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ABSTRACT 

The effective use of antibodies in personalized medicine hinges on their ability to bind 

strongly and specifically to their target antigens. This binding capability is critical for 

designing precise and successful therapeutic treatments tailored to individual patients. 

Identifying factors that predict binding affinity is essential to developing therapeutic 

antibodies with enhanced efficacy. However, experimental methods to measure antibody-

antigen interactions are often costly and time-consuming, posing a challenge due to the 

diverse structures of antibody regions that influence binding. This study employs advanced 

machine learning and deep learning techniques, including Neural Networks, XGBoost, 

Random Forest, and Support Vector Machines (SVM), to classify and predict antibody-

antigen binding affinities based on structural antibody data. Using data from antibody-

antigen complexes sourced from the Structural Antibody Database (SAbDab), key features 

are extracted, including structural, energetic, and interaction-based metrics, to differentiate 

antibodies with high and low binding affinities. The models are evaluated using 

classification metrics (accuracy, precision, recall, F1 score) and regression metrics (MSE, 

R² score), with Random Forest emerging as the top performer in binding affinity prediction. 

By integrating neural networks with traditional machine learning approaches, this research 

provides a more efficient alternative to experimental methods, enhancing our 

understanding of molecular-level interactions between antibodies and antigens. This 

approach contributes to the optimization of therapeutic antibody design, further advancing 

the field of personalized medicine. 
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CHAPTER 1: INTRODUCTION 

Sales of antibodies are projected to exceed $11 billion by 2024, reflecting their 

increasing significance in treating diseases like cancer, autoimmune disorders, and 

infections. Therapeutic antibodies, particularly monoclonal antibodies (mAbs), have 

evolved into essential tools in modern biopharmaceuticals due to their precision and 

effectiveness. 

This chapter focuses on the structural aspects of antibodies, particularly the 

complementarity-determining regions (CDRs) that drive antigen-binding specificity. 

Understanding how variations in these regions influence therapeutic efficacy is crucial for 

optimizing treatments. Additionally, the importance of binding affinity, a key factor in 

antibody-antigen interactions, is discussed along with the limitations of traditional methods 

for predicting these interactions. Finally, the chapter introduces the role of artificial 

intelligence (AI) in overcoming these challenges by improving the accuracy and efficiency 

of binding affinity predictions, offering a more streamlined approach to therapeutic 

antibody development. 

1.1 Therapeutic antibodies 

Antibodies, also known as immunoglobulins, are specialized proteins generated by 

the immune system to identify and neutralize harmful pathogens such as bacteria and 

viruses[1]. Therapeutic antibodies represent a crucial class of biopharmaceuticals, 

distinguished by their ability to precisely target and treat a wide range of diseases, including 

cancer, autoimmune disorders, and infectious diseases. Since the advent of monoclonal 

antibodies (mAbs) over thirty years ago, the field has undergone significant advancements, 

particularly in antibody engineering, resulting in a broad spectrum of therapeutic 

modalities[2]. These antibodies are meticulously engineered to bind with high specificity 

to antigens, typically proteins present on the surface of pathogens or aberrant cells. This 

antigen-antibody interaction can neutralize the target, recruit immune effector cells, or 
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deliver cytotoxic agents directly to diseased cells, thereby amplifying the therapeutic 

efficacy while minimizing adverse effects[3].  

The global market for therapeutic monoclonal antibodies is expected to surge, 

reaching an estimated $479.0 billion by 2028, with a robust compound annual growth rate 

(CAGR) of 14.1% starting from 2023. By 2024, fully human or humanized monoclonal 

antibodies are predicted to dominate, with 21 of the top 50 best-selling pharmaceuticals 

falling into this category, underscoring their critical role in modern therapeutics[3]. Key 

drugs such as Keytruda (pembrolizumab), Humira (adalimumab), and Dupixent 

(dupilumab) are anticipated to maintain their leading positions, reflecting the ongoing 

dominance of monoclonal antibody therapies in the pharmaceutical market[4]. 

1.2 Structure of antibody 

1.2.1 Basic Structure 

Antibodies are Y-shaped molecules made up of four polypeptide chains: two 

identical heavy chains and two identical light chains, which are structurally similar. These 

chains are held together by disulfide bridges, creating a flexible and functional 

configuration. Each antibody consists of two heavy chains, each approximately 50 kDa, 

and two light chains, each around 25 kDa. The heavy chains are longer and more complex 

than the light chains. Both the heavy (H) and light (L) chains are composed of variable (V) 

and constant (C) domains[5]. The variable regions, located at the tips of the Y-shaped 

structure, are where antigens bind. In contrast, the constant regions, positioned near the 

base of the antibody, determine the antibody's class or isotype and its functions, such as 

complement activation or receptor binding. Functionally, antibodies can be divided into 

two fragments: Fab (fragment antigen-binding) and Fc (fragment crystallizable). The Fab 

region includes the variable domains of both heavy and light chains, responsible for antigen 

binding. The Fc region, made up of the constant domains of the heavy chains, interacts 

with cell receptors and immune molecules to trigger immune responses [6]. 
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Figure 1.1: Structure of antibody 

1.2.2 Complementarity-Determining Regions (CDRs) 

The antigen-binding specificity of an antibody is largely dictated by the 

complementarity-determining regions (CDRs), which are highly variable loops within the 

variable regions of the heavy and light chains. Each variable region contains three CDRs, 

designated as CDR1, CDR2, and CDR3, with CDR3 being the most variable and critically 

important for determining the diversity of antigen recognition. These CDRs collectively 

form the paratope, the specific part of the antibody that binds directly to the epitope on the 

antigen[7]. The unique structure and amino acid sequence of the CDRs enable the antibody 

to recognize and bind to a broad range of antigens with remarkable specificity. The 

diversity of CDRs is generated through V(D)J recombination during B-cell development, 

a process that is further refined by somatic hypermutation, which introduces point 

mutations in the CDRs, enhancing antigen affinity and fine-tuning the immune response[8]. 
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Figure 1.2: Structure of antibody, highlighting CDR region 

1.2.2 Role of Structure in Therapeutic and Personalized Antibodies 

The complex structure of antibodies, characterized by the antigen-binding specificity 

within the complementarity-determining regions (CDRs) and the functional versatility of 

the Fc region, is crucial to their use in therapeutic and personalized medicine. The precise 

configuration of the variable regions, especially the CDRs, enables the creation of 

monoclonal antibodies that can specifically target antigens linked to diseases such as 

cancer, autoimmune disorders, and infections. This structural precision not only boosts the 

effectiveness of antibody-based therapies by ensuring high-affinity binding to the target 

but also minimizes off-target effects, thereby reducing potential side effects[9]. 

Furthermore, engineering the Fc region to modulate immune responses—such as 

enhancing antibody-dependent cellular cytotoxicity (ADCC) or complement activation—

expands the therapeutic capabilities of antibodies[2]. In personalized medicine, the 

structural adaptability of antibodies supports the development of customized treatments 

that align with an individual's unique genetic and antigenic profile, resulting in more 

effective and tailored therapeutic strategies. Consequently, the fundamental structure of 

antibodies is integral not only to their biological function but also to their expanding role 

in advancing precision medicine[10]. 
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1.3 Binding Affinity and Its Critical Role 

1.3.1   Binding Affinity Overview 

   Binding affinity refers to the degree of interaction between two molecules, particularly 

between an antibody and its corresponding antigen. This interaction is a crucial aspect of 

protein-protein interactions, where the antibody binds to a specific epitope on the 

antigen[11]. Binding affinity is typically quantified by the ratio of the association rate to 

the dissociation rate of the antibody-antigen complex in a solution. This is expressed 

through the dissociation constant (K_D), which is inversely proportional to the binding 

constant. A low K_D value indicates a high binding affinity, signifying that the antibody 

can effectively bind to the antigen even at low antigen concentrations[12]. The binding 

affinity is stabilized by various non-covalent forces, including hydrogen bonds, van der 

Waals forces, electrostatic forces, and hydrophobic interactions[11]. Affinity measures the 

strength of interaction between an epitope and an antibody’s antigen binding site. It is 

defined by the same basic thermodynamic principles that govern any reversible 

biomolecular interaction: 

 

o KA = affinity constant  

o [Ab] = molar concentration of unoccupied binding sites on the antibody 

o [Ag] = molar concentration of unoccupied binding sites on the antigen 

o [Ab-Ag] = molar concentration of the antibody-antigen complex 

In other words, KA describes how much antibody-antigen complex exists at the point when 

equilibrium is reached. 
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1.3.2   Factors Influencing Binding Affinity 

   Several factors influence the strength of the interaction between an antibody and its 

antigen. The most critical factor is antigen fit, where the antibody’s complementarity-

determining regions (CDRs) must precisely align with the epitope on the antigen. This 

immunological specificity arises from the lock-and-key fit between the antibody’s paratope 

and the antigen, meaning any alteration in the shape of either the antibody or the antigen 

can significantly impact binding affinity[13]. Additionally, environmental conditions such 

as pH, temperature, and ionic strength can affect the stability and strength of the antibody-

antigen complex. Interference from other molecules present in the system can also impact 

binding, either by obstructing the interaction or by reducing the effective concentrations of 

the antibody or antigen in the solution, thereby altering the apparent binding affinity. 

Finally, post-synthesis modifications to the antibody, such as glycosylation, can further 

influence its binding profile and overall interaction strength[14]. 

1.3.3   Importance of Binding Affinity in Therapeutics 

  Therapeutic applications of antibody depend entirely on its ability to bind strongly to 

its antigen. The results in high binding capacity means that the antibody has the ability to 

strongly and specifically bind to its target antigen with few molecules thus improving the 

therapeutic index by reducing the amount of the drug that can cause side effects. For 

instance, whereby in cancer therapy, highly specific antibodies could selectively bind to 

tumor-associated antigens and hence enhance targeting and destruction of the cancer cell. 

In infectious disease treatments, the high affinity of drugs can enhance the blocking of 

pathogens’ ability to infect the host or help to remove the pathogen from an individual’s 

system[15]. Further, engineering antibodies for optimization of their binding affinities 

means that therapies can be created and designed that will work better and are specifically 

designed for the intended application. Hence, it is important and effective to understand 

and manage the binding affinity of antibodies for designing antibody-based 

therapeutics[3]. 
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1.4 Challenges in Traditional Antibody Antigen Binding Affinity Prediction 

1.4.1 Traditional Antibody-Antigen Binding Affinity Estimation Methods 

Traditional techniques for determining the association constant between antibodies and 

antigens are crucial for understanding the nature and strength of these interactions. These 

methods are generally classified into experimental and computational approaches. 

Experimental techniques such as surface plasmon resonance (SPR), x-ray crystallography, 

isothermal titration calorimetry (ITC), and enzyme-linked immunosorbent assay (ELISA) 

provide direct measurements of the interactions under laboratory conditions, enabling the 

determination of binding constants and other kinetic parameters. On the other hand, 

computational methods utilize algorithms and simulations to model the interactions 

between antibodies and antigens, estimating binding affinities based on the structural and 

energetic properties of the molecules[16]. Each approach has its own advantages and 

limitations, making them complementary tools in the study of antibody-antigen 

interactions. 

  

Figure 1.3: Binding affinity traditional methods  
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1.4.2 Experimental Challenges 

A key challenge in experimental methods for estimating antibody-antigen binding 

affinity is the necessity for highly purified proteins and the need to maintain precisely 

controlled conditions. Variations in factors like temperature, pH, and ionic strength can 

significantly impact results, leading to discrepancies across different experiments. The 

dynamic nature of protein-protein interactions further complicates accurate binding 

measurements, especially with low-affinity interactions or rapid binding kinetics[17]. 

Techniques such as surface plasmon resonance (SPR) and isothermal titration calorimetry 

(ITC), though powerful, demand sophisticated instrumentation and are often both time-

consuming and resource intensive[18]. While enzyme-linked immunosorbent assay 

(ELISA) is popular for its simplicity and cost-effectiveness, it can encounter issues like 

nonspecific binding and artifacts from surface immobilization, potentially compromising 

the accuracy of binding affinity measurements. X-ray crystallography, another critical 

method, offers high-resolution structural insights but requires crystallization of the 

antibody-antigen complex, a process that is both challenging and time-consuming[19].  

Additionally, the crystalline state may not fully capture the dynamic nature of 

interactions in solution, leading to potential discrepancies in observed binding affinities. 

Moreover, these methods often fail to accurately represent binding affinities in 

physiological contexts, as they typically assess interactions in isolated systems that do not 

account for the complexity of cellular environments[20]. 

1.4.3 Computational Challenges 

Some challenges associated with molecular docking and molecular dynamics 

simulations in estimating binding affinity are also noteworthy. One significant difficulty 

lies in accurately reproducing the fine-grained and dynamic nature of protein-protein 

interactions. These methods often require simplifications and approximations, which can 

compromise the accuracy of predicted binding affinities. For instance, docking 
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algorithms may struggle with pose prediction when induced fit involves substantial 

conformational changes upon binding[21]. Additionally, while molecular dynamics 

simulations offer more detailed computational analysis, they come with higher 

computational costs and longer processing times, particularly when simulating large 

systems or extended timeframes. These methods are also highly sensitive to the choice of 

force fields and algorithms, which may not fully capture all aspects of antibody-antigen 

complex formation. Another major challenge is modelling solvent effects and ionic 

strength, which are crucial for accurate system predictions but are notoriously difficult to 

represent accurately[22]. 

These challenges underscore the complexities involved in estimating antibody-antigen 

binding affinity using both experimental and computational techniques, highlighting the 

ongoing need for advancements in technology and methodologies to achieve more 

accurate predictions. 

1.5 Emergence of AI in Antibody Optimization 

The integration of artificial intelligence (AI) into antibody optimization marks a 

significant advancement in biotechnology, revolutionizing the production of therapeutic 

antibodies in the healthcare sector. Recently, AI has been applied at various stages of 

antibody design and optimization, particularly during the early phases of drug discovery, 

where it aids in predicting binding affinity and structural conformation. These 

advancements are transforming the way antibodies are developed, enhancing their efficacy 

and specificity while minimizing side effects. 

1.5.1 AI in Drug Discovery 

AI has rapidly become an indispensable tool in drug discovery, particularly in the early 

stages of antibody development. By analyzing large datasets, AI algorithms can identify 

potential therapeutic targets and predict which antibodies might have the highest 

efficacy[23]. Machine learning models are used to sift through vast libraries of antibody 

sequences and structures, identifying those with the desired characteristics for further 
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development[24]. AI-driven platforms can also predict off-target effects and potential 

toxicity, helping to streamline the drug discovery process and reduce the time and costs 

associated with bringing new therapies to market. The ability of AI to process and analyze 

data at a scale and speed far beyond human capabilities is leading to more informed 

decision-making and the rapid identification of promising antibody candidates[25]. 

1.5.2 Advances in Structure Prediction using AI 

Among the many impacts of AI on the antibody optimization process, structure 

prediction stands out as one of the most significantly transformed areas. A precise spatial 

understanding of an antibody is essential for grasping the architecture of related molecules. 

While traditional methods like X-ray crystallography and cryo-electron microscopy (cryo-

EM) provide accurate results, they are both time-consuming and costly[26]. AI-driven 

approaches, such as DeepMind’s AlphaFold, have demonstrated the potential to solve the 

structure prediction challenge with near-experimental accuracy[27]. These AI models 

utilize deep learning to predict the spatial arrangement of atoms in a protein based solely 

on its amino acid sequence, allowing scientists to anticipate the likely structure of 

antibodies before synthesis. This capability enhances the efficiency of the antibody design 

process by enabling rapid iteration and optimization based on predicted structures, 

ultimately leading to the development of more effective and precise antibody-based 

therapies[28]. 

1.6 Problem Statement and Solution 

The rapid and cost-effective prediction of antibody-antigen binding affinity is essential 

for advancing the development of therapeutic antibodies. This section discusses the 

limitations of current methodologies and introduces an AI-driven approach as a solution to 

improve both accuracy and efficiency in predicting binding affinities. 

1.6.1 Problem Statement 

There is a need to improve the accuracy and efficiency of predicting antibody-antigen 

binding affinity. Traditional methods, whether experimental or computational, are often 
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slow and costly, which hampers the pace of developing and optimizing new therapeutic 

antibodies. Experimental techniques demand highly controlled conditions and substantial 

resources, while computational approaches, despite their power, can be both 

computationally expensive and may lack the precision required for complex interactions. 

The current landscape necessitates a faster, more cost-effective solution to predict binding 

affinities with high accuracy, which is crucial for advancing the design of therapeutic 

antibodies and the progression of personalized medicine. 

1.6.2 Solution 

The proposed solution involves performing a comparative analysis of various machine 

learning and deep learning algorithms to pinpoint the most accurate model for predicting 

antibody-antigen binding affinity. By systematically evaluating these AI models, the 

objective is to identify an optimal approach that improves prediction accuracy while 

minimizing the time and cost associated with traditional methods. This strategic application 

of AI will streamline the antibody design process, enabling the faster and more efficient 

development of therapeutic antibodies. 

1.6.3 Objectives  

Following are the objectives of this research:  

• Analyze the structural features of antibody-antigen complexes to identify key 

determinants of binding affinity. 

• Develop machine learning models to classify antibodies based on binding affinity 

and predict continuous affinity values. 

• Validate the performance and robustness of the models using various evaluation 

metrics and data preprocessing techniques. 
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CHAPTER 2: LITERATURE REVIEW 

  2.1 Antibody-Antigen Interactions 

Antibody-antigen interactions are fundamental to the immune response and are crucial 

in the development of therapeutic antibodies. These interactions hinge on the precise 

binding of an antibody to its specific antigen, a process primarily driven by the 

complementarity-determining regions (CDRs) of the antibody. The high specificity and 

affinity with which antibodies bind to antigens are key to their effectiveness in neutralizing 

pathogens or modulating immune responses[29]. Given the importance of these 

interactions, enhancing and understanding binding affinity is vital for developing effective 

therapeutic antibodies. High-affinity antibodies are particularly valuable in therapeutic 

applications because they can bind tightly to target antigens, ensuring a robust and precise 

immune response. This specificity is essential not only for therapeutic efficacy but also for 

minimizing off-target effects that could lead to adverse reactions[30]. 

As advancements in antibody design and optimization continue, structural 

considerations play an increasingly critical role. Understanding how antibodies interact 

with antigens at the molecular level directly impacts their binding affinity and specificity. 

The following section will delve into these structural aspects, highlighting their 

significance in designing more effective antibody therapeutics. 

2.1.1   Structural Considerations in Antibody-Antigen Interactions 

Antibody-antigen interactions are defined by several critical structural features that 

significantly influence binding efficacy. In 2022, Lee et al. analysed nearly 200 high-

resolution antibody-peptide complex structures, highlighting the predominance of 

conformational epitopes as the primary antibody binding sites[31]. This finding 

underscores the importance of structural data in elucidating binding mechanisms. 

Typically, epitopes consist of 3-8 sequential patches of residues, with the longest patch 
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averaging 5-7 residues. The primary interactions at the interface are hydrogen bonds and 

hydrophobic interactions. Germline-encoded antibodies often utilize more hydrophobic 

interactions, whereas affinity-matured antibodies increasingly rely on polar contacts, such 

as hydrogen bonds, to achieve higher specificity. This idea is supported by extensive 

studies that examine the structural basis of antibody-antigen interactions, emphasizing the 

role of conformational flexibility in antigen recognition and the structural dynamics of the 

antibody affinity maturation process [32]. 

Notably, residues that form polar bonds and participate in hydrophobic clusters are 

often found at the boundaries of hydrophobic regions, which allows for specificity while 

balancing the reduced hydrophobic interface size during affinity maturation. Additionally, 

the framework regions and constant domains of antibodies can contribute to antigen 

binding through non-local and allosteric effects, as indicated by various studies analysing 

the properties of antibody-antigen interfaces[33]. 

To efficiently study these interactions, computational methods have become 

invaluable. In 2023, Madsen et al. employed graph convolutional neural networks to 

aggregate properties across local regions of proteins, learning predictive structural 

representations of binding interfaces that enhance the understanding of antibody-antigen 

interactions[34]. Attention layers in these models can explicitly encode the context of the 

antibody-antigen pair, capturing the specificity of their interactions. Furthermore, transfer 

learning from general protein-protein interaction data can provide a prior for the specific 

case of antibody-antigen interactions. These attention layers not only improve prediction 

performance but also offer biologically interpretable insights into the mechanisms of 

antibody-antigen interaction[33]. 

Overall, the structural basis of antibody-antigen recognition involves a complex 

interplay of conformational epitopes, hydrogen bonding, hydrophobic interactions, and 

contributions from both the variable and constant regions of antibodies, making it a fertile 

area for research and therapeutic development[32]. Given the complexity of these 

structural interactions, robust and comprehensive databases are essential for predicting 

antibody-antigen interactions, which we will explore in the next section. 
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2.2   Databases for Antibody-Antigen Interaction Prediction 

Databases for antibody-antigen interaction prediction are essential for advancing 

therapeutic antibody development. SAbDab(Structural Antibody Database) offers the 

collection of antibody molecules from the PDB(Protein Data Bank). As highlighted by 

Schneider et al. (2022), SAbDab provides precise annotations and enhanced search 

capabilities to allow for the assessment of structures in terms of, for example, sequence 

similarity and antigen selectivity[35]. 

Another important source is the Antigen-Antibody Interaction Database, 

AgAbDb, that provides the determinants of Ag-Ab interactions as Kulkarni-Kale et al. 

(2014) have also pointed out. This database offers binding site residues and interacting 

pairs and as such is important for assessing the accuracy of algorithms for B-cell 

epitopes[36]. 

The PDBbind database is also important because it gathers the experimental 

binding free energy data (Kd, Ki, and IC50) for more than 23,000 protein–ligand 

complexes. PDBbind was founded in 2004 and it integrates energetic and structural 

information to support the investigations on molecular recognition. PDBbind includes 

protein-protein, protein-ligand, and protein-nucleic acid interactions, providing detailed 

structural and binding affinity data essential for molecular docking and scoring 

methods.[37]. 

Subsequent developments in the use of structural databases in combination with 

machine learning and deep learning models have improved the specificity of the antibody-

antigen interactions. These databases are used by the researchers to derive extensive 

structural and binding data that is then used to train models that can effectively predict the 

binding affinities and to determine the key features that are likely to impact these 

interactions. 
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2.3 Machine Learning Approaches to Antibody-Antigen Interaction Modeling 

About a decade ago, the initial efforts to improve the reliability of antibody-antigen 

interaction models began incorporating machine learning concepts that have since gained 

widespread attention, as noted by Tharakaraman et al. [38] During this period, researchers 

like Quinlan et al. (2017) featurized antibody-antigen interfaces by analysing various 

physicochemical and geometric properties of amino acids at these interfaces[39]. Using 

these features, several scoring functions were developed, and linear regression approaches 

were applied to differentiate between native antibody-antigen complex poses and decoy 

poses. This methodology enabled the prediction of a model for a broad-spectrum anti-

Dengue virus antibody, leading to engineered mutations that increased its affinity to 

Dengue virus serotype 4 by more than 450-fold while slightly improving affinity to the 

other three serotypes, as demonstrated by Robinson et al[40]. This achievement stands as 

one of the earliest successful applications of computational methods based on simple 

machine learning principles, such as featurization and regression, resulting in a significant 

enhancement of antibody binding affinity[41]. 

Moreover, the physicochemical and geometric characteristics of these interfaces 

were also implicated in the molecular modelling of viral escape from neutralizing 

antibodies. This includes scenarios where escape occurs through multiple epistatic 

mutations, such as with the BA.1 Omicron variant of SARS-CoV-2, as described by 

Tharakaraman et al. and Miller et al[42]. 

Machine learning approaches to antibody-antigen interactions employ a diverse 

array of models to enhance the design and optimization of therapeutic antibodies, 

significantly advancing the field. Xu et al. (2021) introduced a method for featuring 

antibody-antigen interfaces using traditional machine learning techniques. Their approach 

involved representing the binding interface with a two-dimensional matrix, which was then 

analysed to identify complex interaction patterns that could distinguish antibody-antigen 

complexes from other protein-protein interactions[43]. This pioneering work laid a solid 

foundation for further research in this area. 
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Building on this, Wang et al. (2022) developed regression models incorporating 

structural features extracted from binding sites to estimate the binding energy between 

antibodies and antigens. Their work demonstrated the efficiency of supervised learning 

techniques, particularly linear regression and support vector regression, in measuring 

interaction strength[44]. This marked a significant advancement in designing antibodies 

with greater selectivity and affinity for their targets. 

Recent developments underscore the critical role of feature selection in binding 

affinity prediction. In 2023, Zhang et al. compared the use of comprehensive feature sets—

including various structural and physicochemical properties—with simpler models based 

solely on basic sequence information. Their findings revealed that while complex features 

can enhance predictive accuracy, simpler models like logistic regression and decision trees 

can also be highly effective, particularly when computational resources are limited[45]. 

This comparison highlighted the importance of balancing model complexity according to 

the specific needs of the study. 

Additionally, the incorporation of network-based features has proven beneficial in 

improving binding affinity predictions. By modelling antibody-antigen interactions as 

networks, researchers can quantify the contributions of different residues to binding 

affinities[46]. For instance, in 2022, Makowski et al. proposed a model that combined 

linear discriminant analysis (LDA) with conventional machine learning approaches to 

simultaneously optimize site-specific and non-specific binding. This approach 

demonstrated the flexibility of machine learning architectures in interpreting complex 

biological interactions[45]. 

2.4 Deep Learning Approaches to Antibody-Antigen Interaction Modeling 

Recent advancements in deep learning have significantly impacted the modeling of 

antibody-antigen interactions, particularly through the use of advanced algorithms for 

structure prediction and binding affinity prediction. In the domain of structure prediction, 

models like AlphaFold and RoseTTAFold have made remarkable strides. DeepMind’s 

AlphaFold, which utilizes a transformer-based system to predict protein structures from 
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amino acid sequences, has demonstrated exceptional performance in predicting 3D 

conformations. AlphaFold has generated a vast array of predicted structures, fueling further 

research across various biological fields[47]. Similarly, RoseTTAFold employs a three-

track convolutional neural network (CNN) architecture that simultaneously processes 

sequence, distance, and 3D coordinate data, enabling fast and accurate prediction of protein 

structures, including those relevant to human health[48]. 

Deep learning has also been successfully applied to predicting antibody-antigen 

binding interactions. For instance, in 2021, Xu et al. developed a deep learning framework 

that utilized CNNs to analyze structural features of antibody-antigen interfaces, achieving 

high accuracy in distinguishing between complexes[49]. Building on this, Makowski et al. 

(2022) introduced AbAgIntPre, a deep learning model designed to predict antibody-antigen 

interactions from sequence data alone. This model achieved an impressive AUC of 0.82 on 

an independent test dataset, demonstrating the superior ability of deep learning to capture 

non-linear feature representations from sequence information[45]. 

Moreover, the integration of structural data with deep learning models has further 

enhanced predictive power. Besides these improvements, a more recent paper by Liu and 

his team put forward S3AI, which is a new antibody-antigen interaction prediction model, 

marked by interpretability and based on structural data together with the actual chemical 

rules encoded in the model. S3AI performed much better than the state-of-the-art methods 

and demonstrated good generalization when predicting the new antibody-antigen pairs 

making it applicable for large-scale antibody optimization and screening[50]. 

As a result, this paper has major improvements in predicting the antibody-antigen 

interactions while having major drawbacks as well. One major drawback is that it is heavily 

dependent on the quality of the training data; the model can be highly sensitive to the data 

that has been fed to it, and many potentially possible interactions may not be covered. S3AI 

has demonstrated OOD generalization, but it could be less performant when facing new 

combinations of antibodies and antigens not trained. Moreover, S3AI may not incorporate 

all the facets of the binding process because it has embedded structural knowledge and 

chemical priors. Training and applying such deep learning models also require heavy 
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computations that may also prove costly to researchers with meager resources. In summary, 

although S3AI has made a great improvement in the field of antibody-antigen interaction 

prediction, there are still many issues that need to be focused in the following research, 

such as the data quality, the model generalization, and the computational cost. 

Despite the successes of deep learning in antibody design, there are notable 

limitations. However, there are several challenges associated with deep learning in 

antibody design. One major drawback is the need for high-quality training data, as the 

performance of deep learning applications is highly dependent on both the quantity and 

quality of the data used. Current models, such as AlphaFold and RoseTTAFold, may not 

perform optimally with certain protein families or specific conformational states, 

indicating that further refinement and calibration are necessary[51]. 

Despite these challenges, deep learning has significantly advanced the modelling 

of antibody-antigen interactions, including structure prediction and binding affinity 

estimation. These models employ sophisticated techniques to capture the complex 

interactions within biological systems, providing a strong foundation for more effective 

antibody design and screening. However, they also highlight areas that require continued 

improvement to enhance accuracy and applicability across a broader range of proteins and 

interactions. 

2.5   Literature Gap 

Despite the impressive advancements in modelling antibody-antigen interactions 

using machine learning and deep learning techniques in recent years, there are still areas in 

the literature that require further improvement. While early machine learning models have 

been instrumental in predicting binding affinities and optimizing therapeutic antibodies, 

they often rely on simplified features of the antibody-antigen interaction space and lack 

comprehensiveness. Although deep learning models have significantly enhanced structure 

prediction and demonstrated potential in improving binding affinity predictions, their 

performance is heavily dependent on the quality of the training data. These models often 

struggle with robustness when tested on unseen antibody-antigen pairs, particularly those 
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involving less commonly described protein families. Additionally, the computational 

demands of training and utilizing these models can be prohibitive, making them costly and 

difficult to deploy in larger-scale scientific studies. 

Moreover, previous research has predominantly focused on accuracy enhancement, 

without adopting a holistic strategy that integrates various biological and structural data 

sources for more accurate and versatile predictions. The literature also highlights a critical 

need to improve the interpretability of deep learning models, as many of these approaches 

function as 'black boxes,' making it challenging to explain the rationale behind specific 

predictions. This lack of interpretability can hinder the refinement and validation of 

models, particularly in clinical settings where understanding the decision-making process 

is crucial. 

In conclusion, while machine learning and deep learning have made significant 

strides in modelling antibody-antigen interactions, there is an urgent need for more 

accurate, explainable, and robust models that can be trained on diverse datasets and 

perform well across a range of biological scenarios. Addressing these gaps will be essential 

for advancing antibody development and effectively integrating AI into this field.  
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CHAPTER 3: METHODOLOGY 

 

This chapter outlines the detailed methodology employed in this study, starting from 

data acquisition to the final evaluation of machine learning models. The chapter begins 

with the process of gathering data from the Structural Antibody Database (SAbDab) and 

continues with the thorough preprocessing steps applied to the dataset. It describes the 

removal of non-relevant entries, the structural optimization of antibody-antigen complexes, 

and feature extraction procedures that were crucial for building effective predictive models. 

Additionally, this chapter covers the feature selection techniques used to refine the dataset 

and enhance model performance. Finally, it introduces the machine learning algorithms 

implemented for classification and prediction tasks, followed by the evaluation metrics 

used to assess the accuracy and efficiency of these models.  

3.1 Methodology Overview 

This is the basic methodology flow used in this study. Data was first acquired from 

the Structural Antibody Database (SAbDab), where 470 antibody-antigen complexes were 

selected based on relevant criteria, such as the type of antigen and true affinity values. The 

dataset was then preprocessed to remove non-relevant entries like nanobodies and 

homologous antibodies to avoid potential biases in the model. Following this, the structural 

data in PDB format was processed, which involved the removal of water molecules and 

non-essential ligands, replacement of missing side chain atoms, and relaxation of 

complexes using PyRosetta to ensure optimal structural integrity. 

After preprocessing, a subset of 16 high-importance features was extracted based 

on both complex computational methods and simpler structural properties. These features 

were then subjected to feature selection techniques, including RandomForestClassifier and 

correlation analysis, to improve the predictive power of the models. Finally, four machine 

learning models—XGBoost, Random Forest, Support Vector Machine (SVM), and Deep 
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Neural Networks (DNN)—were implemented to classify binding affinities and predict 

continuous binding affinity values. The models were evaluated using classification metrics 

(accuracy, precision, recall, F1 score) and regression metrics (MSE, R² score), ensuring a 

thorough evaluation of their performance in predicting antibody-antigen binding affinities. 

 

 

Figure 3.1: Methodology Overview 

For this study, data of 470 antibody-antigen complexes was obtained from the 

Structural Antibody Database (SAbDab), a comprehensive resource maintained by the 

Oxford Protein Informatics Group for the exploration of antibody structures. The dataset 

was filtered to include only those complexes where the antigen type was a protein and the 

affinity value was marked as true, ensuring the selection of relevant antibody-protein 

interactions. The PDB files for these complexes were then downloaded in the Chothia 

numbering scheme, which reassigns residues in antibody variable regions based on 

structural landmarks, facilitating consistent analysis and comparison of antibody 

structures. 

3.1.1 Data Characteristics 

The dataset used for predicting antibody-antigen binding affinity contains data from 

470 antibody-antigen complexes. Key characteristics include the pdb_id for each complex, 

the affinity value, and the affinity_method used to determine the binding affinity (e.g., 

SPR). The dataset also includes detailed information about the antigen chains 
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(antigen_chain_1, antigen_chain_2, etc.), the antigen's name, sequence, and associated 

heteroatoms. In addition to these biological details, the dataset features annotations based 

on the Chothia and North numbering schemes, which provide insight into the structure of 

the antibody's variable regions. Furthermore, the dataset includes categorical indicators for 

the presence of antigen chains and structural alignment, enabling a thorough understanding 

of the antibody-antigen interaction.  

 

3.2 Data Preprocessing  

This section discusses the data preprocessing pipeline, as depicted in the flowchart. 

It begins with the initial preprocessing of the affinity summary dataset, where non-relevant 

entries, such as nanobodies and homologous antibodies, are removed to avoid potential 

biases. The next step involves the preprocessing of PDB files, where water molecules and 

irrelevant ligands are systematically removed to maintain focus on the antibody-antigen 

interactions. Afterward, missing side chain atoms are replaced and repacked to ensure 

complete structural representation. Finally, the antibody-antigen complexes undergo a 

relaxation process, optimizing their structural integrity and energy landscape, making them 

suitable for further computational analysis, particularly in binding affinity predictions. 
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Figure 3.2: Affinity Data Preprocessing 

3.2.1 Initial Preprocessing of Affinity Summary Dataset 

In the initial preprocessing phase, the dataset was filtered to eliminate potential 

confounders and sources of data leakage, such as nanobodies and homologous antibodies. 

Nanobodies, which are single-domain antibodies derived from camelids, were excluded 

due to their consistently lower binding affinities compared to full-sized antibodies (median 

affinity of 10 nM vs. 3 nM). Removing nanobodies ensured that the model would not learn 

an artificial correlation between antibody format and affinity, which could skew 

performance results. Additionally, homologous antibodies—closely related antibodies 

with more than 95% sequence identity in the heavy chain—were removed to prevent data 

leakage during cross-validation, as these variants could lead to overfitting. This refinement 

resulted in a dataset of 356 unique, affinity-labeled antibodies. 

3.2.2 Preprocessing of PDB files 
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The PDB files for each antibody-antigen complex, present in Chothia format, were 

downloaded from the Structural Antibody Database (SAbDab) and filtered according to 

the criteria established during the initial preprocessing, based on their pdb_id. This ensured 

that only relevant structures, aligned with the refined dataset of unique antibodies, were 

selected for further analysis. The structural data was then processed to extract key features 

of antibody-antigen interactions, following several essential steps: 

3.2.2.1 Removal of Water Molecules and Ligands 

To maintain a clear focus on the antibody-antigen binding interfaces, all 

water molecules and non-essential ligands were systematically removed from the 

PDB files. This step was crucial for eliminating any extraneous molecular elements 

that do not directly participate in the interaction. The Biopython package was 

employed for this task, ensuring that the processed structures were clean and 

suitable for further structural analysis, without interference from solvent or 

irrelevant ligands. 

3.2.2.2 Replacement and Repacking of Missing Side Chain Atoms 

To ensure complete structural representation of each antibody-antigen 

complex, missing side chain atoms were replaced and repacked using the PyRosetta 

package in Python. PyRosetta, a robust protein modeling and design toolkit, was 

employed to reconstruct missing atoms, especially in cases where side chain 

residues were incomplete or absent in the original PDB files. The software uses 

advanced algorithms to predict optimal side chain conformations, minimizing steric 

clashes and preserving the structural integrity of the protein. PyRosetta’s side chain 

repacking functionality places the side chains in their most energetically favorable 

configurations, ensuring accurate modeling of the protein structure. This step was 

crucial for maintaining structural fidelity, as missing or inaccurately modeled atoms 

could distort the interpretation of antibody-antigen interactions, ultimately 

affecting the reliability of binding affinity predictions and other downstream 

analyses. 
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3.2.2.3 Pareto-optimal Relaxation of Complexes 

Following the repacking of side chains, the entire antibody-antigen 

complexes were subjected to Pareto-optimal relaxation using PyRosetta. This was 

performed on an High Performance Computing cluster, where each complex took 

approximately 30 minutes on average to relax. The relaxation process utilized the 

FastRelax protocol in PyRosetta, which optimizes both the side chains and 

backbone of the complexes. The FastRelax protocol is crucial for ensuring that the 

structural models are energetically favorable while minimally perturbing the 

backbone (mean RMSD < 1 Å). A custom MoveMap was employed, allowing 

movements of both the backbone and side chains for thorough structural 

refinement. This balance between structural optimization and preservation of the 

native backbone is essential for maintaining biologically relevant conformations. 

The importance of Pareto-optimal relaxation lies in its ability to correct any steric 

clashes or unfavorable interactions introduced during PDB processing (e.g., repacking of 

missing atoms), without introducing significant structural deviations. This refinement 

enhances the reliability of the structural models, making them more suitable for tasks such 

as binding affinity prediction, protein-protein docking, and antibody design. By optimizing 

the energy landscape while preserving native-like conformations, the relaxed complexes 

provide a high-quality foundation for further computational and experimental analyses. 

3.3 Feature Extraction 

In the study by Miller et al. (2023), a comprehensive set of features involved in 

antigen-antibody interactions was compared, examining over 200 distinct features 

spanning various structural, energetic, and interaction-based metrics. These features were 

derived from several advanced methodologies, including molecular surface analysis, 

interaction networks, and residue-level interactions, providing a deep insight into the 

factors contributing to binding affinity. Building upon their findings, the present work 

refines and focuses on a subset of these features that show the most promise for predicting 

binding affinity. Sixteen high-importance features were selected, and their performance 
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was compared across different machine learning models to optimize classification accuracy 

and binding affinity prediction. 

Feature extraction is a critical step in analyzing antigen-antibody complexes, where 

two categories of features were utilized: complex feature-sets derived from advanced 

computational methods, and simple feature-sets computed directly from the antibody-

antigen complexes. The aim was to identify characteristics relevant to binding affinity 

through both high-level molecular interactions and straightforward structural properties. 

3.3.1  Complex Feature-Sets 

The complex feature-sets are derived from established algorithms and 

computational workflows, providing detailed insights into molecular interactions at the 

antigen-antibody interface. These feature sets include: 

3.3.1.1 Significant Interaction Network (SIN) Features 

The SIN features quantify the strength of interactions between the 

antibody’s paratope and the antigen’s epitope. For example, SIN_L1_avg_epilope 

measures the average interaction strength of the L1 chain, while SIN_avg_paratope 

captures the overall strength of the paratope. These features help to pinpoint key 

interaction sites responsible for binding affinity. 

3.3.1.2  PyRosetta-Based Features 

PyRosetta provides energetics-based features crucial for evaluating 

molecular stability and compatibility. For instance, 

pyrosetta_Interaction_total_energy assesses the total interaction energy between 

the antigen and antibody, while pyrosetta_sc_total measures surface 

complementarity. These features offer insights into the structural and energetic 

favorability of the binding event. 

3.3.1.3 dMaSIF-site Features 
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The dMaSIF-site (Differentiable Molecular Surface Interaction 

Fingerprinting) focuses on molecular surface interactions, particularly shape and 

electrostatic complementarity. dMaSIF_avg_paratope measures surface 

interactions across the paratope, and dMaSIF_L2_total captures the interaction 

score for the L2 chain, identifying crucial hotspots that drive binding affinity. 

3.3.1.4 Amino Acid Interface Fitness (AIF) Features 

AIF features evaluate the fitness of amino acids at the interface, providing 

scores like AIF_L1_avg_epilope, which measures L1 chain residues’ fitness in 

interacting with the epitope, and AIF_avg_paratope, which scores the paratope’s 

overall contribution to binding. These features help identify residues that stabilize 

the antigen-antibody complex. 

3.3.2 Simple Feature-Sets 

The simple feature-sets provide straightforward structural characteristics of the 

antibody-antigen complexes. These features, while computationally less intensive, 

contribute valuable information to understanding binding dynamics: 

3.3.2.1 Amino Acid (aa) Counts Features 

This feature set quantifies the types and frequencies of amino acids involved 

at the binding interface. Features such as aa_counts_IE measure interaction energy 

(IE) at the amino acid level, while aa_counts_RE capture residue-level 

contributions to binding. 

 

3.3.2.2 Amino Acid Counts by CDR 

These features analyze interactions within the antibody’s complementarity 

determining regions (CDRs), key sites for antigen recognition. For instance, 

aa_counts_CDR_L3_charged_aromatic tracks charged and aromatic residue 
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interactions in the L3 chain, while aa_counts_CDR_L2_aromatic_aromatic 

captures aromatic interactions in the L2 chain. 

3.3.2.3 Multivalent Interaction Features 

Multivalent interactions significantly enhance binding strength by creating 

multiple points of contact between the antigen and antibody. Features such as 

multivalent_L1 and multivalent_L2 measure how many antigen sites interact 

simultaneously with the L1 and L2 chains of the antibody. 

3.3.2.4 Ab Info Features 

This set describes the structural characteristics of the antibody, such as CDR 

lengths. For instance, H3_length measures the length of the H3 region, known for 

its flexibility, while L3-9,10 identifies specific positions within the L3 chain that 

influence antigen binding. 

3.4 Feature Selection 

After the extraction of 16 initial features, feature selection was conducted to 

identify the most relevant features that contributed significantly to the model's predictive 

power. This step was essential to enhance the model's accuracy and reduce potential 

multicollinearity. Two primary methods were employed: RandomForestClassifier and 

Correlation Analysis. 

3.4.1  RandomForestClassifier 

The RandomForestClassifier is a tree-based ensemble learning algorithm that 

operates by constructing multiple decision trees during training. Each tree is built using a 

random subset of features and samples, and the final prediction is made based on the 

aggregated output of all the trees. One of the significant advantages of this method is its 

ability to provide an importance score for each feature, indicating how much each feature 

contributes to the overall predictive power of the model. 
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In this study, RandomForestClassifier was used to rank the importance of features. 

The importance score assigned by this classifier helps to identify which features are most 

influential in reducing prediction uncertainty and improving model accuracy. This method 

is particularly valuable for feature selection because it accounts for complex, non-linear 

relationships between features and the target variable. Features with high importance 

scores are prioritized for inclusion in the final model, while those with lower scores can be 

deprioritized or removed, optimizing the model's performance and simplifying its structure. 

3.4.2  Correlation Analysis 

Correlation analysis was employed to identify and address potential 

multicollinearity among the features. Multicollinearity occurs when two or more features 

are highly correlated, meaning they provide overlapping or redundant information. 

Including highly correlated features in a model can lead to overfitting, reduce 

interpretability, and increase model complexity without adding predictive value. 

A correlation matrix was generated to quantify the relationships between features using 

Pearson correlation coefficients. The matrix displays the strength of the relationship 

between each pair of features, with coefficients ranging from -1 (strong negative 

correlation) to +1 (strong positive correlation). Features exhibiting high correlation (close 

to +1 or -1) were flagged for further investigation, and one feature from each correlated 

pair was removed to reduce redundancy. This step ensures that the remaining features 

contribute unique information, improving the generalizability and stability of the model. 

3.5 Classification and Prediction Models for Binding Affinity 

In this study, four machine learning models were implemented for both 

classification and regression tasks. The primary goal was to develop models capable of 

classifying binding affinities into low and high categories, as well as predicting continuous 

binding affinity values. For the classification task, a binding affinity threshold of 9 was 

set. Binding affinities above 9 were labeled as high affinity, while those below or equal to 

9 were classified as low affinity. This binary classification framework was used to 
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distinguish between stronger and weaker molecular interactions, which is critical for 

assessing the efficacy of antigen-antibody binding. 

For the prediction task, regression models were employed to estimate continuous 

binding affinity values, providing deeper insights into the strength of molecular 

interactions based on the selected features. 

3.5.1  Extreme Gradient Boosting (XGBoost) 

XGBoost is an advanced gradient boosting algorithm that builds an ensemble of 

decision trees sequentially. Each tree in the model learns from the errors of the previous 

one, which helps minimize prediction errors using gradient descent. This model is designed 

to optimize performance by focusing on minimizing residual errors from previous 

iterations. XGBoost is highly effective for handling large, structured datasets and is robust 

against missing values and class imbalances. 

In this study, XGBoost was implemented for both classification and regression 

tasks. Its ability to capture non-linear relationships between features, combined with 

boosting techniques, makes it highly suited for detecting subtle patterns in complex 

datasets. Regularization methods, such as shrinkage and subsampling, were applied to 

control overfitting, ensuring the model's generalization to new data. 

3.5.2  Random Forest 

Random Forest is an ensemble learning algorithm that constructs multiple decision 

trees using different random subsets of data and features. Each tree in the forest operates 

independently, and the final prediction is made by averaging the predictions (for 

regression) or by majority vote (for classification). The Random Forest model works by 

reducing variance and increasing prediction stability through its aggregation of multiple 

models, which mitigates overfitting. 

In this study, Random Forest was applied to both classification and regression tasks. 

Its strength lies in its ability to handle high-dimensional data while automatically ranking 
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the importance of features. By averaging the predictions of multiple decision trees, 

Random Forest reduces the likelihood of overfitting, resulting in more stable and reliable 

predictions. 

3.5.3  Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning model that finds the 

hyperplane that best separates data points into different classes (in classification) or fits a 

line (in regression). In SVM, the model works by maximizing the margin between the data 

points of different classes, ensuring that the model achieves the optimal separation of 

categories. For regression, Support Vector Regression (SVR) fits a hyperplane that 

captures the relationship between features and the target variable. 

In this study, SVM was used to classify binding affinities as either high or low 

based on the threshold of 9. The Radial Basis Function (RBF) kernel was employed to 

handle non-linearity in the data, allowing the model to classify complex relationships 

between features and binding affinity categories. SVR was also applied to predict 

continuous binding affinity values, capturing non-linear trends in the data. 

3.5.4  Deep Neural Network (DNN) 

Deep Neural Networks (DNNs) are a type of artificial neural network composed of multiple 

layers of neurons that process information through non-linear transformations. The model 

works by learning from the input data in successive layers, where each layer captures 

increasingly complex patterns in the data. DNNs are particularly useful for modeling 

intricate relationships in data where simpler machine learning models may struggle. 

In this study, a DNN was implemented using the PyTorch framework for both 

classification and regression tasks. The network architecture included multiple layers, 

consisting of an input layer, hidden layers, and an output layer. For the classification task, 

the DNN was trained to distinguish between high and low binding affinities. For the 

regression task, the network was trained to predict continuous binding affinity values. The 
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use of ReLU activation functions introduced non-linearity, allowing the model to capture 

complex interactions between molecular features. 

3.6 Model Evaluation 

After implementing the machine learning models for both classification and 

regression tasks, the next step involved evaluating the performance of each model. This 

evaluation process used different metrics depending on whether the task was classification 

or regression, ensuring a comprehensive assessment of model performance. 

3.6.1 Classification Evaluation 

For the classification tasks, where the goal was to classify binding affinities into 

low and high categories based on a threshold of 9, several metrics were employed to assess 

the effectiveness of the models: 

• Confusion Matrix 

A confusion matrix was generated for each model to examine the classification 

performance. The confusion matrix provides detailed insights into the number of true 

positives, true negatives, false positives, and false negatives. This helped in understanding 

where the models were performing well and where they were making errors, especially in 

misclassifying low and high binding affinities. 

The confusion matrix offers a visual representation of the classification outcomes, allowing 

for the identification of areas where the model might need improvement, such as reducing 

false positives or false negatives. 

• Accuracy 

This metric measures the proportion of correct classifications out of the total number of 

predictions, providing an overall measure of the model's performance. 

                                          Accuracy = 
No of correct prediction

No of total prediction
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• Precision 

 Precision represents the ratio of true positive classifications to the total number of positive 

predictions, reflecting how well the model avoids false positives. 

                                       Precision = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
 

• Recall  

Recall (or sensitivity) measures the proportion of actual positive instances that the model 

successfully identifies, highlighting the model’s capacity to detect high binding affinities. 

                                       Recall = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 

 

• F1 Score:  

The F1 score is the harmonic mean of precision and recall, providing a balanced measure 

in cases of uneven class distribution. 

                                      F1score = 𝟐 ∗  
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

3.6.2  Prediction Evaluation 

For the regression tasks, where the objective was to predict continuous binding 

affinity values, the following metrics were used to evaluate the models: 

• Mean Squared Error (MSE) 

 MSE measures the average of the squared differences between the predicted and actual 

values. A lower MSE indicates that the model's predictions are closer to the true binding 

affinity values. 

• R² Score  
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The R² score represents the proportion of variance in the binding affinity that the model 

explains. A score closer to 1 indicates a better fit to the data. 

• Scatter plot 

Scatter plots were generated to compare predicted vs. actual binding affinity values. Points 

close to the diagonal line on the plot indicate that the model’s predictions are well-aligned 

with the actual data, offering a visual confirmation of the model's accuracy. 
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CHAPTER 4: RESULTS AND DISCUSSION 

This chapter presents the key findings from the study, focusing on the machine learning 

models developed for classifying and predicting antigen-antibody binding affinities. It 

begins by outlining the steps taken in feature engineering, where a selection of the most 

relevant features was made to enhance the models' predictive capabilities. Further 

engineering techniques were applied to these features to optimize model performance, 

ensuring robust and accurate results. 

The analysis then delves into the evaluation of four machine learning models—

XGBoost, Random Forest, Support Vector Machine (SVM), and Deep Neural Network 

(DNN)—which were implemented to classify binding affinities into low and high 

categories, as well as predict continuous binding affinity values. Each model's performance 

was rigorously assessed using evaluation metrics such as accuracy, precision, recall, F1 

score, AUC-ROC, and Mean Squared Error (MSE). 

The discussion highlights how these models performed in distinguishing between low 

and high binding affinities, as well as in predicting affinity values. By comparing the results 

across different models, this chapter offers insights into the most effective approaches for 

modeling antigen-antibody interactions and predicting binding strengths, contributing to 

advancements in computational antibody design. 

4.1 Data Overview 

The dataset used in this research consisted of antigen-antibody complexes, each 

identified by unique PDB (Protein Data Bank) IDs. The primary data included structural 

information in the form of PDB files, which contained detailed representations of the 

antigen-antibody interactions. After the initial data collection, the PDB files were 

processed to conform to the Chothia numbering scheme, ensuring consistency in the 

representation of antibody variable regions. This step was crucial for accurately mapping 

the antibody's complementarity-determining regions (CDRs) and their interactions with the 

antigen. 
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Once the PDB files were filtered based on the preprocessing criteria, they 

underwent relaxation using PyRosetta, a robust computational toolkit designed for protein 

modeling. The relaxation process optimized the structural conformations of the antigen-

antibody complexes, minimizing steric clashes and improving the overall energy profile of 

the models. The output from this preprocessing and relaxation pipeline provided high-

quality, relaxed PDB files, which served as the foundation for subsequent feature extraction 

and model training. 

4.1.1 Experimental Methods Used to Measure Antibody Affinity 

In antibody research, several experimental techniques are employed to measure 

binding affinities between antibodies and antigens. The choice of method can influence the 

accuracy and precision of the binding measurements, which are essential for building 

reliable computational models. The dataset used in this study contains a variety of 

experimental methods, each contributing to the collection of affinity data. 

 

 

Figure 4.1: Bar chart of antibody affinity methods 
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The bar chart presented above illustrates the frequency of the top 8 experimental 

methods used to measure antibody affinity in the dataset. The most prominent method, 

Surface Plasmon Resonance (SPR), is shown to be the dominant technique, significantly 

surpassing other methods such as ITC (Isothermal Titration Calorimetry) and Biolayer 

Interferometry (BLI). Lesser-used methods, such as AUC and ELISA, are also 

represented but occur with much lower frequency. 

These methods play a crucial role in evaluating the strength of interactions, which 

is essential for guiding therapeutic antibody design and enhancing the prediction of binding 

affinities in computational models. 

4.1.2 Engineered vs. Non-Engineered Antibodies 

The dataset used in this study includes both engineered antibodies, which have been 

modified to enhance properties such as binding affinity and stability, and non-engineered 

antibodies, which occur in their natural form. Differentiating between these two types is 

crucial as it provides insight into how molecular engineering influences antibody function 

and their potential therapeutic applications. 

 

 

Figure 4.2: Pie chart of engineered and non-engineered samples 
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This pie chart illustrates the proportion of engineered and non-engineered samples 

in the dataset.  

Engineered samples refer to antibodies that have been modified or optimized to 

enhance certain properties, such as binding affinity or stability, whereas non-engineered 

samples are natural, unmodified antibodies that occur in their original form without any 

alterations. 

This emphasizes the distinction between engineered and non-engineered antibodies 

in the dataset, providing insights into how modifications may affect binding affinity, which 

is crucial for designing effective therapeutic antibodies and for understanding the role of 

naturally occurring antibodies in immune responses. 

4.1.3 Affinity Distribution Across the Dataset and Non-PPI Subset 

The strength of antigen-antibody binding is measured by binding affinity, and this 

study examines how these affinities are distributed across the dataset. The dataset includes 

both protein-protein interaction (PPI) and non-PPI interactions, which may display 

different binding characteristics due to the nature of the molecular interactions involved. 
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Figure 4.3: Histogram of affinity comparison 

The above histogram compares the Log10 (Affinity) values between the entire 

dataset (in orange) and the non-PPI subset (in blue). Both distributions center around 

similar affinity ranges, but the non-PPI subset exhibits a slightly narrower distribution 

compared to the overall data. 

The peak of the distribution is around a log10 affinity of -10 for both groups, 

indicating that most interactions in both the complete dataset and the non-PPI subset have 

moderate to strong binding affinities. The non-PPI data shows a more concentrated 

distribution, with fewer extreme values compared to the entire dataset. 

This histogram is important because it highlights the distribution of binding 

affinities across the entire dataset compared to the non-PPI subset, providing insights into 

the variability and strength of antibody-antigen interactions. The comparison allows for a 

better understanding of how specific types of interactions (non-PPI) may differ in binding 

characteristics from the overall dataset, with key trends in affinity measurements being 

identified and analyzed. 
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4.1.4 Resolution Distribution of Structural Data 

Structural resolution is a key factor in determining the quality and accuracy of the 

molecular models used in computational predictions. Higher-resolution structures provide 

more reliable details on molecular interactions, which are crucial for building accurate 

models of antibody-antigen binding. The dataset includes structures with varying 

resolution levels, which directly affect the precision of the binding affinity predictions. 

 

Figure 4.4:  Density plot of distribution of resolution values 

The refined density plot above represents the distribution of resolution values in 

the dataset. The x-axis shows the resolution, with lower values indicating higher-quality 

structural data, and the y-axis represents the density of occurrences for each resolution 

value. 

Resolution refers to the quality of the structural data, typically measured in 

Ångströms. Lower resolution values indicate higher-quality structures. This plot shows a 

clear peak around 2 Ångströms, signifying that most structural data in the dataset is of 

high quality. The density gradually decreases as resolution values increase, indicating 

fewer entries with lower-quality data.Understanding the resolution distribution is crucial 

for assessing the reliability and accuracy of the structural data used in antibody-antigen 

binding affinity predictions. 
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4.2 Feature Engineering 

In their study, Miller et al. (2023) explored over 200 distinct features related to 

antigen-antibody interactions, encompassing a wide range of structural, energetic, and 

interaction-based metrics. These features were derived from advanced techniques such as 

molecular surface analysis, interaction networks, and residue-level interaction analysis, 

offering valuable insights into the factors influencing binding affinity. Their 

comprehensive approach highlighted the complexity of these interactions and the need for 

carefully selected features when predicting binding affinity[52]. 

Building on their work, this study focused on refining and narrowing down the most 

relevant features for the specific task of predicting binding affinity. A total of 16 high-

importance features were selected based on their potential to provide meaningful 

predictive power. These features were chosen to balance complexity and interpretability 

while ensuring they captured the key structural and energetic aspects of antigen-antibody 

binding. 

Additionally, further feature engineering techniques were applied to these 

selected features to enhance their predictive capability. These techniques included 

normalization, scaling, and transformations to improve model performance and ensure that 

the features were appropriately aligned for the machine learning algorithms used. By 

preprocessing the features in this way, we ensured that the models could effectively capture 

the relationships between the features and the binding affinities, thus optimizing the 

predictive accuracy. 
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Table 4.1: Features involved in binding affinity with overview  

Feature Set Feature Name Overview 

SIN Features SIN_L1_avg_epilope Measures the average interaction strength between the L1 chain of the 

antibody and the epitope. 

SIN Features SIN_avg_paratope Captures the average interaction strength across the entire paratope (the 

antigen-binding site on the antibody). 

Amino Acid 

Count feature 

aa_counts_IE Represents interaction energy (IE) of amino acids at the antigen-antibody 

interface. 

Amino Acid 

(aa) Counts 

Features 

aa_counts_RE Refers to residue-level counts, capturing how often certain residues 

appear at the interface. 

Amino Acid 

Counts by CDR 

aa_counts_CDR_L3_ 

charged_aromatic 

Tracks the presence of charged and aromatic residues in the L3 chain of 

the antibody. 

Amino Acid 

Counts by CDR 

aa_counts_CDR_L2_ 

aromatic_aromatic 

Measures aromatic residues in the L2 chain that interact with aromatic 

residues in the antigen. 

PyRosetta-

based Features 

pyrosetta_Interaction_ 

total_energy 

Quantifies the total interaction energy between the antibody and antigen. 

PyRosetta-

based Features 

pyrosetta_sc_total Measures shape complementarity (sc_total) between the antigen and 

antibody. 

dMaSIF-site 

Features 

dMaSIF_avg_paratope Measures the average surface interaction score across the entire paratope. 

dMaSIF-site 

Features 

dMaSIF_L2_total Captures the total molecular surface interaction score for the L2 chain. 

AIF Features AIF_L1_avg_epilope Represents the fitness of residues in the L1 chain that interact with the 

epitope. 

AIF Features AIF_avg_paratope Reflects the overall fitness of the paratope residues in terms of their 

contribution to the antigen-antibody interface. 
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Multivalent 

Interaction 

Features 

multivalent_L1 Measures the number of epitope sites with multivalent interactions 

involving the L1 chain. 

Multivalent 

Interaction 

Features 

multivalent_L2 Tracks multivalent interactions for the L2 chain. 

Length and 

Positional 

Features 

H3_length Represents the length of the H3 region, which often plays a crucial role 

in antigen recognition and binding. 

Length and 

Positional 

Features 

L3-9,10-A Refers to specific residues in the L3 chain (positions 9 and 10). 

 

After extracting the initial 16 features, the next step involved selecting the most relevant 

features that contributed significantly to the model's predictive power. Feature selection 

was performed using tree-based methods and correlation analysis to identify the most 

influential features and reduce multicollinearity. 

4.2.1  Tree-Based Feature Importance: 

One of the primary methods used for feature selection was 

RandomForestClassifier, a tree-based ensemble model that naturally ranks features based 

on their importance in improving the model's prediction accuracy. The 

RandomForestClassifier assigns an importance score to each feature, which is 

proportional to its contribution to reducing uncertainty (impurity) during the decision-

making process. 

These features were identified as the most crucial predictors and were selected for 

further analysis. The bar plot (Figure 1) illustrates the importance of each feature, with 

pyrosetta_sc_total and pyrosetta_Interaction_total_energy having the highest 

importance scores, indicating their significant role in predicting binding affinity. 
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Figure 4.5: Feature importance bar plot  

This bar plot visualizes the importance scores assigned to each feature by the 

RandomForestClassifier. Based on the bar plot, the features with the highest importance 

scores are pyrosetta_sc_total and pyrosetta_Interaction_total_energy, which reflect 

key aspects of molecular interactions, specifically energy-related metrics. These scores 

indicate their critical role in determining binding affinity and protein-ligand stability. 

Additionally, features related to surface interaction, such as dMaSIF_L2_total and 

AIF_L1_avg_epilope, are also highlighted for their contribution to how well a ligand fits 

and binds to a protein's surface, further affirming their importance in the model. 

The epitope and paratope features, including SIN_L1_avg_epilope and 

dMaSIF_avg_paratope, are ranked highly as well, indicating that these regions, crucial 

for ligand-receptor interaction, play an essential role in binding properties. Furthermore, 

the multivalent_L1 feature is shown to be more influential than multivalent_L2, which 

suggests that multivalency in this region significantly impacts binding. Features associated 

with charge and aromatic amino acid counts, such as aa_counts_CDR_L3_charged_ 

aromatic and aa_counts_CDR_L2_aromatic also contribute by influencing molecular 

affinity through hydrogen bonding and hydrophobic interactions. The H3_length feature, 

despite being structural, shows importance, suggesting that the length of this region affects 

protein-ligand interactions and overall binding properties. 
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. 

4.2.2  Correlation Analysis: 

In addition to feature importance scores, a correlation matrix (Figure 2) was 

generated to examine the relationships between the features. The correlation matrix helps 

identify multicollinearity, which occurs when two or more features are highly correlated. 

In such cases, the redundant features can be removed or combined to simplify the model 

and improve performance. 

 

Figure 4.6: Feature correlation matrix 

This heatmap represents the correlation between the features, with colors representing the 

strength of the correlation. By analyzing this matrix, we identified potential 

multicollinearity issues, and redundant features were removed to improve the model’s 

robustness. 

The correlation matrix further defends the selected features by showing generally 

low to moderate correlation among them, indicating that they contribute unique 

information and are not redundant. Although features like pyrosetta_sc_total and 
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pyrosetta_Interaction_total_energy exhibit some correlation due to their similar energy-

based nature, they still provide distinct insights into different aspects of molecular scoring, 

which justifies including both. Features like aa_counts_CDR_L2_aromatic_aromatic 

and multivalent_L1 show minimal correlation with others, demonstrating that they offer 

complementary information. The independence of key structural and functional metrics, 

such as SIN_L1_avg_epilope and dMaSIF_L2_total, underscores their unique 

contributions to the model. 

By combining RandomForestClassifier feature importance and correlation analysis, 

we selected 10 features from the initial 16. These selected features were then used in the 

final model to ensure both high predictive power and minimal multicollinearity, ultimately 

improving the overall model performance. 

• SIN_L1_avg_epilope 

• aa_counts_IE 

• aa_counts_CDR_L3_charged_aromatic 

• aa_counts_CDR_L2_aromatic_aromatic 

• pyrosetta_Interaction_total_energy 

• pyrosetta_sc_total 

• dMaSIF_L2_total 

• AIF_L1_avg_epilope 

• multivalent_L1 

• H3_length 
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4.3 Data Preparation 

Data preparation is a critical step in ensuring that the dataset is properly formatted 

and cleaned before any machine learning techniques are applied. This process includes 

handling missing values, normalizing feature scales, and addressing class imbalances to 

ensure more accurate and reliable results during model training and evaluation. 

4.3.1 Handling Missing Data 

In real-world datasets, missing values are a common challenge and can significantly 

impact the performance of machine learning models. To address this issue, missing values 

in the dataset were handled by replacing them with the median value of each respective 

feature. This imputation strategy helps to preserve the overall distribution of the data 

without introducing bias that could occur with methods like mean imputation. The median 

is particularly robust to outliers, making it an effective choice for datasets with skewed 

distributions. 

Using the median ensures that the missing values are substituted in a manner that 

maintains the dataset’s statistical integrity, allowing the model to operate on complete data 

and reducing the risk of data distortion. 

4.3.2 Normalization of Features Using Scaling 

Machine learning models often require features to be on a similar scale to ensure 

effective learning, especially in algorithms that rely on distance measurements or gradient-

based optimization. In this dataset, feature scaling was applied using StandardScaler. 

StandardScaler transforms the features by subtracting the mean and scaling them to unit 

variance, resulting in a standard normal distribution with a mean of 0 and a standard 

deviation of 1. 

This ensures that all features contribute equally to the model and prevents features 

with larger ranges from dominating those with smaller ranges. By applying feature scaling, 
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the model's learning process is optimized, particularly in cases where gradient-based 

algorithms or distance-based models are used. 

4.3.3 Data Balancing Using SMOTE 

Handling imbalanced data is a key concern in many machine learning tasks, as it 

can skew model performance and reduce its ability to generalize across different data 

distributions. In this context, the dataset under consideration showed an imbalance between 

the samples, with significantly more instances of low binding affinity compared to high 

binding affinity. This imbalance can lead to biased learning outcomes, where the model 

may favor the majority group, resulting in poor generalization for the under-represented 

group (Figure 1). 

To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE) 

was applied. SMOTE generates synthetic data points for the under-represented class, 

helping to balance the dataset. This technique reduces the risk of overfitting to the majority 

class by ensuring that both groups are adequately represented during training. 

Before applying SMOTE, the data distribution was as follows: 

• Low Binding: 272 samples 

• High Binding: 156 samples 

After applying SMOTE, the dataset increased to 552 samples, achieving the following 

distribution: 

• Low Binding: 276 samples 

• High Binding: 276 samples 

Figure 1 below shows the class distribution before and after applying SMOTE. The 

application of SMOTE ensured that the data was balanced, providing the model with a 

more evenly distributed dataset for learning purposes. 
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Figure 4.7: Data Distribution Before and After SMOTE 

 

By balancing the dataset through SMOTE, the model becomes better equipped to 

handle variability across the dataset, improving its overall learning capabilities and 

minimizing bias that can occur due to the original imbalance. 

4.4 Classification Model 

Various machine learning algorithms were employed to learn patterns from the data 

and optimize performance metrics through model tuning and evaluation. The objective of 

this step was to develop models that generalize well to unseen data, ensuring robust and 

reliable performance in real-world applications. The focus was on building classification 

models to predict low and high binding affinities. The dataset was categorized into two 

classes based on a binding affinity cutoff value of 9, where values above the cutoff were 

labeled as high binding and those below as low binding. This binary classification allowed 

for the development of machine learning models that could differentiate between the two 

binding categories. 

4.4.1 Model Selection 

To achieve this goal, four different machine learning models were selected: 

XGBoost, Random Forest, Support Vector Machine (SVM), and a Neural Network trained 
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using PyTorch. Each model was chosen for its distinct strengths in handling complex 

datasets and optimizing performance. 

XGBoost, a gradient-boosting algorithm, was chosen for its efficiency in building 

sequential decision trees and its ability to handle structured and imbalanced datasets. 

Random Forest, an ensemble learning method, builds multiple decision trees and combines 

their predictions, providing robustness and accuracy while reducing the risk of overfitting. 

SVM, known for its use of hyperplanes to separate data into classes, was selected due to 

its effectiveness in binary classification tasks where the margin between classes is clearly 

defined. Finally, a Neural Network implemented using PyTorch was chosen to capture 

complex non-linear relationships in the dataset, offering flexibility in feature interactions. 

To optimize each model's performance, we employed GridSearchCV, a systematic 

hyperparameter tuning method. This approach also included k-fold cross-validation, which 

helps prevent overfitting and ensures that the models generalize well to new, unseen data. 

4.4.2 Model results and evaluation 

The performance of the selected machine learning models was evaluated using 

several key metrics: accuracy, precision, recall, F1 score, and the area under the ROC curve 

(AUC). These metrics provide a comprehensive view of how well each model performed 

on the dataset, allowing us to assess the trade-offs between true positives, false positives, 

and overall prediction quality. Below is a summary of the results achieved by each model: 

Table 4.2: Classification evaluation report  

Model Accuracy Precision Recall F1 Score AUC 

XGBoost 0.973 1.000 0.942 0.970 0.996 

RandomForest 0.937 0.941 0.923 0.932 0.991 
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Model Accuracy Precision Recall F1 Score AUC 

SVM 0.748 0.722 0.750 0.736 0.815 

Neural Network 0.757 0.727 0.769 0.748 0.810 

 

Each model's performance was optimized through a rigorous process of 

hyperparameter tuning using GridSearchCV, and the results presented here are reflective 

of their best configurations. 

In the following sections, we will delve into the specific results for each model, 

discussing their confusion matrices, the best hyperparameters identified, and how they 

performed overall.  

4.4.2.1 Extreme Gradient Boosting 

The XGBoost model performed effectively in distinguishing between low 

and high binding affinities. The confusion matrix indicates the accuracy of the 

model in classifying the two categories. Specifically: 

• Low Binding (0): The model correctly classified 59 out of 59 instances, achieving 

100% accuracy for this class. 

• High Binding (1): Out of 52 actual high binding instances, the model correctly 

predicted 49, resulting in a true positive rate of approximately 94.2%. Only 3 

instances were misclassified as low binding, demonstrating strong performance in 

identifying high binding affinities. 
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              Figure 4.8: Confusion matrix for XGBoost 

The best hyperparameters for the XGBoost model, as identified through GridSearchCV, 

are as follows: 

• colsample_bytree: 0.6: This parameter controls the fraction of features (columns) 

to be randomly sampled for each tree. Using 60% of the features ensures diverse 

trees, preventing overfitting. 

• gamma: 0.3: The gamma parameter adds regularization, ensuring a minimum loss 

reduction required to make a further split on a leaf node. This helps in controlling 

the complexity of the model by reducing overfitting. 

• learning_rate: 0.1: The learning rate determines how much the model changes 

with each iteration. A value of 0.1 is moderate and allows the model to converge 

slowly, thus improving generalization. 

• max_depth: 6: This restricts the maximum depth of each tree. A depth of 6 

prevents the model from becoming too complex, reducing the risk of overfitting. 

• min_child_weight: 1: This parameter controls the minimum sum of instance 

weight needed in a child. A lower value allows for more splits, improving the 

model's ability to capture subtle patterns. 
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• n_estimators: 100: The number of trees in the ensemble. A value of 100 ensures 

enough complexity while keeping the computation time reasonable. 

• subsample: 0.8: This parameter controls the fraction of observations (rows) used 

to train each tree. Using 80% of the data helps in making the model robust by 

preventing it from overfitting to specific data samples. 

The XGBoost model displayed strong predictive capability, particularly in identifying high 

binding affinities, with an accuracy of 97.3%. The model's hyperparameter tuning 

contributed to its balance between precision and recall, ensuring that it generalizes well to 

unseen data while minimizing overfitting. 

 

 

4.4.2.2 Random Forest 

The Random Forest model also exhibited strong performance in 

distinguishing between low and high binding affinities. The confusion matrix 

reflects the model's accuracy in classifying the two categories: 

• Low Binding (0): The model correctly classified 56 out of 59 instances, resulting 

in a high accuracy of 94.92% for this class. Only 3 instances were misclassified as 

high binding. 

• High Binding (1): Out of 52 actual high binding instances, the model correctly 

predicted 48, achieving a true positive rate of approximately 92.31%. Only 4 

instances were misclassified as low binding. 
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 Figure 4.9: Confusion Matrix for random forest 

The best hyperparameters for the Random Forest model, as identified through 

GridSearchCV, are as follows: 

• max_depth: 10: This limits the depth of each tree, helping the model avoid 

becoming too complex and thus reducing the risk of overfitting. 

• min_samples_leaf: 2: This parameter defines the minimum number of samples 

required to be at a leaf node. Setting it to 2 ensures that the trees do not become too 

finely tuned to the data, thus improving generalization. 

• min_samples_split: 5: This controls the minimum number of samples required to 

split an internal node. A value of 5 encourages the model to only make splits where 

there is a meaningful division in the data, preventing overfitting. 

• n_estimators: 150: This defines the number of trees in the forest. A higher number 

of trees, like 150, generally provides more robust and stable predictions without 

significantly increasing computation time. 

The Random Forest model displayed excellent classification performance, particularly 

in identifying low binding affinities. With an overall accuracy of 93.7%, the model 
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effectively generalized to the dataset. Its hyperparameters balanced the complexity of the 

trees while ensuring robust prediction. 

4.4.2.3 Support vector machine 

The SVM (Support Vector Machine) model demonstrated moderate 

performance in distinguishing between low and high binding affinities, as reflected 

in the confusion matrix: 

• Low Binding (0): The model correctly classified 44 out of 59 instances, achieving 

an accuracy of 74.58% for this class. However, 15 instances were misclassified as 

high binding. 

• High Binding (1): Out of 52 actual high binding instances, the model correctly 

predicted 39, resulting in a true positive rate of 75%. However, 13 instances were 

misclassified as low binding, indicating room for improvement in capturing high 

binding affinities. 

 

 

Figure 4.10: Confusion matrix for SVM 

The best hyperparameters for the SVM model, as identified through GridSearchCV, 

are as follows: 
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• C: 1: This regularization parameter controls the trade-off between achieving a low 

training error and a low testing error. A value of 1 provides a good balance, 

preventing overfitting while still capturing patterns in the data. 

• gamma: 'scale': This parameter defines how far the influence of a single training 

example reaches. Using 'scale' adjusts gamma based on the number of features, 

ensuring proper regularization and avoiding overfitting. 

• kernel: 'rbf' (Radial Basis Function): This kernel is commonly used for non-linear 

data. It helps in mapping the input features into higher dimensions to find a linear 

separation in complex data. 

The SVM model showed adequate classification performance with an accuracy of 

74.8%. While it performed well in some cases, particularly in identifying low binding 

affinities, it misclassified a significant number of instances for both classes. Its 

hyperparameters provide a balance between complexity and generalization but might 

benefit from further tuning or additional features to improve performance. 

4.4.2.4 Neural Network 

The Deep Neural Network (DNN) model, as depicted in the confusion 

matrix, displayed moderate performance in distinguishing between low and high 

binding affinities. Below is a breakdown of its classification results: 

• Low Binding (0): The model correctly classified 42 out of 59 instances, achieving 

an accuracy of 71.19% for this class. However, 17 instances were misclassified as 

high binding, indicating the model’s struggle to perfectly capture the patterns for 

low binding affinities. 

• High Binding (1): Out of 52 actual high binding instances, the model correctly 

predicted 39, resulting in a true positive rate of 75%. Nevertheless, 13 instances 

were incorrectly classified as low binding. 
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Figure 4.11: Confusion matrix for neural network 

The architecture of this deeper neural network consists of three hidden layers with 

256, 128, and 64 neurons respectively. It employs LeakyReLU activations and dropout to 

prevent overfitting, while a Sigmoid function in the final layer ensures that predictions are 

between 0 and 1, suitable for binary classification. The model is optimized using Adam 

optimizer and trained using Binary Cross-Entropy Loss. 

The network was trained with the following tunable hyperparameters: 

• Learning Rate (lr) = 0.0001: This controls how much to adjust the model with 

respect to the loss each time the model weights are updated. A lower learning rate 

was selected to ensure the model converges gradually without skipping over 

optimal weights. 

• Batch Size = 32: Mini-batch gradient descent was used with batches of size 32 to 

balance computational efficiency and model convergence. 

• Epochs = 200: The model was trained for 200 epochs, allowing it to learn from the 

data iteratively. 

The Deeper Neural Network model showed moderate classification performance with 

an accuracy of 73.0%. While its recall for high binding affinity was satisfactory (75%), it 
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struggled to distinguish low binding instances, misclassifying 17 out of 59. Although the 

model captures non-linear relationships effectively, further tuning or additional training 

data may improve its performance. The AUC of 0.814 suggests a decent balance between 

precision and recall, but there's room for optimization. 

4.4.3 Result review 

Among the four models evaluated, XGBoost emerged as the top performer. Its 

ensemble of decision trees, gradient boosting mechanism, and effective regularization 

allowed it to capture complex patterns while preventing overfitting. The model's strong 

results across precision, recall, and AUC make it the most suitable option for distinguishing 

between low and high binding affinities. The hyperparameter tuning, particularly the 

control over learning rate, tree depth, and subsampling, ensured that XGBoost balanced 

complexity with performance, making it an excellent choice for this task. 

RandomForest, while slightly behind XGBoost, still demonstrated robust performance 

without signs of overfitting. Its reliance on random sampling and averaging over multiple 

trees leads to a strong generalization ability. Although its metrics did not surpass XGBoost, 

the model's more stable behavior suggests that it may perform better on unseen data due to 

its nature of reducing variance. In contrast, SVM and the Deeper Neural Network struggled 

with tuning challenges and did not achieve the same level of generalization as the tree-

based models. SVM's sensitivity to the correct kernel choice and the neural network's 

requirement for extensive training likely limited their potential in this context. Overall, 

RandomForest, with its simplicity and avoidance of overfitting, stands as a reliable 

contender for future applications. 

4.5 Prediction Model 

The primary goal of this phase is to predict the binding affinity of molecules based on the 

selected features from the dataset. Unlike classification tasks, where the outcome is 

categorical, this is a regression task where the target variable is continuous. The binding 

affinity, which reflects the strength of interaction between molecules, is a critical parameter 

in many scientific and pharmaceutical studies. 
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Through comprehensive training and tuning processes, these models are expected to 

generalize well and offer reliable predictions for future unseen data, allowing for robust 

performance in practical applications. 

4.5.1 Model Selection 

In the prediction task for binding affinity, we employed four machine learning 

models: XGBoost, Random Forest, Support Vector Machine (SVM), and a Neural 

Network. The objective of this approach was to predict binding affinity values based on 

selected features from the dataset. Each model was trained, evaluated, and fine-tuned using 

a systematic grid search approach, applying cross-validation to optimize the 

hyperparameters for better predictive performance. 

The process began with the preparation of the dataset, where features were selected 

based on prior analysis. Following this, models were trained using a combination of grid 

search for hyperparameter tuning and k-fold cross-validation to ensure the models would 

generalize well to unseen data. Each model's performance was evaluated using Mean 

Squared Error (MSE) and the R² Score, two critical metrics for regression tasks. 

Additionally, scatter plots of actual vs predicted binding affinities were generated to 

visualize how well the models performed, and learning curves were plotted to assess how 

the models improved as more data was used during training. This comprehensive approach 

ensured that each model's strengths were fully leveraged, while also providing a detailed 

understanding of where each model performed best in the prediction of binding affinities. 

4.5.2 Model Results and Evaluation 

The results of the four machine learning models—XGBoost, Random Forest, SVM, 

and Neural Network—are evaluated based on two primary regression metrics: Mean 

Squared Error (MSE) and R² Score. These metrics help determine how well the models 

performed in predicting the binding affinity. Mean Squared Error (MSE) measures the 

average squared difference between the predicted and actual values. A lower MSE 

indicates a better fit. R² Score represents the proportion of variance in the target variable 
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that is predictable from the features. A higher R² score, closer to 1, indicates a better fit of 

the model to the data. 

The table below summarizes the model performance: 

Table 4.3: Prediction evaluation report 

Model MSE R² Score 

XGBoost 0.527 0.704 

RandomForest 0.319 0.814 

SVM 0.877 0.640 

Neural Network 1.767 0.526 

The RandomForest model achieved the lowest MSE and the highest R² Score, 

indicating that it outperformed the other models in terms of predictive accuracy. The 

XGBoost model also demonstrated strong performance, while the SVM and Neural 

Network models showed lower predictive capabilities, as reflected in their higher MSE and 

lower R² Scores. 

4.5.2.1 Extreme Gradient Boosting 

The XGBoost model was applied to predict binding affinity, achieving an 

MSE of 0.527 and an R² score of 0.704. The relatively low MSE indicates that the 

model's predicted binding affinity values are close to the actual values, while the 

R² score of 0.704 shows that 70.4% of the variance in the binding affinity can be 

explained by the model. These metrics reflect the model’s strong performance in 

capturing the underlying patterns in the data. 
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The best hyperparameters for the XGBoost model are as follows: 

• colsample_bytree (0.8): This parameter controls the fraction of features used for 

each tree, promoting diversity and reducing overfitting. 

• gamma (0.3): Gamma adds regularization by controlling the minimum loss 

reduction required to make a split, helping to simplify the model and avoid 

overfitting. 

• learning_rate (0.1): The learning rate determines the step size for each update, 

with a moderate value allowing for slower, more stable convergence. 

• max_depth (8): This limits the depth of each tree, preventing excessive complexity 

while capturing relevant patterns. 

• n_estimators (200): The number of trees in the model, providing sufficient 

complexity to improve predictive accuracy without overfitting. 

 

Figure 4.12: XGBoost model - Actual vs predicted binding affinity scatter plot  

The scatter plot of Actual vs Predicted Binding Affinities (Figure X) visually illustrates 

the model’s predictions. Most data points are concentrated along the red diagonal line, 



70 

 

indicating that the predicted values are well-aligned with the actual values. This further 

confirms the model’s reliability in predicting binding affinity across different samples. 

4.5.2.2 Random Forest 

The Random Forest model was applied to predict binding affinity, yielding 

a Mean Squared Error (MSE) of 0.319 and an R² score of 0.814. The lower MSE 

indicates that the predicted binding affinity values closely match the actual values, 

while the R² score of 0.814 demonstrates that 81.4% of the variance in binding 

affinity is explained by the model. This highlights the model's strong predictive 

capability. 

Here is a breakdown of the Random Forest hyperparameters: 

• max_depth: 10: This limits the depth of each tree, preventing them from becoming 

overly complex and reducing the risk of overfitting. 

• n_estimators: 200: This defines the number of trees in the forest. A higher number 

of trees improves the model's stability and accuracy by averaging over multiple 

predictions. 

• min_samples_leaf: 2: This sets the minimum number of samples required to be at 

a leaf node, controlling how much a tree can be split. 

• min_samples_split: 5: This specifies the minimum number of samples required to 

split an internal node, controlling the growth of the tree and preventing overfitting. 
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Figure 4.13: Random Forest model - Actual vs predicted binding affinity scatter plot 

 

The scatter plot of Actual vs Predicted Binding Affinities (Figure X) provides a 

clear visualization of the model’s performance. A large concentration of data points along 

the red diagonal line indicates that the predicted values closely follow the actual values. 

The alignment of these points reinforces the model's reliability in predicting binding 

affinity across different samples. 

4.5.2.3 Support Vector Machine 

The Support Vector Machine (SVM) model was applied to predict binding 

affinity, achieving an MSE of 0.877 and an R² score of 0.640. While the 

performance is not as strong as other models like Random Forest or 

XGBoost, the SVM still captures a substantial portion of the variance in the 

binding affinity. The R² score indicates that 64% of the variance in binding 

affinity can be explained by the model, although the MSE suggests that the 

predictions are less accurate than the leading models. 
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The best hyperparameters for the SVM model included a C value of 1, which 

controls the trade-off between achieving a low error on the training data and minimizing 

model complexity, ensuring the model does not overfit. The gamma parameter set to 

'scale' adjusts the kernel width to automatically account for the feature variance. The 

linear kernel was chosen, which assumes a linear relationship between features and the 

target, and proved sufficient for the data structure. 

 

Figure 4.14: SVM model - Actual vs predicted binding affinity scatter plot 

The scatter plot (Figure X) of actual vs. predicted binding affinities shows a wider 

spread of points around the diagonal red line compared to the other models, indicating 

slightly higher variability in predictions. Despite this, the SVM model demonstrates 

reasonable predictive performance with some room for improvement in future iterations. 

4.5.2.4  Neural Network 

For the neural network model, we implemented a a Deep Neural Network 

(DNN) using PyTorch, consisting of four fully connected layers. The model starts 

with an input layer that takes in 10 selected features from the dataset, passing them 

through the first fully connected layer with 64 neurons. This is followed by the first 

hidden layer, which contains 32 neurons and uses the ReLU activation function to 
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introduce non-linearity. The output from this hidden layer is passed to the second 

hidden layer, containing 16 neurons, where ReLU is again applied. Finally, the 

output layer consists of a single neuron responsible for predicting the binding 

affinity. Since this is a regression task, no activation function is applied in the 

output layer. 

The neural network was trained using the Mean Squared Error (MSE) as the loss 

function and optimized using the Adam optimizer with a learning rate of 0.001. The 

training process was conducted over 100 epochs with a batch size of 32, ensuring that the 

model could iteratively update its weights to minimize the error between the predicted and 

actual binding affinity values. 

After training, the neural network achieved an MSE of 1.767 and an R² score of 

0.526, reflecting moderate performance. While the model captured some patterns in the 

data, the relatively higher MSE and lower R² compared to other models suggest that the 

neural network struggled to generalize as effectively. In terms of hyperparameters, we 

trained the model for 200 epochs, allowing for sufficient iterations to learn from the data. 

A smaller learning rate of 0.0005 was chosen to ensure gradual convergence, while a batch 

size of 32 was used to optimize learning efficiency during training. 

 

Figure 4.15: Neural network model - Actual vs predicted binding affinity scatter plot 
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The scatter plot of Actual vs. Predicted Binding Affinity (Figure X) demonstrates 

that the neural network predictions are more spread out compared to the XGBoost and 

Random Forest models. While some predicted values align with the actual values (close to 

the diagonal line), there is a noticeable dispersion, indicating that the neural network 

struggled to consistently capture the relationship between features and binding affinity. 

 

4.5.3 Result review 

In the evaluation of machine learning models for predicting binding affinity, the 

performance of the four models—XGBoost, Random Forest, SVM, and Neural Network—

showed varying degrees of success. Among the models, Random Forest demonstrated the 

best overall performance with a low MSE of 0.319 and an R² score of 0.814. This indicates 

that 81.4% of the variance in binding affinity was successfully captured by the model. The 

Random Forest model's success can be attributed to its ensemble learning approach, which 

builds multiple decision trees and averages the results. This method helps reduce 

overfitting and enhances the model’s generalization ability. Furthermore, the 

hyperparameters—such as limiting the tree depth to 10 and using 200 estimators—ensured 

that the model remained flexible yet not overly complex. The balance between complexity 

and simplicity allowed Random Forest to consistently deliver accurate predictions across 

different samples, making it the best-performing model in this task. 

On the other hand, the Neural Network showed the least promising results, with an MSE 

of 1.767 and an R² score of 0.526, indicating that it struggled to capture the underlying 

patterns in the data. The challenge with the neural network model lies in the need for a 

larger dataset or more complex architectures to fully leverage its potential. Deep learning 

models typically excel when trained on vast amounts of data, and in this case, the dataset 

may not have been extensive enough for the network to generalize well. Additionally, while 

the neural network could have benefited from more fine-tuned hyperparameters or 

regularization techniques, the spread of predictions in the scatter plot indicates its difficulty 

in capturing the relationship between the features and the target variable. 
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While XGBoost and SVM also performed well, their results were not as strong as Random 

Forest. XGBoost achieved an MSE of 0.527 and an R² score of 0.704, and its strong 

performance can be credited to its use of boosting techniques and effective handling of 

overfitting. SVM, with an MSE of 0.877 and an R² score of 0.640, showed reasonable 

predictive capabilities but exhibited more variability in its predictions due to its linear 

kernel and sensitivity to noise in the data. However, both models showcased their strengths 

in prediction accuracy and model complexity, with XGBoost emerging as a competitive 

choice for predicting binding affinity. 

In conclusion, Random Forest and XGBoost proved to be the most reliable models for 

predicting binding affinity, while SVM and the Neural Network faced challenges in terms 

of generalization and predictive accuracy. 

 

 

 

 

 

CHAPTER 5: CONCLUSIONS AND FUTURE RECOMMENDATION 

Antibody-antigen binding affinity plays a critical role in therapeutic antibody 

development, with strong and specific binding being essential for the effectiveness of 

treatments. Traditional methods for measuring binding affinities are both costly and time-

consuming, necessitating the development of more efficient computational approaches. 

This study successfully integrates machine learning and deep learning techniques to 

classify and predict antibody-antigen binding affinities. Using a dataset of antibody-

antigen complexes, we extracted key structural features and implemented models such as 

Random Forest, XGBoost, Support Vector Machines (SVM), and Neural Networks to 
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predict binding affinities. Among the models, Random Forest emerged as the most 

effective, providing high predictive accuracy for both classification and regression tasks. 

This study demonstrates the potential of combining structural data with advanced machine 

learning techniques to enhance our ability to predict binding affinities, offering a valuable 

tool for the future of therapeutic antibody design. 

However, this research has some limitations. The relatively small size of the dataset 

may introduce biases and limit the generalizability of the models. Additionally, while the 

machine learning models showed strong predictive power, further validation with larger 

and more diverse datasets is essential to confirm the robustness and broader applicability 

of the models. Expanding the dataset and improving the feature selection process could 

further optimize the accuracy and reliability of the predictions. 

 Future work should aim to develop a comprehensive pipeline that takes antibody-

antigen data as input and provides a full range of analysis plots and insights. This pipeline 

would automate tasks such as preprocessing antibody-antigen structural data, optimizing 

structures, and integrating machine learning models to classify and predict binding 

affinities. It would generate outputs like binding energy trends, RMSD plots, and predicted 

affinity scores, enabling researchers to easily interpret results and make informed decisions 

for therapeutic design. The flexible architecture would allow future enhancements, making 

it a valuable tool for antibody research and biopharmaceutical applications. 
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