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Abstract
Requirements management involves the systematic organization and monitoring of the needs

and specifications of a software system throughout its development stages. This intricate

process necessitates efficient teamwork, communication, and monitoring. Software

requirements gathering is a critical phase in software development, influencing the success

and quality of the final product. Traditional methods of requirements gathering often rely on

manual processes, leading to challenges such as ambiguity, inconsistency, and incomplete

specifications.

Requirements gathering is a crucial phase in software development, where stakeholders'

needs and expectations are collected and documented. The process is often time-consuming,

prone to errors, and requires significant manual effort.

AI-based tools have emerged to support this process, leveraging natural language processing

(NLP), machine learning (ML), and other techniques to improve efficiency, accuracy, and

effectiveness.

Artificial intelligence (AI) offers the potential to streamline certain facets of requirements

management like traceability, Quantification and impact analysis. By leveraging machine

learning algorithms, it's feasible to discern the connections between requirements and other

elements like test cases, project knowledge and code.

AI can play a significant role throughout software development life-cycle (SDLC) but in this

research I would like to particularly focus on how AI based requirements gathering can help

in better Knowledge management and Portfolio management by enhancing requirements

traceability,standardization, quantification, decision-making, and overall project prediction

performance, which in turn can help an organization achieve Capability maturity model

(CMMI) level 3 and 4.

Keywords: Chatbot, Semantic annotation, NLP, Requirements engineering, CMMI, Project

management, Knowledge management, portfolio management, Lang-chain, Open-AI.
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Chapter 1

Introduction

With the advent of AI, every aspect of SDLC has been revolutionized. From the conception to

the final product AI is capable of contributing significantly at each step.

One of the most important and often neglected parts of 'Project management’ is the “closure”

of the project in an appropriate way. Traditionally software houses and development teams

consider handing off project to the client and successfully passing User acceptance test (UAT)

as the final step and closure of project, whereas, in true essence ,systematically gathering the

knowledge gained throughout the Software Development Life-Cycle (SDLC) and storing it in

the company or team’s portfolio for future use is what constitutes a successful “closure” of a

project.

Traditional methods of analyzing Software Requirements Specification (SRS) document

analysis rely on manual processes, leading to challenges such as ambiguity, inconsistency, and

incomplete specifications.In the rapidly evolving field of software engineering, the effective

analysis of Software Requirements Specifications (SRS) is crucial for ensuring successful

project outcomes. Our research introduces a tool leveraging LangChain and GPT-4 to enhance

SRS document analysis. This advanced tool integrates state-of-the-art natural language

processing techniques to automate the extraction, classification, and evaluation of

requirements from complex SRS documents. By harnessing the power of GPT-4's contextual

understanding and LangChain's modular framework, our tool not only improves the accuracy

and efficiency of requirements analysis but also knowledge management and portfolio

management practices.

Knowledge management and project portfolio management are two important components of

Closure that can help organizations achieve their strategic goals and optimize their

performance.

Here is a brief explanation of each concept and why they are important.

1.1 Requirement Gathering
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Requirements management is a vital aspect of software development, encompassing the

systematic organization and monitoring of the needs and specifications of a software system

throughout its development stages. This complex process demands seamless teamwork,

effective communication, and meticulous monitoring to ensure that the final product meets the

desired outcomes.

At the heart of requirements management lies software requirements gathering, a crucial phase

that significantly impacts the success and quality of the final product. During this phase,

stakeholders' needs and expectations are collected and documented, laying the foundation for

the development process.

However, traditional methods of requirements gathering often rely on manual processes,

leading to a multitude of challenges. Ambiguity, inconsistency, and incomplete specifications

are common pitfalls that can arise from these manual approaches. Furthermore, requirements

gathering is a time-consuming and error-prone process that requires substantial manual effort.

To overcome these challenges, it is essential to adopt efficient requirements management

practices that facilitate collaboration, clarity, and accuracy. By doing so, software development

teams can ensure that the needs and expectations of stakeholders are accurately captured and

translated into a knowledge base.

1.2 Knowledge management and Portfolio

management
1.2.1 Knowledge management

is the conscious process of defining, structuring, retaining, and sharing the knowledge and experience of

employees within an organization. It helps organizations leverage their collective expertise, improve

decision-making, reduce risks, and foster a culture of learning and innovation.

1.2.2 Project portfolio management

is the coordinated management of one or more portfolios of projects, programs, and other

work to achieve specific strategic objectives. It helps organizations align their project

investments with their strategic vision, prioritize and balance competing demands, and

optimize the use of resources and capabilities based on previous data.

Therefore the Project portfolio and knowledge management can play a key role in an
2



organization's success by optimizing a company’s process.

Quantifying knowledge gained from a project is important for several reasons:

● It helps to measure the impact of knowledge management on project performance and

outcomes, such as quality, efficiency, customer satisfaction, and innovation.

● It enables the identification and recognition of the knowledge assets and capabilities of the

project team, as well as the knowledge gaps and needs that require further development.

● It also facilitates the transfer and reuse of knowledge across projects, programs, and

portfolios, enhancing organizational learning and knowledge sharing culture.

● It supports the alignment of project knowledge with patterns, ensuring that the project

delivers value and benefits to the organization and its stakeholders.

By applying knowledge management techniques to project portfolio management, organizations

can enhance their communication and integration, learn from past successes and failures, and

continuously improve their project performance based on qualitative and quantitative metrics.
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1.3 Capability maturity model:
CMMI (Capability Maturity Model Integration) is a framework used to measure the maturity of

an organization's processes, it comprises of 5 steps:

Level 1: Initial Characterized by ad-hoc processes, lack of standardization, and reactive

decision-making. This level is akin to the "craft" stage of process development, where activities

are guided by individual expertise rather than formalized procedures.

Level 2: Managed Defined by the establishment of project-level processes, with a focus on

planning, tracking, and oversight. This level corresponds to the "defined" stage of process

development, where processes are documented and followed, but may not be uniformly applied

across the organization.

Level 3: Defined Marked by the institutionalization of standardized processes across the

organization, with a focus on integration and coordination. This level is comparable to the

"institutionalized" stage of process development, where processes are deeply ingrained and

widely adopted.

Level 4: Quantitatively Managed Characterized by the use of quantitative data to manage

processes, with a focus on performance measurement, analysis, and optimization. This level

aligns with the "quantitative" stage of process development, where data-driven decision-making

is the norm.

Level 5: Optimizing Defined by a culture of continuous improvement, with a focus on

innovation, experimentation, and learning. This level corresponds to the "transformational" stage

of process development, where processes are continually refined and adapted to achieve

excellence.
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Fig. 1 CMMI Levels

1.3.1 Capability Maturity Model level 3 and 4:
A capability level 3 process is characterized as a "defined process" A defined process is a

managed (capability level 2) process that is tailored from the organization's set of standard

processes according to the organization's tailoring guidelines, and contributes to work products,

measures each task, and other properly defined information to the project knowledge.

A capability level 4 process is characterized as a "quantitatively managed process" A

quantitatively managed process is a defined (capability level 3) process that is controlled using

statistical and other quantitative techniques. Quantitative objectives for quality and process

performance are established and used as criteria in managing the process. Quality and process

performance is understood in statistical terms and is managed throughout the life of the process.

level 4 demands Organizations at this level to meet the requirements of:

Data-driven approach: Use quantitative data to determine predictable processes that align with

stakeholder needs

Measurable: Use defined metrics to demonstrate how processes benefit business operations

Refined: Repeatedly test, refine, and adapt processes in multiple conditions across the

organization

Competent: Ensure all key stakeholders and process users are comfortable deploying the

process in various environments and Adaptable Make it easy for processes to adapt to suit other

5



projects in the organization and serve as a template for future process development

Goals and plans:

Base quality goals and plans on the processes' proven ability to perform, and ensure they reflect

contract requirements, to summarize it we can say:

CMMI Level 3: Defined

1. Process Standardization: Establish a set of standard processes for the organization.

2. Process Documentation: Document processes and procedures.

3. Training and Awareness: Provide training and awareness programs for employees.

4. Process Ownership: Assign process owners to oversee process implementation.

5. Continuous Improvement: Establish a culture of continuous improvement.

6. Requirements Management: Manage requirements throughout the project lifecycle.

7. Project Planning: Establish project plans and track progress.

8. Configuration Management: Manage changes to products and services.

CMMI Level 4: Quantitatively Managed

1. Quantitative Process Management: Establish quantitative objectives for process performance.

2. Process Performance Measurement: Collect and analyze data on process performance.

3. Statistical Process Control: Use statistical methods to control processes.

4. Predictive Modeling: Use predictive models to forecast process performance.

5. Innovation Management: Encourage innovation and experimentation.

6. Causal Analysis and Resolution: Identify and address root causes of problems.

7. Organizational Process Performance: Establish metrics to measure organizational process

performance.

8. Quantitative Project Management: Use quantitative methods to manage projects.

To achieve CMMI Level 3, an organization must demonstrate a standardized and documented

process framework, with a focus on continuous improvement. whereas to achieve CMMI Level

4, an organization must demonstrate quantitative management of processes, with a focus on

data-driven decision making and predictive modeling.
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Problem Statement:
Introduction:
A recent survey conducted to observe current trends in Software houses across the country

revealed that most software houses are not implementing any process improvement model,

furthermore, companies do not store knowledge gained from projects in a formal manner and

do not maintain a project portfolio. This results in the absence of a standard process

improvement model in the company.

Methodology:
I conducted a survey (using survey monkey webApp) across the country , targeting major

cities Lahore Islamabad Rawalpindi and Karachi.. A total of 9 software houses were surveyed

and (n=25) individuals participated. The roles ranged from project managers, CEOs ,

developers and testers

60% of these companies did 9 and above projects in the past two years.

This survey helped identify the current trends and areas of improvement in the software

houses and their processes.

The two main questions that identified the problem were:

Q10. How much are you involved in different

SDLC phases?

Answer Choices Responses

Very likely 66.67%

Somewhat likely 16.67%

Not sure 0.00%

Somewhat unlikely 0.00%

Very unlikely 16.67%

Q11. Do you formally follow any of the

well‐known process improvement models?

Answer Choices Responses

Yes 83.33%

No 16.67%
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Documentations are neglected overall as well, the data further reveals

Q27. What is the level of challenge you experience in

various software maintenance practices?

Answer Choices Responses

Lack of training 0.00%

Cost 0.00%

Complicated tech 16.67%

Outdated internal processes 0.00%

Ongoing support 16.67%

Lack of Traceability 0.00%

Lack of Code Comments 33.33%

Obsolete Legacy Systems 16.67%

Others ____________________ 16.67%

Q29. What other types of practices are carried out by your organization while supporting

your software projects?

Answer Choices Responses

Determine Client Readiness 33.33%

Gain Commitment 0.00%

Align with Strategic Goals 16.67%

Company Culture 50.00%

Organization Structure 0.00%

Build a Solid Business Case 0.00%

Collect Feedback and Evaluate the Outcomes of The Change 0.00%

Other ___________________ 0.00%

Q31. What types of software project management

practices are carried out by your organization?

Answer Choices Responses

Collaboration 0.00%

Scheduling 0.00%

Issue Tracking 16.67%
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Project Profile Management 0.00%

Scope Management 0.00%

Document Management 16.67%

Resource Management 0.00%

Estimation Management 0.00%

Project Risk Management 0.00%

All of the above 66.67%

The above question clearly shows project portfolio management is focused by just 66% of

organizations.

Need and Importance of this research:
The research on developing an AI-based document parser for Software Requirements

Specification (SRS) documents was necessary due to the limitations and challenges

associated with traditional SRS document management. SRS documents are critical in

software development, but they are often plagued by issues such as:

Ambiguity and unclear requirements, leading to misinterpretation and errors

Inconsistencies and incompleteness, causing delays and rework

Difficulty in maintaining and updating SRS documents, resulting in outdated or obsolete

information. Limited collaboration and knowledge sharing among stakeholders, hindering

effective communication and decision-making

The absence of automation and intelligence in SRS document management exacerbates

these issues, making it essential to explore innovative solutions. This research addresses

these challenges by introducing AI-driven metadata generation, enabling:

Improved clarity and precision in SRS documents

Enhanced analysis, validation, and testing capabilities

Facilitated collaboration and knowledge sharing among stakeholders

Increased efficiency and accuracy in SRS document management

By investigating the application of AI in SRS document parsing, this research aims to

bridge the gap between traditional document management practices and the needs of

modern software development, ultimately contributing to the creation of more robust,

maintainable, and effective software systems.

9



Concluded Problem Statement:
We can summarize the problem statement as:

• Most software houses currently do not implementing

process improvement models and do not have any well

defined process to Manage knowledge and systematically

maintain a portfolio.

Improper knowledge management hinders software development productivity.
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Chapter 2

Literature Review:

For addressing this issue I reviewed literature from three different domains, this helped me

curate a solution consisting of the knowledge gained from all three of these domains.

The concept of knowledge management has been widely discussed in the context of

organizational success and failure. Davenport and Prusak(1998) [3] emphasize the importance

of distinguishing between data, information, and knowledge, as these terms are often used

interchangeably despite having distinct meanings. Data refers to discrete, objective facts about

events, while information is a message that has the potential to change the way the receiver

perceives something. Knowledge, on the other hand, is a fluid mix of framed experience,

values, contextual information, and expert insight that provides a framework for evaluating and

incorporating new experiences and information.

T. H. Davenport and L. Prusak’s book, Working Knowledge: How Organizations Manage What

They Know, provides a comprehensive examination of knowledge management within

organizations. The authors argue that effective management of knowledge assets is crucial for

organizational success, outlining strategies for capturing, sharing, and leveraging knowledge to

enhance decision-making and innovation. This work is foundational for understanding how

organizations can utilize their intellectual resources to gain competitive advantages and improve

operational efficiency, including the development and optimization of technological solutions

such as chatbots.

In a similar vein, A. K. Gupta and V. Govindarajan’s [4] study on knowledge flows within

multinational corporations explores how knowledge is disseminated and utilized across global

operations. Their research sheds light on the challenges and strategies associated with managing

knowledge in complex organizational structures. The findings are relevant for understanding

how multinational companies can leverage global knowledge to drive innovation and improve

practices, including those related to software and technology development. Their work

highlights the importance of effective knowledge management in supporting global initiatives

and technological advancements
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Davenport and Prusak (1998)[3] argue that knowledge is not neat or simple, but rather a

mixture of various elements that is fluid and formally structured. It is intuitive and therefore

hard to capture in words or understand completely in logical terms. Knowledge exists within

people and is often embedded in organizational routines, processes, practices, and norms. The

authors also highlight the importance of understanding the characteristics of

knowledge-intensive organizations and the need to evaluate knowledge by the decisions or

actions to which it leads.

The distinction between data, information, and knowledge is crucial in the context of

knowledge management initiatives. Many organizations fail to make a hard distinction between

these terms in practice, and their initiatives often involve a mixture of knowledge and

information, if not some data as well. Davenport and Prusak (1998) [3] observe that most

organizations try to add value to what they have, moving it up the scale from data toward

knowledge. However, this process requires humans to do virtually all the work, and the

transformation of information into knowledge happens through activities such as comparison,

consequences, connections, and conversation.

Overall, Davenport and Prusak's (1998) [3] work highlights the importance of understanding the

nuances of knowledge management and the need to distinguish between data, information, and

knowledge. Their framework provides a foundation for evaluating knowledge management

initiatives and understanding the characteristics of knowledge-intensive organizations.

The researches done on CMMI includes work of W. S. Humphrey's [1] seminal work on the

Capability Maturity Model (CMM) .It outlines a framework for improving software

development processes by defining maturity levels that organizations can achieve. Humphrey

emphasizes the importance of process discipline and continuous improvement, proposing a

structured approach to enhancing software quality and performance. The model, detailed in

"The Capability Maturity Model for Software," provides a roadmap for organizations to assess

and improve their software development practices systematically. It is particularly relevant for

understanding how structured process improvement can lead to better project outcomes and

more reliable software systems.

Niazi, Wilson, and Zowghi’s [14] framework for software process improvement focuses on

designing effective strategies for implementing SPI initiatives. Their research identifies critical

success factors and best practices for improving software development processes. The

framework provides guidelines for addressing challenges and ensuring successful SPI adoption.
12



This work is valuable for enhancing software development practices, including those related to

chatbot systems, by offering strategies for continuous improvement and process optimization.

Similarly M. C. Paulk’s [2] exploration of Extreme Programming (XP) from a CMM

perspective offers valuable insights into integrating agile methodologies with traditional process

improvement models. Paulk examines how XP’s iterative and flexible approach aligns with

CMM’s structured framework, suggesting that agile practices can complement and enhance

process maturity efforts. This perspective is crucial for understanding how modern agile

methodologies can be harmonized with established process improvement models to create

effective and adaptable development processes. The discussion highlights the potential for

blending different approaches to achieve superior software development outcomes.

R. G. Cooper’s [5] article on portfolio management for new product development provides

insights into managing and prioritizing innovation projects. Cooper’s framework emphasizes

the need for effective portfolio management to balance risk and return, allocate resources

efficiently, and align projects with strategic objectives. This approach is particularly relevant for

managing the development of new technologies, such as chatbots, where balancing innovation

with practical implementation is critical. Cooper’s work offers a structured methodology for

evaluating and managing product development efforts to maximize their success and impact.

R. S. Kaplan and D. P. Norton’s [6] work on the balanced scorecard introduces a strategic

management tool that aligns organizational performance with strategic goals. Their approach

focuses on using performance metrics to drive corporate synergies and ensure that all aspects of

an organization are working towards common objectives. This framework is valuable for

evaluating and enhancing the performance of technology projects, including chatbots, by

providing a means to measure and manage various dimensions of success. Kaplan and Norton’s

balanced scorecard helps organizations ensure that their technological initiatives are aligned

with overall business strategies and objectives.

A. M. Hickey and A. M. Davis [7] explore collaborative, goal-oriented approaches to

requirements elicitation and validation in their study. They argue that effective requirements

engineering is essential for the success of software projects and propose techniques for

improving the accuracy and relevance of requirements. Their research highlights the importance

of collaboration between stakeholders and the use of goal-oriented methods to ensure that

requirements are well-defined and aligned with project objectives. This work is crucial for

understanding how to effectively gather and validate requirements for chatbot systems and other

13



software applications.

Sommerville’s later work, Software Engineering: A Comprehensive Approach [8], provides an

updated overview of software engineering principles and practices. Sommerville addresses

various aspects of software development, including lifecycle models, requirements engineering,

and quality assurance. His comprehensive approach offers a broad understanding of software

engineering methodologies and best practices, which are essential for developing and managing

software projects, including chatbots. Sommerville’s book is a key resource for grasping

contemporary software engineering practices and their application in technological

development.

Lalwani, Bhalotia, Pal, Bisen, and Rathod’s [9] work on the implementation of a chatbot system

using AI and NLP provides a practical exploration of chatbot development. Their study covers

the integration of AI and NLP technologies to create functional and responsive chatbot systems.

The authors discuss various technical aspects, including algorithms and frameworks used in

building chatbots, and highlight the challenges faced during implementation. This research is

valuable for understanding the practical considerations and technical requirements involved in

developing effective chatbot systems.

Aslam’s [10] study on the impact of artificial intelligence on chatbot technology offers an

up-to-date analysis of advancements and innovations in the field. Aslam reviews the latest AI

techniques, such as deep learning and transformer models, and their effects on improving

chatbot capabilities. The study provides insights into how these technologies have enhanced

chatbots’ ability to understand and respond to user inputs more effectively. Aslam’s research is

essential for staying informed about current trends and future directions in AI-driven chatbot

technology.

Lalwani, Bhalotia, Pal, Bisen, and Rathod’s [9] study offers a detailed examination of the

integration of AI and NLP technologies in chatbot development. While their work is valuable in

outlining practical aspects and technical considerations, several limitations can be identified.

Firstly, the study’s focus on specific algorithms and frameworks may limit its applicability

across different contexts. The effectiveness of the chatbot implementations described may vary

depending on the specific requirements and constraints of other systems. This specificity can

restrict the generalizability of their findings to broader or different chatbot applications.

Secondly, while the paper highlights the challenges faced during implementation, it may not

sufficiently address the scalability and adaptability of the proposed solutions. The study could
14



benefit from a more thorough analysis of how the discussed technologies perform under varying

loads and diverse user interactions. Scalability issues are particularly critical in real-world

applications where chatbots need to handle high volumes of user queries efficiently. The study’s

practical insights are valuable, but a more in-depth exploration of scalability and long-term

performance could enhance the utility of the research for developers seeking to deploy chatbots

in dynamic environment. Aslam’s [10] study provides a comprehensive overview of recent

advancements in AI and their impact on chatbot technology, focusing on techniques like deep

learning and transformer models. However, several shortcomings can be identified. Firstly, the

paper’s emphasis on cutting-edge AI techniques may overshadow practical implementation

challenges. While the study provides valuable insights into the potential of new technologies, it

may not fully address the complexities and resource requirements involved in integrating these

techniques into functional chatbot systems. The gap between theoretical advancements and

practical implementation can be a significant limitation for practitioners looking to apply these

innovations. Secondly, Aslam’s research might benefit from a more critical assessment of the

limitations and ethical considerations associated with advanced AI techniques. For instance,

deep learning models and transformers often require substantial computational resources, which

can be a barrier for smaller organizations. Additionally, these models can sometimes produce

biased or unpredictable outputs, raising concerns about fairness and reliability. A detailed of

these issues would provide a more balanced view of the advancements and help stakeholders

make more informed decisions regarding the adoption of these technologies.

In summary, while both studies provide significant contributions to the field of chatbot

technology, they also have areas that require further exploration. Lalwani et al. [9] could

enhance their work by addressing scalability and broader applicability, while Aslam’s research

would benefit from a more balanced view that includes practical implementation challenges and

ethical considerations.

Abdellatif, Badran, Costa, and Shihab’s comparative analysis of natural language understanding

(NLU) platforms [11] for chatbots evaluates various tools based on their performance and

usability. Their study provides a detailed assessment of NLU platforms, offering insights into

their strengths and limitations. This comparative approach helps practitioners choose the most

suitable NLU tools for their chatbot projects, based on criteria such as accuracy, scalability, and

integration ease. The research is valuable for understanding the available options and making

informed decisions about NLU platforms.

15



Another study involving professor Zowghi was reviewed. Gervasi, Ferrari, Zowghi, and

Spoletini’s [12] work on ambiguity in requirements engineering addresses a critical issue in

software development. Their proposed framework aims to reduce ambiguity and improve the

clarity of requirements, which is crucial for successful chatbot implementation. The authors

argue that a unified approach to managing ambiguous requirements can enhance the quality and

effectiveness of software systems. This research is relevant for improving requirements

engineering practices and ensuring that chatbot systems meet user needs and project objectives.

Kassab, Ormandjieva, and Daneva’s ontology-based approach [13] to non-functional

requirements conceptualization provides a method for organizing and managing non-functional

aspects of software systems. Their study emphasizes the importance of clearly defining

requirements such as performance, security, and usability. By applying ontological frameworks,

the authors offer a structured approach to understanding and addressing these requirements.

This approach is particularly useful for developing robust chatbot systems that meet various

non-functional criteria.

Jonatan and Aguilar-Alonso’s research [15] on creating a chatbot based on NLP for WhatsApp

addresses the unique challenges of deploying chatbots on popular messaging platforms. Their

study explores the adaptation of NLP techniques to enhance user interaction and engagement on

WhatsApp. The authors provide practical examples and implementation strategies for

integrating chatbots into existing communication channels. This research is relevant for

understanding how to effectively leverage chatbots in popular messaging environments.

Dr. Nalini, Karthik, and Koti’s case study [16] on the Intellectual Interactive System offers

insights into developing interactive systems using advanced technologies. Their work provides

a practical example of how interactive systems can be designed and implemented, including

considerations for user interaction and system functionality. The case study contributes to

understanding the practical aspects of developing complex interactive systems, which can be

applied to chatbot development.

Mane, Sonone, Gaikwad, and Ramteke’s work [17] on smart personal assistants using machine

learning explores the application of machine learning algorithms to enhance personal assistant

capabilities. Their research highlights advancements in machine learning techniques and their

impact on improving conversational agents. Although not exclusively focused on chatbots, their

study provides valuable insights into how machine learning can be used to enhance the

performance and functionality of chatbots.
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Topsakal and Akinci’s [18] primer on creating large language model applications using

Lang-chain offers a guide for developing LLM-based applications quickly and efficiently. Their

research focuses on leveraging Lang-chain for rapid development of language model

applications, including chatbots. The study provides practical insights into using advanced tools

and techniques for developing sophisticated language-based applications. This research is

useful for understanding how to streamline the development of LLM-based chatbots and other

applications.

Davis, Dieste Tubio, Hickey, Juristo Juzgado, and Moreno’s study [19] on the effectiveness of

requirements elicitation techniques provides empirical results from a systematic review. Their

research evaluates various techniques for gathering and validating requirements, offering

insights into their effectiveness in different contexts. This study is important for understanding

how to improve requirements elicitation practices and ensure that software systems, including

chatbots, meet user needs and expectations.

Lee and Choi’s work [20] on knowledge management enablers, processes, and organizational

performance offers an integrative view of how knowledge management practices affect

organizational outcomes. Their empirical examination highlights the role of knowledge

management in enhancing performance and achieving strategic goals. This research is relevant

for understanding how effective knowledge management can support the development and

optimization of chatbot systems and other technological initiatives.

McAdam and McCreedy’s [21] critical review of knowledge management models examines

various approaches and frameworks for managing organizational knowledge. Their analysis

provides insights into the strengths and limitations of different models, contributing to a better

understanding of knowledge management practices. This work is valuable for exploring how

knowledge management can be applied to support technology development, including chatbots.

The ideas gathered from these literature reviews formed into a solution for the above mentioned

problem.
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Chapter 3

Methodology:
The research method used in this thesis is Design Science Research (DSR). It’s a methodology

for developing and evaluating new artifacts in areas where this kind of results may help other

researchers in their work. As per my survey data almost 17% of the companies do not formally

follow any improvement models and 16% are not involved in all the formalities of SDLC.

Here we need to keep in mind it is the major cities data and there are numerous startups in

other cities throughout the country that are likely lagging behind on following process

improvement models as well. Which highlights the importance of this research.

3.1 AI-based Requirement Gathering tool:
The implementation of a centralized Software Requirements Specification (SRS) document

analysis tool yields numerous benefits for stakeholders involved in the software development

process. By serving as a singular, authoritative source of truth, it ensures consistency and

clarity in understanding project requirements, thereby mitigating the risk of misinterpretation

and miscommunication. Furthermore, real-time updates and collaborative editing capabilities

facilitate seamless information sharing and version control, enabling the tracking of changes

and maintenance of a comprehensive revision history. Enhanced visibility and accessibility

also empower stakeholders to make informed decisions and respond promptly to evolving

project needs. Ultimately, a centralized SRS document contributes to increased transparency,

accountability, and operational efficiency throughout the software development lifecycle.
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The AI-based tool is able to receive a document, process it and then answer queries related to

its content. The tool is able to extract relevant information and generate a response with

accuracy, confidence and relevancy.

3.2 Implementation of Langchain
This study employed Langchain (an AI-driven approach) to enhance requirement gathering for

portfolio and project management in these steps:

● Data Collection: Utilized AI technologies to document and analyze project

requirements, scenarios, and user data.

● Scoring System: Developed a scoring system to measure accuracy, precision, and

relevance of the gathered requirements, ensuring quantifiable and traceable results.

● Quantification and Documentation: Used AI to document and quantify requirements,

scenarios, and user data, enabling a mature and transparent process.

● Evaluation and Validation: Assessed the effectiveness of the AI-driven approach

using metrics such as accuracy, precision, and relevance scores and drew parallels

with CMMI level requirements.

3.2.1 How it works:
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1. User Input: User asks a specific question related to a document.

2. Document Retrieval: LLM retrieves the relevant document or a corpus of documents.

3. Contextual Understanding: LLM analyzes the document content, identifying relevant

sections and paragraphs.

4. Information Extraction: LLM extracts specific information related to the user's query.

5. Response Generation: LLM generates a concise response, summarizing the extracted

information.

Use-Case diagram:

Below is a use case diagram of my system.

Fig. 2 Use case diagram
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3.3 Brief description of Code Components and

Functionality:
● Library Imports and Environment Setup: The code begins by importing necessary libraries

such as os, openai, and panel. It also loads environment variables from a .env file using

load_dotenv(find_dotenv()) and sets up the OpenAI API key.

● PDF Processing Function: The load_db function processes a PDF file by splitting it into text

chunks, creating embeddings, and setting up a question-answering system.

● ChatBot Class: This class manages the chatbot behavior, including storing chat history,

processing queries, and generating responses. It also includes methods for uploading and

processing PDF files, detecting count queries, counting elements, estimating confidence,

and sending queries. OpenAI API key is a must have to operate this.

● User Interface Components: The code defines various interactive elements, such as file

input, text input, buttons, and text output displays, to facilitate user interaction.

● Event Handling and Callbacks: The code includes functions to update the chatbot response,

handle Excel file downloads, and manage user input.

● Panel Layout and Styling: The user interface is organized into tabs (Chat, Metadata,

Confidence Scores & Accuracy) with custom CSS styling applied to the tabs.

Fig:3 Work-flow diagram

You can give system prompts like:

- "Extract all user stories from this SRS document"

- "How many user types are mentioned in this SRS document?"

- "What are the roles and responsibilities of each user type?"
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- "How many actors are mentioned in this SRS document?"

- "Extract all functional requirements related to user authentication"

Fulfilling CMMI level 3 requirements:
As per CMMI level 3 requirements, data should be structured and tailored according to an

organization's needs. For this we can use the AI capability of categorizing and extracting

relevant information from raw data. Lang-chain and other LLM models can be fine-tuned in a lot

of different ways, making it possible to formulate your own criteria for data extraction

for example: Lang-chain uses the following parameters to categorize a requirement as a

functional requirement:

1. Verb: The requirement statement starts with a verb like "shall", "will", "must", "should", or

"may".

2. Action-oriented: The requirement describes an action or behavior that the system or product

must perform.

3. Specific: The requirement is clear, concise, and unambiguous.

4. Measurable: The requirement can be measured or tested to determine if it's met.

5. Product-focused: The requirement describes a characteristic or behavior of the product or

system.

6. Non-technical: The requirement doesn't describe technical details or

implementation-specific information.

7. User-centric: The requirement is written from the user's perspective, describing what they

need or want.

8. Functional phrase: The requirement contains phrases like "The system shall", "The product

will", or "The user can".

9. Input/Output: The requirement describes an input or output of the system or product.

10. System behavior: The requirement describes how the system or product responds to a

particular situation or input.

By analyzing these parameters, Lang-chain can determine if a requirement is functional

requirement or not, meaning it describes what the system or product should do, rather than how

it should do it (which would be a non-functional requirement). similarly other prompts/queries

can be customized by setting parameters for the selected model as per an organization's needs.

Additionally meta data containing time-stamp, page number are added to make the extracted

information as traceable as possible.
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Fulfilling CMMI level 4 Requirements:
Whereas CMMI level 4 is satisfied by quantifying the extracted information using scoring

function.

In Lang-chain, relevance score, confidence score, and other similar metrics are used to evaluate

the quality and accuracy of responses generated by language models. Here's a brief explanation

of each:

Relevance Score measures how well the response aligns with the input prompt or question. It

indicates the degree to which the response addresses the topic or task at hand.

The relevance score calculation in Lang-chain typically involves a combination of natural

language processing (NLP) techniques and machine learning algorithms. Below are general

outline of the steps:

1. Text Embeddings: Convert the input prompt and response into numerical representations

(embeddings). These embeddings capture semantic meaning and context.

2. Similarity Measurement: Calculate the similarity between the input prompt and response

embeddings using metrics like:

3. Cosine similarity and Dot product

Apply a Scoring Function to the similarity measurement, often using a weighted sum or a neural

network. This function maps the similarity value to a relevance score, usually between 0 and 1.

Normalization: Normalize the relevance score to ensure consistency across different input

prompts and responses.

Some common relevance scoring functions include:

a. Simple similarity:

Relevance = similarity(p, r)

, where p is the prompt and r is the response.

b. Weighted sum:

Relevance = w1 * similarity(p, r) + w2 * keyword_match(p, r)

where w1 and w2 are weights.

4. Confidence Score: It represents the model's certainty or confidence in its response. A

higher confidence score suggests the model is more likely to be correct.

Confidence Score (CS): A numerical value between 0 and 1, indicating the model's confidence

in its response.

Calculation:

a. Probability Distribution: LangChain's Large Language Model (LLM) generates a probability
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distribution over the possible output tokens. This distribution represents the model's uncertainty

about the next token.

b. Top-K Tokens: Select the top-K tokens with the highest probabilities from the distribution. K

is a hyperparameter, typically set to 5 or 10.

c. Cumulative Probability: Calculate the cumulative probability of the top-K tokens. This

represents the model's confidence in the selected tokens.

5. Confidence Score: Normalize the cumulative probability by dividing it by the sum of

probabilities of all tokens in the vocabulary. This ensures the confidence score is

bounded between 0 and 1.

Mathematical Representation:

CS = (∑[top-K probabilities]) / (∑[all token probabilities])

Explanation:

CS → 1: High confidence, the model is certain about its response.

CS → 0: Low confidence, the model is uncertain or exploring multiple possibilities.

Accuracy Score: Assesses the correctness or accuracy of the response, often requiring human

evaluation or external validation.

These scores are calculated using various techniques, such as

1) Post-processing algorithms i.e. Analyze the response's content, syntax, and semantics.

2) Model-internal metrics: Leverage the language model's internal workings, like attention

weights or probability distributions as well as knowledge graphs.

Our AI-based tool allows us to view these scores for the extracted information and export it in

excel format for storing purposes.
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3.4 Table to draw parallels between CMMI levels

and corresponding AI tool capabilities:

Table.1 (4.1) Parallels between CMMI level and AI capabilities

25

AI capability: CMMI level Contribution in KM

Faster and easier extraction of requirements using
natural language processing (NLP) and text

generation
Defined (3)

Resource management,
cost management, time

management.

Detection/ resolution of ambiguities,
inconsistencies, and redundancies in the

requirements

Identification and prioritization of the most
important and relevant requirements

Quantitatively managed
Controlled (4)

Repeatable and traceable

Verification and validation of the requirements
against the business goals and user needs

Defined (3)
Measurable

Data driven decisions

Traceability impact analysis of requirements
across the project artifacts

Managed and
Controlled (4)

Quality of customer
satisfaction

Measured progress

Collaboration communication among stakeholders
and development team

Controlled and
Optimizing
(4 -> 5)

Resource
management/time
management.



Chapter 4

Results and Discussion
The above mentioned methodology achieved the working product as well as successfully

achieved CMMI (Capability Maturity Model Integration) Level 3 and 4 by demonstrating a

well-defined, quantifiable, and repeatable process for requirement gathering and project

knowledge management.

The integration of AI-based semantic annotation in Software Requirements Specification (SRS)

documents brings numerous benefits and significance. By adding context and meaning to

requirements, semantic annotation improves clarity and precision, reducing ambiguity and

ensuring stakeholders share a common understanding. This, in turn, enables enhanced analysis

and validation, facilitated collaboration and knowledge sharing, increased efficiency and

accuracy, better traceability, and improved reusability and maintainability.

Ultimately, AI-based semantic annotation represents a significant advancement in software

engineering, transforming the way we create, manage, and utilize SRS documents. By

harnessing AI's potential, organizations can enhance the quality and reliability of software

systems, improve collaboration and knowledge sharing, increase efficiency and accuracy, reduce

errors, costs, and time-to-market, and unlock the full potential of their SRS documents, leading

to better software development outcomes and improved business results.

The solution was verified and validated on PUblicly available REquirements documents. The

PURE [23] is a repository of 79 Software Requirements Specifications (SRS) of different

types. 63 SRSs are pdf, 14 of them are word documents, and 3 of them are HTML. We used only

pdf files.

4.1 LLMModel’s Results:
The LLM model was able to successfully extract information and answer queries with an

average confidence score of 8 and median accuracy was 7. The time-stamps and document’s

metadata was extracted, stored and exported with a 100% accuracy.

Calculated based on Entity Recognition Questions where n=63 PDF from PURE dataset.

we got the following results:
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Tool TP FP TN FN

GPT4 29 7 18 9

Langchain with
GPT4 54 8 21 10

RAG Tool Precision Score F1 Score Recall

GPT4 alone 0.806 0.784 0.763

Langchain + GPT4 0.859 0.845 0.831
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We can observe the results from the following screen-shots

Image 1

Image 2
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Image 3

Image 4
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Image 5

Image 6

Image 7
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The system efficiently answered a variety of PDF related queries along with it’s meta-data,

including but not limited to:

1. Content extraction:

What are the functional requirements mentioned in the SRS?

Extract all non-functional requirements from the document.

2. Specific requirement queries:

What is the requirement ID XYZ mentioned in the SRS?

What is the description of requirement ABC?

3. Entity recognition:

Identify and extract all mentioned stakeholders in the SRS.

What are the system components mentioned in the document?

4. Relationship queries:

What are the dependencies between requirements XYZ and ABC?

Which requirements are related to system component DEF?

5. Summarization:

Provide a summary of the SRS document.

Summarize the functional requirements mentioned in the SRS.

6. Search and filter:

Find all requirements related to security in the SRS.

Filter requirements by priority level (high, medium, low).
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4.2 Comparison of CMMI level requirements to

AI-tools Capabilities

CMMI level 3 AI-tool feature CMMI level 4 AI-tool feature

Standardized ➔ User is able to

define Parameters

and fine-tune

model

Statistical Process

Control

➔ User is able to keep

track of extracted

information through

Key performance

indicators

Documented ➔ User is able to

export extracted

information

Managed and

Controlled Process

➔ Data visualization

from the extracted

information helps

manage project

Process

Ownership:

➔ Knowledge

sharing through

extracted

information

Quantitative

Process

Performance

Management

➔ LLM model’s

capability to count and

keep scores of

extracted data ensures

Quantitative

management.

Requirements

Management:

➔ Changes are

tracked through

version controlling

and time stamps

Organizational

Process

Performance and

analysis

➔ Extracted information

provides instant work

break down helping in

team analysis and

performance

Project Planning: ➔ Data visualization

from the extracted

information helps

manage project

Predictive

Modeling

➔ Effective portfolio

management from well

documented projects

data results in

generating accurate

predictions
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4.3 Analysis and Discussion of Results obtained:
In a software house, the current workflow of SRS (Software Requirements Specification)

knowledge typically begins with the receipt of a project request from a client or stakeholder. The

project manager and business analysts then collaborate to gather and document the initial

requirements through meetings, interviews, and surveys. The gathered information is then

compiled into a draft SRS document, which is reviewed and refined by the development team,

quality assurance team, and other relevant stakeholders. Once the SRS document is finalized, it

serves as a guide for the development team to create the software, and for the quality assurance

team to develop testing plans. Throughout the development process, the SRS document is

continuously updated and refined to reflect any changes or new requirements that arise. Finally,

the completed software is validated against the SRS document to ensure that it meets all the

specified requirements.

A centralized SRS document analysis tool provides a single source of truth for all stakeholders,

ensuring everyone is on the same page regarding project requirements. It facilitates real-time

updates and collaboration, reducing misunderstandings and miscommunications. This

centralized repository also enables version control, tracking changes, and maintaining a history

of updates. Moreover, it allows for easy access and visibility, enabling stakeholders to make

informed decisions and take prompt actions. Overall, a centralized SRS document enhances

transparency, accountability, and efficiency throughout the software development lifecycle.
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The results yielded from extracting knowledge in a standardized way can be utilized by:

1. Setting Quantitative Goals:

Companies can establish specific, measurable project objectives, such as:

● Schedule performance index (SPI)

● Cost performance index (CPI)

Schedule Performance Index (SPI) and Cost Performance Index (CPI)

Schedule Performance Index (SPI):

Measures project progress in relation to the schedule.

SPI = Earned Value (EV) / Planned Value (PV)

1 indicates ahead of schedule, < 1 indicates behind schedule.

Cost Performance Index (CPI):

Measures project expenses in relation to the budget.

CPI = Earned Value (EV) / Actual Cost (AC)

1 indicates under budget, < 1 indicates over budget.

2. Customer satisfaction ratings

Feedback and the meeting between stake holders can be analysed using accuracy, relevance

scores and sentiment analysis on the documented communication.

3. Easy and fast Earned Value Management (EVM) calculations:

Use EVM to track project progress, comparing planned value (PV) to earned value (EV) and
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actual cost (AC). This can also be done by generating graphs and charts from the extracted data.

4. Statistical Process Control (SPC):

Apply SPC techniques to monitor and control project processes, such as:

SWOT analysis and duration schedules.

5. Process capability analysis through:

● Control charts

● Statistical quality control

6. Quantitative Risk Management:

Identify, assess, and prioritize risks using quantitative methods, such as:

● Monte Carlo simulations - (technique that uses random sampling to solve

complex problems and predict outcomes. It involves generating multiple

scenarios based on probability distributions and analyzing the results to estimate

potential outcomes. This method is commonly used in finance, engineering, and

other fields to manage risk and make informed decisions.)

● Threat analysis

● Expected monetary value (EMV) analysis

7. Performance Metrics and Indicators:

Track and analyze project performance using metrics such as:

● Burn-down/burn-up charts

● Cycle time

● Lead time

● Throughput

8. Data-Driven Decision Making:

Use quantitative data to inform project decisions, such as:

● Resource allocation

● Schedule adjustments

● Budget reallocation

● Change requests

9. Predictive Analytics:

Apply statistical models and machine learning algorithms to extract and forecast project

outcomes, such as:

● Project duration

● Cost overruns
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● Quality issues

10. Quantitative Stakeholder Management:

Use data to communicate project performance to stakeholders, including:

● Progress reports

● Performance dashboards

● Data visualizations - excel export facilitates data visualization
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Chapter 5

Conclusion

5.1 Introduction:
Maintaining a portfolio of projects is essential for software houses and organizations to

effectively manage their projects and resources. A systematically maintained portfolio provides

numerous benefits, including improved project visibility, resource allocation, risk management,

and decision-making. Storing this knowledge also contributes to applying lessons learned from

one project to another.It is essential for continuous improvement and effective project

management.

By applying these quantitative techniques, project managers can make data-driven decisions,

optimize project performance, and achieve better outcomes.

Knowledge management and project portfolio management are therefore complementary and

mutually beneficial practices that can lead to greater organizational success and process

improvement. The advanced AI-tools we can gather requirements keeping in mind the ultimate

goal of knowledge management and portfolio management in such a way so as to satisfy the

CMMI level 3 and 4 demands. This will help reach a process maturity level which can benefit

the company's overall success and managerial processes. From this research it can be concluded

that software houses need to incorporate AI from the very beginning of the project, so it can help

track all the related data till the very end of the project and that knowledge can be used later on

as well, because it’ll be systematically stored in the portfolio for future reference.

5.2 Achieved Research Goals:
To achieve our objective we document insights, successes, and challenges encountered during the project

by drawing conclusions from our knowledge base and portfolio.

I. Improved Project Visibility:

A systematically maintained portfolio allows organizations to have a comprehensive view of all ongoing

and upcoming projects. This visibility enables better resource allocation, risk management, and

decision-making at the organizational level.

II. Effective Resource Allocation:

By maintaining a portfolio of projects, organizations can allocate resources more effectively based on
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project priorities, timelines, and resource availability. This ensures optimal utilization of resources and

minimizes bottlenecks in project execution.

III. Enhanced Risk Management:

Systematically maintained portfolios facilitate better risk management by identifying and

mitigating risks across multiple projects. Organizations can prioritize risk mitigation strategies

and allocate resources accordingly to minimize potential project disruptions.

IV. Informed Decision-Making:

A well-maintained portfolio provides decision-makers with relevant information and insights to

make informed decisions about project investments, resource allocations, and strategic priorities.

This helps organizations align their project portfolios with their overall business objectives and

maximize return on investment.

V. Continuous Improvement:

Maintaining a portfolio allows organizations to track project performance, identify areas for

improvement, and implement lessons learned from past projects. This continuous improvement

cycle enables organizations to enhance their project management practices and achieve better

outcomes over time which is also corresponds to last level of CMMI.

5.3 Limitations:
The limitations of the proposed solution are:

● In-house resistance to adoption of the system. When a new system is introduced there is

usually resistance from the team using old system as they have become accustomed to it.

● The system doesn’t accommodate run-time change requests, making it less flexible but

more reliable.

● AI is unable to read-between-the-lines or comprehend the undertone to a document. This

system will not be able to comprehend the common sense based expectations of

stakeholders that humans can intercept.

5.4 Future Work:
While AI-based tools have shown promising advancements in supporting requirements

gathering, there are opportunities for further research and development.This research has

far-reaching implications for software engineering, paving the way for further innovations in

AI-driven SRS document management.

Future research directions include:
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● Integrating different AI-based tools with existing requirements management systems in

different organizations.

● Developing more sophisticated techniques for extracted requirements analysis apart from

relevance score etc.

● Further research can be done in developing customized NLP parameters and AI chat-bots

fine-tuning for an industry's unique needs.

● Investigating the use of machine learning algorithms for knowledge sharing within an

organization by making parts of knowledge available to different teams as per their needs

and permissions.

● expansion to other document types and fields of study.

By presenting this research, I contribute to the advancement of software engineering,

demonstrating the potential of AI to transform the way we develop and maintain software

systems.
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5.5 Conclusion:
From this research it can be concluded that software houses need to incorporate AI from the very

beginning of the project, so it can help track all the related things till the very end of the project

and that knowledge can be used later on as well, because it’ll be systematically stored in the

portfolio for future reference. In conclusion, the application of semantic annotation in Software

Requirements Specification (SRS) documents has far-reaching benefits that transform the

software development process. By infusing requirements with meaning and context, semantic

annotation enhances clarity, precision, and accuracy, leading to a more reliable and effective

SRS document. The advantages of semantic annotation extend beyond the development phase,

supporting ongoing maintenance, evolution, and reuse of software systems.

Through semantic annotation, we can unlock the full potential of SRS documents, enabling

automated analysis, validation, and testing, while fostering collaboration, knowledge sharing,

and informed decision-making. As software systems continue to grow in complexity, the

importance of semantic annotation in SRS documents will only continue to increase, serving as a

foundation for building robust, maintainable, and adaptable software systems.

Ultimately, the strategic adoption of semantic annotation in SRS documents represents a

significant step forward in software engineering, poised to revolutionize the way we develop,

maintain, and evolve software systems. By embracing this innovative approach, we can create

software systems that are more responsive to user needs, more resilient to change, and more

aligned with business objectives.
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Chapter 6

Contribution and Areas of Application
The research on "AI-based requirements gathering to improve knowledge management and

portfolio management” ultimately improves SDLC process.

6.1 My Research Contribution
This research presents a novel approach to enhancing Software Requirements Specification

(SRS) documents through the development of an AI-based document parser. Leveraging the

capabilities of LangChain and OpenAI, this parser automates the process of adding metadata to

SRS documents, revolutionizing the way we create, manage, and utilize these critical

documents.

6.1.1 Key Contributions:

A. Innovative Application of AI:

This research demonstrates the first application of LangChain and OpenAI in SRS document

parsing, showcasing the potential of AI in software engineering.

B. Automated Metadata Generation:

The developed parser automatically adds relevant metadata to SRS documents, enhancing their

clarity, precision, and accuracy.

C. Improved SRS Document Quality:

By infusing SRS documents with metadata, this research enables better analysis, validation, and

testing, ultimately leading to more robust and maintainable software systems.

D. Enhanced Collaboration and Knowledge Sharing:

The model facilitates collaboration among stakeholders by providing a shared understanding of

SRS documents, fostering knowledge sharing and informed decision-making.

6.2 Areas of Application:
It can have various areas of application, each contributing to enhancing organizational processes

and outcomes. Some areas of application include:
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6.2.1 Software Development Lifecycle Optimization:

Implementing AI-based requirements gathering can streamline the process of identifying,

documenting, and managing requirements throughout the software development lifecycle. This

optimization can lead to improved efficiency, reduced development time, and enhanced quality

of software products.

6.2.2 Knowledge Management Enhancement:

By leveraging AI techniques for requirements gathering, organizations can better capture,

organize, and share knowledge related to project requirements. This can lead to a more effective

portfolio management system, enabling easy access to relevant information and facilitating

collaboration among team members.

6.2.3 Portfolio Management Optimization:

AI-based requirements gathering can assist in selecting and prioritizing projects within a

portfolio based on their alignment with organizational goals and strategic objectives. This

optimization can lead to better resource allocation, improved risk management, and increased

ROI for the organization's project portfolio.

6.2.4 Process Model Improvement (CMMI):

Integrating AI-based requirements gathering with established process models like CMMI can

enhance the maturity and effectiveness of organizational processes. By leveraging AI-driven

insights and automation, organizations can identify areas for process improvement, implement

best practices, and achieve higher levels of process maturity as per the CMMI framework.

6.2.5 Risk Management and Mitigation:

AI-powered analysis of requirements data can help identify potential risks and dependencies

early in the project lifecycle. By integrating this analysis into portfolio management processes,

organizations can proactively mitigate risks, optimize resource allocation, and improve project

success rates.

6.2.6 Decision Support Systems:

AI-based requirements gathering can feed into decision support systems that assist stakeholders

in making informed decisions related to project selection, resource allocation, and process

improvement initiatives. These systems can leverage AI-driven analytics to provide actionable

insights and recommendations for optimizing organizational processes and achieving strategic

objectives.

6.2.7 Continuous Improvement and Learning:

By continuously analyzing requirements data using AI techniques, organizations can identify

patterns, trends, and areas for improvement in their knowledge management, portfolio
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management, and process models. This fosters a culture of continuous improvement and

learning, enabling organizations to adapt to changing market dynamics and technological

advancements effectively.

6.2.8 Cross-Functional Collaboration:

AI-based requirements gathering can facilitate cross-functional collaboration by providing a

centralized platform for stakeholders from different departments to contribute, review, and

prioritize requirements. This collaborative approach enhances communication, alignment, and

coordination across various organizational functions, ultimately improving overall project

outcomes.

6.3 Summary:
The research on AI-based requirements gathering has broad applications across knowledge

management, portfolio management, and process model improvement, offering opportunities for

organizations to enhance efficiency, effectiveness, and strategic alignment in their software

development and project management practices.

Semantic annotation in SRS documents enhances the clarity and precision of requirements,

enabling stakeholders to comprehend the intended functionality and constraints of the software

system. By annotating requirements with relevant context and meaning, ambiguities are reduced,

and misinterpretations are minimized, resulting in a more accurate and reliable SRS document.

Semantic annotation also facilitates the analysis and validation of requirements, enabling

automated tools to check for consistency, completeness, and correctness. This leads to the early

detection of errors, inconsistencies, and gaps in the requirements, reducing the risk of

downstream defects and rework. Furthermore, annotated requirements provide a foundation for

automated testing, traceability, and impact analysis, streamlining the software development

process.

The benefits of AI based semantic annotation in SRS documents extend beyond the development

phase, as they also support ongoing maintenance, evolution, and reuse of software systems.

Annotated requirements serve as a knowledge base, capturing the rationale, constraints, and

assumptions underlying the system's design and functionality. This enables developers,

maintainers, and future stakeholders to understand the system's context and make informed

decisions, reducing the risk of introducing unintended changes or defects.
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