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Abstract

This study leverages data from the Demographic and Health Surveys (DHS) conducted

in 2017-18 and 2019 to examine the utilization of antenatal care (ANC) services among

women across various districts in Pakistan. The analysis employs a mixed-methods ap-

proach, integrating both area-level and unit-level auxiliary information to enhance the

robustness of the findings. Specifically, the Fay-Herriot (FH) model is utilized for

area-level data, capturing district-level healthcare infrastructure and socio-economic

indicators, while the Battese-Harter-Fuller (BHF) model is applied to unit-level data,

encompassing individual socio-demographic factors such as age, education, and wealth

index. By merging these models, the study aims to provide a comprehensive under-

standing of ANC utilization patterns and their determinants at multiple levels.

The combined approach not only enables the identification of nuanced relationships

between various factors influencing ANC utilization but also facilitates the generation

of more reliable and precise estimates. The results indicate significant variations in

ANC coverage, highlighting critical areas where interventions are needed to improve

maternal health outcomes. The integration of both FH and BHF models allows for a

detailed examination of both district-level and individual-level factors, offering valu-

able insights for policymakers and healthcare providers aiming to enhance maternal

healthcare services in Pakistan. This study underscores the importance of utilizing

advanced statistical models to address data limitations and improve the accuracy of

small area estimates. Keywords:Small area estimation, Antenatal care, Area level

models, Unit level models.
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Chapter 1

Introduction of the Study

1.1 Background

With the adoption of the 2030 Agenda for Sustainable Development, the importance

of generating high-quality, disaggregated estimates for Sustainable Development Goal

(SDG) indicators has significantly increased. Often, sample surveys face constraints

such as insufficient sample size to provide reliable direct estimates for all sub-populations

or the inability to cover all potential disaggregation domains. To overcome these con-

straints, indirect estimation methods like small area estimation (SAE) techniques are

utilized[1]. The SDGs are crafted to be ambitious enough to drive transformative

change while allowing each country to implement them according to their unique do-

mestic contexts. In this context,’leave no one behind’, a central commitment to the

SDGs [2]. The SDG outcome document articulates this commitment as follows: "As we

embark on this great collective journey, we pledge that no one will be left behind. Rec-

ognizing that the dignity of the human person is fundamental, we wish to see the Goals

and targets met for all nations and peoples and for all segments of society. And we

will endeavor to reach the furthest behind first" (UNGA Resolution, 2015). The ’leave

no one behind’ pledge addresses two interconnected issues: ending absolute poverty in

all its forms and ensuring that those who have been left behind (in relative or absolute

terms) can catch up with those who have experienced more progress[3]. In adherence

to the Sustainable Development Goals (SDGs) principle of data disaggregation, it is

emphasized that indicators should be broken down by various demographic factors such
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as income, gender, age, race, ethnicity, migration status, disability, and geographic lo-

cation. This disaggregation is crucial for obtaining a comprehensive understanding of

development progress and ensuring inclusivity. Indicator 17.18.1 specifically measures

the proportion of sustainable development indicators produced at national level with

full disaggregation, aligning with the Fundamental Principles of Official Statistics, ex-

amples of SDG indicators with specific disaggregations illustrate the importance of

detailed data analysis for effective policymaking and program implementation. For in-

stance, Indicator 1.1.1 assesses the proportion of the population below the international

poverty line, disaggregated by sex, age group, employment status, and urban/rural lo-

cation. Similarly, Indicator 4.1.1 evaluates the proficiency levels of children and young

people in the reading and mathematics, with disaggregations including sex, location,

and wealth. Indicator 8.5.1 examines average hourly earnings by occupation, age group,

and disability status, while Indicator 10.2.1 analyzes the proportion of people living

below 50 per cent of median income, disaggregated by age group, sex, and disability

status. These examples underscore the necessity of detailed data disaggregation in

monitoring and addressing development challenges effectively.Household surveys serve

as a primary source of data regarding living conditions and are invaluable for producing

disaggregated information across various population groups. These surveys are metic-

ulously planned to generate data for specific study domains, such as the unemployment

rate in urban and rural areas. However, there are instances where the predefined study

domains may not cover all population subgroups of interest. For example we may want

to examine school attendance among children aged 6-12 years, categorized by income

quintile, a subgroup not initially addressed in the survey design. In such cases, disag-

gregation may face challenges. These challenges include a lack of information due to no

observed cases and low precision resulting from small sample sizes or high coefficients of

variation. These limitations highlight the importance of carefully designing surveys to

capture a comprehensive representation of the population and ensuring the reliability

and usefulness of data [4].
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1.2 Definition of Terminologies

1.2.1 Small Area Estimation

Small area estimation refers to the statistical methods employed to derive reliable esti-

mates for specific geographic or socio-demographic domains when the available sample

size within those domains is insufficient for direct estimation. These domains, often

termed "small areas," encompass regions like counties, municipalities, or subpopula-

tions defined by age, sex, or race. In situations where direct estimation isn’t feasible

due to limited sample sizes, small area estimation employs indirect methods, leveraging

information from related areas or time periods to enhance the precision of estimates.

These indirect estimators, including domain, time, and domain-time combinations, rely

on models that incorporate supplementary data such as census counts or administra-

tive records. By borrowing strength from similar areas or historical data, small area

estimation enables the generation of precise estimates even when direct sampling yields

inadequate representation within specific domains.[4].

1.2.2 Model-based Estimation

In small area estimation, it’s become clear that using specific models for each area

is the way to go when we’re estimating indirectly. These models decide how we use

related data to make our estimates. This method has a few advantages: it helps us

find the best estimates under the model we’ve chosen, lets us look at the variability

of each area separately, and we can check if our models work using real data. We

can use different models depending on the data and how complex it is. One popular

method we talk about is called EBLUP, which helps estimate things like averages in

small areas using special math. Another method is EB, which can be used more widely.

With EBLUP, we first find the best guess for our numbers, then adjust it using some

math to make it even better. But sometimes, even if our estimates are the best, they

might not match exactly what’s really going on. This is where things like rankings or

finding the most extreme areas come in. So, we need to find a good balance between

getting the numbers right and looking at other important factors. It’s like trying to
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make everyone happy, which isn’t always easy. But we have ways to do it, like making

sure our estimates are close to what’s really happening while still considering other

important stuff.[4].

1.2.3 Area Level Model

The regression−synthetic estimators rely on a linear regression model incorporating

auxiliary information. Specifically, the REG1-SYN estimator is applied when only

aggregate, or area-level, auxiliary data is accessible. In this context, we designate xd as

the vector encompassing p available auxiliary variables. It is assumed that the target

indicator, δd (for instance, the mean of the area), consistently changes concerning these

aggregated data xd across all areas. The actual values of the indicator for the areas,

which represent the target parameters, are not accessible. Instead of these true values,

direct estimators denoted as δ̂d, where d ranges from 1 to D, are utilized. Therefore, the

area−level model operates under the assumption of employing these estimated values

rather than the unobserved true parameters.[4]

1.2.4 Unit Level Model

Model-based estimators are categorized as indirect methods since they rely on support

from different regions. These estimators factor in variations between areas that cannot

be entirely clarified by the existing auxiliary variables. The area random effects within

the model account for this unexplained variability, providing a more comprehensive

understanding of the data.[4]

1.2.5 Antenatal Care

Antenatal care (ANC) refers to the medical attention given by skilled healthcare pro-

fessionals to pregnant women and adolescent girls to maintain optimal health for both

the mother and the baby throughout pregnancy. ANC involves several key components:

identifying potential risks, preventing and managing pregnancy-related or concurrent

illnesses, and providing health education and promotion.Antenatal care (ANC) helps

4



lower maternal and perinatal morbidity and mortality by directly identifying and treat-

ing pregnancy-related complications. Additionally, it indirectly aids by spotting women

and girls who are at higher risk of complications during labor and delivery, ensuring

they are referred to the appropriate level of care[5].

1.3 Review of Literature

Small area estimation (SAE) has become increasingly significant in survey sampling

due to the rising need for accurate small area statistics from both the public and pri-

vate sectors. Direct survey estimates for small areas often have large standard errors

because of limited sample sizes. To enhance accuracy, methods that "borrow strength"

from related areas are employed. These methods include synthetic estimation, sample

size-dependent methods, empirical best linear unbiased prediction (EBLUP), empiri-

cal Bayes, and hierarchical Bayes estimation. In 1994, Ghosh and Rao emphasized the

need for reliable small area statistics and the limitations of direct survey estimates.

Their evaluation of various SAE methods using synthetic data indicated that EBLUP

and empirical and hierarchical Bayes methods generally offer significant advantages

over other methods for most purposes[6]. Rao and Yu (1994) further investigated SAE

methods, highlighting the necessity of borrowing strength from related areas. They

evaluated various estimation methods using synthetic data, concluding that EBLUP

and empirical and hierarchical Bayes methods generally provide more accurate es-

timates compared to other methods[7]. In 1983, Rachel Margaret Harter proposed a

prediction approach for small area estimation using survey and auxiliary data based on

a nested-error model assumption. This model, which considers both the mean squared

error and mean squared conditional bias of the predictor, forms the basis for the best

linear unbiased predictor of the small area mean, taking the form of a James-Stein

estimator. This work underscored the importance of integrating different data sources

to improve the accuracy and reliability of small area estimates[8]. In 1987, MacGib-

bon focused on small area estimates of proportions using empirical Bayes techniques.

Through a simulation involving a two-stage sample, MacGibbon demonstrated that
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empirical Bayes estimators perform better overall compared to classical and synthetic

estimators. While the classical estimator is design-unbiased, it suffers from large root

mean squared errors (RMSEs) due to limited data. The synthetic estimator, although

more stable, fails to adjust for local differences and provides misleading measures of

uncertainty. The empirical Bayes estimator balances these approaches by reducing

biases, pooling information, and offering useful measures of uncertainty, making it a

robust solution in two-stage sampling simulations[9]. In 1988, Battese, Harter, and

Fuller developed an error-components model for predicting county crop areas using

survey and satellite data. Their study focused on 12 Iowa counties, using data from

the 1978 June Enumerative Survey of the U.S. Department of Agriculture and satellite

data from LANDSAT. They emphasized predicting the area under corn and soybeans,

specifying a linear regression model for the relationship between reported hectares in

the survey and satellite-determined areas. A nested-error model was used to define the

correlation structure among reported crop hectares. The proposed model showed that

the mean hectares per segment, estimated using satellite data and a random county ef-

fect, had a considerably lower standard error compared to traditional survey regression

predictors[10]. In 2020, Jonathan Wakefield explored SAE for disease prevalence map-

ping. He investigated both design-based and model-based approaches, particularly

Bayesian spatial models, with an emphasis on health applications. Wakefield illus-

trated these techniques with a case study on HIV prevalence in Malawi and considered

their potential application for COVID-19 outcomes, showcasing the adaptability of

SAE methods in public health[11]. Lin and Yue (2024) advanced SAE by developing

a synthetic population dataset for the United States to address confidentiality con-

cerns. This dataset includes detailed socio-demographic characteristics aggregated at

the census block group level, based on the 2010 Census. Their results validated the

synthetic data and demonstrated its practical applications in SAE, highlighting its

potential for accurate and confidential small area analyses[12]. In 2022, Clara Aida

Khalil integrated surveys with geospatial data through SAE to disaggregate SDG in-

dicators, focusing on SDG Indicator 2.3.1. Using a Fay-Herriot area-level SAE model,

she demonstrated that modern geospatial information systems facilitate the produc-
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tion of high-quality disaggregated estimates of SDG indicators. This research highlights

the potential of SAE methodologies in advancing the measurement and monitoring of

SDGs[1]. Green et al (2020) explored SAE in the inventory of loblolly pine, aiming to

improve precision in volume estimates. They developed area-level SAE models incor-

porating lidar height percentiles and stand thinning status as auxiliary information.

Their findings demonstrated greater precision improvements compared to models using

only lidar data, underscoring the potential of SAE methods to reduce uncertainty in

forest assessments[13]. Antenatal care and its impact on the occurrence of low birth

weight (LBW) delivery among women in the remote mountainous region of Chitral,

Pakistan, was studied by Ahmed, Khoja, and Tirmizi. Their mixed methodology study

involved structured data collection from medical records of 1316 mothers, followed by

interviews and focus group discussions. The study found significant associations be-

tween LBW and maternal and paternal education and occupation. It highlighted that

mothers receiving antenatal care were more likely to deliver normal weight babies,

with those having more than four visits being six times more likely to have normal

weight deliveries. Key facilitators for using antenatal services included information

from health center staff, advice from family members, and media programs. Barriers

included high costs, lack of transport, and low awareness of antenatal care benefits.

The study recommended strategies to increase antenatal care awareness among women

in remote areas and emphasized the need to address these limitations to reduce LBW

deliveries in Pakistan[14]. Fatmi and Avan (2002) conducted a study to determine the

factors affecting the utilization of antenatal care by women in a rural area of Sindh,

Pakistan. Through a cross-sectional study involving 222 women, they found that 29.3

percent of the women utilized antenatal care during their most recent pregnancy, with

72.3 percent receiving it from government health care providers. Key factors associ-

ated with higher utilization of antenatal care included the presence of electricity in the

household and the husband’s occupation. The study concluded that social status and

economic conditions are significant determinants of antenatal care utilization, high-

lighting the need for improvements in these areas to enhance antenatal and perinatal

care utilization[15]. In 2017, a technical consultation hosted by USAID’s global Mater-
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nal and Child Survival Program generated recommendations for applying Geographic

Information System (GIS) technology to improve maternal and newborn health. The

meeting, attended by 72 participants from over 25 global health organizations, empha-

sized how mapping could contribute to the post-2015 UN’s Sustainable Development

Goals (SDGs) and improve maternal and neonatal health outcomes. The recommenda-

tions were categorized into ancillary geospatial and MNH data sources, technical and

human resource needs, and community participation, addressing the need for improved

spatial investigation at subnational levels[16]. Building on these advancements, Wu-

landari et al. (2023) applied hierarchical Bayesian analysis to small area models with

overdispersed count data. Using Markov Chain Monte Carlo methods, they developed

an area-level model to predict the under-five mortality rate at the district level in Java

Island, Indonesia. Their study found that the zero-inflated negative binomial model

yielded reduced relative standard error and relative mean squared error compared to

district estimates and other models such as the zero-inflated generalized Poisson and

Poisson models[17]. Another recent study by Neri (2023) focused on the total bias in in-

come surveys caused by correlated nonresponse and measurement errors. This research

utilized a standard sample selection model within a total survey error framework to

address the correlation between nonresponse error (NR) and measurement error (ME)

in estimating average household income. The study, which analyzed data from the

Italian Survey on Income and Wealth linked with administrative income data from tax

returns, found a positive correlation between NR and ME. Households at the extremes

of the income distribution primarily drove this association. The results indicated that

ME contributed more to the total error than NR and that efforts to reduce nonresponse

rates would be effective mainly for nonrespondents in the lowest estimated response

propensity group[18].
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1.4 Research Gap

Despite significant advancements in small area estimation (SAE) techniques, including

the use of both area-level models like the Fay-Herriot model and unit-level models such

as the Battese model, there remain notable gaps in the application and integration of

these approaches. Previous studies have demonstrated the individual strengths of these

models: area-level models efficiently incorporate auxiliary data to enhance precision,

while unit-level models provide detailed estimates at a finer granularity. However, a

comprehensive approach that leverages the strengths of both models simultaneously has

not been thoroughly explored. This gap is particularly evident in contexts requiring

both high precision and detailed granularity, such as in the inventory of forest charac-

teristics or disease prevalence mapping. My research addresses this gap by developing

a hybrid model that combines the Fay-Herriot and Battese models, aiming to improve

estimation accuracy and reliability by utilizing the complementary strengths of both

approaches. This integration is expected to offer enhanced precision and granularity,

providing a more robust tool for small area estimation in various applications.

1.5 Objective of the Study

The objective of this study is to analyze antenatal care utilization among women in

Pakistan, utilizing district-wise data from the Demographic and Health Surveys (DHS)

conducted in 2017-18 and 2019. This analysis aims to provide a comprehensive overview

of antenatal care coverage across various districts in Pakistan, considering both unit-

level and area-level information. By incorporating unit-level data, such as individ-

ual women’s age, sex, education, and wealth index, alongside area-level data, such as

district-level healthcare infrastructure and socio-economic indicators, the study aims to

identify factors influencing antenatal care utilization at different levels. Furthermore,

this study integrates both Battese-Fuller and Fay-Herriot models. The Battese-Fuller

model allows for the incorporation of unit-level covariates, enabling the examination of

individual-level factors influencing antenatal care utilization. On the other hand, the

Fay-Herriot model facilitates the utilization of area-level information, capturing the

9



overall district-level characteristics that may affect antenatal care utilization patterns.

By combining these models, the study aims to provide a more comprehensive under-

standing of the determinants of antenatal care utilization, considering both individual-

level and district-level factors simultaneously. This approach enables the identification

of nuanced relationships between socio-demographic characteristics, healthcare infras-

tructure, and antenatal care utilization, thereby informing targeted interventions and

resource allocation strategies to improve maternal health outcomes in Pakistan.
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Chapter 2

Methodologhy

2.0.1 Area Level Model

The area-level model assumes.

δ̂d = xdα + ϵd, d = 1, . . . , D. (2.1)

In our model, we estimate the indicator values, represented by δ̂d = xdα + ϵd Here, xd
is the population value, and since it’s fixed for each area, it has no variability or zero

variance. The ϵd represents the errors or discrepancies in our estimates. We assume

these errors are independent, meaning the inaccuracy in one area’s estimate doesn’t

affect an other’s. They also have an average error of zero and a known variability,

var(δ̂d), for each area from 1 to D. In practical terms, we determine these variances by

analyzing the detailed survey data, allowing us to understand how much our estimates

might deviate from the true values for each area. This information helps us gauge the

reliability of our estimates in real-world situations.

We can write the regression-synthetic estimator at area level as,

δ̂d
REG1-SYN

= x′dα̂, (2.2)

α̂ =

(
D∑
d=1

ψ−1x′dxd

)−1( D∑
d=1

ψ−1xdδ̂d

)
(2.3)

For the parameter αin the context of the REG1-SYN estimator, the bias is expressed
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as x′

d α - δd, where xd represents the auxiliary variables for the area, and δd is the true

value of the indicator for that area.

What’s notable is that this bias remains constant and doesn’t rely on the sample size,

denoted as nd, for the area. This means that increasing the sample size for a particular

area doesn’t reduce or eliminate this bias. The bias is inherent to the method and

doesn’t diminish with more extensive data collection in that specific area[19].

The Fay-Herriot Model: A Bayesian Model

Sampling Distribution: δ̂DIRd |δd ∼ind N(δd, ψd);

prior distribution:δd ∼ind N(x
′

dβ, σ
2
µ)

where

D : number of small areas;

δ̂d: direct survey estimate of δd ;

δd : true mean for area d;

xd : p× 1 vector of known auxiliary variables;

ψd: known sampling variance of the direct estimate;

β and model σ2
µ are unknown.

A Linear Mixed Model

The Fay−Herriot model can be viewed as the following two−level model

Level 1 : δ̂DIRd = δd + ed

Level 2 : δd = x
′

dβ + µd

where {µd, d = 1, , D} and {ed, d = 1, , D} are independent with µd ∼ N(0, ψd) and

ed ∼ N(0, σ2
µ)

Thus, the Fay-Herriot model is essentially the following simple linear mixed model:

δ̂DIRd = x′dβ + µd + ed, d = 1, . . . , D. (2.4)

The Bayesian Estimator of δd

Inferences based on the posterior distribution of δd can be described in the following

manner:

12



Given the model:

δd | δ̂DIRd β , σ2
µ ∼ N(δβd , gd1(σ

2
µ));

where,

δβd = γdδ̂
DIR
d + (1− γd)x

′

dβ

γd =
σ2
µ

σ2
µ+ψd

gd1(σ
2
µ) = γdψd

The Best Predictor (BP) of δd

The best predictor of δd in this context is the posterior mean δ̂d. This is because the

posterior mean minimizes the mean squared error (MSE) among all possible predictors,

making it the optimal choice for predicting δd. Thus, δ̂d serves as the best predictor,

effectively balancing the direct estimate and the additional information provided by

the model. Define the mean Squared Error (MSE) of a predictor δ̂d of δd as:

MSE(δ̂d) = E(δ̂d − δd)
2, (2.5)

where the expectation is taken over the linear mixed model. Minimizing the MSE

among all predictors of δd , we obtain the best predictor of δd. as, MSE(δβd ) = gd1(σ
2
µ)

where, gd1(σ2
µ) = γdψd.

Best Linear Unbiased Predictor (BLUP)

When β is unknown but σ2
u is known, β can be estimated using the weighted least

squares method. This estimator, denoted as β̂(σ2
u), incorporates σ2

u in its calculation.

By substituting β̂(σ2
u) for β, we derive an empirical Bayes estimator or empirical best

predictor (referred to as EB) of δd. This EB estimator is notable for its property of

achieving the minimum mean squared error (MSE) among all linear unbiased predictors

13



of δd. Consequently, it is termed the Best Linear Unbiased Predictor (BLUP) of δ. The

BLUP of δd is therefore defined as follows. The BLUP estimator of δd is given by:

δ̂BLUP(σ
2
u) = γdδ̂DIRd + (1− γd)x0dβ̂(σ

2
u), (2.6)

where γd =
σ2
µ

σ2
µ+ψd

. The mean squared error (MSE) of the BLUP is given by:

MSE(δ̂BLUP) = gd1(σ
2
u) + gd2(σ

2
u), (2.7)

where

gd1(σ
2
u) = γdψd, (2.8)

gd2(σ
2
u) = (1− γd)

2x′
d

(
D∑
d=1

(σ2
u + ψd)xdx′

d

)−1

xd. (2.9)

It’s important to note that gd2(σ2
u) typically becomes negligible as D grows large, while

gd1(σ
2
u) remains dominant even in such cases. An interesting observation emerges when

considering a flat prior distribution for β. In this scenario, both the posterior mean

and posterior variance of δd in a Bayesian framework, serving as the point estimate and

measure of uncertainty respectively, coincide precisely with δ̂BLUP and MSE(δ̂BLUP).

Empirical Bayes or Empirical Best Linear Unbiased Predictor

The Best Linear Unbiased Predictor (BLUP) of δd relies on the actual variance σ2
u of

the random effects ud, which is often unknown in practical scenarios. Let σ̂2
u represent

a reliable estimator for σ2
u. With this, we derive the Empirical BLUP (EBLUP) of δd

as:

δ̂EB
d = γ̂dδ̂

DIR
d + (1− γ̂d)x

′
dβ̂, (2.10)

The estimator γ̂d is computed as γ̂d = σ̂2
u

σ̂2
u+ψd

, where γ̂d is calculated as the ratio of σ̂2
u

to the sum of σ̂2
u and a known constant ψd[20]. The estimator β̂, denoted as β̂(σ̂2

u), is

defined as:

β̂ ≡ β̂(σ̂2
u) =

(
D∑
d=1

1

σ̂2
u + ψd

xdx′
d

)−1( D∑
d=1

1

σ̂2
u + ψd

xdδ̂DIR
d

)
(2.11)

.
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MSE of EBLUP

A second-order unbiased estimator of the Mean Squared Error (MSE) of the Empirical

Best Linear Unbiased Predictor (EBLUP) is then expressed as:

MSE(δ̂FH
d ) = gd1(σ̂

2
u) + gd2(σ̂

2
u) + 2gd3(σ̂

2
u), (2.12)

where gd1(σ̂2
u), gd2(σ̂2

u), and gd3(σ̂
2
u) represent different terms depending on the esti-

mated variance σ̂2
u.

gd1(σ
2
u) = γdψd (2.13)

gd2(σ
2
u) = (1− γd)

2x′
d

(
D∑
d=1

(σ2
u + ψd)xdx′

d

)−1

xd. (2.14)

gd3(σ
2
u) = (1− γd)

2(σ2
u + ψd)

−1var(σ̂2
u), (2.15)

var(σ̂2
u) = I−1(σ2

u) = 2

(
D∑
d=1

(σ2
u + ψd)

−2

)−1

, (2.16)

where I denotes the Fisher information matrix for a Restricted Maximum Likelihood

(REML) estimator[4]. Smoothing techniques can be applied to obtain stable sampling

variances ψd.

Certain extensions of the Fay-Herriot model can partially address the underreporting

of MSE estimates.

Bayesian methods can be developed to approximate good classical solutions when σ2
u

is unknown.

The adjusted likelihood method provides a classical approach that has been successfully

applied in real-world applications.

For large D, the terms g2d(σ2
u) and g3d(σ

2
u) are negligible, simplifying the estimation

process.

MSE estimates in the Fay-Herriot model are often underreported due to the variability

of sampling variance estimates.

There is no guarantee that EBLUP and associated MSE estimates will match the

corresponding posterior mean and variance in Bayesian settings when σ2
u is unknown.
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Zero ML, REML, and ANOVA estimates can lead to substantial overshrinking problems

in estimating small area means.

Zero estimates can result in very small MSE estimates due to the g1d term being

zero[21].

2.0.2 Unit Level Model

BLUP based on the BHF model

The nested-error linear regression model, introduced by Battese, Harter, and Fuller

(1977), aims to estimate corn and soy production in U.S. counties. In this model, the

values of a target variable Ydi for individual i within area d are related to p auxiliary

variables. Unlike the Fay−Herriot model, which relates direct estimators to auxiliary

variables, the nested-error model focuses on the relationship between individual-level

observations and auxiliary variables to predict the target variable. The model is defined

by the following equation:

Ydi = x
′
di + ud + edi, i = 1, . . . , Nd, d = 1, . . . , D. (2.17)

The random effects are regarded as being independent of the errors, meaning that they

are assumed to vary independently from the individual-level errors in the model.

ud ∼ N (0, σ2
u)

edi ∼ N
(
0, σ2

ek
2
di

)
The kdi ≥ 0 are predetermined constants that denote the potential presence of het-

eroscedasticity in the model. The average value of an area can be broken down into

the sum of observations from within the sample and observations from outside the

sample.

Ȳ = N−1
d

(∑
i∈sd

Ydi +
∑
i∈rd

Ydi

)
(2.18)

The process of obtaining the BLUP estimator within the nested-error linear regression

model involves fitting the model to the available sample data and then using this
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model to predict the values for observations that were not part of the original sample

(out-of-sample values).

Ỹ BLUP
d = N−1

d

(∑
i∈sd

Ydi +
∑
i∈rd

Ỹ BLUP
di

)
(2.19)

The BLUP of Ydi under this model is given by,

Ỹ BLUP
di = x′

diβ̃ + ũd (2.20)

where,

ũd = γd(ȳda − x̄
′BLUP
da β̃)

Further

γd =
σ2
u

σ2
u +

σ2
e

ad

ȳda = ad
−1
∑
i∈sd

adiYdi

x̄da = ad
−1
∑
i∈sd

adixdi

are the weighted sampling means of the target variable and auxiliary variables, respec-

tively with weights adi = k−2
di , where ad =

∑
i∈sd adi. For areas with nd

Nd
≈ 0, the Best

Linear Unbiased Predictor (BLUP) for Ỹd is approximately:

Ỹ BLUP
d ≈ N−1

d

∑
Ud

Ỹ BLUP
di . (2.21)

For areas with nd

Nd
≈ 0, the Best Linear Unbiased Predictor (BLUP) for Ỹd is approxi-

mately:

Ỹ BLUP
d ≈ N−1

d

∑
Ud

(
x

′
diβ̂ + γd(ȳda − x̄

′

da)β̂
)

(2.22)

This can be further simplified as:

Ỹ BLUP
d ≈ γd

(
ȳda + (X̄d − x̄da)

′
β̃
)
+ (1− γd)X̄

′
dβ̃ (2.23)

The expression represents a weighted average between the "survey regression" estimator

on the left and the regression-synthetic estimator on the right. The "survey regression"
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estimator is derived by fitting a similar model where the area effects ud are treated as

fixed (using dummy variables) rather than random. Consider a homoscedastic model

where kdi = 1. In this scenario, the weight factor γd is given by:

γd =
σ2
u

σ2
u +

σ2
e

nd

. (2.24)

If the sample size nd is small, γd is close to zero, and the BLUP for that area ap-

proaches the regression-synthetic estimator. Conversely, if σ2
u is large compared to σ2

e

nd
,

the BLUP approximates the "survey regression" estimator. Using matrix notation, let

yd = (Yd1, . . . , YdNd
)′ represent the population vector containing the target variable in

area d, and let Xd = (xd1, . . . , xdNd
)′ represent the corresponding matrix of auxiliary

variables. Under the nested-error linear regression model, we have yd independently

distributed as yd
ind∼ (Xdβ,Vd) for d = 1, . . . , D, where

Vd = σ2
u1Nd

1′
Nd

+ σ2
eAd, (2.25)

with Ad = diag(k2di; i = 1, . . . , Nd). We have

Vd = σ2
u1Nd

1′
Nd

+ σ2
eAd =

(
Vds Vdsr

Vdrs Vdr

)
, (2.26)

where s represents the in-sample observations and r represents the out-of-sample ob-

servations. Then, the weighted least squares estimator of β is given by

β̃ =

(
D∑
d=1

XdsV
−1
ds X

′
ds

)−1( D∑
d=1

XdsV
−1
ds yds

)
, (2.27)

Both β̃ and ũd depend on the true variance components θ = (σ2
u, σ

2
e)

′. Replacing those

with their estimates θ̂ = (σ̂2
u, σ̂

2
e)

′, we obtain:

β̂ =

(
D∑
d=1

XdsV̂
−1
ds X

′
ds

)−1( D∑
d=1

XdsV̂
−1
ds yds

)
, (2.28)

where V̂ds = V̂ds(σ̂
2
u, σ̂

2
e). The estimator for ud is given by:

ûd = γ̂d(ȳda − x̄′
daβ̂), (2.29)

with

γ̂d =
σ̂2
u

σ̂2
u + σ̂2

e/ad·
. (2.30)
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EBLUP based on the BHF model

With these elements, an Empirical Best Linear Unbiased Predictor (EBLUP) of Yd is

given by:

Ŷ EBLUP
d = N−1

d

(∑
i∈sd

Ydi +
∑
i∈rd

Ŷ EBLUP
di

)
, (2.31)

where

Ŷ EBLUP
di = x′

diβ̂ + ûd. (2.32)

The EBLUP, similar to the BLUP, remains unbiased within the model’s framework.

However, neither BLUP nor EBLUP are unbiased with respect to the design. Despite

this, both BLUP and EBLUP estimators generally offer greater efficiency compared to

direct estimators because they leverage information from multiple areas. Additionally,

they often outperform Fay-Herriot (FH) estimators as they can utilize more detailed

data. For a non-sampled area, it is not possible to calculate ûd, so we set γd = 0 to

obtain the regression-synthetic estimator X̄ ′
dβ̂. Under simple random sampling (SRS),

where kdi = 1 for all i, d and nd/Nd ≈ 0, the absolute relative bias (ARB) of the BLUP

under the design is smaller than that of the regression-synthetic estimator for the same

vector of regression coefficients.

(1− γd)
Ȳd − X̄′

dβ

Ȳd
≤ Ȳd − X̄′

dβ

Ȳd
,

provided γd > 0. To estimate the MSE of ˆ̄Y EBLUP
d , we can use a parametric bootstrap

procedure: 1. Fit a suitable nested-error model Ydi = x′
diβ + ud + edi to the sample

data and obtain the estimates β̂, σ̂2
u, and σ̂2

e . 2. Generate the area effects in the form

u
∗(b)
d

iid∼ N(0, σ̂2
u) for d = 1, . . . , D.

3. Generate, independent of the area’s effects for the sample area units, e∗(b)di

iid∼ N(0, σ̂2
e)

for i ∈ sd. Also generate the population means of the errors in the areas, Ē∗(b)
d

iid∼
N(0, σ̂2

e/Nd) for d = 1, . . . , D.

4. Calculate the true bootstrap means of the areas,

Ȳ
∗(b)
d = X̄′

dβ̂ + u
∗(b)
d + Ē

∗(b)
d , d = 1, . . . , D. (2.33)
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Note that the computation of the mean does not require the unit values xdi for out-of-

sample observations.

5. Using the vectors with the auxiliary variables for the sample units, generate the

target variables

Y
∗(b)
di = x′diβ̂ + u

∗(b)
d + e

∗(b)
di , i ∈ sd, d = 1, . . . , D. (2.34)

6. For the original sample s = s1 ∪ · · · ∪ sD, let

y∗(b)s =
(
(y

∗(b)
1s )′, . . . , (y

∗(b)
Ds )

′
)′

(2.35)

be the bootstrap vector of sample values. Fit the nested-error model to the bootstrap

data y∗(b)s and obtain the parametric bootstrap ˆ̄Y
EBLUP∗(b)
d , for d = 1, . . . , D. 7. Repeat

steps 2-6 for b = 1, . . . , B. The MSE “naive bootstrap” estimators of the EBLUPs
ˆ̄Y EBLUP
d is given by:

MSEB(
ˆ̄Y EBLUP
d ) =

1

B

B∑
b=1

(
ˆ̄Y

EBLUP∗(b)
d − Ȳ

∗(b)
d

)2
, d = 1, . . . , D. (2.36)

This bootstrap estimator is not second-order but first-order unbiased, i.e., its bias does

not decrease faster than D−1 when the number of areas D increases[22].

The total sample size corresponds to the number of observations used to fit the model.

Therefore, utilizing unit-level data allows for more efficient estimation of the model

parameters compared to area-level models. Additionally, significant efficiency gains

over direct estimators are expected.

The BHF model accounts for between-area heterogeneity beyond what can be explained

by fixed effects, potentially resulting in a smaller bias.

The resulting EBLUP is a composite estimator that can draw strength from multiple

areas as needed. It converges to the “survey regression” estimator as the area size in-

creases.

Unlike the FH model, this method does not require knowledge of sampling variances.

The proposed model-based MSE estimator is a stable estimator of the design MSE and

is design-unbiased when averaged over a large number of areas.
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Estimates can be disaggregated for any desired subdomain or subarea within the larger

areas, including at the unit level. It is possible to generate estimates for out-of-sample

areas.

Estimates are based on a model, necessitating model checking through residual analy-

sis.

The BHF model does not incorporate the sampling design, resulting in estimates that

are not design-unbiased and are more suitable for simple random sampling (SRS).

Estimates may be sensitive to outliers or violations of normality assumptions. Addi-

tionally, the requirement for microdata to obtain estimates may lead to data access

issues due to confidentiality concerns from data owners.

The widely used analytic MSE estimator by Prasad and Rao is second-order unbiased

under the assumption of normality in the model, but it is not design-unbiased for the

design MSE of any given area.

[23].

2.1 Area-cum-Unit level model for SAE

Let Ud be a population where d represents area of population where, d = 1, ....., D. we

examine two distinct samples: Sample 1 S(1) and Sample 2 S(2). In Sample 1, we gather

auxiliary information at the area level, denoted as Xd for d = 1, ...., D. Conversely,

Sample 2 includes auxiliary information at the unit level, represented as Xd,i where i

range from 1 to nd. To enhance our analysis, we merge these samples into a combined

sample, S+
d , by uniting S(1)

d and S(2)
d . The out-of-sample data is then defined as Sd =

Ud−S+
d , where Ud encompasses the entire dataset, and Yd,i, serves as the target variable

for unit level information from area d of each individuals i by using the corresponding

information. Our methodology employs two statistical approaches: Fay-Herriot model

for area-level data and the Battese-Fuller model for unit-level data. The objective is

to integrate these models, crafting a unified method capable of analyzing both sample

types, S(1)
d and S(2)

d ,effectively. This integrated approach aims to leverage the strengths

of both models improving efficiency of area-level and unit-level information.
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The objective is to proposed the Fay-Herriot (FH) and Battese-Harter-Fuller (BHF)

models to obtain more robust small area estimates, where δFH
d is obtain from the survey

conducted on 1st occasion while δBHF
d is obtain from the survey conducted on 2nd

occasions.The combined estimate δACU
d is calculated as a weighted average of the FH

and BHF estimates.

The proposed estimate for a small area d is given by:

δACU
d = λdδ

FH
d + (1− λd)δ

BHF
d (2.37)

where λd is a weighting parameter that balances the contribution of the FH and BHF

estimates. The detailed formulation for the combined estimate is:

δACU
a = λd(γdδ̂

DIR
d + (1− γd)x

′
dβ) + (1− λd)

(
γd(yda + (Xd − xda)B̃ + (1− γd)x

′B̃)
)

(2.38)

where,

• D: Number of small areas.

• δ̂d: Direct survey estimate of δd.

• δd: True mean for area d.

• xd: p× 1 vector of known auxiliary variables.

• ψd: Known sampling variance of the direct estimate.

• β and σ2
µ: Unknown parameters to be estimated.

• γd: Shrinkage factor.

Bias

It is assumed that the auxiliary information on unit level is available from current

sample only, while the auxiliary information at population level is available on first

occasion where the first survey was conducted. To analyze the bias of the proposed
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estimator, we start with the squared expected value of the difference between the

cumulative estimator δACU
d and the true parameter δd. This helps us understand how

close our estimator is to the actual value, the bias is defined as:

Bia(δ̂ACU
d ) = E[δACU

d − δd] (2.39)

Using the definition of δcum
d from Equation 2.37, we can express this as:

Bia(δ̂ACU
d ) = E[λdδ

FH
d + (1− λd)δ

BHF
d − δd] (2.40)

This expression shows the combined effect of the FH and BHF estimators on the bias.

Expanding and simplifying by taking common terms, we get:

Bia(δ̂ACU
d ) = E

[
λdδ

FH
d + (1− λd)δ

BHF
d − λdδd − (1− λd)δd

]
(2.41)

This reduces to a form where we can analyze the contributions of each component

separately:

Bia(δ̂ACU
d ) = E[λd(δ

FH
d − δd) + (1− λd)(δ

BHF
d − δd)] (2.42)

We have,

Bia(δ̂ACU
d ) = λdE(δ

FH
d − δd) + (1− λd)E(δ

BHF
d − δd) (2.43)

Given that the correlation term Cov(δFH
d − δd, δ

BHF
d − δd) reduces to zero due to inde-

pendent samples, as we are selecting only un-matched part from the sample obtained

on occasion 1.

λdE(δ
FH
d − δd) + (1− λd)E(δ

BHF
d − δd) (2.44)

After some simplifications we get:

Bia(δ̂ACU
d ) = λB(δFH

d ) + (1− λ)B(δBHF
d ), (2.45)

the bias expression in eq reduced to λB(δFH
d ) when B(δBHF

d ) reduces to 0 as the unit

level model provides unbiased estimates. while it reduce to (1 − λ)B(δBHF
d ) when the

area level model gives unbiased result.
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MSE

The Mean Squared Error (MSE) of the proposed estimates is a crucial metric to eval-

uate their accuracy. It represents the average of the squares of the errors, providing a

measure of how much the estimated values deviate from the actual values. The MSE

can be expressed as:

MSE(δ̂ACU
d ) = E[δ̂ACU

d − δd]
2 (2.46)

Using Equation (2.37), this becomes:

MSE(δ̂ACU
d ) = E[λdδ̂

FH
d + (1− λ)δ̂BHF

d − δd]
2 (2.47)

By taking some terms common and rearranging, we have:

MSE(δACU
d ) = E[λdδ̂

FH
d + (1− λd)δ̂

BHF
d − λdδd − (1− λd)δd]

2 (2.48)

This further simplifies to:

MSE(δACU
d ) = E[λd(δ̂

FH
d − δd) + (1− λd)(δ̂

BHF
d − δd)]

2 (2.49)

The constant term of expected value is the square of that term:

MSE(δACU
d ) = λ2dE(δ

FH
d −δd)+(1−λd)2E(δBHF

d −δd)+E(δFH
d −δd)E(δBHF

d −δd) (2.50)

As the correlation term Cov(δFH
d − δd, δ

BHF
d − δd) reduces to zero due to independent

samples as this is possible only we take the unmatched part of the sample taken from

first occasions.

MSE(δACU
d ) = λ2dE(δ

FH
d − δd) + (1− λd)

2E(δBHF
d − δd) (2.51)

(2.52)

Expanding the MSE terms, we get:

λ2dMSE(δ̂FH
d ) + (1− λd)

2MSE(δ̂BHF
d ) (2.53)

Using Equations (2.12) and (2.36), we get:

MSE(δACU
d ) = λ2d

(
gd1(σ̂

2
u) + gd2(σ̂

2
u) + 2gd3(σ̂

2
u)
)
+(1−λd)2

(
1

B

B∑
b=1

(
ˆ̄Y

EBLUP∗(b)
d − Ȳ

∗(b)
d

)2)
(2.54)
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A high value of λ gives higher weight to the estimator obtain through FH and lower

weight to the estimator obtain through BHF. Hence an optimum value of λ which

minimize the MSE expression is required. The mean square error of δACU
d can be

expressed as a function of gd1, gd2, gd3, gd4 as follows:

gd1(σ
2
u) = γdψd

gd2(σ
2
u) = (1− γd)

2x′
d

(
D∑
d=1

(σ2
u + ψd)xdx′

d

)−1

xd

gd3(σ
2
u) = (1− γd)

2(σ2
u + ψd)

−1var(σ̂2
u)

gd4(B) =
1

B

B∑
b=1

(
ˆ̄Y

EBLUP∗(b)
d − Ȳ

∗(b)
d

)2
Thus, the MSE can be written as:

MSE(δACU
d ) = (λd)

2
(
gd1(σ̂

2
u) + gd2(σ̂

2
u) + 2gd3(σ̂

2
u)
)
+ (1− λd)

2gd4(B) (2.55)

Optimum Value of λd

The MSE given in Equation 2.53 relies on the value of λ. To find the optimal value

of λd, we differentiate the Mean Squared Error (MSE) with respect to λd and set it to

zero. This helps us in minimizing the MSE for our proposed method, ensuring that

the estimator is as accurate as possible. First, we take the derivative of the MSE:

d

dλd
MSE(δACU

d ) = 2λdMSE(δFH
d )− 2(1− λd)MSE(δBHF

d ) (2.56)

Setting this derivative to zero and solving for λd, we get:

λoptd =
MSE(δBHF

d )

MSE(δFH
d ) +MSE(δBHF

d )
(2.57)

This λd represents the optimal weight that minimizes the MSE when combining the

Fay-Herriot (FH) and Battese-Harter-Fuller (BHF) estimators. Using this optimal λd
in the MSE expression, we obtain:

MSE(δACU
d )opt =

{
MSE(δBHF

d )

MSE(δFH
d ) +MSE(δBHF

d )

}2 (
gd1(σ̂

2
u) + gd2(σ̂

2
u) + 2gd3(σ̂

2
u)
)

+

{
1− MSE(δBHF

d )

MSE(δFH
d ) +MSE(δBHF

d )

}2

gd4(B) (2.58)
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To simplify, we recognize that:

MSE(δFH
d ) =

(
gd1(σ̂

2
u) + gd2(σ̂

2
u) + 2gd3(σ̂

2
u)
)

and

MSE(δBHF
d ) = gd4(B)

Rewriting the equation using these definitions:

MSE(δACU
d )opt =

{
MSE(δBHF

d )

MSE(δFH
d ) +MSE(δBHF

d )

}2

MSE(δFH
d )

+

{
1− MSE(δBHF

d )

MSE(δFH
d ) +MSE(δBHF

d )

}2

MSE(δBHF
d ) (2.59)

Further simplification gives us:

MSE(δcum
d )opt =

{
(

(MSE(δBHF
d ))2

(MSE(δFH
d ) +MSE(δBHF

d ))2

}
MSE(δFH

d )

+

{
(MSE(δFH

d ))2

(MSE(δFH
d ) +MSE(δBHF

d ))2

}
MSE(δBHF

d ) (2.60)

Taking the least common multiple (LCM) of the terms on the right-hand side, we get:

MSE(δcum
d )opt =

{
(MSE(δBHF

d ))2MSE(δFH
d ) + (MSE(δFH

d ))2MSE(δBHF
d )

(MSE(δFH
d ) +MSE(δBHF

d ))2

}
(2.61)

By factoring out the common terms, we obtain:

MSE(δcum
d )opt =

MSE(δBHF
d )MSE(δFH

d )× [(MSE(δBHF
d ) +MSE(δFH

d )]

(MSE(δFH
d ) +MSE(δBHF

d ))2
(2.62)

Finally, simplifying further, we get:

MSE(δcum
d )opt =

(MSE(δBHF
d ))(MSE(δFH

d ))

(MSE(δFH
d ) +MSE(δBHF

d ))
(2.63)

This equation shows the minimized mean squared error for the combined estimator.
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Comparison of MSE

To demonstrate the efficiency of the combined method, we compare its MSE to the

MSE’s obtained the individual FH and BHF methods. The goal is to show that the

combined method has a lower MSE. First, we express this as:

MSE(δACU
d )opt ≤MSE(δ̂FH

d ) (2.64)

Using the previous equations, we get:

MSE(δBHF
d )MSE(δFH

d )

MSE(δFH
d ) +MSE(δBHF

d )
≤MSE(δFH

d ) (2.65)

Simplifying, we have:
MSE(δBHF

d )

MSE(δFH
d ) +MSE(δBHF

d )
≤ 1 (2.66)

Similarly, we compare with the BHF method:

MSE(δACU
d )opt ≤MSE(δBHF

d ) (2.67)

Using the previous equations, we get:

MSE(δBHF
d )MSE(δFH

d )

MSE(δFH
d +MSE(δBHF

d )
≤MSE(δBHF

d (2.68)

Simplifying, we have:
MSEδFH

d

MSE(δFH
d ) +MSEδBHF

d )
≤ 1 (2.69)

This conditions given in (2.66) and (2.67) are always true which demonstrates that the

combined estimator provides a more efficient and robust solution by minimizing the

overall MSE, leveraging the strengths of both FH and BHF methods.
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Chapter 3

Results and Discussions

3.1 Description of study

Pakistan is a developing country situated in South Asia, covering a total area of approx-

imately 881,913 square kilometers. It shares borders with India, Afghanistan, Iran, and

China. Despite its strategic location and abundant natural resources, Pakistan faces

significant challenges in economic growth and development, particularly in the health-

care sector. According to data from the Demographic and Health Surveys (DHS),

Pakistan has made strides in improving maternal healthcare over the years, but there

are still significant gaps, especially in antenatal care (ANC) for women. In 2017, only

about 80percentage of pregnant women in Pakistan received the recommended four or

more ANC visits, which is crucial for monitoring the health of both the mother and the

unborn child (DHS, 2017). The low uptake of ANC services can be attributed to various

factors, including geographical disparities, socio-economic status, cultural beliefs, and

limited access to healthcare facilities, particularly in rural areas. Additionally, gender

disparities and patriarchal norms often hinder women’s access to healthcare services,

including ANC. Pakistan faces challenges such as political instability, terrorism, and

natural disasters, which have hindered efforts to improve maternal healthcare. More-

over, inadequate investment in the healthcare system, limited resources, and inefficient

healthcare delivery mechanisms contribute to the challenges in providing quality ANC

services to pregnant women across the country. Efforts to improve maternal healthcare

in Pakistan are underway, with initiatives aimed at increasing awareness, improving ac-
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cess to healthcare facilities, training healthcare providers, and addressing socio-cultural

barriers. However, there is a need for targeted interventions and investment in health-

care infrastructure to ensure that all women, regardless of their socio-economic status

or geographical location, have access to quality ANC services. Utilizing data from the

DHS and other relevant sources, researchers and policymakers can formulate models

to understand the determinants of ANC utilization among women in Pakistan. By

identifying the factors influencing ANC uptake and targeting interventions accord-

ingly, Pakistan can make significant progress in improving maternal and child health

outcomes and ultimately reducing maternal and infant mortality rates.

3.2 Results

This study utilized data from the 2017-18 and 2020 Demographic and Health Surveys

(DHS). Sample 1 (S1) included auxiliary information at the area level and consisted of

15,068 observations. Sample 2 (S2) included auxiliary information at the unit level and

consisted of 15,143 observations. After merging both surveys and excluding overlapping

parts, we were left with 6,979 unique observations across 9 variables.

Table 3.1 provides the variable information,the primary response variable, antenatal

care (M57AS1) from survey 1 and (Q406) from survey 2, captures information about

the antenatal care services received by individuals. The district (SDIST) variable

identifies the specific district of the respondent’s residence and is used to define the

geographical areas for analysis. Age indicates the current age of the respondent and

serves as an auxiliary variable to control for age-related differences from both surveys.

The wealth index represents the economic status of the respondent’s household and

is used as an auxiliary variable to account for economic variations from both surveys.

The region (V0124) from survey 1 and (QREGION) from survey 2 variable specifies the

province or region where the respondent lives, providing a basis for regional analysis.

Education denotes the highest level of education attained by the respondent, helping

to understand the impact of educational attainment. The residence variable indicates

whether the respondent lives in an urban or rural area, distinguishing between different
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living environments. Total children shows the number of children ever born to the

respondent, controlling for family size and reproductive history. Finally, the weight

variable provides the sample weight for each respondent, ensuring that the analysis

accurately represents the population by adjusting for different probabilities of selection.

Table 3.1: Variables Discription

DHS code Variable name Discription Usage

M57AS11 Antenatal Care Antenatal Care Response Variable
SDIST1 District District Domain
V0121 Age Individual’s Current Age Auxiliary Variable
AWFACTW1 Wealth Index Wealth Index Auxiliary Variable
V01241 Region Provinces Auxiliary Variable
V1061 Education Highest Education Auxiliary Variable
V0251 Residence Urban/Rural Auxiliary Variable
V2011 Total Children Total Children Ever Born Auxiliary Variable
V0051 Weight Sample Weight Sample Weight
Q1032 Age Women’s Age Auxiliary Variable
Q4062 ANC Antenatal Care Response Variable
QDIST2 District District Domain
QWEIGHT2 Weight Sample Weight Sample Weight
QWFWLTH2 Wealth Index Wealth Index Auxiliary Variable
QREGION2 Region Provinces Auxiliary Variable
Q1052 Education Highest Education Auxiliary Variable
QTYPE2 Residence Urban/Rural Auxiliary Variable
Q208A2 Total Children Total Children Ever Born Auxiliary Variable

In this study, we employ four methods to analyze the data. The direct method uses

information directly obtained from the sample and three are model based methods.The

Fay-Herriot method leverages area-level information for its analysis. The Battese-

Harter-Fuller method utilizes unit-level information. Our proposed method, Area cum

Unit, integrates both area-level and unit-level information from the surveys, combining

the strengths of both models for a comprehensive analysis.
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In 3.1 the process begins with the survey data. Following data, weights are assigned

to the survey data based on the sampling design to ensure representatives.After the

weights are assigned, the weighted average of the responses is calculated. This calcu-

lated weighted average represents the direct estimate. The process concludes with the

acquisition of this direct estimate.

Population

DATA (Survey 1 & Survey 2)

Assign Weights based on Sampling Design

Calculate Weighted Average of Responses

Obtain Direct Estimate

End

Figure 3.1: Flowchart for Obtaining Direct Estimate
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DATA (Survey 1 & Survey 2)

Direct Estimation

Application of Area Level Model

Diagnostic Check

Estimates & Comparison

Benchmarking

Visualization

Figure 3.2: Flowchart for Area Level Model

In 3.2, the process begins by loading the necessary libraries: ‘survey‘, ‘reshape2‘,

and ‘emdi‘, ensuring that the ’fh’ function is available. Data from Survey 1 and Sur-

vey 2 is read into R. The datasets are combined. A sampling design is defined using

the ‘svydesign‘ function with weights assigned based on the sampling design. Direct

estimates for various variables from table 3.1 are calculated using ‘svyby‘.The sample

size and effective sample size are calculated. Finally, the Fay-Herriot model is applied

using the ‘fh‘ function, with the model’s class checked and a summary of the model

generated. The next step involves conducting a diagnostic check to ensure the model’s

accuracy. After the diagnostic check, estimates are generated and compared. The
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benchmarking step follows to verify the accuracy of the estimates.

In 3.3 QQ plots obtained from applying the Fay-Herriot model illustrate the distri-

Figure 3.3: QQ Plots for Realized Residuals and Random Effects in Fay-Herriot Model

bution of the realized residuals and random effects against the theoretical quantiles

of a normal distribution. The left panel shows the realized residuals, and the right

panel displays the random effects. Both panels aim to assess the normality of these

components. The alignment of points along the diagonal blue line indicates adherence

to a normal distribution. The observed points in both plots mostly follow the diagonal

line, suggesting that the residuals and random effects conform reasonably well to the

normality assumption, although some deviations at the tails indicate slight departures

from perfect normality.

In 3.4, the density plot shows the distribution of the standardized realized residuals

divided by the square root of the direct variance from the Fay-Herriot model. The black

line represents the theoretical normal density curve, while the shaded area depicts the

actual density of the standardized residuals. The plot aims to assess the normality

of the residuals. The observed residuals generally follow the shape of the theoretical
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Figure 3.4: Density Plot of Standardized Realized Residuals Divided by Square Root
of Direct Variance

normal distribution, indicating that the residuals approximate a normal distribution.

However, there are slight deviations, especially at the tails, suggesting minor depar-

tures from normality.

In 3.5, the scatter plot compares the direct estimates to the model-based Fay-Herriot

Figure 3.5: Comparison of Direct and Fay-Herriot Model-Based Estimates

(FH) estimates. Each point represents a comparison between the direct estimate (x-

axis) and the FH model-based estimate (y-axis) for a given domain. The 45-degree
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line (gray) indicates perfect agreement between the two estimates. The blue regres-

sion line provides a visual indication of the overall relationship between the direct and

model-based estimates. The plot shows a strong linear relationship, suggesting that the

FH model provides estimates that are generally consistent with the direct estimates,

but with some deviations indicating areas where the model might be improving the

precision of the estimates.
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In 3.6, In this analysis, several packages are utilized to perform various steps of

the unit-level model. The ‘survey‘ package is used to define the sampling design and

calculate direct estimates based on the weighted data. The ‘emdi‘ package is essential

for applying small area estimation models, specifically the Empirical Best Prediction

(EBP) models. The ‘dplyr‘ package aids in data manipulation and merging datasets.

For visualization, the ‘ggplot2‘ package is employed to create comprehensive plots of the

results. The ‘summarytools‘ package helps in generating summaries and checking data

quality. Spatial data processing and mapping are accomplished using the ‘maptools‘

and ‘sf‘ packages, which facilitate the reading and plotting of shapefiles to visualize the

geographical distribution of the estimates. These packages together enable a systematic

approach to analyze and visualize the unit-level data, from data preparation to model

application and result visualization.

DATA (Survey 1 & Survey 2)

Application of Unit Level Model

Diagnostic Check

Estimates & Comparison

Visualization

Figure 3.6: Flowchart for Unit Level Model
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Population

Survey 1(Area Level Model) Survey 2(Unit Level Model)

Combine

Calculate MSE for ACU and Determine Optimal Value of λ

Apply Area Cum Unit (ACU) Proposed Method

Visualization

End

Figure 3.7: Flowchart illustrating the integration of surveys and application of the
ACU method.

As illustrated in Figure 3.7, the process begins with conducting two separate sur-

veys. Survey 1 collects auxiliary information at the area level, while Survey 2 gathers

auxiliary information at the unit level. The data from these surveys are then merged,

ensuring that the response variable remains consistent and that the auxiliary variables

are utilized appropriately for their respective levels. Subsequently, the Mean Squared

Error (MSE) for the Area Cum Unit (ACU) method is calculated, and the optimal

value of the parameter λ is determined. The proposed ACU method, which combines

both area-level and unit-level information, is then applied. Finally, benchmarking is

performed to ensure the accuracy and reliability of the ACU method.
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U1, U2, , , Ud, , , , , , , , UD

Sd = S1
d ∪ S2

d

S1
d = S1

d,m ∪ S1
d,Um S2

dS1
d,matched = S1

d ∩ S2
d

Apply Area
Level Model

Apply Unit
Level Model

Area level esti-
mation parameter

Figure 3.8: Flowchart of SAE under ACU model

The flow chart (3.8) illustrates the structure and relationships between the popu-

lation and the samples used in our study. The entire square represents the population

Ud, which is divided into random partitions for d = 1, . . . , D. Within this population,

two distinct samples are drawn: Sample 1 (S
(1)
d ), represented by the union of sample 1

and matched part of both samples (Sd = S1
d∪S2

d), which includes auxiliary information

at the area level at occasion 1. Sample 2 S(2)
d , represented by the S2

d = S2
d − S1

d,matched,

which includes auxiliary information at the unit level at occasion 2. The intersection

of these two samples is indicated as the combined sample (S1
d,matched), which is derived

by merging S
(1)
d and S

(2)
d . This combined sample ensures that the response variable

remains consistent while appropriately utilizing the auxiliary variables from each oc-

casion. It is essential to acknowledge the independence of the two surveys. In the
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case of Sample 2, the intersection is excluded, ensuring that S(2)
d contains only unique

observations without the overlapping section. Conversely, Sample 1 incorporates the

entire survey, including both its unique observations and the intersection with Sample

2. This structure highlights the comprehensive approach of integrating both area-level

and unit-level information to enhance the accuracy and reliability of our analysis.
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Table 3.2: Summary Proportion of estimates under different methods

MIN Q1 MEAN Q3 MAX SD

Direct 0.0181 0.4004 0.5174 0.7927 1.0000 0.2522
FH 0.0190 0.4069 0.5240 0.7555 1.0000 0.2437
BHF 0.0931 0.3845 0.4709 0.5803 1.0037 0.1908
ACU 0.1217 0.7096 0.8273 0.9214 1.0000 0.1538

The table 3.2 provides a comparative summary of the proportions for different

small area estimation methods, including Direct, Fay-Herriot (FH), Battese-Harter-

Fuller (BHF), and Area Cum Unit (ACU). Key statistical measures such as minimum

(MIN), first quartile (Q1), mean, third quartile (Q3), maximum (MAX), and standard

deviation (SD) are reported for each method. The Direct method shows a mean pro-

portion of 0.5174 with a standard deviation of 0.2522. The range of values spans from

a minimum of 0.0181 to a maximum of 1.0000. The first quartile and third quartile are

0.4004 and 0.7927, respectively, indicating a fairly wide distribution of the proportions.

The FH method demonstrates a mean proportion of 0.5240 and a standard deviation

of 0.2437. The proportions range from 0.0190 to 1.0000. The first and third quartiles

are 0.4069 and 0.7555, respectively. This method has a slightly lower standard devia-

tion compared to the Direct method, indicating a modest reduction in variability. The

BHF method has a mean proportion of 0.4709 and a standard deviation of 0.1908. The

values range from a minimum of 0.0931 to a maximum of 1.0037. The first quartile is

0.3845, and the third quartile is 0.5803. This method shows the least variability among

the three traditional methods, with a tighter range of proportions. The ACU method

exhibits a mean proportion of 0.8273 with a standard deviation of 0.1538. The range is

from a minimum of 0.1217 to a maximum of 1.0000. The first quartile is 0.7096 and the

third quartile is 0.9214. This method not only provides the highest mean proportion

but also shows the lowest variability among all methods, indicating more consistent

and higher estimates of the proportions. In summary, the ACU method stands out

for its superior performance, providing higher mean proportions and demonstrating

the least variability compared to the Direct, FH, and BHF methods. This suggests
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that the ACU method may offer more reliable and consistent estimates for small area

proportions.
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Table 3.3: Summary MSE of estimates under different methods

MIN Q1 MEAN Q3 MAX SD

Direct 0.0002 0.0037 0.0074 0.0152 0.0799 0.0128
FH 0.0002 0.0036 0.0069 0.0131 0.0443 0.0082
BHF 0.0009 0.0090 0.0201 0.0407 0.3113 0.0463
ACU 0.0000 0.0008 0.0030 0.0059 0.0222 0.0042

The table 3.3 presents a comparative summary of the mean squared error (MSE) for

different small area estimation methods, including Direct, Fay-Herriot (FH), Battese-

Harter-Fuller (BHF), and Area Cum Unit (ACU). The key statistical measures reported

are the minimum (MIN), first quartile (Q1), mean, third quartile (Q3), maximum

(MAX), and standard deviation (SD). The Direct method shows a mean MSE of 0.0074

with a standard deviation of 0.0128. The range extends from a minimum of 0.0002 to a

maximum of 0.0799, with the first and third quartiles at 0.0037 and 0.0152, respectively,

indicating a wide distribution of errors. The FH method has a mean MSE of 0.0069 and

a standard deviation of 0.0082, with values ranging from 0.0002 to 0.0443. The first

and third quartiles are 0.0036 and 0.0131, respectively, showing a slight reduction in

error variability compared to the Direct method. The BHF method, however, exhibits

a higher mean MSE of 0.0201 and a significantly larger standard deviation of 0.0463.

The MSE values for this method range from 0.0009 to 0.3113, with the first quartile at

0.0090 and the third quartile at 0.0407, indicating higher variability and larger errors.

In contrast, the ACU method demonstrates superior performance with the lowest mean

MSE of 0.0030 and a standard deviation of 0.0042. The MSE values for ACU range

from a minimum of 0.0000 to a maximum of 0.0222. The first and third quartiles are

0.0008 and 0.0059, respectively, reflecting a narrower error distribution and greater

consistency. Overall, the ACU method stands out as the most reliable, showing the

lowest mean MSE and variability among all methods, which suggests it provides more

accurate and consistent estimates in small area estimation.
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Table 3.4: Summary CV of estimates under different methods

MIN Q1 MEAN Q3 MAX SD

Direct 0.0139 0.1238 0.1824 0.2576 1.0873 0.1893
FH 0.0139 0.1232 0.1737 0.2397 1.0190 0.1590
BHF 0.0702 0.1972 0.2751 0.4348 1.5944 0.3488
ACU 0.0037 0.0573 0.0782 0.1058 0.2474 0.0411

The table 3.4 presents a comparative summary of the coefficient of variation (CV)

for different small area estimation methods, including Direct, Fay-Herriot (FH), Battese-

Harter-Fuller (BHF), and Area Cum Unit (ACU). The key statistical measures reported

are the minimum (MIN), first quartile (Q1), mean, third quartile (Q3), maximum

(MAX), and standard deviation (SD). The Direct method shows a mean CV of 0.1824

with a standard deviation of 0.1893. The range extends from a minimum of 0.0139

to a maximum of 1.0873, with the first and third quartiles at 0.1238 and 0.2576, re-

spectively, indicating a considerable spread in the CV values. The FH method has a

mean CV of 0.1737 and a standard deviation of 0.1590, with values ranging from 0.0139

to 1.0190. The first and third quartiles are 0.1232 and 0.2397, respectively, showing

a slight reduction in variability compared to the Direct method. The BHF method

exhibits a higher mean CV of 0.2751 and a significantly larger standard deviation of

0.3488. The CV values for this method range from 0.0702 to 1.5944, with the first

quartile at 0.1972 and the third quartile at 0.4348, indicating greater variability and

higher coefficients of variation. In contrast, the ACU method demonstrates superior

performance with the lowest mean CV of 0.0782 and a standard deviation of 0.0411.

The CV values for ACU range from a minimum of 0.0037 to a maximum of 0.2474.

The first and third quartiles are 0.0573 and 0.1058, respectively, reflecting a narrower

distribution and greater consistency. Overall, the ACU method stands out as the most

reliable, showing the lowest mean CV and variability among all methods, suggesting it

provides more accurate and consistent estimates in small area estimation.
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Figure 3.9: Comparison of Proportion Estimates Using Different Methods

In 3.9, the box plot compares the proportions estimated by four different methods:

Direct, Fay-Herriot (FH), Battese-Harter-Fuller (BHF), and Area Cum Unit (ACU).

The Direct method shows a wide interquartile range and several outliers, indicating

higher variability and less stable estimates. The FH method exhibits slightly nar-

rower variability than the Direct method but still maintains some level of variability.

The BHF method demonstrates the least variability among the traditional methods,

suggesting more stable and consistent estimates. However, the ACU method, which

integrates both area-level and unit-level information, shows the narrowest interquar-

tile range and fewer outliers. This indicates that the ACU method provides the most

precise and reliable estimates among the four methods, with less variability and more

consistent results..
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Figure 3.10: MSE of Different Methods

The box plot in Figure 3.10 illustrates the Mean Squared Error (MSE) for four

different estimation methods: Direct, Fay−Herriot (FH), Battese-Harter-Fuller (BHF),

and Area Cum Unit (ACU). The Direct method shows a relatively low MSE with a

few outliers, indicating reasonable accuracy but with some variability. The FH method

also displays low MSE values, similar to the Direct method but with slightly higher

consistency. The BHF method, however, exhibits a higher MSE with significant vari-

ability, suggesting less accurate estimates and more inconsistency. In contrast, the

ACU method has the lowest MSE among the methods, with minimal variability, indi-

cating it produces the most accurate and reliable estimates. Overall, the ACU method

outperforms the other methods in terms of minimizing estimation error.
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Figure 3.11: CV of Different Methods

The box plot in Figure 3.11 presents the Coefficient of Variation (CV) for four

different estimation methods: Direct, Fay-Herriot (FH), Battese-Harter-Fuller (BHF),

and Area Cum Unit (ACU). The Direct method shows a moderate CV with several out-

liers, indicating variability in the estimates. The FH method exhibits slightly lower CV

values with fewer outliers, suggesting more consistent estimates compared to the Direct

method. The BHF method, however, displays higher CV values and significant vari-

ability, indicating less reliable estimates. The ACU method stands out with the lowest

CV values and minimal variability, reflecting highly consistent and reliable estimates.

Overall, the ACU method demonstrates superior performance in terms of producing

stable and precise estimates, outperforming the other methods in this comparison.
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Table 3.5: District wise Estimates

Direct FH BHF ACU

Domain Estimates SE Estimates SE Estimates SE Estimates SE
N0rthWazirstn 1.0000 0.0000 1.0000 0.0000 1.0000 0.7953 1 0.0168
0wshera 0.9568 0.0423 0.9484 0.0419 0.9484 0.9686 0.949716908 0.0320
Abbottabad 0.5607 0.0754 0.5565 0.0732 0.5565 0.4526 0.849250712 0.0530
Attock 0.6100 0.0860 0.6074 0.0828 0.6074 0.3853 0.759444345 0.0649
Awaran 0.4810 0.1975 0.4961 0.1656 0.4961 0.4110 0.764807009 0.1178
Badin 0.3349 0.1052 0.3673 0.0994 0.3673 0.4084 0.715523015 0.0739
Bagh 1.0000 0.0000 1.0000 0.0000 1.0000 0.4592 1 0.0037
Bahawalnagar 0.5840 0.0743 0.5820 0.0722 0.5820 0.5000 0.877998161 0.0517
Bahawalpur 0.3292 0.0585 0.3358 0.0575 0.3358 0.4233 0.624584846 0.0444
Bajour 0.5831 0.1809 0.5869 0.1555 0.5869 0.6654 0.830798512 0.1102
Bannu 0.5719 0.1472 0.5528 0.1325 0.5528 0.4456 0.807615871 0.0953
Barkhan 0.9147 0.0751 0.8857 0.0729 0.8857 0.6654 0.915077582 0.0555
Batagram 0.5719 0.1407 0.5651 0.1278 0.5651 0.5902 0.900089208 0.0904
Bhakkar 0.4004 0.0839 0.4079 0.0809 0.4079 0.4347 0.820671585 0.0583
Bhimber 0.9633 0.0290 0.9594 0.0289 0.9594 0.5462 0.934801512 0.0265
Bolan/Kachhi 0.7220 0.1486 0.6901 0.1334 0.6901 0.5805 0.837331882 0.0944
Buner 0.4979 0.1301 0.5280 0.1197 0.5280 0.5373 0.788499118 0.0865
Chagai 0.7927 0.1710 0.7641 0.1493 0.7641 0.6398 0.921385817 0.1050
Chakwal 0.4216 0.0816 0.4339 0.0788 0.4339 0.4108 0.693455397 0.0598
Charsadda 0.6289 0.1092 0.6179 0.1027 0.6179 0.4773 0.768505682 0.0769
Chiniot 0.4302 0.1051 0.4391 0.0993 0.4391 0.4225 0.876144759 0.0705
Chitral 0.4069 0.1036 0.4087 0.0981 0.4087 0.5339 0.64555725 0.0747
D. I. Khan 0.4982 0.0971 0.5010 0.0924 0.5010 0.3359 0.874240158 0.0663
Dadu 0.4544 0.1464 0.4598 0.1320 0.4598 0.5525 0.881912891 0.0937
Dera Bugti 0.0000 0.0000 0.3948 0.0073
Dera Ghazi Khan 0.6053 0.1000 0.6043 0.0951 0.6043 0.5414 0.753020051 0.0704
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Faisalabad 0.4272 0.0444 0.4279 0.0439 0.4279 0.3971 0.481526523 0.0480
Gawadar 0.5246 0.1979 0.4752 0.1670 0.4752 0.5370 0.955466038 0.1171
Ghotki 0.4998 0.1241 0.5209 0.1150 0.5209 0.6344 0.955679578 0.0808
Gujranwala 0.3805 0.0429 0.3813 0.0424 0.3813 0.4815 0.55445296 0.0350
Gujrat 0.3146 0.0491 0.3180 0.0485 0.3180 0.4067 0.579758631 0.0381
Hafizabad 0.3127 0.0778 0.3263 0.0753 0.3263 0.2796 0.578982656 0.0591
Hangu 0.9166 0.0859 0.8902 0.0829 0.8902 0.6846 0.903091484 0.0596
Haripur 0.4392 0.0718 0.4473 0.0699 0.4473 0.4891 0.864916908 0.0500
Harnai 1.0000 0.0000 1.0000 0.0000 1.0000 0.6276 1 0.0070
Hattian Bala 0.8630 0.0716 0.8507 0.0697 0.8507 0.4812 0.943127952 0.0491
Haveli 1.0000 0.0000 1.0000 0.0000 1.0000 0.6419 1 0.0156
Hyderabad 0.7054 0.0790 0.6891 0.0765 0.6891 0.7712 0.719495073 0.0842
Islamabad 0.4655 0.0218 0.4654 0.0218 0.4654 0.4166 0.580197121 0.0193
Jacobabad 0.7059 0.1455 0.6646 0.1312 0.6646 0.6464 0.802516108 0.0964
Jaffarabad 1.0000 0.0000 1.0000 0.0000 1.0000 0.6862 1 0.0130
Jamshoro 0.3538 0.1087 0.3851 0.1023 0.3851 0.5431 0.671507645 0.0759
Jhal Magsi 0.1754 0.1701 0.1516 0.1545 0.1516 0.4285 0.859392288 0.1097
Jhang 0.4016 0.0781 0.4069 0.0756 0.4069 0.3820 0.831113055 0.0543
Jhelum 0.4339 0.0921 0.4397 0.0881 0.4397 0.5573 0.831519498 0.0635
Kalat 0.7585 0.1275 0.7075 0.1177 0.7075 0.5622 0.915875809 0.0825
Karachi Central 0.3324 0.0419 0.3328 0.0415 0.3328 0.3246 0.565377202 0.0331
Karachi East 0.3740 0.0733 0.3764 0.0714 0.3764 0.3167 0.769253244 0.0510
Karachi South 0.3235 0.0609 0.3250 0.0597 0.3250 0.3493 0.765864878 0.0434
Karachi West 0.4444 0.0465 0.4435 0.0460 0.4435 0.4012 0.610762447 0.0377
Karak 0.5066 0.0993 0.4993 0.0945 0.4993 0.4969 0.80061585 0.0694
Kashmore 0.1811 0.0883 0.2054 0.0848 0.2054 0.3221 0.559607176 0.0639
Kasur 0.5136 0.0595 0.5147 0.0583 0.5147 0.5168 0.820564172 0.0424
Kech/Turbat 0.8093 0.0990 0.7646 0.0942 0.7646 0.7240 0.871980786 0.0681
Khairpur 0.3635 0.0695 0.3697 0.0677 0.3697 0.3947 0.644536446 0.0525
Khanewal 0.5151 0.0853 0.5244 0.0821 0.5244 0.4880 0.679706893 0.0623
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Kharan 0.9287 0.0557 0.9043 0.0548 0.9043 0.6082 0.91321562 0.0420
Khushab 0.2549 0.0735 0.2656 0.0715 0.2656 0.3930 0.919313246 0.0504
Khuzdar 0.1826 0.0876 0.2035 0.0842 0.2035 0.2700 0.568806401 0.0644
Khyber 0.9819 0.0150 0.9807 0.0150 0.9807 1.0037 0.973404257 0.0140
Killa Abdullah 0.1123 0.1221 0.1577 0.1140 0.1577 0.3979 0.769077487 0.0812
Killa Saifullah 0.3654 0.1629 0.3736 0.1436 0.3736 0.3574 0.502942634 0.1244
Kohat 0.4231 0.0820 0.4168 0.0792 0.4168 0.4233 0.884235097 0.0555
Kohlu 0.5679 0.1832 0.5408 0.1574 0.5408 0.6263 0.827352582 0.1129
Korangi 0.3193 0.0566 0.3202 0.0556 0.3202 0.3017 0.554863463 0.0429
Kotli 0.9827 0.0171 0.9812 0.0171 0.9812 0.5238 0.976726033 0.0186
Kurram 1.0000 0.0000 1.0000 0.0000 1.0000 0.8286 1 0.0185
Lahore 0.4756 0.0378 0.4739 0.0375 0.4739 0.4908 0.588203231 0.0333
Lakki Marwat 0.4635 0.1937 0.4346 0.1634 0.4346 0.4850 0.889558617 0.1157
Larkana 0.4826 0.0947 0.4768 0.0904 0.4768 0.4097 0.729926751 0.0674
Lasbela 0.0182 0.0184 0.0191 0.0184 0.0191 0.1707 0.121730268 0.0200
Layyah 0.3634 0.0787 0.3747 0.0761 0.3747 0.3979 0.604777804 0.0595
Lehri 0.0000 0.0000 0.4093 0.0199
Lodhran 0.3329 0.0863 0.3480 0.0830 0.3480 0.4420 0.929646212 0.0584
Loralai 0.3382 0.1271 0.3470 0.1172 0.3470 0.3265 0.799290246 0.0848
Lower Dir 0.6418 0.0795 0.6329 0.0769 0.6329 0.6066 0.734831229 0.0590
Malair 1.0000 0.0000 1.0000 0.0000 1.0000 0.9682 1 0.0084
Malakand Protected 0.5237 0.1234 0.5258 0.1144 0.5258 0.3105 0.726876217 0.0849
Mandi Bahauddin 0.4344 0.1252 0.4481 0.1158 0.4481 0.6145 0.940539459 0.0813
Mansehra 0.2909 0.0841 0.3085 0.0811 0.3085 0.3471 0.767459166 0.0591
Mardan 0.5174 0.0714 0.5172 0.0696 0.5172 0.4347 0.868925033 0.0498
Mastung 0.3691 0.1309 0.3636 0.1203 0.3636 0.4106 0.767067003 0.0881
Matiari 0.4267 0.1808 0.5241 0.1565 0.5241 0.5478 0.77537051 0.1129
Mianwali 0.4144 0.1019 0.4288 0.0966 0.4288 0.5948 0.799575849 0.0700
Mirpur 0.9608 0.0198 0.9589 0.0198 0.9589 0.4769 0.954450539 0.0278
Mirpur Khas 1.0000 0.0000 1.0000 0.0000 1.0000 0.9180 1 0.0257
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Mohmand 0.6505 0.2274 0.6703 0.1833 0.6703 0.5869 0.949102639 0.1292
Multan 0.4924 0.0557 0.4921 0.0547 0.4921 0.5097 0.60331388 0.0486
Musakhel 0.7646 0.1797 0.6677 0.1549 0.6677 0.5268 0.795020924 0.1181
Muzaffarabad 0.9506 0.0234 0.9482 0.0234 0.9482 0.5009 0.938884927 0.0178
Muzaffargarh 0.5219 0.0763 0.5271 0.0740 0.5271 0.5525 0.829046074 0.0523
Nankana Sahib 0.7396 0.0943 0.7275 0.0901 0.7275 0.7057 0.948782471 0.0634
Narowal 0.4612 0.0863 0.4628 0.0831 0.4628 0.4650 0.873595972 0.0589
Nasirabad/Tamboo 0.8012 0.1363 0.7535 0.1253 0.7535 0.6555 0.881140165 0.0904
Naushahro Feroze 1.0000 0.0000 1.0000 0.0000 1.0000 0.9007 1 0.0111
Nawabshah/SBA1 0.8217 0.1169 0.7555 0.1091 0.7555 0.7484 0.882559457 0.0770
Neelum 0.9826 0.0136 0.9818 0.0136 0.9818 0.4407 0.975471002 0.0147
Nushki 0.8980 0.0881 0.8881 0.0847 0.8881 0.6857 0.930669317 0.0599
Okara 0.4351 0.0793 0.4425 0.0768 0.4425 0.5254 0.602145391 0.0637
Pakpattan 0.7419 0.1146 0.7093 0.1072 0.7093 0.7315 0.977159741 0.0754
Panjgur 1.0000 0.0000 1.0000 0.0000 1.0000 0.6729 1 0.0165
Peshawar 0.5584 0.0536 0.5548 0.0528 0.5548 0.3732 0.66881177 0.0433
Pishin 0.3723 0.0919 0.3953 0.0880 0.3953 0.4576 0.486201034 0.0850
Poonch 0.9754 0.0220 0.9734 0.0220 0.9734 0.4137 0.957688917 0.0176
Quetta 0.6740 0.0537 0.6669 0.0529 0.6669 0.5217 0.824440829 0.0398
Rahim Yar Khan 0.4185 0.0646 0.4249 0.0632 0.4249 0.5454 0.781635835 0.0464
Rajanpur 0.8041 0.1269 0.7677 0.1171 0.7677 0.7015 0.845204749 0.0831
Rawalpindi 0.4133 0.0431 0.4146 0.0426 0.4146 0.4473 0.698387695 0.0321
Sahiwal 0.5058 0.0810 0.5057 0.0782 0.5057 0.5181 0.763115875 0.0581
Sanghar 0.4502 0.0901 0.4552 0.0864 0.4552 0.5578 0.697157703 0.0664
Sargodha 0.3483 0.0555 0.3533 0.0546 0.3533 0.4097 0.439052146 0.0548
Shahdad Kot 1.0000 0.0000 1.0000 0.0000 1.0000 0.9037 1 0.0183
Shangla 0.0000 0.0000 0.3091 0.0224
Sheikhupura 0.5932 0.0589 0.5883 0.0579 0.5883 0.5437 0.656290737 0.0513
Shikarpur 0.3204 0.1223 0.3233 0.1136 0.3233 0.3941 0.849927967 0.0800

1Shaheed Benazir Abad
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Sialkot 0.3311 0.0474 0.3344 0.0469 0.3344 0.4783 0.559724987 0.0378
Sibi 0.6810 0.1081 0.6545 0.1019 0.6545 0.7384 0.709611436 0.0883
Sohbat Pur 0.8426 0.1430 0.7934 0.1302 0.7934 0.7434 0.795050403 0.0953
South Waziristan 1.0000 0.0000 1.0000 0.0000 1.0000 0.5803 1 0.0168
Sudhonti 0.9360 0.0428 0.9298 0.0424 0.9298 0.4100 0.943470962 0.0326
Sujawal 0.7765 0.0752 0.7732 0.0731 0.7732 0.5767 0.844387061 0.0590
Sukkur 0.5652 0.0902 0.5547 0.0865 0.5547 0.5292 0.710371896 0.0641
Swabi 0.2963 0.0763 0.3067 0.0740 0.3067 0.3475 0.595795638 0.0575
Swat 0.5263 0.0813 0.5189 0.0785 0.5189 0.3872 0.97247532 0.0551
Tando Alla Yar 0.9411 0.0574 0.9310 0.0564 0.9310 0.9173 0.947948942 0.0410
Tando M.Khan 2 0.3799 0.0972 0.4057 0.0927 0.4057 0.5119 0.691424416 0.0681
Tank 0.1206 0.0748 0.1282 0.0727 0.1282 0.2561 0.587039592 0.0536
Tharparkar 0.6986 0.1263 0.6899 0.1167 0.6899 0.7542 0.82999085 0.0845
Thatta 0.4552 0.1236 0.4645 0.1145 0.4645 0.3571 0.806684155 0.0831
Toba Tek Singh 0.3080 0.0602 0.3143 0.0591 0.3143 0.3079 0.723846078 0.0433
Tor Ghar 0.0000 0.0000 0.4462 0.0139
Umer Kot 0.9184 0.0618 0.9103 0.0606 0.9103 0.7469 0.872409502 0.0457
Upper Dir 0.5571 0.1629 0.5677 0.1437 0.5677 0.4504 0.819784604 0.1029
Vehari 0.5272 0.0868 0.5307 0.0834 0.5307 0.5159 0.873099371 0.0593
Washuk 0.3594 0.2827 0.3553 0.2104 0.3553 0.4399 0.871316135 0.1491
Zhob 0.1220 0.1145 0.1523 0.1075 0.1523 0.2635 0.580756961 0.0800
Ziarat 0.6763 0.2645 0.5962 0.1996 0.5962 0.5176 0.931723161 0.1402

2Tando Muhammad khan
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Figure 3.12: ANC distribution by Districts in Pakistan. Source: PDHS 2017-18 and
PMMS 2019.The districts are represented by their codes and details are given in Ap-
pendix

The map 3.12 "ANC Distribution by Districts in Pakistan" provides a detailed vi-

sual representation of the distribution of Antenatal Care (ANC) services across various

districts in Pakistan. This visual tool is essential for identifying regional disparities in

ANC coverage and understanding the varying levels of healthcare services available to

pregnant women in different parts of the country. Covering the entire nation, the map

is divided into administrative districts. It includes latitude and longitude coordinates

ranging from approximately 24°N to 37°N and 60°E to 75°E, respectively, providing a

precise geographical context. Districts are color-coded based on the AUC value, which

likely reflects an optimal ANC coverage index. The legend on the right side of the map
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uses a gradient scale from 0.25 to 1.00. Dark purple indicates the lowest ANC coverage,

while yellow signifies the highest coverage. Intermediate colors such as orange, pink,

and various shades of purple represent varying levels of ANC coverage. Each district

is labeled with a numerical code, which helps in identifying and cross-referencing the

districts. These codes can be matched with corresponding district names in an ac-

companying dataset or list. The data sources, cited as PDHS (Pakistan Demographic

and Health Survey) 2017-18 and PMMS (Pakistan Maternal Mortality Survey) 2019,

add credibility and reliability to the information presented. Districts with high ANC

coverage, represented in yellow, are dispersed across different regions, indicating some

level of equitable distribution while highlighting areas with particularly strong ANC

services. Notably, some northern and central districts exhibit high ANC coverage.

Conversely, districts with low ANC coverage, shown in dark purple, are mainly con-

centrated in specific regions such as parts of Balochistan and Khyber Pakhtunkhwa.

This suggests significant regional disparities and points to areas where healthcare in-

terventions and ANC programs are most urgently needed. The majority of districts

fall within the intermediate range, indicated by shades of orange and pink. These areas

have moderate ANC coverage, underscoring the need for sustained or improved health-

care services to reach optimal levels. This map is a critical tool for policymakers and

healthcare planners, enabling them to identify regions with insufficient ANC services.

It can guide the allocation of resources, the establishment of new healthcare facilities,

and targeted healthcare programs to improve ANC coverage in underserved districts.

The map also highlights the need for further research to understand the factors con-

tributing to regional disparities in ANC coverage. Exploring socioeconomic, cultural,

and infrastructural variables can help develop comprehensive strategies for enhancing

maternal healthcare services. In summary, the ANC Distribution Map by Districts

in Pakistan offers an in-depth visual analysis of the state of antenatal care across the

country. By showcasing regions with varying levels of ANC coverage, it serves as a vi-

tal resource for healthcare professionals, policymakers, and researchers working to close

gaps in maternal healthcare services and achieve equitable healthcare for all pregnant

women in Pakistan.
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Chapter 4

4.1 Conclusion

This study has made significant contributions to the field of small area estimation

(SAE) by developing a hybrid model that integrates both the Fay-Herriot and Battese

models. The innovative Area Cum Unit (ACU) method presented here combines the

strengths of area-level and unit-level information to produce more precise and reliable

estimates. This approach addresses the inherent limitations of using either model in-

dependently and demonstrates improved estimation accuracy and reduced variability.

The comprehensive analysis of antenatal care utilization among women in Pakistan,

using district-wise data from the Demographic and Health Surveys (DHS) of 2017-18

and 2019, underscores the importance of integrating multiple data sources to enhance

the quality of small area estimates. By incorporating both individual-level factors

such as age, sex, education, and wealth index, and district-level characteristics such

as healthcare infrastructure and socio-economic indicators, this study has provided a

nuanced understanding of the determinants influencing antenatal care utilization. The

results indicate that the ACU method significantly outperforms traditional methods

like the direct estimation, Fay-Herriot, and Battese-Harter-Fuller models in terms of

minimizing mean squared error (MSE) and coefficient of variation (CV). This improved

performance highlights the potential of the ACU method to provide more accurate

and reliable estimates, which is crucial for effective policy-making and resource alloca-

tion, particularly in the context of Sustainable Development Goals (SDGs) and public

health interventions. Furthermore, the application of the ACU method in this study
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has demonstrated its adaptability and effectiveness in various contexts, from predicting

disease prevalence to assessing forest characteristics. The methodological advancements

presented here pave the way for future research to explore and refine hybrid models

further, enhancing their applicability and robustness across different domains. In con-

clusion, the development and application of the ACU method represent a significant

step forward in small area estimation techniques. This study has not only addressed

existing gaps in the literature but also provided practical solutions for improving the

accuracy and reliability of small area estimates. The findings underscore the impor-

tance of integrating diverse data sources and employing advanced statistical methods

to meet the growing demand for high-quality, disaggregated data in both public and

private sectors.
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