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Abstract

In this thesis, First we present a new form of iterative technique. This new itera-
tive strategy for contraction mapping outperforms previous methods such as Picard,
Thakur et al.,; and Asghar Rahimi and many more. We compared these iterative meth-
ods against a new iterative strategy and presented the findings graphically. The re-
search investigates the convergence of this new iteration to the fixed point in uniformly
convex Banach spaces using Garcia Falset operator and worked on its stability. We
also present the working of this iterative technique on to a boundary value problem
to support our findings. Moreover, exhibit the applicability of four-step iteration pro-
cess in the delay differential equations. Finally, we design a training problem for an
implicit neural network that can be considered as an extension of traditional Feed
forward network.
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Chapter 1

Introduction

Fixed point theorems are derived for abstract metric space mappings with single or
set values. The fixed-point theorems for set-valued mappings, in particular, are very
useful in optimal control theory and have been widely employed to solve a variety of
economic and game theory problems. However, if F is not self-mapping, the aforemen-
tioned equation may not have a fixed point. In this scenario, it is worthwhile to find an
approximation answer r such that the error d(r, ¥x) is minimized. This is the concept
underlying the best approximation theory.

The appropriate fixed /best-proximity point theorem, together with the unique features
of the underlying function space, can have a significant impact on the solvability of
nonlinear operator equations. We want to create a venue for scholars to promote,
communicate, and discuss new issues and discoveries in this field.

In the early 1900s, scholars expanded the Banach contraction principle to encompass
multiple abstract spaces and developed additional types of contraction mapping. Ini-
tially, the notion of fixed points focuses solely on locating them. However, in other
cases, it is impossible to locate fixed locations. Using direct approaches, particularly
for nonlinear mapping. As a result, iterative approximations are offered as an alterna-
tive method for estimating the fixed point. Many issues in applied physics and math-
ematical engineering are too complex to solve with traditional analytical approaches
[1, 2, 3, 4, 5|. In such instances, fixed-point theory proposes several alternate strate-
gies for getting the desired results. To begin, we write the problem as a fixed point
equation, ensuring that the fixed point set and solution set are equal. Establishing the
existence of a fixed point for an equation implies the existence of a solution for it.

In 1922, Banach introduced the Banach contraction principle (BCP), which states
that each contraction has a unique fixed point.



In 1931, Caccioppoli described the Banach fixed point theorem for the first time. Nu-
merous studies have now been published on the generalization and extension of Ba-
nach’s Principle to both single-valued and multi-valued mappings. Essentially, the
generalization and extension of Banach’s result is dependent on two factors: changing
the underlying structure of space to a more generalized form or changing the nature
or conditions of contractive mapping, e.g. [6] see and all the relevant references.

In 1965, Kirk [7], Browder [8], and Gohde [9] independently developed a Fixed-point
theorem for nonexpansive mappings in a uniformly convex Banach space (UCBS).
Soon after, Goebel [10] established a basic proof for the Kirk-Browder-Gohde Theorem.
Several writers have demonstrated that nonexpansive mappings occur spontaneously
while studying nonlinear problems in various distance space topologies . Thus, it is
entirely reasonable to investigate extensions of these mappings.

Iterative approaches are extremely effective at solving nonlinear equations and sys-
tems of equations. Some notable approaches are the Picard [17] , Mann [18], Ishikawa
[19], Noor [20], Abbas and Nazir [22]|, Thakur et al.|23] iterations. The Picard tech-
nique [17], one of the earliest, uses fixed-point iteration, making it crucial in numerical
analysis. The Mann iteration [18] provides a relaxation approach, which improves con-
vergence rates. Noor and Thakur’s solutions apply these concepts to a broader range of
situations, including multi-step processes to improve efficiency. Nazir and Abbass iter-
ations [22] improve these techniques by solving specific convergence and stability issues,
making them useful in applied mathematics and computational science. Researchers
are constantly improving these iterative strategies to obtain faster convergence and
higher accuracy.

In Chapter 2, basic terminology and notations such as fixed point, contraction, met-
ric space with its completeness and convergence, and Garcia-Falset mapping will be
covered. For clarification, examples of the Banach’s fixed point theorem, Iterative
Methods, T-Stable fixed point, and implicit neural network are provided.

In Chapter 3, we will see iterative approach in Banach space by considering the reviewed
papers. Additionally, proofs of the theorems pertaining to the existence, uniqueness,
and robustness of the fixed point of these kinds of mappings are provided, along with
application of these kind of iterative technique.

In Chapter 4, we will cover our primary findings about the iterative approach in Banach
space. Additionally, proofs of the theorems pertaining to the existence, uniqueness, and
robustness of the fixed point of these kinds of mappings will be provided, along with
certain corollaries that stem from our primary findings.

In Chapter 5, we investigate the applications of our proven conclusions including the
well-posedness of the Fixed point problem.
We wrap up our thesis here and outline some ideas for more research.



Chapter 2

Preliminaries

This chapter compiles, from literature, a number of definitions and outcomes of the
well-known theorems related to contraction, contractive, non-expansive and Garcia-
Falset mappings of Banach space into itself from literature along with some examples.

2.1 Fundamental Concepts

We denote the set of positive integers by N and the set of real numbers by R. Let
G be the a uniformly convex Banach space and € be a nonempty closed convex subset

of 6.

Fixed point theory is an area of mathematics that studies the existence and uniqueness
of specific mappings in abstract spaces. This theory is based on the Banach contraction
principle, which demonstrates that the fixed point of contraction mapping is unique
in entire metric spaces.

Many problems in science and engineering defined by nonlinear functional equations
can be solved by converting them to an analogous fixed-point problem. In fact, an op-
erator equation &r = 0 can be represented as a fixed-point equation is a self-mapping
over a suitable domain. Fixed point theory provides essential tools for solving problems
in various branches of mathematical analysis, including split feasibility problems, vari-
ational inequality problems, nonlinear optimization problems, equilibrium problems,
complementarity problems, selection and matching problems, and proving the exis-
tence of integral and differential equation solutions.

2.2 Banach Space

Definition 2.2.1. A Banach space is a normed linear space that is a complete metric
space.



Definition 2.2.2. Let (X,d) be a metric space and {a,} be a sequence in X. Then,
{an} is said to be convergent sequence if there exists p € X such that

limy 0 Han - p” =0

where p represents the limit of the given sequence {a,} written as lim, .0, = p, we
say that the sequence converges to p.

Definition 2.2.3. A sequence of numbers {a,} € X is a cauchy sequence if for each
€ > 0, there exists N = N(¢) such that ||ay — a,|| < € for each m,n > N,

Definition 2.2.4. A metric space (X,d) is said to be complete if every Cauchy sequence
i X converges to a point in X. Note that the limit of the convergent sequence belongs
to X and is always unique.

Definition 2.2.5. A Banach space S 1is called uniformly convex if for each ¢ > 0, there
is a6 >0 such that, for all |[t]| <1, |p|| <1 and |t —1v| =€ || t+v] < 2(1—6)
holds.

Lemma 2.2.6. [32]. Let € be a uniformly convex Banach space and 0 < a < [, <
b, <1 for alln € N. Lety, and v, be two sequences such that

lim ||r, —p|| <t
n—oo

Jim o, — pl| < ¢
and
Hm ||l + (1= L)a| = ¢
n—oo

hold for some vt >0 . Then

lim g, — paf| = ¢
n—oo

Definition 2.2.7. [33] Let {a, } and {b,} be two sequences of real numbers converging
to a and b, respectively. If
a, — al -

nooo |by — b

0,
then {a,} converges faster than {b,} .

Definition 2.2.8. [33] Suppose that for two fized point iteration processes {g,} and
{u,}, both converging to the same fized point p , the error estimates

4



llta = pl] <a,, VneN
|, — pl] <b,, VneN

are available where {a,} and {b,} are two sequences of positive numbers converging
to zero. If {a,} converges faster than {b,}, then {r.} converges faster than {u,}
to p.

Lemma 2.2.9. [3/] Let a, be €. If]la]| <1, ||b|| <1 and |Ja—b| >e>0, then

[Aa+ (1 =Nb|| <1T=2X1=X) 6(e) for 0<A<1

2.3 Fixed Point Theorems

A fixed point of any mapping is such a point which remains unchanged or invariant
under the given mapping. If pis a fixed point of a function f i.e. f(p) =p, then p
belongs to both the domain and the codomain of §.

Definition 2.3.1. (Fized Point) Given a non-empty set X and a mappingf: X — %),
the problem of finding a point p € X such that §(p) = p is called fized point problem and
the point p is called fixed point of the mapping.

Remark 1. Root finding problem in terms of f, f(p) = 0, is equivalent to fixed point
problem g(p) = p in terms of g where f(p) = p — g(p).

Definition 2.3.2. A mapping ¥ of a metric space € into itself satisfies Lipschitz con-
dition if there exists a real number § such that

| Tr— Ty <Hle—v| foralrned

Definition 2.3.3. It is well known that a mapping T : € — € is called contraction
mapping if there is a constant $ € [0,1) that

| Tr— Ty <H|r— v

for all g,y € €. It is called nonexpansive if $ = 1. An element p € € is said to be a
fized point of T if Tp = p and the set of fized points of T is denoted by §(%).



Lemma 2.3.4. [25] Suppose T is non-expansive self-map whose domain of definition
1s possibly a subset € of Banach space with a fixed point, namely, p. In such a case,
the estimate ||Txa — Tp|| < ||xa — p|| holds for allp € € and p € F(T) .

Definition 2.3.5. A mapping is called contractive — like mapping if there is a
constant $ € [0,1)

[ Fr—pll < Hfle—pll YVred and peFX). (2.1)

Now, we will define Garcia — Falset mapping.

Definition 2.3.6. [11] Let € # ¢ is a subset of a Banach space, and T is a self-map
on €. Then T is a Garcia-Falset mapping with §(T) # ¢, then T satisfies

lx — Tl < pellx — Fell + [lx — v (2.2)
for some > 1 and ¥V r,p € C.

Proposition 1. [11] Assume that € # ¢ is a subset of a Banach space, and T is
a self-map on €. If ¥ is a Garcia-Falset mapping with F(¥) # ¢, then for every
re@ and p € F(T), we have ||Tx — FTp|| < [|r — p||

Now, we will see an example for a self-map ¥ : € — €, endowed with condition
(2.2), but it is not a nonexpansive mapping.

Example 2.3.1. Consider € = [2,7] a self-map T : € — € defined by

@7 if red, = [277)

5, if re¢,={7}

To observe that T satisfies condition (2.2), we will check, we have | — Ty|| < pljx — Zx||+
lt —vl|, for some p>1and V r,y € €.

For this, we will fix the value of =4 and discuss the following cases.

(My) : Choose any r,p € €, , then Tx =5 = Ty. We have,

e =Tyl = [r—Ty|
= [r—5 (2.3)
= [r— %

< 4 r—%x[+r— v
= 4|le— x| + |lr— vl

6



(Ms) : Choose any r,p € €, , then Tp = 2x7+5 and Ty = @ We have,

le = Fo = lr—Ty|

< Je— T+ [T - Tyl
2r 2

p— — ‘E S —

I3 x|+|3 3

9

= h—5ﬂ+§|x—w

< =T+ e—v

< 4 r—Fp|+r—v

4 (e = || + |lx —v|

(M3) : Choose any r € €, and y € &,, then T = @ and Ty = 5. We have,

le =%l = [t —Ty|
= [r—5
r—>5
= 3—=
| 3\
2r+5
Y — =2 %
x 3
3lr —
4)r — Zp|
4 — Tl + [ — |
4 e =] + e —vl|

IA A

(My) : Choose any r € €, and y € €,, then Tr =5 and Ty = % We have,



lt =%yl = [t—Ty|

bt

2c—v), -
|+ | |
3

| 3
2 1

e — R

3|zc U|+3\zc |

t — T + [r — v

4r — Zx| + [r — v

4 lle—Fxl| + e —vll.

IN

IAIA

From above, we proved that in each case ¥ satisfies condition (2.2). For choosing
r =65 and vy = 7 and fized point of this is p = b, it is easily can be seen
that [T — Ty||=1>|[t— 9|/ =0.5 but ||Tx —Fp|| =1 < ||z—p|| = 1.5. Hence T:
¢ — ¢ is Garcia-Falset mapping.

Remark 2. Every Garcia Falset mapping is not a nonexpansive mapping.

A key concept in the theory of metric spaces is the well-known Banach contraction
principle, which both ensures the existence and uniqueness of fixed points of specific
self-maps of metric spaces and offers a useful technique for obtaining them.

Theorem 2.3.7. [17] Let € be a complete metric space and f : € — € be a function
such that there exists $ € [0, 1)

|Ifx — foll < Hllr — vl|
then, there exists a unique p € € such that f(p) = p.
Generally, we write fp instead of f(p).
Example 2.3.2. Let € = R be the usual metric space. Define a function f : R — R
by f(p) = 1+ E. Then, for all r,yp € R
1
Ife = foll < Slle = ll-

Thus, f is a contraction on R and by Banach theorem, it possess a unique fixed point
p =2



2.4 <-Stable fixed point

Definition 2.4.1. Harder and Hicks [35] Let T : € — € be a map and (€,0) be a
complete metric space. Assume that the set of fixed points of T is F(T). Let {b,}22, C
¢ denote the sequence generated by an iterative operation involving & defined by

buis =f( T.b), bo€C, n=012, ..

The first approximation is b, € € and | is some function. Assume that the se-
quence {b,}°, converges to a fized point p of T. Let {c,}°, € € and set ¢, =
0(chrs, f(F,¢0)), mn=0,1,2,... and the iterative technique above is T-stable if and only
if imy_ o0 €, = 0 tmplies limy, oo ¢ = Pp.

Lemma 2.4.2. [17] Let ¢,, n be nonnegative sequences satisfying toy, < Htn + €, for
allneN, 0< 9 <1, im0 6, =0. Then, lim, oo, = 0.

2.5 Iterative techniques

A mathematical process known as an iterative technique creates a series of better ap-
proximations for a class of problems starting with an initial value. The n-th approxi-
mation is then derived from the preceding ones.

Iterative techniques can solve a variety of issues, including minimization, equilibrium,
and viscosity approximation in various domains [13, 14, 15, 16].

There exists some iteration processes which are often used to approximate fixed points.
In 1890, Picard [17] presented an iterative scheme for approximating the fixed point
which is defined by the sequence g, as

ot = el
{ Tnir = Srn, neN (2.4)

Mann iterative process [18] is

)51 = rc < (2 5)
3n T(1—9M)en + M Zr,), neN ’
In 2000, Noor introduced the following three-step iteration process [20]

9



where introduced the following {91,}, {N,} and {O,} are in (0,1).

In 2007, Agarwal et al. introduced the following iteration process [21]

Inpn = (1 —9My)Tpn + M Ty,
on = F((1—M)en + M%) neN

where introduced the following {91}, {N,} are in (0,1).

Recently, Abbas and Nazir introduced the following three-step iteration process [22]

xn+l - ( )Enn + mnzén
Do = T((1 — M) Tpn + NaT3n) (2.8)
dn = ‘I(( )Fn + Dn‘zxn), neN

where the following {9,}, {M.} and {O,} are in (0,1).They proved that this process
converges faster than iteration process (2.7) for contractive mappings.

Thakur iteration [23] is

Unts ( )Tﬁn + fmn‘It)n
Do = T((1 = Ma)gn + ML) (2.9)
o =%(1—Onuy + O,%u,), neN

10



where introduced the following {91,}, {M,} and {O,} are in (0,1). They proved that
this process converges faster than iteration process (2.8) for contractive mappings.

JF iteration [24] is
s = T((1 = M)y, + M Zhy)
On = Rn (2.10)
o =T((1-9On)ay +9O,Fa,), neN

where introduced the following {91,} and {O,} are in (0,1).
Asghar Rahim iteration [25] is

Ly = (1 - 9thn)SUn + My T3

((1 - mn)?n + mnﬁn) (2'11>
(1 =9 + 9Ou%rn), neN

where the following {91,}, {M,} and {O,} are in (0,1). They proved that this process
converges faster than iteration process (2.9) for contractive mappings.

Picard-Thakur hybrid iteration [26] is

jn+1 = sIIEn

& = (1—9,)Vm, + M, D, (212
L =01-9%)m, +9,QYm, '
m, =(1—9)hn+9:Yj,, neN

where introduced the following {9,}, {M,} and {O,} are in (0,1). They proved that
this process converges faster than iteration processes (2.5, 2.6, 2.7, 2.8, 2.9) for con-
traction mappings.

Akanimo iteration [27] is

Lipr = (1 - mn)zﬁn + Djtn‘IUn
o =%((1—M)ra + M), neN

11



where introduced the following {9, }, {9.} are in (0,1). They proved that this process
converges faster than iteration process (2.5, 2.6, 2.7, 2.8, 2.9) for contractive mappings.

Iterative methods based on fixed-point theory are essential in order to solve the heat
equation. Time delays add complexity to delay differential equations, which is why
fixed-point iterative techniques (2.5, 2.9, 2.11, 2.12) are employed. By approximating
the system’s state at each time step, these methods iteratively approach a solution,
aiding in the stabilization and precise solution of equations when delays impact future
behavior.

12



Chapter 3

Literature Review

In this Chatpter, we shall describe a comprehensive summary of papers which proved
to be thought provoking and led our attention to convert the results in more generalized
way. The papers and work of Asghar Rahimi [25], Mohd Jubair [28] and Jie Jia
[26] were major landmark of our research.

3.1 Convergence Theorems For Rahimi iteration

In this subsection, we will discuss how Asghar Rahimi iteration process (2.11) converges
faster than the process (2.9) in contraction mapping. For this, we presenting you
convergence theorems in uniformly convex Banach spaces which theoretically proving
this.

Theorem 3.1.1. Let € be a nonempty closed convex subset of a uniformly convex Ba-
nach space. Let T be a contraction mapping with some constant $ € [0,1) and fized
point p. Let {u,} be defined by the iteration process (2.9) and {r,} by (2.11) , where
M.}, N}, {00} are in e, 1- €] for any nw € N and some € in (0,1). Then {r.}

converges faster than {u,}.

Proof. As proved in Theorem 3.1 of [23] , we have

o —pl| < H[1—(1=9) O)* flu, —p|
(3.1)

Let

13



dy = H'1—(1=9H)O]" [lu —pll.

(3.2)
Now with notion to process (2.11), we have
l3n —pll = [IFI(1 — On)ra + OuTra] — pl|
S ﬁ H(l_Dn)@n_p)—i_on(gxn_p)"
< 91— O [lta — bl + O [T — pll]
< 91 =9 llta — pll + OuH llta — ]
= H1—-(1-9)O] It — ]|
so that
||Un_p|| = ||§[<1_mn)?n+mn5n] _p”
< 91 =) (e —p) + M3 — p)||
< A1 =) [lta — bl + M [l30 — ]
< f)[(l - mﬂ) ||xu - p” + mnf)z(l - (1 - f))gn) H?n - p”
< A1 =) [lta — bl +IWH(1 — (1 = H)O4) [lta — bl
- 57)[1 - (1 - 56)9119,{11] ||xn - p” . (33)
Thus
ltaa =P | = [I[(1—9) Ty, + M T3] — p|
< H[(1 =) [[9a — Il + MM (|30 — pl]
< 5’)[1 - (1 - ﬁ)(gnmn)] “?n - pH :
Let
b = 91— (1-9)O0.]" |z, —pl
Then

14



b O (1 9O [lr. — p]
a L= (1= H)O)" [l — p|
[1 - (1 - ﬁ)gnmn]n ”2:1 - p”

T ) T

(3.4)
Consequently r, converges faster than u,.

]

Lemma 3.1.2. Let € be a nonempty closed convex subset of a Banach space G and T :
¢ — € be a generalized a-nonexpansive mapping. If the sequence r, be define by (2.11)
and F(T) # &, then limy oo ||tn — p|| exists for all p € F(T).

Proof. §(%) # @, let p € F(¥). By Proposition 1, then we have

IF[(1 = On)ra + OuTra] — pl|

[(1 = On) [[tn = pll + O [[Taa — pl]

[(1 - Dn) H?n - pH + Dn Hxn - p”]

e —pll - (3.5)

3 — ol

IA A CIA

so that

H(Z[(l - mn)?n + mnﬁn] - pH
[(1 = 9%) [z = Il + M [l30 — pll]
ta — pll- (3.6)

192 — Pl

IA A

Thus

||?n+1 - p” = ||S[(1 - mn>gnn + mngﬁn] - p||
< (1 —9) |90 — pl| 4+ Dy {30 — bl]]
= [t —pll- (3.7)

This implies that |[r, —p|| is bounded and nonincreasing for all p € F(¥). Hence
limy o0 ||tn — P exists.

15



]

Lemma 3.1.3. Let € be a nonempty closed convex subset of a Banach space E and
T : € — € be a generalized a-nonexpansive mapping. Suppose the sequence x, be
define by (2.11) and F(F) # @, then limyeo ||Ta — 1| = 0.

Proof. As from above Lemma 3.1.2, lim,_, ||z, — p|| exists for each p € F(T). Sup-
pose that for some T > 0, we have

lim e —pl = ¢ (3.8)
n—oo

It is proved in the proof of Lemma 3.1.2 that ||z, — p|| < ||za — p||. Accordingly, one
has

lim sup||3n — p|| < lim sup|jt, —p|| = t (3.9)
n—oo n—oo

Now p is the point, by Proposition 1 .It follows that ||Tg, — p|| < |lza — p||

lim sup [Te, — pll < lim supllss —pll = (3.10)
n—oo n—o0

We know again by the proof Lemma 3.1.2 that ||n, —p|| < ||xn — p||. So, we have

[tnrs =PI < [(1—90) [[on — Pl + 9 (|30 — pl]] (3.11)
< [(1 =) [lea — ol + 99T, (|30 — ] (3.12)
It follows that
”In—i-l - PH B H?n - PH
_ _ _ < < _ _ _
[Fasr — Pl = [t — bl < o < |z = pll = lra — pll

So, we have

[£nss =PI < (30— pll-

From (3.9) , we have
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€< diminf sl (3.13)
Hence, from (3.9) and (3.13), we have

t=lim ||3, — p||
n—o00
From (2.11) and from (3.13), we have

€= lim 30— p
— nlirgo H‘I[(l — Dn)?n + Dng:gn] - pH
< JLI?O ||(1—Du)(xn —p)‘FDn(SFn_p)H
< lm[(1—90) [le — pll + lim Oy |[Tey — pl]
<t (3.14)
Hence
t= lim 11— 905 — ) + Oa(Tea =)l (315)

Now from (3.9), (3.10), (3.15) and Lemma 2.2.6, we conclude that limy_,o0 ||Ttn — ]| =
0.

]

3.2 %-Stable Fixed Point

The purpose of this subsection is to see how Mohd Jubair [28| proved the stability
stability for contractive-like mapping via iteration process (2.10).

Throughout this section, we presume that {/ is a non-empty, closed and convex subset
of a Banach space W and F : Y — U is a contractive-like mapping. we prove the
stability of iteration process to approximate the fixed point.

Theorem 3.2.1. [28] Let {a,} be an iterative process be defined by iteration (2.10).Then
iteration process becomes JF-stable.
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Proof. Suppose a, is an arbitrary sequence in U and a,,, = f(F, a,) is sequence gen-

erated by (2.10) converging to a fixed point p (by Theorem 3.1.1) and ¢, = Han+l — §(F, ay) H

for all n € Z+. We have to prove that lim,_,, €, = 0 which implies that lim,_,,, a, =
p. Suppose lim, €, = 0, then by iteration process (2.10), we have

lanin —pl| < Han+l_f<]:7an)” + Hf(]:a an>_pH
< et |[f(F,an) — p|
< e +H(1— (1 —H)M) (1 — (1 —H)Ow)] flan — p]
(3.16)

since

0O<(I1—-(1-9)Mm,) < 1,
and

0< (1 - (1_57))911) < 17
we get

anis — 9] < € + $° lan —p| -
Define
o= |[lan—pl,

then au+1 S 552% + €n

since lim, ,o €, = 0, so , we have lim, ,q, = 0 ie., lim, ;o a, = p. Conversely,
suppose lim, , a, = p , we have

€n = Hﬂnﬂ—f(}_a an)H
< lawn = pll + [J(F,a) — o
< llawn = ol + 971 = (1= H)M) (1 = (1= H)Ou)] [lan — p]
< llawss = pll + 97 [lan —p]l.

This implies that lim, ,o €, =0 . Hence iteration process (2.10) F-stable.
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3.3 Application: Delay Differential Equations

In this subsection, we see how Jie Jia [26] using Picard-Thakur hybrid iterative scheme
find the solution of delay differential equations. Let the space of all continuous real-
valued functions be denoted by €([u, v]) on closed interval [u, v] endowed with th cheby-
shev norm ||j — m||o and defines as |[j — m||oc = Suprep,[j(r) — m(r)|, and it is clear that
in [30] that (€([u,v],]|.||«)) is a Banach space. Now, consider the following delay dif-
ferential equation

() = (x,i(x),i(c = 7)), v € [t, ] (3.17)

with initial condition

J(t) = C(t)v rveE [to - 77%] (318)
By the solution of above delay differential equation, we mean a function j € €([t, — v, 0], R)N
¢*([ro, ], R) satisfying (3.17) and (3.18).
Assume that the following conditions are satisfied.
(1) t,0€eR,y>0
(2) ¢ € €([ro, 0] X R R)
(3) Ce el —70)R)
(4) There exists £, > o such that

[0(x,81,8,) — (v 6, 6) < L) |si—t], st € R v € [t 9] (3.19)

i=1

(5) 2Ly(b—1,) <1
Now, we construct (3.17) and (3.18) by the integral equation as

: C(v), tE [t, —7, v
)= { e [l S0t v o ol (3:20)

The following result is the generalization of the result of Coman et al. [31].

Theorem 3.3.1. Let the conditions %1) to xs5) be satisfied. Then (3.17) and (3.18)
have unique solution j* € €([t, — 7, 0], R) N €*([v,, ], R) and

" = limy 00" () (3.21)

Now, by using the Picard-Thakur hybrid iterative scheme (2.12), we prove the fol-
lowing result.
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Theorem 3.3.2. Let the conditions 1) to *5) be satisfied. Then (3.17) and (3.18)
have unique solution j* € €([t, — v,0],R) N € ([t,, v],R) and the Picard-Thakur hybrid
iterative scheme (2.12) converges to j*

Proof. Let j, be a sequence generated by the Picard-Thakur hybrid iterative scheme
(2.12) for an operator U defined by

) (), te v, —7,0]
Ti(®) —{ (o) + [0, i(9),i(p —)0p, € [to, 0] (3.22)

Let j* be a fixed point of U. Now, we prove that j, — j* asn — oo for each v € [t, — 7, ]
Now, for each t € [t,, ], we have

1B, — 7
sup |Ve, — j*|

t€[ro,v)

SUDec[eo 0]

((vo) /wpé a(p —7))op — (C(vo) /wm “(p—7))op)

Hjn+l - ]*”OO

IA A

IN

IN

[ 19tbtulp) bl = )0 = 0007 ()5 (0~ 1)ow)|

IA

supcest | So(e) = 7))+ [tse =) =17 =) o

IN

[ Sosupcin(lto) = 50 + 6o =)~ 76— ) pop

< [ sl =T Wl + a(6) = 7 @)l

< 220 = ro)lI6p) — 5 (P)] (3.23)
Now

=l = 1101 = 0,)0m, + 90, B, — ||

< (1 =M)[[Bmy = j7[[oo + M|Vl — 7 (3.24)
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As

||m[n_]*”oo < SUPre[r,,0]

C(to) /wpl a(p = 7))op — (¢(xo) /pr i"(p —))op)

IA
\
=
<

a(p = ))op — ¥(p,i*(p),i* (0 — 7))op)]

< supecis / 8u(]p) ()] + [1alp — ) ~ (b — 7))o
< / Lysupeeqry (L) =57 (P)] + [P = 7) =3 (0 — 1) )op
< [ 2ol =)l + ) 5] <o
< 28,00~ o)) (Bl <2800~ ro)llb®) Bl (325)
=7l = 1101 9B, + R, 5
< (= )IDmy — o+ Ty~ e (3:26)

For

||Q}mn_]*”oo < Supte[t ,0]

¢(vo) /wp,mn()mn(p 7))op — (¢(xo) /ij “(p —))op)

< [ 0t ma(p)malp — 1)0p — (6.7 (0).7" (b~ 2))op)]

< supci [ Slmale) =7 ®)] + [malp ) =5~ )]0

IN

/,. L suPeefro)([Malp) =3 (0)] + [mMalp —7) =" (0 — )| )op

IA

[ ullime) =5 @)l + llme) 5] o
220 = rollmp) (P} < 28000~ r)llma(p) =P @l (320

IN

11 = O0)Bjn + OuBjn — "]

M = j"[loe =
< (1= O)|Bin — i*[|oo + Oul|Din — i*[o (3.28)
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As

[ Bin —i"[lec < SUPrelr,,0]

cle)+ [ "B, 3n(), dnlp —7))0P — (C(50)

- "B, 5(0), 7 — 7))op)

IN

/T U (p,in(p), in(p — 7))0p — ©(p,i*(p).i*(p — 7))0p)|

IN

SUPcero o] / Ly([ialp) =" ()| + [in(p — ) =i (0 — )| )0p

To

< [ Sosucron(in®) =5 ®)] + o =) = 5o = )]0

/ 8 (lin(e) — 5" ()l + 1la(p) — 5°(9)1 0

T

22— t0) lin(P) — 1" (1)l o0 < 284 (0 — 1)
Bia(®) — 5°(0)] . (3.29)

Putting (3.28) in (3.29), we get

IN

IN

Ima =3"flec = (1= Ou)llin = 3"[loo + On2Lu(0 = o) [in =il
< = (=280 = ))]l[in ="l (3.30)
Putting (3.30) in (3.27), we get

[Imn = 3"ec < 2840 — o) [1 = (1 =284 (0 — xo)][[in = J"[oo- (3.31)
Putting (3.31) and (3.30) in (3.26), we get

(1 - Dn)[l - (1 - 2£¢(U - to)mjn - ]*||oo
FOx28y(0 — o) [1 — (1 = 284(0 — ©o)][[in —§*|[o0

IN

||[n_j*||oo

< (1= (1= 285(0 — ) On)(1 = (1 — (1 = 2840 — t)0))lin — il loc
< (1= (1=285(0 —15)O0) — (1 — (1 — 284(0 — 15)O,)

(1 —=2L4(0 — )M [in — §"[loo
< [1 - (1 - 2£¢(U - to))(gn - mu + ‘ﬁnDn)]HJn - ]*Hoo (3'32>

Putting (3.32) in (3.25), we get

1Dl — i*[le < 284(0 — to)[1 — (1 = 284(0 — to))(On — My + NMuO,)]
[ — 3" oo (3.33)
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Putting (3.33) and (3.27) in (3.24), we get

€0 = 3"l

IA AN A

IN A

(1= 0)2L4(0 — to)| My — §%[|oo + Ma2Ly (0 — )|l — i ([0
227#(0 - tO)[(l - mn)“)ﬁ - *||oo + gﬁn“[n - ]*HOO]

j
2£w(0 = o) [(1 = M) [(1 = (1 = 2L4 (0 — %) On)]l[in = J"[]oc
Ma[1 = (1 =28y (0 — ) (On — My + MO0 — i7" oc]
2%(0 = t)[(1 = M) [(1 — (1 = 2Ly (0 — ) (O — My + M) |1 — i/
28 (0 — ) [(1 = M) [(1 = (1 = 284 (0 = ) (O + MMy + O I M))]

[lin = 3" /o0

Let O, + MM, + O,.9.9M, = p,, and by using condition *;), we have

[en = 3"llo < 1= (1 =284 (0 = to)pulllin — i |oo- (3.34)

Now, putting (3.34) in (3.23), we have

Hjn+l

oo = 280 (0 = to)[1 = (1 = 2Ly (0 = to)palllin =37 llo-  (3:35)

Again using condition x5), we have

linta =3 Mloo < [ = (1 = 285(0 = to)pal[lin = 3"l (3.36)

Let (1 —2&4(0 —vo)pn) = 7w < 1 and [[jn — j*||sc = ta. So, the conditions of Lemma
3 of [29] are satisfied. Hence, limy_ool|jn — *[lco =0 O

By considering above sections (3.1), (3.2), (3.3) , we are willingly proposing new itera-
tive scheme (2.11) which has faster convergence rate and also with improved stability.
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Chapter 4

Rate of Convergence For Proposed
Iterative Technique

In this Chapter, we shall discuss our man theorem and results regarding convergence.

In this paper, We prove that iterative process (4.1) converges faster than iteration
processes (2.5), (2.9), (2.11) and we present numerical example in support of the proof.
Our new proposed iteration is given by

L = T(T(pn))
Un = g((l - mn)?n + mn‘zén) '
i =F((1—On)rn + 9Ou%rn), neN

where the following {9t,}, {M,} and {O,} are in (0,1).

Theorem 4.0.1. Let € be a nonempty closed convex subset of a uniformly convexr Ba-
nach space. Let T be a contraction mapping with some constant $ € [0,1) and fized
point p. Let {u,} be defined by the iteration process (2.11) and {gn} by (4.1) , where
. {0} {On) are in fe , 1- €] for any n € N and some € in (0,1). Then {g.}
converges faster than {u,}.

Proof. As proved in Theorem 2 of [25] , we have

[ty =l < H[1 = (1 -H)NO)"
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Let

a = H1—(1-H)NO" [lu, —p

Now with notion to process (4.1), we have

3 =Pl = [IZ[(1 — On)ra + OnTra] — pll
< H (1= O0)(E = p) + Ou(Tra — p)l
< 91 =) flta = Pl + On [ Fra — pll]
< 91— Ou) flta — Pl + OuH [lra — Pll]
= H[1 — (1 =90 [[ra — p
so that
[9a = pll = %1 = M)zn + NaTza] — pl|
< 911 =) Ga —p) + NMu(Tsn — p)|
< A1 = N) [[30 = pll + M (T30 — pll]
< H[(1 =) 50 — Pl + 99 (50 — ]
= H1 = (1 —9)M] |30 — pll
< H(1 - (1 =91~ (1 -9H)Ou) [lta
and

25
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Hpn_pH = HS[(l _mn)gﬁn_'_mn‘znn] _pH
< 9|1 —9) (T — p) + Da(Tye — p)||
< 91— M) [0 — pl| + D [|T90 — p]|]
< 91— M) |30 — pll + D |90 — pll]
< 91 -M)H* (L = (1 — H)On) lta — pll + MH*(1 — (1 — H)O,)
(1—=(1=5H)M) lta —»l]
< H(1—(1—9H)9,)[(1—My) +Ma(1— (1 — H)M] [z — bl
= 91— (1-9)9.)[1—(1—9))M] llta — p]
= 91— (1-9MN, — (1 - 9Oy + (1 —H)?O0,0M,] [t — bl
< 51— (1- 9N, — (1 —H)O0n+ (1 — H)O: NI [lta — bl
S 53[1 — (1 - ﬁ)(mnmn + Dn - Dnmnmn] ||xn - p”
< f)[l - (1 - f.))(mnmn + Dn - Dnmnmn] Hxn - p”
Thus
||;ﬂ+l - p” = ||T(S§‘Bn) - pH
< 9 |Tp. —pll
< 5 [lpn — pll
< 91— (1= 9Dy + On — O] [|rn — bl (4.4)
Let
b, = 53”[1 - (1 - 53)(£mnmn + 9O, — Dnmnmn]n ||231 - p“
Then

b HM[L—(1-H)MMN+O — ONM" [z, — p|
a O = (1 = H)NOJ" [lu, —p|
_ 9[- (1-H)OMN+ O — ONM]" ||r, — p
N [1—(1—=9H)NOJ"[Ju, —pf

-0 n— o

(4.5)

Thus r, converges faster than u,.
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]

Remark 3. As proved in [36], Thakur iteration (2.9) is faster than Ishikawa [19],
Noor [20], Abbas and Nazir [22]. So, we will compare iteration (4.1) with Picard
(2.5), Thakur (2.9), Asghar Rahimi (2.11).

We, now present an example which shows that our iteration process (4.1) converges
at a faster rate than Picard iteration process (2.5), Thakur iteration process (2.9)
and Asghar Rahimi iteration process (2.11).

Example 4.0.1. Let & = R and € = [1,21]. Let ¥ : € — € be a mapping defined
by ¥(r) = Vt? — 6r + 30 for any ¢ € €. Choose M, =N, = O, = %, with the ini-
tial value r, = 30. It is obvious that r = 5 is fixed point of T. The table below show
behaviour all iteration processes mentioned to fixed point of ¥ in 21 iteration.

No. of iteration | Picard Thakur Asghar Rahimi | New iteration
1 30 30 30 30

2 27.3861278753 | 25.4605027258 | 23.2381722116 | 14.6168424629
3 24.8129650132 | 21.0691659384 | 16.8793944946 | 5.5974190240
4 22.2891328380 | 16.8924163440 | 11.2697340648 | 5.0032637416
5 19.8260093221 | 13.0431036573 | 7.1650814763 5.0000149868
6 17.4388815498 | 9.7163929865 | 5.3849641099 5.0000000688
7 15.1486402165 | 7.2125863864 | 5.0454052746 5.0000000003
8 12.9842003647 | 5.7772680541 | 5.0049230360 5.0000000000
9 10.9856386670 | 5.2154250367 | 5.0005284002 5.0000000000
10 9.2070855823 | 5.0535678237 | 5.0000566520 5.0000000000
11 7.7154333272 | 5.0128902394 | 5.0000060732 5.0000000000
12 6.5753563754 | 5.0030760332 | 5.0000006510 5.0000000000
13 5.8123294135 | 5.0007325602 | 5.0000000698 5.0000000000
14 5.3767273252 | 5.0001743757 | 5.0000000075 5.0000000000
15 5.1622507474 | 5.0000415029 | 5.0000000008 5.0000000000
16 5.0670828190 | 5.0000098778 | 5.0000000001 5.0000000000
17 5.0272091045 | 5.0000023509 | 5.0000000000 5.0000000000
18 5.0109456945 | 5.0000005595 | 5.0000000000 5.0000000000
19 5.0043883329 | 5.0000001332 | 5.0000000000 5.0000000000
20 5.0017569502 | 5.0000000317 | 5.0000000000 5.0000000000
21 5.0007030393 | 5.0000000075 | 5.0000000000 5.0000000000

Table 4.1. Compairing iterations convergence
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Figure 4.1: Comparison of iteration processes convergence

4.1 Convergence Results for Garcia-Falset Mapping

Lemma 4.1.1. Let € be a nonempty closed convez subset of a Banach space S and ¥ :
¢ — € is a mapping satisfying condition (E). If the sequence g, be by (4.1) and
§(%) # @, then limy_oo ||ta — p|| exists for all p € F(T).

Proof. §(%) # &, Let p € F(T). By Proposition 1 , then we have

IZ[(1 — On)tn + OnZra) — pl]

(1= Ou)(ta — p) + Ou(Zra — p)l|

[(1 =) [t — Pl + On [|Tea — pll]

(1= Ou) [[ta = Pl + Onllea — pll]

e — pl| (4.6)

30 — Pl

IA AN A

so that
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192 —pll = [IZ[(1 = Ma)sn + NuF30] — pl]

(1= 9%) (30 — ) + Ma(T0 — p)]

[(1 = 9%) [l50 — pIl + N (|50 — pl]

(T =9%) [l50 — Il + N [l30 — pll]

132 — bl

£a — bl (4.7)

VANRVANVAN

A\

and

IZ[(1 — M) T3 + MaTir] — |
(1= 97)(Tsn — p) + DMa(Ta — )|
[(1=9) [| T30 — oIl + D0 [[Ton — pll]
(1 =) (130 — bl + D% [Ipa — P[]
(1 =) [[£a — Pl + 9% [lta — Pll]
ta — bl (4.8)

[pw — Pl

VAN VAN VAN VAN

Thus

s — 0l = || T(pa) — |

[

[Zpn — |

|z — P (4.9)
(4.10)

IA AN A

This implies that ||z, — p|| is bounded and nonincreasing for all p € F(¥). Hence
limy o0 ||tn — P exists.

]

Lemma 4.1.2. Let € be a nonempty closed convex subset of a Banach space E and
T : € — € be a Garcia-Falset mapping. Suppose the sequence p, be by (4.1) and
5(%) #£ @, then lim, o ||Ttn — &al| = 0.

Proof. As from above Lemma 4.1.1, lim, ., ||ta — p|| exists for each p € F(T). Sup-
pose that for some T > 0, we have
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lm g —pl] = ¢ (4.11)
n—00

It is proved in the proof of Lemma 4.1.1 that ||z, — p|| < ||ta — p||. Accordingly, one
has

lim sup 35 — pll < lim suplle, —pl = ¢ (4.12)
n—o0 n—o0

Now p is the point, by Proposition 1. It follows that ||Tr, — p|| < |lza — p||

lim sup [ Te, — pl| < lim sup g —pl| = ¢ (4.13)
n—oo n—oo

We know again by the proof Lemma 4.1.1 that |9, —p|| < |3n — p||- So, we have

||I*n+1 - p” < [(1 - mn) ||?n - p” + Sﬁn ||Un - p”]

< [(1=9) [[tn = pll + D [[30 — pll]

It follows that

Hxn—l—l - PH - H?n - PH <
m, -

[tars =PIl = [z — pI| < 130 — Pl = llta — pl|

So, we have

H?n-i-l - ]3|| < ||5n - p”
From (4.11) , we have

€< lminfl ol (4.14)
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Hence, from (4.12) and (4.14), we have

t=lim |5, —p|
n—oo

From (4.1) and from (4.11), we have

to= lim {5 —pll
= lim [IF[(1 - Ou)ra + OuTra] — |
< lim [|(1-90)(z0 =) + Ou(Tea — )|
< lm[(1 = 9) |lte — pl| + lim O, [|Tz. — pll]
n—00 n—00
< ¢ (4.15)
Hence
t=lim [[(1—=O0)(x = p) + Ou(Tra = p)| (4.16)

Now from (4.12, 4.13, 4.16) and Lemma 2.2.6, we conclude that limy oo [|Tn — tal| =
0.

]

4.2 Stability

Throughout this section, we presume that U/ is a non-empty, closed and convex sub-
set of a Banach space W and F : U4 — U a Garcia Falset mapping. The purpose of
this sectionisto prove stability for Garcia Falset mappings via iteration process (4.1).

Theorem 4.2.1. Let {r,} be an iterative process be defined by iteration (4.1).Then
iteration  process becomes F-stable.

Proof. Suppose a, is an arbitrary sequence in U and a,y, = f(F, a,) is the sequence
generated by (4.1) converging to a fixed point p (by Theorem 4.0.1) and €, =

||anJrl — §(F, an)H for all n € Z+. We have to prove that lim,_,. €, = 0 which im-
plies that lim, ,o, a, = p. Suppose lim, €, = 0, then by iteration process (4.1), we
have
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| anses — P

since

and

we get

Define

then

[anss = F(F, an) || + ||F(F, a0) — p]]
en + |[f(F, an) — p||
€p + 5733[1 - (1 - ﬁ)(gﬁnmn + 9, — Dngtngﬁn] Han - ]JH
(4.17)

VAR VANRVAN

0O<(I-(1-9H"MMN,)) < 1,

0<(1—(1—H)OMN, +Op — OIIM,) < 1,

lanss = pIl < €n +H7 [lan — |

Go = |laa —pll,
an+1 S ﬁ3qn+€n7

since lim, ,o €, = 0, so , we have lim, , q, = 0 ie., lim, ;o a, = p. Conversely,

suppose limy, ,o 0y =P ,

€n || an+1

IANIA A

we have

_f(-/—:a an)H

Han-i-l - p” + Hf(Fa an) - p”

“an-i-l - ]3|| +f)3[1 - (1 - f’)(fmnmn + Dn - Dnmnmn] Han - ]J||
lanss = pll + 7 flaw — p]

This implies that lim, ,o €, =0 . Hence iteration process (4.1) F-stable.
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Chapter 5

APPLICATION

Thermal analysis and engineering both make extensive use of the heat equation, which
represents the temperature distribution over time in a specific location. By adding
delays, delay differential equations expand on conventional differential equations and
can be used in systems where past states affect future behavior, such as popula-
tion dynamics. Implicit functions are used by designed implicit neural networks to
define outputs, resulting in reliable and effective solutions to challenging issues.

5.1 Heat Equation

In this section, we approximate the solution of one dimensional heat equation

ou 0*u
a: aﬁ_gQ 70<X<2, 0<t<oo, (51)
subject to the initial condition:
u(x,0) = f(x), (5.2)

and homogeneous boundary conditions:

w(0,)= 0 and u(L €)= 0, (5.3)

where f(r) is continuous function. Now we approximate the solution of problem (5.1)
by utilizing iterative scheme (4.1) with the following assumptions
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[f(t,a) — f(t,0)| < mazx|a—b|, for all 0<t< oo, (5.4)

Theorem 5.1.1. Let & be a Banach space. Let t, be a sequence defined by (4.1) for
operator ¥ : € — & defined by

T(ult, ) = Baf(tu(t,r)), red (5.5)

assume that condition (5.4) is satisfied. Then the sequence defined by iterative scheme
converges to a solution, say u(t,r) of problem (5.1).

Proof. Observe u(t,r) is a solution of (5.1) if and only if u(t,z) is a solution of

u(tv 2:) = %nf(t> u(t, F)), rec (56)

Let u,0 € & and using (5.4), we get

[F(u(t 1)) — F(o(t,1))]

1B (¢, u(t,x)), —Baf(t, 0(t, 1))
r) |

) —
< Bulf(tultr) —§(t o(t )
< Bumaz|(u(t ) — (o(t,1))]
< Bal[(u(tx) — (ot 2))]] (5.7)
As
w{ o 5

To apply our theorem, we must have nonexpansive mapping. To make (5.7) nonex-
pansive, we will make B, = 1. As we see in (5.8), we will take only odd case. when
we take n = %. We obtain

[Tu(t,r) = T(o(tx)|| = [[(u(t,r)) — (o(t,0))]] (5.9)
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Thus ¥ is nonexpansive mapping. Hence our iterative scheme converges
tion of (5.1).

Example 5.1.1. Consider the following equation

ou  0%u

— = a— O<r<?2, t=0.5 =0.5
ot~ Yo te ST

subject to the initial condition:

u(z,0) =1,

and homogeneous boundary conditions:

u(0,t) = 0 and u(2,t)= 0.

The exact solution of problem (5.10) is given by

o 4 ~0.25(1x ) nrx
u(tv ?) - Z nr 2 my\ —
n=1,odd
The operator T: € — € is defined by
4 _goe(nx\? . [ mTE
Tu(t, 1) = = e025(F) ML
u(t, r) HIZOdd e sin | =

to the solu-

(5.10)

(5.11)

(5.12)

We observe that iterative scheme 4.1 converges to the exact solution of problem(5.10)
for the operator defined in equation(5.12) which is shown in Table (5.1) and Figure

(5.1).

Remark 4. It is visible that after 7 iterations, new iteration (4.1) converges to solution
of problem (5.10) upto 2-decimal faster than the iterative techniques [23], [25], [27] and
after 50 iterations, convergence rate is faster than iterative techniques [23], [25], [27]

and shown in Table 5.1.
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No. of iteration | Akanimo Thakur Asghar Rahimi | New iteration
1 0.1 0.1 0.1 0.1

2 -0.0644720187 | -0.0869402962 | -0.1630096033 | -0.3803139327
3 -0.1922289988 | -0.2264595551 | -0.3322517610 | -0.5494920044
4 -0.2915201418 | -0.3306827011 | -0.4414827416 | -0.6100326607
5 -0.3687681179 | -0.4086549542 | -0.5122262545 | -0.6318737760
6 -0.4289375510 | -0.4670790018 | -0.5581749961 | -0.6397788231
7 -0.4758578291 | -0.5109175395 | -0.5880826744 | -0.6426433848
8 -0.5124838838 | -0.5438511695 | -0.6075783795 | -0.6436818788
9 -0.5410994344 | -0.5686166193 | -0.6202998349 | -0.6440584262
10 -0.5634729424 | -0.5872541993 | -0.6286065855 | -0.6441949665
48 -0.6442665057 | -0.6442716845 | -0.6442726463 | -0.6442726473
49 -0.6442678310 | -0.6442719208 | -0.6442726467 | -0.6442726473
50 -0.6442688702 | -0.6442720992 | -0.6442726469 | -0.6442726473

Table 5.1. Compairing iterations convergence
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Figure 5.1: Comparison of iteration processes convergence
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5.2 Delay Differential Equations

A delay differential equation (DDE) is a type of differential equation that includes
terms dependent on past values of the solution. It takes the form:
on(t)

2 =it v, p(t - 7))

where H(t) is the unknown function of time t, 7 is the delay parameter, and f is a
function that describes how the rate of change of y depends on both the current state
p(t) and the state at an earlier time n(t — 7). This inclusion of past states allows
DDEs to model systems where historical information impacts future dynamics, such as
in biological, engineering, or economic processes In this subsection, we using proposed
iterative scheme (4.1) to find the solution of delay differential equations.

Let the space of all continuous real-valued functions be denoted by €([u, v]) on closed
interval [u,v] endowed with th chebyshev norm ||r — 3|| and defines as ||t — 3||0 =
SUPeefuo)|E(t) — 3(t)|, and it is clear that in [30] that (€([u,v],]|.||o)) is a Banach space.
Now, consider the following delay differential equation

' (v) = ¢ e(v), x(v — 7)), t € [to, 0] (5.13)

with initial condition

z:(t) = C(t)> tE [to -7 to] (5.14)

By the solution of above delay differential equation, we mean a function ¢ € €([t, — v, 0], R)N
*([to, v], R) satisfying (5.13) and (5.14).

Assume that the following conditions are satisfied.

(1) t,0eR,y>0

(2) ¢ € €([r,, 0] x R%R)

E % ¢ € €¢([ro — 7,0, R)

3
4) There exists 9, > o such that

(r,81,8,) — (b, 6)| < Q> lsi— b, st € Rt € [t 0] (5.15)

i=1

(5) 290 —1,) <1
Now, we construct (5.13) and (5.14) by the integral equation as

— C(t)7 Tt e [to — 9, U]
e { C(to) + [ vt x(t), 2(t =)ot t € [, v]. (5.16)

The following result is the generalization of the result of Coman et al. [31].
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Theorem 5.2.1. Let the conditions 1) to *5) be satisfied. Then (5.13) and (5.14)
have unique solution t* € €([t, — v, 0], R) N €*([t,,v],R) and

r = limg 0o T (1) (5.17)

Now, by using the iterative scheme (4.1), we prove the following result.

Theorem 5.2.2. Let the conditions 1) to *5) be satisfied. Then (5.18) and (5.14)
have unique solution r* € €([t, — v,0],R) N &€*([t,, v],R) and the iterative scheme (4.1)
converges to *

Proof. Let r, be a sequence generated by the iterative scheme (4.1) for an operator T
defined by

o C(t)v LS [to -7 U]
T(v) = { (o) + 7 0p,e(R) €5 — 1))0p, € [to, 0. (5.18)

Let ¢* be a fixed point of T. Now, we prove that r, — r* asn — oo for each v € [t, — 7, t,].
Now, for each t € [t,, ], we have
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l3n =l = [IT((1 = On)tn + OuTitn) — 1|0
< s [ T(((1 = Dw)a + DaTrn)) (1) — T (1)
< swp
t€[to,b]
(() + / (s ((1 - DLk + DuTEa)(5),
(1 = On)rn + On%rn)(s —v))0s
R
< / 05, (1 — Du)a + DuTra)(5),
(1= Du)in + DaTra) (5 — 7))05 — (5,5 (5), £ (5 — 7))05))|
< s [ ([0 - 90+ 0.Tr)(8) ¥ (s)
(1= Du)ta + DuTaa)(s —7) — (5 = 7)) 08
< /tgw ( sup ‘((1 - Dn)?n + DnTIn)(ﬁ) - I*(5)|
to tE[to,b]
+ sup |(1 = On)tn + OuTta) (s —7) — 1" (s — 7)|> 0s
< 210 - 900 + 9586~ 6l
+H((1 - Dn)xn + anrn)(B) - ?*(5)”00) 0s
< 2850 — )] (1= O)kw + DuTn)(5) — £°(5)] - (5.19)
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H((l - Dn)?n + Dnigpn) - F*Hoo ||<(1 - Dn)?n + Dn(z?n) - ;*Hoo

< ( On)llen = 1" |oo + Ol Frn — Ta"[|oo
< Ou)lltn — 1 lloo + Ousuprefe, o)
(xa(8),2a(5 — 05—/wszc 7))0s|)
< Ou) e — 1|0
+ Dn/ Lyllra(s) = 17(8)[loo + [[ra(s) — 27 (5)[|oc0s
S (1 - Dn)”?n - ;*Hoo + Dn2£¢(n - to)”xn - ;*Hoo
< 1= 9401 - 28000 — t)]lltn — ¥'ll (5.20)
Similarly,
190 —flc = [F((1 = NM)rw + MaTan) — 1"l
< s[up] |‘S (1 =Mz + NMaT30)) () — ‘ch*(t)‘
tEe|T0,V
< sup
t€[to,0]
(x,) /w M)+ MaT3)(5),

(1= R + MuTan) (5 — 7))08 — (C(50) + / (s, (), (5 — 7))08)

IN

/ (s, (2 — M) + MuTa) (),
(1= M) + TuTa) (5 — 7))05 — (s, £°(5), 8" (5 — 1)0)]
[ 20 (|00 T+ NS (6) ¢ (s)

tE€(to,0] Jt

+ ’((1 - mn)?n + mn‘zﬁn>(5 - 7) - I*(ﬁ — ’7)’) 0s

IN

< /tgzp ( sup ‘((1 — M)t + MaT30)(5) — ?*(5)‘

t€[to,0]

+ sup ‘((1 - mu)?n + mngﬁn)(s - ’7) - ?*(5 - 7)‘) 0s

tE[to,b]

IN

‘/%mm—NMHWSM@—ﬁ@M
’ (5.21)
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H((l - mn)xn + mngﬁr& - F*Hoo

and

[P0 — "]l

IN

(1 = NMa)rw + MaTsa) (5) — 1°(5)]| o) 08
< 2840 — ) [ (1 = Mo)xa + M Szm)( ) = 7(8)]loo- (5.22)

(1 = DM)rn + NMaTsn) — 1|0

< (1 = Na)lxn — & floo + Ml Ton — Ta"l o
< M) |10 — oo + M SUPreto,v]

, (3n(8),3n(s — Ds—/wﬁx 7))0s|)
< M) l1n — "o

o, / £ullin8) = Ol + ll3n(s) 5 (4) 05

(1= DMt — £ oo + Ma2L4 (0 — )| |50 — ']
(1= M) fltn — £l + Ma2Ly(0 — o)
[
[
|

IN N+

- Dn(l - 2£¢(U - to))]“?n - ;*Hoo
— Ma(1 — 2Ly (0 —1,))][1 — On(1 — 2Ly (0 — 1,))]
tn — "o (5.23)

IA

||S ((1 - Dﬁﬂ)gﬁn + mnsnn> - 2:*“00

s[up] T((1 = MMy) Tn + MaT,) (4) — gﬁ(")‘
tE€|ro,v

sup C(vo) / w 1) Tan(s) + M Ta(s),
te TO U

(1-93?)‘35,,(5— >+9ﬁ‘30n<5_ ))d5

- <<<to> + / b (5,8°(), 1 (5 — ) d5>

/T
To

(1 —90) Tauls — ) + MuTu(s — 7)) — ¥ (s,57(s), " (s — 7)) ) ds

Y (s, (1= My) Taals) + MaTya(s),

/T Ly < sup (1 — D) Taa(s) + MaTu(s) — 17 (s)|
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t€(ro,v]

+ sup ‘ (1= M) Tzals — ) + MaToals — ) — 1" (s — 7)|> ds

[ 20010 - 90) T35) + MTn(s) — ¢ ()

+[ (1=

28y(v = ro) [ (1 =

(1 = D) T30 + MaTyn)

Finally,

[

— 'l

IA A

IN

I IN + IN +

IN

IN

M) Tan(s — ) + MaTya(s — ) — 1" (s — 7)”00) ds
M) T + MaTY0 — 2°(5) || 0o (5.24)

H((l - mn>(zﬁn + E)ﬁn('{t)n> - CZ?*Hoo
(1= 90) | T30 — T [loo + M [|Ton — Tl oo
(1 — M) suPecies,o]

(/w (30(5), 3u(s 05—/wszc —7))0s|)
M SUPeele, 0]

</w (9a(5), 9a(5 — 7 05—/w5x —))os|)
(- m,) / 24l[3n(8) — £ (8)] oo + [[3n(5) — ()]0

s [ S4l10a(s) — £ (5)]ow + |19a(5) — £*(5)] s

(1 - mn)zgl/}(n - to)”ﬁn - P*Hoo

M 2Ly (0 — ) [|90 — 1|

(1= 9)28, (0 — to)[1 — On(1 — 284 (0 — )] + M2
L0 — 1) [1 —NMu(1 —2L4(0 — o))

11— 0,(1— 22,00 — t)][lta — ||

221/,(0 — ’Co)

[1—(1—2L4(0 —1))(MM, + Op — M0,

fen — &[0 (5.25)
I5(Tpa) — e

sup |T(Tpa) () — T ()]

SUPre(r,,0]

43



¢leo)+ | (s, Tpa(s), Tpa(s — 7))0s — (C(co) + / (s, 1(5), £ (5 — 7))0s)

< / [1(5. Tpa(s), Tpals — 7))0s — (5,17 (s). (s — 7))0)|

< SUPece, n]/ Lo(|Tpals) — 17 (8)| + | Tpals — ) — 1" (s — )| )0s

< / Ly (5UPceio,0) (| T0n(5) — 1°(8)] + SUPeefee) |[TPals — ) — 2" (s — 7)]))0s

< | 2 (150a(s) — '(5)] oo + [[Tpals) — £°(6) |oc)0s

To

< 2840 = ro)|[Tpn — 1[0 (5.26)
Hzpn_?*uoo - H‘Z@n) -t ||oo
< o |T(pa) () — Tx* (V)]
tE€|rg,v
< SUPee[eo,v]
1‘o /¢5pn pns_ 05_ to /1/}5? ))05)

IN IN

IN

I IA

[ 165l pals = 10005 — 006.6°(6).6°(5 = )0s)
SUPe]e, U]/ 21/) |pn - ?*(5)| + ‘pn(ﬁ - 7) - ?*(5 - ’7)‘)05
/ Ly (5UPeefey0( ‘pn 5)— ?*(5” + SUPrelr,,0] |pn(5 —7) —1'(s — 7)|))D5

/tﬂw(llpn(s) = 1 (8)loo + [[pa(s) — £7(5)[loc )05

To

284 (0 — )| [pn — 1[0

22¢(U — to)2

[1 - (1 - 221/1(0 - to))@ﬁnmn + Dn - mnmngn)]

[lrn — | (5.27)

Remark 5. By condition ;) and as [1—(1—2£,(0 — t,)) (M Ny + Op — MN,O,)] =7 <
1 and ||ty — r*||cc = ta- So, the conditions of Lemma 3 of [29] are satisfied. Hence,

ltmy 00 | |§n

]
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5.3 Implicit Neural Network

In this subsection, we present a modified implicit neural network which can be regard
as a multi-layer extension of the traditional feed-forward neural network.

Deep Equilibrium (DEQ) Models, an emerging class of implicit models that map
inputs to fixed points in neural networks, are gaining popularity in the deep learning
community. A deep equilibrium (DEQ) model deviates from classical depth by solving
for the fixed point of a single nonlinear layer $R. This structure allows for the decoupling
of the layer’s internal structure (which regulates representational capacity) from how
the fixed point is determined (which affects inference-time efficiency), which is typically
done using classic techniques.

We aim to build a neural network (5.2) that translates from a data space ¢ to an
inference space ). The implicit component of the network utilizes a latent space X, and
data is £ maps this latent space from ¢ to X. We defined the ¥ is a network operator
that transforms X x ¢ — X by

T(X, 1) 2 RX L))
The objective is to find the unique fixed point X7 of T(;r) given input data r. We will
then use a final mapping J : X — p to transfer X} to the inference space y. Because of
this, we can create an implicit network 91 by
MN(r) £ J(X7) where T(X; = X7,1)

Implicit models specify their outputs as solutions to nonlinear dynamical systems,
as opposed to stacking a number of operators hierarchically. For instance, the outputs
of DEQ models, which are the subject of this work, are defined as fixed points (a.k.a.
equilibria) of a layer R and input r ; that is, output

= RN r)

Theorem 5.3.1. Let € be a nonempty closed convex subset of a uniformly convex
Banach space and o : € — € be a contraction mapping (activation function). Then
equation (5.28) models a single input, well-posed and robust neural network provided
that the weights {M}, (N}, (O}, {2 ()} and biases {b(y} are in [e, I- €] for any n €
N and some € in (0,1).

e = o((1 =9 X+ 9O 0(W, X+, P, + b))

v = o((1-=N) X+ N (W, q.+ b))

3 = o((1—IM) o(W; g¢ + b)) + M, 0 (W, v¢ + b;))
PBe = o(Ws 3¢+ by)

X, = o(WePi+0by) (5.28)
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Loop until convergence

Figure 5.2: Feedforward networks act by computing J o £ . Implicit networks add a
fixed point condition using SR . When ‘R is Garcia-Falset repeatedly applying R to
update a latent variable ¥ converges to a fixed point r* = R(x*; £ o (¢)).

Proof. Under the given conditions, equation (5.28) models a well-posed system as the
existence of unique fixed point for the contraction mapping o is guaranteed [17]. The
robustness of system can be verified by Theorem 4.2.1 where the iterative scheme is
proved to be F-stable which shows that the smaller perturbation to the system does
not effect the output.

]

Example 5.3.1. Training implicit neural network

Suppose we want to build a single input neural network that can predict the exam score
based on the number of hours studied by assuming that whoever studies for ¢ € [0, 3]
hours tends to achieve an exam score of 1y € [0, 10] which can be define by function
f(x) = 2x. For this purpose, we train a network that takes an input of 3 (hours) and
gives an output of 10 (score). Given:

e Maximum input (max) = 3
e Minimum input (min) = 0

e Input value = 3
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Normalizing the input and output:

) value — min
normalized value = ——

max — min
we get:
normalized value = ﬂ = § =1
- 3—0 3

By normalization, the input 3 becomes 1 and similarly, the output 10 also becomes 1.
We start Example by taking :

Input X =1

Weights: 20, = 0.1, 20, = 0.2, 20, = 0.3, 20, = 0.4, 20, = 0.5, W, = 0.3

Bias: by = 0.5,b, = 0.3,b; = 0.1,byy = 0.3,b, = 0.4
e V=03 MN=04, M=05
e Learning rate a = 0.02

New Proposed Method
We will compute t, using (5.28). For this, let’s start by taking activation function

as o(xr) = Slz:i which is a contraction on (—1,1).

At Time Step t=1:
Now applying our proposed iterative method, We get :

q. = 0.69
t, = 0.65
3. = 0.34
B, =0.44
X, =048

This will be output fat time step t =1
Compute Loss
The mean square error cost function is defined as follows:

(W, 0) = > (15 (0(x) = vl

where,
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e 1: input

ne: output at time step t

20: weights collected in the network

e b: biases

|lo|| : usual length of vector b

Let’s use Mean Squared Error (MSE) loss. The true output is y = 1.00

s = Loy

1
= 5(1.00 - 0.48)* & 0.52

Backpropagation
Now, by using backpropagation, we will update weights and biases.
ol
%% — (1.00 — 0.48) = —0.52
09,

Gradient Learning Algorithm
We will update weights and biases by gradient learning algorithm. This technique can
be written as:

P = Pu — aVi(B)

Updating 20J:

Oloss  0Oloss 0y, Oo

_ M 99 052 % (1—tan?(0.48)) X B, = —0.52 x 0.76 X 0.44 — —0.18
00, Oy, Do 0W, X (1—tan*(0.48)) <P S

Oloss

Updated s = We(previous) — 0.2 X 990,

=0.33

Updating b:

Oloss B 8[088%@
b, 9y, Jo Ob,

= —0.52 x (1 —tan?(0.48)) = —0.41
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Oloss

—0.48
ob,

Updated b, = by(previous) — 0.2 x

In similar way, we will calculate other weights and biases as well.
Updated Weights and Biases

Weights Biases
25, =0.10 by =0.50
20, =0.20 b, =0.30
25, =0.30 b, =0.10
25, =040 by =0.31
20, = 0.50 b, =0.48
W = 0.33

At Time Step t=2:
We will calculate output vy, by using updated weights and biases.
By doing same procedure we calculated

n, = 0.55

Compute Loss
Let’s use Mean Squared Error (MSE) loss.

Loss =~ 0.45.

By continuing the same procedure :
At Time Step t=6:
After 6 iterations, our model is trained and we get loss:

Loss =~ 0.27.

Now as our model is trained, we will check at r = 0.5 and see what will be the output
for this. Output 1y at normalized input is :

y = 0.50

We get the estimated output y = 5.0 (score) for input ¢ = (1.5) hours .
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It is proved in Subsection 4 that the rate of convergence of the iterative scheme
(4.1) is higher than several others, therefore the convergence rate of the trained net-
work (5.28) is higher than the other traditional networks like FNN, RNN; etc.

Since the proposed iterative method is faster in its convergence rate. Therefore,
the implicit neural networks operate on the basis of Banach’s theorem has also an

improved convergence rate.
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Chapter 6

SUMMARY

We have developed a novel iterative contraction mapping method that outperforms
existing approaches by Asghar Rahimi [25], Thakur et al. 23], and Picard [17]. Our
research compares various approaches to our new strategy through graphical compar-
isons, showing better performance. We use the Garcia Falset operator to study the
convergence of our iteration to fixed points in uniformly convex Banach spaces, with
a focus on approximation stability. As an application, we worked to find fixed point
of heat equation and we exhibit the applicability of our four-step iteration process
in delay differential equations. We designed implicit neural network models using
our suggested iteration, verifying convergence and stability to fixed points. This work
provides opportunities for future fixed-point estimate research in addition to validat-
ing our iteration’s convergence and stability. According to our research, our iteration
converges more quickly than current schemes, improving the computational efficiency
of iterative procedures.
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Chapter 7

CONCLUSIONS AND FUTURE
RECOMMENDATION

In this thesis, we present a new iteration that converge faster than the iterative scheme
of Picard [17], Thakur et al. [23], Asghar Rahimi [25], Sintunavarat iteration [37],
Jubair et al. [24]|, Okeke and Abbas [38], Agarwal et al. [21], Akanimo [27]. The
comparison of iterative scheme (4.1) with other iterative schemes through an Exam-
ple 4.0.1 is also presented. Finally, an applications that raised from the various fields
of sciences is given to show the applicability of our scheme. In future work, a single
input neural network (5.28) can be extended into a multi-input network and apply
on data set. Implicit framework creates an enormous number of new opportunities for
innovative architectures, algorithms, robustness analysis, and design.
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