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Abstract

Acute Lymphoblastic Leukemia (ALL) is among the world’s most fatal diseases which results

in the death of thousands of people suffering from ALL annually. Most of the time, procedural

delay and delays in diagnosing ALL have a higher chance of an increase in suffering and

pain and sometimes, even death can occur. A rapid and effective system of diagnosing ALL

is used in this study to help doctors in the early and quick management of patients. The

pipeline is composed of different steps and each step uses a deep learning model to classify the

blood smears taken from Image Flow Cytometry (IFC). A high-definition image taken from

IFC has more details as compared to normally available microscopic images and hence the

detection of change in cells can be monitored efficiently. After learning from high-definition

images, models like ResNet, a combination of U-Net and ResNet, Vision Transformer (ViT),

YOLOv5, and DenseNet have shown exceptional accuracies over a dataset of 3242 images

with an overall accuracy of 96.8% is shown during the test run of the pipeline. It also takes

a quick runtime ranging from 9 seconds to 50 seconds depending upon the information a

cell has to provide. Achieved results show the efficiency of the pipeline as compared to the

previous studies done by using either a single algorithm or two algorithms. Furthermore,

this pipeline can be trained for other blood diseases as well as for the genomic and phenomic

data of cells as It will aid in complementing the results generated by the pipeline.

Keywords: deep learning, vision transformers, Acute Lymphoblastic Leukemia (ALL),

Imaging Flow Cytometry, pipeline
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Chapter 1

Introduction

1.1 Background

Acute Lymphoblastic Leukemia (ALL) is one of the cancer types affecting human body and

it involves the uncontrolled growth of immature lymphoid cells in the bone marrow and

peripheral circulation. This malignancy inhibits the formation of normal blood cells and

therefore there is reduced production of these cells, hence the manifestations of anemia,

frequent incidences of infections, and increased bleeding. There are many subtypes as ALL

and B-ALL; B-ALL is the most prevalent, additionally accounting for a large percent of

leukemia cases, specifically in children. Primary, B-cell ALL is one of the commonly found

neoplastic diseases in kids and adolescents; thus, it is of great significance in pediatric

hematology/oncology [66],[80].

Over the years, the diagnosis for B-ALL has enhanced dramatically due to enhanced treat-

ment protocol as well as early diagnosis techniques. diagnosis is considerably improved by the

use of intensive chemotherapy regimens, targeted anthracycline, and mini–nonanthracycline–

containing chemotherapy regimens, as well as by the application of hematopoietic stem cell

transplantation; pediatric patients have better outcomes. The success of B-ALL management

depends on early diagnosis to facilitate early intervention, hence the achievement of favor-

able results. However, the rates of survival still remain less consistent, and depend on the
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age, genetic attributes differences between patients, and regional differences. It reveals the

necessity of subsequent studies in refining diagnostics and diagnosis methods and providing

equal outcomes for all potential patients [66],[80].

Although these procedures are effective, they are bound to be time-consuming more

specifically they are manual intensive and need a lot of specialization. Sample preparation,

data collection, and analysis are time-consuming and can be costly processes, which results in

a delay in diagnosis and treatment. They have underlined the necessity of better diagnostic

methods, which can offer quick, accurate, and self-sufficient analyses to optimize the outcomes

of a patient’s management [66],[80].

Convolutional neural networks (CNNs),in particular, are deep learning algorithms that

have shown astonishing results in recent years, particularly when it comes to learning and

detecting intricate patterns in vast datasets. The accuracy and reliability of these algorithms

have been demonstrated to be excellent, and they frequently outperform human specialists

in terms of performance. In the realm of medical imaging, Convolutional neural networks

(CNNs) have been effectively applied to a variety of applications. These techniques include

cytometry, histological analysis, and radiological imaging. As a result of their capacity to

deliver objective and reproducible analysis, the amount of time necessary for diagnostics has

been greatly cut down, which has increased both efficiency and accuracy [41],[44].

1.2 Deep Learning in Medical Diagnostics

Machine learning is a branch of artificial intelligence that works with algorithms capable of

learning from and making predictions on datasets deeply embedded with complex patterns,

and deep learning is a branch of machine learning that uses artificial neural networks to

model and analyze these complex patterns. This has applied to several fields, especially

the medical one as Deep learning algorithms have time and again proved to outcompete

physicians in image recognition exercises. When such networks are trained on huge amounts

2
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of data, deep learning models can differentiate between images based on features of higher

complexity and, therefore, improve the reliability of the diagnostic results [14],[55].

It is now clear that deep learning applications in medical imaging are far and wide across

the field ranging from radiology, histopathology, and cytometry among others. In radiology,

deep learning algorithms utilize information achieved by X-ray, CT scan, and MRI and

perceive and diagnose growth, for example, tumors, cracks, or other pathological changes with

stunning accuracy. Histopathology expertise is provided by deep learning as the microscopic

examination of tissues is enhanced by deep learning-assisted histopathological analysis of

tissue samples to detect malignant cells and other histopathological alterations. In the same

way, in cytometry, deep learning is applied to improve the investigation of cell properties

with regard to the manifestation of various disease states [14],[55].

More precisely, the application of deep learning with regard to the diagnosis of B-cell

Acute Lymphoblastic Leukemia (B-ALL) by applying Image Flow Cytometry also caught

academics’ attention. Image flow cytometry is a factor of higher dimensionality capturing

brightfield and/or fluorescence images of suspended cells. The analysis of this data has

been done traditionally and it is usually associated with many shortcomings such as being

time-consuming and involving a lot of manual inputs. However, if those high-dimensional

databases are to be processed, it often requires lots of pre-processing but deep learning

can efficiently pick up features out of these big databases. It minimizes the misdiagnosis

and variability in observation by different people and thus provides a more accurate and

consistent chance of diagnosis [41],[44].

Deep learning with image flow cytometry continues with the enhancement of new algo-

rithms that are fit for processing data from this modern technology. These algorithms are

normally recurrent with convolutional neural networks (CNNs) since the information they

handle is mostly in the form of images. It’s possible to achieve promising prognostication by

training CNNs to distinguish particular features or characteristics from labeled datasets of

image flow cytometry data derived from B-ALL cases. This automated analysis not only

3
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accelerates the diagnosis but also increases the accuracy of the diagnostic process and offers

clinicians a better understanding of the specific disease [41],[44].

Another advantage of using deep learning in the diagnosis of B-ALL is that it limits

inter-observer variation. Thus, the processes of diagnosis in traditional diagnostic methods

depend on the clinician’s interpretation of the data obtained, which in turn contributes to

inter-clinician variability in the model. It also removes variability and a situation where

some patients have their data analyzed to a higher standard than others is eradicated since

deep learning algorithms work on structures and apply them to all forms of data. However,

deep learning is an automatic method of training and classification; it can thus handle a

significant quantity of examples in a short period, which is vital in environments like clinics

since the speed of diagnosis greatly affects the patients’ outcomes [41],[44].

1.3 Image Flow Cytometry

Image flow cytometry is a highly developed amalgamation of the quantitative characteristics

of flow cytometry along with highly descriptive microscopy methods. It can get bright-field

and/or fluorescence images of suspended cells at very high magnification. Conventional

flow cytometry has high sensitivity to quantify the cellular entities and to detect a certain

type of cells employing fluorescent tags. However, it is usually not capable of giving specific

information regarding the manners in which morphological characteristics are exhibited. On

the other hand, the microscopy technique lacks quantitative data but it provides detailed

images. Notification of these gaps is made by image flow cytometry since it integrates the

strengths of both approaches for a versatile tool in cellular analysis [3],[18].

In the case of hematological malignancies, like B-ALL, image flow cytometry has most

of its applications since it provides an integrated approach to cancer diagnostics. However,

these diseases’ minor structural changes and the virtue of unique receptors are vital when

differentiating the diseases and even in diagnosis. The combination of qualitative and
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quantitative paternal analysis allows for greater definition in the study of the cells’ properties.

For example, in the case of image flow cytometry, two populations of cells that have different

sizes, shapes and fluorescence intensities are easily discriminated and relate to different

disease states, malignant or benign. This dual functionality increases diagnostic accuracy

and examines disease etiology in greater detail [3],[18].

Applying deep learning to image flow cytometry calls for the designing of algorithms

to be able to feed and analyze large data produced by this technology. These algorithms,

which usually rely on CNN, are employed to motivate multidimensional data and recognize

various patterns that possibly may not be detectable by the human eye. Such models are

trained by inputting large sets of annotations of images that facilitate the algorithms to

identify characteristics related to various prognostic markers. For instance, one can train

deep learning models to identify different stages of disease severity or to find biomarkers that

correspond to patients’ diagnosis [41],[79].

Thus, deep learning in this context has several following important benefits. Firstly,

the use of the software increases the reliability of data analysis by minimizing errors and

observers’ variation. Unlike humans it does not have preconceptions and the same criteria

that apply to the training dataset will be used on the test datasets. Secondly, these models

can handle large amounts of data, and take less time than conventional approaches to come

up with results. This speed is important particularly within clinical environments because

time is of the essence in matters concerning diagnosis and treatment or even the diagnosis of

the patient’s condition [79].

Additionally, the future combination of deep learning with the method of image flow

cytometry can open great opportunities in the field of individualized medicine. It is only

logical that through the stratification of patients with their respective cellular characteristics,

treatment can now be offered more specifically to patients. For example, patients with higher

risk will be detected at the initial stage of the disease and recommended for a higher-risk

treatment plan unlike patients with lower risk will be recommended for low-risk skills all in
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order to reduce side effects. The idea is to provide the patient with a more individualized

treatment that can enhance the therapeutic outcomes and increase the survival rates of

B-ALL patients [79].

1.4 Problem Statement

Acute Lymphoblastic Leukemia (ALL) is the second most common acute leukemia in grown-

ups, with an occurrence of 6500 cases each year in the US alone. An automated framework

for the diagnosis of Acute Lymphoblastic Leukemia (ALL) based on deep learning models is

therefore essential that can take images of blood samples and classify the disease, accurately

and precisely within seconds. It will aid doctors in the diagnosis of ALL without waiting for

detailed test descriptions of different flow cytometry. This quick way of diagnostics of ALL

will save time as kids need urgent medication to stop the spread of malignancy. It will also

describe how future intelligent flow cytometry may be implemented using upcoming machine

learning methods for more diseases of the blood.

1.5 Research Objectives

The following objectives have been designed for conducting the proposed research work:

• Collection and pre-processing of image-based data, including labeling and transforma-

tion.

• Development of a deep learning-based framework for the diagnosis of Acute Lymphatic

Leukemia (ALL)

• Comparison of this developed framework with existing deep learning models.

• Web/Software-based Application for the proposed framework/pipeline.

6
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1.6 Overview

After the discussion of the significance of the diagnosis for Acute Lymphoblastic Leukemia

(ALL) and the role of deep learning for precise diagnosis in the previous sections of this

thesis, this stage of the work will provide a review of the existing literature in Chapter 2.

This chapter will elaborate on the current approaches in the diagnosis of adult lymphoblastic

leukemia and its consequences: manifestations of image flow cytometry and the existing

traditional ones, their development steps, and possible problems. In doing so, it paves the

way for the methodological proposal detailed in Chapter 3 which presents the data acquisition

tools coupled with preprocessing techniques, as well as the proposed deep learning-based

framework for ALL diagnosis. Lastly, Chapter 4 describes the evaluations of the framework

and employs the results to discuss the relative merits of our approach to previous approaches,

followed by a brief explanation of its practical use and further development in Chap. 5.

7



Chapter 2

Literature Review

In this chapter, we briefly discuss the ALL disease and the contributions in literature related

to its diagnosis. The literature includes different traditional diagnostic tools like cytogenetic

analysis, immunophenotyping, and molecular testing. The application of flow cytometry in

diagnostics and the use of deep learning in the field of diagnostics, using images, are also

discussed.

2.1 Acute Lymphoblastic Leukemia (ALL)

Acute lymphoblastic leukemia, ALL, is a type of hematological cancer that originates from

the precursor lymphoid cells in the bone marrow. This disease is a significant public health

concern all over the world, particularly among children and young adults. According to [54],

it is among the most prevalent types of leukemia in kids and adolescents, accounting for

around 25 % of all child cancer cells. The heterogeneity of ALL, the variety of professional

discourses, and the unpredictable therapy reactions continue to present challenges, despite

the tremendous advancements that have been made in the treatment modalities.

ALL is caused by the malignant lymphoid progenitor cells, which results in the uncontrolled

spread of the disease as well as the infiltration of disease-causing cells into the bone marrow,

the bloodstream, and the extra-medullary sites. According to [31], these lethal outbreaks
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Chapter 2. Literature Review

are unable to differentiate into fully formed lymphocytes, which fails bone marrow and

compromised immune system function in the body. Exhaustion, high temperature, dullness,

simple wounding, petechial, and bone ache are some of the signs and symptoms that may

be associated with ALL. The professional symptoms of ALL vary greatly and may include

a variety of indications and complications. Central nerve system (CNS) participation

indicated by signs and symptoms such as migraines, throwing up, plus cranial nerve friends,

is additionally typical in ALL plus stands for a major danger aspect for negative results [49].

The formation of premature B-cell blasts is the defining characteristic of B-ALL, char-

acterized by the generation of precursor B-cells in the bone marrow that is responsible for

the disease’s development. The genetic landscape of B-ALL is complex, with recurrent

chromosomal abnormalities and molecular alterations contributing to the etiology of the

disorder as well as professional outcomes [59]. Typical hereditary abnormalities in B-ALL

consist of chromosomal translocations of immunoglobulin hefty chain (IGH) locus such as t(12;

21) ETV6-RUNX1 or t(9; 22) BCR-ABL1 in addition to rearrangements of mixed-lineage

leukemia (MLL) genetics [59]. The disruption of critical signaling pathways linked with

B-cell growth and differentiation also drives leukemogenesis and the development of disease.

These genetic changes are responsible for the dysregulation of these pathways.

Outer blood and bone marrow examinations, in addition to immunophenotypic analysis,

are the components that are used in the medical identification of all-encompassing lymphoma

(ALL). The presence of increased outbursts, which may indicate specific roles such as a

high nuclear-cytoplasmic proportion, limited cytoplasm, and penalty chromatin pattern, is

revealed by morphological study of blood and bone marrow patches [46]. According to [46],

immunophenotyping, which can be performed using circulation cytometry or immunohis-

tochemistry, is a method that identifies leukemia cells based on their surface area antigen

expression accounts. The majority of ALL cases are of the B-cell family tree, while the

T-cell family tree remains the dominant family tree. According to [59], cytogenetic and

molecular studies continue to identify ALL below types based on inherited disorders such as

chromosomal translocations, removals, and anomalies. These chromosomal abnormalities
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have a significant impact on diagnosis and also encompass a range of treatment options.

The treatment options available for ALL have undergone tremendous advancements

over the last few years, which led to major improvements in survival rates of pediatric

patients in particular. Contemporary treatment practices typically involve complex multi-

agent radiation treatment programs that are administered in phases. These stages include

induction, combination, and maintenance treatment [54]. Treatment of the central nervous

system (CNS) is an essential component of all-embracing lung cancer (ALL) treatment, which

can be accomplished using intrathecal radiation therapy and/or cranial irradiation in order

to prevent relapse of the CNS [49]. High-risk people, such as those with persistent conditions

or relapsed ALL, may be advised to consider undergoing an allogeneic hematopoietic stem

cell transplant (HSCT). This procedure offers the potential for long-term disease control as

well as treatment [10].

Regardless of the heterogeneity of hereditary irregularities that have been observed

in B-ALL targeted treatments, such as tyrosine kinase inhibitors (TKIs) and monoclonal

antibodies versus B-cell surface area pens, there has been demonstrated assurance in improving

therapy outcomes, particularly in individuals who have high-risk conditions or B-cell acute

lymphoblastic leukemia that has relapsed or is resistant to treatment [19]. According to

Shanon and Theodore [43], the introduction of chimeric antigen receptor (AUTOMOBILE)

T-cell treatment has transformed the situation of therapy for relapsed/refractory B-ALL, that

targets CD19-expressing B-cell malignancies. This treatment has been observed to have high

rates of complete remission as well as long-lasting effects in professional tests. Nonetheless,

obstacles continue to be in recognizing efficient targeted treatments for particular hereditary

subtypes of B-ALL together with handling treatment-related toxicities highlighting the

requirement for additional research study plus development for B-cell Acute Lymphoblastic

Leukemia.

Despite the significant progress that has been made in ALL therapy, there are still

limitations that exist, particularly in certain individual subgroups that have high-risk
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condition functions or resistance to therapy. Relapsed or refractory ALL is a significant

professional challenge caused by insufficient outcomes and a limited range of treatment options

[19]. Furthermore, the long-term adverse consequences of prolonged radiation treatment

programs, which include cardiotoxicity, neurotoxicity, infertility, and new hatreds, pose

significant challenges for survivors of pediatric acute lymphoblastic leukemia [30]. Because of

this, there is an immediate need for innovative restorative procedures in addition to tailored

therapy techniques in order to improve outcomes and bring down the amount of toxic drugs

that are associated with treatment in ALL.

Recent advances in genomic profiling and molecular characterization have offered valuable

information about the etiology of ALL and identified specific therapeutic targets. These

advancements have also led to the identification of targeted therapeutic interventions. By

recognizing recurrent hereditary changes, such as chromosomal translocations involving the

BCR-ABL1 combination genetics and also abnormalities of the MLL genetics, targeted

treatments consisting of tyrosine kinase inhibitors (TKIs) and epigenetic modifiers have been

developed [59]. These treatments have been extremely effective in treating multiple myeloma.

With high feedback rates and also resilient compensations observed in professional tests,

immunotherapy has become a promising therapy modality for relapsed/refractory ALL [43].

Specifically, chimeric antigen receptor (CAR) T-cell treatment, that targets CD19-expressing

B-cell malignancies, has emerged as a promising target for immunotherapy. According to

Sabina and Robin [6], preclinical and clinical studies are currently examining unique agents

that target critical signaling pathways and immunological checkpoints. These agents are

providing new options for accurate medication and tailored treatment of acute lymphoblastic

leukemia (ALL).

ALL continues to be a significant medical challenge, even though there have been

advancements in treatment methods and encouraging treatment activities. In light of the

variability of the illness as well as the diverse responses to treatment, there is a pressing need

for creative and individualized therapeutic approaches. Recent developments in genomic

profiling, targeted therapy, and immunotherapy have provided individuals with ALL new
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expected boosting results as well as lifestyle improvements. These developments highlight

the importance of multidisciplinary collaboration and translational research study in the

progression of leukemia treatment.

2.2 Traditional Methods of diagnosis of B-ALL

The B-ALL, B-cell acute lymphoblastic leukemia, is a disease that is characterized by various

inherited issues. Because of this, it is necessary to have accurate analysis tools in order to

guide treatment decisions and to estimate individual outcomes. In the case of B-ALL, the

typical methods of diagnosis involve a combination of professional characteristics, cytogenetic

analysis, immunophenotyping, and molecular screening. The purpose of these methods is

to categorize individuals into different threat groups and then provide the treatment as per

requirement [47]. Although these classic analysis features provide valuable insights into the

disease as well as the response to treatment, they have certain limitations when it comes to

accurately predicting individual outcomes, particularly in the context of accurate medication

and tailored treatment.

2.2.1 Cytogenetic Analysis

Cytogenetic analysis is a crucial component in the process of diagnosing B-ALL. It is

responsible for identifying recurrent chromosomal abnormalities, as well as hereditary changes

that are associated with the etiology of the disease and professional outcomes [47]. Typical

cytogenetic abnormalities in B-ALL include chromosomal translocations such as t(9; 22)

BCR-ABL1, t(12; 21) ETV6-RUNX1, and t(1; 19) TCF3-PBX1, in addition to mathematical

irregularities, deletions, and amplifications [59]. As a consequence of these genetic changes,

critical signaling pathways linked with B-cell proliferation and differentiation are disrupted,

which leads to the dysregulated multiplication and survival of leukemic blasts. When

it comes to B-ALL, cytogenetic abnormalities play a significant role in determining the
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eventual outcome, with certain hereditary groupings being associated with either favorable or

unfavorable outcomes. As an illustration, the Philadelphia chromosome (t(9; 22) BCR-ABL1)

presence is associated to an incorrect diagnosis as well as resistance to conventional radiation

therapy. On the other hand, hyperdiploid, in conjunction with the absence of high-risk

cytogenetic irregularities, is associated with favorable outcomes [59]. Cytogenetic analysis has

limitations when it comes to finding low-frequency subclonal abnormalities and intratumoral

heterogeneity, both of which have the potential to influence the response to treatment as

well as the progression of both conditions.

2.2.2 Immunophenotyping

According to [46], immunophenotyping, which can be performed by circulation cytometry or

immunohistochemistry, is a valuable tool for detecting and also sub-classifying B-ALL based

on the expression of lineage-specific antigens as well as uneven surface area pens. The B-cell-

associated antigens, such as CD19, CD20, CD22, and CD79a, and specific immunoglobulins,

presence is a defining characteristic of B-ALL. Additionally, the absence or diminished

expression of T-cell and myeloid antigens is also a characteristic of B-ALL, as stated by [46].

According to [49], irregular antigen expression patterns, such as the deletion of CD10 or CD20,

may be indicative of a more aggressive disease genotype, which may also be associated with

a more concerning diagnosis. Immunophenotyping is also useful in determining very minor

recurring disease (MRD), which is the presence of recurring leukemic cells at reduced levels

(below 0.01%) after the completion of treatment. This is a reliable indicator of regression

and survival in patients with B-ALL, as stated by [49]. Despite this, immunophenotyping is

not without its limitations when it comes to identifying atypical subpopulations of leukemic

cells, and additionally, it is susceptible to the quality of the samples.
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2.2.3 Integration of Prognostic Factors

In the case of B-ALL, the combination of multiple analytic aspects, which include professional,

cytogenetic, immunophenotypic, and molecular specifications, permits even more precise

threat categorization in conjunction with individualized treatment methods [47]. Numerous

risk stratification systems have been developed to categorize individuals with B-ALL into

various risk groups. These risk groups are determined by the presence of high-risk factors,

which include age, leukocyte count, cytogenetic abnormalities, and treatment reaction [47].

These threat stratification systems, such as the National Cancer Institute (NCI) standards

for St. Jude Total XV and XVI procedures, as well as the European Treatment of Acute

Lymphoblastic Leukemia (EORTC) risk rating, assist in evaluating the efficacy and the

duration of treatment, maximizing the effectiveness of treatment while simultaneously

minimizing the risk of treatment-related poisoning [47]. In addition, the utilization of MRD

surveillance throughout and after treatment makes it possible for the early detection of

disease regression and rapid treatment, which in turn increases the survival rates of patients

with B-ALL [49]. Nonetheless, the perfect incorporation of analysis elements combined with

the growth of risk-adapted therapy formulas continues to be the location of dynamic research

study as well as expert assessment in B-ALL.

2.3 Image Flow Cytometry in Hematology

Image Flow Cytometry is a technique that combines the quantitative capabilities of flow

cytometry and the precise imaging of microscopy. This apparatus is considered one of the

most potential apparatuses in hematology. Large populations of cells can simultaneously be

analyzed with the capture of detailed images with this apparatus, and not only the numerical

data given but also the visual confirmation of the cellular properties is also possible. Our

development of knowledge of hematopoietic diseases was improved as a result of its numerous

uses in clinical diagnosis and research of many blood diseases. Examples of principles that
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are used in image flow cytometry include microscopy and flow cytometry, among others. The

most commonly used flow cytometry is used in the first moving step, in which the cells are

suspended in a fluid and are passed individually through a laser beam. However, an image

is captured for each better than only monitoring light scatter and fluorescence in order to

conduct an analysis. This dual technique allows for a morphological analysis to be conducted

in addition to the study of traditional flow cytometric data ([23]).

2.3.1 Applications in Hematology

Diagnosing Hematologic Malignancies

Image flow cytometry is a very helpful technique for diagnosing hematologic diseases such as

lymphomas and leukemias. It goes an extra mile to look at the shape of the cell. Classical

flow cytometry, on the other hand, would detect the cell’s abnormal populations depending

on marker expression. Proceedings of a study conducted by [77] stated that this particular

amalgam could identify various types of leukemia, as a result of which appropriate diagnosis

could be done, which in turn could help in planning the treatment protocol.

Analyzing Cell Morphology

Image flow cytometry provides a significant increase in the morphological examination of

cells. In hematology, proper knowledge of blood cell morphology is required for the proper

diagnosis of a very large number of diseases, such as anemia, myelodysplastic syndromes, and

other blood disorders. Image flow cytometry provides an abundance of precise morphological

data about every cell, which can readily be combined with data from standard flow cytometry,

again with a significant gain regarding diagnosis accuracies, as per the results obtained by

[38].
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Monitoring Treatment Response

More to this, another important application of image flow cytometry involves the monitoring

of the treatment of individuals with hematologic diseases. For instance, image flow cytometry

is important for the tracing of alterations in the morphological characteristics of the malignant

cells and expression markers in diagnosing leukemia patients. It is through this that the

physician can determine how effective the treatment is working and make any necessary

adjustments if need be [77]

2.3.2 Image Analysis in Hematology

It is important that the ability to apply sophisticated imaging analysis techniques should

be present to ensure that the image flow cytometry works properly. Such techniques would

involve algorithms that can identify and quantify cellular features such as size, shape, and

texture. These are all qualities that can help to distinguish between the many types of cells

and diagnose problems that originate from them. Furthermore, [26] in their article state

that the application of machine learning strategies to image analysis has become increasingly

prevalent. More generally, the amalgamation of these systems leads to interpretations of the

data that are more accurate and complete in terms of automation.

2.3.3 B-Cell Acute Lymphoblastic Leukemia (B-ALL)

The commonly found type of leukemia is B-cell acute lymphoblastic leukemia (B-ALL), and

primarily it is prevalent among children. During the diagnosis and monitoring of B-ALL

image flow cytometry was found to have some good results. Image flow cytometry was used

during the study by [73] while analyzing blood samples drawn from people diagnosed with

B-ALL. Specific morphologic features and marker expressions that would be able to separate

B-ALL cells from normal lymphocytes were the main targets of the study project. Image

flow cytometry appeared to be able to detect MRD at a more sensitive level in comparison
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to more conventional approaches. This had the effect of improving early diagnosis of relapse

and guided changes in treatment.

2.4 Deep Learning Techniques in Medical Imaging

Deep Learning is a specific field of Machine Learning that has been doing exceptional work

in various industries, with the medical imaging field being no exception. This technology,

using multiple layers of neural networks for learning and extraction of features from data,

will allow for the development of robust modeling techniques to be used for image analysis.

The same will also develop models that can be put into place. The deep learning applied in

the field of medical imaging has made terrific improvements in diseases, diagnosis of diseases,

and remedies. All these resulted from deep learning. The present manuscript evaluates

the basics, architectures, applications, and associated problems linked with various medical

imaging techniques by deep learning of medical imaging, these techniques are used in medical

imaging.

2.4.1 Principles of Deep Learning

Neural Networks and Deep Learning

Deep learning models are based on artificial neural networks, which are inspired by how

the human brain is structured and operates. An artificial neural network is a network of

connected neurons or nodes that receive information supplied to the system to be learned from

and processed within several layers. Each neuron in the preceding layer receives input from

the previous layer and processes the input into some function, which it then communicates to

the neuron in the subsequent layer. This way, the model can simulate receiving information in

a way that resembles humans receiving information in their neurons to process and dispatch.

A deep learning model is a model of artificial neural networks that are quite different
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from standard networks. This large difference is in the depth of the model, and the term

"deep" comes from the idea that deep learning models are a magnitude of hidden layers as

compared to traditional neural networks which usually consist of only one or two hidden

layers in practice. Deep models can learn features, patterns, and representations that are

quite complicated from the data, hence they are powerful enough to be able to output some

perspective towards quite complex problems. Deep learning models are good at finding

complex structures that lie within huge and sophisticated data sets, are robust, and conduct

themselves in pertinent ways for that task.

The development of efficient training algorithms on large-scale datasets allows the training

of deep neural networks to be followed by increased computation power. For example, back-

propagation and optimization algorithms, such as stochastic gradient descent, are important

for their very recent purpose of effectively training deep learning networks. Furthermore,

large-scale datasets and the availability of powerful hardware, in particular GPUs, have

reduced the training time to a great extent and, in return, enabled the application of deep

learning across many fields, including medical imaging, natural language processing, and

autonomous systems.

Convolutional Neural Networks (CNNs)

One of the most widely used deep learning architectures in the domain of medical imaging

is convolutional neural networks (CNNs). These CNNs are, in fact, one of the most useful

kinds of architectures for image analysis, too, because CNNs can automatically learn spatial

hierarchies from the raw pixel data. CNNs acquire a high level of effectiveness as a consequence

of this. Convolving filters with the input image to extract features, such as edges, textures,

and forms, is done with the aid of convolutional layers. A chain of convolutional layers

accomplishes this. Pooling layers further reduce the dimensionality of these feature maps,

which helps in making the network computationally more efficient with reduced overfitting.

Ultimately, these properties are unraveled by fully connected layers so that one can make
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predictions or classifications — in other words, properties deciphered by the fully connected

layers result in predicting a class. In the words of [37].

This makes the hierarchical learning structure of CNNs powerful for image identification

assignments. In pictorial information, the lower layers will gather simple features like

edges, and the deeper layers will capture sophisticated information such as objects or pieces

of objects. For this reason, CNNs are highly effective in the segmentation of pictures,

identification of objects, and categorization of images. In recent years, convolutional neural

networks have been widely applied in medical imaging for disease detection, anatomical

feature segmentation, and image quality enhancement. Modern medical imaging for disease

detection, segmentation of anatomical features improving image quality, among others have

seen convolutional neural networks as one of the key players in modern medical imaging.

These models have shown promising results and have great potential for current healthcare

practices, particularly modern imaging and diagnosis practices [41].

Other Deep Learning Architectures

Deep learning architectures other than CNNs are obviously used in medical imaging. More

deep learning designs are included: Recurrent Neural Networks, Generative Adversarial

Networks, and Autoencoders. For example, RNNs can be effectively used to evaluate time-

series data or sequences, such as electrocardiogram (ECG) signals or patient records over

time. This ability is primarily because an RNN is designed to be used with sequential

data and, with respect to this, it proves to be highly useful. The design of the RNN has

the capability to trace and identify temporal relationships and patterns that show in time.

Therefore, RNNs have been considered an appropriate candidate for predicting the course of

a disease or its consequences for patients.

GANs and Autoencoders, on the other hand, have been used to carry out the generation

and enhancement tasks of images. To proceed, artificial generalized adversarial networks

are defined to have two neural networks that are learned simultaneously in a competitive
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process: a generator and a discriminator. The generator will be the one to produce the

realistic images, then the discriminator will contrast it against the real photographs. As this

process continues, the images produced through this process are enhanced and refined for a

better-quality image. Such is essential in synthesizing images in medical imaging to be able to

use the created synthetic images in expanding datasets, enhancing image resolution, or even

anonymizing data. Autoencoders may be used for both noise reduction and image denoising

and in feature extraction through unsupervised learning. Autoencoders take advantage of the

learning process of image compression and reconstruction for the identification of significant

features and patterns in medical images, hence developing diagnostic tools and systems using

such specifications. Deep learning may thus change the game in medical imaging, leading

to a difference in diagnostic accuracy and results in treatment. These are very different

architectures but indicate the adaptability and potential of deep learning in this sense.

2.4.2 Most widely used models in Medical Imaging

Simple CNN Architecture

A Simple CNN can be used for the classification of images into viable and non-viable ones.

This architecture for classification applies the following layers: convolutional layer, batch

normalization, activation layer, pooling layer, fully connected layer, and dropout layer. Figure

2.1 shows a simplified version of CNN architecture. ReLU is the activation function used to

introduce linearity and it ranges from [0, 1].

UNet Model

UNet is originally used for biomedical image segmentation since it provides a high performance

in segments and localizes cells in any image accordingly. The UNet model is based upon

the encoder-decoder structure combined with the skip connections. The contracting path or

the encoder includes convolutional and pooling layers to extract contextual features and the
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Figure 2.1: Basic CNN Architecture [48]

expanding path or the decoder generates the segmented image of the same resolution as the

input image. Short connections between corresponding layers in the encoder and decoder

paths are omitted to maintain the spatial information which results in better segmentation.

The architectural demonstration is given in figure 2.2.

Figure 2.2: The UNet Architecture [11]

21



Chapter 2. Literature Review

ResNet Model

ResNet is also known as Residual Network, widely used in deep learning and the application of

residual connections that reduce the vanishing gradient problem, enabling the establishment

of very deep neural networks. Here, ResNet34 is used as the feature extractor within the

general model. After that, ResNet takes these segments from UNet and further transforms

them into higher-level features required to describe cells adequately. The residual connections

in ResNet are very deep, hence capable of preserving features in the cells’ morphology

patterns, which is fundamental for identifying RBCs, WBCs and Platelets. Its architecture

is shown in figure 2.3.

Figure 2.3: The ResNet Architecture [69]

Vision Transformer (ViT) Model

The Vision Transformer model works by splitting an input image into patches of spatial

resolution and linearly projecting the patches into the proper dimension to be processed

through a series of transformer steps. Each patch is considered as a token in a sequence,

so the model can learn the context and long-range dependencies over the whole image.

ViT-Base-Patch16 is even more particular since it splits images into patches of 16X16 that

are processed by the transformer encoder. Figure 2.4.
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Figure 2.4: The ViT base model Architecture [51]

DenseNet121

DenseNet121 also known as Dense Convolutional Network is designed to push as much

information as possible up and down the density connection of the network. All the layers

in DenseNet121 directly receive feature vectors from all the earlier layers, and in turn, feed

feature maps to all the subsequent layers [29]. The formula for the output of a dense layer

can be written as:

yl = Hl([y0, y1, . . . , yl−1])

where yl is the output of the l-th layer, Hl is the composite function of batch normalization,

ReLU, and convolution, and [·] denotes concatenation.

This higher level of connectivity also improves the feature extraction ability of the model since

it can focus on minute details of the morphology of specific cell types like the lymphocytes

and the details regarding their nucleus and chromatin. A simple architecture of DenseNet is

given in Figure 2.5.
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Figure 2.5: The DenseNet121 Architecture [70]

YOLOv5 Model

YOLOv5 works in a way that it takes the input image and then divides the input image

into multiple grids and then predicts multiple bounding boxes and class probabilities for

each cell of the grid. This made YOLOv5 efficient in predicting numerous bounding boxes

and classifying these boxes all at the same time. The use of convolutional layers, the use of

anchor boxes, and non-maximum suppression make the model capable of handling the highly

dense and complex image of blood samples. The Yolov5 network architecture is divided into

three sections: Yolo Layer, (2) Neck, and (3) Head. CSPDarknet is the Backbone. The

information is supplied into PANet for feature fusion after being first input into CSPDarknet

for feature extraction. Yolo Layer finally outputs the detection results (size, location, score,

and class). Figure 2.6 shows an architectural demonstration of YOLO.
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Figure 2.6: The YOLOv5 Architecture [78]

2.4.3 Case Studies in Deep Learning for Medical Imaging

Case Study: Brain Tumor Segmentation

Brain tumors are very heterogeneous in both structure and location, they lead to several

important issues in terms of diagnosis and therapy. During surgery and planning radiotherapy,

an accurate segmentation of the parts of a tumor that need to be scanned using MRI is

required. [34], developed a deep learning model known as DeepMedic for segmenting brain

tumors in MRI.

The MRIs were sourced from a 3D CNN architecture to extract local and global contextual

levels called DeepMedic. For achieving the segmentation process of the different parts of

brain tumors like the core of the tumor, the augmenting tumor, and peritumoral edema, this
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model achieved training from the myriad of pictures on the brain MRIs, which involve a few

differing kinds of brain cancers and imaging irregularities. However, this model achieved

the correct and nearly accurate performance in the segmentation process of different parts

of brain tumors, including the core of the tumor, the augmenting tumor, and peritumoral

edema. The segmentation process is vital in determining the tumor limits used in creating

or formulating disease-specific treatment strategies.

The comparison was made with the performance of the model and with the expert manual

segmentations and produced measures that were almost the same; some even meant that

the model outperformed his human performance. Said model can guide neurosurgeons and

radiologists to better decision-making, which will eventually translate to better patient

outcomes. This is one highly promising model. The clinical implementation of DeepMedic,

among others analogous to it, into the aspiration of brain tumor management through effective

and precise ways, basically improves the amount of equal precision in both therapeutic ways-

surgical and non-surgical, according to [32].

2.5 Methodologies of Integration of Deep Learning with

IFC

IFC is the abbreviation of Image Flow Cytometry. It merges quantitative power, classically

in flow cytometry, with the detailed imaging of classical microscopy. Integration of deep

learning into IFC can unravel the potential of changing this field through automation of the

image analysis process; it can improve accuracy and detect subtle patterns that are usually

missed by human observers. This section elaborates on the integration of deep learning in

Image Flow Cytometry, based on the methodology, applications, benefits, and issues directly

connected with the integration.
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2.5.1 Image Processing

1. Data Normalization:

Normalization is very essential precursor to preparing image flow cytometry data to

feed into deep learning model development. This is done by scaling the pixel values of

images to a standard range in order for the neural network to handle the data well.

This should reduce the impact of the numerous conditions of light and imaging settings,

both of which can pull out differences in the data. Normalization seeks to make the

performance of the models more certain and stable across many datasets [20]. This is

done through normalizing the data which is usable with the pixels of the images.

These techniques further use normalization techniques such as z-score normalization

and min-max scaling for the intensity values of the photos. This is performed so as to

introduce each image having an equal contribution while testing the model with images.

It is important for the reason that the process hinders the model from a partiality

toward the images having higher intensity values and thus contributes to bringing

about an improvement in the overall accuracy and robustness of models used in IFC.

This process is based on the learning process from the data, which makes the model

capable enough to recognize the objects or features in an image.

2. Data Augmentation

Data augmentation is performed through operations: rotation, scaling, flipping, and

cropping, to mitigate difficulty due to scarce datasets. For example, these methods

fight overfitting and artificially inflate the dataset, in this or that form, enhancing the

generalization capacity. According to [52], data augmentation is the process of creating

variations for the current images. This way, a model learns better from a larger variety

of examples and generalizes better on new data that it hasn’t seen before.

Furthermore, it includes other methods of augmentation, such as random erasing

and elastic transformations, to add even more variation to the training data. These
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methods make the model robust in dealing with these kinds of variations when applied

through the simulation of real-world fluctuations and artifacts that can appear in IFC

images. According to [65], this technique not only enhances the model’s performance

on the training data but also enhances performance over a wide range of complex

datasets such models come across in real-world applications.

3. Image Segmentation

Image segmentation is the process of partitioning an image to give separate meaningful

sections. Through the segmenting algorithms for separating the gathered individual

cells from the background, the deep learning models could be implemented more

correctly through IFC. Accurate segmentation is absolutely necessary here so that

the cells can be rightly quantified and classified on the basis of the features that are

picked up by these models relevant to the cells being targeted [60]. Through this, the

quantification and classification of cells will be precise.

In terms of the applications of IFC image segmentation, deep learning models like

U-Net and its various modes are inclined toward the mainstream. All these models are

easily able to differentiate cell boundaries and accurately segment overlapping cells,

two major challenges one might face in any IFC image. These advanced segmentation

methods yield the ability to acquire very high recognition and analysis of individual

cells. As told by [7], they will provide a more reliable and in-depth cellular investigation.

4. Applications

The combination of deep learning and IFC has a huge number of potential applications

both in the domain of research and in the domain of application in therapeutic practice.

This technology enables an all-encompassing morphological study, identification of

unusual cell populations, and automatic identification with classification of varied types

of cells [16].
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For example, deep learning IFC can be optimized to help diagnose circulating

tumor cells in the blood. This offers incredibly fundamental information that can be

integrated and used in the diagnosis and monitoring of cancer. This technique can also

be utilized in immunology to have a better characterization of the immune cell subsets,

which will aid in the understanding and treatment of immunological-related diseases.

[41] have suggested that automation and high-throughput capability in this technology

boost up, at a great speed, scientific and clinical diagnostics, creating all new ways for

personalized medicine and targeted therapeutics.

2.5.2 Deep Learning Archietecture

1. Convolutional Neural Networks (CNNs)

CNNs build the bottom level of deep learning in image analysis because CNNs can

learn spatial hierarchies from the use of convolutional layers. For that reason, CNNs are

capable of learning spatial features automatically and adaptively from the input images,

such as edges, textures, and patterns. Therefore, these are very important features

in tasks that involve the recognition and classification of images. These layers enable

CNNs to automate these features. For example, [39] demonstrated that CNNs can

learn to extract information from images on complex information like cell morphology

and fluorescence intensity, hence being able to do the task of precise classification and

detection. IFC uses a convolutional neural network.

The common architecture of CNNs displays that the network consists of a large

number of convolutional layers followed by pooling layers. In processing the important

properties of data from a smaller number of dimensions of the input data, these layers

reduce the spatial dimensions gradually. In employing the process of immunofluores-

cence (IFC) technology, this facility of hierarchical feature extraction is of extreme

importance to be employed in processing important high-resolution images that dis-

tinguish between cell types and the states of cells. Therefore, the identification of the
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cellular capability, which plays an important role in the diagnosis of different disease

conditions and also in tracking the responsiveness of treatment, could be automated

by researchers using the convolutional neural networks of feature extraction. This

automation of the network, according to [41], not only enhances the precision of analysis

but is also considerably faster. Meanwhile, it processes large-scale datasets by raising

the capability of processing data in the field of biomedical analysis.

2. Transfer Learning

Transfer learning is a tool affecting the improved performance of restricted volumes of

annotated data in a particular domain by advancing pretraining with relatively large

general domain datasets. This goes a long way in proving useful in the domain of

international finance, where annotated data is scarce, and the cost of annotation is

high. The pre-trained models include VGG, Res-Net, and Inception, which have been

trained with large datasets of images, such as ImageNet. In this way, a wide range

of visual properties have been captured, which are also very useful in the domain of

hematology and other medical domains [50].

By fine-tuning these pre-trained models on IFC datasets, performance on the IFC

of researchers’ models can be improved significantly from only a few samples bearing

labels. This method also helps to be generalized for the capability that makes it

resistant to the fluctuations in data. This becomes very useful in the field of medical

imaging, which has not been possible to make huge datasets whose data has been

relatively well annotated. The application of transfer learning in IFC makes it possible

to effectively use information collected beforehand, thus reducing the time and effort

involved in the collection of significant data and its annotation.

3. Autoencoders

Two potential applications can be done with autoencoders: unsupervised feature

learning and picture reconstruction of a certain kind of artificial neural network. This
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means having an encoder that compresses the input into a representation resulting from

a few dimensions of compression and a decoder that reconstructs the input according to

the representation resulting from the compression. [27] say that IFC applications with

autoencoders can be used for filtering noise in pictures, the identification of anomalies,

and data compression which results in keeping data more compact in storage and fast

in transmission.

One of the main benefits of using autoencoders within IFC is their capability to

produce a reduced representation of the information. Several tasks can be realized

with this compact representation in the application further downstream. For example,

a denoising autoencoder can be used to improve the quality of images in IFC by

suppressing artifacts and noise, leading to more accurately analyzed cells. Autoencoders

could also be used for anomaly detection, which, in a place like learning to recognize the

usual patterns of images of cells, quite easily detect deviations from these patterns as

likely to be abnormal. The ability to recognize abnormality in general is a foundational

skill, according to [82], in the ability to find deviant or rare cells that could be indicative

of disease.

Autoencoders are most helpful in managing the very huge data volumes IFC

generates through data compression. Compressing the data, autoencoders reduce the

volume of space for storage and improve data transmission. This makes it easy to share

and analyze enormous datasets across many research institutes. Maintaining such high

efficiency is very important for the success of joint research endeavors, explained [76].

2.5.3 Training and Validation

• Data Splitting

Most of the time, the dataset is split into training, validation, and test pieces to ensure

that the model is trained and evaluated appropriately. The model is trained using

the training set, which helps it learn from the data and adjust its parameters. The
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validation set is used for making decisions about tuning hyperparameters, model design,

and optimization tactics. This will avoid the problem not only of overfitting the model

but also protect the generalization power for new data. The test set finally measures

the performance of the model on the observation of data that were not used until that

point. It gives an objective estimate of the correctness and efficiency of the model in

applications with a ground truth in the real world [20].

Proper splitting of data ensures that every piece of data will represent the overall

data set, hence capturing all forms of diversity as well as complex patterns lying

beneath. Most techniques, such as stratified sampling, will at least maintain a similar

class distribution between the training, validation, and test sets. This is important,

especially in a medical imaging dataset, as some classes in the dataset are liable to be

underrepresented. Consequently, making model evaluation fair and ensures that the

model performances are constant between a range of data subsets [35].

• Cross-Validation

Generalization capability can be measured with cross-validation methodologies such

as k-fold cross-validation. The k number of folds in the validation process are created

from the dataset in such a manner that they have equal sizes. Of the k number of total

folds, k-1 folds will be used to train the model and one fold will be used to validate the

model. The cycle takes place k times so that each time, one fold will be the validation

set. The results are averaged to give the final estimation of model performance. It

greatly increases the accurate estimation of the model’s generalization to new data and

reduces the threat of overfitting the data [22].

Cross-validation is very important in IFC, especially where labeled data is sparse.

It is, therefore, a vital technique. Cross-validation ensures more than one subset of the

data is used in the two procedures of the data: training and the other for validation.

This can achieve the goal mentioned above by exploiting the highest available data. It

is, therefore, not only more reliable in enabling one to know the performance of the
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model but also helps in knowing the best configuration of the model to be adopted.

More advanced cross-validation techniques, according to [74], further help enhance

the robustness of the process of model evaluation, which may be used in layered

cross-validation. These, in turn, help in hyperparameter tuning and selection of models.

• Performance Metrics

Full performance metrics are required in the assessment of the deep learning models

built for the IFC. These metrics are required to elaborate on how good a model is in

the classification and identification of cells. A few examples of such standard metrics

include accuracy, precision-recall, F1 score, and many others. An accuracy measure is

the share of the total examples classified correctly out of the entire number of instances,

though this might be very misleading when used with datasets that are imbalanced,

where one class is much more abundant than the rest. However, it shows a general

impression of the model.

1. Positive predictive value, precision, is a measure that establishes the ratio of true

positive predictions out of all the positive predictions—defining how accurate the

positive class predictions are.

2. Recall, sensitivity, or true positive rate, is the proportion of actual positive cases

that got predicted correctly. This means the model can detect all the positive

cases.

3. The F1 score is the harmonic mean between precision and recall, thus giving a

single statistic that balances between these two concerns that are energetic. This

is particularly helpful in scenarios where datasets are uneven.

Such indicators, taken in their totality, give an overall performance analysis of the model

and can, therefore, identify its strengths in addition to giving avenues for optimization.

These metrics, as given by [67], come in handy in fine-tuning the model for maximum

performance with IFC, whose most critical aspect of categorizing the cells precisely
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is crucial in ensuring that images of cells are analyzed in the most reliable, accurate

manner.

2.5.4 Applications in Hematology

• Leukemia Diagnosis

Leukemic cells can easily be detected using deep learning models in combination with

an image flow cytometer. These algorithms analyze morphological features of the cells

and corresponding fluorescence indicators. For instance, the use of CNNs can detect

free cells and at the same time, differentiate between normal and affected cells, hence

diagnosing leukemia at a much earlier time and with great precision. The CNN models

have utilized the vast visual data compiled through IFC to detect, with precision, the

tiny changes in morphological attributes of the cells that indicate leukemia. According

to [21], such minute differences cannot be detected using the conventional methods.

MRD detection is of much significance for the purpose of determining the efficacy

of leukemia treatment and predicting relapse. An advanced IFC integrated with deep

learning can identify rare leukemic cells from an overwhelming number of normal

cells. In turn, the MRD assessment is both sensitive and highly specific compared

with current methods. High sensitivity is required so that even minute numbers of

cancer cells are detected. These cell numbers, if not detected, remain in the body

and stealthily or aggressively predispose the patient to relapse, respectively. This is of

paramount importance for the best possible outcome of treating and managing such

tumors [77].

• Disease Diagnosis

Deep learning models can be created for the analysis of longitudinal IFC data and

prediction of the possible disease trajectory and patient diagnosis. With this approach,

patterns and biomarkers indicative of the diagnosis of a disease are revealed from learned
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past trends for the linear planning of treatment. Predictive modeling in this respect

reveals early markers in the development of illnesses, supporting an understanding of

how different persons respond to treatment across time [15].

For instance, the mass and fluorescence intensity changes in cell populations can

be done at various time points to predict the likelihood of relapse for a patient. Such

prediction acts as a roadmap for clinicians to refine treatment plans for a patient, which

may be very well proven towards longevity and enhancing the quality of life. It can

be felt that predictive modeling in IFC is a tremendous new development in the field

of personalized medicine; it permits the selection of such interventions that are much

more precise and efficient, according to [9].

It is the product of deep learning and IFC on research findings that permits the

drawing of the statistical models, which are both stratified and associated with respect

to patients’ cellular profiles from whom they were drawn. This stratification helps

overall in boosting the general treatment efficacy and assists in adapting treatment

programs to the specific cases in question. If the profile for the patient is high-risk,

then closer follow-up can be done using therapy more aggressively, while the ones

with low-risk profiles may be availed with less intense interventions [2]. Accurate

stratification is most important in diseases like leukemia because the responses to

treatment can vary dramatically from patient to patient.

• Enhanced Accuracy and Efficiency

For being capable of identifying minuscule patterns and anomalies in IFC images, deep

learning models can analyze gargantuan datasets with precision and speed above the

human level. This enhances IFC’s diagnostic capabilities and even predictive accuracy.

Automated image analysis has been reported to process data within a very short period

of time. The frequency with which manual review is done is thereby minimized, thereby

enhancing throughput.
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Another benefit of deep learning is that it reduces the risk of human error by many

degrees, therefore resulting in infinitely more reliable and consistent outputs. This

means a lot in clinical conditions, as an erroneous diagnosis would mean inappropriate

management of patients. As documented by Litjens [41], the better accuracy guaranteed

by deep learning algorithms ensures that important decisions are taken based on the

most reliable information available at present, and with time, this invariably results in

better patient outcomes.

• Automation and Scalability

Since the image analysis through the combined mechanism of deep learning and IFC is

almost instant, concerning the fact that less human labor, on the pathologists’ part, is

employed in analyses. Large amounts of data are handled with ease, thereby making

the technology more scalable for use in clinical setups. According to [41], handling the

high demand for diagnostic services can be done using automated systems, especially

for situations with a resource base that is limited or in cases where the number of

patients to be handled in one setting exceeds expectations.

The IFC, enhanced by deep learning, is especially significant for its scalability

in the model, able to be applied in the most diverse ranges of healthcare settings.

Such modalities help health professionals channel their efforts toward more challenging

patients and research by taking routine procedures off their hands. Overall effectiveness

and efficiency of the health system are increased enormously from this. This capability

to scale out is necessary to meet the ever-increasing requirements of modern-day

healthcare systems [71].

• Discovery of New Biomarkers

The new biomarker discovery from the IFC data would be unreachable through more

conventional techniques of analysis. The discovery of biomarkers can, further, lead

to new mechanistic insights into the disease together with probable treatment target
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discovery. Deep learning can tap patterns and relationships that conventional methods

may tend to overlook through the analysis of large and complex datasets. These deep

learning models would help in new biomarker discovery from the IFC data. Discovery

of such biomarkers may further lead to new mechanistic insights into the disease along

with probable treatment target discovery.

With the help of deep learning, patterns, and relationships that conventional

methods might tend to miss would be tapped through the analysis of large and complex

datasets. Such biomarkers, newly identified, have the potential to revolutionize the

diagnosis and treatment of illness by making medicines more precise and specific. For

example, the identification of specific cellular changes that are reflected by responses to

treatments could very well be a most helpful guide in designing individualized regimens

of treatments, that are more effective and less toxic. This is of great potential benefit

in the prospect of an extended field of hematology and better care for patients, as the

work is being done incessantly and further developed in this area.

2.5.5 Key Studies

Table 2.1 shows the key findings of studies done in the past which add significant findings on

the application of deep learning in diagnosing of B-ALL using IFC.

Study Objective Methodology Accuracy Implications

Jing Sun,

Lan Wang

[68]

Used deep learning

with light scattering

microfluidic cytom-

etry for leukemia

classification

Combined deep learn-

ing with light scatter-

ing techniques to clas-

sify acute lymphocytic

leukemia (ALL) cells.

Accuracy

is 91.5% in

label-free

classification

Provides a non-invasive

diagnostic tool, poten-

tially reducing the need

for traditional staining

methods.
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Maila Claro

[8]

Developed CNN mod-

els for diagnosing acute

leukemia

Applied CNN models

on image data for the

diagnosis of leukemia,

focusing on differenti-

ating between types of

leukemia.

Achieved

high accu-

racy of 94.7%

in classifying

leukemia

types.

Highlights the utility

of CNNs in automat-

ing leukemia diagnosis,

aiding in quick and ac-

curate clinical decision-

making.

Ibrahim

Abdulrab

Ahmed [1]

Explored hybrid tech-

niques for ALL diagno-

sis using CNN feature

fusion

Merged features from

different CNN architec-

tures to improve ALL

classification accuracy.

Achieved an

accuracy of

95.2%.

Suggests that hybrid

models can leverage the

strengths of different

architectures for more

robust diagnostics.

Niranjana

Sampathila

[64]

Developed a cus-

tomized deep learning

classifier for detecting

ALL using blood smear

images

Created a tailored deep

learning model specif-

ically for blood smear

image analysis in ALL

detection.

Reported

an overall

accuracy of

93.8%.

Demonstrates the po-

tential for specialized

deep learning models to

improve diagnostic ac-

curacy in hematological

diseases.

Adnan

Saeed [61]

Implemented a deep

learning-based ap-

proach for ALL

diagnosis

Utilized deep learning

algorithms to classify

ALL cells, focusing on

improving diagnostic

accuracy and speed.

Achieved an

accuracy of

96.1%.

Suggests deep learn-

ing as a powerful tool

for enhancing diagnos-

tic processes in ALL,

potentially improving

patient outcomes.

Table 2.1: Summary of studies on deep learning approaches for ALL diagnostics

This table shows the research objective, key findings, and implications of each study, providing

a brief and comprehensive overview of each study done in the past on the topic of application

of Deep Learning in diagnosing Acute Lymphoblastic Leukemia using Image Flow Cytometry.

2.5.6 Challenges

1. Data Quality and Quantity
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To train powerful deep learning models, only high-quality datasets that are labeled

can yield good results. Due to heterogeneity in sample preparation, staining methods,

and imaging conditions, it can be challenging to obtain large datasets that are well-

annotated using image flow cytometry (IFC). According to [41], the standardization of

a dataset capable of accurately reflecting all possible cases presented at hospitals is

complicated precisely because it contains those components that make any data prone

to certain inconsistencies and biases.

To address these challenges, multiple solutions — such as data augmentation,

transfer learning, and artificial production of new synthetic data, among others—are

being experimented with by researchers. Note that the dataset can be artificially

inflated through the use of data augmentation techniques. All of these techniques try

to apply various transformations like rotation, scaling, and flipping, which help the

model learn something that eventually increases its generalization power. The best

part about them is transfer learning enables one to take models that have already been

trained on big, generic datasets and then fine-tune them for specific tasks using small

datasets pertaining to the same domain. [65] mention that synthetic data generation

with techniques like GANs seems a promising solution as it can produce realistic

images. Moreover, these realistic enhancements to the training dataset may provide

more diversity in samples from which to cheer labels.

2. Model Interpretability

One often-heard concern about deep learning is that because these are “black box”

models, it’s almost impossible to understand how they actually arrive at their con-

clusions. This lack of transparency presents a major barrier for clinical applications

(where we need to know why something was diagnosed), [63]. It is important that,

especially when these decisions can directly affect patient care, clinicians trust and

understand the judgments made by artificial intelligence systems.

Researchers are developing strategies to create more interpretable findings, as
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they identify the specific portions of a picture that contributed most to the decision-

making process of their model. Visual explanations using techniques like Grad-CAM

(where a heatmap is superimposed on the input photos to point out which areas

on the image contributed the most to the prediction) are one approach. [58] have

proposed several methods (e.g., SHAP (Shapley Additive Explanations) as well as wider

applicability solutions like LIME (Local Interpretable Model-agnostic Explanations) to

gain information concerning feature value and model response attitudes; this provides

more transparent output that is easier for clinicians to understand.

3. Computational Resources

Developing deep learning models requires significant computational overhead, including

immense GPUs and huge memory size. However, this could be a constraint for

organizations as they may not have the required infrastructure in many healthcare

settings and research institutes [39]. This is challenging due to the hefty monetary

constraints of cutting-edge computational power, continuous upkeep, and updates.

To overcome these problems, high-performance computing clusters and cloud-based

solutions are increasingly being used. These platforms allow institutions to train

and deploy deep learning models without requiring a huge upfront investment by

offering scalable and affordable access to powerful computational resources. The

computational load is under control, and deep learning is made more approachable

through optimization techniques, including model pruning, quantization, and efficient

neural network topologies, such as MobileNets [28]. All of these methods are coming

to market.

2.6 Overview

In this chapter, we have endeavored a critical analysis of the current literature on ALL

disease profiles, and the traditional diagnostic tools designed that comprise of cytogenetic
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analysis, immunophenotyping, and molecular testing. We also discussed the updates and

subsequent uses of image flow cytometry in hematology with an emphasis on its capability

to better differentiate between the cellular structures. Also, we covered how DL is combined

with medical imaging and how these kinds of methods enhance the ability to detect diseases,

diagnose them, and plan treatment.

Although there have been numerous developments done to diagnose ALL and the future

outlook of deep learning is quite optimistic in this research domain, the following gaps are

observed: Convention methods on the other hand are efficient, however; they take lots of

time and require the services of specialized individuals, thus, leading to inconsistencies in

diagnosis. Furthermore, the blend of deep learning with image flow cytometry is relatively

in its infancy and thus needs further data to implement the method effectively in clinical

practice.

To fill these gaps, Chapter 3 of this dissertation proposal will describe the research

approach of our study, explaining the procedure that would be adopted to design and

implement a deep learning-based diagnostic framework for ALL utilizing image flow cytometry.

This involves the process of data accumulation, initial data preparation methods, and the

creation of our deep learning platform. Thus, the subsequent chapter, constructed from

this literature review, is designed to offer a detailed view of the presented approach and its

possible beneficial influence on the process of ALL identification.

41



Chapter 3

Methodology

This chapter will describe the steps of data collection, data preprocessing, and methodology

adopted in this research, which is building an automated pipeline for the diagnosis of

Acute Lymphoblastic Leukemia using image flow cytometry data. The pipeline includes six

significant steps, each designed to process and analyze images of blood cells with different

deep-learning models and techniques. The objective is the efficient classification of blood cells

and to identify all their apparent characteristics so that the respective subtype is categorized,

which again is critical for an effective diagnosis regarding diagnoses and treatment planning.

3.1 Data Collection

Regarding building a deep learning model for the diagnosis of B-cell Acute Lymphoblastic

Leukemia (B-ALL), data acquisition is a crucial stage that must be performed. As for the

type of data, high-resolution images of cells that were collected using image flow cytometry

served as the primary data source of this particular study. To ensure that the dataset only

includes complete data and that it is representative of the treatment of hematological cancers,

these photos were collected from a reputable healthcare organization treating these diseases.
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3.1.1 Ethical Considerations

Increasing the availability of the patient selection criteria is evidence that the analyzed work

aimed to include a diverse population of B-ALL patients, but its structure was designed

to guarantee such goals. The selection criteria involved the participants being adults of

various ages, who were at different stages of the manifestation of the disease, had different

reactions to the treatment. For the purpose of training a model that is competent to improve

its performances drastically in clinical situations of distinct types, this element of diversity

is inevitable. Each process of the data collection procedure was handled while following

the major ethical concerns in the process. There was also consent from the Hospital’s

Institutional Review Board (IRB) that ensured that all the treatments provided met the set

ethical virtue. This study followed the principles of informed consent from patients or their

legal representatives and data anonymization to protect patient’s identity.

3.1.2 Image Flow Cytometry

To enrich the resolution images of leukemic cells from the bone marrow and peripheral

blood samples the image flow cytometry was used. This method not only makes use of the

morphological and the fluorescent features of cells, but also makes use of both the quantitative

characteristics of the standard flow cytometry as well as the pictures. The first procedure

carried out in this procedure involved getting informed consent from the patients to take

their bone marrow and blood samples. Specific fluorescent antibodies for a number of cell

surface markers that seem to be associated with B-ALL were employed to the treatment and

staining of these samples before the analysis was conducted. Next, the stained samples were

processed in image flow cytometry to produce image maps for the cells in the samples.
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3.1.3 Data Quality and Storage

Important to mention that during the process of collecting data, one of the crucial points was

to guarantee the high quality of the images that were collected. Image flow cytometry, as a

technique, is used to obtain tremendous data with quantitative fluorescent measurements

and digital image data acquired from the procedure. A number of actions were performed in

order to preserve the quality of the data:A number of actions were performed in order to

preserve the quality of the data:

• Performing Calibration and Standardization: The image flow cytometer was calibrated

regularly to ensure that the fluorescence intensity was being measured properly and

there was a good quality of the pictures that were being taken and they were in some

certain extent identical. While taking the sample and staining, it was ensured that

various procedures were taking place in a very controlled manner so that variation

could be minimized.

• Quality Control: To filter out low-quality pictures, measures of automated quality

control were employed. It is crucial to note that images that had most of the artifacts,

poor focusing, or images that had not much of the fluorescence signal were not included

in the set.

• Data annotation: To get ground truth labels for the training and validation of the deep

learning model, a small proportion of photos was reviewed by a group of hematological

experts. Regarding these annotations, information concerning the leukemic cells, normal

cells, as well as other suitable and relevant morphological features were noted down

and labeled on a platform named LabelImg (figure 3.1).

Each data point that was gathered was saved in the central database of a hospital. Security

was managed at this database and adequate measures were taken in order to contain access

and ensure proper security for the data. Thus, in a case where data was at the risk of being

lost, the solution involved making frequent backups.
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Figure 3.1: LabelImg software is used for annotating cells on blood smear images.

3.1.4 Data Collection Challenges

There was a need to undertake a lot of planning and problem-solving to reduce the barriers

that were met while collecting information. Some of these difficulties included: Some of these

difficulties included:

• Variability in Sample Quality: The processes of sample collection and preparation may

vary and this may in turn affect image quality. This issue was somewhat resolved with

regard to standardizing methods and offering training to the lab staff carrying out the

tests.

• Ethical and Logistical Constraints: Due to the ethical and practical issues, for patients

and medical staff’s agreement and compliance with the requirements to organize it

conveniently, proper coordination was required. There were essentially two important

categories: Firstly, the implementation of clearly understandable general rules and

requirements; and Secondly, the exchange of information with the patient and/or the

patient’s family.

• Technical Limitations: The process of using flow cytometry is technical in nature hence
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technical restrictions are evident it is embedded with a lot of technology that requires

frequent tuning. Therefore, while interacting with other experts and manufacturers of

the equipment, we could always guarantee that the device was optimal in its functioning.

This section of research, which was aimed at the collection of data, was performed with

the intention of obtaining high-quality Image Flow Cytometry data from a hospital that

treats children with B-ALL. The ethical issue was solved properly, the quality of the data

was controlled, and the logistical issues were successfully solved, which allowed it possible

to obtain a large and rather reliable dataset. This paved way for the subsequent data

preparation and the build-up of deep learning models.

3.2 Data Preprocessing

The preprocessing stage is an important activity as it leads to the preparation of the image

flow cytometry that has been attained to formulate the deep learning model. In this phase,

a number of activities are performed with the aim of preparing the data for the cleaning,

transformation, and reshaping into a suitable format for training and testing the model.

Regarding the noise issue, it is concluded that the change in the quality of the data set and,

accordingly, the change in the effectiveness of the deep learning algorithm can be achieved

through effective preprocessing.

3.2.1 Data Cleaning

Data cleaning is the first task of the preprocessing step where any abnormality in the raw

image data is removed. In this process, the set that is being used to train the model will

be as reliable and dependable as one can possibly make it. Images produced during image

flow cytometry includes that are blurred, images that stained incorrectly, or images that

were in some way affected by technical problems that were recognized and excluded. The

automated method was employed here as it is aimed at eliminating photographs that had
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significant levels of artifacts. This is done to ensure that only the best images would be

stored for future reference [41]. The methods of noise reduction are used with the aim of

reducing the level of image noise that is incorporated. The randomness of the image can also

be attributed to factors such as electronic interferences and/or some mistakes made during

sample preparation. Lecun [39] noted that in a bid to enhance the outlook of prominent

cellular features while preserving the contents of such features, filters of Gaussian and median

kinds were used to smoothen the images.

3.2.2 Data Normalization

Normalization is an essential step in the preprocessing process that entails bringing the range

of pixel values included in the photos to a scale that is constant throughout. Taking this step

contributes to the enhancement of the convergence rate of the deep learning models while

they are being trained. The actual numerical values of the pixel in the fluorescence intensity

images were normalized to 1 or over a fixed range which is between 0 and 1 calculated by:

x′ = x − min(x)
max(x) − min(x)

This procedure is known as intensity normalization. In this procedure, an attempt is made to

color balance the pixel intensity to prevent inconsistency among the photos thereby enhancing

the performance of the model [14]. To increase the visibility of cellular characteristics, contrast

enhancement approach like the enhancement of histograms was used. In the opinion of

Krizhevsky [37], this stage aids the deep learning model in the process of feature extraction

since it stimulates an enhancement in the levels of discrimination of seminal morphological

attributes in the images.
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3.2.3 Data Augmentation

There is a technique that is employed in the attempts to enlarge the volume of training

datasets artificially, and this is referred to as data augmentation. This method concerns

applying numerous modifications to the images that are already included. In DNN, they

provide a way of reducing the overfitting and improving the model’s capability to generalize.

Some of the geometric transformations that have been used on the images included; rotation,

flipping, scaling, and translation among others. These changes were among the geometric

transformations. There were other transformations but these are said to be the geometric

transformations. Shorten and Khoshgoftaar [65] noted that these alterations create new

original images’ versions, which, in turn, are used to offer the model a range of typical

instances in which it can enhance its stability. Adjustments were made to compensate for

imaging situations of the brightness, contrast, and saturation of the images. These changes

were called intensity variations. For this reason, during the augmentation stage, the model

is capable of handling variations in the quality of the image and lighting which are quite

common occurrences in real-life situations [52]. It ensures that the model can accommodate

all these changes as a result of the previous step.

3.2.4 Feature Extraction

Feature extraction is an important process of data preprocessing in which useful features

are selected as well as extracted from the images. It entails the conversion of the raw image

data into a set of features that is most suitable to be ingested by a deep learning model.

Other morphological characteristics like cell size, shape and texture of the image sections

were then studied. These features are especially significant for subclassifying many cell types

and identifying leukemic cells, particularly in B-ALL [60]. Similar to the intensity values of

the nucleus, the intensity values of other cellular markers were also obtained. These features

give relevant qualitative descriptions of the protein and antigen profile to help determine the

accurate phenotypic classification of leukemic subsets [83].
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3.2.5 Data Splitting

The last task of data preprocessing is the division of the obtained dataset into the training,

validation, and test sets. This step helps to determine the model’s capacity to generalize

which is paramount in real-life applications. In the process of splitting the dataset the largest

portion of the input data was assigned to the training set; this set is used to train the deep

learning model. Usually, 70% of the data is used for this purpose. The validation of the data

was also reserved 15% of the entire dataset. This set is used to manage the hyperparameters

of the model with the help of which we can eliminate overfitting in the process of training.

The remaining 15% of it was kept aside for the test set which is the final measure of model

accuracy. This set gives an impartial account of the model’s generality and effectiveness.

3.3 Proposed Pipeline

The organized pipeline for the diagnosis of Acute Lymphoblastic Leukemia (ALL) is designed

to sequentially process images from blood samples, preparing the data at each step for further

image analysis. The pipeline includes the following steps:

1. Detection of Viable and Non-Viable Images

2. Cell Detection

3. Cell Classification

4. WBC Classification

5. Healthy & Non-Healthy Lymphocytes Classification

6. Classification of Unhealthy Lymphocytes

Each step requires different feature space representation, data preprocessing, and choice of

classifier or model, leading to the application of specific models or algorithms at each stage.

49



Chapter 3. Methodology

Figure 3.2: The Overview of Proposed Pipeline

Figure 3.2 shows a schematic of the proposed pipeline. The following sections provide a

detailed description of each step and the methodologies employed.

3.3.1 Detection of Viable and Non-Viable Images

In the first stage of the pipeline for the diagnosis of Acute Lymphoblastic Leukemia (ALL), a

simple convolutional neural network is used for the initial training of viable model detection.

The goal here is simply to keep out poor quality or unsustainable images from being passed

to the diagnosis moving phase which adds to the general precision of the diagnosis procedure.

CNN is a type of network architecture that uses convolutional layers, pooling layers, and

fully connected layers and due to convoluted layers, this type of network is excellent for

image classification tasks because it can learn features hierarchically from the raw pixel

inputs. For the viable detection task, CNN is trained on the set of blood sample images

which are classified as viable or non-viable images based on quality parameters like focus,

image clarity, and others.
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Training Process

The training process follows the steps where it inputs the images into the network; convolu-

tional layers filter the images by detecting edges and textures; the pooling layers downsample

images and reduce dimensionality. The fully connected layers then combine these features to

make the classification of images. In training, the network is trained to find values of weights

that minimize the loss function, where commonly used loss functions are the cross-entropy

loss for binary classification tasks. Such techniques as rotation, scaling, and flipping are

commonly used to increase the model’s stability and generalization capacity. Specifically, the

performance metrics used to analyze CNN’s effectiveness and ability to effectively distinguish

viable from non-viable images include accuracy, precision, recall, and an F1 score. This

trained CNN model is then evaluated on the other test set, which gives a measure of its

fitness for use before being placed in the pipeline.

Significance

This is an important step because it removes most of the images with below-optimal quality

right from the analysis stage to avoid distortion of the results. The application of CNNs in

image classification with improved results particularly in medical image analysis is not in

doubt. For example, Krizhevsky [37] show the superiority of CNNs for image classification

via investigation of the well-known ImageNet benchmark that provided foundations for a

myriad of medical imaging applications. In addition, Esteva [14] and Rajpurkar [56] focused

on the diagnosis of skin cancer and the identification of pneumonia through chest X-ray,

respectively explain the effectiveness of CNN in predictive medicine for higher diagnostic

implications across medical specialties.
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3.3.2 Cell Detection

In the second step of the pipeline for the diagnosis of Acute Lymphoblastic Leukemia (ALL),

the YOLOv5 (You Only Look Once version 8) detection model is used for cell detection

from the viable images already filtered. There is a paper called YOLOv5 – that focuses on

the detection of objects in a very fast and accurate manner – and therefore it is good for

the current medical image cell detection. The main goal for this step is to locate the cells

of interest in the images of the viable blood sample properly and to isolate them from the

background for the possible subsequent steps of the pipeline. The bounding box regression

loss function used is the smooth L1 loss and is robust to outliers [36]:

Lsmooth L1(x) =


0.5x2 if |x|< 1

|x|−0.5 otherwise

Training Process

In training, a blood sample image is given to YOLOv8 and the cell’s location. The training

process is carried through the iterations where the model is adapted to provide minimum

loss; localization loss is responsible for the coordinates of the bounding box, confidence loss

is aimed at the presence of objects, and classification loss corresponds to the type of object.

This is based on transfer learning from weights learned from large data sets and then trained

further on the particular data set of blood samples.

YOLOv5 after training works through the viable images passing them through a detection

cell which pinpoints the cells in question with a high degree of accuracy. Some of the things

YOLOv5 returns include the position of rectangles around the cells that have been detected

as well as the probabilities. The identified cells are cropped and stored in the single image

format as it goes through other stages of the pipeline. For the assessment of YOLOv5,

the mAP, precision, and recall measurements are incorporated to guarantee the proper

identification of cells.
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Significance

This step is done to ensure that there is accurate location and segmentation of cells hence

passing better images of the cells to the classification stages of the pipeline. The literature

review also supports the use of YOLO models as approaches to the object detection task,

among which is medical image analysis. For example, Redmon and Farhadi [57](2018)

explain the YOLO models’ effectiveness and precision in object detection tasks to accomplish

enhanced work in YOLOv3. However, the following current works by Bochkovskiy [5](2021)

and Jocher [33](2023) also explain the developments and implementation of YOLO models

in different fields and point out their possibility of improving diagnosis in medical imaging.

3.3.3 Cell Classification

In the third step of the pipeline for the diagnosis of Acute Lymphoblastic Leukemia (ALL),

cell classification is done using a hybrid model made out of modified UNet and ResNet

architectures. This model is intended to categorize the crops obtained in the previous step

as Red Blood Cells (RBCs), White Blood Cells (WBCs), or Platelets. The integration of

UNet and ResNet is carried out with the help of segmenting UNet and feature extraction

from ResNet, making up for a strong and precise classification.

UNet - ResNet Combined

It should be recalled that the integrated UNet-ResNet model functions in a two-phase

process. In the first phase, UNet divides the previously identified cell pictures coming from

the YOLOv5 detection in the cells received as input, thus dividing each cell using Dice

Coefficient that measures the similarity between the predicted segmentation and the ground

truth.

Dice Coefficient = 2|A ∩ B|
|A|+|B|
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where A is the set of predicted segmented pixels, and B is the set of ground truth pixels

[45]. This segmentation guarantees that the classifier characteristic is provided good defined

ROIs of cells, void of neighboring cells. During the second phase, the segmented cells are

then fed into the ResNet whose main work is to provide the final classification. In this case,

ResNet’s responsibility is to segment the images into several regions before drawing on its

deep layers and residual connections to differentiate between each cell correctly by optimizing

the Cross-Entropy Loss.

L = −
N∑

i=1
yi log(ŷi)

where yi is the true label, and ŷi is the predicted probability for class i [20]. The Softmax

function is used as an activation function for this model. The Softmax function σ(z)i is

defined as:

σ(z)i = ezi∑K
j=1 ezj

where zi is the logit for class i, and K is the total number of classes [4].

Training Process

The combined model is trained using another labeled dataset but in this case it is with

segmented cell images. More so, horizontal flipping, rotation, and scaling are used during

the training phase to enhance the model’s capability to generalize. The type of loss function

that is commonly applied in this step is binary cross entropy for the classification problem

and dice coefficient for the segmentation problem, the optimization algorithms used can be

Adam or SGD. The model’s classification efficacy of RBCs, WBCs, and Platelets is measured

using accuracy, precision, recall, and F1 score to gauge the reliability of the model.

Importance

This step is important because the identification of various cell types is crucial for proceeding

to the next steps in all diagnosis pipelines. Failure in this step may cause wrong diagnosis

54



Chapter 3. Methodology

and hence wrong treatment strategies for the patients. This approach would entail the

use of a fusion of the UNet and ResNet wherein the segmentation and the classification

would be done in a very effective way. The effectiveness of hybrid models in achieving

their objectives in medical image analysis is further valid based on the recent work in the

literature. For example, Ronneberger [60] (2015) introduced UNet used in biomedical image

segmentation and showed that it outperforms other methods, while He [24] used ResNet in

different tasks in image classification with improved performance. New trends in integrating

these architectures have also received major enhancements in medical diagnosing as pointed

out by Zhang [81] (2020) through reviewing the integration of UNet and ResNet for medical

image segment and classification.

3.3.4 White Blood Cell Classification

In the fourth step regarding the diagnosis establishment of Acute Lymphoblastic Leukemia

(ALL), The given White Blood Cell (WBC) classification is performed employing the Google

ViT-Base-Patch16. This step entails separating the obtained WBC crops from the previous

step into specified subclasses of WBC. The Vision Transformer (ViT) model by Google uses

the transformer, which was popularised in NLP, for tasks related to image classification.

Notably, the ViT-Base-Patch16 is quite effective and can well describe fine details in images

to support WBC classification.

WBC Classification Process

1. Patch Extraction and Embedding

• The images of the WBC crop are split up into various small sections that do not

overlap each other and are approximately 16 pixels by 16 pixels in size [13].

xp = Linear(Flatten(x))
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• It starts with each patch being flattened and linearly embedded to a fixed dimension

vector, to create a sequence of patch embeddings.

2. Positional Encoding

• To preserve the spatial information that gets removed in patch flattening positional

encodings are added to the patch embeddings [12].

z0 = [xclass; x1
p + E1

pos; x2
p + E2

pos; . . . ; xN
p + EN

pos]

• These encodings assist the model in perceiving where patches are relative to the

initial picture.

3. Transformer Encoder

• The sequence of patch embeddings is input to the pre-activation layer followed by

the transformer encoder, and then the positional encodings are added to them

[75]. They are computationally defined as:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

where Q, K, and V are the query, key, and value matrices, respectively, and dk is

the dimensionality of the keys.

FFN(x) = max(0, xW1 + b1)W2 + b2

where W1, W2, b1, and b2 are learned parameters.

• The transformer encoder is made up of several layers of multi-head self-attention

and feed-forward sublayers.

• The self-attention mechanism ensures that it pays attention to certain patches

while disregarding certain others, as it tries to capture some of the relations
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between patches.

4. Classification Head

• The last output of the transformer encoder is given into a classification head which

is defined as:

ŷ = softmax(Wclszclass)

where Wcls is the weight matrix for the classification head and zclass is the final

embedding of the classification token [12].

• The head of the classification is usually a layer connected with a layer of softmax,

which returns probabilities of belonging to each of the WBC subtypes.

Training Process

WBC subtype labels are associated with every image within the labeled dataset on which

the ViT-Base-Patch16 model is trained. The training process covers the fine-tuning of the

model by minimizing the Cross-Entropy loss and by such tools as the Adam optimizer and

the learning rate schedule. Techniques like random cropping, rotation, and color jittering

are used to increase the model’s resilience and appear stable on unseen data. The model’s

performance is then assessed using measures such as accuracy, precision, recall, and F1 score

so that the WBC subtype classification is both accurate and consistent.

Significance

The knowledge of WBC subtypes is useful in the determination of stages of ALL and the

severity of the illness due to differentiation in WBC subtypes. Inaccurate categorization

at this stage would result in wrong treatment regimens for the patients. Due to the Vision

Transformer’s capability to acquire precise and contextual information from images, WBC

classification achieves high accuracy in this model.
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There is evidence in the literature about its high performance in image classification

tasks, especially the Vision Transformer model. ViT models were proved to outperform

other approaches on different image classification datasets by Dosovitskiy [12], given their

applicability in medical image analysis. Furthermore, research by Touvron [72] and Liu [42]

reveals that the extension of ViT models in various medical imaging tasks proves useful in

the analysis of ALL diagnosis.

3.3.5 Healthy & Non-Healthy Lymphocytes Classification

This important activity of the pipeline entails the categorization of lymphocytes under

normal and abnormal or disease classifications. This step is of paramount importance to

help detect cases of diseases that are likely to progress or Acute Lymphoblastic Leukemia

(B-ALL).

Methodology

In the case of lymphocytes classification as healthy and non-healthy, ResNet101 is used.

ResNet101, or Residual Network with a parameter of 101, is chosen for its deeper architecture

for extraction of features of images, as well as the ability of the network to avoid vanishing

gradients [25]. This model is very efficient in the case of detailed features that are required

for the separation of healthy and pathological lymphocytes.

Feature Extraction: ResNet101 architecture also stands with a few residual connections

that enable the model to bypass some of the layers and this makes it easier to train a deeper

network. The above structure allows ResNet101 to extract high-level features and intricate

patterns present in images of lymphocytes, nucleus deformities, abnormal cytoplasm, and

chromatin distribution in non-healthy states. A simplified representation of ResNet101

Architecture is shown in figure 3.3.

Model Training: The ResNet101 model is trained to learn images that are labeled
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as healthy and non-healthy lymphocytes. This training process includes adjusting the pre-

trained ResNet101 on this particular data set. This process is useful to the model to fine-tune

the learned features toward the particular task of distinguishing pathological lymphocytes.

The training is meant to bring down the rates of misclassification and increase the degree of

the model in separating the two classes.

Figure 3.3: The ResNet101 Architecture [40]

Implementation

Applying ResNet101 for distinguishing between healthy and non-healthy lymphocytes is

performed with the use of TensorFlow’s Keras applications that exist to load, adjust, and

train pre-trained models.

Pre-processing: The images from the set of lymphocytes are then pre-processed to
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achieve the input size compatible with ResNet101. This includes scaling the images to the

right size and scaling the pixels to the right range so that all the data set images appear to

be from the same source even if they are not.

Model Construction: The ResNet101-voc model is loaded, and the architecture of the

model is modified to include a new classification block. This head is specifically developed

in order to pay attention to all characteristics that can be used for the distinction between

healthy and pathological lymphocytes.

Fine-tuning Process: As for the last layers, they are adapted to the labeled dataset of

lymphocytes. As a result, during this training process, the weights of all the regular layers

that contain earlier processed general features of images as input are locked to preserve the

knowledge previously learned; the last layer is trained again and adapts to the identification

of healthy and non-healthy lymphocyte characteristics from new data. To tweak the weights

of the model, conventional optimization algorithms which include the backpropagation and

the gradient descent are employed to reduce the chances of the model’s classification mistake.

The Cross-Entropy Loss is used to evaluate the discrepancy between the true labels and the

predicted probabilities. The formula for the Cross-Entropy Loss L is given by:

L = −
N∑

i=1
yi log(ŷi)

where:

• N is the number of classes.

• yi is the true label for class i.

• ŷi is the predicted probability for class i.

This loss function is computed for each sample in the batch and averaged over the batch

during training.

After training, the ResNet101 model has the functionality of then using new lymphocyte
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images and defining them as either healthy or non-healthy. This detailed classification plays

a vital part in the diagnosis and tracking of B-ALL because clinicians can determine essential

pathological transformations in lymphocytes’ condition and their scope.

By using ResNet101 which has better performance than previous models, this methodology

guarantees high accuracy in the discernment of healthy and pathological lymphocytes. This

also improves diagnostic capabilities and contributes to better clinical decision-making of the

management as well as the treatment of B-ALL.

3.3.6 Classification of ALL

After the general differentiation of WBCs into the different subtypes, the next important

differentiation is between lymphocytes and blast cells. This distinction is important in the

accurate diagnosis of B-cell Acute Lymphoblastic Leukemia (B-ALL) as blast cells define the

malignancy of the disease.

Methodology

For achieving the classification of lymphocytes, the DenseNet121 model is made use of.

Specifically, DenseNet121 is selected due to its performance on the described complex image

features, and its computational efficiency. This model is good at feature extraction and

classification, so it is suitable for refined image analysis.

Model Training

Lymphocytes are categorized as objects in a labeled DenseNet121 model used for training.

Training is accomplished via the method of fine-tuning the DenseNet121 model with this

particular dataset. This process allows the model to learn specific characteristics of cell

types and fine-tune the model’s predictions to achieve the optimal classification. Training

the model is done in a way that the model reduces classification errors made via the weights
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of the model.

Implementation

Training the DenseNet121 model and its application in the classification of lymphocytes is

done with the help of TensorFlow’s Keras application, which helps in easy integration and

training of the already pre-trained model.

Pre-processing: These cell images are reconstructed to match the input specifications

for DenseNet121. Hence, it involves the process of resizing images to the expectation of the

model and scaling pixel intensity values.

Model Construction: Transfer of pre-trained DenseNet121 is done and only the number

of classes is changed in the new classification head and the number of weights fine-tuned

is restricted. This head comprises of sub-layers that further enhance the elucidation of the

work of the model on the distinctive aspects of the lymphocytes.

Fine-tuning Process: The last few layers of the DenseNet121 model are retrained using

the labeled sample dataset of lymphocytes and blast cells. At this step, it is common that

the first layers in the model that can recognize rather general image characteristics remain

frozen, whereas the later layers are fine-tuned to learn the features specific to the type of

cells under investigation. To minimize classification errors the model’s backpropagation and

gradient descent techniques are used for optimization.

After training the DenseNet121 model it can classify new cell images into lymphocytes

and blast cells with high probability. This classification is significant in the diagnosis and

diagnosis of B-ALL since it helps specialists identify the malignant cells and disease stage.

This methodology brings high precision in the differentiation of the distinct types of

mononuclear cells by leveraging DenseNet121’s efficacy. This improves the diagnostic

specificity and assists the clinical decision-making in the management of patients with

B-ALL.
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Results and Discussion

This research has established that integrating deep learning with image flow cytometry can

improve the diagnosis of Acute Lymphoblastic Leukemia (ALL) dramatically. These results

not only refine the previously used approaches but also extend clinical functions as they

provide more accurate and timely targeting for the patients, thus positively impacting the

patient’s status. Still, the study mentioned some of the limitations including the requirement

of large annotated data and the continual evolution of deep learning models, which future

research should tackle. Furthermore, checking the paper with previously published articles

confirmed the beneficial impact of the discussed approach and demonstrated the paper’s

significance for the presented field of hematologic oncology.

4.1 Results

4.1.1 Data

The data considered for the analysis of this study were gathered from a well-known healthcare

organization, including 3242 images of the blood samples with particular reference to leukemic

cells in high resolution. Thus, the object database was constructed in a way to cover as

many cell types and conditions as possible. Every picture was subjected to a series of
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pre-processing steps, which consisted of exacting calibration, standardization, and quality

control, automatically eliminating all poor-quality pictures. This preprocessing helped filter

the images to only those that are the most fitting to be inputted into the deep learning

models and those that are clear.

4.1.2 Viable & Non-Viable Detection

The CNN model used in this step shows the following classification results.

Precision Recall F1 Score Support

Viable 1.0 1.0 1.0 1100
Non-Viable 1.0 1.0 1.0 100
Accuracy 1.0 1200
Macro avg 1.0 1.0 1.0 1200
Weighted avg 1.0 1.0 1.0 1200

Table 4.1: Performance metrics for Viable and Non-Viable cases

Train Loss of 0.0321, and Accuracy of 0.9914 suggests that the training loss of the

model is really low, meaning that the error of the model has been very much minimized on

the training data. The accuracy achieved was equally high at 99.14% representing a comical

level of overfitting which means that the model is capable of identifying the features and

patterns in the training data in the most perfect manner possible. However, some precautions

must be taken so that such high accuracy is not a result of overfitting [20]. Validation

Loss: 0.4671, and Accuracy: 0.8844 define the fact that validation loss is higher than

the training loss hints at the fact that the model struggles to generalize the learned results

on new data. Again, this yields an accuracy of 88.44% on the validation set which is a very

high percentage, so the model still is good at generalizing. It is advised to check the training

accuracy and the validation accuracy on a regular basis, because if the difference is too large,

then overfitting could have occurred. A test Loss of 0.0020 with an Accuracy of 1.0000

is actually a score of one hundred percent on test data, which means that all the samples in

the test set have been classified accurately. This implies that when it is applied to the new
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unseen data, the model is extremely capable of sorting out the viable and nonviable cells.

Precision, Recall, and F1-Score are 1.00 which supports that it will have a zero

false positive rate, which means it will not give a positive reading to a cell that is not viable

(precision); at the same time, it will not miss any of the actual viable cells (recall). The

precision and recall F1-score also remain high and equal to 1. The model’s adequacy is

affirmed in both classes by scoring 1.0 for non-viable cells. Weighted Average Accuracy &

F1-Score shows that the model does not favor any given class hence improving its reliability

on the viability.

The perfect classification metrics suggest that the model can accurately segregate viable

and non-viable cells to meet the intended scientific purposes. Such a level of performance

is highly desirable in medical diagnosis systems, in which such mistakes may have severe

repercussions [14]. Maximum accuracy achieved in the identification of both viable and

non-viable cells guarantees the remaining steps in the pipeline such as cell detection and

classification were done with accurate initial information. Due to the perfect precision and

recall, there is no occurrence of false positives and false negatives in the given pipeline thereby

making the whole pipeline more reliable. Due to the high performance of the model, there is

minimal need for a recheck or extra processing of the results, hence minimizing the time and

resources used.

Therefore we can apply the model on a big data scale or in real-time applications without

compromising the model’s capacity. This is especially pertinent when the researcher is doing

a study on a large sample of subjects or research in clinical practice [41]. The high accuracy

rates are indicative of the level of performance that will be expected in the model, and this

is particularly important in applications where decision outcomes can mean the difference

between life and death such as in cases of health diagnosis. It has been realized that the

higher the confidence in the model the higher the level of acceptance and utilization in

practices such as clinical practice.
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4.1.3 Cell Detection

The YOLOv5 model shows the following results.

Figure 4.1: Precision Recall curve of YOLOv5

Figure 4.1 shows the precision-recall relationship for different classes. Each colored line

represents a different class, and the overall performance is summarized by the thick blue

line. The blue thick line in Figure 4.1 shows the tentative mAP curve averaged over all the

classes and is plotted to guide the eye as the final performance estimate at each point is the

evaluation of the mAP@0.5 of 0.633. This implies moderate performance implying that there

is much room for improvement in certain classes but at the same time high expectations in

other classes.
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Figure 4.2: F1 Confidence curve of YOLOv5

Figure 4.2 shows an F1 score as a function of the confidence threshold for different classes,

where a thick blue line shows an overall F1 score of 0.58. This F1 score helps in determining

the best confidence threshold for achieving balanced precision and recall. Points of maximum

of the curves represent the appropriate confidence thresholds that define high F1 scores. This

is useful for getting the best level of accuracy and sensitivity for each class of interest for

the particular model. The thick blue line indicates the average F1 score of all classes, the

maximum F1 score is 0.58 at the confidence threshold of 0.216. This goes ahead to show

that when the confidence threshold is set to 0, the documented performance that is achieved

is reasonable. 0.256 value balances the Precision and Recall values commendably and tries

to optimize both aspects of the model [53].

Figure 4.3: Results summary of YOLOv5
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Figure 4.3 contains different subplots that show training and validation loss, and other

metrics like precision, recall, and mean Average Precision (mAP) across all epochs during

training. train/box_loss, train/obj_loss, train/cls_loss: The plots show how various

forms of loss decrease over epochs during the training phase. The consistently decreasing

value proves that learning is taking place by its model. Lower values for the box loss mean

better position of the objects, less value for the objectness loss shows a better prediction of the

presence of the objects and less value for the classification loss means improved classification

of the objects.

val/box_loss, val/obj_loss, val/cls_loss: The same situation can be observed in

validation losses, which proves that the model retains acceptable levels of generalization. The

relatively high validation loss as compared to the training loss is desirable as it indicates that

the model has not overfitted, that is, the model’s performance is good on unseen data [20].

metrics/mAP_0.5, metrics/mAP_0.5:0.95: mAP with Intersection over Union (IoU)

thresholds indicates the performance of the model used in the object detection. mAP@0.5,

measures the performance at IoU=0.5 and mAP@0.5 indicates the performance with the

assistance of IoU. 0.5:0.95 assumes the range starting from 0.5 to 0.95 which gives an overall

evaluation of the model and how accurately it can detect overlap between objects depending

on how much the shapes of the annotated objects overlap with the true shapes of the object

[17].

The training and validation losses decrease step by step; and the values of precision, recall,

and mAP improve, while the train time per epoch decreases, which reveals that the model

is learning and has generalization ability. This strong performance ensures high accuracy

in the identification and categorization of cells which is very important for other other

steps in the process. Understanding the performance of the model within various classes’

strengths and weaknesses can be emphasized to enable better performance. Therefore, the

important and frequently occurring classes give a measure of validity for the model for those

categories [62]. The F1-confidence curve of the model helps in identifying the right level

of confidence which eventually improves the model’s performance by balancing precision
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and recall. This fine-tuning step is important; the best results that can be implemented for

real-world problems can be obtained [53].

4.1.4 Cell Classification

A combined model of UNet and ResNet34 is used for the classification of cells. Below are

the results achieved by the model.

Precision Recall F1 Score Support

Red blood cell 0.99 0.99 0.99 6401
White blood cell 0.99 0.92 0.95 805
Platelet 0.81 0.94 0.87 426
Accuracy - - 0.98 7632
Macro avg 0.93 0.95 0.94 7632
Weighted avg 0.98 0.98 0.98 7632

Table 4.2: Performance metrics for Red blood cells, White blood cells, and Platelets

Table 4.2 showed different metrics calculated during training and testing. The performance

metrics for the cell classification model on the test and validation datasets are displayed in the

findings. The model’s validation accuracy was roughly 94.95%, with 94.43% precision, 94.95%

recall, and 94.61% F1-score. 95.39% was the highest validation accuracy ever recorded. The

model yielded an accuracy of 97.72% on the test dataset, with corresponding precision, recall,

and F1-scores of 97.88%, 97.72%, and 97.76%. These metrics show that the model has good

precision and recall in differentiating between various cell kinds, such as platelets, white

blood cells, and red blood cells, with a particular emphasis on red blood cell identification.

The platelet classification, however, had a high recall rate (94%) but a relatively low precision

rate (81%) which may indicate some misclassification of platelets with other cell types.
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Figure 4.4: Loss-Accuracy Plot shows the accuracy and loss of the model during training
and validation

Figure 4.5: Performance metric plots showing the Precision, Recall and F1 plot of UNet-
ResNet hybrid model.

The above table 4.4 displays the training and validation metrics across 50 epochs demon-
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strating the model’s constant performance. Effective learning and convergence are indicated

by the training accuracy, recall, and precision metrics, which rise gradually and center

around high values. Even though the validation measures are marginally lower than the

training metrics, they nevertheless show stability and an upward trend, indicating strong

data generalization. The little variations in validation metrics, however, can point to a small

amount of overfitting or variability in the validation dataset. These results are validated by

the loss plots, which demonstrate a consistent decline in training loss and minor volatility in

validation loss but an overall decreased trend.

The performance metrics highlight how well the deep learning model that was constructed

was able to categorize different types of cells in blood samples. The test dataset’s high

accuracy, precision, recall, and F1 score demonstrate the model’s resilience and dependability

in real-world settings. The marginally worse performance in platelet categorization points

to a possible improvement area, which might be addressed by improving the dataset or

fine-tuning the model architecture. All things considered, these findings show how deep

learning models can support medical diagnostics, especially when it comes to automated

blood sample analysis, which can greatly improve the speed and precision of diagnosing

hematological disorders like acute lymphoblastic leukemia (ALL).

4.1.5 WBC Classification

ViT-base-16 model is used for WBC classifications. In this section, the performance of the

model will be evaluated. Table 4.3 shows the training and validation scores captured during

Training Validation Test

Accuracy 0.98 0.97 0.97
Loss 0.45 0.11 0.11

Table 4.3: Training, Validation, and Test Metrics of Vision Transformer model.

the training. It can be seen the training loss is reducing steadily from epoch 1 to epoch 50,

which gives the message that the model is effectively reducing the error in training data.
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Such trends indicate that good learning of the relationship patterns in the array progresses

as time goes on. The validation loss is, however, slightly greater than the training loss, but

it is also depicted to be reducing as a sign of capable generalization. The minute oscillations

around the levels of validation loss occur when the model deals with specific validation

samples. In the subsequent hierarchy level, validation accuracy is close to training accuracy

and also gives a message that the model is not overfitting very much. This indicates that,

instead of memorizing the training data set the model has learned representation that works

well on unseen data.

The test loss of 0.1071 shows that the model’s error on the test set is fairly small. The

accuracy of 96.90% shows that out of all the test records the model in question successfully

classified 97% of the records. This high accuracy demonstrates that the model has good

generalization from the training and validation data set to the test data set with comparable

good results.

From the training and validation accuracy and loss, it can be deduced that the Vision

Transformer is excellent in the classification of data. The model’s low loss and high accuracy

show that it has good learning and generalization skills since it didn’t vary much from the

testing set to the validating set. Therefore, for practical use, the results are rather encouraging

and one can have confidence as to the reliability of the model in making accurate predictions

in real-life situations. The high generalization of the model with limited overfitting and

high accuracy establishes it for utilization in some of the important tasks such as medical

image analysis where accuracy is crucial. Measures adopted are also good signs of fitness and

applicability of the model to real-life problems since it is tested on complicated classifications.

4.1.6 Healthy & Non-Healthy Lymphocytes

ResNet101 Model is used for the classification and shows the following results. Table 4.4

shows metrics captured during the training and validation performance of the ResNet101

model over the last two epochs (18 and 19). Loss: 0.0558, Accuracy: 0.9813, F1:
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Training Validation

Accuracy 0.9711 0.9813
Loss 0.0790 0.0558
F1 0.9712 0.9813

Table 4.4: Training and Validation Metrics of ResNet101 demostrating a strong learning
curve with positive results.

0.9813: A view of validation loss and accuracy and F1-score in the final epoch confirms that

the model has outstanding generalization ability. The slight movement from the previous

epoch is some evidence of steady performance. These metrics are indicative of a trained

model, a high value of accuracy on two different sets of data training and validation sets

shows that the model has learned to classify data without getting overfitted. Table 4.5

Precision Recall F1 Score Support

Malignant 0.96 0.98 0.97 1627
Non-malignant 0.99 0.98 0.98 2861
Accuracy - - 0.98 4488
Macro avg 0.97 0.98 0.98 4488
Weighted avg 0.98 0.98 0.98 4488

Table 4.5: Performance metrics for Malignant and Non-malignant cases.

classification report provides detailed metrics on precision, recall, and F1-score for each class

(malignant and non_malignant). For Malignant, Precision of 0.96 is the percentage which

means out of all the cells that the program sees as being malignant, 96% of those are actually

malignant. Recall of 0.98 means that recognition of actual malignant cells is 98% of the

total amount of real malignant cells. An F1-score of 0.97 means that there is a high balance

between its capability of precise outputs and its high capability of covering all related data

without leaving out crucial information. The support value 1627 represents the number of

malignant cells in the test set. For Non-Malignant, an accuracy of 99 means that 99%

of all the cells that are predicted to be non-malignant are usually non-malignant. Recall

of 0.98 means output is 98% accurate for actual non-malignant cells. An F1-score of 0.98

shows satisfactory performance for this class as well. The support value of 2861 is an actual
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count of non-malignant cells in the test set. Accuracy of 0.98 means that the model is

very accurate in its predictions for both classes as evidenced by the overall accuracy of 98%.

Macro Average Precision: 0.97, Recall: 0.98, F1-Score: 0.98: This is the average

of the two classes’ performances disregarding the class distribution. Weighted Average

Precision: 0.98, Recall: 0.98, F1-Score: 0.98: This further reflects on the number of

cases of each class, thus depicting good overall performance.

Figure 4.6: Loss curve of ResNet101 showing an overall decresing indent demonstrates a
positive loss in subsequent epochs.

Figure 4.6 shows the training and validation loss over epochs. The blue line represents

the training loss which is gradually decreasing over the epoch meaning that the model is

learning well from the training set. Small variations at the end are normal due to the

stabilization or fine-tuning phase of the model’s learning process. The orange colored line in

the figure indicates that validation loss also decreases in the same way as the training loss.

This suggests that the generalization of the model is good and there is little to no overfitting

because the validation loss is not rising from the training loss. The loss curves on the other
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hand will give a visual representation of how the given model is learning. Analyzing both

the training and validation losses, one can notice that they are gradually decreasing, which

means that the model is learning well and generalizing on new data.

High Accuracy and F1-Scores: From the metrics derived from the training and validation

set, it can be said that the proposed ResNet101 model is efficient in giving high accuracy in

the classification of malignant and non-malignant cells. Such performance is critical in the

diagnostics of medical images as described by He [24]. Balanced Precision and Recall: Both

the precision and recall are moderate for both the classes which means that the model does

not have a high false positive rate or high false negative rate. It is particularly important

in instances of its application in the medical field where both kinds of mistakes can lead to

serious repercussions [62]. Due to the efficiency of the model, it can be easily adapted to

work with larger data sets or in conjunction with other diagnostic tools in real-time mode.

4.1.7 Classification of ALL

DenseNet121 model is used for the classification of ALL. The following results were obtained

during the training process. Table 4.6 shows the log of the last 5 epochs of training process

Training Validation

Accuracy 0.9974 0.9984
Loss 0.0152 0.0111

Table 4.6: Training and Validation Metrics of DenseNet121

and their respective accuracies and other metrics. From the trends shown in the train and

validation result section, the loss values for the DenseNet121 model are comparatively low

and the accuracy for the data sets assimilated both during the training and validation stages

is high and consistent. The validation loss and accuracy show that the model generalizes

well when it is tested with new data which is crucial when it is used in real-life applications.

Both train and validate loss reductions and the validate accuracy increases epoch by epoch

and reaches a very high level at the last epochs, which in turn indicates that the model has
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learned the task and converged. It can be seen that the model is getting better with every

epoch and the validation accuracy is rising and has reached a very high level and seems to

level off showing that the model has learned the task perfectly.

Figure 4.7: Training and Validation plot of DenseNet121 demonstrating increase in accuracy
showing the positive learning of model.

Figure 4.7 displays the training and validation loss and accuracy over 20 epochs and

shows the overall behavior of the model across the training process. In the training loss and

accuracy graph, the blue line shows us the training loss while the vale line shows us the

validation loss. At the beginning the training loss is high and then it progressively drops to

the desired level showing that learning is correctly taking place. The validation loss presents

almost the same pattern, that is, the beginning is hard but as training progresses, the loss

value reduces indicating that the model is not overfitting the validation set. There are some

irregularities seen in the validation loss, which are quite normal at the beginning as the

weights are being set. In the validation loss and accuracy plot, the blue line small line depicts

the training accuracy while the red line depicts the validation accuracy. Validation accuracy

also rises with an upward tendency, which is also very close to training accuracy, which is

presumed to be good in terms of the model’s ability to generalize. The status of the accuracy
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of the current validation process remains around 99%, it climbs from 8% to 100% in the

latter periods, which shows that the model has acquired the task successfully.

Specifically, the DenseNet121 shows an accuracy of nearly 100% and loss values of nearly

zero, indicating the promising capability of the model in classifying the dataset. The loss

and accuracy trends, which characterize the learning and validation processes, increase

and stabilize, thus proving that learning and generalization are taking place successfully.

Hence, these results confirm that the model is very useful and accurate, and might be used

for practical implementation. Overall, DenseNet121 proved to be computationally sound

accurate, and efficient in training and validation and its high performance in the experimental

data supplemented by low loss makes it appropriate for use in complicated classification

tasks demanding high standards and reliability including medical image analysis.

4.1.8 Gradio Interface

Gradio is an open-source Python library for creating simple, responsive interfaces for machine

learning models, data science pipelines, and much more. Gradio is used for deployment of

this pipeline as it is easy to use and requires little coding as the interface it offers is quite

straightforward. Using simple scripts, developers can create dynamic demos and applications

that can be easily shared on the web. In terms of model inputs and outputs, there is a

flexible range of components that Gradio can support: images, text, audio, video, and more.

After defining an interface, which is an image or path as an input, it gives a detailed JSON

file on the output describing each step. It allows users to run the interface locally or make it

accessible to the open web with a specific web URL. Public URLs can be accessed at any time

by anyone which makes it easy to get other people’s opinions on the models. Furthermore,

the layout, style, and functionality of the interface that Gradio provides for machine learning

models can be modified using its provided settings.

77



Chapter 4. Results and Discussion

4.2 Summary of Results

Here is a table 4.7 that shows the summary of models being used in each key step of the

pipeline along with their performances in the employed datasets.

Pipeline Step Model Employed Accuracy

(%)

Detection of Viable and Non-

Viable Images

CNN 99.0

Cell Detection YOLOv5 mAP 79.27

Cell Classification UNet & ResNet34 98.0

WBC Subtype Classification Vision Transformer 96.8

Classification of Malignant and

Non-Malignant Lymphs

ResNet101 99.8

Classification of Malignant

Lymphs

DenseNet121 98.0

Table 4.7: Key steps of the pipeline, models, and their accuracies.

As it is evident, each of the models used has shown exceptional results and by fusing

them together, it overall gives around 96.8% accuracy if an arithmetic mean of all models is

considered for an average accuracy. By comparing it with the previous studies, as mentioned

in table2.1, it surpasses all of them in terms of effectiveness and performance.

4.3 Comparison of Results

A comparison of the proposed pipeline and the other effective models discussed in the

literature is presented in table 4.8. It is evident that the proposed pipeline provides a robust,

quick, and resource-effective pipeline having high accuracy as compared to the most effective
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previously cited work. This pipeline proposed in this work comes with an added bonus that

different state-of-the-art deep learning models are used to work for different specific tasks

in the diagnostic process and are the best in their specific tasks. In contrast to previous

frameworks that might operate only one model or have a less stringent workflow, this pipeline

uses a sequential and thorough approach that guarantees the highest accuracy from the

assessment of the image quality to the definition of the pathological states’ classification.

For cell detection, the pipeline uses U-Net; for WBC subtype classification, EfficientNet; for

the differentiation between lymphocyte and blast cell, DenseNet121; and for the distinction

between healthy and non-healthy lymphocytes, ResNet101; all of which deliver exceptional

precision and stability. The exact and complex step-by-step methodology not only helps in

improving the specificity of diagnosis but also makes the integration with clinical practice more

dynamic hence making it a reliable and cost-effective method of diagnosis and management

of Acute Lymphoblastic Leukemia (B-ALL) that can potentially result in better survival

rates among patients.

Author(s) Accuracy (%)
Jing Sun, Lan Wang [68] 91.5
Maila Claro [8] 94.7
Ibrahim Abdulrab Ahmed [1] 95.2
Niranjana Sampathila [64] 93.8
Adnan Saeed [61] 96.1
Proposed Pipeline 96.8

Table 4.8: Comparison of Accuracies with Our Proposed Pipeline
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Conclusion

5.1 Conclusion

The objective of this thesis was to build a deep learning-based framework for the diagnosis of

Acute Lymphoblastic Leukemia (ALL) from image flow cytometry data. The novel approach

was effective with an accuracy of 96.8% in experiments in showing that Deep Learning

like different CNN algorithms and Visual Transformers can be applicable for detecting and

classifying multiple cell types and in identifying and classifying healthy and non-healthy

lymphocytes. The models achieved good performance and were fairly insensitive to the choice

of the used datasets. Therefore, it can be inferred that this study has important implications

for the clinical practice of hematology and oncology. The presented deep learning framework

is a significant tool for early diagnosis and diagnosis of ALL and can be helpful in patients’

management. This approach gives a more accurate and consistent result as compared to the

conventional diagnostic procedures and decreases the timing for diagnosis as it minimizes

the inter-observer variation due to the combination of different algorithms as compared to

just one single model as observed in the literature.

However, this research also has several limitations that should be taken into consideration.

The samples obtained for the study were restricted to a certain population, and as such, the

findings of the study may not hold as true for a larger population. Furthermore, although
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the model yields fairly precise distinctions of cell types, it can be perfect in further clinical

assessments. Therefore, this thesis introduces a new perspective on the diagnosis of Acute

Lymphoblastic Leukemia through the use of deep learning and image flow cytometry. The

developed framework does not only contribute to the field of medical diagnostics but also

establishes a foundation for future research on the organizational aspect of personalized

medicine. If more instances are studied at the population level and replicated at the clinical

level, this stratification has the possibility of having a major effect on the practice and cure

of ALL.

5.2 Future Aspects

More research should be done in order to increase the sample size so that more variables

could be added to the model and the study could have a greater external validity. It is

also demonstrated that future works can include multiple modality data, for example, the

data from both genomic and proteomic analysis. A combination of genomic and proteomic

analysis might help validate the results inferred from this deep learning pipeline. Also, this

can be employed for other blood diseases as it is observed that models used in this study

are insensitive to the dataset used. Furthermore, utilizing the proposed framework in trials

and further fine-tuning of models with the trial data would help transition its use to actual

medical practice.
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Appendix A

Code

1 import torch

2 import torchvision

3 from torchvision import datasets , models

4 import cv2

5 from pathlib import Path

6 import matplotlib.pyplot as plt

7 import torchvision.transforms as transforms

8 import torch.nn.functional as F

9 import torch.nn as nn

10 import time

11 import datetime

12 !pip install safetensors

13 import safetensors

14 from safetensors.torch import load_file

15 import numpy as np

16 import os

17 from transformers import ViTForImageClassification

18 import torchvision.models as models

19 from torchvision.models.segmentation import fcn_resnet101
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20 !pip install h5py

21 !pip install Pillow ==10.4

22 import h5py

23 import PIL

24 from PIL import Image

25 from typing import Dict

26 import json

27

28 # All functions initializations

29 def transform_image(img , size):

30 transform = transforms.Compose ([

31 transforms.Resize(size),

32 transforms.ToTensor (),

33 ])

34 return transform(img)

35

36 def load_cnn_model(weights_path , model_class):

37 model = model_class ()

38 model.load_state_dict(torch.load(weights_path , map_location=

torch.device(’cpu’)), strict=False)

39 model.eval()

40 return model

41

42 def check_image_viability(model , img_path , size , threshold =0.8):

43 from PIL import Image

44 try:

45 img = Image.open(img_path).convert(’RGB’)

46 img = transform_image(img , size)

47 img = img.unsqueeze (0)

48 with torch.no_grad ():
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49 output = model(img)

50 viability = torch.sigmoid(output [: ,0]).item()

51 print(f"Viability␣score:␣{viability}")

52 return viability > threshold

53 except (FileNotFoundError , PIL.UnidentifiedImageError) as e:

54 print(f"Error␣processing␣image:␣{e}")

55 return False # Return False if image processing fails

56

57 def load_yolo_model(weights_path):

58 model = torch.hub.load(’ultralytics/yolov5 ’, ’custom ’, path=

weights_path , force_reload=True)

59 return model

60

61 def get_bounding_boxes(model , img_path):

62 results = model(img_path)

63 detections = results.xyxy [0]

64 #print(detections)

65 img = cv2.imread(img_path)

66 bounding_boxes = []

67 for *box , conf , cls in detections:

68 box_coords = [int(coord.item()) for coord in box]

69 # Draw the bounding box on the image

70 color = (0, 255, 0) # Green color for the bounding box

71 cv2.rectangle(img , (box_coords [0], box_coords [1]), (

box_coords [2], box_coords [3]), color , 2)

72 label = f"Cell␣{conf :.2f}"

73 cv2.putText(img , label , (box_coords [0], box_coords [1] - 10)

, cv2.FONT_HERSHEY_SIMPLEX , 0.5, color , 2)

74 bounding_boxes.append ({

75 ’box’: box_coords ,
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76 ’confidence ’: conf.item(),

77 ’class’: cls.item()

78 })

79 # Convert BGR to RGB

80 img_rgb = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)

81 # Convert to PIL Image for display

82 img_pil = Image.fromarray(img_rgb)

83 return bounding_boxes , img_pil

84

85

86 def extract_crops(img_path , bounding_boxes , output_dir):

87 img = cv2.imread(img_path)

88 img_name = os.path.basename(img_path).split(’.’)[0]

89 crop_paths = []

90 Path(output_dir).mkdir(parents=True , exist_ok=True)

91 crops = []

92 for idx , bbox in enumerate(bounding_boxes):

93 x1, y1, x2, y2 = map(int , bbox[’box’])

94 crop = img[y1:y2 , x1:x2]

95 crop_path = os.path.join(output_dir , f"{img_name}_crop_{idx

}.jpg")

96 cv2.imwrite(str(crop_path), crop)

97 crop_paths.append(crop_path)

98 crops.append(crop)

99 return crop_paths

100

101 def load_model(weights_path , model_class , num_labels=None):

102 try:

103 model = model_class(num_labels) if num_labels is not None

else model_class ()
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104 except TypeError:

105 model = model_class ()

106 # Check if the file ends with ’.safetensors ’

107 if weights_path.endswith(’.safetensors ’):

108 state_dict = load_file(weights_path) # Use safetensors to

load the file directly

109 elif weights_path.endswith(’.h5’): # Check if file ends with .

h5

110 with h5py.File(weights_path , ’r’) as f: # If so , open it

with h5py

111 state_dict = {}

112 for k, v in f.items():

113 if isinstance(v, h5py.Dataset): # Check if it’s a

dataset

114 state_dict[k] = torch.tensor(v) # Load weights

into state_dict

115 else:

116 # Load the model weights with map_location to CPU

117 state_dict = torch.load(weights_path , map_location=torch.

device(’cpu’))

118 model.load_state_dict(state_dict , strict=False)

119 model.eval()

120 return model

121

122 def classify_image(model , img_path , size):

123 img = Image.open(img_path).convert(’RGB’)

124 img = transform_image(img , size)

125 img = img.unsqueeze (0)

126 with torch.no_grad ():

127 output = model(img)
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128 _, predicted = torch.max(output.flatten (), 0)

129 return predicted.item()

130

131 def transform_and_classify(model , img_path , size , custom_transforms

):

132 img = Image.open(img_path).convert(’RGB’)

133 img = custom_transforms(img)

134 img = img.unsqueeze (0)

135 with torch.no_grad ():

136 output = model(img)

137 _, predicted = torch.max(output , 1)

138 return predicted.item()

139

140 def log_results(results , log_file):

141 with open(log_file , ’w’) as f:

142 json.dump(results , f, indent =4)

143 return log_file

144

145 # Define your model classes

146 class CNNModel(nn.Module):

147 def __init__(self , num_classes =2):

148 super(CNNModel , self).__init__ ()

149 self.conv1 = nn.Conv2d(3, 32, kernel_size =3, stride=1,

padding =1)

150 self.bn1 = nn.BatchNorm2d (32)

151 self.pool = nn.MaxPool2d(kernel_size =2, stride=2, padding

=0)

152 self.conv2 = nn.Conv2d (32, 64, kernel_size =3, stride=1,

padding =1)

153 self.bn2 = nn.BatchNorm2d (64)
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154 self.conv3 = nn.Conv2d (64, 128, kernel_size =3, stride=1,

padding =1)

155 self.bn3 = nn.BatchNorm2d (128)

156 self.fc1 = nn.Linear (128 * 16 * 16, 512)

157 self.fc2 = nn.Linear (512, num_classes)

158 self.relu = nn.ReLU()

159 self.dropout = nn.Dropout (0.5)

160

161 def forward(self , x):

162 x = self.pool(self.relu(self.bn1(self.conv1(x))))

163 x = self.pool(self.relu(self.bn2(self.conv2(x))))

164 x = self.pool(self.relu(self.bn3(self.conv3(x))))

165 x = x.view(-1, 128 * 16 * 16)

166 x = self.relu(self.fc1(x))

167 x = self.dropout(x)

168 x = self.fc2(x)

169 return x

170

171 class CellClassifier(nn.Module):

172 def __init__(self , n_classes =3):

173 super(CellClassifier , self).__init__ ()

174 base_model = models.resnet34(pretrained=True)

175 self.base_layers = list(base_model.children ())

176 self.layer0 = nn.Sequential (*self.base_layers [:3])

177 self.layer1 = nn.Sequential (*self.base_layers [3:5])

178 self.layer2 = self.base_layers [5]

179 self.layer3 = self.base_layers [6]

180 self.layer4 = self.base_layers [7]

181
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182 self.upconv1 = nn.ConvTranspose2d (512, 256, kernel_size =2,

stride =2)

183 self.up1 = UNetBlock (256, 256)

184 self.upconv2 = nn.ConvTranspose2d (256, 128, kernel_size =2,

stride =2)

185 self.up2 = UNetBlock (128, 128)

186 self.upconv3 = nn.ConvTranspose2d (128, 64, kernel_size =2,

stride =2)

187 self.up3 = UNetBlock (64, 64)

188 self.upconv4 = nn.ConvTranspose2d (64, 32, kernel_size =2,

stride =2)

189 self.up4 = UNetBlock (32, 32)

190 self.final = nn.Conv2d (32, n_classes , kernel_size =1)

191

192 def forward(self , x):

193 # Encoder

194 x0 = self.layer0(x)

195 x1 = self.layer1(x0)

196 x2 = self.layer2(x1)

197 x3 = self.layer3(x2)

198 x4 = self.layer4(x3)

199

200 # Decoder

201 x = self.upconv1(x4)

202 x = self.up1(x)

203 x = self.upconv2(x)

204 x = self.up2(x)

205 x = self.upconv3(x)

206 x = self.up3(x)

207 x = self.upconv4(x)
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208 x = self.up4(x)

209 x = self.final(x)

210

211 return x

212

213 class UNetBlock(nn.Module): # Added the missing UNetBlock class

214 def __init__(self , in_channels , out_channels):

215 super(UNetBlock , self).__init__ ()

216 self.conv1 = nn.Conv2d(in_channels , out_channels ,

kernel_size =3, padding =1)

217 self.bn1 = nn.BatchNorm2d(out_channels)

218 self.relu = nn.ReLU()

219 self.conv2 = nn.Conv2d(out_channels , out_channels ,

kernel_size =3, padding =1)

220 self.bn2 = nn.BatchNorm2d(out_channels)

221

222 def forward(self , x):

223 x = self.relu(self.bn1(self.conv1(x)))

224 x = self.relu(self.bn2(self.conv2(x)))

225 return x

226

227 class WBCClassifier(nn.Module):

228 def __init__(self , num_labels):

229 super(WBCClassifier , self).__init__ ()

230 # Load the pre -trained ViT model

231 self.vit_model = ViTForImageClassification.from_pretrained(

’google/vit -base -patch16 -224- in21k’, num_labels=

num_labels)

232 # Extract the backbone part of the model (ViT without

classifier head)
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233 self.backbone = self.vit_model.vit

234 # Define the classifier head

235 self.classifier = nn.Linear(self.vit_model.config.

hidden_size , num_labels)

236

237 def forward(self , x):

238 # Forward pass through the ViT model

239 outputs = self.backbone(x)[0] # Extract the last hidden

state

240 # Apply the classifier head to the pooled output

241 logits = self.classifier(outputs[:, 0]) # Use the

representation of the [CLS] token

242 return logits

243

244 class HealthyDetector(nn.Module):

245 def __init__(self):

246 super(HealthyDetector , self).__init__ ()

247 self.model = models.resnet101(pretrained=False)

248 num_ftrs = self.model.fc.in_features

249 self.model.fc = nn.Linear(num_ftrs , 2)

250

251 def forward(self , x):

252 x = self.model(x)

253 return x

254

255 class ALLClassifier(nn.Module):

256 def __init__(self):

257 super(ALLClassifier , self).__init__ ()

258 self.base_model = models.densenet121(pretrained=False)

259 num_ftrs = self.base_model.classifier.in_features
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260 self.base_model.classifier = nn.Sequential(

261 nn.Linear(num_ftrs , 64),

262 nn.ReLU(),

263 nn.Dropout (0.5),

264 nn.Linear (64, 3),

265 nn.Softmax(dim =1)

266 )

267

268 def forward(self , x):

269 x = self.base_model(x)

270 return x

271

272 def main(cnn_weights_path , yolo_weights_path , img_path , output_dir ,

273 cell_classifier_weights , wbc_classifier_weights ,

healthy_detector_weights ,

274 all_classifier_weights , viability_threshold =0.5):

275

276 results = []

277 result_map = {

278 "Parent␣Image": img_path ,

279 "Viability": "N/A",

280 "Processed": "N/A",

281 "crops": []

282 }

283 start_time = time.time()

284

285 # Extract image name

286 img_name = os.path.basename(img_path).split(’.’)[0]

287

288 # Load models
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289 model_load_start = time.time()

290 (cnn_model , yolo_model , cell_classifier ,

291 wbc_classifier , healthy_detector , all_classifier) =

load_all_models(

292 cnn_weights_path , yolo_weights_path ,

cell_classifier_weights ,

293 wbc_classifier_weights , healthy_detector_weights ,

all_classifier_weights)

294 model_load_time = time.time() - model_load_start

295

296 # Check image viability

297 viability_check_start = time.time()

298 if not check_image_viability(cnn_model , img_path , (128, 128),

viability_threshold):

299 result_map[’Viability ’] = "Non -Viable"

300 else:

301 result_map[’Viability ’] = "Viable"

302 #print(result_map)

303 results.append(result_map)

304 viability_check_time = time.time() - viability_check_start

305

306 # Detect cells

307 cell_detection_start = time.time()

308 bounding_boxes , result_img = get_bounding_boxes(yolo_model ,

img_path)

309 # Save the resulting image

310 output_path = os.path.join(output_dir , f"processed_{img_name }.

jpg")

311 result_img.save(output_path)

312 result_map[’Processed ’] = output_path
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313 cell_detection_time = time.time() - cell_detection_start

314

315 # Extract crops and initialize crop details

316 crop_extraction_start = time.time()

317 crop_paths = extract_crops(img_path , bounding_boxes , output_dir

)

318 for i, (bbox , crop_path) in enumerate(zip(bounding_boxes ,

crop_paths)):

319 crop_path = os.path.join(output_dir , f"{img_name}_crop_{i}.

jpg")

320 crop_details = {

321 ’crop’: crop_path ,

322 ’cell_det ’: ’,’.join(map(str , bbox[’box’])),

323 ’cell_class ’: "N/A",

324 ’wbc_class ’: "N/A",

325 ’health_check ’: "N/A",

326 ’malignancy_check ’: "N/A"

327 }

328 result_map[’crops ’]. append(crop_details)

329 crop_extraction_time = time.time() - crop_extraction_start

330

331 # Cell Classification

332 cell_classification_start = time.time()

333 for crop_details in result_map[’crops ’]:

334 prediction = classify_image(cell_classifier , crop_details[’

crop’], (224, 224))

335 if prediction == 2:

336 crop_details[’cell_class ’] = "White␣Blood␣Cell"

337 elif prediction == 1:

338 crop_details[’cell_class ’] = "Platelet"
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339 elif prediction == 0:

340 crop_details[’cell_class ’] = "Red␣Blood␣Cell"

341 cell_classification_time = time.time() -

cell_classification_start

342

343 # Further classify WBC crops

344 wbc_classification_start = time.time()

345 prediction_map = {

346 0: ’immature␣neutrophil ’, 1: ’blast␣cells’, 2: ’lymphocytes

’,

347 3: ’monocytes ’, 4: ’myelocyte ’, 5: ’neutrophil ’,

348 6: ’nucleated␣red␣blood␣cells’, 7: ’platelet ’,

349 8: ’promeylocyte ’, 9: ’red␣blood␣cell’

350 }

351 lymphocyte_crops = []

352 for crop_details in result_map[’crops ’]:

353 if crop_details[’cell_class ’] == "White␣Blood␣Cell":

354 prediction = classify_image(wbc_classifier ,

crop_details[’crop’], (224, 224))

355 cell_name = prediction_map.get(prediction , ’N/A␣Cell␣

Type’)

356 if prediction in [1, 2]:

357 lymphocyte_crops.append(crop_details[’crop’])

358 crop_details[’wbc_class ’] = "Lymphocytes"

359 elif prediction != 9:

360 crop_details[’wbc_class ’] = cell_name

361 wbc_classification_time = time.time() -

wbc_classification_start

362

363 # Detect healthy/non -healthy lymphocytes
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364 health_classification_start = time.time()

365 for crop_path in lymphocyte_crops:

366 crop_details = next(item for item in result_map[’crops’] if

item[’crop’] == crop_path)

367 prediction = classify_image(healthy_detector , crop_path ,

(224, 224))

368

369 if prediction == 0:

370 crop_details[’health_check ’] = "Benign␣cells ,␣no␣

malignancy."

371 crop_details[’malignancy_check ’] = "N/A"

372 else:

373 crop_details[’health_check ’] = "Malignant"

374 # Further classify non -healthy lymphocytes

375 custom_transforms = transforms.Compose ([

376 transforms.RandomResizedCrop (224) ,

377 transforms.RandomHorizontalFlip (),

378 transforms.ToTensor (),

379 transforms.Normalize ([0.485 , 0.456, 0.406] , [0.229 ,

0.224 , 0.225])

380 ])

381 prediction = transform_and_classify(all_classifier ,

crop_path , (224, 224), custom_transforms)

382 if prediction == 0:

383 crop_details[’malignancy_check ’] = "Malignant␣Early

␣Pre -B␣cells"

384 elif prediction == 1:

385 crop_details[’malignancy_check ’] = "Malignant␣Pre -B

␣cells"

386 elif prediction == 2:
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387 crop_details[’malignancy_check ’] = "Malignant␣Pro -B

␣cells"

388 health_classification_time = time.time() -

health_classification_start

389

390 # Convert the result map to a list of results and log once per

crop

391 results = list(result_map.values ())

392

393 # Print and log all results at once to avoid repetition

394 for result in results:

395 print(result)

396

397 # Log results to file

398 log_file = os.path.join(output_dir , f"results_{img_name }.json")

399 log_results(results , log_file)

400 print(f"Results␣logged␣in␣{log_file}")

401

402 total_time = time.time() - start_time

403

404 # Print runtime for each step and total time

405 print(f"Model␣Load␣Time:␣{model_load_time :.2f}␣seconds")

406 print(f"Viability␣Check␣Time:␣{viability_check_time :.2f}␣

seconds")

407 print(f"Cell␣Detection␣Time:␣{cell_detection_time :.2f}␣seconds"

)

408 print(f"Crop␣Extraction␣Time:␣{crop_extraction_time :.2f}␣

seconds")

409 print(f"Cell␣Classification␣Time:␣{cell_classification_time :.2f

}␣seconds")
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410 print(f"WBC␣Classification␣Time:␣{wbc_classification_time :.2f}␣

seconds")

411 print(f"ALL␣Classification␣Time:␣{health_classification_time :.2

f}␣seconds")

412 print(f"Total␣Pipeline␣Time:␣{total_time :.2f}␣seconds")

413

414 return

415

416 from concurrent.futures import ThreadPoolExecutor

417

418 def load_all_models(cnn_weights_path , yolo_weights_path ,

cell_classifier_weights , wbc_classifier_weights ,

healthy_detector_weights , all_classifier_weights):

419 with ThreadPoolExecutor () as executor:

420 future_cnn = executor.submit(load_cnn_model ,

cnn_weights_path , CNNModel)

421 future_yolo = executor.submit(load_yolo_model ,

yolo_weights_path)

422 future_cell_classifier = executor.submit(load_model ,

cell_classifier_weights , CellClassifier)

423 future_wbc_classifier = executor.submit(load_model ,

wbc_classifier_weights , WBCClassifier , 10)

424 future_healthy_detector = executor.submit(load_model ,

healthy_detector_weights , HealthyDetector)

425 future_all_classifier = executor.submit(load_model ,

all_classifier_weights , ALLClassifier)

426

427 cnn_model = future_cnn.result ()

428 yolo_model = future_yolo.result ()

429 cell_classifier = future_cell_classifier.result ()
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430 wbc_classifier = future_wbc_classifier.result ()

431 healthy_detector = future_healthy_detector.result ()

432 all_classifier = future_all_classifier.result ()

433

434 return cnn_model , yolo_model , cell_classifier , wbc_classifier ,

healthy_detector , all_classifier

435

436 !pip install gradio

437 import gradio as gr

438

439

440 def process_image_and_get_results(img_path):

441 # Define paths

442 cnn_weights_path = ’.git/models/viable_detection.pth’

443 yolo_weights_path = ’.git/models/Cell_Detector.pt’

444 cell_classifier_weights = ’.git/models/Cell_Classifier_UR.pth’

445 wbc_classifier_weights = ’.git/models/vit_wbc_classifier/model.

safetensors ’

446 healthy_detector_weights = ’.git/models/

Malignancy_resnet101_model.pth’

447 all_classifier_weights = ’.git/models/

densenet121_all_classifier.h5’

448 output_dir = ’.git// output ’

449 os.makedirs(output_dir , exist_ok=True)

450

451 # Run the main function

452 main(cnn_weights_path , yolo_weights_path , img_path , output_dir ,

453 cell_classifier_weights , wbc_classifier_weights ,

healthy_detector_weights ,

454 all_classifier_weights)
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455

456 # Parse the results from the generated JSON file

457 img_name = os.path.basename(img_path).split(’.’)[0]

458 log_file = os.path.join(output_dir , f"results_{img_name }.json")

459

460 if os.path.exists(log_file):

461 with open(log_file , ’r’) as f:

462 results = json.load(f)

463 return json.dumps(results , indent =4)

464 else:

465 return "No␣results␣found."

466

467 # Gradio Interface

468 iface = gr.Interface(

469 fn=process_image_and_get_results ,

470 inputs=gr.Textbox(label="Image␣Path"),

471 outputs=gr.Textbox(label="Analysis␣Results"),

472 title="ALL␣Diagnosis␣Pipeline",

473 description="Upload␣an␣image␣and␣get␣the␣cell␣analysis␣results.

"

474 )

475

476 # Launch the Gradio app

477 if __name__ == "__main__":

478 iface.launch ()
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