-Hilbert action before starting to derive the field
equation.

S =

∫
L
√
−g d4x. (1.57)

For a gravitational source and matter, the Lagrangian L is defined as L = LG+Lm where
LG is the Lagrangian for the gravitational field and Lm is the Lagrangian for matter.

S =

∫
1

2κ
R
√
−g d4x+

∫
Lm

√
−g d4x. (1.58)

where κ = 8πG
c4

and R is the Ricci scalar. Throughout this thesis, the speed of light c and
the gravitational constant G are taken to be 1.
By least action principle, We take δS = 0, using this and equation (1.30) in (1.58) gives

δS =
1

2κ

∫ (
Rabg

abδ
√
−g +Rab

√
−gδgab +

√
−ggab(δRab)

)
d4x (1.59)

+

∫ (
LMδ

√
−g +

√
−gδ(LM)

)
d4x = 0.

Now consider coordinates at an arbitrary point P , where Γa
bc = 0. This then reduces the

Riemann tensor to
Ra

bcd = ∂cΓ
a
bd − ∂dΓ

a
bc. (1.60)

Applying δ on both sides of equation (1.60) yields

δRc
adb = δΓc

ab,d − δΓc
ad,b. (1.61)

Since the partial derivative commutes with variation and is equal to the covariant deriva-
tive in geodesic coordinates. The renowned Palatini equation is found to be

δRc
adb = δΓc

ab;d − δΓc
ad;b. (1.62)

Contraction of c and d gives
δRab = δΓc

ab;c − δΓc
ac;b, (1.63)

multiplying above equation by gab

gabδRab = gabδΓc
ab;c − gabδΓc

ac;b, (1.64)

= gabδΓc
ab;c − gacδΓb

ab;c, (1.65)

= (gabδΓc
ab − gacδΓb

ab);c. (1.66)

Writing
Ac = gabδΓc

ab − gacδΓb
ab, (1.67)

equation (1.66) becomes
gabδRab = Ac

;c. (1.68)
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Integrating equation (1.68) over the volume V , we have∫
V

gabδRab

√
−g d4x =

∫
V

Ac
;c

√
−g d4x, (1.69)

using the divergence theorem, the left hand side of the equation (1.69) vanishes, i.e.∫
V

gabδRab

√
−g d4x = 0. (1.70)

By equation (1.70) and substitution of the identity δ
√
−g = −1

2

√
−ggabδgab, equation

(1.59) becomes:

2κ

∫
V

[
Rabg

ab

(
−1

2

√
−ggabδgab

)
+Rab

√
−gδgab

]
d4x

+

∫
V

[
Lm

(
−1

2

√
−ggabδgab

)
+
√
−gδ(Lm)

]
d4x = 0.

(1.71)

As Lm = Lm(gab), this implies δLm = ∂Lm

∂gab
δgab, thus equation (1.71) becomes:

1

2κ

∫
V

(
−1

2
Rgabδgab +Rabδgab

)√
−g d4x

−1

2

∫
V

(
−2

∂Lm

∂gab
+ Lmg

ab

)
δgab

√
−g d4x = 0.

(1.72)

Energy momentum tensor in terms of Lagrangian is defined as

Tab = −2
∂Lm

∂gab
+ Lmg

ab. (1.73)

Thus equation (1.72) takes the form

1

2κ

∫
V

(
Rab −

1

2
gabR− κTab

)
δgab

√
−g d4x = 0, (1.74)

for arbitrary δgab

Rab −
1

2
gabR = κTab. (1.75)

famous Einstein equation (1.75), on the left, indicates the existence of a gravitational
source; on the right, an energy-momentum tensor indicates the location of matter in a
particular place.
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Chapter 2

Exact Solutions for Anisotropic
Compact Stars in General Relativity

2.1 Exact Solutions

It is well known that the general theory of relativity is a non-linear theory from its
very beginning. Because of this, it was and remained associated with severe difficulties
when it came to achieving a profound understanding of the theory. Another important
strategy used for dealing with this non-linearity as well as to gain a much more profound
understanding of the phenomena has been the search for the exact solutions to the Einstein
field equations. It could be worthwhile to highlight here that such solutions represent
perhaps the most tractable ones that are also non-linear in their core according to the
definitions given by Mason and Woodhouse [13]. This remarkable mathematical quality
enables researchers to analyze and investigate non-linear functions and processes and
compare them with systems that possess rather comprehensive and clear-cut solutions.
These specific examples are important because, in practice, such exact solutions allow
scientists to investigate the subtle non-linear features of GR while still retaining the
manageable complexity that can be further examined and well understood by researchers
who work in the field of the theory. Building practical exact solutions of the theory has
proven to be a significant challenge even after a century of theoretical research, even
though exact solutions do offer a great deal of information and applications useful in the
study of GR. Because the Einstein field equations consist of up to 10 nonlinear partial
differential equations, the process of deriving the solution is rather extensive. Because of
this, in order to continue, a number of logical presumptions must be made, and all known
precise solutions can only be reached by enforcing a set of conditions. Generally, metrics
are subject to certain symmetry criteria to reduce complexity. Other circumstances like
non-charged spacetimes, stationary, or static spacetimes might also be taken into account
[15]. Consequently, to move toward a solution, it becomes necessary to make reasonable
assumptions on the stress-energy tensor Tab such as to consider its fluid forms like dust,
perfect fluid or any form fit for an applicable category. However, this is possible if and
only if all mathematical and physical assumptions made through the derivation of the
solution yield a physically acceptable solution that will conform to the laws of GR in the
background. Among them, one of the most established physical principles methods is to
search for solutions by Equation of State, where it relates pressure in terms of energy
density p = p(ρ). By using this equation of state, the researchers are thus able to obtain
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answers that are appropriate in describing the physical property character and behavior
of the specific system in issue [16].

2.2 Compact Objects

Compact objects in GR are astrophysical objects defined by their great density and strong
gravitational fields. The three kinds of compact objects are white dwarfs, neutron stars,
and black holes. These objects represent the latter phases of star development and are of
significant interest in astrophysics and GR owing to their unique features and the severe
circumstances they produce.

2.2.1 White Dwarfs

The first known white dwarf, Sirius B, was found in 1844 by Friedrich Wilhelm Bessel,
a German physicist who had seen a weak star marking Sirius’ partner. Subrahmanyan
Chandrasekhar, an Indian-American scientist, determined a basic upper limit to the mass
that a non-rotating white dwarf may reach before becoming unstable in 1930. This limit,
which is around 1.4 solar masses, is referred to as the Chandrasekhar limit. Beyond this
threshold, a white dwarf will experience more gravitational collapse, which might result
in the creation of a neutron star or a supernova explosion [18].

2.2.2 Neutron Stars

Supernova explosions occur when huge stars that have finished consuming their fuel ex-
ceed the Chandrasekhar limit. This explosion blows a star’s outer layers apart, creating
supernova debris. Neutron stars are created when protons and electrons in the center area
collapse so that neutron degeneracy pressure partially prevents further collapse. Similar
to how electron degeneracy pressure prevents white dwarfs from collapsing, neutron de-
generacy pressure, a phenomenon explained by the Pauli exclusion principle, partially
supports neutron stars from continuing to collapse. They were found to be radio pulsars
at the close of the 1960s and X-ray stars at the beginning of the 1970s. One neutron star
was found to host planets. Usually, their radius is around 10 km, and the highest mass of
planets found in a single neutron star is predicted to be 3M⊙. This is because large stars
are unable to withstand the force of gravity and eventually collapse [18]. PSRJ0740+6620
is the most massive neutron star has the mass about 2.1 solar mass.

2.2.3 Black Holes

Black holes, in particular, are compact objects that are the densest forms of objects in
the cosmos. Because of the intense gravitational force from which even light is unable
to escape, huge stars with core masses greater than three times that of the Sun may
experience the complete collapse of their core into a black hole. The event horizon, which
serves as a limit beyond which events cannot impact an outside observer, is a crucial
component of black holes. It defines the boundary between those spacetime points that
are still able to link to infinity via a timelike path and those that are not. Anything that
passes over the event horizon will eventually approach the singularity of the black hole,
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which is an incredibly dense and tiny point where standard physics breaks down. In order
to avoid a black hole’s hold, one would have to travel faster than light [16]. Compact
objects, specifically black holes, represent the densest forms of matter in the universe.
In massive stars with a core mass exceeding three times that of the Sun, the core may
collapse into a black hole due to the overwhelming gravitational pull that not even light
can escape. A key feature of black holes is the event horizon, which acts as a boundary
beyond which events cannot affect an outside observer. It delineates the limit at which
spacetime points can still connect to infinity through a timelike path from those that
cannot. Once anything crosses the event horizon, it inevitably plunges toward the black
hole’s singularity, an infinitely small and dense point where conventional physics ceases
to apply. To escape the grasp of a black hole, one would need to surpass the speed of
light. For example, Sagittarius A∗ is a black hole at the center of the Milky Way, which
has about 4 million times the sun’s mass.

2.3 Exploring Notable Exact Solutions of Einstein’s Field
Equations

Spacetime is described in GR as a four-dimensional pseudo-Riemannian manifold M .
Since the corresponding metric is not positive definite, the signature may be expressed
as (−1,+1,+1,+1) or (+1,−1,−1,−1). Equation (1.17) illustrates how the general line
element is represented in terms of metric components. Unless otherwise indicated, the
work done in this thesis is based on a static, spherically symmetric paraboloidal spacetime
metric and is assumed to have a signature (−1,+1,+1,+1). When considering solutions,
particularly exact solutions, assuming symmetry is pivotal due to the mathematical simpli-
fications it allows. Numerous successful theoretical predictions for spherically symmetric
solutions have been made, validating Einstein’s theory [17]. Therefore, by assuming spher-
ical symmetry, the line element described in equation (1.16) and expressed in spherical
coordinates will be transformed accordingly,

ds2 = −c2dt2 + dr2 + r2dΩ2, (2.1)

where dΩ2 = dθ2 + sin2 θ dϕ2. Now, for the metric to meet the requirement of being
static, consider time independence. Static spacetime is defined as follows: "In a static
spacetime, all metric components gab are independent of some timelike coordinate, say
x0, and the line element is invariant under the transformation x0 → −x0" [11]. Next, if
there is no preferable angular direction in space, the metric is spherically symmetric, i.e.,
dxa → −dxa where xa are spatial coordinates. Thus, when r → ∞ and in the presence of
spherical symmetry, the metric in equation (2.1) becomes:

ds2 = −e2ν(r)c2dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
. (2.2)

2.3.1 Schwarzschild Solution

In 1916, Schwarzschild introduced a fundamental exact solution by analyzing a vacuum
scenario, transforming the Einstein field equation accordingly into

Rab = 0. (2.3)
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For static and spherically symmetric metric provided in equation (2.2), the metric
tensor and its inverse are as follows: The metric tensor gab and its inverse gab are given
by:

gab =


−e2ν(r) 0 0 0

0 e2λ(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , gab =


−e−2ν(r) 0 0 0

0 e−2λ(r) 0 0
0 0 1

r2
0

0 0 0 1
r2 sin2 θ

 . (2.4)

The total independent Christoffel symbols are 40, but the non-zero components are

Γ1
00 = ν ′e2(ν−λ), Γ1

22 = −re2λ, Γ1
11 = λ′, Γ2

21 = Γ3
31 =

1

r
,

Γ1
33 = −re−2λ sin2 θ, Γ2

33 = − sin θ cos θ, Γ3
32 = cot θ, Γ0

01 = ν ′.
(2.5)

The non-vanishing components of the Ricci curvature tensor are

R00 = ν ′′ + ν ′(ν ′ − λ′) +
2ν ′

r
= 0, (2.6)

R11 = −ν ′′ + λ′(λ′ − ν ′) +
2λ′

r
= 0, (2.7)

R22 = 1− e−2λ + re−2λ(λ′ − ν ′) = 0, (2.8)

R33 = R22 sin
2 θ = 0. (2.9)

Simplifying equations (2.6) and (2.7) and further substituting it in equation (2.8)
yields

ν = −λ, (2.10)

(re−2λ)′ = 1. (2.11)

This implies

e2ν = e−2λ =

(
1 +

α

r

)
, (2.12)

using weak field approximation, α = −2GM
c2

[11]. Thus the metric in equation (2.2) takes
the form

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2). (2.13)

Where m = GM
c2

. The above metric for G = c = 1 becomes

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2), (2.14)
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which is the Schwarzschild line element [19]. Event horizon of the Schwarzschild black hole
is given by rs =

2GM
c2

. There exist two singularities in the metric (2.14). At r = 0 there
is an essential singularity which cannot be removed, and at r = 2m there is a coordinate
singularity which can be removed by appropriate choice of coordinates.

2.3.2 Reissner-Nordstrom Solution

The analogous solution for a charged point mass was independently discovered by Reissner
in 1916 [20] and by Nordström in 1918 [21], leading to what is now known as the Reissner-
Nordström solution. Incorporating charge into the previous assumptions, the Einstein-
Maxwell field equation becomes

Rab = 8πTab. (2.15)

In the case of spherical symmetry with a point charge placed at the origin, the components
of the electrostatic field are in the radial direction, i.e., E = E(r), with the magnetic field
being zero. The Maxwell tensor Fab in this case takes the form:

Fab =


0 −E(r) 0 0

E(r) 0 0 0
0 0 0 0
0 0 0 0

 (2.16)

It should satisfy the Maxwell equations. By plugging in the assumptions and using the
metric and Christoffel symbols given in equations (2.4) and (2.5), we may write the
Maxwell equation as F ab

;b =
1√
−g

∂b
√
−gF ab = 0. Because F ab is not symmetric [11], the

Maxwell equation reduces to: (
e−(ν+λ)E

r2

)′

= 0. (2.17)

By integrating, we get

E(r) = Qe(ν+λ) 1

r2
, (2.18)

Components of Maxwell energy-momentum tensor Tab can be calculated from equation
(1.56), i.e.

Tab = (−E2,−E2, E2, E2). (2.19)

Similarly, by using equation (2.19) in (2.15) together with the set of equations (2.6) to (2.8)
and once again going through the comprehensive process, these equations then produce

ν = −λ, (2.20)(
re−2λ

)′

= 1− Q2

r2
. (2.21)

By integrating it we get,

e2ν = e−2λ =

(
1 +

constant
r

+
Q2

r2

)
(2.22)
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If Q = 0, then equation (2.22) reduces to Schwarzschild metric, which implies Constant =
−2GM

c2
and m = GM

c2
, thus the above equation becomes

e2ν = e−2λ =

(
1− 2m

r
+

Q2

r2

)
. (2.23)

Hence, the Reissner-Nordstrom metric is

ds2 = −

(
1− 2m

r
+

Q2

r2

)
dt2 +

(
1− 2m

r
+

Q2

r2

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
(2.24)

At r = 0, there is an essential singularity. To identify further singularities take,

1− 2m

r
+

Q2

r2
= 0, (2.25)

which implies,
r± = m±

√
m2 −Q2. (2.26)

On the surface, a coordinate singularity occurs at r = r±, where r+ is referred to as the
outer horizon and r− is referred to as the inner horizon. There exist three cases depending
on the values of m and Q, which are as follows [11]:
1. If m2 < Q2:There is no coordinate singularity. This phenomenon is referred to as a
naked singularity and is often regarded as lacking physical credibility.
2. If m2 > Q2:On surface r = r± two coordinate singularities occur. This situation is
called a normal Ressiner-Nordstrom black hole.
3. If m2 = Q2:This situation is termed a severe Reissner-Nordstrom black hole and is
similar to the second instance but with the area r− < r < r+ deleted.

2.4 Admissible Conditions for Compact Objects

For any compact object to be considered physically suitable, it must satisfy the following
conditions:
1. There must not be any singularity in the metric potentials within the object’s radius.
2. Both the anisotropic factor and the electric field must be zero at the center and should
increase as one approaches the boundary.
3. ρ, pr, and pt must be positive, decreasing monotonically with radial coordinates, and
finite within the compact object.
4. The pressures pr and pt must be equal at the center of the compact object and at the
boundary of the compact object pr must be zero.
5. The trace of the energy-momentum tensor must be positive and decreasing.
6. The value of adiabatic index must be larger than 4

3
.

7. Energy, causality, and hydrostatic equilibrium conditions should be satisfied.
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2.5 Review of Model of a Static Spherically Symmet-
ric Anisotropic Fluid Distribution in Paraboloidal
Spacetime Admitting a Polytropic Equation of State

S. Thirukkanesh, Ranjan Sharma and Shyam Das [25]
Introduction
In relativistic astrophysics, mathematical models of compact objects are crucial for com-
prehending the fundamental physical characteristics of these dense compact stars. Re-
cently, the study of pressure anisotropy has become a significant focus in modeling com-
pact stars, among other influencing factors. Herrera [40] has emphasized that anisotropic
pressure within the interior of a relativistic compact star cannot be overlooked due to
the various physical processes typically associated with such highly compact objects. To
develop a model of a compact star, it is crucial to understand its composition, particularly
in relation to a barotropic equation of state (EOS) of the form pr = pr(ρ), which relates
the radial pressure to the density of the matter distribution. For instance, ’strange stars’
composed of quark matter are frequently modeled using a simple linear equation of state
(EOS) in the MIT Bag model [41]. Several researchers have also employed a quadratic
EOS to model compact stars [42]. Bhar et al. [43] developed an anisotropic stellar model
filled with Chaplygin gas, while Ragel and Thirukkanesh [44] demonstrated that a Van
der Waals type EOS could represent a relatively low-density star with a mixed fluid distri-
bution. Stellar models using polytropic equations of state (EOS) have also been employed
to represent compact objects with anisotropic fluid distributions.
The field equations in paraboloidal spacetime
If paraboloidal spacetime is embedded in a spherically symmetric static metric given by
equation (2.2), initiating with the Cartesian equation of a Euclidean space characterizing
as being four-dimensional with an immersed three paraboloid is given as

x2 + y2 + z2 = 2wL, (2.27)

here L is a constant, whereas a three-paraboloid is specified by the constants (x, y, z)
and the constant ω represents the sections of the sphere. The 3-paraboloid immersed in
four-dimensional space is parameterized by using the following parameterizations earlier
stated by Thomas and Pandya [27]:

x = r sin θ cosϕ, (2.28)
y = r sin θ sinϕ, (2.29)
z = r cos θ, (2.30)

w =
r2

2L
. (2.31)

Thus by equation (2.28) to (2.31) the Euclidean metric

ds2 = dx2 + dy2 + dz2 + dw2, (2.32)

takes the form

ds2 =

(
1 +

r2

L2

)
dr2 + r2(dθ2 + sin2 θdϕ2). (2.33)
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Here comparing equation (2.33) with equation (2.2) yields

e2λ = 1 +
r2

L2
. (2.34)

Thus, the interior stellar structure in a spherically symmetric, paraboloidal spacetime
is given by the metric

ds2 = −e2νdt2 +

(
1 +

r2

L2

)
dr2 + r2(dθ2 + sin2 θdϕ2). (2.35)

For anisotropic fluid distribution the components of energy momentum tensor Tab are

Tab = diag(−ρ, pr, pt, pt). (2.36)

So the field equations are given as

1

r2

(
r
(
1− e−2λ

))′

= ρ, (2.37)

e−2λ2

r
ν ′ − 1

r2

(
1− e−2λ

)
= pr, (2.38)

e−2λ

(
ν ′′ + ν ′2 − ν ′λ′ +

1

r
(ν ′ − λ′)

)
= pt, (2.39)

1

2

∫ r

0

w2(ρ(w))dw = m(r). (2.40)

2.5.1 Polytropic Models

Assuming the polytropic equation of state

pr = kρ1+1/η − β, (2.41)

along with the transformations

x =
r2

L2
, (2.42)

y2(x) = e2ν(r), (2.43)

z(x) = e−2λ(r), (2.44)

where
z(x) =

1

1 + x
(2.45)

here k and β are constants. Thus, by these substitutions the system of equations are
given as

ρ =
1

L2

(
1− z

x
− 2z′

)
, (2.46)

pr = kρ1+1/η − β, (2.47)
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∆ =
1

L2

(
4xz

y′′

y
+ z′

(
1 + 2x

y′

y

)
+

1− z

x

)
, (2.48)

y′

y
=

k

4L2/ηz

(
1− z

x
− 2z′

)1+1/η

+
1− z

4xz
− βL2

4z
, (2.49)

m(x) =
L3

4

∫ x

0

√
w(ρ(w))dw. (2.50)

Here ′ represents derivative with respect to r.

2.5.2 Discussion

At boundary, r = R authors have matched their solution to the Schwarzschild exterior
spacetime i.e.

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (2.51)

from which the total mass M and model parameter L are found as follows

M = m(R) =
R3

2(L2 +R2)
, (2.52)

L =

√
R3

2M
(
1− 2M

R

) . (2.53)

Further, the boundary conditions imply the expression for the constant of integration
and β in both cases as follows:

d21 =

(
1 +

R2

L2

)−
(
1+ k

2L2

)
× exp

[
4k(3L2 + 2R2)

(L2 +R2)2
− R2

4L2
(2− β(2L2 +R2))

]
, (2.54)

d22 =

(
L2

L2 +R2

)(√3L2+R2−
√
2L)/(

√
3L2+R2+

√
2L)

× exp

− R2

4L2

(
4k

√
3L2 + 2R2

(L2 +R2)2
+ 2− β(2L2 +R2)

) , (2.55)

βI =
4kM2(4M − 3R2)

R8
, (2.56)

βII =

√
8kM(3R− 4M)

R4
. (2.57)

Using the mass M = 1.58M⊙ and radius R = 9.1 km of the pulsar 4U1820-30 in the above
expressions, the conditions of acceptability are checked. The gravitational potentials
are regular whereas density and pressures at the center (r = 0) yields ρ(0) = 3

L2 and
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pr(0) = pt(0) =
9k
L2 − β. The profiles are regular. Also, the metric functions are regular

at the center.
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Chapter 3

Charged Anisotropic Model with
Chaplygin’s Equation of State

3.1 Chaplygin’s Equation of State

The Chaplygin gas model uses a particular form of the polytropic equation of state (EOS)
given by the equation pr =

A
ρα

, where p represents pressure, represents, ρ density, and A

is a positive constant. In a generalised equation of state (EOS), the parameter α can take
on values of either 1 or within the range 0 ≤ α ≤ 1. This particular equation of state
(EOS) is beneficial for simulating unusual celestial bodies, including compact stars, that
are capable of enduring highly demanding physical circumstances [45].
This chapter considers Chaplygin’s equation of state in the presence of anisotropy and
electromagnetic field on the backdrop of paraboloidal geometry, building on the work
previously provided by Thirukkanesh et al.
The energy-momentum tensor for a charged anisotropic spherically symmetric compact
object is obtained as

Tab = Tmatter
ab + TEM

ab , (3.1)

where

Tmatter
ab = (ρ+ pr)uaub + ptgab+ (pr − pt)nanb,

TEM
ab =

(
FaαF

α
b − 1

4
gabFαβF

αβ

)
.

Where ua = (1, 0, 0, 0) is the 4-velocity and na is the unit spacelike vector in the radial
direction. By using the Maxwell energy-momentum tensor given in equation (2.19) and
energy-momentum tensor for anisotropic matter distribution given in equation (2.36) we
get

Tab = diag(−ρ− E2, pr − E2, pt + E2, pt + E2) (3.2)

By taking into account the transformations provided by equation (2.42) − (2.44), where
x, y, and z is the new independent coordinate and are new metric functions respectively,
the modified version of the field equations (2.37)-(2.39) with energy-momentum tensor
Tab = diag(ρ+ E2, pr − E2, pt + E2, pt + E2) is obtained.

1− z

x
− 2ż = L2(ρ+ E2) (3.3)
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4zẏ

y
− 1− z

x
= L2(pr − E2) (3.4)

4xzÿ + (4z + 2xż)
ẏ

y
+ ż = L2(pt + E2) (3.5)

σ2 =
4z

xL2
(xĖ + E)2 (3.6)

where “.” represents derivative w.r.t x. The following is the mass function on the sphere’s
interior region with radius r:

M(r) =
1

2

∫ r

0

r̃2 dr (3.7)

By using transformation (2.76), mass is transformed to

M(x) =
L3

4

∫ x

0

√
x̃ dx̃ (3.8)

3.2 Exact Solutions with Chaplygin’s Equation of State

The Chaplygin’s equation of state is given as [45]

pr = αρ− β

ρ
, (3.9)

where as α, β are arbitrary constants. Using Chaplygin’s equation of state and energy
density given by equations (3.9) and (3.3) respectively in equation (3.2), we get the
expression,

−4z

L2

ẏ

y
+

1− z

xL2
+ α

(
1− z

xL2
− 2ż

L2
− E2

)
− β(

1−z
xL2 − 2ż

L2 − E2
) = 0 (3.10)

Equation (3.10) implies,

ẏ

y
=

L2(1 + α)

4z

(
1− z

xL2
− E2

)
− L2β

4z
(
1−z
xL2 − 2ż

L2 − E2
) − αż

2z
(3.11)

To get an exact solution, using the ansatz E,

E2 =
2ζax

1 + x
(3.12)

where ζ and a are arbitrary real constants. By putting the values of z given by equation
(2.45) and E in (3.12), we get,

ẏ

y
=

L2(1 + α)

4

(
1

L2
− 2ζax

)
− L2β(1 + x)2

4
(

1
L2 +

2
L2(1+x)

− 2ζax
) +

α

2(1 + x)
(3.13)
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Equations (3.3) and (3.6) provide the energy density and charge density expressions, which
will take the form,

ρ =
3 + x− 2ζaxL2(1 + x)

L2(1 + x)2
(3.14)

σ2 =
2aζ(3 + 2x)2

L2(1 + x)4
(3.15)

3.2.1 Chaplygin’s Model

Here, the exact solution to Einstein’s field equations in the presence of anisotropy and
the electromagnetic field is presented. The radial and azimuth pressures for the current
model, which uses z and E, has the following form,

pr = α

(
3 + x− 2ζaxL2(1 + x)

L2(1 + x)2

)
− β(L2(1 + x)2)

(3 + x− 2ζaxL2(1 + x))
(3.16)

pt =− 2aζx

x+ 1
+

− 1
(x+1)2

L2
+

(
4

x+1
− 2x

(x+1)2

)(
1
4
(α + 1)L2

(
1
L2 − 2aζx

)
+ α

2(x+1)

)
L2

−

(
4

x+1
− 2x

(x+1)2

)
βL2(x+1)2

4

(
−2aζx+ 2

L2(x+1)
+ 1

L2

)
L2

+

4x

−1
2
a(α + 1)ζL2 − βL2(x+1)

2

(
−2aζx+ 2

L2(x+1)
+ 1

L2

) +
βL2(x+1)2

(
−2aζ− 2

L2(x+1)2

)
4

(
−2aζx+ 2

L2(x+1)
+ 1

L2

)2 − α
2(x+1)2


L2(1 + x)

+

4x

1
4
(α + 1)L2

(
1
L2 − 2aζx

)
− βL2(x+1)2

4

(
−2aζx+ 2

L2(x+1)
+ 1

L2

) + α
2(x+1)

2

L2(1 + x)
(3.17)

By integrating equation (3.13) we will get the gravitational potential y

y = K(x+ 1)α/2 × eU(x) ×W (x)m (3.18)

Here K is constant of integration U(x), W (x), and m is

U(x) =
1

4

(
− aαζL2x2 − aζL2x2 +

βL2(x+ 1)2

4aζ
+ αx+ x+

β(x+ 1)(2aζL2 + 1)

4a2ζ2

+

β(2aζL2 + 1)(4a2ζ2L4 + 16aζL2 + 1) tan−1

(
−2aζL2+4aζL2(x+1)−1√

−4a2ζ2L4−20aζL2−1

)
8a3ζ3L2

√
−4a2ζ2L4 − 20aζL2 − 1

)
W (x) = −2aζL2(x+ 1)2 + 2aζL2(x+ 1) + x+ 3

m =
β
(
4a2ζ2L4 + 8aζL2 + 1

)
64a3ζ3L2
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The line element is determined by the gravitational potential y and e2λ, which are repre-
sented by equations (3.20) and (2.68), respectively.

ds2 = −K2

(
1 +

r2

L2

)α

exp

[
2U

(
r2

L2

)]
W

(
r2

L2

)2m

dt2+

(
1 +

r2

L2

)
dr2+r2

(
dθ2+sin2 θdϕ2

)
(3.19)

3.2.2 Boundary Conditions

The Reissner-Nordstrom metric describes the exterior structure of a spherically symmet-
ric, charged anisotropic spacetime. Which is

ds2 = −

(
1− 2M

r
+

Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (3.20)

At the boundary r = R, our solution must coincide with the Reissner-Nordstrom solution,
which required

e2ν = −K2

(
1 +

r2

L2

)α

exp

[
2U

(
r2

L2

)]
W

(
r2

L2

)2m

=

(
1− 2M

R
+

Q2

R2

)
, (3.21)

e−2λ =

(
1 +

r2

L2

)−1

=

(
1− 2M

R
+

Q2

R2

)
. (3.22)

where M and Q are the total mass and charge respectively. The total mass at the
boundary is determined by equation (3.22), is

M =
R3 + 2ξaR5

2(L2 +R2)
. (3.23)

By equation (3.23) we will get L,

L =

(
R3

2M

(
1− 2aξR2

)
− 2M

R

)1/2

. (3.24)

By implying the boundary condition (3.21), we can get the constant of integration for our
model.

K2 =

(
L2

L2 +R2

)1+α

exp

[
− 2U

(
r2

L2

)]
W

(
r2

L2

)−2m

(3.25)

The radial pressure must disappear at the star’s boundary, i.e. pr(r = R) = 0, By using
this condition, we get

β = α

−2aζr2
(

r2

L2 + 1
)
+ r2

L2 + 3

L2
(

r2

L2 + 1
)2


2

(3.26)
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Assumed Values Of Constant For Physical Analysis
To meet the criteria for physical analysis and stability condition, we have assumed the
values of constant, which are, L = 1.8, a = 1.089775, ζ = 0.01, and α = 0.06184373 for
the boundary r from 0 to 1. The value of β and constant of integration K is computed
from the equations (3.26) and (3.25) respectively.

Constant Values
K 1.4181462075724175× 10−135

β 0.0216123301595

Table 3.1. Constant K and β

3.2.3 Physical Conditions

Metric Potentials
The most basic and most crucial requirement is to check the regularity of the metric poten-
tials. The metric potential e2λ is 1 At the center and e2ν is some positive constant. Figure
3.1 shows that bot metric potentials are singularity-free and monotonically increasing.

(a) Metric Potential (b) Metric Potential

Figure 3.1: Graph of Metric Potentials are plotted for the constants: L = 1.8, a = 1.08977,
ζ = 0.01, and α = 0.06184373 with respect to r.

Electric Field Intensity And Energy Density
Figure 3.2 illustrates the behavior of the electric field intensity, which is zero at the
origin and increases as it approaches the star’s boundary. This is because of the charge
distribution at the surface of the star. The expression of density given in equation (3.14)
by putting x = r2

L2 at the center is attained as

ρc =
3

L2
> 0 (3.27)
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Accordingly, it can be inferred that energy density is not subject to central singularity,
and Figure (3.3) illustrates how the density is decreasing.

(a) Electric Field Intensity (km−1)

Figure 3.2: Graph of Electric Field Intensity is plotted for the constants: L = 1.8,
a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

(a) Energy Density (km−2)

Figure 3.3: Graph of Energy Density is plotted for the constants: L = 1.8, a = 1.08977,
ζ = 0.01, and α = 0.06184373 with respect to r.

Pressures
The radial and tangential pressure at the center can be determined by evaluating the
corresponding expressions given in equation (3.16) and (3.17) respectively by putting
x = r2

L2 ,

pr(r = 0) = pt(r = 0) =
3α

L2
− L2β

3
> 0. (3.28)
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This shows that both pressures are the same at the center and free from the central
singularity. In Figure (3.4), we can see the decreasing behavior of radial pressure and it
vanishes at the boundary. This is because the gravitational force at the center requires
higher pressure to maintain the equilibrium. Tangential pressure also shows a decreasing
nature as we move towards the boundary. For tangential pressure it is not necessary to
be zero at the boundary.

(a) Radial Pressure (km−2) (b) Tangential Pressure (km−2)

Figure 3.4: Graph of Pressures are plotted for the constants: L = 1.8, a = 1.08977,
ζ = 0.01, and α = 0.06184373 with respect to r.

Pressures Density Ratios
To confirm the consistency of any physical solution, it is necessary to satisfy Zeldovich’s
requirements [28]. This means that the pressure density ratios in the center of the object
must be less than 1, continuous, and positive throughout the core of the star, represented

by the equation
(

pr
ρ
, pt

ρ

) ∣∣∣∣∣
r=0

≤ 1. Hence,

α− βL4

9
≤ 1 (3.29)

Both pressure-density ratios decrease as r increases towards the surface. This is to be
expected since gravitational forces in stars usually cause pressure to drop with increasing
radius.
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Figure 3.5: Graph of Pressure-Density Ratios are plotted for the constants: L = 1.8,
a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r. The green curve represents
the ratio of radial pressure to energy density and the blue dashed curve represents the
ratio of tangential pressure to energy density.

Trace of Energy Tensor
The energy tensor trace for our compact star model is graphed against the radial distance,
r, in Figure 3.6. It is consistently positive and meets the criteria established by Bondi
[29] for an anisotropic fluid sphere, which states that ρ − pr − 2pt > 0. Understanding
how various pressures and densities affect the stability and structure of the star depends
on this relationship. For example, if the pressure exceeds the energy density, it indicates
a potential risk of collapse or other instabilities in the star.

(a) Trace of Energy Tensor (km−2)

Figure 3.6: Graph of Energy Tensor Trace is plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

Anisotropic Factor
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Anisotropy is defined as the difference between tangential and radial pressure. For the
compact object, the anisotropic factor must be 0 at the core, as radial and tangential
pressures are the same at the center and positive elsewhere, which is shown in Figure
(3.7). It is highest at some intermediate regions where the forces are in balance and
decreases towards the boundary where pressures decrease as well.

(a) ∆ (km−2)

Figure 3.7: Graph of Anisotropic Factor is plotted for the constants: L = 1.8, a = 1.08977,
ζ = 0.01, and α = 0.06184373 with respect to r.

Gradients
The following are the generalized formulations for our model’s pressure and density gra-
dients in the radial and transverse directions.

dρ

dr
=

−4aζr3

L4 −
4aζr

(
r2

L2+1

)
L2 + 2r

L2

L2
(

r2

L2 + 1
)2 −

4r

−
2aζr2

(
r2

L2+1

)
L2 + r2

L2 + 3


L4
(

r2

L2 + 1
)3 (3.30)

dpr
dr

=−
4βr

(
r2

L2 + 1
)

−
2aζr2

(
r2

L2+1
)

L2 + r2

L2 + 3

−

4αr

−
2aζr2

(
r2

L2+1

)
L2 + r2

L2 + 3


L4
(

r2

L2 + 1
)3 +

α

−4aζr3

L4 −
4aζr

(
r2

L2+1

)
L2 + 2r

L2


L2
(

r2

L2 + 1
)2 +

βL2
(

r2

L2 + 1
)2−4aζr3

L4 −
4aζr

(
r2

L2+1

)
L2 + 2r

L2


(
−

2aζr2
(

r2

L2+1
)

L2 + r2

L2 + 3

)2

(3.31)
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dpt
dr

=
1

2
r

[
8L2

(L2 + r2)3
+

36L2r2α

(L2 + r2)4
− 28L2α

(L2 + r2)3
+

8ar2ζ

(L2 + r2)2

− 8aζ

(L2 + r2)
+

12ar2(1 + α)ζ

(L2 + r2)2
− 16a(1 + α)ζ

(L2 + r2)

− 4r2(1 + α)(−1 + 2ar2ζ)

(L2 + r2)3
+

6(1 + α)(−1 + 2ar2ζ)

(L2 + r2)2

− 16ar2(L2 + r2)2βζ

(L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ))2
+

10(L2 + r2)β

L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ)

−
8r2β

(
1 + a(L2+r2)2ζ

L2

)
(L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ))2

−
8
(
1 + r2

L2

)
β
(
1 + a(L2+r2)2ζ

L2

)
(−3 + 2ar2ζ + r2(−1+2ar2ζ)

L2 )2

+
16r2(L2 + r2)β(−1 + 2a(L2 + 2r2)ζ)(aL4ζ + ar4ζ + L2(1 + 2ar2ζ))

(L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ))3

− 12r2β(aL4ζ + ar4ζ + L2(1 + 2ar2ζ))

(L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ))2
− 8(L2 + r2)β(aL4ζ + ar4ζ + L2(1 + 2ar2ζ))

(L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ))2

+
2r2
(
− 2L2α

(L2+r2)2
− 2a(1 + α)ζ − (L2+r2)3β(−1+2a(L2+2r2)ζ)

(L2(−3+2ar2ζ)+r2(−1+2ar2ζ))2
+ 3(L2+r2)2β

L2(−3+2ar2ζ)+r2(−1+2ar2ζ)

)
L4
(
1 + r2

L2

)
−

r2
(

2L2α
L2+r2

− (1 + α)(−1 + 2ar2ζ) + (L2+r2)3β
L2(−3+2ar2ζ)+r2(−1+2ar2ζ)

)2
L6
(
1 + r2

L2

)2
+

(
2L2α
L2+r2

− (1 + α)(−1 + 2ar2ζ) + (L2+r2)3β
L2(−3+2ar2ζ)+r2(−1+2ar2ζ)

)2
L4
(
1 + r2

L2

) ]
(3.32)

The pressures and density gradients are graphed, and all of them have negative values
as shown in Figures (3.8), (3.9) and (3.10). Within a stable star, the gravitational force
pulling matter inward is balanced by the pressure gradient, which typically decreases
outward from the core to the surface.
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(a) dρ
dr (km−3)

Figure 3.8: Graph of Density Gradient is plotted for the constants: L = 1.8, a = 1.08977,
ζ = 0.01, and α = 0.06184373 with respect to r.

(a) dpr

dr (km−3)

Figure 3.9: Graph of Radial Pressure Gradient is plotted for the constants: L = 1.8,
a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.
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(a) dpt

dr (km−3)

Figure 3.10: Graph of Tangential Pressure Gradient is plotted for the constants: L = 1.8,
a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

Mass and Compactness factor
We previously derived the mass function in equation (3.23). Buchdal [30] postulated that
the ratio of mass to radius within a compact star should be smaller than 4/9. In our
current model, the ratio of mass to radius is M/R = 0.120495, which is less than 4/9
as demonstrated in Figure (3.11) demonstrates the shape of the mass function, which is
positive and smooth within the star’s interior and zero at the center. The compactness
factor for the compact star is expressed as follows:

µ =
M(r)

r
. (3.33)

The profile for our case is shown in Figure (3.12) which is increasing monotonically and
is less than 4/9. It classifies the compact object as follows [31]:

• Normal stars: M
r
∼ 10−5

• White dwarfs: M
r
∼ 10−3

• Neutron star: 10−1 < M
r
< 0.25

• Ultra-compact star: 0.25 < M
r
< 0.5

• Black hole: M
r
= 0.5

34



(a) Mass Function (km)

Figure 3.11: Graph of Mass is plotted for the constants: L = 1.8, a = 1.08977, ζ = 0.01,
and α = 0.06184373 with respect to r.

(a) Compactness Factor

Figure 3.12: Graph of compactness Factor is plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

RedShifts
The expression of surface and gravitational redshifts are given as

zs = eλ − 1 =

(
1 +

R2

L2

)1/2

− 1 (3.34)

z = e−ν − 1 (3.35)

In this case, the surface redshift zs is below 1, which is necessary for the model to be
considered physically acceptable. This is shown in Figure (3.13a). It is zero at the center
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and it is increasing monotonically as radius is increasing. This is because light needs to
escape the gravitational field which results in a greater redshift for the light emitted from
the surface compared to that emitted from the center. Moreover, gravitational redshift z
as seen in Figure (3.13)b has a decreasing nature as per need.

(a) Surface Redshift (b) Gravitational Redshift

Figure 3.13: Graph of Surface and Gravitational Redshifts are plotted for the constants:
L = 1.8, a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

3.2.4 Stability Conditions

Casuality Condition
The speeds of sound in the radial and tangential directions for a distribution of anisotropic
fluid are determined as

v2r =
dpr
dρ

=
dpr
dr
dρ
dr

(3.36)

v2t =
dpt
dρ

=
dpt
dr
dρ
dr

(3.37)

where in our circumstances the value of radial and tangential speeds of sound takes the
form

dpr
dρ

=
1(

L2r2(1− 2aζ)− 2aζr4 + 3L4
)2
(
βL12 + 4βL10r2 + L8

(
9α + 6βr4

)
+ 4a2αζ2r8 + 4aαζL2r6(2aζ − 1)

+ L4r4
(
4a2αζ2 − 16aαζ + α + βr4

)
+ 2L6

(
αr2(3− 6aζ) + 2βr6

))
(3.38)
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dpt
dρ

=
1

2
r

[
8L2

(L2 + r2)3
+

36L2r2α

(L2 + r2)4
− 28L2α

(L2 + r2)3
+

8ar2ζ

(L2 + r2)2

− 8aζ

(L2 + r2)
+

12ar2(1 + α)ζ

(L2 + r2)2
− 16a(1 + α)ζ

(L2 + r2)

− 4r2(1 + α)(−1 + 2ar2ζ)

(L2 + r2)3
+

6(1 + α)(−1 + 2ar2ζ)

(L2 + r2)2

− 16ar2(L2 + r2)2βζ(
L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ)

)2 +
10(L2 + r2)β

L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ)

−
8r2β

(
1 + a(L2+r2)2ζ

L2

)
(
L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ)

)2 −
8
(
1 + r2

L2

)
β
(
1 + a(L2+r2)2ζ

L2

)
(
−3 + 2ar2ζ + r2(−1+2ar2ζ)

L2

)2
+

16r2(L2 + r2)β
(
−1 + 2a(L2 + 2r2)ζ

) (
aL4ζ + ar4ζ + L2(1 + 2ar2ζ)

)(
L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ)

)3
−

12r2β
(
aL4ζ + ar4ζ + L2(1 + 2ar2ζ)

)(
L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ)

)2
−

8(L2 + r2)β
(
aL4ζ + ar4ζ + L2(1 + 2ar2ζ)

)(
L2(−3 + 2ar2ζ) + r2(−1 + 2ar2ζ)

)2
+

2r2
(
− 2L2α

(L2+r2)2
− 2a(1 + α)ζ − (L2+r2)3β(−1+2a(L2+2r2)ζ)

(L2(−3+2ar2ζ)+r2(−1+2ar2ζ))
2 +

3(L2+r2)2β
L2(−3+2ar2ζ)+r2(−1+2ar2ζ)

)
L4
(
1 + r2

L2

)
−

r2
(

2L2α
L2+r2

− (1 + α)(−1 + 2ar2ζ) + (L2+r2)3β
L2(−3+2ar2ζ)+r2(−1+2ar2ζ)

)2
L6
(
1 + r2

L2

)2 ]
.

(3.39)
In order for the relativistic stellar model to be physically acceptable, the speed of sound
within its interior must be lower than the speed of light in both the radial and transverse
directions. This can be expressed as 0 < v2r , v

2
t < 1. The idea of "cracking" was developed

by Herrera [32] for the anisotropic distribution of materials. Later on, Abreu et al. [33],
using the "cracking" notion, established that the region is possibly stable where −1 <
v2t − v2r < 0 and potentially unstable where 0 < v2t − v2r < 1 inside the anisotropic fluid
sphere. This implies 0 ≤ v2t − v2r ≤ 1.
The graphical behaviors for our model are displayed in Figure (3.14) which allows us to
comprehend that our model satisfies the causality condition and the area within the star
is possibly stable. Both radial and tangential speeds of sound increase with the increase
in radius.
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(a) Radial Speed of Sound (b) Tangential Speed of Sound

(c) Stability Factor (d) Stability Factor

Figure 3.14: Graph of Radial and Tangential Speed of Sounds are plotted for the constants:
L = 1.8, a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

Energy Conditions
The energy conditions should be satisfied by the compact object in order to be physically
feasible:
1. Weak Energy Condition (WEC): pr + ρ ≥ 0, pt + ρ ≥ 0,
2. Strong Energy Condition (SEC): 2pt + pr + ρ,
3. Null Energy Condition (NEC): ρ ≥ 0.
4. Dominant Energy Condition (DEC): ρ− |pr + 2pt| ≥ 0. All energy conditions for our
model are satisfied and graphs are shown in Figure (3.15).
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(a) WEC (km−2) (b) WEC (km−2)

(c) SEC (km−2) (d) DEC (km−2)

Figure 3.15: Graphs of Energy Conditions are plotted for the constants: L = 1.8, a =
1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

Adiabatic Index
Two specific heat ratios as stated by Heintzmann and Hillebrandt [34] and Chan et al.
for the stable system is [35]

Γr =
ρ+ pr
pr

dpr
dρ

, (3.40)

Γt =
ρ+ pt
pt

dpt
dρ

. (3.41)

The model is said to be physically acceptable if the value of both adiabatic indices is
greater than 4

3
. For our model this condition is satisfied and graphs of the adiabatic

index are shown in Figure (3.16). With the increasing r both adiabatic indices show the
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increasing behavior. The higher values of adiabatic indices towards the boundary increase
the stability of the compact star.

(a) Γr (b) Γt

Figure 3.16: Graph of Radial and Tangential Adiabatic Index are plotted for the constants:
L = 1.8, a = 1.08977, ζ = 0.01, and α = 0.06184373 with respect to r.

State of Equilibrium Under Different Forces
If the equation derived by Tolman-Oppenheimer-Volkoff in references [36] and [37] is met,
then the star system is regarded as being in a condition of equilibrium. It is also known
as TOV equation, given as

2

r
(pt − pr)−

dpr
dr

− (ρ+ pr)ν
′ + σEeλ = 0 (3.42)

Eq (3.42) can be written as
Fa + Fh + Fg + Fe = 0 (3.43)

Where, Fa, Fh, Fe, and Fg are anisotropic, hydrostatic, electric, and gravitational forces
respectively, given as
Fa =

2
r
(pt − pr), Fh = −dpr

dr
, Fe = σEeλ, Fg = −(ρ+ pr)ν

′.
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(a) Fa (km−2), Fh (km−3), Fg (km−2), Fe

(km−2)

Figure 3.17: Graph of Forces is plotted for the constants: L = 1.8, a = 1.08977, ζ = 0.01,
and α = 0.06184373 w.r.t r. Where, the green curve depicts the anisotropic force, the
blue dashed curve represents the hydrostatic force, the brown dashed curve represents the
electric force, and the red doted curve represents the gravitational force.

41



Chapter 4

Conclusion

This thesis investigates exact solutions to Einstein’s field equations in paraboloidal geome-
try using Chaplygin’s equation of state. The work has extended the knowledge of compact
objects by including charged anisotropic model affected by a Chaplygin gas equation.
Einstein’s field equations are developed for a spacetime that exhibits spherical symmetry
using paraboloidal coordinates. We are able to simplify these equations and derive ex-
act solutions by using Chaplygin’s equation of state. The model proposed in this thesis
has potential implications for understanding the behavior of compact objects, such as
neutron stars and quark stars, under extreme conditions. Chaplygin’s equation of state,
which contains both fluid and exotic matter features, offers a useful tool for describing
such phenomena. To verify the physical viability of the solutions, a thorough analysis was
conducted. Within the interior of the compact object, the energy density, radial pressure,
and tangential pressure were found to be regular and well-behaved. Moreover, the so-
lutions meet the essential energy requirements, demonstrating the stability and physical
feasibility of the model. The inclusion of charge and anisotropy was shown to have sig-
nificant effects on the properties of the compact object. The charged anisotropic model
demonstrated different properties compared to their uncharged and isotropic counterparts,
providing greater insights into the structure and behavior of such celestial objects. The
solutions produced in this study were compared with known precise solutions in different
geometries. Our results were consistent with previous literature, indicating the stability
and correctness of our technique in the setting of paraboloidal geometry.
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