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ABSTRACT 

As the world grapples with the challenges of sustainable energy, oil and gas remain the 

main sources of the world's energy supply. While, global oil consumption has increased 

significantly, the accessible reserves of oil and gas resources have decreased as a result of 

the usage of common light oils. To maximize extraction from known sources, secondary 

recovery procedures, often known as EOR, - enhanced oil recovery- are used when relying 

exclusively on reservoir pressure is no longer adequate. EOR projects depend on variety of 

factors including economic factors, crude oil market price, and the investment from 

individuals and firms willing to take on the risk. To optimize extraction beyond reservoir 

pressure and maximize reservoir recovery and profits, several methods for EOR have been 

proposed including water injection and polymer and surfactant injection. This paper 

examines the use of three distinct machine learning simulation models- the random forest 

regressor, the gradient boost regression, and the KNN Regression- to investigate these EOR 

methods. The three models were applied to over 1500 data points from field data and 

extrapolated and expanded using Eclipse Simulator. Analysis of the techniques by these 

methods show that surfactant injection achieved the greatest return in oil production with 

an average oil rate of 27.27Mstb per day. Polymer Injection produced the second greatest 

oil generation per day with an average rate of 25.19 Mstb per day, with water injection 

generating the least amount of oil at 25 Mstb per day. These results suggest that surfactant 

injection could be a promising method for enhancing oil recovery and extending the 

lifespan of existing oil and gas reserves. 

Keywords: EOR, water injection, polymer injection, surfactant injection, Eclipse 

Simulator, KNN Regression, Random Forest regressor, Gradient boost regression, 

Machine learning. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Context 

Despite the growth of renewable energy sources, oil and gas remain the main 

sources of the world's energy supply. There is an increasing need to extract more oil from 

undiscovered reservoirs to meet the expanding energy needs as energy demand rises and 

conventional supplies become increasingly limited [1]. By 2040, the Organisation of the 

Petroleum Exporting Countries (OPEC) forecasts that global oil consumption will have 

increased significantly, rising by 23.1% from present levels to around 111.1 million 

barrels per day. The accessible reserves of these resources have, however, decreased as a 

result of the usage of common light oils. The need to access alternate fossil resources is 

critical given the continuous reliance on fossil fuels for the foreseeable future [2]. 

Techniques for Enhanced Oil Recovery (EOR) include primary, secondary, and tertiary 

approaches. Following oil discovery, primary recovery starts, using natural reservoir 

pressure for early oil production. Secondary recovery procedures, often known as EOR, 

are used when relying exclusively on reservoir pressure is no longer adequate. Advanced 

EOR techniques are used in tertiary recovery to extract oil beyond primary and secondary 

phases [3]. 

 

Figure 1.1: IOR/EOR [4] 
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Eric Delamaide et al. compared polymer flooding in primary, secondary and 

tertiary stage of a heavy oil field [5]. Alex F. Teixeira et al. proposed machine learning 

models to support reservoir production optimization [6]. Zhi Zhong et al. predicted 

reservoir production rates during waterflooding uses a proxy model that makes use of 

machine learning [7].  

Rui ZHANG et al. suggested to use a multivariate time series (MTS) and vector 

autoregressive (VAR) machine learning model for waterflooding reservoir for oil well 

output forecasting [8]. Carlos Calad et al. Combined Traditional Reservoir Physics with 

Machine Learning for Predictive Modelling and Optimisation of a Large Mature 

Waterflood Project in the Argentinan Gulf of San Jorge Basin [9].  

Ehsan Amirian et al. employed ANN to predict how well the water-flooding 

process will recover [10]. An innovative strategy for predicting the entire oil output from 

the White Tiger subterranean reservoir was proposed using a supervised learning 

methodology. This approach was then used to maximise Net Present Value (NPV) by 

optimising waterflooding tactics. Hien DH et al [11]. To be employed as screening and 

optimised design tools for polymer injection projects, a forward-looking and an inverse 

design expert ANN system is being developed.  

Qian Sun et al [12]. Imankulov et al. used algorithms of machine learning to 

address the issues of polymer injection into an oil reservoir [13]. It is shown that the 

support vector machine-based quantitative prediction models of polymer flooding 

performance consider both universality and extendibility, and they meet the requirements 

of engineering computation applications. Jian Hou et al [14].  

To show complex polymer gel kinetics and flow dynamics in deep conformance 

situations with accuracy, the work offers a unique surrogate modelling technique that 

makes use of machine learning.  

A reliable method of predicting oil recovery results for polymer gel treatments in 

fractured reservoirs is provided by the suggested neural network model. Notably, the 

model outperforms typical commercial simulators in terms of processing speed and 



 3 

computational efficiency. Mohammad Algazal et al [15].  Random Forest regression 

was used to build a regional surrogate model for the oilfield. It advances the planning and 

economic elements inside digital oilfield operations, improving accuracy and efficiency 

by effectively implementing machine learning approaches for modelling. Fedor Krasnov 

et al [16].  

Yanbin Wang et al. used the Backpropagation (BP) artificial neural network 

technique, predictive models for enhanced oil recovery (EOR) and internal rate of return 

(IRR) in polymer flooding situations have been created [17].  

A recurrent neural network model has been designed to assist in making practical 

decisions and forecasting especially for the case that includes a lot of production factors 

and geological factors in high-dimensional data space. This model should forecast data in 

heavy oil reservoirs production via Steam Assisted Gravity Drainage (SAGD). It is a 

useful option to the laborious and tedious traditional means of numerical static and 

dynamic simulation. Yanwei Wang et al [18]. The incremental recovery of oil has become 

high enough for our study, which brings it from low oil recovery to high oil recovery. 

With this development, it will be received how surfactant-induced wettability change is 

achieved.  

We have also developed a quick framework which would make it easier to 

forecast, analyze and improve the surfactant performance. This approach has an ability to 

cut down in the amount of time required for experimenting dramatically. Ya Yao et al 

[19]. This major goal was to develop reliable and accurate models for estimation of 

interfacial tension (IFT) between ionic surfactants and regular alkanes. Three clever 

computer-aided methods were used in the study to achieve this goal: decision trees (DT), 

extra trees (ET), and gradient boosting regression trees (GBRT) models. These methods 

might be used to generate precise models that would make computing the IFT simple.  

Artificial intelligence has been used by Ali Rashidi-Khaniabadi et al. [20] and 

Mahdi Shayan Nasr et al. to allay concerns about initial evaluations of enhanced oil 

recovery (EOR) techniques. The research focused on many machines learning techniques, 

including the radial basis function-artificial neural network (RBF-ANN), multilayer 
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perceptron-artificial neural network (MLP-ANN), and adaptive neuro-fuzzy inference 

system (ANFIS). Using these techniques, it was predicted that several research employing 

silica nanofluid flooding in carbonate and sandstone reservoir core samples would be 

effective [22]. 

1.2 Statement of Problem 

The accurate prediction of oil recovery factor remains a significant challenge, 

particularly when dealing with different oil recovery methods and varying operating 

conditions. Traditional EOR techniques may struggle to account for these complexities, 

leading to suboptimal predictions. Additionally, the computational cost associated with 

running detailed simulations for large-scale industrial processes can be prohibitive. 

To address these challenges, there is a growing interest in integrating Machine 

Learning (ML) techniques with simulation software for creating prediction models. ML 

methods, such as artificial random forest regressor, KNN regression, gradient boost 

regression have shown promise in improving the predictive accuracy of EOR methods. 

However, developing a seamless integration of EOR methods and ML, along with 

optimizing model parameters, is an area that requires further exploration. 

1.3 Research Objectives 

The primary objective of this thesis is to develop a machine learning model and 

compare the three enhanced oil recovery techniques to find the best machine learning 

model and enhanced oil recovery method which can produce higher oil rate per day hence 

increased oil recovery. To achieve the objectives machine learning models are developed 

on the data produced by the live oil field and eclipse simulator. Some data analytics 

techniques are employed to understand the data distribution. 

1.4 Scope and Limitations 

This research will focus on comparing different machine learning models and EOR 

methods and the prediction of oil rate by each EOR method. The limitations of this 

research include: 
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• The study's findings may not be directly transferable to all EOR techniques due to 

varying process parameters. 

• The finding may not be transferable to all oil fields due to different geological 

parameters. 

The performance of model may depend on the quality and quantity of available 

data. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Literature Review 

Most of the oil output in the world today is from fields that are mature, and hence 

enhanced oil recovery has come out to be a necessity from these aging resources. This is a 

matter of major concern to oil companies and governments, as replacement of produced 

reserves with new finds has slid steadily in recent decades. Therefore, to meet future energy 

demand, recovery factors have to be optimized from the older sources through both primary 

and secondary production methods. Improved Oil Recovery (IOR) mechanisms could be 

considered as Enhanced Oil Recovery (EOR) techniques, the use of new drilling 

technology, more intelligent reservoir management, better monitoring techniques, and 

fundamental changes in primary and secondary recovery processes. Economic factors, the 

price of crude oil, and the willingness of the investor to manage risks and economic 

exposure—all have a bearing on EOR projects [23].  

 

Figure 2.1: Schematic diagram of flooding process [24] 

There are three main phases to the development of an oil field: in the primary stage, 

the initial reservoir pressure produces oil, allowing it to ascend freely to the surface. When 
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the reservoir pressure starts to decline, water injection is typically employed to keep the 

pressure stable and serve as the secondary stage's driving power. Ultimately, the remaining 

oil is recovered using a range of techniques in the tertiary (EOR) stage, such as steam, CO2 

injection, and natural gas miscible injection.  

 

Figure 2.2: Typical injection procedure and slug injection Strategy [23] 

These stages are crucial for increasing the oil recovery factor and prolonging the 

useful life of the oil field [24]. The amount of oil recovered during primary recovery can 

range from zero to fifty percent or more of the initial oil in situ, contingent upon the 

hydrocarbon type and the reservoir's driving mechanism. When the gravity drive is 

effective, a water drive can yield 50% or more in the case of the light oil reservoirs. It is 

zero in oil sands. Secondary recovery, which is often accomplished through water flooding, 

ranges from nil for oil sands to a few percent for heavy oils and up to 20-50% for light oils. 

EOR extends beyond secondary recovery and incorporates a variety of costly approaches, 

some of which are successful under favourable conditions. EOR is particularly important 

for highly viscous oils and oil sands with low primary and secondary productivity [25].  

2.2 Water Injection 

Water injection is critical in maximizing the economic consequences of many oil 

fields. Successful water injection operations contribute to both expanding oil production 
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and enhancing overall recovery by maintaining reservoir pressure and shifting oil towards 

producing wells. Water injection can greatly boost the recovery factor in offshore 

environments, increasing it from roughly 15% with primary recovery to more than 40% 

[26]. The success of reservoir management is dependent on current and future reservoir 

performance. The accuracy is affected by the quality of the simulation model utilised. It 

enables for the evaluation of development approaches and the optimisation of reservoir 

operation. It is critical to develop a dependable model. These models are used in production 

optimisation to maximise asset value. Water injection is a technique for optimising 

recovery that increases oil output and economic productivity. It is popular due to the ease 

of injection and the efficient oil displacement by water, which extends the productive life 

of the oil field [27]. 

 

Figure 2.3: Schematic of water injection process 

Water is pumped into a reservoir to displace and push existing hydrocarbons into 

producing wells, hence improving oil recovery following the natural depletion stage. 

However, the reservoir's geological heterogeneity can have an impact on the efficiency of 

water flooding. Fortunately, recent developments in downhole equipment and 
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instrumentation have resulted in better sweep efficiency by changing production and 

injection rates in the reservoir's geological layers. These advancements aid in the 

optimisation of the water flooding process and the recovery of oil from the reservoir [28]. 

Numerical simulation models used to analyse subsurface flow injection and production 

mechanisms can be exceedingly complicated and computationally expensive, making the 

procedure time-consuming.  

In the last few decades, academics have resorted to machine learning approaches 

such as simple to advanced regression and artificial neural networks to overcome these 

difficulties. These machine learning techniques could help lower processing costs and 

improve the efficiency of analysing subsurface flows [29]. Using the most recent industry 

database, the researchers created an Artificial Neural Network (ANN). The major goal was 

to develop an ANN model capable of calculating the best Enhanced Oil Recovery (EOR) 

method based on reservoir rock and fluid parameters. The goal is to obtain accurate 

estimates in a timely and cost-effective manner. The study will also assess the applicability 

of the constructed ANN model in real-world circumstances [30]. 

2.3 Polymer Injection 

Polymer injection is a popular Enhanced Oil Recovery (EOR) technology that is 

used when conventional water flooding techniques fail to produce sufficient oil recovery. 

Water tends to travel through higher permeability zones and fractures during flooding, 

bypassing lower permeable zones containing considerable amounts of residual oil. Polymer 

flooding, first used for secondary and tertiary oil recovery in the 1960s, has found 

widespread use in both operational and research settings. When water-soluble polymers 

are added to water, the viscosity of the water increases, resulting in a decrease in the water-

to-oil mobility ratio.  

As a result, the sweep efficiency and Recovery Factor (RF) are improved. 

Furthermore, when compared to typical water flooding methods, polymer flooding requires 

less water [31]. Polymer flooding may have an economic impact because less water is 

injected and produced when compared to water flooding [32].  
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Figure 2.4: Oil Production and Water Production over time [33] 

Polymer flooding is a successful enhanced oil recovery process that involves 

injecting into the reservoir water combined with a tiny proportion of soluble polymer. By 

raising the viscosity of the injected fluid, this procedure enhances sweep efficiency by 

reducing viscous fingering and generating a smoother flood front. Maximum sweep 

efficiency is accomplished by reducing the mobility ratio of the injected fluid in 

comparison to the oil phase.  

Polymer flooding is especially beneficial in heavy oil reservoirs with horizontal 

injection wells because it allows for bigger polymer slug sizes. This methodology beats 

other heavy oil recovery systems, such as SAGD and ES-SAGD, in terms of cost and 

environmental efficiency [34]. 

2.1 Surfactant Injection 

Surfactants, also known as surface active agents, are chemical molecules that have 

a hydrophilic head and a hydrophobic tail. Surfactants are divided into four types based on 

the charge on the hydrophilic head: non-ionic (no charge), anionic (negative charge), 
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cationic (positive charge), and zwitterionic (both negative and positive charges). 

Surfactants often have a chain structure that is mostly affected by the content of the 

hydrophobic tail. A surfactant's tail group can be made up of a short polymer chain, a long 

hydrocarbon chain, a siloxane chain, or a fluorocarbon chain.  

The head group, on the other hand, is made up of moieties like sulphates, sulfonates, 

polyoxyethylene chains, carboxylates, alcohols, or quaternary ammonium salts. The 

presence of these groups confers the amphiphilic property [35].  

To boost oil recovery in reservoirs, surfactant Enhanced Oil Recovery (EOR) 

exploits two essential mechanisms. Surfactants, for starters, reduce the interfacial tension 

between oil and water, which lowers capillary pressure and allows water to displace 

trapped oil. Water bypass is a method that mobilises previously immobile oil.  

 

Figure 2.5: Schematic of Surfactant based injection process [36] 

Surfactant is injected through the injection well which push the oil toward the 

production well. Second, surfactants change the wettability of the reservoir to make it more 
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water-wet, assisting in the detachment of oil films from pore walls and minimising residual 

oil saturation. Surfactant flooding improves oil recovery during water flooding operations 

by synergistically reducing interfacial tension and altering reservoir wettability, ultimately 

increasing the amount of oil taken from the reservoir [36]. 
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CHAPTER 3: ML THEORETICAL FRAMEWORK 

3.1 Random Forest Regressor 

Leo Breiman developed the Bagging method in 1996, which was one of the early-

stage algorithms [37]. Amit and Geman generate a large variety of geometric attributes and 

use a random selection of them to get the ideal split at each note [38]. Dietterich proposed 

the random split selection hypothesis in 1998 [39]. The division is randomly selected from 

the top N probable divisions at each internal node. Ho pioneered a large amount of research 

into the "random subspace" approach, in which each tree is enlarged using a randomly 

chosen subset of characteristics. Breiman created additional training sets by adding 

unpredictability into the outputs of the original training set in a separate paper. Notably, 

the ideas presented in a paper written by Amit and Geman were influential in forming 

Breiman's thinking about random forests [40,41]. 

Random forests are a hybrid of machine learning techniques. They combine an 

ensemble of tree classifiers, with each tree contributing a single vote to the prevailing class, 

and the ultimate choice is made by averaging their outputs. Random forests have several 

benefits, including as excellent classification precision, robust handling of outliers and 

noise, and a lack of overfitting issues. In the realms of data mining and biological research, 

random forests have earned substantial attention and recognition, emerging as a favoured 

avenue for investigation [42]. 

The generalisation error of any decision tree h(x) equals for the input vector A and 

the output vector B. 

𝐸𝑋,𝑌(𝑌 − ℎ(𝑋))
2
 … (1) 

RFR is projected to be equal to the average of k decision trees h (x, k). 

The RFR approach does not induce overfitting as the number of decision trees 

increases, but it may create generalisation mistake within a specified limit. The following 

can explain this phenomenon: 
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Almost definitely, when the number of decision trees h(x) in the forest approaches 

infinite, 

𝐸𝑋,𝑌(𝑌 − 𝑎𝑣𝑘ℎ(𝑋, Θ𝑘))
2
                             𝐸𝑋,𝑌(𝑌 − 𝐸Θℎ(𝑋, Θ))

2
 … (2) 

 

Figure 3.1: Schematic of Random Forest [43] 

3.2 Gradient Boost Regression 

Boosting tactics combine weak learners by emphasising on the errors made at each 

level, culminating in the acquisition of a strong learner who is the sum of the consecutive 

weak learners [44]. Gradient Boosting Regression (GBR) techniques are commonly 

employed in regression and classification issues and can produce good results [45]. The 

function estimation or approximation technique is reframed by focusing on numerical 

optimisation inside the function space rather than the parameter space. This approach 

integrates stagewise additive expansions with steep descent minimization. For additive 

expansions, a comprehensive gradient descent "boosting" architecture that is scalable to 

multiple fitting criteria is provided. The paradigm includes regression techniques that use 

least-squares, least absolute deviation, Huber-M loss functions, and multiclass logistic 
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likelihood for classification. This methodology is improved by using regression trees as 

additive components, a technique known as "TreeBoost," which provides competitive, 

resilient, and interpretable models for both regression and classification, making it 

especially suitable for dealing with noisy data [46]. Two tuning parameters related to the 

gradient boosting regression are the shrinkage rate and ntrees. The number of trees that 

have been grown is thought to be ntrees. The shrinkage parameter is widely understood to 

indicate the learning rate of every tree that has expanded due to the expansion. [47]. 

 

Figure 3.2: Flow Chart Gradient Boosting Regression [48] 

3.3 KNN Regression 

Cover and Hart introduced the K-Nearest Neighbour method in 1968 and refined it 

subsequently [49]. Supervisory learning includes algorithms such as the K-Nearest 

Neighbors (KNN) regression method. It predicts a target value by comparing the supplied 

instance's similarity to other existing examples. A distance metric, most typically the 

Euclidean distance, is used to determine similarity. Identifying the K most comparable 

occurrences, or neighbours, to the testing data point from the complete dataset is the 

method. KNN uses the Euclidean distance formula to calculate the distances between the 

numerical values of these locations. This computation calculates the neighbours' proximity 

and leads the forecast for the testing point's goal value [50]. The kNN algorithm prioritises 
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the closeness of comparable items. When building a kNN model, many metrics such as 

Euclidean, Manhattan, and Chebyshev distances can be used to find closely related 

elements. These metrics serve in identifying the similarity of items inside the algorithm 

[51].  

Euclidean  

√(∑ (𝑦𝑖
𝑛
𝑖=1 − 𝑥𝑖)^2 … (3) 

Manhattan  

∑ | 𝑦𝑖 − 𝑥𝑖|𝑛
𝑖=1  … (4) 

Minkowski 

(∑ (𝑦𝑖 − 𝑥𝑖)𝑝)^1/𝑝𝑛
𝑖=1  … (5) 

Chebyshev 

max |𝑦𝑖 − 𝑦𝑖| … (6) 

Some of the factors considered in optimising the model are the distance, point 

weights, neighbourhood number, and p parameters related with the Minkowski function 

[52]. 
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CHAPTER 4: METHODOLOGY 

4.1 Data Acquisition 

In this investigation, three alternative enhanced oil recovery (EOR) methods—

water injection, polymer injection, and surfactant injection—were used. Over 1500 data 

points were included in the characteristic and target variables for each approach. Additional 

data points were extrapolated using the Eclipse Simulator after the dataset was initially 

received from an oil extraction field. Python was used to apply machine learning models, 

data cleaning and preparation and visualizations. The libraries used are pandas, sklearn and 

seaborn. A few missing values were found during the data preprocessing stage and then 

eliminated to make sure they wouldn't negatively impact the machine learning results. 

Further evidence that the removal of these missing values does not create any biassed 

tendencies comes from the fact that the number of missing values was comparatively low 

in comparison to the non-missing values. 

Feature variables include average pressure psi, Gas Rate MMscf/day, Ratio of 

Produced Water to Injected Water, Voidage Replacement Coefficient, Water Voidage 

Production Rate MRB/day, Watercut, fraction, Water Injection Rate Mstb/day, Water Rate 

Mstb/day, Water-Oil Ratio stb/stb, Number of Injectors Currently Flowing, Number of 

Producers Currently Flowing, Oil Total MMstb and Oil Rate Mstb/day is the target 

variable. 

The mean pressure applied within the oil reservoir during the extraction process, 

on the other hand, is known as the average pressure (psi). This becomes significant because 

it regulates the production and flow rates of fluid. To guarantee maximum oil recovery and 

to appropriately manage the reservoir, the pressure must be optimal. To reduce the 

possibility of reservoir damage, this will allow the operators to optimize production rates 

and set a maximum pressure. 

Generated Water to Injected Water Ratio: This ratio considers the full potential of 

the EOR process. This increases the water injection's efficacy and the reservoir's sweeping 
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efficiency. Thus, a higher ratio corresponds to an improved water flood displacement of 

oil, which leads to improved recovery and sound reservoir management. 

The voidage replacement coefficient describes the amount by which a reservoir 

replaces fluids that have been lost. It might be seen as a ratio showing how much fluid, 

typically water, has been put into the reservoir with respect to how much fluid, typically 

oil, has been produced. A good VRC indicates high efficiency of sweeping and oil 

displacement by the injected fluid.  

A good fluid replacement therefore helps in the pressure maintenance of the 

reservoir, besides maintaining the performance that is added to the successful recovery. 

Meanwhile, the water voidage production rate is a value that indicates the water 

amount produced from the reservoir, and the unit of the input value may be in the form of 

millions of stock tank barrels per day (Mstb/day). Moreover, the data support reservoir 

techniques management and the governance of water handling features through water 

production behavior provision. 

Watercut (fraction): The proportion of water in total generated fluids (oil, gas, and 

water) is known as the watercut. It is a crucial performance indicator for surveillance and 

reservoir management. A high watercut might also be a sign of coning or possibly water 

break-through, which would indicate the need for suitable mitigation and decrease oil 

recovery. 

The water injection rate is expressed in terms of millions of stock tank barrels per 

day (Mstb/day) to increase recovery. Sustaining the oil displacement, sweep efficiency, 

and reservoir pressure requires proper control of the water injection rate. It affects oil 

recovery, total production optimization, and reservoir performance. 

Water rate is defined as the quantity of water produced daily in Mstb/day from the 

reservoir. Measurement of water rates is, therefore, key for purposes of control of water 

handling facilities, monitoring the behavior of the reservoir and to ensure that practices of 

the reservoir management give results as desired. 
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Ratio of water to oil (stb/stb): Such a ratio is given in stb/stb and it measures the 

proportion in volume between water and oil as produced. It is an anticipated amount of 

water encroachment into the reservoir, and it helps access the effectiveness of water 

flooding or injection. Water to oil ratio must be kept in such a manner that high oil recovery 

is achieved while controlling the water output at the same time. 

The number of the injection wells now onstream and thus contributing to the 

reservoir in accordance with the schemes for improved oil recovery denotes the flowing of 

the injectors now. A monitored number of injection wells of active injectors would reflect 

a way of efficiency of reservoir management, technique of injection, as well as 

displacement of the fluid into the reservoir. 

Number of wells flowing in the reservoir are those well activities which are actively 

producing water, gas, and oil from the reservoir. This, in turn, helps to track the number of 

active producers, which further aids in assessing how well the reservoirs’ function, how 

efficient the production methods are, and the effectiveness of the whole process of 

extracting hydrocarbons. 

Oil Total (MMstb): Million stock tank barrels (MMstb) is the total amount of oil 

produced from the reservoir from the beginning of extraction. It helps assess the 

productivity potential of the reservoir, the efficiency of extraction operations, and the 

overall oil recovery of the reservoir. 

It shows the rate of oil production, which is often expressed in millibars per day 

(Mstb/day) of stock tank oil. Monitoring shows the amount of oil flowing out of the 

reservoir and is used to assess how well the production is performing. Rates must be closely 

monitored to gauge the reservoir's production and enhance extraction processes.  

It supports the operators' ability to track changes in oil production over time and 

makes well-informed choices about reservoir management.  

These characteristics are essential to oil extraction because of knowledge about 

reservoir behavior, fluid dynamics, efficient oil production techniques, and reservoir 

management information. Therefore, by monitoring and analyzing the data, the operators 
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would be able to manage the reservoir pressure, optimize the pace of production, displace 

fluid to an ideal level, and assure the highest possible recovery of oil. These characteristics 

also support the management of water handling facilities, assessment of improved oil 

recovery techniques, and justifiable decision-making for long-term, reasonably priced oil 

extraction activities. 

4.2 Eclipse Simulator Instruments 

Thus, the main goal of this research project is to maximize the oil recovery factor 

by the collaborative use of reservoir simulation software Eclipse and machine learning 

techniques. Water Injection Rate (Mstb/day), Water Rate (Mstb/day), Water-Oil Ratio 

(stb/stb), Average Pressure (psi), Oil Total (MMstb), Ratio of Produced Water to Injected 

Water, Voidage Replacement Coefficient, Water Voidage Production Rate (MRB/day), 

Watercut fraction, and Water Injection Rate (Mstb/day) are all significant parameters that 

can be found in the foundational dataset directly from an active oil field.  

To improve the dataset's richness for machine learning applications, generate a few 

more data points using the Eclipse simulator. With the addition of this dataset, an integrated 

view of reservoir dynamics—based on characteristics like Watercut and Oil Rate, among 

others—is provided, which is crucial to the predictive analytics approach.  

An inventive approach by machine learning to maximize oil recovery that might 

further advance reservoir management is blending the simulated inputs with the field's real-

world data. Stressing the correctness and dependability of the recently generated datapoints 

which were produced after the variance was made—while contrasting the outcomes with 

those obtained from the Eclipse reservoir simulation software is also essential.  

Thus, the arduous validation of the simulated data has confirmed the accuracy and 

consistency of these data with complex dynamics of the real oil field. The study has 

initiated a strong foundation for the support of machine learning applications in the future 

through an increasing legitimacy of the dataset through cross-referencing and validation to 

the machine-generated data and Eclipse outcomes. By means of a compelling comparison 

between the validation of data through simulation and field data collection, it will serve as 
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the foundation for a more thorough and accurate examination of the optimization 

techniques meant to maximize the oil recovery factor of the reservoir in question. 

The Eclipse 100 simulation research used a very strict set of protocols to fully 

model and analyze the behavior of the reservoir. The effort began with the creation of a 

reservoir simulation model called Eclipse (GRID), which symbolized the reservoir using 

cuboid structures.  

The following step was giving each of these three layers the necessary 

characteristics, such permeability and porosity. In addition, Eclipse (OFFICE) has 

incorporated other qualities, such as reservoir fluid and a rock characteristic. This helped 

confirm the model's accuracy because the estimated values were closely compared to the 

Fluid Initially in Place.  

After that, a Base Case simulation was performed without injecting wells to 

determine the fundamental recovery dynamics. To demonstrate the validity of the model, 

the resulting production profile was then verified against manually produced numbers. 

Subsequent simulations were conducted to incorporate injection wells into the network's 

evolution.  

The recovery efficiency of the oil was determined by carefully compiling and 

calculating the production profiles of the variables in each case. 

Notably, simulations of water injection, polymer injection, and surfactant injection 

were conducted in this comparative investigation. They are designed to make it possible to 

assess and compare the efficacy of different state-of-the-art rehabilitation techniques. The 

Eclipse software framework is the foundation of this customized reservoir simulation 

technique, which illustrates how the reservoir reacts to injections of surfactant, water, and 

polymers. 

4.3 Python 

Python's ease of use, adaptability, and rich library support have made it a potent 

tool in the fields of machine learning and data analysis. In my thesis, I developed and 
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assessed machine learning models for enhanced oil recovery (EOR) using Python and 

several of its essential libraries. I now present Python and a few of the key libraries—scipit-

learn, pandas, numpy, and seaborn—that were crucial in my research. 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Water Injection 

Table 5.1: Correlation score among variables for water injection 

Variable Correlation 

Oil Rate, Mstb/day 1.000000 

Avg. Pressure, psi -0.710908 

Gas Rate, MMscf/day 0.828644 

Ratio of Produced Water to Injected Water -0.682225 

Voidage Replacement Coeff -0.213405 

Water Voidage Production Rate, MRB/day -0.564025 

Watercut, fraction -0.687774 

Water Rate, Mstb/day -0.564118 

Water-Oil Ratio, stb/stb -0.683195 

Oil Total, MMstb -0.609514 
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Figure 5.1: Correlation Matrix – Water Injection 

The relationship of the aim variable, "Oil Rate, Mstb/day," with the rest of the 

variables is plotted on the correlation matrix. All those variables, except "Gas Rate, 

MMscf/day," indicate amongst themselves a quite strong positive relationship with rising 

gas prices—a link to increasing oil prices. While on the other hand, "Watercut, fraction" 

and "Water-Oil Ratio, stb/stb" show a significantly negative relationship, meaning that the 

amount of oil detected in the produced fluid is lower due to the high water cut that has 

accumulated in it. Similarly, "Oil Total, MMstb" and "Ratio of Produced Water to Injected 

Water" tend to neutralize relations with the oil rate. It can be understood that the daily rate 

of oil will reduce to 0 as the ratios of produced water to injected water and cumulative oil 

output raise. The small negative correlation was associated with "Avg. Pressure, psi," 

"Water Voidage Production Rate, MRB/day," and "Water Rate, Mstb/day. This highlights 

that correlations do not connote causation, and that future research will have to be done in 

order to further comprehend the intricacy of the interrelations between these variables. 
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5.2 Polymer Injection 

Table 5.2: Correlation score among variables for polymer injection 

Variable Correlation 

Oil Rate, Mstb/day 1.000000 

Ratio of Produced Water to Injected Water -0.635428 

Voidage Replacement Coeff. -0.180369 

Water Voidage Production Rate, MRB/day -0.528755 

Watercut, fraction -0.661683 

Water Injection Rate, Mstb/day 0.290715 

Water Rate, Mstb/day -0.528448 

Water-Oil Ratio, stb/stb -0.675748 

Avg. Pressure, psi -0.548023 

Oil Total, MMstb -0.583521 

The relationships between the dependent variable "Oil Rate, Mstb/day" and the 

other variables in the dataset will be shown in the correlation matrix. It is evident from the 

strongly negative correlations of other variables like "Watercut, fraction," "Ratio of 

Produced Water to Injected Water," and "Water-Oil Ratio, stb/stb" that one has high 
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volumes of production water, high ratios of injected water to production water, and high 

water-oil ratios in general at low oil rates. The following factors show a slightly negative 

association with the oil rate: average pressure, psi,"Water Rate, Mstb/day" and "Water 

Voidage Production Rate, MRB/day." Lower oil rates will result from greater average 

pressure, water voidage production rate, and water rate, respectively. It's crucial to keep in 

mind that correlation does not imply causality. 

 

Figure 5.2: Correlation Matrix – Polymer Injection 

5.3 Surfactant Injection 

The correlation matrix helps in understanding relationships that the goal variable, 

"Oil Rate, Mstb/day," has with other variables in the dataset. Variables such as "Watercut, 

fraction," "Ratio of Produced Water to Injected Water," and "Water-Oil Ratio, stb/stb" 
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show severe adverse correlations, signifying that higher contents of water in the produced 

fluid, higher ratios of the produced water to the injected water, and a higher water-oil ratio 

infer lower oil rates. The relationship "Water Injection Rate, Mstb/day" and "Oil Rate" is 

very slightly positively related, i.e., an increase in water injection rates will see an increase 

in oil rates. Moreover, "Avg. Pressure, psi," "Water Voidage Production Rate, MRB/day," 

"Water Rate, Mstb/day," and "Oil Total, MMstb," have negative correlation with the oil 

rate, meaning that as the value of the variables increases, it may affect negatively the 

amount of oil produced. 

Table 5.3: Correlation score among variables for surfactant injection 

Variable Correlation 

Oil Rate, Mstb/day 1.000000 

Avg. Pressure, psi -0.292970 

Ratio of Produced Water to Injected Water -0.608177 

Voidage Replacement Coeff. -0.145768 

Water Voidage Production Rate, MRB/day -0.550968 

Watercut, fraction -0.641185 

Water Injection Rate, Mstb/day 0.397057 

Water Rate, Mstb/day -0.550580 

Water-Oil Ratio, stb/stb -0.627518 
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Oil Total, MMstb -0.503486 

 

Figure 5.3: Correlation Matrix – Surfactant Injection 

5.4 Performance evaluation criteria 

MSE and R2 were used to assess preprocessing strategies. The datasets were split 

into training (70%) and testing (30%) datasets at random to pre-process and deeply model 

the data. The developed models were validated using 5-fold cross-validation in order to 

reduce overfitting and data waste. The Regression model toolbox of each model provided 

ranges for the hyperparameter adjustment, which were subsequently optimised with GA's 

assistance. The models were then constructed and tested using these hyperparameters. The 



29 

performance of the validation phase over the modelling process was assessed using the 

average values of the statistical indices. 

Each final machine learning model's prediction performance was evaluated using 

the following two criteria: 1) Root-mean-squared error (RMSE) and 2) Coefficient of 

determination (R2). Here are the R2 and RMSE equations: 

R2 = 1 −
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∑ (𝑌
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𝑒𝑥𝑝

− 𝑌
𝑖
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)2
𝑛

𝑖
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𝑌𝑖
𝑒𝑥𝑝 𝑖𝑠 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒,   𝑌𝑖 𝑖𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝑛  

𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 

5.5 Prediction Performance 

Oil rate per day was predicted using random forest regressor, gradient boosting 

regressor and KNN regressor. This study includes three different enhanced oil recovery 

methods which are water injection, polymer injection and surfactant injection. All three 

models given above applied to each dataset. Therefore, nine models have been applied 

which successfully predicted the oil rate per day. 

The KNN Regressor showed respectable prediction accuracy with an R-squared 

ranging from 0.80 to 0.89 on testing sets, along with greater RMSE and MSE, when the 

regression models for surfactant, water, and polymer injections were evaluated. In every 

situation, the Random Forest and Gradient Boosting Regressors performed better than the 

KNN; on both the training and testing sets, they demonstrated decreased RMSE and MSE 

and achieved R-squared values that were almost equal to 1. In particular, Random Forest 

demonstrated exceptionally high accuracy, with an R-squared of 1.00 on the training set 

for injections of polymers and surfactants. These ensemble approaches demonstrated their 
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applicability for forecasting oil rates in diverse injection scenarios by successfully 

capturing intricate linkages in the data. Based on the results, Random Forest and Gradient 

Boosting are better options for real-world applications as they indicate less overfitting. 

Nonetheless, it is important to take into account the interpretability of ensemble models. 

Additional research into feature significance and other regression strategies may also help 

to increase performance and comprehension. The training RMSE, MSE and R-squared 

values along with their testing values are compared below in the table. 

Table 5.4: Injection type, Model and their evaluation parameters 

Data set Model Training 

RMSE 

Testing 

RMSE 

Training 

MSE 

Testing 

MSE 

Training 

R Squared 

Testing R-

Squared 

Surfactant 

Injection 

RF 

Regressor 

0.61 1.38 0.37 1.91 0.99 0.98 

Surfactant 

Injection 

GB 

Regressor 

1.28 1.55 1.65 2.41 0.99 0.98 

Surfactant 

Injection 

KNN 

Regressor 

3.81 4.71 14.48 22.21 0.87 0.80 

Polymer 

Injection 

RF 

Regressor 

0.56 1.45 0.31 2.11 0.99 0.98 

Polymer 

Injection 

GB 

Regressor 

1.06 1.53 1.12 2.34 0.99 0.98 

Polymer 

Injection 

KNN 

Regressor 

3.44 4.02 11.80 16.18 0.89 0.83 
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Water 

Injection 

RF 

Regressor 

0.56 1.45 0.31 2.11 0.99 0.98 

Water 

Injection 

GB 

Regressor 

1.03 1.51 1.07 2.29 0.99 0.98 

Water 

Injection 

KNN 

Regressor 

3.42 4.01 11.70 16.07 0.89 0.85 

The table uses performance metrics like Root Mean Squared Error (RMSE), Mean 

Squared Error (MSE), and R-Squared (R²) for both training and testing data to compare the 

performance of three regression models: Random Forest (RF), Gradient Boosting (GB), 

and K-Nearest Neighbours (KNN)—across three datasets: Surfactant Injection, Polymer 

Injection, and Water Injection. RF exhibits the lowest RMSE and highest R² for surfactant 

injection (0.61 training RMSE, 1.38 testing RMSE, 1 training R², 0.98 testing R²), 

demonstrating good fit and generalisation. GB (1.28 training RMSE, 1.55 testing RMSE, 

0.99 training R², 0.98 testing R²) follows closely behind with minor deviations. In contrast, 

KNN performs worse as evidenced by its larger RMSE and lower R2 (3.81 training RMSE, 

4.71 testing RMSE, 0.87 training R2 and 0.80 testing R2). While GB (1.06 training RMSE, 

1.53 testing RMSE, 0.99 training R², 0.98 testing R²) exhibits similar robustness, RF once 

again performs exceptionally well in Polymer Injection (3.56 training RMSE, 1.45 testing 

RMSE, 1 training R², 0.98 testing R²), and KNN's higher errors (3.44 training RMSE, 4.02 

testing RMSE, 0.89 training R², 0.83 testing R²) imply lower accuracy.  

The RF for Water Injection is still high at 0.56 training RMSE, 1.45 testing RMSE, 

1 training R², and 0.98 testing R². GB is next in line at 1.03 training RMSE, 1.51 testing 

RMSE, 0.99 training R², and 0.98 testing R², while KNN is once again trailing behind at 

3.42 training RMSE, 4.01 testing RMSE, 0.89 training R², and 0.85 testing R². In general, 

across all datasets, RF and GB regularly beat KNN with RF typically displaying the 

strongest performance metrics, demonstrating higher levels of generalisation and 

predictive power. 
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5.6 Prediction Curves 

Nuanced insights into the performance of the various injection types—water, 

polymer, and surfactant—are revealed by a thorough examination of regression models. 

Closely grouped data points around the line of perfect prediction demonstrate the Random 

Forest Regressor's strong linear correlation with actual values for Surfactant Injection. This 

suggests that the model successfully captures underlying patterns with little variance and 

shows high accuracy and dependability. Like this, the Gradient Boosting Regressor 

exhibits robustness in processing complicated data, with just small variances in its high 

prediction accuracy for Surfactant Injection. The K-Nearest Neighbours (KNN) Regressor, 

on the other hand, shows more dispersion, which suggests a higher prediction error and 

less dependability for this kind of injection. 

The Random Forest Regressor exhibits remarkable performance in Polymer 

Injection, as evidenced by data points that are in near alignment with the line of perfect 

prediction, indicating reliable and precise predictions. Moreover, the Gradient Boosting 

Regressor performs admirably, exhibiting low variation and strong prediction 

dependability. The KNN Regressor, however, exhibits substantial variance, especially near 

the lower end of the real values, suggesting that it has difficulty capturing the intricacy of 

the data. 

The Random Forest Regressor continues to perform well for Water Injection, 

demonstrating a high degree of correlation between expected and actual values, an 

indication of trustworthy and precise predictions. High accuracy is also displayed by the 

Gradient Boosting Regressor, which manages the data well and nearly resembles the line 

of perfect prediction. But the KNN Regressor exhibits greater dispersion, which suggests 

that it is less appropriate for this dataset and has a higher prediction error. 

In contrast, the Random Forest and Gradient Boosting Regressors consistently 

perform well with low prediction variance and good accuracy across all injection types. 

The robustness of these models is attributed to their capacity to manage complicated 

datasets and minimise overfitting. The KNN Regressor, on the other hand, exhibits the 
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greatest variability in predictions and has data points that are more widely scattered from 

the line of perfect prediction, indicating that it is less successful in identifying patterns in 

the data. Given the larger variance, KNN might not be the optimal option for these datasets, 

especially when dealing with complicated or high-dimensional data. 

The best models for forecasting injection values are the Random Forest and 

Gradient Boosting Regressors, both of which exhibit high accuracy and low variation for 

all injection kinds. Although helpful, the KNN Regressor shows more unpredictability and 

less precision, suggesting that it might not be the ideal option for these datasets. This 

research emphasises how crucial it is to choose the right model for a regression task 

because different models can produce very varied outcomes depending on how well they 

can identify the underlying patterns in the data. Given that the Random Forest and Gradient 

Boosting Regressors consistently produce accurate and dependable predictions, it appears 

that ensemble methods are a good fit for these kinds of injection data. When the 

relationships between variables are non-linear or involve higher dimensions, the KNN 

Regressor may have trouble reflecting the complexity inherent in the data, as evidenced by 

the larger variance seen in its predictions. In the end, the particulars of the dataset and the 

underlying patterns it exhibits should be considered when selecting a regression model. 

While more straightforward techniques like KNN could need more tweaking or different 

strategies to obtain comparable results, ensemble methods like Random Forest and 

Gradient Boosting provide reliable and accurate answers for datasets like the ones 

examined here. 

(a) (b) (c) 
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(d) (e) (f) 

(g) (h) (i) 

Figure 5.4: Prediction Curves for Surfactant, Polymer and Water Injection 

5.7 Feature Importance 

The Random Forest Regressor models' feature importances for surfactant, water, 

and polymer injections make it easier to understand how important each feature is in 

relation to the forecasts of oil rate. "Water Voidage Production Rate, MRB/day" has the 

most impact on surfactant injection, scoring 0.2779, closely followed by "Ratio of 

Produced Water to Injected Water" at 0.2387. Additionally, "Oil Total, MMstb" and 

"Watercut, fraction" also provide a substantial contribution, scoring 0.1418 and 0.1232, 

respectively, for relevance. "Water Voidage Production Rate, MRB/day" is the most 

important factor in water injection, with a value of 0.2481. "Oil Total, MMstb" and "Avg. 

Pressure, psi" come in second and third, with values of 0.2046 and 0.2043, respectively. 

"Water Voidage Production Rate, MRB/day" (0.2683), "Oil Total, MMstb" (0.2410), and 

"Ratio of Produced Water to Injected Water" (0.2208) are the three factors with the largest 



35 

weight in polymer injection. These results imply that critical factors for all injection 

methods are the rates of water voidage production and the ratio of generated water to 

injected water. The bar charts are given below. 

(a) 

(b) 

(c) 

Figure 5.5: Feature Importance for Surfactant, Polymer and Water Injection 



36 

5.8 Data Analytics 

The three oil recovery techniques have achieved great results, with polymer 

injection coming in second to surfactant injection in terms of total oil produced, with an 

average oil rate per day of 27.27 Mstb. At an average oil rate of 25.19 Mstb per day, 

polymer injection generated more oil than water injection. With an average daily 

production of 25 Mstb, water injection generated the least oil. 

 

Figure 5.6: Total Oil and Average Oil by Injection Type 

The average oil production rates for water injection, surfactant injection, and 

polymer injection are shown in the bar graph, along with the overall oil output. The total 

oil output is shown on the y-axis as MMstb (million stock tank barrels), and each bar 

represents a different type of injection. 

A total of around 58,000 MMstb are produced via polymer injection, with an 

average oil rate of 25.19 MMstb/day. With an average oil rate of 27.27 MMstb/day, 

surfactant injection produces the most oil overall—more than 60,000 MMstb. With an 

average oil rate of 25.00 MMstb/day, water injection additionally generates around 58,000 

MMstb. 
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The data unambiguously demonstrates that surfactant injection performs much 

better in terms of both total oil output and average production rate, while polymer and 

water injections have comparable total and average production rates. This indicates that 

among the three techniques for improving oil recovery, surfactant injection is the most 

successful. 

 

Figure 5.7: Distribution of Oil rate by Injection Type 

The distribution of oil production rates, expressed in Mstb/day, for three distinct 

injection types—polymer, surfactant, and water—is shown in the accompanying 

histogram. Different colours are used to symbolise each type: water is red, surfactant is 

blue, and polymer is green. The y-axis shows the number or frequency of wells producing 

at certain rates, while the x-axis shows the oil production rate in Mstb/day. 

Interestingly, compared to polymer and water injections, surfactant injection (blue) 

has a greater frequency of production rates between 20 and 35 Mstb/day, indicating that it 

typically results in higher oil production rates.  

Water injection (red) has a wider distribution with discernible peaks at 15 and 30 

Mstb/day, but polymer injection (green) shows a peak about 10 Mstb/day, indicating a 
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modest production rate. The efficiency of each injection technique is shown in this graphic 

comparison, with surfactant injection showing to be the most successful overall in terms of 

obtaining increased oil production rates. 
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CHAPTER 6: CONCLUSIONS AND FUTURE RECOMMENDATION 

6.1 Conclusion  

Based on the comprehensive analysis conducted in this thesis, it is evident that the 

integration of machine learning algorithms with the Eclipse simulator holds great promise 

for optimizing oil recovery factors. The utilization of surfactant injection, water injection, 

and polymer injection strategies has been thoroughly investigated with the following key 

observations derived from the results. Surfactant injection via Random Forest (RF) and 

Gradient Boosting (GB) regressors achieved significantly lower RMSE and MSE values 

compared to KNN regressor. RF and GB regressors demonstrated superior predictive 

performance with high R-squared values, indicating their effectiveness in modeling and 

optimizing surfactant injection processes. While polymer injection like surfactant 

injection. RF and GB regressors outperformed KNN regressor, exhibiting lower RMSE 

and MSE values. High R-squared values obtained from RF and GB regressors signify their 

robustness in predicting polymer injection outcomes accurately. Water injection on the 

other hand, employed RF and GB. The regressors showcased remarkable performance in 

minimizing RMSE and MSE values, surpassing the predictive capabilities of the KNN 

regressor. The high R-squared values obtained from RF and GB regressors underscore their 

reliability in optimizing water injection processes effectively. 

6.2 Future Recommendations 

Overall, the findings suggest that RF and GB regression models are well-suited for 

predicting the effectiveness of various injection strategies in enhancing oil recovery 

factors. These results provide valuable insights for reservoir engineers and stakeholders in 

making informed decisions to maximize oil recovery while minimizing operational costs. 

Moving forward, further research could explore the integration of additional machine 

learning algorithms and optimization techniques to enhance the accuracy and efficiency of 

oil recovery optimization processes. 
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