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Abstract 

The gut microbiome is a complex ecosystem of microorganisms that reside in the gastrointestinal 

tract (GIT). The interaction between the gut microbiota and the brain is often called the 

microbiota/gut-brain axis, which is a bidirectional relationship. Any imbalance in the gut 

microbiome through dietary changes, medication use, lifestyle choices, environmental factors, and 

aging has a potential pathophysiological impact on the body in general and CNS in particular.  

Early studies linking alterations in the gut microbiome with neurobehavioral phenotypes launched 

the concept of a microbiota-gut-brain axis whereby intestinal microbiota can influence brain 

function and behavior. This suggests that targeting the gut microbiome could be a potential strategy 

for developing new therapies for neurological and neurodegenerative diseases. Previously, various 

studies implicated the microbiome as one of the key susceptibility factors for neurological 

disorders. As a result, recent research has focused on identifying potential therapeutic interventions 

for neurological and neurodegenerative diseases by exploiting the gut microbiome profiles. 

However, there is a high level of overlap between neurological disease state and normal condition 

microbiome profiles, which makes it difficult to develop specialized treatments. In addition to this, 

for now, only a symptomatic cure exists. Therefore, this study aims to leverage machine learning 

(ML) modeling techniques to identify potential targets within the gut microbiome associated with 

a neurological disease. 

In this study, predictive modeling techniques were employed, including ensemble methods such 

as XGBoost, alongside other models like Artificial Neural Networks (ANN), Support Vector 

Machines (SVM) with a non-linear polynomial kernel up to the fifth degree, K-Nearest Neighbors 

(KNN), and Random Forest. The results indicated that all models converged around 60% accuracy, 
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with specificity and sensitivity metrics following similar trends. These models demonstrated the 

potential to analyze differentially expressed biomarkers, highlighting areas for future research. 

Future work should focus on developing models specifically designed for addressing biological 

problems rather than merely predictive modeling. Additionally, it is essential to examine the 

species level and the mechanistic aspects of the microbial profile to understand the underlying 

factors that transition conditions from normal to diseased states. 

Keywords: Neurological disease, Microbiome, Machine learning, Feature Extraction, Predictive 

Modeling. 
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1 CHAPTER 1: Introduction 

1.1 Neurological Disorders 

Neurological disorders encompass a wide range of conditions affecting the brain, spinal 

cord, and nerves. These disorders can have various causes, manifest with diverse symptoms, and 

require different treatment approaches. Common causes include genetic factors, such as 

Huntington's disease and certain forms of epilepsy, and infections like meningitis and encephalitis. 

Traumatic injuries, including head injuries and spinal cord injuries, can also lead to long-term 

neurological problems like traumatic brain injury (TBI) and chronic traumatic encephalopathy 

(CTE) [1]. Degenerative diseases, such as Alzheimer's disease, Parkinson's disease, and 

amyotrophic lateral sclerosis (ALS), often arise with age. Autoimmune disorders like multiple 

sclerosis (MS) and Guillain-Barré syndrome result from the immune system attacking the nervous 

system, while metabolic and nutritional deficiencies, including Wilson's disease and B12 

deficiency, can also cause neurological symptoms [2]. 

Symptoms of neurological disorders vary widely depending on the specific condition but 

generally include cognitive decline (memory loss, confusion, difficulty concentrating), motor 

symptoms (tremors, rigidity, muscle weakness, coordination problems), sensory symptoms 

(numbness, tingling, pain, sensory loss), seizures (uncontrolled electrical activity in the brain 

leading to convulsions or loss of consciousness), and behavioral changes (mood swings, 

depression, anxiety, personality changes) [3]. 

Treatment approaches for neurological disorders depend on the specific condition and can 

include medications, surgical interventions, rehabilitation therapies, lifestyle changes, and



Chapter 1: Introduction 

19 

 

supportive care. Medications such as antiepileptic drugs for epilepsy, dopaminergic medications 

for Parkinson's disease, cholinesterase inhibitors for Alzheimer's disease, and immunomodulatory 

drugs for MS are commonly used. Surgical interventions like deep brain stimulation for 

Parkinson's disease and neurosurgery for brain tumors and certain epilepsy cases can also be 

effective [4]. Rehabilitation therapies, including physical, occupational, and speech and language 

therapy, play a crucial role in managing these disorders. Lifestyle and supportive care, such as 

nutritional support, exercise, psychological counseling, and support groups, are important for 

overall well-being. Innovative treatments like gene therapy and stem cell therapy are also emerging 

as potential options. 

Generally, neurological disorders represent a significant global health challenge due to 

their impact on quality of life, economic burden, and the need for long-term care and management. 

Worldwide prevalence varies by condition, with approximately 50 million people living with 

dementia (mostly Alzheimer’s), over 10 million affected by Parkinson's disease, around 50 million 

with epilepsy, about 2.8 million with multiple sclerosis, and stroke affecting about 13.7 million 

new cases each year. Migraine is also highly prevalent, affecting approximately 1 billion people 

globally [5]. As shown in Figure 1.1 The diverse nature of neurological disorders underscores the 

importance of continued research and advances in treatment to improve outcomes for those 

affected. 

Neurological disorders are one of the leading causes of disabilities in the world as shown 

in Figure 1.1, while their mortality rate is the second leading cause [6]. In the previous thirty years, 

the number of deaths due to neurological diseases and the number of people with disabilities due 

to the same cause has risen significantly, more particularly in low and middle-income countries. 
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In addition to this, further increases are expected to be seen worldwide due to aging and population 

growth [7]. 

 

Figure 1.1 Distribution of disability-adjusted life years (DALYs) by neurological condition and 

age group: This graph illustrates the burden of various neurological conditions across different 

age group
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1.2 Brief Overview of the Mechanistic of Neurological Disorders 

Neurobiological pathways reveal the complex interactions between stress, neuronal damage, 

and genetic predispositions, which contribute to the development and progression of conditions 

like depression and anxiety. 

Stress is a pivotal factor in the pathogenesis of mood disorders, such as depression and 

anxiety, through a multitude of neurobiological mechanisms. Prolonged exposure to stress 

exacerbates oxidative stress, which contributes to neuronal damage, particularly in the 

hippocampus—a brain region integral to mood regulation [8]. Additionally, chronic stress impairs 

immune function, promoting inflammation, while genetic predispositions modulate individual 

responses to stress, determining resilience or susceptibility to mood disturbances[9]. 

The frequent comorbidity of mood disorders with neurological diseases further complicates 

their clinical management. For instance, increased iron deposition in the thalamus has been 

correlated with depressive symptoms in geriatric populations, while post-stroke anxiety markedly 

diminishes quality of life and functional outcomes[10]. Furthermore, the interplay between 

depression and insomnia is linked to decreased gray matter volume in the orbitofrontal cortex, and 

alterations in cortical excitability are observed in patients with anxiety disorders. These findings 

elucidate the complex interrelationship between mood disorders and neurological conditions, 

underscoring the necessity for integrative treatment approaches and a deeper understanding of 

these multifaceted interactions[11]. 
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1.3 Symptomatic Diagnosis of Neurological Disorders 

For many neurological disorders, the current state of medical knowledge and technology 

means that only symptomatic diagnosis is available. This approach focuses on identifying and 

assessing the symptoms presented by the patient, as opposed to pinpointing an underlying cause 

or definitive biomarker. The diagnostic process begins with a detailed medical history, where 

healthcare providers gather information about the onset, duration, and progression of symptoms. 

They inquire about the patient's family history, lifestyle factors, and any previous medical 

conditions or treatments that might be relevant. This thorough assessment helps in forming a 

preliminary understanding of the disorder. 

A physical examination is conducted to assess general health and identify any physical 

signs of neurological issues. This is followed by a neurological examination, which evaluates 

cognitive function, motor skills, sensory perception, reflexes, coordination, and balance. Through 

these tests, physicians can detect abnormalities that suggest specific neurological conditions. To 

further investigate the symptoms, various diagnostic tests and imaging studies are employed. 

These may include MRI (Magnetic Resonance Imaging) and CT (Computed Tomography) scans, 

which provide detailed pictures of the brain and spinal cord, helping to identify structural 

abnormalities, tumors, or lesions. An electroencephalogram (EEG) measures electrical activity in 

the brain and is particularly useful for diagnosing epilepsy and other seizure disorders. Nerve 

conduction studies and electromyography (EMG) assess the electrical activity of muscles and 

nerves, aiding in the diagnosis of conditions like peripheral neuropathy and myopathy [12]. 

Additionally, a lumbar puncture (spinal tap) can be performed to analyze cerebrospinal fluid, 

which can reveal infections, bleeding, and other neurological conditions [13]. 
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In summary, symptomatic diagnosis involves a comprehensive evaluation of the patient's 

medical history, physical and neurological examinations, and various diagnostic tests aimed at 

understanding the nature and severity of the symptoms. While this approach does not provide a 

definitive cause or biomarker for many neurological disorders, it is essential for developing an 

effective treatment plan to manage and alleviate symptoms. 

1.4 Limitation of Conventional Therapies 

Conventional therapies for neurological disorders face significant limitations that impede 

their effectiveness and accessibility. A primary challenge is the difficulty in achieving adequate 

drug concentrations within the central nervous system due to the restrictive nature of the blood-

brain barrier (BBB). This barrier, while protective, often limits the penetration of therapeutic 

agents, resulting in suboptimal treatment outcomes for neurodegenerative diseases such as 

Alzheimer's and Parkinson's[14]. Moreover, these therapies tend to focus on symptomatic relief 

rather than addressing the underlying pathophysiology of the disorders. For instance, 

cholinesterase inhibitors used in Alzheimer's disease may alleviate cognitive symptoms but fail to 

arrest disease progression. Additionally, the side effects associated with many conventional 

medications, such as the cholinergic and cardiac issues seen with Donepezil, can reduce patient 

compliance and limit therapeutic success[15]. 

Further complicating treatment efficacy are the resource limitations and the heterogeneity of 

neurological disorders, which challenge the development of standardized treatment protocols and 

lead to potential misdiagnoses or delayed interventions. The inherent complexity of these disorders 

also presents obstacles in research and development, with drug discovery efforts often hampered 

by the need for better biomarkers and more precise outcome measures[16]. Consequently, the 
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modest clinical benefits observed with some treatments underscore the necessity for innovative 

approaches and advanced drug delivery systems to enhance both therapeutic efficacy and patient 

outcomes in managing neurological conditions. 

1.5 The Gut Microbiome as a Potential Therapy 

The gut microbiome has emerged as a compelling target for therapeutic interventions in 

neurological diseases, offering novel avenues for treatment beyond conventional approaches. 

Modulating the composition of the gut microbiome through probiotics, prebiotics, or fecal 

microbiota transplantation (FMT) has shown promise in restoring microbial balance and 

potentially mitigating neurological symptoms. Beneficial bacteria such as Lactobacillus and 

Bifidobacterium, for instance, have been linked to improvements in cognition and reductions in 

anxiety and depression[17].  

Moreover, improving gut barrier function, which is often compromised in neurological 

disorders, could prevent the translocation of harmful substances and pathogens, thereby exerting 

neuroprotective effects. Early intervention strategies aimed at modulating the gut microbiome 

during the prodromal stages of neurological diseases, or even earlier in life, hold potential for 

delaying disease onset and progression[18]. Given the highly individualized nature of the gut 

microbiome, personalized therapeutic approaches tailored to each patient’s unique microbial 

profile are increasingly being explored, leveraging advances in microbiome profiling and machine 

learning.  
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2 CHAPTER 2: Literature Review 

2.1 Diagnostics of Neurological Disorders and the Role of Predictive Modeling 

Diagnosing neurological disorders is a complex and multifaceted process, necessitating a 

variety of diagnostic tests and procedures due to the diverse and often overlapping symptoms 

associated with different conditions. The complexity is further compounded by the limitations of 

available diagnostic tools. The process typically begins with a thorough neurological examination, 

which assesses multiple functions such as movement, sensation, coordination, balance, mental 

status, and mood. This initial evaluation forms the basis for a differential diagnosis and guides 

subsequent testing. Advanced imaging techniques, such as Magnetic Resonance Imaging (MRI) 

and Computed Tomography (CT) scans, are integral to the diagnostic process, providing detailed 

images of brain structures. MRI is particularly valuable for visualizing soft tissues and detecting 

abnormalities, while CT scans offer rapid assessment of structural issues, especially in emergency 

settings. In addition to imaging, electrodiagnostic tests like Electroencephalograms (EEGs) and 

electromyography (EMG) play a crucial role in assessing brain and nerve function[19].  

Genetic testing has also emerged as a vital component in diagnosing hereditary 

neurological disorders, enabling the detection of specific genetic mutations that inform diagnosis 

and treatment planning[20]. 

The diagnostic process is further complicated by several factors, including the significant 

symptom overlap among neurological disorders. For instance, symptoms such as headaches, 

memory loss, and cognitive impairments are common across various conditions, making it 

challenging to distinguish between disorders like Alzheimer's disease and other forms of 
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dementia[21]. Moreover, the lack of definitive biomarkers for certain neurological conditions adds 

to the difficulty, often leading to diagnostic uncertainty, misdiagnosis, or delays in treatment. The 

evolving nature of neurological disorders, where symptoms may progress or change over time, 

requires continuous assessment and sometimes repeated testing to monitor these changes and 

adjust diagnoses accordingly[22]. 

Technological limitations also present challenges in the diagnostic process. Despite 

significant advancements, current imaging and diagnostic technologies still face issues related to 

sensitivity and specificity, which can hinder the detection of early-stage diseases or subtle changes 

in brain function. Furthermore, the interdisciplinary nature of diagnosing neurological disorders, 

which often involves collaboration among neurologists, radiologists, geneticists, and other 

specialists, adds another layer of complexity. While this approach enhances diagnostic accuracy, 

it also requires careful coordination of care. 

The table below provides a detailed overview of the diagnostics for neurological disorders, 

including the types of data used, the models employed, the parameters optimized, and the relevance 

of these methods for accurate diagnosis and treatment. This comprehensive summary highlights 

the approach and effectiveness of various diagnostic techniques in the context of neurological 

disease research. 
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Table 2.1 The table below outlines the diagnostics for neurological disorders, detailing the data 

types, models employed, parameters used, and their applicability. 

Study Data Used Models Used Parameters Applicability Reference 

Machine 

Learning 

Analysis 

Reveals 

Biomarkers 

for the 

Detection of 

Neurological 

Diseases 

The study analyzed 

clinical and 

genotyping data 

from 1,223 

participants with 

neurological 

diseases (AD, PD, 

MND, MG) from 

the UK Biobank, 

including blood and 

urine biomarkers, 

cognitive test 

scores, and data on 

820,967 SNPs. 

Multinomial 

generalized 

linear model to 

predict 

neurological 

disease (NLD) 

diagnosis using 

clinical markers. 

The multinomial 

model was optimized 

through Monte Carlo 

randomization to 

identify the most 

informative clinical 

variables, urine tests, 

and cognitive tests. 

The study shows that 

data-driven methods 

can identify new 

diagnostic biomarkers 

and shared genetic 

risk factors for 

neurological diseases 

(NLDs), with the 

multinomial model 

predicting diagnoses 

with 88.3% accuracy. 

[23] 

Machine 

Learning and 

Novel 

Biomarkers 

for the 

The study used 

datasets featuring 

Alzheimer's disease 

biomarkers, 

including 

Support Vector 

Machines 

(SVM), Random 

Forest, Logistic 

Regression, 

Biomarker Levels, 

Imaging Features, 

Metabolite Profiles, 

and Model Evaluation 

Metrics: Area under 

This study highlights 

the importance of 

combining machine 

learning with 

biomarker analysis to 

[24]  

https://www.mdpi.com/1422-0067/22/5/2761
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Diagnosis of 

Alzheimer’s 

Disease 

cerebrospinal fluid 

(CSF) markers like 

amyloid-β, tau 

protein, and 

hyperphosphorylate

d tau, as well as 

neuroimaging data 

from PET scans and 

metabolomics data 

to identify novel 

AD-related 

metabolites. 

Convolutionals 

Neural 

Networks, 

Ensemble 

Learning 

Techniques 

the curve (AUC), 

accuracy, sensitivity, 

and specificity for 

model performance 

and evaluation. 

improve early 

Alzheimer's disease 

diagnosis, crucial for 

timely intervention. 

The findings suggest 

that machine learning 

can effectively detect 

patterns in complex 

biomarker data. 

Gut 

microbiome 

composition 

may be an 

indicator of 

preclinical 

Alzheimer’s 

disease 

The study used data 

from ADNI and 

AIBL: taxonomic 

composition and 

gut microbial 

function between 

164 cognitively 

normal individuals, 

including 49 with 

early preclinical 

AD biomarkers. 

DeepSleepNet 

deep learning 

model, 

originally 

designed for 

sleep stage 

classification, to 

classify 

Alzheimer's 

disease, mild 

cognitive 

impairment, and 

The DeepSleepNet 

model was trained on 

7 days of actigraphy 

data, with 

hyperparameters like 

learning rate, batch 

size, and epochs 

optimized through 

cross-validation to 

best classify AD, 

The study highlights 

the potential of using 

actigraphy-based 

sleep-wake patterns 

with deep learning for 

early Alzheimer's 

disease detection. The 

DeepSleepNet model 

achieved 89.1% 

accuracy in 

classifying AD, MCI, 

and cognitively 

[25]  

https://www.science.org/doi/full/10.1126/scitranslmed.abo2984
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cognitively 

normal 

individuals. 

MCI, and cognitively 

normal individuals. 

normal individuals, 

suggesting sleep-

wake disturbances as 

a promising AD 

biomarker. 

Actigraphy offers a 

non-invasive, cost-

effective alternative 

to CSF and PET 

scans, potentially 

enabling earlier 

interventions and 

personalized 

treatments. 

Parkinson’s 

disease-

associated 

alterations of 

the gut 

microbiome 

predict 

disease-

relevant 

changes in 

Stool samples from 

the Luxembourg 

Parkinson’s Study 

(n = 147 typical PD 

cases, n = 162 

controls). 

Random Forest 

and Support 

Vector Machine 

The study used 

feature selection to 

identify key microbial 

taxa linked to PD, 

optimized RF and 

SVM 

hyperparameters via 

cross-validation, and 

evaluated model 

performance with 

The study highlights 

the gut microbiome's 

role in Parkinson's 

disease, suggesting 

that microbial 

alterations could 

serve as biomarkers 

for early diagnosis 

and progression 

monitoring. It also 

[26]  

https://link.springer.com/article/10.1186/s12915-020-00775-7
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metabolic 

functions 

accuracy, sensitivity, 

and specificity 

metrics. 

indicates that changes 

in gut microbiome 

metabolism may lead 

to targeted 

microbiome-based 

therapies. 

Multi-omics 

analyses of 

serum 

metabolome, 

gut 

microbiome 

and brain 

function reveal 

dysregulated 

microbiota-

gut-brain axis 

in bipolar 

depression 

A cohort of 109 

unmedicated 

bipolar disorder 

(BD) patients and 

40 healthy controls 

(HCs) was studied 

to characterize the 

microbial-gut-brain 

axis in BD. 

Random Forest 

and Support 

Vector Machine 

and PCA 

analysis 

Feature Selection, 

Hyperparameter 

Tuning, Evaluation 

Metrics: Used 

accuracy, sensitivity, 

and specificity to 

assess model 

performance. 

The study highlights 

dysregulation in gut 

microbiota and 

neuroactive 

metabolites in bipolar 

depression, 

suggesting potential 

biomarkers for 

diagnosis and 

treatment. [27]  

 

https://www.nature.com/articles/s41380-022-01569-9
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2.2 The Gut Microbiome 

The gut microbiome is a very complex and dynamic ecosystem that contains millions upon 

billions of microorganisms, including bacteria, archaea, viruses, and eukaryotic microbes, that are 

present in the gastrointestinal tract (GIT). This ecosystem plays a very important role in 

maintaining the host’s health, all while influencing many physiological processes [28]. 

 

Figure 2.1 Dietary influence on gut health: How dietary factors like sugar and fiber affect gut 

health, with poor choices leading to disease risks and healthy choices promoting better gut 

function and overall health. 
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The gut microbiome is a highly personalized and complex ecosystem, with each 

individual's microbial community being uniquely shaped by factors such as diet, geography, 

ethnicity, and genetics. A healthy gut microbiome is typically marked by a high diversity of 

microbial species, a rich array of microbial genes, and a stable core group of microorganisms [29]. 

This microbiome plays essential roles in health, including nutrient extraction, metabolism, immune 

development, and protection against harmful pathogens. 

2.2.1 The Gut Microbial Composition 

The microbial composition varies throughout the gastrointestinal tract, with distinct 

differences between the small and large intestines. Factors such as age, diet, antibiotic use, and 

genetics significantly influence the microbiome's development and changes, particularly in early 

life [29]. 

The gut microbiome has many types of microorganisms; however, the most dominant 

bacteria is from the kingdom Phyla in the human gut. Within this phyla, notable genera include 

Bacteroides, Clostridium, Faecalibacterium, Lactobacillus, Bifidobacterium, and Eubacterium. 

Similarly, the most common archaea in the gut are methanogens, particularly Methanobrevibacter 

smithii, which are involved in the production of methane through the fermentation of substrates 

like hydrogen and carbon dioxide. Moreover, viruses that infect bacteria, known as bacteriophages, 

play a role in modulating bacterial populations and genetic exchange. Eukaryotic viruses can also 

be present and influence host cells and immune responses [28].  

The human gut microbiome is a complex and dynamic community of microorganisms, 

including bacteria, archaea, fungi, and viruses, that reside in the gastrointestinal tract. Moreover, 
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it is highly individualized, with each person harboring a unique microbial composition shaped by 

factors like diet, geography, ethnicity, and host genetics [30].  

2.2.2 Gut Microbiome Dysbiosis 

Gut microbiome dysbiosis refers to an imbalance in the complex community of 

microorganisms residing in the gastrointestinal tract. These microorganisms, including bacteria, 

viruses, fungi, and other microbes, play crucial roles in maintaining overall health by aiding in 

digestion, supporting the immune system, and contributing to the synthesis of essential nutrients 

[31]. 

Dysbiosis can manifest in several ways. It can involve a loss of beneficial bacteria, such as 

those from the genera Lactobacillus and Bifidobacterium, which are essential for maintaining gut 

health by aiding in digestion, producing vitamins, and protecting against pathogenic bacteria [32]. 

When these beneficial bacteria are significantly reduced, it can lead to impaired digestive 

functions, weakened immune responses, and an increased risk of infections. Additionally, 

dysbiosis can result in the overgrowth of harmful bacteria, like Clostridium difficile and certain 

strains of Escherichia coli, which can cause various gastrointestinal issues, including 

inflammation, infections, and conditions like irritable bowel syndrome (IBS) and inflammatory 

bowel disease (IBD) [33].  

Another key aspect of dysbiosis is the decreased diversity of gut bacteria. A healthy gut 

microbiome is characterized by a diverse array of microbial species, crucial for resilience against 

external stressors and maintaining overall gut health. When microbial diversity is reduced, it 

compromises the gut’s ability to function effectively and can lead to a range of health problems 
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[34]. 

 

Figure 2.2 Probiotics, microbiome, and gut health; a comparison between normal and dysbiotic 

gut health 

Dysbiosis can be caused by a variety of factors, each contributing to the imbalance in the 

gut microbiome. Infections, whether bacterial, viral, or fungal, can disrupt the normal microbial 

community by allowing harmful pathogens to overgrow and suppress beneficial microbes [19]. 

Inflammation in the gut, often a result of chronic conditions like Crohn's disease or ulcerative 

colitis, can create an unfavorable environment for beneficial bacteria, further promoting the growth 

of harmful species [35]. Genetic predispositions can also play a role, as certain genetic variations 

can affect the immune system's ability to regulate and maintain a balanced microbiome. 

Diet and antibiotic use play critical roles in shaping the gut microbiome, which in turn can impact 

overall health. Diets high in processed foods, sugars, and unhealthy fats can reduce microbial 

diversity and promote harmful bacteria, whereas a diet rich in fiber, fruits, and
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vegetables support a healthy microbiome. Antibiotic use can further disrupt this balance by killing 

both harmful and beneficial bacteria, leading to reduced microbial diversity and the growth of 

resistant strains[36]. 

Additionally, disruptions in the gut-brain axis have been linked to various neurological and 

mental health conditions. For instance, altered gut microbiome profiles in individuals with autism 

spectrum disorders (ASD) may affect brain function through imbalances in key metabolites and 

neuroactive molecules produced by gut bacteria[37]. Similarly, disturbances in the gut-brain axis 

are associated with depression, anxiety, and other mental health issues, underscoring its 

importance in regulating mood and emotional well-being[38]. 

In the case of depression, research has shown that individuals with depressive disorders 

often have an altered gut microbiome composition. This imbalance can affect the production of 

neurotransmitters such as serotonin, which is primarily produced in the gut and is essential for 

regulating mood [39]. A disrupted gut microbiome can lead to lower levels of serotonin, 

contributing to the development of depressive symptoms. 

Anxiety is another mental health condition closely linked to the gut-brain axis. The gut 

microbiome can influence the production of stress-related hormones and the functioning of the 

hypothalamic-pituitary-adrenal (HPA) axis, which controls the body’s response to stress [40]. An 

imbalanced gut microbiome can result in heightened stress sensitivity and exaggerated stress 

response, common features of anxiety disorders [41]. 
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Maintaining a healthy gut microbiome is crucial for overall well-being. Factors that can 

help prevent or manage dysbiosis include a balanced diet rich in fiber, limiting antibiotic use, and 

considering probiotic supplements when appropriate [42]. 

2.3 Gut-Brain Axis 

The gut-brain axis describes the bidirectional communication system between the 

gastrointestinal tract and the central nervous system. This intricate interaction operates through 

several pathways. One of the main routes involves neural connections, particularly the vagus nerve 

and the enteric nervous system, which enable the gut to transmit signals directly to the brain and 

receive messages from it [43]. Beyond these neural pathways, the axis also includes hormonal and 

immune signaling mechanisms. Chemicals produced in the gut, such as neurotransmitters and 

cytokines, can enter the bloodstream and influence brain function [44]. 
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Figure 2.3 The bidirectional relationship between the brain and gut shows how neurotransmitters 

influence gut health and how gut microbiota impact brain function, contributing to conditions 

like depression, anxiety, and gastrointestinal issues. 

The gut-brain axis (GBA) is a fascinating and intricate communication system that 

connects the central nervous system (CNS) with the enteric nervous system (ENS) via biochemical 

signaling pathways. This bi-directional connection plays a crucial role in maintaining overall 

health and has garnered significant attention in both clinical and scientific research. Clinical and 

experimental evidence has highlighted the gut microbiota as a pivotal regulator of the GBA[45].  



Chapter 2: Literature Review 

38 

 

The diverse community of microorganisms residing in the gut interacts with the host in 

multifaceted ways. Gut microbiota interacts locally with intestinal cells and the enteric nervous 

system (ENS). These interactions influence gut motility, secretion, and barrier function, which can 

impact gastrointestinal health. Furthermore, emerging research suggests that gut microbes have 

the capacity to influence the central nervous system (CNS) through various mechanisms. This 

includes the production of signaling molecules, such as neurotransmitters and neuroactive 

metabolites, which can enter the bloodstream and affect brain function [46].  

The gut microbiome, composed of trillions of microorganisms residing in the digestive 

tract, plays a vital role in the gut-brain communication network. These microbes produce 

neuroactive molecules that can impact brain activity. For instance, some bacteria in the gut produce 

serotonin, a neurotransmitter that influences mood and behavior [47]. 

The gut-brain axis is essential for maintaining homeostasis and regulating various 

functions, including digestion, mood, cognition, and the stress response. Neural connections, such 

as the vagus nerve, allow the brain to influence gut motility, secretion, and blood flow, which 

ensures efficient digestion and nutrient absorption [48]. Conversely, signals from the gut can affect 

brain activity, influencing feelings of hunger and fullness. 

Cognition is also influenced by the gut-brain axis. Gut bacteria produce neuroactive 

compounds, such as short-chain fatty acids and neurotransmitters, which can affect brain function, 

impacting learning, memory, and decision-making processes [49]. Additionally, the gut-brain axis 

plays a role in the body’s stress response. The gut microbiome can modulate the hypothalamic-

pituitary-adrenal (HPA) axis, which controls the release of stress hormones like cortisol [50]. 

Dysregulation of this axis can lead to increased stress sensitivity and related health issues. 
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Overall, the gut-brain axis integrates and regulates multiple physiological processes crucial 

for maintaining overall health and well-being. 

2.4 Diagnostics for the Gut-Brain Axis Problems 

The gut microbiome has emerged as a pivotal factor in the diagnosis and treatment of 

neurological disorders, with growing evidence highlighting its intricate interactions with the 

central nervous system (CNS) via the gut-brain axis (GBA). This bidirectional communication 

pathway suggests that the gut microbiota not only plays a significant role in maintaining 

neurological health but also holds potential as a diagnostic and therapeutic target[51]. 

Alterations in the microbial composition of the gut can influence neuroinflammation and 

other pathophysiological processes within the CNS, thereby contributing to the onset and 

progression of these diseases[52]. The impact of dysbiosis on neuroinflammatory pathways 

underscores the critical role of the gut microbiota in the pathogenesis of neurological disorders. 

Emerging research has explored the potential of gut microbiota profiles as biomarkers for 

neurological diseases. Changes in the composition of gut microbiota and the presence of specific 

microbial metabolites have been correlated with the severity and progression of neurological 

disorders[53]. However, this field is still in its early stages, and the development of standardized 

diagnostic methods is essential to validate these findings across diverse clinical settings. 

Therapeutic strategies targeting the gut microbiome offer promising avenues for the 

treatment of neurological disorders. Interventions such as probiotics, prebiotics, synbiotics, and 

fecal microbiota transplantation (FMT) aim to restore a healthy microbial balance within the 

gut[54]. These approaches have shown potential in not only gastrointestinal diseases but also in 
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the treatment of neurological conditions, including autism spectrum disorder. FMT, in particular, 

has demonstrated promising results in clinical applications beyond its traditional use, suggesting 

its potential utility in managing neurological disorders. 

In addition to these therapies, Machine learning (ML) techniques have shown promise in 

leveraging gut microbiome data to aid in the diagnosis and screening of various neurological and 

mental health disorders associated with gut-brain axis dysfunction. Multiple studies have 

demonstrated that microbiome-based ML models can accurately classify Parkinson's disease 

patients, although these models tend to be study-specific and often lack generalizability across 

different datasets[55]. Meta-analyses of these studies have helped identify Parkinson's-associated 

microbial pathways that may contribute to disease pathogenesis through the gut-brain axis [56]. 

Moreover, another recent study developed a machine learning (ML) model using gut 

microbiome composition that could effectively identify patients with Myasthenia Gravis (MG). 

This finding suggests the potential for a non-invasive diagnostic screening tool for this 

neuromuscular disorder, highlighting the promise of gut microbiome-based ML models in medical 

diagnostics [57]. 

Furthermore, alterations in the gut microbiome have been linked to the development of 

autism, and machine learning (ML) models may be able to leverage these microbial signatures for 

improved diagnosis. By identifying specific patterns and changes in the gut microbiome associated 

with autism, ML models can potentially enhance the accuracy and early detection of this condition 

[44]. 
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Machine learning (ML)-based approaches offer several key advantages for addressing gut-

brain axis diseases. Firstly, they have the ability to identify complex, multivariate microbial 

patterns that can distinguish disease states from healthy controls, providing a more nuanced 

understanding of the microbiome's role in these conditions[58]. Secondly, ML-based methods 

present the potential for non-invasive and cost-effective screening and diagnosis, making them 

more accessible compared to current techniques. Lastly, these approaches offer the opportunity to 

uncover gut microbial biomarkers and provide mechanistic insights into how the gut-brain axis is 

disrupted in various diseases, potentially leading to more targeted and effective treatments[59]. 

A study has demonstrated the potential applications in distinguishing between different 

neurological diseases using machine learning techniques, which addressed the challenging task of 

multi-class classification, where the goal is to differentiate between multiple neurological diseases 

simultaneously [60]. This is particularly valuable because it provides a comprehensive approach 

for distinguishing among diseases like multiple sclerosis, stroke, and others, which can have 

overlapping clinical presentations. Furthermore, the study wisely considered feature selection 

techniques to determine which taxonomic levels of microbial abundance data are most informative 

for classification. Finding that lower taxonomy levels (e.g., genus) yielded better performance 

suggests that focusing on finer-grained microbial features provides more discriminatory power. 

Furthermore, evaluating multiple classification algorithms helps identify which ML method is 

most suitable for this specific task. As a result, the LogitBoost-based prediction model 

outperformed other classifiers, suggesting that boosting techniques might be particularly effective 

for distinguishing between these neurological diseases based on gut microbiome data. This study's 

findings have significant clinical implications. The identified feature subsets can potentially be 
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used to diagnose and differentiate neurological diseases [60]. This could lead to earlier and more 

accurate diagnoses, which is critical for patient outcomes and the development of targeted 

treatment strategies.  

2.5 Advantages of Data-Guided Decisions 

Data-guided predictive modeling, particularly in the context of the gut microbiome, provides 

a robust framework for advancing our understanding and management of neurological disorders. 

This approach leverages advanced computational techniques to analyze complex datasets derived 

from microbiome studies, yielding insights that can significantly enhance both diagnosis and 

treatment strategies[61]. 

Predictive modeling excels in integrating data from various sources, including microbial 

composition, clinical symptoms, and genetic information. This comprehensive approach enables a 

more holistic understanding of the influence of gut microbiota on neurological disorders, such as 

Alzheimer's and Parkinson's disease, and their underlying pathophysiologies[62]. By combining 

diverse datasets, predictive models can uncover intricate relationships between gut microbiota and 

disease processes, which might not be apparent through traditional analytical methods. 

Through the analysis of the gut microbiome and its metabolites, predictive models can 

identify specific biomarkers associated with neurological disorders. These biomarkers are crucial 

for early diagnosis, monitoring disease progression, and guiding therapeutic interventions. The 

ability to pinpoint biomarkers with high specificity and sensitivity can facilitate timely and targeted 

treatments, potentially improving patient outcomes by addressing disease mechanisms at earlier 

stages[63]. 
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Moreover, predictive modeling also plays a vital role in the development of personalized 

treatment strategies based on individual microbiome profiles. This personalized approach allows 

for the customization of interventions, such as probiotics or dietary modifications, tailored to the 

specific microbial dysbiosis present in a patient[64]. By aligning treatment strategies with the 

unique microbiome composition of each individual, predictive modeling can enhance treatment 

efficacy and minimize adverse effects. 

Furthermore, data-driven predictive models are instrumental in elucidating the mechanisms 

by which gut microbiota influences brain health. By analyzing patterns within complex datasets, 

these models can identify novel therapeutic targets and contribute to the development of 

interventions aimed at restoring microbial balance[65]. Understanding these mechanisms is critical 

for devising strategies that mitigate neurological symptoms and halt disease progression. 

Another advantage of data-guided predictive modeling is its capacity for continuous 

monitoring and adaptation of treatment plans. By regularly assessing a patient's microbiome and 

its relationship to neurological health, clinicians can make real-time adjustments to therapeutic 

strategies[66]. This dynamic approach ensures that patient care is continuously optimized based 

on the latest data, improving long-term outcomes.  

2.6 Machine Learning Modeling vs. Neurological Diseases: The Challenges 

Diagnosing gut-brain axis diseases using machine learning (ML) modeling presents several 

key challenges. The multifactorial nature of functional gastrointestinal disorders complicates the 

diagnostic process. ML algorithms need to integrate diverse types of data—including microbiome 

signatures, demographics, immunology, and neuroimaging—to effectively identify patterns and 
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provide accurate diagnoses. This complexity requires sophisticated models capable of handling 

and analyzing varied and intricate datasets to capture the full spectrum of factors involved in these 

disorders [67]. 

Diagnosing gut-brain axis diseases using machine learning (ML) modeling presents several 

key challenges. The multifactorial nature of functional gastrointestinal disorders (FGIDs), such as 

irritable bowel syndrome, complicates the diagnostic process. ML algorithms need to integrate 

diverse types of data—including microbiome signatures, demographics, immunology, and 

neuroimaging—to effectively identify patterns and provide accurate diagnoses [67]. This 

complexity requires sophisticated models capable of handling and analyzing varied and intricate 

datasets to capture the full spectrum of factors involved in these disorders. 

Choosing appropriate preprocessing steps like normalization and filtering is critical but not 

always straightforward. In fact, typical preprocessing does not always improve the predictive 

performance of ML models for diseases like colorectal cancer. Feature selection is crucial to 

reduce classification error, and multivariate methods like Statistically Equivalent Signatures are 

more effective than univariate approaches [68]. Validating ML models on separate test datasets is 

essential to obtain accurate performance estimates. For instance, one study found that random 

forest modeling combined with the Statistically Equivalent Signatures algorithm provided the best 

accuracy.  

Interpreting ML model results to gain biological insights is another significant challenge. 

Techniques such as logistic regression with Individual Conditional Expectation plots can help 

yield interpretable results, making it easier to understand the biological implications of the data 

and the underlying mechanisms of the diseases [69]. 
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It is essential to translate findings from animal studies on gut-brain axis diseases, such as 

autism spectrum disorder, to humans to identify potential therapeutic targets. Incorporating 

established assays for gut dysfunction into the behavioral testing of animal models is crucial for 

this process [70]. 

A recent study represents a significant contribution to the growing body of research 

examining the relationship between gut microbiota and Alzheimer's disease (AD), where the study 

confirms the previous findings that Alzheimer's disease (AD) patients exhibit alterations in their 

gut microbiota composition. This aligns with emerging evidence suggesting a link between the gut 

microbiome and neurological diseases. Moreover, the use of machine learning models in this study 

is noteworthy. These models are valuable for analyzing complex and multidimensional datasets, 

such as microbiome data, and can identify patterns and associations that might be challenging to 

detect through traditional statistical approaches. Specifically, the study investigated associations 

between gut microbiota composition and AD biomarkers, specifically amyloid and p-tau. The 

finding that machine learning models could predict amyloid and p-tau status from microbiota 

composition with AUCs of 0.64 and 0.63, respectively, is promising. It suggests that specific 

microbial signatures or patterns may be linked to these key AD pathological markers [71]. 

While the study's findings are promising, it's important to acknowledge that more research 

is needed to validate these associations and explore the underlying mechanisms. Additionally, the 

modest AUC values indicate room for improvement in predictive accuracy. Furthermore, these 

findings support the notion that the gut microbiome may play a role in AD pathogenesis or 

progression. Further research into the specific microbial taxa or metabolites associated with AD 

biomarkers could provide deeper insights into disease mechanisms. If specific microbial signatures 
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are confirmed to be linked to AD biomarkers, they could become targets for interventions aimed 

at modifying the gut microbiome to mitigate AD risk or slow disease progression.  

A growing number of cross-sectional studies have investigated the microbiota composition 

in individuals with a specific neurological disorder versus healthy age-matched individuals. 

However, these studies provide just a snapshot in time, and longitudinal cohort studies are needed. 

Experimental models have been essential for moving research in the human microbiota gut-brain 

axis forward. Experimental models have been essential for moving research in the human 

microbiota gut-brain axis forward. In tandem, a large experimental effort has been directed towards 

attempting to dissect the various ways machine learning can be used to study the association of 

gut microbiome with neurological and neurodegenerative diseases [72].  

2.6.1 The Target Overlap Dilemma 

Various studies have shown significant overlap in the mechanisms and pathways 

underlying different neurological diseases, posing challenges for building effective machine 

learning (ML) models to distinguish between these neurological conditions and normal states. A 

review article emphasizes that many adult-onset diseases, such as Alzheimer's disease (AD), 

Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia 

(FTD), share common features like protein aggregation, neuroinflammation, and immune 

dysregulation [73]. This extensive overlap complicates the development of targeted therapies and 

suggests that a combination of treatments addressing different disease pathways may be necessary. 

Another analysis revealed that 7 out of the top 10 enriched diseases associated with 

upregulated hub genes were neurological diseases/disorders, highlighting the significant overlap 
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in the underlying biology among different neurological diseases (NDDs). This overlap in disease 

targets and mechanisms complicates the task of building machine learning (ML) models that can 

accurately differentiate between NDDs and normal conditions [74]. 

The discussion notes that a major limitation in developing effective AI/ML models for 

brain diseases is the limited sample size. This issue is beginning to be addressed by the availability 

of public datasets like the Alzheimer's disease Neuroimaging Initiative (ADNI) and the Human 

Connectome Project. Despite this progress, the heterogeneity and overlap between different brain 

diseases continue to present significant challenges [75]. 

The extensive overlap in the underlying mechanisms, pathways, and targets between 

different diseases poses a significant challenge when building accurate and generalizable machine 

learning (ML) models to distinguish neurological diseases from normal conditions. Addressing 

this overlap through integrated, multi-target approaches may be necessary to develop effective 

diagnostic and predictive tools for neurological diseases. 

2.7 Research Gap and Problem Statement 

An extensive overlap in mechanisms between neurological diseases and normal conditions 

makes it challenging to build accurate ML models to distinguish them. Many adult-onset NDDs 

share common pathways of protein aggregation, neuroinflammation, and immune dysregulation, 

posing difficulties in developing targeted therapies and diagnostic tools. 

Limited sample size and availability of high-quality, annotated datasets for many 

neurological disorders have been a challenge in building robust ML models. While public datasets 
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like ADNI and the Human Connectome Project have started to address this, the inherent 

complexity and overlap between brain diseases persist [76]. 

ML models for the gut microbiome are susceptible to biases and variations due to 

differences in library preparation, sequencing strategy, and choice of reference databases used for 

taxonomic annotation in bioinformatics pipelines. Reprocessing raw sequences using a single 

pipeline can help harmonize bacterial profiles [77]. 

While AI-guided gut microbiome profiling holds promise for understanding and 

diagnosing neurological diseases, significant challenges remain in building accurate, 

generalizable, and clinically useful ML models. Addressing the overlap between neurological 

diseases, expanding high-quality datasets, improving model interpretability, and standardizing 

microbiome profiling workflows are key research gaps to address. 

This study aims to leverage machine learning (ML) modeling techniques to identify 

potential targets within the gut microbiome associated with these diseases, differentiating between 

neurological and normal conditions.   

2.8 Objectives 

● To collect and preprocess the microbiome data for the gut microbiome profiling associated 

with the neurological disorder. 

● To develop predictive ML models based on gut microbiome profiles of the neurological 

disorder. 

● To identify specific biomarkers associated with the disease state, potentially serving as 

therapeutic targets or diagnostic tool.
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3 CHAPTER 3: Materials and Methods 

In this study, we performed a machine learning-based analysis on metagenomic samples 

from patients diagnosed with major depressive disorder. The analysis involved several critical 

steps to derive meaningful insights from the data. 

First, we retrieved and preprocessed the metagenomic data to ensure its quality and 

integrity. Following this, we carried out metagenomic assembly to reconstruct the genetic material 

present in the samples. Subsequently, we conducted Prokaryotic Gene Recognition and Translation 

Initiation Site Identification to obtain genetic and protein data from the metagenomic samples. 

Feature extraction was then performed to simplify and distill key information from the complex 

metagenomic data. Finally, we developed machine learning models to classify normal and diseased 

states using the metagenomic samples.  
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Figure 3.1 Integrated workflow: Gut microbiome data preprocessing and assembly coupled with 

machine learning model development and performance evaluation 

This comprehensive methodology shown in Figure 3.1 enabled us to achieve a deeper 

understanding of the microbial community and the functional potential encoded within the 

metagenomic data from patients with neurological disorders. 

3.1 Data Retrieval 

The gut microbial data of normal vs. patients with major depressive disorder was retrieved 

through the NCBI SRA database[78]. A total of 74 paired samples, out of which 36 patients, gut 

microbiome data was retrieved, and 39 control samples were obtained. 
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The metagenomic data discussed above is available in the Sequence Read Archive (SRA) 

under the BioProject accession number PRJNA762199[79]. To retrieve this data, we used the 

SRAToolkit (v3.0.0) (https://github.com/ncbi/sra-tools), specifically employing the "prefetch" 

command. After obtaining the data, we utilized the "fastq-dump" command to convert the paired-

end SRA samples into the FASTQ format for compatibility. Finally, we compressed these FASTQ 

paired-end files using the gzip command. 

3.2 Data Preprocessing 

Data preprocessing is an essential phase in the data analysis pipeline, ensuring the quality 

and integrity of the data. This step is vital for achieving accurate and meaningful analysis, 

ultimately resulting in more robust and reliable outcomes. 

3.2.1 Quality Check 

To begin, the quality of the raw sequencing data was evaluated using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), a tool designed for visual quality 

control[80]. We executed the “fastqc” command to produce quality reports for the paired-end files. 

Upon reviewing these reports, it was evident that the data needed preprocessing to eliminate 

artifacts such as adapters, duplicated reads, and very short reads. To address these issues, we used 

the fastp tool, applying specific parameters: “-D” to remove duplicated reads, “--

detect_adapter_for_pe” to remove adapters, and “--length_required 150” to set a minimum read 

length of 100 bases. These preprocessing steps were essential to enhance the quality of the 

sequencing reads and prepare them for further analysis. 

 

https://github.com/ncbi/sra-tools
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3.2.2 Host Reads Removal 

Metagenomic samples are often contaminated with host reads, such as human DNA in gut 

metagenomes, which can lead to false-positive results. To prevent this, it is crucial to remove these 

host reads before conducting analyses. This was accomplished using the BBDuk script from the 

BBMap suite[81]. BBDuk used the human genome (GRCh38) as a reference to identify and 

eliminate host-derived reads from the metagenomic data. After this preprocessing step, the quality 

of the cleaned data was reassessed with FastQC to confirm its suitability for further analysis 

3.3 Metagenome Assembly 

De novo metagenome assembly involves reconstructing contiguous sequences (contigs) 

from short reads generated by next-generation sequencing. For this task, metaSPAdes - v3.15.3 

was employed via the KBase online server (https://www.kbase.us). The assembly was performed 

using the default parameters provided by metaSPAdes[82]. 

3.4 Quality Assessment (QUAST) 

The Quality Assessment Tool for Genome Assemblies (QUAST) was used to evaluate the 

quality of the metagenome assembly. The "quast.py" script from QUAST (v5.2.0) was utilized to 

generate detailed quality assessment reports[83]. These reports provided important statistics for 

each sample, including the distribution of contigs, the size of the largest contig, N50 values, and 

the total assembly length, among other metrics. 

https://www.kbase.us/
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3.5 Prokaryotic Gene Recognition and Translation Initiation Site Identification 

(PRODIGAL) 

Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm) for prokaryotic 

gene recognition and translation initiation site (TIS) identification in my microbial genome 

samples was used [84]. 

This tool aided in microbial genome annotation and metagenomics analysis and was 

included in accurately identifying genes, proteins, and nucleotides in prokaryotic genomes and 

microbiome samples.  

3.6 Feature Extraction 

Metagenomic samples contain DNA from multiple microbial species, complicating their 

direct use in machine learning (ML) models. To address this, we performed feature extraction 

using Python with the protpy library, supported by biopython, numpy, and pandas, for data 

normalization and dataframe creation [85]. 

We loaded preprocessed data into two input files: control (normal state) and case (diseased 

state), with the control group serving as the reference. Feature extraction reduced the data's 

dimensionality, making it suitable for robust ML model training. 

Feature selection was then carried out to identify significant features and their associations 

with metadata classes. This step enhanced the accuracy and interpretability of the ML models by 

focusing on the most relevant features, thereby providing valuable insights into the biological 

processes underlying the conditions studied.  
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3.7 Feature Preprocessing 

The initial phase of the data analysis involved rigorous data cleaning to identify and correct 

errors within the dataset. These steps were essential to ensure the integrity and reliability of the 

dataset before further analysis. 

Firstly, a technique was employed to transform the dataset into a suitable format for 

analysis, which was normalization. Normalization involved scaling the data to a uniform range, 

typically between 0 and 1. This process ensured that all features contributed equally to the analysis, 

preventing any single feature from dominating due to its scale. 

Ensuring high-quality data through these preprocessing steps was crucial for achieving 

better model accuracy and reducing the risks of overfitting and underfitting. Proper data 

preprocessing also significantly decreased the computational resources required for training 

models, thereby making the analytical process more efficient [86].  

3.8 Decision Tree and Random Forest 

Feature selection is a critical step in the modeling process, and utilizing decision trees for 

this purpose is particularly effective due to their inherent ability to evaluate the importance of 

features during model construction. To identify the most important features, we employed decision 

trees that recursively split the dataset based on feature values. At each node, the algorithm selected 

the feature that provided the best split according to a chosen criterion, which in this study was 

information gain. Features that appeared higher in the tree were considered more important, as 

they significantly contributed to reducing uncertainty in the target variable. Information gain 

equation used for choosing important features is given below: 
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\[ \text{IG}(T, X) = H(T) - \sum_{v \in \text{Values}(X)} \frac{|T_v|}{|T|} H(T_v) \] 

Where: 

- \( T \) is the set of all instances. 

- \( X \) is the feature on which the split is being made. 

- \( H(T) \) is the entropy of the original set \( T \). 

- \( \text{Values}(X) \) are the possible values of feature \( X \). 

- \( T_v \) is the subset of \( T \) for which feature \( X \) has value \( v \). 

- \( H(T_v) \) is the entropy of the subset \( T_v \). 

- \( \frac{|T_v|}{|T|} \) is the proportion of instances in subset \( T_v \) relative to the original set 

\( T \). 

Also, the formula for entropy calculation is: 

The entropy \( H(T) \) for a set \( T \) with binary classification is calculated as: 

\[ H(T) = - p_+ \log_2(p_+) - p_- \log_2(p_-) \] 

Where: 

- \( p_+ \) is the proportion of positive instances in \( T \). 

- \( p_- \) is the proportion of negative instances in \( T \). 
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Information Gain is the reduction in entropy or impurity after the dataset is split on a 

feature. A higher information gain indicates a more significant reduction in uncertainty, making 

the feature a good choice for splitting. 

In addition to an individual decision tree, we incorporated Random Forests to enhance 

feature selection. Random Forests, which aggregate multiple decision trees, naturally rank features 

based on their importance during the tree-building process. This approach allowed for the selection 

of the most significant features without requiring a separate feature selection step. 

Random Forest (RF) is primarily known as an ensemble method to enhance predictive 

performance, but it also shows promise for feature selection, particularly in high-dimensional 

datasets. Studies have demonstrated that RF can effectively identify key features due to its ability 

to handle large data sets and resist overfitting. Additionally, RF can be integrated into feature 

selection frameworks, especially when combined with Wrapper techniques, improving both model 

accuracy and feature interpretability[87]. 

3.8.1 Recursive Feature Elimination 

Once feature importance scores were obtained from the Random Forest model, Recursive 

Feature Elimination (RFE) was applied to further refine feature selection. RFE involved 

recursively removing the least important features and building models on the remaining subset of 

features. This iterative process continued until the optimal set of features that maximized the 

model's performance was identified. 
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By employing decision trees and Random Forests for feature selection, we effectively 

identified and ranked the most important features in the dataset. The integration of Recursive 

Feature Elimination further refined this selection, ensuring that the final set of features used in the 

model provided the best possible performance. This methodology facilitated a streamlined and 

efficient feature selection process, ultimately contributing to the robustness and accuracy of the 

model. 

3.8.2 Cost Complexity Pruning 

After constructing a decision tree, pruning techniques were applied to remove branches 

with minimal significance. This process not only simplified the model but also helped identify the 

most relevant features that contributed to the final predictions 

Cost Complexity Pruning (CCP) was utilized to prevent overfitting by optimizing the size 

of the decision tree. The objective of CCP is to find the subtree that minimizes the sum of the 

impurity of its leaves and a penalty term proportional to the number of leaves. The following 

function was used: 

\[ R_\alpha(T) = R(T) + \alpha \cdot |T| \] 

Where: 

- \( R(T) \) represents the impurity (e.g., Gini index) of the entire tree. 

- \( |T| \) denotes the number of leaves in the tree. 

- \( \alpha \) is a hyperparameter that controls the tradeoff between accuracy and tree size.  
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3.9 Grey Area Removal 

The Human Genome Project revealed that 99.9% of human genomes are identical across 

all individuals, while the Human Microbiome Project highlighted significant genetic differences 

within our microbiomes [88]. To enhance the distinction between case and control groups, we 

decided to remove the common amino acid regions that are conserved between both groups. By 

excluding these grey regions which was all the instances with 90% or less similarity, we aimed to 

create a dataset with a higher range of differences between case and control indexes, thus 

improving the analytical clarity and potential for discovering meaningful insights.  

3.10 Similarity Index Calculation 

To effectively remove the grey area between case and control samples, we employed the 

cosine similarity method to calculate the similarity index between protein abundance profiles. The 

process involved the following steps: 

We calculated the similarity of each case to each control in batches of 25,000 to manage 

the computational load efficiently. The total number of comparisons made was 14,579,813, 

covering all possible pairings between case and control samples. 

Using the cosine similarity formula, the similarity index for each pair was determined as 

follows: 

\[ 

\text{similarity}(P, Q) = \cos(\theta) = \frac{P \cdot Q}{\|P\| \|Q\|} 
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\] 

This similarity index provided a measure of how similar each case was to each control 

based on their protein abundance profiles. The resulting similarity indices were then used to 

construct a similarity matrix. 

To focus on the most distinctive profiles, we converted the similarity matrix into a 

dissimilarity matrix by subtracting each entry from 1: 

\[ 

\text{dissimilarity}(P, Q) = 1 - \text{similarity}(P, Q) 

\] 

From the total dissimilarity data, we identified and retained only the lowest similarity 

indices, specifically the top 10% of these indices, representing the least similar pairs. This 

approach allowed us to effectively remove the grey area, or the regions of high similarity, between 

the case and control samples. By excluding these regions, we enhanced the distinction between the 

two groups, providing a clearer dataset for subsequent analysis. 

By calculating these indices in large batches, we efficiently handled the extensive dataset 

while maintaining the accuracy and reliability of the similarity and dissimilarity measures. This 

method ensured that the remaining data highlighted the most significant differences between case 

and control samples, facilitating more robust and insightful analysis. 
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3.11 Model Building 

Machine learning techniques were employed for predictive modeling to accurately classify 

cases and controls. By leveraging different algorithms, the model was trained on the preprocessed 

dataset, which included features such as "moreaubroto_autocorrelation," 

"sequence_order_coupling_number," "conjoint_triad," "ctd_composition," "ctd_transition," and 

"ctd_distribution." These significant features enabled the identification of crucial patterns and 

relationships within the data, improving the accuracy and robustness of the predictions. This 

approach facilitated a data-driven understanding of the underlying patterns and relationships 

within the dataset, enhancing the overall effectiveness of the predictive model. 

3.11.1 Data Splitting and Evaluation 

Data manipulation was conducted to clearly define the classes of case and control, with 

case labeled as 1 and control as 0. The dataset was then randomly split into training and test sets, 

allocating 80% of the samples for training and 20% for testing. The training set was utilized to 

build the classification model, while the held-out test set was reserved for evaluating the model's 

performance. 

To assess the performance of the model, several metrics were considered, including 

accuracy, precision, recall, F1 score, sensitivity, and specificity. These metrics provided a 

comprehensive evaluation of the model's predictive capabilities. The equations are given as below: 

• Precision: Measures the accuracy of positive predictions. 

Precision = TPTP+FP\text{Precision} = \frac{TP}{TP + FP}Precision=TP+FPTP 
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Where: 

TPTPTP = True Positives 

FPFPFP = False Positives 

• Sensitivity: Measures the ability to find all positive samples. 

Recall = TPTP+FN\text{Recall} = \frac{TP}{TP + FN}Recall=TP+FNTP 

Where: 

TPTPTP = True Positives 

FNFNFN = False Negatives 

• F1 Score: The harmonic mean of precision and recall, providing a single metric for model 

performance. 

F1 Score=2×Precision×RecallPrecision+Recall\text{F1 Score} = 2 \times 

\frac{\text{Precision} \times \text{Recall}}{\text{Precision} + 

\text{Recall}}F1 Score=2×Precision+RecallPrecision×Recall 

• Sensitivity: Measures the ability to correctly identify negative samples. 

Specificity=TNTN+FP\text{Specificity} = \frac{TN}{TN + 

FP}Specificity=TN+FPTN 

Where: 

TNTNTN = True Negatives 

FPFPFP = False Positives 

 Furthermore, the model was interpreted to identify the most important predictive 

exposures, ensuring that the most relevant features were highlighted and understood. This 
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approach facilitated a thorough understanding of the model's strengths and potential areas for 

improvement, contributing to the overall robustness and reliability of the classification model. 

3.11.2 Artificial Neural Networks (ANN) 

Artificial Neural Network (ANN) was employed, consisting of four layers with the following 

structure: 

1. Layer 1: 614 * 1024 neurons, with a ReLU activation function. 

2. Layer 2: 1024 * 512 neurons, with a ReLU activation function. 

3. Layer 3: 512 * 256 neurons, with a ReLU activation function. 

4. Layer 4: 256 * 1 neuron, with a Sigmoid activation function. 

The ANN's parameters are represented by the weights associated with each layer. These 

weights were optimized using the Adam optimizer, which leverages gradient descent to minimize 

the loss function. In this study, Binary Cross-Entropy (BCE) loss was utilized as the loss function, 

which is appropriate for binary classification tasks. 

To enhance generalization and mitigate the risk of overfitting, a Dropout layer with a 20% 

probability was applied between the third and fourth layers. This technique helps prevent the model 

from becoming overly reliant on specific neurons during training, thereby improving its ability to 

generalize to unseen data. 

3.11.3 Support Vector Machines (SVM) 

Support Vector Machine (SVM) model was employed, with hyperparameters optimized 

using GridSearchCV. The optimization focused on parameters such as the regularization parameter 



Chapter 3: Materials and Methods 

63 

 

(`C`) where a value of 10 was selected for the regularization parameter, which controls the trade-

off between maximizing the margin and minimizing classification errors. This value was found to 

provide the best balance for the given dataset. 

In addition to that, a kernel coefficient was used where the `gamma` parameter was set to 

'auto,' allowing the model to automatically determine the influence of individual data points based 

on the inverse of the number of features. This setting was chosen to adjust the decision boundary 

appropriately. Moreover, The polynomial kernel was tested up to the fifth degree, allowing the 

model to consider more complex, non-linear relationships in the data. This higher degree helps 

capture intricate patterns but also increases the risk of overfitting. 

3.11.4 K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) algorithm was utilized, with performance optimization 

conducted through GridSearchCV. The optimization focused on three primary hyperparameters, 

which included number of neighbors (`n_neighbors`), which determined that utilizing 3 neighbors 

provided the optimal balance between model complexity and accuracy. Also, the distance metric 

(`p`) was used as the Euclidean distance (`p=2`) was selected as the most effective metric for the 

classification task. Lastly, a uniform weighting scheme was chosen, ensuring that each neighbor 

had an equal influence on the classification decision. 

3.11.5 Random Forest 

A Random Forest classifier was employed with hyperparameters optimized using 

GridSearchCV to enhance the model's performance. The optimization process focused on several 

key parameters. The maximum depth of the trees (`max_depth`) was set to 20, limiting how deep 
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the trees could grow. This measure helps control the model's complexity and reduces the risk of 

overfitting by preventing the trees from becoming too complex.  

Additionally, the minimum number of samples per leaf (`min_samples_leaf`) was set to 2, 

ensuring that each leaf (or end node) contains at least 2 data points. This prevents the model from 

creating overly specific rules that may not generalize well to new data. The minimum number of 

samples required to split an internal node (`min_samples_split`) was set to 5, which helps control 

the model's growth by ensuring that splits are made only when there is sufficient data, thereby 

reducing the likelihood of overfitting. Finally, the number of trees in the forest (`n_estimators`) 

was set to 300. A larger number of trees generally improves model stability and accuracy by 

averaging the predictions of multiple trees. 

3.11.6 eXtreme Gradient Boosting (XGBOOST) 

An XGBoost classifier was utilized with specific hyperparameters tailored for optimal 

performance in a binary classification task. The classifier was configured with the settings 

including the `binary:logistic` objective function, which is suitable for binary classification, where 

the output is a probability that is mapped to either class using a logistic function. 

Moreover, the learning rate was set to 0.2, controlling the step size at each iteration while 

moving towards a minimum of the loss function. This value was selected to balance convergence 

speed and the risk of overshooting the optimal solution. Also, the maximum depth of each tree was 

set to 7, limiting the number of nodes in the tree. This helps control the model complexity and 

prevent overfitting by avoiding overly deep trees. 
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Early stopping was also enabled with a patience of 15 rounds. Furthermore, the number of 

trees in the ensemble was set to 300, which helps in improving model performance by combining 

the predictions of multiple trees. 

3.12 Differentially Abundant Proteins Retrieval 

To identify differentially abundant proteins (DAPs) based on the lowest similarity index, 

we utilized cosine similarity to measure the dissimilarity between protein abundance profiles 

across different conditions. The methodology for this process is as follows: 

Each protein was represented as a vector, where each element corresponded to the 

abundance value in a particular condition. For instance, if there were four conditions, the protein 

abundance vector would be represented as: 

\[ 

P = [a_1, a_2, a_3, a_4] 

\] 

where \( a_i \) is the abundance of the protein in condition \( i \). 

Then, we calculated the cosine similarity between all pairs of proteins using the formula: 

\[ 

\text{similarity}(P, Q) = \cos(\theta) = \frac{P \cdot Q}{\|P\| \|Q\|} 

\] 

This resulted in a similarity matrix, where each entry represented the similarity between 

two proteins. The similarity matrix was then converted into a dissimilarity matrix by subtracting 

each entry from 1: 
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\[ 

\text{dissimilarity}(P, Q) = 1 - \text{similarity}(P, Q) 

\] 

For each protein, the average dissimilarity to all other proteins was calculated as follows: 

\[ 

\text{avg\_dissimilarity}(P) = \frac{1}{n} \sum_{i=1}^n \text{dissimilarity}(P, Q_i) 

\] 

where \( n \) is the total number of proteins and \( Q_i \) represents the other proteins. The proteins 

were then sorted in descending order based on their average dissimilarity values. 

To enhance the robustness of the selection process, we kept only the top 10% of proteins 

based on similarity, specifically those within the 90th percentile. This approach ensured that the 

selected DAPs were those with the most distinct abundance profiles. 

The top \( k \) proteins with the highest average dissimilarity were selected as the 

differentially abundant proteins. The rationale behind this approach is that proteins with the lowest 

similarity to most other proteins are likely to have unique abundance profiles and thus be 

differentially abundant across conditions. By using cosine similarity, the focus was on the shape 

of the abundance profiles rather than their magnitude, making the method more robust to noise 

and outliers. 

To determine the specific value of \( k \), we selected an "elbow" in the sorted dissimilarity 

scores, where the scores begin to plateau, indicating a natural cutoff point for identifying the most 

differentially abundant proteins. This approach ensured that the selected DAPs were those with 
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the most distinct abundance profiles, providing valuable insights into the variations across different 

conditions.  

3.13 Model Building on Differentially Abundant Proteins (DAPs) 

After identifying the differentially abundant proteins (DAPs), the next step involved 

choosing a suitable machine learning algorithm to classify samples based on these proteins. Given 

the dataset characteristics and the research objectives, we considered several algorithms including 

Artificial Neural Network (ANN) and support vector machines (SVM).  

To ensure robust model development and validation, the dataset was split into training and 

validation sets. The training set was used to train the selected model, allowing the algorithm to 

learn the underlying patterns and relationships within the data. To prevent overfitting and to 

evaluate the model's generalizability, the model's performance was validated on the held-out 

validation set. This process involved tuning hyperparameters and assessing various performance 

metrics such as accuracy, precision, recall, F1 score, sensitivity, and specificity. By iterating 

through this training and validation cycle, we aimed to develop a model that not only accurately 

classified the samples but also maintained strong generalization capabilities, ensuring its reliability 

for future predictions. 

3.13.1 Artificial Neural Networks 

To classify samples based on differentially abundant proteins (DAPs) between case and 

control groups, we employed Artificial Neural Networks (ANN) due to their ability to model 

complex, non-linear relationships within the data. For this study, the ANN was designed to include 

multiple hidden layers, each with a sufficient number of neurons to capture the intricate 
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dependencies between the features. The network was trained using the identified DAPs, which 

included features such as "moreaubroto_autocorrelation," "sequence_order_coupling_number," 

"conjoint_triad," "ctd_composition," "ctd_transition," and "ctd_distribution," with both case and 

control samples equally represented to ensure balanced learning. 

During training, we utilized techniques such as dropout and regularization to prevent 

overfitting and enhance the model's generalizability. The ANN's performance was evaluated using 

metrics like accuracy, precision, recall, sensitivity, and specificity, which confirmed its 

effectiveness in distinguishing between case and control groups based on their protein abundance 

profiles. This approach provided a powerful and flexible tool for accurate classification, 

contributing to a deeper understanding of the biological differences captured by the DAPs. By 

leveraging these advanced ANN techniques, we achieved a robust model capable of delivering 

insightful predictions and enhancing our understanding of the underlying biological processes. 

3.13.2 Support Vector Machine 

To classify samples based on differentially abundant proteins (DAPs) between case and 

control groups, we employed Support Vector Machines (SVM) due to their effectiveness in high-

dimensional spaces and their capability to handle non-linear classification problems. For this 

study, we utilized a non-linear SVM with a polynomial kernel, allowing the model to capture 

intricate patterns and relationships within the data. The features used for classification included 

"moreaubroto_autocorrelation," "sequence_order_coupling_number," "conjoint_triad," 

"ctd_composition," "ctd_transition," and "ctd_distribution," with both case and control samples 

equally represented to ensure balanced learning. 
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The SVM model was trained on the identified DAPs, and hyperparameters were carefully 

tuned to optimize performance. The polynomial kernel provided the flexibility needed to map the 

data into higher dimensions, enhancing the SVM's ability to find the optimal hyperplane that 

maximizes the margin between the case and control classes. The model's performance was 

evaluated using metrics such as accuracy, precision, recall, F1 score, sensitivity, and specificity, 

which demonstrated its effectiveness in distinguishing between case and control groups based on 

their protein abundance profiles. This approach provided a robust and precise tool for accurate 

classification, contributing to a deeper understanding of the biological differences captured by the 

DAPs. By leveraging the strengths of SVM, we achieved a highly reliable model capable of 

delivering insightful predictions and improving our comprehension of the underlying biological 

processes. 

3.14 Biomarker Identification 

From our earlier analysis using cosine similarity, we identified 28 differentially abundant 

proteins (DAPs). These DAPs were initially divided into two categories: classified and 

unclassified. The classified DAPs underwent further investigation, resulting in the selection of 11 

DAPs for detailed coexpression analysis. This analysis was crucial in understanding the 

interactions and regulatory mechanisms these proteins share across different organisms. This 

workflow highlighted the systematic approach taken to narrow down the set of DAPs and perform 

deeper analysis, allowing for a better understanding of the protein interactions and their 

implications in the biological processes under investigation. 

3.14.1 Coexpression Analysis 
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For the coexpression analysis, we used the STRING database [89], a powerful tool for 

studying protein-protein interactions and coexpression across multiple organisms. The input data 

consisted of 11 proteins, which had been classified from the original set of 28 differentially 

abundant proteins (DAPs) retrieved earlier using cosine similarity analysis. These 11 proteins were 

selected for further analysis due to their significant involvement in key biological processes and 

their availability of functional annotations. 

The STRING database was employed to explore potential coexpression patterns of these 

proteins across various species. By inputting the protein identifiers into the database, we were able 

to retrieve coexpression data, which indicated conserved relationships between the proteins across 

diverse organisms. 

3.14.2 Network Construction 

To investigate the protein-protein interactions and coexpression patterns of the 11 classified 

differentially abundant proteins (DAPs), we utilized the STRING database. The input data 

consisted of these 11 proteins, which had been previously classified based on their known 

structures. By submitting the protein identifiers into the STRING database, we aimed to generate 

a comprehensive interaction network. STRING's algorithm was used to study the coexpression, 

direct physical interactions, and functional associations among the proteins based on experimental 

data, curated knowledge, and computational predictions. 
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4 CHAPTER 4: Results and Discussion 

4.1 Data Preprocessing 

This data elucidates the impact of preprocessing steps on read count and variability in 

metagenomic samples. For the control group, the total read count was 84.47 million reads before 

preprocessing. After the removal of low-quality reads, adapters, and duplicate reads, the total read 

count decreased to 56.12 million reads. The mean read count before preprocessing (raw) was 42.37 

Mbp, which was reduced to 27.44 Mbp after preprocessing (clean). The standard deviation for the 

control group's read count increased from 4.6 Mbp before preprocessing to 6.3 Mbp after 

preprocessing. 

In the case group, as shown in Table 4.1, the initial total read count was significantly 

higher, with 1.51 billion reads before preprocessing, which reduced to 990.32 million reads after 

preprocessing. The mean read count before preprocessing was 43.06 Mbp, decreasing to 29.12 

Mbp post-preprocessing. The standard deviation for the case group's read count decreased from 

4.5 Mbp before preprocessing to 3.9 Mbp after preprocessing. 

Finally, in the Human Genome (HG) trimmed dataset, the read count remained unchanged. 

This indicates that the preprocessing steps were effective in removing contaminants and redundant 

data, thereby enhancing the quality and reliability of the metagenomic dataset for subsequent 

analyses. 
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Table 4.1 Comparison of data metrics for control and case samples before and after 

preprocessing 

 Control Case 

Raw Clean Raw Clean 

Mean 42.37Mbp 27.44Mbp 43.06Mbp 29.12Mbp 

Mode 34.34 6.23 33.88 21.28 

Standard Deviation 4.6 6.3 4.5 3.9 

Total Read Count 84.47 million 56.12 million 1.51 billion 990.32 

million 

4.2 Metagenome Assembly and Quality Assessment (QUAST) 

Metagenomes were de novo assembled and their qualities were evaluated using QUAST. 

For this, comparisons were performed within control and case groups, and between these groups. 

Within both control and case groups, the mean number of contigs was relatively higher in cases in 

contrast with the controls (Control: 7,178,910; Case: 7,400,903). Interestingly, the mean largest 
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contig size and the mean N50 value, indicators of assembly contiguity, showed relatively consistent 

values across all groups, suggesting similar levels of contiguity regardless of sample status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (A) Nx plot showing the distribution of contig lengths across various control 

samples. (B) Cumulative GC content of all control samples (C) Cumulative length illustrating 

the cumulative contig length distribution for each sample. (D) Coverage histogram depicting 

the total length of contigs at different coverage depths for each sample 



Chapter 4: Results and Discussion 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 4.1 and Figure 4.2 Within both the control and case groups, the mean 

number of proteins was higher in the case samples compared to the control samples (Control: 

7,178,910; Case: 7,400,903). This increase in protein count suggests higher microbial activity or 

Figure 4.2 (A) Nx plot showing the distribution of contig lengths across various control 

samples. (B) Cumulative GC content of all control samples (C) Cumulative length illustrating 

the cumulative contig length distribution for each sample. (D) Coverage histogram depicting 

the total length of contigs at different coverage depths for each sample 
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diversity in the case samples. The GC content and Nx plots indicated similar levels of contiguity 

regardless of sample status. The cumulative plots showed a significant portion of the genome 

covered by long contigs, and the coverage histograms suggested well-controlled sequencing 

processes.  

 

Figure 4.3 (A) Box plots showing the percentage of GC content in the genomic sequences of 

Control and Case groups, with the Case group displaying a slightly wider range and median. (B) 

Line graph illustrating the Nx values across different contig lengths for both Control and Case 
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groups, indicating variability in sequence assembly quality. (C)  A plot depicting the cumulative 

length of contigs as a function of the number of contigs for both groups, demonstrating a similar 

pattern and total length achieved. (B) Histogram displaying the total length of sequences at 

varying coverage depths (x) for Control and Case groups, with both groups showing comparable 

distribution peaks around 20x coverage. 

4.3 Prokaryotic Gene Recognition and Translation Initiation Site Identification 

(PRODIGAL) 

We initially obtained a comprehensive dataset comprising proteins, nucleotides, and genes. 

Proteins were chosen for further analysis due to their direct involvement in microbial metabolic 

activities and their ability to provide more immediate and functional insights into the physiological 

differences between the gut microbiomes of the case and control groups. Moreover, proteins often 

exhibit more pronounced changes in abundance and activity levels in response to disease 

conditions compared to nucleotides and genes. As shown in Figure 4.4, the protein count for the 

control group was 7,178,910, while the case group had a protein count of 7,400,903. These 

substantial datasets allowed for a robust analysis of differentially abundant proteins, enhancing the 

reliability of our findings in understanding the gut microbiome's role in health and disease. 
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Figure 4.4 Comparison of protein counts between control and case groups, showing higher 

levels in the case group. 

4.4 Feature Extraction and Preprocessing 

The extracted features significantly enhanced the performance of downstream ML models 

compared to using raw sequencing data directly. Initially, we computed several types of 

descriptors, resulting in a total of 1,586 features. These included composition descriptors (amino 

acid composition and dipeptide composition), autocorrelation descriptors (MoreauBroto, Moran, 

and Geary autocorrelation), conjoint triad, sequence order descriptors (sequence order coupling 

number (SOCN) and quasi-sequence order (QSO)), hydrophobicity descriptors, and isoelectric 

points. 

To refine our feature set, we employed a Random Forest algorithm to shortlist features based 

on information gain as shown in Figure 4.5. This step helped identify the most informative



Chapter 4: Results and Discussion 

78 

 

features, allowing us to exclude less relevant descriptors such as amino acid composition, dipeptide 

composition tripeptide composition, pseudo amino acid composition, amphiphilic pseudo amino 

acid composition, Moran autocorrelation, Geary autocorrelation, and quasi-sequence order. The 

remaining descriptors included MoreauBroto autocorrelation, sequence order coupling number, 

conjoint triad, CTD composition, CTD transition, and CTD distribution. This refinement process 

reduced the feature set to a total of 634 features, ensuring that the selected features captured the 

most relevant biological signals.

4.4.1 Cost Complexity Pruning 

To further optimize our model, we used Cost Complexity Pruning (CCP) to manage the 

complexity of the decision trees. By adjusting the \(\alpha\) parameter, we controlled the tradeoff 

between model accuracy and generalization capability. A higher \(\alpha\) value resulted in a 

simpler tree with fewer leaves, while a lower \(\alpha\) value allowed for a more complex tree with 

more leaves. This tradeoff helped achieve a balance between accuracy and generalization, 

effectively managing overfitting.  

Cost Complexity Pruning proved to be an effective technique for refining our decision tree 

models. By pruning the tree to an optimal size, CCP maintained a balance between accuracy and 

tree size, ensuring that the model remained both accurate and generalizable. This technique was 

integral to our methodology, enhancing the predictive performance and robustness of our models.
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Figure 4.5 Distribution of selected features by descriptor type after Random Forest selection, 

highlighting prominence of Conjoint Triad and MoreauBroto Autocorrelation descriptors. 

4.5 Model Building 

For predictive modeling between case (diseased) and control (normal) groups, five distinct 

machine learning models were constructed. These models were developed to classify the samples 

based on the extracted and refined features, utilizing a range of machine learning algorithms to 

ensure accuracy and robustness in predictions. 

As mentioned before, several machine learning models were employed to classify subjects into 

two categories: diseased (case) and normal (control). The models included an Artificial Neural 
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Network (ANN), Support Vector Machine (SVM) with a polynomial kernel, K-Nearest Neighbors 

(KNN), Random Forest, and XGBoost. The goal was to evaluate the efficacy of these models in 

distinguishing between the two groups, assessing their performance based on various metrics such 

as accuracy, precision, recall, F1-score, sensitivity, and specificity. 

The Artificial Neural Network (ANN) was designed to capture the complex relationships 

between input features and the classification task. After extensive training, at epoch 300, the ANN 

achieved a training accuracy of 82.31% and a validation accuracy of 54.36%. The ANN's 

performance was further scrutinized by evaluating its precision, recall, and F1-scores across both 

classes. These metrics provided a comprehensive view of the model's ability to correctly classify 

both diseased and control subjects, highlighting its overall performance in this binary classification 

task. 

The Support Vector Machine (SVM), which utilized a polynomial kernel up to the fifth 

order, was another model employed in this study. The SVM achieved an accuracy of 55.12%, 

indicating its capability in separating the two classes. The SVM model's performance metrics 

suggested a moderate ability to correctly identify both cases and controls, reflecting its 

effectiveness in this classification problem. 

For the K-Nearest Neighbors (KNN) model, GridSearchCV was employed to identify the 

optimal parameters, including the number of neighbors (k=3) and the distance metric. The KNN 

model, characterized by its simplicity and interpretability, achieved an accuracy of 53.44%. 

Despite its lower accuracy compared to some other models, KNN provided valuable insights into 

the local structure of the data and its influence on classification performance. 
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The Random Forest model, known for its robustness and ability to handle high-dimensional 

data, was also evaluated. After tuning hyperparameters such as the maximum depth, minimum 

samples per leaf, and the number of estimators, the Random Forest model achieved an accuracy 

of 55.01%. This performance metric, along with its precision, recall, and F1-scores, demonstrated 

the model's effectiveness in handling complex datasets while maintaining a balanced performance 

across both classes. 

Lastly, the XGBoost model was trained on the same dataset, achieving an accuracy of 

53.90%. XGBoost, a gradient boosting technique, is well-regarded for its efficiency and 

performance in classification tasks. The model’s metrics revealed a balanced performance, albeit 

with a slight variation in sensitivity and specificity. 

To provide a comprehensive comparison of these models, the table below presents the key 

performance metrics, including accuracy, precision, recall, F1-score, sensitivity, and specificity 

for each model. This comparative analysis is crucial for understanding the strengths and limitations 

of each model in the context of binary classification for the given dataset, thereby informing the 

selection of the most appropriate model for this classification task. 

The below-given set of images displays the confusion matrices for different machine 

learning models used to classify between diseased (case) and normal (control) groups.  
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Table 4.1 The comparative analysis of machine learning model performance metrics 

Each confusion matrix in the Figure 4.7 shows the performance of the model in terms of 

True Positives (correctly identified cases), True Negatives (correctly identified controls), False 

Positives (controls incorrectly identified as cases), and False Negatives (cases incorrectly 

identified as controls). 

Table 4.2 presents a comprehensive comparison of the performance metrics for five different 

machine learning models—Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), 

Random Forest, Support Vector Machine (SVM), and XGBoost. Key metrics such as accuracy, 

precision, recall, F1-score, sensitivity, and specificity are evaluated to assess each model's 

effectiveness in distinguishing between diseased (case) and normal (control) groups 

Metric ANN KNN Random Forest SVM XGBoost 

Accuracy 0.5436 0.5344 0.5501 0.5521 0.539 

Precision 

(Control) 

0.54 0.53 0.55 0.55 0.54 

Precision 

(Case) 

0.54 0.53 0.55 0.55 0.54 

F1-Score 

(Control) 

0.54 0.53 0.56 0.54 0.53 

Figure 4.6 Confusion matrices for classification models (A: ANN, B: SVM, C: Random Forest, 

D: XGBoost, E: KNN): These matrices display the performance of the models in classifying 

diseased (case) vs. normal (control) groups, showing the distribution of true positives, true 

negatives, false positives, and false negatives. 
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F1-Score 

(Case) 

0.54 0.54 0.54 0.56 0.55 

Sensitivity 

(Recall) 

0.5464 0.5401 0.5372 0.575 0.554 

Specificity 0.5409 0.5288 0.5629 0.5292 0.524 

The Table 4.2 compares the performance of five different machine learning models in 

classifying case (diseased) and control (normal) samples based on various metrics such as 

accuracy, precision, recall, F1-score, sensitivity, and specificity. The Support Vector Machine 

(SVM) model achieved the highest accuracy at 55.21%, while the Random Forest model showed 

the highest specificity at 56.29%. Each model demonstrated balanced performance with slight 

variations in precision, recall, and F1-scores across the two classes. These results provide insights 

into the effectiveness of each model in distinguishing between the case and control groups. 

4.6 Differentially Abundant Proteins Retrieval  

The retrieval of DAPs was performed using advanced feature extraction and selection 

techniques, ensuring that the most significant proteins contributing to the distinction between the 

two groups were identified. 

Table 4.3 Comparative performance metrics for DAP retrieval using ANN and SVM 

presents a side-by-side comparison of the performance metrics for Artificial Neural Networks 

(ANN) and Support Vector Machines (SVM) in the retrieval of differentially abundant proteins 

(DAPs) between diseased (case) and normal (control) groups. Key metrics such as accuracy, 



Chapter 4: Results and Discussion 

85 

 

precision, recall, F1-score, sensitivity, and specificity are provided to highlight the effectiveness 

of each model in distinguishing significant proteins associated with disease states. 

Metric ANN SVM 

Accuracy 0.88 0.87 

Precision (Class 0) 0.8 1 

Precision (Class 1) 1 0.75 

Recall (Class 0) 1 0.75 

Recall (Class 1) 0.67 1 

F1-Score (Class 0) 0.89 0.86 

F1-Score (Class 1) 0.8 0.86 

Sensitivity (Recall) 0.6667 1 

Specificity 1 0.75 

As shown in the Table 4.3 The ANN model was specifically applied to the retrieval of 

DAPs, achieving a perfect training accuracy of 100% and a validation accuracy of 85.71%. The 

model demonstrated a high level of precision and recall for control samples, with a specificity of 

100%. However, its sensitivity for case samples was moderate at 66.67%, indicating some 

difficulty in correctly identifying all diseased samples. Despite this, the overall high accuracy and 

balanced performance across both classes highlight the robustness of the ANN model in 

identifying significant proteins that distinguish between the two groups. 

Similarly, the SVM model was employed to classify DAPs, achieving a validation accuracy 

of 85.71%, mirroring the performance of the ANN model. The SVM model excelled in precision 
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for control samples, achieving 100%, but had a lower precision for case samples at 75%. The 

model's sensitivity for case samples was perfect at 100%, indicating a strong ability to identify 

diseased proteins. However, the specificity for control samples was slightly lower at 75%. Overall, 

the SVM model demonstrated robust performance in distinguishing between significant proteins 

associated with disease states.  

The Figure 4.6 illustrates the confusion matrices for the retrieval of differentially abundant 

proteins (DAPs) between diseased (case) and normal (control) groups using Artificial Neural 

Networks (ANN) and Support Vector Machines (SVM). 

 

Figure 4.7 Confusion matrices for DAP retrieval using ANN (left) and SVM (right) models: The 

ANN model shows strong specificity with no false positives, while the SVM model demonstrates 

perfect sensitivity with no false negatives, highlighting their respective strengths in classifying 

differentially abundant proteins between diseased and normal groups. 

The ANN model correctly identified 4 out of 4 control samples (True Negatives) and 2 out 

of 3 case samples (True Positives). There was 1 False Negative where a diseased sample was 
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misclassified as normal, and 0 False Positives, indicating no misclassification of control samples 

as diseased. The overall performance shows the model's strength in identifying control samples 

accurately while demonstrating moderate effectiveness in classifying case samples. 

At the same time, the SVM model correctly identified 3 out of 3 case samples (True 

Positives) and 3 out of 4 control samples (True Negatives). There was 1 False Positive where a 

control sample was misclassified as diseased, and 0 False Negatives, indicating that no diseased 

samples were missed. This matrix highlights the SVM model’s ability to accurately classify all 

diseased samples while making a minor error in classifying one control sample. 

These confusion matrices provide insights into the models' classification performance, with 

the ANN showing a stronger specificity (control identification) and the SVM demonstrating 

perfect sensitivity (diseased identification) in this dataset. 

4.7 Biomarker Identification 

The coexpression analysis of the 11 DAPs we retrieved via cosine similarity calculation, led 

to two significant outcomes: structure identification and network construction. Structure 

identification focuses on the potential physical and functional connections between these proteins, 

while network construction helps to map out the interactions between these DAPs within biological 

systems.  

4.7.1 Coexpression Analysis 

The coexpression analysis of multiple genes across various organisms reveals a notable 

degree of conservation in gene interactions. The first heatmap as shown in Figure 4.7 illustrates 

the coexpression of 11 genes—CBWD2, CBWD1, METAP1, CBWD6, TCERG1, HSPA12A, 
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RPS29, EGLN1, CCDC74B, MRPL33, and SETD2—across organisms including A. thaliana, B. 

taurus, S. cerevisiae, M. tuberculosis, C. glutamicum, P. aeruginosa, C. albicans, G. 

sulfurreducens, and E. coli. The matrix indicates coexpression patterns between these genes, with 

distinct color-coded labels assigned to each gene, suggesting specific gene relationships conserved 

across species. 

The second heatmap as shown below in Figure 4.7 focuses on a similar coexpression profile 

but highlights different organisms, including D. vulgaris, H. thermocellum, B. subtilis, B. 

thetaiotaomicron, B. cereus, G. sulfurreducens, and M. maripaludis. Coexpression patterns in this 

set emphasize conserved interactions across these bacteria, suggesting the functional relevance of 

these gene interactions in diverse biological pathways and environments. Together, these findings 

support the hypothesis that these gene interactions are crucial for fundamental biological processes 

and have been conserved throughout evolution across a broad spectrum of organisms. These results 

may contribute to a better understanding of gene function in complex biological networks. 

 

Figure 4.8 Observed Coexpression Patterns of Genes Across Different Organisms: Coexpression 

of genes CBWD2, CBWD1, METAP1, CBWD6, TCERG1, HSPA12A, RPS29, EGLN1, 
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CCDC74B, MRPL33, and SETD2 in diverse species. The matrices highlight gene coexpression 

relationships, with color-coded labels representing each gene. 

4.7.2 Network Construction 

The first network diagram as shown in Figure 4.8 displays the coexpression and interaction 

network we retrieved from the STRING database. This network shows the interactions between 

the 11 classified DAPs, demonstrating various connections and associations based on coexpression 

data. Each node represents a protein, and the lines between them indicate coexpression links and 

functional associations. 

In the second diagram, also as shown below in Figure 4.8, three proteins—MRPL33, RPS29, 

and METAP1—are highlighted for their high coexpression levels with each other. These proteins 

were found to form a tightly connected cluster within the network, indicating a potential shared 

biological function or pathway. Their prominent coexpression suggests that they may play key 

roles in the same cellular processes, further supporting their functional importance in the biological 

systems under investigation. 
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Figure 4.9 Coexpression Network of 11 Classified DAPs from STRING Database: (A) Network 

showing interactions among 11 classified DAPs, with nodes representing proteins and edges 

representing coexpression and functional relationships. (B) Highlight of MRPL33, RPS29, and 

and METAP1 representing high coexpression. 
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5 CHAPTER 5: Conclusion and Future Recommendations 

This study aimed to elucidate the differences in the gut microbiome between control 

(normal) and case (diseased) groups through advanced machine learning techniques. Metagenomic 

samples were de novo assembled and evaluated for quality using QUAST. The analysis revealed 

a higher mean number of contigs and proteins in case samples compared to control samples, 

indicating increased microbial diversity or activity in the diseased state. Various machine learning 

models, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), K-

Nearest Neighbors (KNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost), 

were utilized to classify between case and control groups based on differentially abundant proteins 

(DAPs). 

The ANN model achieved moderate accuracy of 55%, with balanced performance metrics 

across both classes. The SVM model with a polynomial kernel demonstrated slightly higher 

accuracy of 56%, which was particularly effective in identifying control samples. The KNN model 

achieved comparable accuracy of 53%, displaying uniform performance across classes. Ensemble 

learning methods such as Random Forest and XGBoost provided robust classification results with 

an average accuracy of 55%, underscoring their utility in handling complex metagenomic data. 

Future studies should explore more sophisticated feature selection techniques to identify the 

most biologically relevant features. Integrating multi-omics data, such as metatranscriptomics and 

metabolomics, could provide a more comprehensive understanding of the gut microbiome's role 

in disease. Future research can also focus on the functional analysis of the gut microbiome, 

examining metabolic pathways and interactions between microbial species. This could provide 



Chapter 5: Conclusion and Future Recommendations 

92 

 

deeper insights into the mechanisms through which the gut microbiome influences health and 

disease. 

Moreover, while predictive modeling holds promise in many fields, but its application to 

large biological datasets presents significant challenges that can affect model accuracy. Biological 

data are often noisy, incomplete, and heterogeneous, complicating the creation of accurate models. 

Large datasets may contain errors and inconsistencies, requiring extensive preprocessing to ensure 

quality. 

The inherent complexity of biological systems, with their numerous interacting factors and 

non-linear relationships, makes capturing these dynamics in models particularly difficult. This 

complexity often leads to overfitting, where models perform well on training data but fail to 

generalize to new data, necessitating careful model selection and validation, which can be 

computationally demanding. 

Moreover, many predictive models, such as deep learning algorithms, are "black boxes" with 

limited interpretability, making it challenging to understand and explain their predictions in 

biological contexts. Validation is further complicated by the scarcity of independent, high-quality 

datasets, raising concerns about reproducibility. These challenges highlight the need for rigorous 

approaches in applying predictive models to biological data. 

This study also highlights differentially abundant proteins (DAPs) as a foundation for 

identifying potential biomarkers that differentiate diseased from normal states. Focusing on 11 

classified DAPs, we uncovered significant coexpression patterns, with MRPL33, RPS29, and 
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METAP1 showing strong interactions, suggesting shared biological roles. These findings offer 

valuable insights into protein function and regulation. 

Future research can leverage these results, using structural approaches to further investigate 

the molecular mechanisms of these DAPs. Such studies could enhance biomarker discovery and 

aid in developing diagnostic tools and targeted therapies for disease.  
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