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Preface

Computer architecture is at a turning point. Radical changes occurred in the 1980s
when the Reduced Instruction Set Computer (RISC) philosophy, spurred in good
part by academic research, permeated the industry as a reaction to the Complex
Instruction Set Computer (CISC) complexities. Today, three decades later, we have
reached a point where physical limitations such as power dissipation and design
complexity limit the speed and the performance of single-processor systems. The
era of chip multiprocessors (CMP), or multicores, has arrived.

Besides the uncertainty on the structure of CMPs, it is not known yet whether
the future CMPs will be composed of simple or complex processors or a combi-
nation of both and how the on-chip and off-chip memory hierarchy will be man-
aged. It is important for computer scientists and engineers to look at the possible
options for the modules that will compose the new generations of multicores. In this
book, we describe the architecture of microprocessors from simple in-order short
pipe designs to out-of-order superscalars with many optimizations. We also present
choices and enhancements in the cache hierarchy of single processors. The last part
of this book introduces readers to the state-of-the-art in multithreading and multi-
processing, emphasizing single-chip implementations and their cache hierarchy.

The emphasis in this book is on “how things work” at a black box and algorith-
mic level. It is not as close to the hardware as books that explain features at the reg-
ister transfer level. However, it provides sufficient detail, say at the “bit level” and
through pseudocode, so that the reader can appreciate design features that have or
will enhance performance as well as their complexity.

As much as possible we present topics as conceptual ideas, define metrics to
assess the performance impact if appropriate, show alternate (if any) ways of imple-
menting them, and provide examples of realization.

Synopsis

This book has three main parts. Chapter 1 and Chapter 2 review material that
should have been taught in a prerequisite class. Chapters 3 through 6 describe
single-processor systems and their memory hierarchy. Chapter 7 and Chapter 8 are

xi



xii Preface

devoted to parallelism. The last (short) chapter, Chapter 9, introduces limitations
due to technology and presents challenges for future CMPs.

More specifically:

� Chapter 1 reviews Moore’s law and its influence as well as current limitations to
ever faster processors. Performance metrics such as cycles per instruction (CPI),
instruction per cycle (IPC), and speedup are defined. A section on performance
evaluation introduces benchmarks and simulators. Chapter 2 summarizes the
main concepts behind pipelining, including data and control hazards. Two ver-
sions of the “classical” 5-stage pipeline are contrasted. The basics of cache orga-
nization and performance are reviewed. Virtual memory (paging) and Transla-
tion Look-Aside Buffers (TLBs) are presented from the computer architecture
(not the operating system) viewpoint.

� Chapter 3 describes two landmark “families” in the history of modern multiple-
issue microprocessors: in-order processors represented by the DEC Alpha
21164 and out-of-order processors represented by the Intel Pentium P6 micro-
architecure. In order to ease the description of the latter, a first look at register
renaming is provided, with a sidebar showing the classical Tomasulo algorithm.
This chapter ends with an introduction to the Very Long Instruction Word
(VLIW) / Explicitly Parallel Instruction Computing (EPIC) philosophy and a
brief overview of its most well-known industrial realization, the Intel Itanium.
Chapter 4 and Chapter 5 are devoted to detailed explanations of, respectively,
the front end and the back end of the pipeline. Because many advances in super-
scalar performance have been attained through speculation, we start Chapter 4
with a “model” of a branch predictor. This model will be referred to in the book
when other speculative schemes are explored. We then describe actual branch
predictors and branch target predictors. A sidebar describes the sophisticated
Alpha 21264 tournament predictor. The remainder of the chapter deals with
instruction fetching, including trace caches, and presents another view of regis-
ter renaming that has become more popular than Tomasulo’s. Chapter 5 looks
at another potential bottleneck in the pipeline, namely the wakeup-select cycle.
Load speculation and other back-end optimizations are introduced. Chap-
ter 6 deals with the cache hierarchy: how to improve access times for first-level
caches (another critical potential source of slowdown); methods to hide latency
from higher-level caches and main memory such as prefetching and lock-up free
caches; and, in a more research-oriented way, design and performance issues for
large caches. We conclude this chapter with a look at main memory.

� Chapter 7 and Chapter 8 present multiprocessors and multithreading. In Chap-
ter 7, we first introduce taxonomies that will set the stage for the two chapters.
Cache coherence is then treated with both snoopy protocols and directory pro-
tocols, because it is likely that both types of protocols will be used in future par-
allel processing systems, whether on-chip or between chips. The next topic is
synchronization, in which, in addition to the existing lock mechanisms, we men-
tion approaches that might replace or complement them, such as transactional



Preface xiii

memory. We also briefly introduce relaxed memory models, a topic that may
become more important in the near future. The chapter concludes with a
description of multimedia instruction set extensions because this is a (limited)
form of parallelism. In Chapter 8, we start by looking at various flavors of mul-
tithreading: fine-grained, coarse-grained, and SMT. This leads us to the descrip-
tion of some current CMPs. We start with two examples of general-purpose
CMPs: the Sun Niagara, a CMP using fine-grained multithreaded simple pro-
cessors, and the Intel Core Duo, a representative of Intel multicores using com-
plex superscalar processors. We conclude with two special-purpose CMPs: the
IBM Cell, intended for games and scientific computation, and the Intel IXP, a
network processor using coarse-grained multithreaded microengines.

� Finally, Chapter 9 gives a brief introduction to the factors that have capped the
exponential performance curve of single processors, namely power issues, wire
lengths, and pipeline depths. We end the chapter with an (incomplete) list of
challenges for future CMPs.

Use of the book

This book grew out of courses given over the last ten years at the senior under-
graduate and first-year graduate level for computer science and computer engineer-
ing students at the University of Washington. It is intended as a book for a second
course in computer architecture. In an undergraduate class, we typically spend 10%
of the time on review and presentation of simulators. We spend 60% of the time on
single processors. About 25% is spent on multiprocessors and multithreading, and
the remainder on some research presentations by colleagues and advanced graduate
students. At the graduate level, the choice of topics depends more on the instruc-
tor. For example, one possible approach would be to assign the first two chapters
as required reading and start directly with topics of the instructor’s choice. A rule
of thumb that we have followed is to have a 50–50 split in classroom time between
single-processor (Chapters 3 through 6) and CMPs (Chapters 7 through 9).
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1 Introduction

Modern computer systems built from the most sophisticated microprocessors and
extensive memory hierarchies achieve their high performance through a combina-
tion of dramatic improvements in technology and advances in computer architec-
ture. Advances in technology have resulted in exponential growth rates in raw speed
(i.e., clock frequency) and in the amount of logic (number of transistors) that can be
put on a chip. Computer architects have exploited these factors in order to further
enhance performance using architectural techniques, which are the main subject of
this book.

Microprocessors are over 30 years old: the Intel 4004 was introduced in 1971.
The functionality of the 4004 compared to that of the mainframes of that period
(for example, the IBM System/370) was minuscule. Today, just over thirty years
later, workstations powered by engines such as (in alphabetical order and without
specific processor numbers) the AMD Athlon, IBM PowerPC, Intel Pentium, and
Sun UltraSPARC can rival or surpass in both performance and functionality the
few remaining mainframes and at a much lower cost. Servers and supercomputers
are more often than not made up of collections of microprocessor systems.

It would be wrong to assume, though, that the three tenets that computer archi-
tects have followed, namely pipelining, parallelism, and the principle of locality, were
discovered with the birth of microprocessors. They were all at the basis of the design
of previous (super)computers. The advances in technology made their implementa-
tions more practical and spurred further refinements. The microarchitectural tech-
niques that are presented in this book rely on these three tenets to translate the
architectural specification – the instruction set architecture – into a partition of static
blocks whose dynamic interaction leads to their intended behavior.

In the next few pages, we give an extremely brief overview of the advances in
technology that have led to the development of current microprocessors. Then, the
remainder of this chapter is devoted to defining performance and means to mea-
sure it.

1
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Figure 1.1. The von Neumann machine model.

1.1 A Quick View of Technological Advances

1.1.1 The von Neumann Machine Model

Modern microprocessors have sophisticated engineering features. Nonetheless, they
still follow essentially the conventional von Neumann machine model shown in
Figure 1.1. The von Neumann model of a stored program computer consists of four
blocks:

� A central processing unit (CPU) containing an arithmetic–logical unit (ALU)
that performs arithmetic and logical operations, registers whose main function
is to be used for high-speed storage of operands, a control unit that interprets
instructions and causes them to be executed, and a program counter (PC) that
indicates the address of the next instruction to be executed (for some authors
the ALU and the control unit constitute separate blocks).

� A memory that stores instructions, data, and intermediate and final results.
Memory is now implemented as a hierarchy.

� An input that transmits data and instructions from the outside world to the
memory.

� An output that transmits final results and messages to the outside world.

Under the von Neumann model, the instruction execution cycle proceeds as follows:

1. The next instruction (as pointed to by the PC) is fetched from memory.
2. The control unit decodes the instruction.
3. The instruction is executed. It can be an ALU-based instruction, a load from a

memory location to a register, a store from a register to the memory, or a testing
condition for a potential branch.

4. The PC is updated (incremented in all cases but a successful branch).
5. Go back to step 1.
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Of course, in the more than sixty years of existence of stored program computers,
both the contents of the blocks and the basic instruction execution cycle sequence
have been optimized thoroughly. In this book, we shall look primarily at what can
be found on a microprocessor chip. At the outset, a microprocessor chip contained
the CPU. Over the years, the CPU has been enhanced so that it could be pipelined.
Several functional units have replaced the single ALU. Lower levels of the memory
hierarchy (caches) have been integrated on the chip. Recently, several microproces-
sors and their low-level caches coexist on a single chip, forming chip multiprocessors
(CMPs). Along with these (micro)architectural advances, the strict sequential exe-
cution cycle has been extended so that we can have several instructions proceed
concurrently in each of the basic steps. In Chapters 2 through 6, we examine the
evolution of single processor chips; Chapters 7 and 8 are devoted to multiprocessors.

1.1.2 Technological Advances

The two domains in which technological advances have had the most impact on the
performance of microprocessor systems have been the increases in clock frequency
and the shrinking of the transistor features leading to higher logic density. In a sim-
plistic way, we can state that increasing clock frequency leads to faster execution,
and more logic yields implementation of more functionality on the chip.

Figure 1.2 shows the evolution of the clock frequencies of the Intel micropro-
cessors from the inception of the 4004 in 1971 to the chip multiprocessors of 2003
and beyond. From 1971 to 2002, we see that processor raw speeds increased at an
exponential rate. The frequency of the 4004, a speck on the figure that cannot be
seen because of the scaling effect, was 1.08 MHz, a factor of 3,000 less than the 3.4
GHz of the Pentium 4. This corresponds roughly to a doubling of the frequency
every 2.5 years. To be fair, though, although the Pentium 4 was the fastest processor
in 2003, there were many mainframes in 1971 that were faster than the 4004. Some
supercomputers in the late 1960s, such as the IBM System 360/91 and Control Data
6600/7600 – two machines that will be mentioned again in this book – had frequen-
cies of over 100 MHz. However, if they were two orders of magnitude faster than
the 4004, they were about six orders of magnitude more expensive. After 2003, the
frequencies stabilize in the 3 GHz range. We shall see very shortly the reason for
such a plateau.

The number of transistors that can be put on a chip has risen at the same pace
as the frequency, but without any leveling off. In 1965, Gordon Moore, one of the
founders of Intel, predicted that “the number of transistors on a given piece of sili-
con would double every couple of years.” Although one can quibble over the “cou-
ple of years” by a few months or so, this prediction has remained essentially true and
is now known as Moore’s law. Figure 1.3 shows the exponential progression of tran-
sistors in the Intel microprocessors (notice the log scale). There is a growth factor
of over 2,000 between the 2,300 transistors of the Intel 4004 and the 1.7 billion tran-
sistors of the 2006 Intel dual-core Itanium (the largest number of transistors in the
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Figure 1.2. Evolution of Intel microprocessors speeds (black bars: frequency at introduction;
white bars: peak frequency).

microprocessors of Figure 1.2 is a little over half a billion for a dual-core Extreme).
It is widely believed that Moore’s law can be sustained until 2025.

Besides allowing implementers to use more logic (i.e., provide more functionality)
or more storage (i.e., mitigate the imbalance between processor speed and memory
latency), consequences of Moore’s law include reduced costs and better reliability.

However, the exponential growths in speed and logic density do not come with-
out challenges. First, of course, the feature size of the manufacturing process, which
is closely related to transistor sizes, cannot be reduced indefinitely, and the number
of transistors that can be put on a chip is physically bounded. Second, and of primary
importance now, is the amount of power that is dissipated. Figure 1.4 illustrates
this point vividly (again, notice the log scale). Third, at multigigahertz frequencies,
the on-chip distance (i.e., sum of wire lengths) between producer and consumer of
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Figure 1.3. Illustration of Moore’s law for the Intel microprocessors.

information becomes a factor and influences microarchitectural design decisions.
We will elaborate more on these design problems in Chapter 9.

Now we can come back to the source of the leveling of speeds in Figure 1.2 after
2002. The power requirements as shown in Figure 1.4 and the growth in the number
of transistors as shown by Moore’s law limit the speeds that can be attained, because
the switching (or dynamic) power dissipation is related to the frequency, and the

Figure 1.4. Power dissipation in selected Intel microprocessors (from Fred Pollack, Micro32
keynote).
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static power (leakage) dissipation is related to the number of transistors on the
chip. Therefore, Intel and other manufacturers have capped the frequencies at their
2003 level. An exception is the IBM Power6, introduced in 2007, which is clocked
at slightly over 4.7 GHz. However, even with this latest development, the exponen-
tial speed increase has stopped. The persistence of Moore’s law and the resulting
increase in the amount of logic that can be put on a chip have led to the emer-
gence of CMPs.

1.2 Performance Metrics

Raw speed and the number of transistors on a chip give a good feel for the progress
that has been made. However, in order to assess the performance of computer sys-
tems, we need more precise metrics related to the execution of programs.

From a user’s viewpoint, what is important is how fast her programs execute.
Often, though, this time of execution depends on many factors that have little to
do with the processor on which the programs execute. For example, it may depend
on the operating system (which version of Windows or Linux), the compiler (how
well optimized it is), and network conditions (if the user’s workstation is sharing
I/O devices with other workstations on a local area network). Moreover, the pro-
grams that user A is interested in can be completely different from those of interest
to programmer B. Thus, to perform meaningful architectural comparisons between
processors and their memory hierarchies or to assess the benefits of some compo-
nents of the design, we need:

� Metrics that reflect the underlying architecture in a program-independent
fashion.

� A suite of programs, or benchmarks, that are representative of the intended
load of the processor.

Neither of these goals is easy to attain in a scientific manner.

1.2.1 Instructions Per Cycle (IPC)

Metrics to assess the microarchitecture of a processor and of its memory hierarchy,
(i.e., caches and main memory), should be defined independently of the I/O subsys-
tem. The execution time of a program whose code and data reside in the memory
hierarchy will be denoted EXCPU to indicate the context in which it is valid.

The execution time of a program depends on the number of instructions exe-
cuted and the time to execute each instruction. In a first approximation, if we assume
that all instructions take the same time to execute, we have

EXCPU = Number of instructions × Time to execute one instruction (1)

Now, Time to execute one instruction can be expressed as a function of the cycle
time (the reciprocal of the clock frequency) and the number of cycles to execute an
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instruction, or CPI (for “cycles per instruction”). Equation (1) can then be rewritten
as:

EXCPU = Number of instructions × CPI × cycle time (2)

CPI is a program-independent, clock-frequency-independent metric. Recently,
computer architects have preferred to quote figures related to its reciprocal, IPC
(for “instructions per cycle.”) The main reason for this cosmetic change is that it is
psychologically more appealing to strive for increases in IPC than for decreases in
CPI. Thus, we can rewrite Equation (2) as

EXCPU = (Number of instructions × cycle time)/IPC (2′)

and define IPC as

IPC = (Number of instructions × cycle time)/EXCPU (3)

or

IPC = Number of instructions/(clock frequency × EXCPU) (3′)

or, if we express EXCPU as Total number of cycles × cycle time,

IPC = Number of instructions/Total number of cycles (3′′)

Another reason to use IPC as a metric is that it represents throughput, (i.e., the
amount of work per unit of time). This is in contrast to EXCPU, which represents
latency, which is an amount of time.

In an ideal single-pipeline situation, when there are no hazards and all mem-
ory operations hit in a first-level cache, one instruction completes its execution at
every cycle. Thus, both CPI and IPC are equal to one. We can forget about the
overhead of filling the pipeline, for this operation takes only a few cycles, a negli-
gible amount compared to the billions – or trillions – of cycles needed to execute
a program. However, when there are hazards – for example, branches, load depen-
dencies, or cache misses (we will review these hazards and the basics of the memory
hierarchy in Chapter 2) – then CPI will increase (it is easier to reason about CPI
than about IPC, although for the reasons mentioned above we shall often refer to
IPC). More specifically, assuming that the only disruptions to the ideal pipeline are
those that we just listed, CPI can be rewritten as

CPI = 1 + CPIload latency + CPIbranches + CPIcache (4)

where CPIx refers to the extra number of cycles contributed by cause x. This yields
the formula for IPC:

IPC = 1
1 + ∑

x
CPIx

(4′)

EXAMPLE 1: Assume that 15% of instructions are loads and that 20% of the
instructions following a load depend on its results and are stalled for 1 cycle.
All instructions and all loads hit in their respective first-level caches. Assume
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further that 20% of instructions are branches, with 60% of them being taken
and 40% being not taken. The penalty is 2 cycles if the branch is not taken, and
it is 3 cycles if the branch is taken. Then, 1 cycle is lost for 20% of the loads,
2 cycles are lost when a conditional branch is not taken, and 3 cycles are lost for
taken branches. This can be written as

CPIload latency = 0.15 × 0.2 × 1 = 0.03

and

CPIbranches = 0.2 × 0.6 × 3 + 0.2 × 0.4 × 2 = 0.52

Thus

CPI = 1.55 and IPC = 0.65.

A very simple optimization implementation for branches is to assume that they
are not taken. There will be no penalty if indeed the branch is not taken, and
there will still be a 3 cycle penalty if it is taken. In this case, we have

CPIbranches = 0.2 × 0.6 × 3 = 0.36, yielding CPI = 1.39 and IPC = 0.72

Of course, it would have been more profitable to try optimizing the branch-
taken case, for it occurs more frequently and has a higher penalty. However,
its optimization is more difficult to implement. We shall return to the subject of
branch prediction in detail in Chapter 4.

Let us assume now that the hit ratio of loads in the first level cache is 95%.
On a miss, the penalty is 20 cycles. Then

CPIcache = (1 − 0.95) × 20 = 1

yielding (in the case of the branch-not-taken optimization) CPI = 2.39 and
IPC = 0.42.

We could ask whether it is fair to charge both the potential load dependency
and the cache miss penalty for the 5% of loads that result in a cache miss. Even
in a very simple implementation, we could make sure that on a cache miss the
result is forwarded to the execution unit and to the cache simultaneously. There-
fore, a better formulation for the load dependency penalty would be CPIload latency =
0.15 × 0.2 × 1 × 0.95 = 0.029. The overall CPI and IPC are not changed signifi-
cantly (in these types of performance approximation, results that differ by less than
1% should be taken with a large grain of salt). Although this optimization does not
bring any tangible improvement, such small benefits can add up quickly when the
engines become more complex, as will be seen in forthcoming chapters, and should
not be scorned when there is no cost in implementing them. This example also indi-
cates that the memory hierarchy contributions to CPI could be dominating. We shall
treat techniques to reduce the penalty due to the memory hierarchy in Chapter 6.

There exist other metrics related to execution time and, more loosely, to IPC.
One of them – MIPS, or millions of instructions per second – was quite popular in
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the 1970s and the 1980s, but has now fallen into desuetude because it is not very rep-
resentative of the architecture of contemporary microprocessors. MIPS is defined
as

MIPS = Number of instructions
EXCPU × 106

(5)

The main problem with this metric is that all instructions are considered to be equal
and neither classes of instructions nor explicit decreases in IPC (hazards) are taken
into account. This can lead to discrepancies such as a system having a higher MIPS
rating (MIPS is a rate inversely proportional to execution time, so the higher, the
better) than another while having a larger execution time because, for example, it
executes fewer instructions but some of these instructions have much higher latency
(see the exercises at the end of the chapter).

MFLOPS, the number of millions of floating-point operations per second, has
a definition similar to that of MIPS, except that only floating-point operations are
counted in Number of instructions. It can be argued that it is a representative mea-
sure for systems whose main goal is to execute scientific workloads where most of
the computation time is spent in tight loops with many floating-point operations.
However, it does suffer from some of the same shortcomings as MIPS, mainly
compiler-dependent and algorithm-dependent optimizations. Reaching teraflops,
that is, 1,000 megaflops, was for a long time the goal of supercomputer manufac-
turers; it was achieved in 1996 by a massively parallel computer (i.e., a system com-
posed of thousands of microprocessors). The next Holy Grail is to achieve pentaflops
(a million megaflops): it is not the subject of this book.

1.2.2 Performance, Speedup, and Efficiency

Equation (2) is the rule that governs performance, which can be defined as the recip-
rocal of the execution time. A smaller execution time implies better performance.
The three factors that affect performance are therefore:

� The number of instructions executed. The smaller the number of instructions
executed, the smaller the execution time, and therefore the better the perfor-
mance. Note that reducing the number of instructions executed for a given pro-
gram and a given instruction set architecture (ISA) is a compiler-dependent
function.

� CPI or IPC. The smaller the CPI (the larger the IPC), the better the perfor-
mance. It is the goal of computer architects to improve IPC, (i.e., this is a ques-
tion of microarchitecture design and implementation).

� The clock cycle time or frequency. The smaller the cycle time (the higher the
frequency), the better the performance. Improving the cycle time is technology-
dependent.

Improvement in any of these three factors will improve performance. However, in
practice these factors are not completely independent. For example, minimizing the
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number of instructions executed can be counterproductive. A case in point is that
a multiplication can be sometimes replaced by a small sequence of add-and-shift
operations. Though more instructions are executed, the time to execute the add–
shift sequence may be smaller than that of the multiply. The apparent contradiction
is that in Equation (2) the factor CPI was assumed to be the same for all instructions.
In fact, in the same way as we introduced CPIx for showing specific penalties due
to cause x, we should make sure that CPI reflects the mix of instructions and their
execution times. If we have c classes of instructions with frequencies f1, f2, . . . , fc

and with cycles per instruction CPI1, CPI2, . . . , CPIc, then Equation (4) should be
rewritten as

CPI =
c∑

i=1

fi × CPIi +
∑

x

CPIx (6)

or

IPC = 1
c∑

i=1

fi × CPIi +
∑

x

CPIx

(6′)

Similarly, IPC and clock cycle time are related. With smaller cycle times, fewer oper-
ations can be performed in a single stage of the pipeline, and the latter becomes
deeper. Hazards now can inflict larger penalties when these are expressed in terms
of number of cycles. Thus, IPC might decrease with a smaller cycle time. How-
ever, recall from Equation (2′) that what is important is decreasing the ratio cycle
time/IPC.

IPC is a useful metric when assessing enhancements to a given microarchitec-
ture or memory latency hiding technique. We will often make use of it in subsequent
chapters. However, using IPC as a basis for comparison between systems that have
different ISAs is not as satisfactory, because the choice of ISA affects and is affected
by all three components of performance listed above.

When comparing the performance of two systems, what we are interested in is
their relative performance, not their absolute ones. Thus, we will say that system A
has better (worse) performance than system B if the execution time of A – on some
set of programs (cf. Section 1.2.3) – is less (more) than the execution time of B:

PerformanceA

PerformanceB
= EXCPU−B

EXCPU−A
(7)

A particularly interesting ratio of performance is Speedup, which is the ratio of per-
formance between an enhanced system and its original implementation:

Speedup = Enhanced performance
Original performance

= EXCPU−original

EXCPU−enhanced
(8)

Historically, the speedup was defined for parallel processors. Let Ti denote the time
to execute on i processors (i = 1, 2, . . . ,n); then the speedup for n processors is

Speedupn = T1

Tn
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Figure 1.5. Illustration of Amdahl’s law. The sequential portion of the program is 20%.

At first glance, we could expect to reach linear speedup, that is, Tn = T1/n, on some
programs that exhibit a lot of parallelism. However, even for “embarrassingly paral-
lel” programs, there is always a certain amount of sequential execution and synchro-
nization. This observation has led Amdahl to the formulation of his famous law. As
Amdahl states, the execution of a program consists of a sequential part of execution
time s, followed by a parallel part, which, in the case of a single processor, has an
execution time p. Then T1 = s + p and Tn = s + p/n, yielding a speedup

Speedupn = s + p
s + p/n

(9)

If we normalize T1 = s + p to 1, what Amdahl’s law says is that at the limit (n very
large), the maximum speedup 1/s is limited by the fraction of time spent in sequential
execution. For example, if 20% of the time were spent in sequential execution, the
maximum speedup would be 5.

This is shown in Figure 1.5, where the speedup grows slowly as soon as the num-
ber of processors exceeds 6 or 7. For example, to reach a speedup of 4 we would
need 16 processors; with 64 processors the speedup would be 4.7; with 128 proces-
sors it would be 4.85. Note also that Amdahl’s law gives a slightly optimistic result
for speedup in that it assumes that all processors can perform parallel work at all
times, except during the time where one processor performs sequential execution.

Amdahl’s law clearly indicates that linear speedup is an upper bound (it requires
s = 0). How then could some superlinear speedups be reported? The ambiguity is
in what we define as a “processor.” If it includes the memory hierarchy, in addition
to the computational unit itself, then a problem that does not fit in the cache or
the main memory hierarchy of a single processor could fit in the combination of
caches or main memories of several processors. If cache-to-cache transfers are faster
than cache-to-memory transfers, or if fewer transfers from disks are necessary in the
multiprocessor case, then we can very well obtain a superlinear speedup.

Amdahl’s law covers more situations than parallel execution. In general terms,
it says that optimizing one part of the system used a fraction p of the time can yield
at a maximum a speedup of 1/(1 – p).
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While the speedup shows the performance improvement gained by adding
resources, the efficiency is a metric related to the utilization of these resources and
is defined in the case of parallel processing as

Efficiencyn = Speedupn/n (10)

where n is the number of processors. In the same example as above, the efficiency for
4 processors is a little over 0.6; for 16 processors it has become 0.25; for 64 processors
it has dwindled down to 0.075. In this book, we shall almost exclusively look at
systems with a small number of processors, or a small number of identical arithmetic
units within a single CPU. Thus, we shall not concern ourselves much with efficiency.

1.3 Performance Evaluation

Evaluating the performance of computer systems can take several forms. We can
(1) rely on queuing theoretical or analytical models, or (2) measure the execution
time of a suite of programs, called benchmarks, or (3) simulate, at various levels of
detail, the whole system or some of its components. Of course, nothing prevents us
from using a combination of these approaches.

Queuing theoretical models are most useful when the system under considera-
tion can be described at a rather abstract level. A typical example would be to assess
the throughput of a disk subsystem where the input rate and the service time can
be expressed as functions of well-known statistical distributions. The level of detail
at which this book covers processors and memory hierarchies does not lend itself
to such abstractions; therefore, we do not use queuing systems in this book. How-
ever, in some instances, for example to estimate contention on a shared resource, we
might make use, or quote the results, of analytical models. In this introductory chap-
ter, though, we focus on the description and use of benchmarks, and on simulation
methodology.

1.3.1 Benchmarks

Our intent is to study the design of microprocessor systems that, by essence, are
general-purpose machines. Hence, the relative performances of such systems may
depend on the workloads that they execute. Consider the following three examples,
among many: for a single user, the best system is the one that executes the fastest the
programs that he uses most often; for the manager of a Web server farm, the best
system might be the one that gives the lowest mean response time, within a tolerable
variance, to the customers’ queries; for the designer of a database system, the metric
of interest might be the number of transactions that can be processed in some unit of
time. More generally, a suite of test programs, or benchmarks, should be available
for each category of users. In our case, we restrict ourselves to benchmarks that are
used to evaluate the processor and its memory hierarchy in a computation-intensive
fashion (i.e., where the effects of I/O, operating system, and networking are either
absent or negligible).
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Benchmark Classification
We can distinguish between three kinds of benchmarks:

1. Synthetic benchmarks. These are artificial programs that are specially written
to measure the performance of specific architectural factors. The first such syn-
thetic benchmark was Whetstone. It contains a very large proportion of floating-
point instructions. Over half of the execution time is spent in mathematical
library routines. The original benchmark, written 30 years ago in Algol and
then in FORTRAN, and since then rewritten in C, is sometimes used as an
alternative to MFLOPS (with the same drawbacks!). By contrast, Dhrystone,
introduced about ten years later, was intended for nonnumeric applications. It
contains a high proportion of string-handling operations, no tight loops, and
no floating-point operations. It is written in C (a Java version is available). It
has been abandoned for contemporary microprocessors but is still used for rat-
ing embedded processors – to the dismay of its own inventor, who considers
this benchmark obsolete because it does not take into account the realities of
modern (embedded) processors. The use of synthetic benchmarks is not recom-
mended, and will not be mentioned further.

2. Kernels. Kernels are small portions of real programs that exercise principally
a certain feature of the system. Two well-known kernels are the Livermore
loops and Linpack. The Livermore loops are a set of 24 FORTRAN DO loops
extracted from real programs used at Lawrence Livermore National Labora-
tory in the mid seventies. They were recoded in C about 10 years ago. They
were used mostly for testing the potential vectorization of the loops themselves,
whether by hardware or by compilers. Linpack (Linear Algebra Package) is a
collection of FORTRAN subroutines that are used to solve dense systems of
linear equations. It was designed in the mid 1970s for calibrating vector and
parallel processors. Linpack has been replaced by Lapack (same acronym def-
inition as Linpack), which uses block-oriented matrix operations, thus taking
into account the improvements in speed and capacity of memory hierarchies
present in contemporary (parallel) systems. According to its authors, Lapack is
“a library of FORTRAN 77 subroutines for solving the most commonly occur-
ring problems in numerical linear algebra.” Similar to kernels are microbench-
marks, which are small programs designed to isolate and measure special char-
acteristics of the architecture. Two examples of use of microbenchmarks are
the quantification of overhead in synchronization primitives and the effect of
memory latency on streaming operations.

3. Complete programs. The suite of selected programs depends on the intended
use of the benchmarks. The nonprofit organization SPEC (System Performance
Evaluation Corporation) was founded in the late 1980s and has for charter to
“establish, maintain and endorse a standardized set of relevant benchmarks
that can be applied to the newest generation of high-performance comput-
ers.” Whereas SPEC now publishes benchmarks for a variety of applications
(e.g., Web servers, graphic applications, Java client/server), the next section
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describes the two suites most relevant to microprocessor vendors and designers,
named collectively SPEC CPUXXXX, where XXXX is a year. Here, mention
is made of two other suites that are used often to extend the range of SPEC
CPUXXXX. One is the Olden suite, which comprises 10 programs with exten-
sive linked list processing and thus offers significant challenges to the exploita-
tion of instruction-level parallelism and to techniques to hide memory latency.
The second is a collection of programs for commercial workloads gathered
by the TPC (Transaction Processing Council), a nonprofit organization that
has the same goals as SPEC. However, the TPC’s interest lies in the evalua-
tion of servers whose main functions are to perform transaction processing and
database tasks.

SPEC CPU2000 and SPEC CPU2006
The drawbacks of the MIPS metric and the claims attached to it regarding the
“fastest” computers led a number of vendors to create the nonprofit organization
SPEC. The first SPEC benchmark suite was announced in 1989. It expressed the
performance of a system relative to that of a VAX 11/780, which, by definition, had
a SPEC rating of 1. It was modified a first time in 1992 and then again in 1995.
Since by then the VAX 11/780 was obsolete, this latter version gave performance
relative to a newer machine, a 40 MHz Sun SPARCstation without a second-level
cache and with 64 megabytes (MB) of memory. The next version, in 2000, modi-
fied the SPEC95 suite and supplemented it. An enhanced version SPEC CPU2006
is now available. The normalizing machine for the CPU2000 was a Sun Ultra5 10
SparcStation that ran at 300 MHz and that has a two-level cache hierarchy and 256
MB of memory. This machine had a SPEC rating of 100. In 2006, the processor is
similar but the caches and main memory are larger.

The CPU2000 benchmark consists of 12 integer programs SPEC CINT 2000
(11 written in C, and 1 in C++), and 14 floating-point programs SPEC CFP 2000
(11 written in FORTRAN 77 or 90, and 3 in C). They are shown in Table 1.1.
The first column gives the name of the program (the numerical prefix serves as an
identifier to distinguish versions of programs, some of which are updated versions
from SPEC CPU95). The second column gives the source language in which the
program is written, and the third a one-liner describing the intent of the program.
Three data sets are provided with each program: test for a quick functional test, train
for medium-length runs, and reference, which should be the one used for reporting
results. With the reference data sets the programs run for tens or even hundreds
of billions of instructions. Thus on a 3 GHz machine with an IPC of 1 (a reason-
able figure in modern out-of-order processors; cf. Chapter 3), it would take of the
order of 10 seconds to run a 30 billion instruction benchmark and 2 minutes to run
one an order of magnitude longer. The procedure to run SPEC benchmarks is well
documented and must be adhered to by vendors if they wish to see publication of
their results. In particular, since compiler technology can play a big role in reduc-
ing execution time (recall Equation (2)), compiler optimizations specific to a single
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Table 1.1. The SPEC CPU2000 12 integer benchmarks (CINT2000) and
the 14 floating-point benchmarks (CFP2000)

Benchmark Language Description

164.gzip C Compression
175.vpr C FPGA circuit placement and routing
176.gcc C C programming language compiler
181.mcf C Combinatorial optimization
186.crafty C Game playing: chess
197.parser C Word processing
252.eon C++ Computer visualization
253.perlbmk C PERL programming language
254.gap C Group theory, interpreter
255.vortex C Object-oriented database
256.bzip2 C Compression
300.twolf C Place and route simulator

168.wupwise F77 Physics: quantum chromodynamics
171.swim F77 Shallow-water modeling
172.mgrid F77 Multi-grid Solver
173.applu F77 Parabolic/elliptic PDEs
177.mesa C 3-D graphics library
178.galgel F90 Computational fluid dynamics
179.art C Image recognition, neural networks
183.equake F90 Seismic wave propagation simulation
187.facerec F90 Image processing: face recognition
188.ammp C Computational chemistry
189.lucas F90 Number theory: primality testing
191.fma3d F90 Finite element crash simulation
200.sixtrack F77 High-energy nuclear physics: accelerator design
301.apsi F77 Meteorology: pollutant distribution

program in the suite are disallowed. The programs for SPEC CPU2006 are shown
in Table 1.2. About half of the integer programs are the same as those in SPEC
CPU2000. Note, however, that there are more C++ programs, both in the integer
and in the floating-point suites.

We could ask ourselves whether the SPEC CPU2000 or CPU2006 benchmarks
are representative of the use of microprocessors. For example, in SPEC CINT 2000
there is only one program mildly representative of desktop applications (parser),
and it is not present any longer in 2006. Similarly, there is only one interpreter pro-
gram (perl). Some efforts have been made to include C++ programs in the 2006
version, but there is no program written in Java. However, studies of desktop appli-
cations and of interpreters have shown that their instruction mixes and the way they
exercise the lower levels of the memory hierarchy are pretty similar to what is hap-
pening with the integer programs represented in SPEC benchmarks. On the other
hand, commercial workloads to be run on servers, consisting potentially of several
processors, attach more importance to the interactions with the operating system
and I/O devices. Comparison with the SPEC suite is not meaningful, and for this
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Table 1.2. The SPEC CPU2006 12 integer benchmarks and 17 floating-point
benchmarks

Benchmark Language Description

400.perlbench C PERL programming language
401.bzip2 C Compression
403.gcc C C compiler
429.mcf C Combinatorial optimization
445.gobmk C Artificial intelligence: go
456.hmmer C Search gene sequence
458.sjeng C Artificial intelligence: chess
462.libquantum C Physics: quantum computing
464.h264ref C Video compression
471.omnetpp C++ Discrete-event simulation
473.astar C++ Path-finding algorithms
483.xalancbmk C++ XML processing

410.bwaves FORTRAN Fluid dynamics
416.gamess FORTRAN Quantum chemistry
423.milc C Physics: quantum chromodynamics
434.zeusmp FORTRAN Physics: computation fluid dynamics
435.gromacs C, FORTRAN Biochemistry, molecular dynamics
436.cactusADM C, FORTRAN Physics: general relativity
437.leslie3D FORTRAN Fluid dynamics
444.namd C++ Biology, molecular dynamics
447.dealII C++ Finite element analysis
450.soplex C++ Linear programming, optimization
453.povray C++ Image ray tracing
454.calculix C, FORTRAN Structural mechanics
459.GemsFDTD FORTRAN Computational electromagnetics
465.tonto FORTRAN Quantum chemistry
470.lbm C Fluid dynamics
481.wrf C, FORTRAN Weather prediction
482.sphinx3 C Speech recognition

reason TPC and SPEC themselves have developed specific benchmarks for these
types of applications.

Reporting Benchmarking Results
Several ways of reporting measurements of benchmark execution times have
been advocated. The easiest way, and maybe the most significant way, is to simply
add the execution times of the programs, or, equivalently, report their arithmetic
mean. That is, if Ti is the time to execute the ith of n programs, the mean execution
time is

T = 1
n

∑
i

Ti (11)

If, instead of measuring execution times, we were reporting on a series of experi-
ments measuring rates, such as IPC, we would use the harmonic mean. In this case,
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Equation (11) would become

IPC = n∑
i

1
IPCi

(11′)

Because in some instances some programs are more important than others, we can
weight a program according to its probable use. In contrast, because some programs
execute longer than others, we might want to adjust their contributions so that each
of them has equal weight in the final arithmetic mean. With a weight wi associ-
ated with the ith program, Equation (11) becomes the weighted arithmetic mean (of
course, we can modify Equation (11′) similarly for a weighted harmonic mean):

Tw = 1
n

∑
i

Ti × wi (12)

As mentioned earlier, SPEC does not use a (weighted) arithmetic mean of execution
times, but instead asks that results of the benchmarks runs be normalized to that of
a reference machine. Then the geometric mean of the ratios of the execution time
of the runs – or, more precisely, of the median of an odd number of runs (greater
than three) – to the execution time of the same program on the reference machine is
the metric that gives the SPEC rating (except that the reference machine has a rating
of 100). Note that all programs are given the same weight, so that the geometric
mean is

G = n

√∏
i

Ti

Si
(13)

where Ti is the execution time for the ith program on the machine to be rated, and
Si the corresponding time on the reference machine. We could easily extend the
definition of the geometric mean to that of a weighted geometric mean.

The geometric mean of normalized execution times has a nice property, namely,
performance relationships between two machines are independent of the normaliz-
ing machine. This can easily be derived by noticing that Equation (13) can be rewrit-
ten as

G =
n

√∏
i

Ti

n

√∏
i

Si

(13)

so that the ratio between the geometric means G1 and G2 of runs on two machines
is independent of the normalizing factor. Practically, what this means is that if com-
parisons were made between two machines using a VAX 11/780 as a normalizing
factor, these experiments would not have to be rerun if the normalizing factor had
become a Sun SPARCstation.

Alas, the geometric mean of normalized execution times also has a significant
drawback: it can give the wrong result. This is shown in Table 1.3, where machine
M1 executes programs P1 and P2 each in 5 (normalized) units of time, for a total
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Table 1.3. Example of the drawback of the geometric mean

Normalized time on Normalized time Normalized time
reference machine on M1 on M2

Program P1 1 5 10
Program P2 1 5 2
Arithmetic mean 1 5 6
Geometric mean 1 5 4.5

of 10, and machine M2 executes them in 10 and 2 units, respectively, for a total of
12. However, the normalized geometric mean is higher for M1 (5) than for M2 (4.5).

This example shows how benchmarks can be manipulated. If the time to exe-
cute P2 on M2 had been 3 units, the geometric mean for M2 would have been greater
than the one for M1, and the ratings given by the arithmetic and geometric means
would have been consistent. By “optimizing” the short program by one unit of time,
we have exposed the anomalous behavior of the geometric mean. Fortunately, the
opportunity for such optimizations does not exist in the SPEC 2000 and 2006 bench-
marks, because the number of instructions executed in each program is of the same
order of magnitude. Nonetheless, the only faithful metric for execution times is the
(weighted) arithmetic mean, and for rates it is the (weighted) harmonic mean.

1.3.2 Performance Simulators

Measuring the execution time of programs on existing machines is easy, especially if
the precision that is desired is of the order of milliseconds. In this case, it is sufficient
to call on library routines to read the internal clock of the machine. If more detail
is required, such as knowledge of CPI or IPC, programmable counters available in
most current microprocessors can be set up to record the total number of cycles used
during execution as well as the number of instructions that have been committed.1

Since the cycle time is known, the IPC can then be deduced (recall Equation (3′′)).
However, when the machine is in the design stage, or when we want to assess the
performance of potential enhancements of an existing machine, we need to have
recourse to simulation.

Simulation can be used during design for functional and behavioral correctness
verification and for performance assessment. Classes of simulators exist for the vari-
ous levels of design. Without going into too much detail, we can distinguish between:

� Circuit design: The key words here would be wires, gates, CMOS, and so on.
This is the domain of electrical engineers, with Spice being the simulator of
choice. This topic is outside the scope of the book.

1 Committed instructions are those that ultimately modify the processor state. The distinction
between committed and fetched instructions will become apparent when we cover speculative
schemes such as branch prediction.
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� Logical design: This is the level at which gates and wires are put together to
build combinational circuits such as ALUs or PLAs and at which stable storage
primitives such as flip-flops and latches are combined to implement registers and
hard-wired control. It is assumed that the readers know how to build these basic
blocks. Hardware description languages (HDLs) such as Verilog and VHDL are
used for simulation as well as for design and synthesis. Newer languages such
as System C, which is closer to the C–C++ class of procedural languages, are
gaining in popularity.

� Register transfer level (RTL): This is the microarchitecture level, where the
data flow between the basic blocks and the setting of control lines are described.
It is the level to which we will direct most of our attention in this book. HDLs
can also be used at this level.

� Processor and memory hierarchy description: The definition of the ISA belongs
to this level, and, naturally, it will also be a focus in subsequent chapters.

� System issues: I/O, multithreading, and multiprocessing are to be included at
this level. Although the system level is not at the center of our interests here,
we shall deal with granularities of parallelism above that of the ISA level.

From the performance viewpoint, the last three levels are the ones that are most
often targeted. Depending on the desired results, simulations can be performed
cycle by cycle (the usual case), or instruction by instruction (or memory reference
by memory reference). Simulators are written in a high-level language such as C or
C++, because such languages are more portable and better known than HDLs, and
synthesis capabilities are not required. Simulators come in two flavors: trace-driven
simulators and execution-driven simulators. Both share the same back end, (i.e., a
cycle-based simulation of the events that occur in the microarchitecture). The dif-
ference comes in what is fed to the back end. In the case of trace-driven simulation
the input is a trace (i.e., a sequence of the instructions that have been executed
by the program). In the execution-driven case, the input mechanism and the per-
formance simulator are closely intertwined: The input mechanism is a functional
simulator (i.e., a program interpreter). After each instruction has been recognized,
and its results computed, it is passed on to the performance simulator.

Trace-driven simulation requires trace collection, which is the determination
and storing of the instruction sequences. Hardware monitors can be used to that
effect, but there are limitations due to their restricted storage capacities and to the
difficulties of inserting probes at the right places in the currently very integrated
chips. Software traces can be collected by inserting extra instructions in the work-
load so that the sequence of instructions being executed can be recorded. Both pro-
cesses are slow: hardware collection because of the need for frequently emptying
buffers in safe storage, and software tracing because of the extra instructions being
executed, as well as the buffering process. The great advantage of traces is that the
slow process of recording the traces needs to be done only once and the same trace
can be used for all further simulations of the same workload. The disadvantages
are that the trace requires extensive storage space (although this can be mitigated
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Figure 1.6. Typical output of an execution-driven simulator (from Romer et al., ASPLOS
1996).

somewhat by trace reduction techniques) and that the trace may not be a faithful
image of all the actions that were performed at the microarchitecture level. Preva-
lent among those are the actions that pertain to the wrongly predicted speculative
paths, for the wrongly predicted instructions will not appear in the trace.

In execution-driven simulation, the internal workings of the processor can be
reproduced faithfully. Since there is a close link with the functional simulator that
“computes” results, intermediate or temporary data can be generated. This prop-
erty permits the capability to simulate, for example, the use of resources during the
execution of mispredicted speculative paths or the timing of cache line prefetches.
Moreover, the study of power consumption, part of which depends on the amount
of bit switching during execution, can be added on to the performance simulation.
A typical output of an execution-driven simulation is shown in Figure 1.6. Each bar
corresponds to the simulation of a particular program. In this example, one can see
the proportion of cycles for which the processor is busy, the impact of cache misses,
the proportion of cycles spent on the wrong path, and so on.

Execution-driven simulators, and to a lesser extent trace-driven simulators,
share two drawbacks. First, real-time events such as those triggered by I/O cannot be
simulated directly. A possible option is to insert markers in the traces (not too diffi-
cult) or to add such events in a trace-directed manner to the functional simulation.
Second – and this is more detrimental – execution-driven simulations, and again to
a lesser extent trace-driven simulations, take an inordinate amount of CPU execu-
tion time. A ratio of three to four orders of magnitude of the CPU time required
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for simulation to the CPU time of execution in the normal setting is to be expected,
depending on the desired level of detail. For example, the most popular simula-
tor used in academic circles is SimpleScalar, originally developed at the University
of Wisconsin. According to its authors, SimpleScalar can simulate 350,000 instruc-
tions per second on a 1.7 GHz Pentium 4. If we assume that the simulator and the
program simulated have IPCs that are both close to 1, then the slowdown of the
simulator compared to native execution on the 1.7 GHz Pentium is indeed between
3 and 4 orders of magnitude (1.7 × 109 / 0.35 × 106) Thus, if we follow our previous
estimate of 10 seconds to 2 minutes to execute one of the SPEC benchmarks on a
real machine, then it would take between 3 minutes and 5 hours to simulate it in its
entirety, depending on the length of the benchmark and the speed of the simulator.
Because, to be complete, we want to look at all the components of the benchmarks,
and because in general we want to look at several design options, we can see that it
might take of the order of several days or even years of CPU time to get results.

Several methods have been proposed to scale down the simulation time. A first
approach would be to simulate only a contiguous portion of the program, say the
first one billion instructions. Because most programs spend a large part of the begin-
ning of their execution initializing data structures and performing setup tasks, this
naive shortcut has a large probability of yielding architectural metrics that are not
representative of the execution of the full program.

A potential improvement would be to fast-forward the first billion instructions
(i.e., just simulate enough of the initial part of the program to warm up data struc-
tures such as caches and branch predictors). Then the next billion instructions would
be simulated in detail, and statistics would be gathered. Although this method
removes the drawback linked to the initialization, it is flawed in the same way as
the first one, for only one contiguous portion of the program is simulated and there
is no guarantee that it is representative of the whole execution.

The next improvement then would be to sample intervals – say 10 intervals of
100 million instructions each – at various points of the execution. Though certainly
more of the program execution would then be covered, it is again not possible to be
assured that it is representative of the full execution.

A better way is to detect similar phases in the program, (i.e., sequences of con-
secutive instructions that have similar behavior independent of their relative time
positioning). The difficulty, of course, is to define what is meant by similar. The sim-
ilarity measure must be independent of the architectural factors that will be mea-
sured; otherwise, the phase detection would be biased. It is therefore better to rely
only on the execution paths. For the purpose of subsequent simulations, the phase
detection can be performed offline, that is, with a (fast) preprocessing of the whole
program. Each interval of, say, 100 million instructions can be given a signature that
depends only on the instructions that it executes. For example, the signature could
be the frequency of execution of each basic block2 in the program. Then signatures

2 A program basic block is a sequence of consecutive instructions with the first instruction being
reached via a branch and the last instruction being a branch and no instructions in between being
branches.
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Figure 1.7. Simulation accuracy using the first one billion instructions (left bar), fast forward-
ing (medium bar), and phase selection (right bar) (data from Sherwood et al., IEEE Micro,
Nov. 2003).

of intervals are compared, and intervals can be grouped according to some cluster-
ing algorithm. By giving a bound on the number of clusters, we can limit the number
of phases that need to be simulated. For example, if this bound is 10, we will detect
at most 10 phases. We can then simulate intervals within each phase. This method
has been successfully applied to the SPEC CPU2000 suite with excellent results.
Figure 1.7 (median results) shows that simulating one billion instructions from the
start leads to errors in IPC that are over 58% in half of the cases (with a maximum
error of 3 orders of magnitude). Fast forwarding gives results that are improved by
a factor of 2 to 3 but are still far from being close, especially in the worst case. When
phases are used, with the same number of simulated instructions, the errors become
very small even in the worst case.

An alternative approach is to handcraft smaller input sets and run the bench-
mark programs to completion. The runs with the reduced data sets should be sta-
tistically equivalent to those with the longer runs in terms of the number of times
each function is called and the mix of instructions. The advantage of this method is
that there is no sampling, whereas in the phase method there is a potential source of
error in that only samples are simulated and the warm-up of some structures such
as caches might induce some error. The drawbacks of the reduced-data-set method
are that it cannot be automated (i.e., each program and data set constitute a specific
case) and that it is quite difficult to find good fits.

1.4 Summary

Microprocessors are based on the von Neumann model of a stored program com-
puter. Over more than three decades, the contents of a single chip have grown from
a simple CPU with one ALU to multiple complex processors with their own cache
hierarchies. Within each processor instructions are pipelined, and several instruc-
tions can occupy the same stage of the pipe simultaneously.
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Technological advances have produced exponential increases in speed and in
the amount of logic that can be put on a chip. Frequencies have been capped since
the beginning of the twenty-first century, mostly because of heating problems due
to power dissipation. Moore’s law, which predicts that the number of transistors on
a chip will double every two years, is still valid and will remain so until at least 2025.
The speed limitations and Moore’s law are two of the main factors that have led to
the emergence of chip multiprocessors.

The performance of a microprocessor system and of its main memory hierar-
chy is inversely proportional to the execution time, which is given by the canonical
expression

EXCPU = Number of instructions × CPI × cycle time

where CPI is the number of cycles per instruction. CPI, or its reciprocal IPC (the
number of instructions per cycle), is the main metric of interest for computer archi-
tects, whose goal is to decrease CPI (increase IPC).

The performance of computer systems is measured with the use of benchmarks.
The SPEC CPU benchmarks suites are widely used for microprocessors. Execution-
driven simulators are the norm when components of CPI need to be assessed.
Execution-driven simulation is a (computer-)time-consuming process that can be
reduced by judicious selection of representative samples in the benchmarks.

1.5 Further Reading and Bibliographical Notes

Advances in technology are posted frequently on the Web. Figure 1.2 is abstracted
from several sources on the Web, such as Wikipedia and Intel sites.

Moore’s law was formulated in 1965 by Gordon Moore in a 4-page paper [M65]
entitled “Cramming More Components onto Integrated Circuits.” Moore went on
to found Intel with Bob Noyce in 1968. Their first product was a memory chip. In
1971, they decided that memory was not the growth business they were looking for,
and they developed the first microprocessor, the 4004. The rest is history. Figure 1.3
or an equivalent can be seen on many Web sites (just search for “Moore’s law
graph”). Figure 1.4 comes from a presentation by Fred Pollack at Micro32 (http://
www.lri.fr/∼de/lowpower.pdf).

Good introductions to performance metrics can be found in the books of Hen-
nessy and Patterson [HP07, PH04] (Chapter 2 in the 2004 undergraduate text, Chap-
ter 1 in the 2007 graduate one). Amdahl’s law [A67] was first formulated during
a panel at the Spring Joint Computer Conference in 1967. Gene Amdahl was the
advocate for the (fast) single-processor approach, while other panelists touted var-
ious forms of parallelism. Culler, Singh, and Gupta [CSG99] discuss superlinear
speedup and scaling in general (Chapter 4). When to use means or rates, and some
ill-conceived ideas about the geometric mean as applied to benchmark results, were
first discussed by James Smith [S88]. A follow-up on how to apply weights to arith-
metic and harmonic means is given by Lizy John [J04] (cf. Exercise 14). Citron et al.
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[CHG06] argue that in most cases the choice of what mean to use is of little conse-
quence.

All the benchmarks listed in Section 1.3.1 are available on the Web. Informa-
tion on many currently used benchmarks can be found at http://www.netlib.org/
benchmark/. The original Whetstone benchmark was written in Algol (1976) by
Curnow and Wichman [CW76], and then in FORTRAN for greater dissemination
and for double-precision floating-point experiments. It was rewritten in C ten years
later. Weicker [W84] developed Dhrystone in 1984. The first set of 14 Livermore
loops was introduced in the early 1970s. A new set of 24 FORTRAN loops became
available in the early 1980s (see the paper by McMahon [M88]). The Linpack bench-
mark was created under Jack Dongarra’s leadership in 1979 [DBMS79]. It has been
used to maintain a list of the 500 most powerful computer systems, the Top 500. A
retrospective on its use can be found in a paper by Dongarra et al. [DLP03].

A wealth of information on the SPEC benchmarks, including the benchmarks
themselves, how to obtain them, and how to use them, can be found at http://www
.specbench.org/. A description of each benchmark in the 2006 CPU suite can be
found in Henning [H06]. The TPC council’s home page is at http://www.tpc.org/.

Many research papers have charts of the form given in Figure 1.6. The latter is
extracted from Romer et al. [RLVWWBBL96]. A special issue of IEEE Computer
Magazine (February 2002) reports on four different execution-driven simulators,
including SimpleScalar [ALE02], the one most often used in academia. Informa-
tion on Superscalar (tutorials, how to download it, etc.) is on the WWW at http://
www.simplescalar.com/. Sherwood et al. [SPHSC03] describe phase selection. How
to craft smaller input sets for SPEC CPU2000 was investigated at the Univer-
sity of Minnesota [KL02] (see the MinneSPEC project: http://www.arctic.umn.edu/
minnespec/index.shtml).

EXERCISES

1. (Section 1.1) Draw a chart similar to the one in Figure 1.2 indicating the maxi-
mum number of transistors put on an Intel Pentium chip in a given year. Start your
chart in 1993 and end it in the current year. Does the trend follow Moore’s law?

2. (Section 1.2.1) Of the three factors in Eq. (2) (EXCPU = Number of instructions ×
CPI × cycle time), which is most influenced by:

(a) The technology
(b) The compiler
(c) The computer architect

3. (Section 1.2.1) In Example 1 of Section 1.2.1, we assumed that we had a “short”
pipeline, because the branch misprediction cost was only 3 cycles in the case of a
mispredicted branch taken. As we shall see, modern microprocessors have penal-
ties that may be as large as 15 or 20 cycles. Keeping all other parameters the same
as in the example and assuming that a branch-not-taken strategy has been imple-
mented, plot CPI vs. branch misprediction cost when the latter varies between 3 and
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20 cycles. Do your computations argue for sophisticated branch predictors when the
pipelines become “deeper”?

4. (Section 1.2.1) In Example 1 of Section 1.2.1, we assumed that the cache miss
penalty was 20 cycles. With modern processors running at a frequency of 1 to 3
GHz, the cache miss penalty can reach several hundred cycles (we will see how this
can be somewhat mitigated by a cache hierarchy). Keeping all other parameters the
same as in the example, plot CPI vs. cache miss penalty cost when the latter varies
between 20 and 500 cycles (choose appropriate intervals). Do your computations
argue for the threat of a “memory wall” whereby loading instructions and data could
potentially dominate the execution time?

5. (Section 1.2.1) When running an integer benchmark on a RISC machine, the
average instruction mix was as follows:

Instructions Average Frequency

Load 26%
Store 9%
Arithmetic 14%
Compare 13%
Cond. branch 16%
Uncond. branch 1%
Call/returns 2%
Shift 4%
Logical 9%
Misc. 6%

The following measurements of average CPI for individual instruction categories
were made:

Instruction type Average CPI (clock cycles)

All ALU instructions 1
Load–store 1.4

Conditional branches:
Taken 2.0
Not taken 1.5

Jumps 1.2

Assume that 60% of the conditional branches are taken and that all instructions in
the Misc. category are ALU instructions. What are the CPI and IPC of the bench-
mark on this RISC machine?

6. (Section 1.2.1) Give an equation relating the performance measure MIPS, IPC,
and the cycle time c. If from one generation of processors to the next c decreases by
50%, how should the value of IPC change so that MIPS is doubled? In view of the
results of Exercises 3 and 4, do you think this is possible?
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7. (Section 1.2.1) Machine M runs at 3 GHz. When running program P, its CPI =
1.5.

(a) How many instructions will be executed during 1 second while running pro-
gram P?

(b) While running program P, the mouse has to be polled 30 times per sec-
ond. The polling routine requires executing 200 instructions with a CPI
of 2. What is the overhead, that is, the fraction of time used in polling the
mouse? Is it significant?

8. (Section 1.2.1) Consider two implementations M1 and M2 of the same ISA. We
are interested in the performances of two programs P1 and P2, which have the fol-
lowing instruction mixes:

Operations P1 P2

Load/store 40% 50%
ALU 50% 20%
Branches 10% 30%

The CPIs for each machine are:

Operations M1 M2

Load–store 2 2
ALU 1 2
Branches 3 2

(a) Assume that the clock rate of M1 is 2 GHz. What should be the clock rate
of M2 so that both machines have the same execution time for P1?

(b) Assume now that both machines have the same clock rate and that P1 and
P2 execute the same number of instructions. Which machine is faster for a
workload consisting of equal runs of P1 and P2?

(c) Find a workload (using only P1 and P2) that makes M1 and M2 have the
same performance when they have the same clock rate.

9. (Section 1.2.1) A processor M-5 has a five-stage pipeline and a clock cycle time of
10 ns. A newer implementation of the same instruction set in a processor M-7 uses
a seven-stage pipeline and a cycle time of 7.5 ns.

(a) Define the maximum throughput of a pipeline. Which of M-5 and M-7 has
better maximum throughput?

(b) Consider now a loop of five instructions (four arithmetic instructions and a
branch to the beginning of the loop). There is a dependency between two
consecutive arithmetic instructions in the loop. This dependency induces a
1 cycle stall in M-5 and a 2 cycle stall in M-7. The branch induces a 2 cycle
stall on M-5 and a 4 cycle stall on M-7. Which processor executes the loop
faster in “steady state’’ (i.e., you don’t have to consider the time it takes to
start up the pipeline in the first iteration and/or drain it in the last iteration)?
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(c) Assume now that the loop is unrolled once, that is, instead of n iterations of
four instructions and a branch, we have now n/2 iterations of eight instruc-
tions and a branch. Instead of one data dependency per loop, we now have
two data dependencies per unrolled loop. Which processor executes the
unrolled loop faster?

10. (Section 1.2.1) [PH04] Construct an example whereby two systems have the
same MIPS rating but one of them has an EXCPU smaller than the other one.

11. (Section 1.2.2) Illustrate Amdahl’s law in terms of speedup vs. sequential por-
tion of program by showing the speedup for N = 8 processors when the sequential
portion of the program grows from 1% to 25%.

12. (Section 1.2.2 – Amdahl’s law) With sequential execution occurring 15% of the
time:

(a) What is the maximum speedup with an infinite number of processors?
(b) How many processors are required to be within 20% of the maximum

speedup?
(c) How many processors are required to be within 2% of the maximum

speedup?

13. (Section 1.3.1) For each of the metrics specified, indicate which of the (weighted)
arithmetic, harmonic, or geometric mean you would use:

(a) An experiment where you have run the SPEC CPU2006 integer benchmark
on your laptop and noted the execution times of each program in the suite.

(b) Same experiment as in (a), but now you also run the suite on a computer
in your lab at the University. How do you compare the speeds of the two
machines?

(c) An experiment where you have simulated 100 million instructions in each
of 12 programs and measured CPI for each simulation.

(d) Same experiment as in (c), but now you report in terms of IPC.

14. (Section 1.3.10) [J04] It can be shown that weighted arithmetic mean (WAM)
and weighted harmonic mean (WHM) can lead to the same results if correct weights
are applied. Consider the MIPS measure where MIPSi = Ii/ti (Ii is the number of
instructions for program i in millions, and ti is the execution time Exi times 106).
Consider a benchmark of n programs with instructions counts Ii and execution times
ti, i = 1, . . . , n. Let N be the total number of instructions, and T the total execution
time for all programs.

(a) Show that if the weights for the arithmetic mean are ti/T and those for the
harmonic mean are Ii/N, then the WAM and WHM of the MIPSi are the
same.

(b) Show that for the CPI metric a WAM weighted with Ii and a WHM
weighted with ci, the number of cycles simulated in each program, will yield
the same result.

(c) How would you weigh the WAM and the WHM if you were measuring IPC
rather than CPI?
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(d) Show that for the speedup, a WAM weighted with execution time ratios in
the enhanced system and a WHM weighted with execution time ratios in
the base system will yield the same result.

(e) In general, given a metric A/B how should the arithmetic mean be weighted
in order to give the correct result? How should the harmonic mean be
weighted?
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2 The Basics

This chapter reviews features that are found in all modern microprocessors: (i)
instruction pipelining and (ii) a main memory hierarchy with caches, including the
virtual-to-physical memory translation. It does not dwell on many details – that is
what subsequent chapters will do. It provides solely a basis on which we can build
later on.

2.1 Pipelining

Consider the steps required to execute an arithmetic instruction in the von Neu-
mann machine model, namely:

1. Fetch the (next) instruction (the one at the address given by the program
counter).

2. Decode it.
3. Execute it.
4. Store the result and increment the program counter.

In the case of a load or a store instruction, step 3 becomes two steps: calculate a
memory address, and activate the memory for a read or for a write. In the latter case,
no subsequent storing is needed. In the case of a branch, step 3 sets the program
counter to point to the next instruction, and step 4 is voided.

Early on in the design of processors, it was recognized that complete sequential-
ity between the executions of instructions was often too restrictive and that parallel
execution was possible. One of the first forms of parallelism that was investigated
was the overlap of the mentioned steps between consecutive instructions. This led
to what is now called pipelining.1

1 In early computer architecture texts, the terms overlap and look-ahead were often used instead of
pipelining, which was used for the pipelining of functional units (cf. Section 2.1.6).

29
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2.1.1 The Pipelining Process

In concept, pipelining is similar to an assembly line process. Jobs A, B, and so on,
are split into n sequential subjobs A1, A2, . . . , An (B1, B2, . . . , Bn, etc.) with each Ai

(Bi, etc.) taking approximately the same amount of processing time. Each subjob is
processed by a different station, or equivalently the job passes through a series of
stages, where each stage processes a different Ai. Subjobs of different jobs overlap
in their execution: when subjob A1 of job A is finished in stage 1, subjob A2 will start
executing in stage 2 while subjob B1 of job B will start executing in stage 1. If ti is
the time to process Ai and tM = maxi ti, then in steady state one job completes every
tM. Throughput (the number of instructions executed per unit time) is therefore
enhanced. On the other hand, the latency (total execution time) of a given job, say
LA for A, becomes

LA = ntM, which may be greater than
n∑

i=1

ti .

Before applying the pipelining concept to the instruction execution cycle, let us
look at a real-life situation. Although there won’t be a complete correspondence
between this example and pipelining as implemented in contemporary processors,
it will allow us to see the advantages and some potential difficulties brought forth by
pipelining.

Assume that you have had some friends over for dinner and now it’s time to
clean up. The first solution would be for you to do all the work: bringing the dishes
to the sink, scraping them, washing them, drying them, and putting them back where
they belong. Each of these five steps takes the same order of magnitude of time, say
30 seconds, but bringing the dishes is slightly faster (20 seconds) and storing them
slightly slower (40 seconds). The time to clean one dish (the latency) is therefore
150 seconds. If there are 4 dishes per guest and 8 guests, the total cleanup time is
150 × 4 × 8 = 4800 seconds, or 1 hour and 20 minutes. The throughput is 1 dish
per 150 seconds. Now, if you enlist four of your guests to help you and, among the
five of you, you distribute the tasks so that one person brings the dishes, one by one,
to the second, who scrapes them and who in turn passes them, still one by one, to
the washer, and so on to the dryer and finally to the person who stores them (you,
because you know where they belong). Now the latency is that of the longest stage
(storing) multiplied by the number of stages, or 40 × 5 = 200 seconds. However,
the throughput is 1 dish per longest stage time, or 1 dish per 40 seconds. The total
execution time is 40 × 8 × 4 + 4 × 40 = 1360 seconds, or a little less than 23 minutes.
This is an appreciable savings of time.

Without stretching the analogy too far, this example highlights the following
points about pipelining:

� In order to be effective, the pipeline must be balanced, that is, all stages must
take approximately the same time. It makes no sense to optimize a stage whose
processing time is not the longest. For example, if drying took 25 seconds instead
of 30, this would not change the overall cleanup time.
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� A job must pass through all stages, and the order is the same for all jobs. Even
if a dish does not need scraping, it must pass through that stage (one of your
friends will be idle during that time).

� Buffering (holding a dish in its current partially processed state) between stages
is required, because not all stages take exactly the same time.

� Each stage must have all the resources it needs allocated to it. For example, if
you have only one brush and it is needed some of the time, by both the scraper
and the washer there will be some stalling in the pipeline. This situation is a
form of (structural) hazard.

� The pipeline may be disrupted by some internal event (e.g., someone drops a
dish and it breaks) or some external event (one of your coworkers is called on
the phone and has to leave her station). In these cases of exception or interrupt,
the pipeline must be flushed and the state of the process must be saved so that
when the exception or interrupt is removed, the operation can start anew in a
consistent state.

Other forms of hazards exist in processor pipelines that do not fit well in our exam-
ple: they are data hazards due to dependencies between instructions and control
hazards caused by transfers of control (branches, function calls). We shall return to
these shortly.

2.1.2 A Basic Five-stage Instruction Execution Pipeline

Our presentation of the instruction execution pipeline will use a RISC processor
as the underlying execution engine. The processor in question consists of a set of
registers (the register file), a program counter PC, a (pipelined) CPU, an instruction
cache (I-cache), and a data cache (D-cache). The caches are backed up by a memory
hierarchy, but in this section we shall assume that the caches are perfect (i.e., there
will be no cache misses). For our purposes in this section, the state of a running
process is the contents of the registers and of the program counter PC. Each register
and the PC are 32 bits long (4 bytes, or 1 word).

Recall that a RISC processor is a load–store architecture, that is, all instructions
except those involving access to memory have register or immediate operands. The
instructions are of same length (4 bytes in our case) and can be of one of three
types:

� Arithmetic–logical instructions, of the form Ri ← Rj opRk (one of the source
registers Rj or Rk can be replaced by an immediate constant encoded in the
instruction itself).

� Load–store instructions, of the form Ri ← Mem[Rj + disp] or Mem[Rj +
disp] ← Ri .

� Control instructions such as (conditional) branches of the form br (Rj opRk)
displ, where a taken branch (Rj op Rk is true) sets the PC to its current value
plus the displ rather than having the PC point to the next sequential instruc-
tion.



32 The Basics

IF ID EX Mem WB

IF/ID ID/EX EX/Mem Mem/WB

Figure 2.1. Highly abstracted pipeline.

As we saw at the beginning of this chapter, the instruction that requires the most
steps is a load instruction, which requires five steps. Each step is executed on a
different stage, namely:

1. Instruction fetch (IF). The instruction is fetched from the memory (I-cache) at
the address indicated by the PC. At this point we assume that the instruction
is not a branch, and we can increment the PC so that it will point to the next
instruction in sequence.

2. Instruction decode (ID). The instruction is decoded, and its type is recognized.
Some other tasks, such as the extension of immediate constants into 32 bits, are
performed. More details are given in the following.

3. Execution (EX). In the case of an arithmetic instruction, an ALU performs the
arithmetic or logical operation. In the case of a load or store instruction, the
address addr = Rj + disp is computed (disp will have been extended to 32 bits
in the ID stage). In the case of a branch, the PC will be set to its correct value for
the next instruction (and other actions might be taken, as will be seen in Section
2.1.4).

4. Memory access (Mem). In the case of a load, the contents of Mem[addr] are
fetched (from the D-cache). If the instruction is a store, the contents of that
location are modified. If the instruction is neither a load nor a store, nothing
happens during that stage, but the instruction, unless it is a branch, must pass
through it.

5. Writeback (WB). If the instruction is neither a branch nor a store, the result of
the operation (or of the load) is stored in the result register.

In a highly abstracted way, the pipeline looks like Figure 2.1. In between each
stage and the next are the pipeline registers, which are named after the left and right
stages that they separate. A pipeline register stores all the information needed for
completion of the execution of the instruction after it has passed through the stage
at its left.

If we assume that accessing the caches takes slightly longer than the operations
in the three other stages, that is, that the cache access takes 1 cycle, then a snapshot
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Figure 2.2. Snapshot of sequential program execution.

of the execution of a sequential program (no branches) is shown in Figure 2.2 (the
shaded parts indicate that some stages are shorter than the IF and Mem stages).

As can be seen, as soon as the pipeline is full (time t + 4), five instructions are
executing concurrently. A consequence of this parallelism is that resources cannot
be shared between stages. For example, we could not have a single cache unified
for instruction and data, because instruction fetches, that is, accesses to the I-cache
during the IF stage, occur every cycle and would therefore interfere with a load or
a store (i.e., with access to the D-cache during the Mem stage). This interference
would be present about 25% of the time (the average frequency of load–store oper-
ations). As mentioned earlier, some stage might be idle. For example, if instruction
i + 1 were an add, then at time t + 4 the only action in the Mem stage would be to
pass the result computed at time t + 3 from the pipeline register EX/Mem where it
was stored to the pipeline register Mem/WB.

It is not the intention to give a detailed description of the implementation of
the pipeline. In order to do so, one would need to define more precisely the ISA of
the target architecture. However, we shall briefly consider the resources needed for
each stage and indicate what needs to be stored in the respective pipeline registers.
In this section, we only look at arithmetic–logical and load–store instructions. We
will look at control instructions in Section 2.1.4.

The first two stages, fetch (IF) and decode (ID), are common to all instruc-
tions. In the IF stage, the next instruction, whose address is in the PC, is fetched,
and the PC is incremented to point to the next instruction. Both the instruction and
the incremented PC are stored in the IF/ID register. The required resources are the
I-cache and an adder (or counter) to increment the PC. In the ID stage, the opcode
of the instruction found in the IF/ID register is sent to the unit that controls
the settings of the various control lines that will activate selected circuits or reg-
isters and cache read or write in the subsequent three stages. With the presence of
this control unit (implemented, for example, as a programmable logic array (PLA)),
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Figure 2.3. Abstracted view of the pipeline with the control unit.

the abstracted view of the pipeline becomes that of Figure 2.3. In addition to the
opcode decoding performed by the control unit, all possible data required in the
forthcoming stages, whether the instruction is an arithmetic–logical one or a load–
store, are stored in the ID/EX register. This includes the contents of source registers,
the extension to 32 bits of immediate constants and displacements (a sign extender
is needed), the name of the potential result register, and the setting of control lines.
The PC is also passed along.

After the IF and ID stages, the actions in the three remaining stages depend
on the instruction type. In the EX stage, either an arithmetic result is computed
with sources selected via settings of adequate control lines, or an address is com-
puted. The main resource is therefore an ALU, and an ALU symbol for that stage
is introduced in Figure 2.3. For both types of instruction the results are stored in
the EX/Mem register. The EX/Mem register will also receive from the ID/EX reg-
ister the name of the result register, the contents of a result register in the case of
a store instruction, and the settings of control lines for the two remaining stages.
Although passing the PC seems to be unnecessary, it is nonetheless stored in the
pipeline registers. The reason for this will become clear when we deal with excep-
tions (Section 2.1.4). In the Mem stage, either a read (to the D-cache) is performed
if the instruction is a load, or a write is performed if the instruction is a store, or else
nothing is done. The last pipeline register, Mem/WB, will receive the result of an
arithmetic operation, passed directly from the EX/Mem register, or the contents of
the D-cache access, or nothing (in the case of a store), and, again, the value of the
PC. In the WB stage the result of the instruction, if any, is stored in the result regis-
ter. It is important to note that the contents of the register file are modified only in
the last stage of the pipeline.

2.1.3 Data Hazards and Forwarding

In Figure 2.2, the pipeline is ideal. A result is generated every cycle. However, such
smooth operation cannot be sustained forever. Even in the absence of exceptional
conditions, three forms of hazards can disrupt the functioning of the pipeline. They
are:
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1. Structural hazards, when stages compete for shared resources or when buffers
(e.g., pipeline registers between stages) overflow. In our simple case, we have
avoided this form of hazards.

2. Data hazards, when an instruction in the pipeline depends on an instruction that
has not yet completed its operation.

3. Control hazards, when the flow of control is not sequential.

Data hazards occur because of data dependencies between instructions that are con-
currently in the pipeline. More specifically, assume that the execution of instruction
i must precede that of instruction j in order to respect the semantics of the program
order. We say that instruction j is data-dependent on instruction i if the output of
instruction i is an input operand for instruction j. Such a dependency is called a
read-after-write, or RAW, dependency. Consider the following example:

EXAMPLE 1:

i : R7 ← R12 + R15
i + 1: R8 ← R7 − R12
i + 2: R15 ← R8 + R7

There are three RAW dependencies:

� Instruction i + 1 has a RAW dependency with instruction i, because one of
its input registers, register R7, is the output register of instruction i.

� Instruction i + 2 has a RAW dependency with instruction i, for the same
reason.

� Instruction i + 2 has a RAW dependency with instruction i + 1, because
one of its input registers, register R8, is the output register of instruction
i + 1.

Register R12, which is a common source register for instructions i and i + 1,
does not cause any dependency.

Another form of dependency, called write-after-read, or WAR, dependency, (or
also called anti-dependency) appears in Example 1, in that register R15, an input
operand of instruction i, is the output register of instruction i + 2. This will not cause
any problem for our simple pipeline – nor would have an output dependency, or
write-after-write, or WAW, dependency, which occurs when two instructions have
the same output register. However, these dependencies will have to be remedied
when we look at more complex machines (Chapter 3). We simply note at this point
that a RAW dependency is a procedural matter: the algorithm (program) that is
running dictates it. On the other hand, WAR and WAW are naming dependen-
cies. If the compiler had been smarter, or if there were more registers, one instance
of R15 could have been named, say, R16, and thus the WAR would have been
avoided.

Consider now the execution of this sample program on the pipeline. If instruc-
tion i starts at time t, the result register R7 will be written at time t + 4. However, it
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Figure 2.4. Illustration of RAW data hazards.

needs to be read from the register file to the ID/EX register at time t + 2 for instruc-
tion i + 1 and at time t + 3 for instruction i + 2. This is illustrated in Figure 2.4. (The
RAW for register R8 is not shown in the figure.)

A possible solution would be to stall the pipeline until the result is available.
Fortunately, this stalling can be avoided, for the needed result is already present
in a stable form in the pipeline. As can be seen, the result at time t + 2 is present
in the ID/EX register, and at time t + 3 is present in the EX/Mem register. It is
therefore sufficient to provide paths (and multiplexer settings) so that the result can
be forwarded as inputs to the ALU. This is shown in Figure 2.5.

Note that if instruction i + 3 had R7 as an input operand, it would be available
from the register file if the implementation is such that writing of the register file
occurs in the first half of a cycle and reading of it occurs in the second half.

The forwarding paths from EX/Mem and Mem/WB to the inputs of the ALU
and the associated control logic resolve RAW dependencies for arithmetic–logical
operations. However, there are other instances of RAW dependencies that must be
taken care of, namely those involving load–store operations. Consider the following
sequence of two instructions:

EXAMPLE 2:

i : R6 ← Mem[R2]
i + 1: R7 ← R6 + R4

There is a RAW dependency between these two instructions, because register
R6 is the output register of instruction i and an input register to instruction i + 1.
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Figure 2.5. Forwarding to resolve RAW hazards.

No in-time forwarding is possible in this case, because the result of the load in
the pipeline will be available at the end of the Mem stage (say, time t + 3 if
instruction i starts at time t), and the content of that register is needed as an
input to the EX stage of instruction i + 1 at time t + 2. There is no choice at this
point. The pipeline must be stalled for one cycle (graphically, as shown in Figure
2.6, a bubble is inserted in the pipe). Forwarding will still occur, but one cycle
later. So we need to expand the forwarding control unit to include the case of a
load followed by a dependent instruction and include a stalling control unit.

Stalling entails impeding the progress of one instruction (instruction i + 1 in
Example 2) as well as preventing a new instruction from being fetched, because
we want the contents of the IF/ID register to remain the same. This can be imple-
mented via a stalling unit which will detect at the ID stage of instruction i + 1 that
the previous instruction is a load (information available in the ID/EX register) and
that the result register of the load is the same as one of the input registers of the
current instruction. In that case a no-op is inserted in the pipeline (for example, by
setting control lines so that neither memory nor the register file will be modified),
and the reading of the I-cache and increment of the PC are disabled for the next
cycle.

Schematically, the pipeline now looks like Figure 2.7. The “Stalling unit” is
drawn close to the control unit, and the “Forwarding unit” close to the pipeline
registers that contain the information and the data needed for forwarding.
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Figure 2.6. The load stalling case.

There are still a couple more details that need to be taken care of in the case of
forwarding. First, consider the case where two consecutive instructions use the same
output register and this output register is the basis for a RAW dependency in the
third instruction, as in

i : R10 ← R4 + R5
i + 1: R10 ← R4 + R10
i + 2: R8 ← R10 + R7

Instruction i + 2 has RAW dependencies with instruction i and with instruction i + 1.
Clearly the semantics of the program argue for the result of instruction i + 1 to be
forwarded to instruction i + 2. This priority must be encoded in the logic of the for-
warding unit. Second, a common sequence of two instructions, found frequently in

IF ID Mem WB

IF/ID
ID/EX

EX/Mem Mem/WB

EX

Control UnitStalling Unit

Forwarding Unit

Figure 2.7. Abstracted view of the pipeline after resolving data hazards.
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routines where some part of memory is to be copied to another part, consists of a
load of some data followed by a store of the same data, as in

i : R5 ← Mem[R6]
i + 1: Mem[R8] ← R5

The forwarding unit must recognize this case so that the contents of the Mem/WB
register after the load are forwarded as the data to be written in memory in the next
cycle, rather than the contents of register R5.

2.1.4 Control Hazards; Branches, Exceptions, and Interrupts

Pipelining works well when there is no transfer of control, because the IF stage is
based on the PC being incremented at each cycle to fetch the next instruction. Trans-
fer of control – such as conditional branches that are taken, unconditional branches,
function calls, and returns – disrupts the sequential flow. A break in the sequential
flow creates control hazards. In this chapter we consider only conditional branches;
we shall treat transfer of control more completely when we look in depth at branch
prediction in Chapter 4.

Let us first analyze the steps required after IF and ID when a branch of the form
br (Rj op Rk) displ is encountered, namely:

� Comparison between registers Rj and Rk and setting of a flag for the outcome
of the comparison.

� Computation of the target address PC + displ (if necessary).
� Modification of the PC (if necessary).

The “if necessary” steps are required when the conditional branch is taken. We first
notice that if the branch is taken, we need to use an ALU twice: once to perform the
comparison, and once to compute the target address. In our pipeline, so far, there
is only one ALU in the EX stage. The adder or counter used to increment the PC
in the IF stage cannot be reused for other purposes, because it is accessed on every
cycle.

A first solution is to reuse the ALU in the EX stage. This implies modifications
to the data path and the control unit (see the exercises). Since ALUs are not expen-
sive, we discard this solution and introduce a new ALU. Following the precept that
data for different instruction types are prepared in the ID stage, we perform the
branch target calculation in the ID stage for every instruction and store the result in
the ID/EX register. Therefore, the new ALU will be activated in the ID stage. If the
instruction is not a branch, the information will not be used. If the instruction is a
branch, the Boolean operation on the source registers will be done in the EX stage,
so that the outcome of the branch will be known during that stage and the PC can
be modified during that cycle.

Figure 2.8 illustrates what happens. If the branch is not taken, the two instruc-
tions fetched after the branch are the correct ones. If the branch is taken, they are
wrong and their potential results must be voided.



40 The Basics

Branch decision known at this stage

These two instructions are wrong if branch
is taken

The PC is correct, and we fetch the
right instruction

IF

IF

IF

IF

Branch instruction

Figure 2.8. Control hazard: the branch is taken.

A first solution to remedy the situation is to always stall 2 cycles when a branch
is encountered. A branch will be identified during the ID cycle. For the next 2 cycles
no-ops are inserted in the pipe, as was done for the case of the 1 cycle load depen-
dency, and fetching of new instructions is prevented. At the end of this second cycle,
either the PC is left unchanged (the branch was not taken) or the PC is loaded
with the target address that was computed in the ID stage and passed along to the
EX/Mem pipeline register.

A better solution can be implemented at no extra cost. Since in the case of a not-
taken branch the two instructions following the branch were the correct ones, we can
predict that the branch is not taken. If we mispredict, that is, the branch is taken, we
shall have to nullify the actions of the two instructions following the branch. Since at
that point these two instructions following the branch have not yet reached a stage
where either memory or registers can be modified, we can again no-op them.

Unfortunately, branches are taken slightly more often than not. So it would
be better to have a branch-taken strategy. Better yet would be a predictive strat-
egy yielding either a “taken” or a “not taken” outcome with a high probability
of being right. The importance of such a strategy is not evident in the five-stage
pipeline design. However, with deeper pipelines, where the outcome of the branch
is not known until 10 to 20 cycles after it has been decoded, branch prediction has
a great influence on performance. A full section of Chapter 4 is devoted to this
topic.

So far, we have only considered control hazards generated as consequences of
program flow. Two other types of control hazard can occur: exceptions and inter-
rupts. Exceptions, sometimes called program or internal interrupts, arise as direct
consequences of instruction execution. In our simple pipeline they can occur at any
stage except the last one. For example, on removing the assumption of a perfect
memory hierarchy, page faults can happen during the IF for instruction fetching
or during Mem for either load or store instructions. Illegal opcodes are detected
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during the ID stage. Arithmetic exceptions, such as division by zero, underflow, and
overflow, are recognized during the EX stage. Interrupts, on the other hand, are
not linked to a specific program. They are external stimuli, asynchronous with pro-
gram execution. Examples of interrupts are I/O termination, time-outs, and power
failures.

Upon detection of an exception or an interrupt, the process state2 must be saved
by the operating system. Then the exception or interrupt condition must be cleared
by a handler routine, which can take various forms such as aborting the program
(e.g., for a division by zero), “correcting” the exception (e.g., for page faults), or
performing tasks totally independent of the process (e.g., I/O termination). If the
program has not been aborted, it will be scheduled to be restarted sometime in the
future. When it is time for the program to restart, its state is restored and execution
resumes.

Let us look at how pipelining affects the treatment of exceptions. Assume that
the exception is produced by the execution of instruction i. We say that we have a
precise exception mechanism if:

� instructions before i in program order currently in the pipeline (i.e., instructions
i − 1, i − 2, . . .) complete normally, and their results are part of the saved process
state;

� instruction i and instructions after it already in the pipe (i.e., instructions i, i + 1,
i + 2, . . .) will be no-opped;

� the PC of the saved process state is the PC corresponding to instruction i: when
the process is restarted, it will be restarted at instruction i.

This last condition shows why we kept the PCs of instructions in the pipeline moving
from stage to stage.

In terms of implementation, precise exceptions are easy to handle in the case of
a simple pipeline like the one we have presented so far. When the exception is de-
tected, a flag is inserted in the pipeline register at the right of the stage where the
exception occurred, and all other control lines in that pipeline register are set as
for a no-op. Fetching of new instructions is prevented. When the flag reaches the
Mem/WB pipeline register, the PC found in that pipeline register is saved in an
exception PC register. All pipeline registers are then zeroed out, and transfer of con-
trol is given to the exception handler, whose first task will be to save the process state
(registers and exception PC). Note that with this scheme exceptions are handled in
program order, the desired effect, and not necessarily in temporal order. To see
why, consider the case of instruction i having a divide-by-zero exception (stage EX)
and instruction i + 1 generating an instruction page fault (stage IF). If instruction i is
fetched at time t, its exception will happen at time t + 2, whereas that of instruction
i + 1 will happen at time t + 1. At time t + 1 an exception flag will be inserted in the
IF/ID pipeline register. This will be propagated to the ID/EX register at time t + 2,

2 At this point, no distinction is made between process and program. We elaborate on this point in
Section 2.3.
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but at that time another exception flag will be set in the EX/Mem register because
of instruction i’s exception. This second flag will be the first one checked (at time
t + 3), and therefore the exceptions will be treated in program order.

Handling of precise exceptions becomes more complex in processors with mul-
tiple pipelines and with some stages in these pipelines spanning several cycles. We
shall return to this topic in Chapter 3.

Handling of interrupts is quite similar. The presence of interrupts is checked at
every cycle. If an interrupt is pending (indicated, for example, by the setting of a
special bit as part of the process state), the fetching of instructions of the running
program is prevented. The pipeline is flushed, that is, all instructions currently in the
pipe are completed. When the last one is done, the process state is saved with the
exception PC register containing the PC of the first instruction that was not fetched.
Now the interrupt handler can be activated as was the exception handler.

Detailed methods of handling an exception or interrupt are outside the scope of
this book. Suffice it to say that there are two general ways to transfer control to the
right routine in the operating system (O.S.). In both cases, the cause of the exception
or interrupt is encoded by the hardware. In the first method, the encoding is saved
as part of a status register that is included in the process state. When the O.S. is
called to treat the exception, it will decode the contents of that register and transfer
them to the appropriate routine. Note that the address of the entry routine in the
O.S. must itself be available as an input to the PC. In the second method, called
vector interrupt, the encoding serves as an index to a vector of addresses, of which
each element is an address of a specific O.S. routine that can treat the exception.
Once the process state has been saved, the PC is loaded with the appropriate vector
element.

2.1.5 Alternative Five-Stage Pipeline Designs

If we step back and look at the design of the five-stage pipeline as presented in
the previous sections, we can see that the ordering and functionality of some of the
stages are mandated by the sequence of actions needed to execute an instruction,
whereas others are left to the will of the designer or may be dependent on the ISA of
the target architecture. More specifically, the instruction and decode stages (IF and
ID) cannot be moved around, and if we adhere to the philosophy that the process
state can only be modified in the last stage, the writeback stage (WB) has to remain
at its place. Moreover, the load–store operations require the EX stage to be able
to perform address generation (AG) computations and to be followed by the Mem
stage to access the D-cache. So, a better name for the EX stage would be EX-AG
to indicate its double function. With this ordering we saw that:

1. We could avoid RAW dependencies between arithmetic instructions at the cost
of forwarding paths between the EX-AG/Mem and Mem/WB pipeline registers
and the inputs of the ALU of the EX-AG stage (cf. Figure 2.7).

2. We could not avoid a 1 cycle load latency penalty when the result of a load
operation was a source operand for the next instruction.
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Figure 2.9. Alternative five-stage pipeline design.

3. Branch resolution could be performed during the EX-AG stage, resulting in a
2 cycle branch penalty on a taken branch (with a branch-not-taken prediction
policy).

4. The Mem stage was not used for arithmetic–logical instructions.

Suppose that there are many two-instruction sequences of the following form:

Load variable x in register R.
Use register R as a source operand.

Then the 1 cycle load latency penalty can be a serious impediment to performance.
A possible alternative is to have the five stages be IF, ID, AG, EX/Mem, and WB,
that is, the third stage devoted only to addressing generation computations, where-
as D-cache accesses for load–store operations and general ALU operations for
arithmetic–logical instructions are performed in the fourth stage. An abstracted
view of this pipeline is shown in Figure 2.9.
With respect to the four points just listed:

1. We still avoid RAW dependencies between arithmetic–logical instructions, but
this is at the cost of one extra ALU. On the other hand, the forwarding unit is
slightly simplified.

2. The 1 cycle load latency is avoided, but we have created a 1 cycle address gen-
eration latency penalty in the case where an arithmetic instruction generates a
result for a register used in an address computation, as in

i : R5 ← R6 + R7
i + 1: R9 ← Mem[R5]

Note that a stalling control unit is still required, although its logic is different.
3. The branch resolution that used to be done in the EX stage needs to be done

now in the AG stage, but this should not be a problem, for we need an adder
(ALU) for the address computation in that stage.

4. Now it is the AG stage that is unused for arithmetic–logical operations.
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Which of these two designs is better is difficult to answer. Both designs have been
commercially implemented, the first one in the MIPS series of computers and the
second in the Intel 486. This example serves simply to show that even for rather
simple hardware structures the design space is subject to choices. In fact, “better” is
itself hard to define. If performance (pipeline throughput) is the metric of interest,
compiler optimizations can make the difference in opportunities for avoiding load
latency or address generation latency penalties. If expanded hardware is the crite-
rion, the second solution appears more expensive. However, this is not necessarily
the case, and it might depend on the ISA. For example, if the ISA allows auto-
increment of index registers in load–store operations (as in the IBM PowerPC and
many complex instruction set computers (CISCs)), then an ALU would have to be
included in the first design (see the exercises). Even in the same family of processors,
subtle changes might occur in the ordering stage. The DEC Alphas 21064 and 21164
are a case in point, where in the later version, the 21164, the load latency penalty
was decreased from 2 to 1 cycle at the expense of a branch-taken penalty increase
of 1 cycle. It was felt that more accurate branch prediction techniques in the 21164
would compensate for the increase in branch penalty, thus making the decrease in
load latency penalty more valuable.

2.1.6 Pipelined Functional Units

The instruction execution pipelines that we have presented so far can be considered
as first-generation. They are shallow and they are simple. In current processors the
pipelines are much deeper, and each of the five stages is itself decomposed into
several stages. How IF, ID, and WB are expanded and designed is treated in Chap-
ters 4 and 5. The memory hierarchy and the Mem stage will be presented first in the
forthcoming sections in this chapter and in more detail in Chapter 6. Our interest in
this section is centered on the EX stage.

EX stages are executed in functional units. In modern microprocessors, there
exist functional units for:

� Fast integer arithmetic and logical operations.
� Slow integer arithmetic operations, essentially multiply, multiply–add (for dot

products), and divide.
� Floating-point operations such as add, multiply, divide, and square root.

Fast integer arithmetic can be done in a single cycle. In first-generation pipelined
processors, the slow arithmetic and the floating-point (f-p) operations were imple-
mented either in software or by using a coprocessor or by a combination of both.
In current microprocessors, all these operations are performed in hardware with
specialized functional units for the major categories of instructions. In general
these functional units are pipelined, the exceptions being nonpipelined division
and square root (if present). When the unit is pipelined, there are two parameters
of interest: the number of stages, and the minimum number of cycles before two
independent (no RAW dependency) instructions of the same type can enter the
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functional unit. For example, in some implementations of the Intel P6 (Pentium
Pro and followers) microarchitecture, integer multiplies (four stages) and f-p adds
(three stages) can enter their respective units at every cycle, whereas 2 cycles must
separate f-p multiplies (five stages).

We briefly describe how f-p adds and f-p multiplies can be pipelined. Recall that
the IEEE standard representation for f-p arithmetic requires that single-precision
and double-precision numbers be represented respectively with 32 and 64 bits. In
the following, we limit ourselves to single precision, although most scientific com-
putations use double precision. However, the principles are the same regardless of
the precision. In single precision, the representation of a number consists of three
fields:

� A sign bit S (S = 0 for positive and S = 1 for negative numbers).
� 8 bits of exponent E. The base3 for the exponent is 2. The exponent is biased,

that is, the real value of the exponent is the difference between E and 127
(01111111 in binary).

� A normalized mantissa F of 32 – 1 − 8 = 23 bits, where the normalization implies
that the most significant bit of the mantissa does not need to be represented.
Under usual conditions, all arithmetic must result in normalized numbers.

Thus, the value of a normalized f-p number V is V = (−1)S × 2E−127 × 1.F
Special patterns are reserved for plus and minus infinity (overflow and under-

flow) as well as for NaN (Not a Number) occurrences that result from incorrect
operations such as division by zero (cf. the nonprecise exceptions in Chapter 3).
Zero is represented by 32 null bits, although a −0 is possible (S = 1 and all other
bits 0). There are specific rules for rounding, such as rounding to the nearest even,
toward 0, and toward plus or minus infinity. Details are beyond the scope of this
section.

Let us start with f-p addition, which, conceptually, is slightly more complex than
multiplication because of the inherent sign and magnitude representation of the
mantissas. Let (S1, E1, F1) and (S2, E2, F2) be the two numbers to be added. Addi-
tion (and subtraction with trivial changes) proceeds as follows:

1. Compare exponents. Find the larger number by comparing E1 and E2. If E1 <

E2, swap the two operands so that D = E1 − E2 is positive. Tentatively set the
result exponent to E1 and the result sign to S1.

2. Prepare and align mantissas. Insert a 1 at the left of F1 and at the left of
F2. If S1 �= S2, then replace F2 by its 2’s complement. Perform a right arithmetic
shift for F2 of D bits.

3. Add mantissas.

3 Some older machines used a different representation. In particular, IBM System/360 and 370 (and
successors) used base 16, thus allowing a wider range of values to be represented – with a concomi-
tant loss in precision, because each digit was 4 bits wide.
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4. Normalize and round off. Shift the result mantissa right by one bit if there was
a carry-out in the preceding step, and decrease the result exponent by 1. Other-
wise, shift left until the most significant bit is a 1, increasing the result exponent
by 1 for each bit shifted. Suppress the leftmost 1 for the result mantissa. Round
off.

Step 3 (add mantissas) is a little more complex than it appears. Not only does a
carry-out need to be detected when both operands are of the same sign, but also,
when D = 0 and the two operands are of different signs, the resulting mantissa may
be of the wrong sign. Its 2’s complement must then be taken, and the sign of the
result must be flipped.

This algorithm lends itself quite well to pipelining in three (or possibly four)
stages: compare exponents, shift and add mantissas (in either one or two stages),
and normalize and round off.

The algorithm for multiplication is straightforward:

1. Add exponents. The resulting exponent is E = E1 + E2 − 127 (we need to sub-
tract one of the two biases). The resulting sign is positive if S1 = S2 and negative
otherwise.

2. Prepare and multiply mantissas. The preparation simply means inserting 1’s at
the left of F1 and F2. We don’t have to worry about signs.

3. Normalize and round off. As in addition, but without having to worry about a
potential right shift.

Because the multiplication takes longer than the other two steps, we must find a
way to break it into stages. The usual technique is to use a Wallace tree of carry–
save adders (CSAs).4 If the number of CSAs is deemed too large, as for example
for double-precision f-p arithmetic, a feedback loop must be inserted in the “tree.”
In that case, consecutive multiplications cannot occur on every cycle, and the delay
depends on the depth of the feedback.

With the increase in clock frequencies, the tendency will be to have deeper
pipelines for these operations, because less gate logic can be activated in a single
cycle. The optimal depth of a pipeline depends on many microarchitectural factors
besides the requirement that stages must be separated by stable state components,
that is, the pipeline registers. We shall return briefly to this topic in Chapter 9.

2.2 Caches

In our pipeline design we have assumed that the IF and Mem stages were always
taking a single cycle. In this section, we take a first look at the design of the memory
hierarchy of microprocessor systems and, in particular, at the various organizations

4 CSAs take three inputs and generate two outputs in two levels of AND–OR logic. By using a log–
sum process we can reduce the number of operands by a factor 2/3 at each level of the tree. For
a multiplier and a multiplicand of n bits each, we need n − 2 CSAs before proceeding to the last
regular addition with a carry–lookahead adder. Such a structure is called a Wallace tree.
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Figure 2.10. Processor–memory performance gap (note the logarithmic scale).

and performance of caches, the highest levels in the hierarchy. Our assumption was
that caches were always perfect. Naturally, this is not the reality.

In early computers, there was only one level of memory, the so-called primary
memory. The secondary memory, used for permanent storage, consisted of rotat-
ing devices, such as disks, and some aspects of it are discussed in the next section.
Nowadays primary memory is a hierarchy of components of various speeds and
costs. This hierarchy came about because of the rising discrepancy between proces-
sor speeds and memory latencies. As early as the late 1960s, the need for a memory
buffer between high-performance CPUs and main memory was recognized. Thus,
caches were introduced. As the gap between processor and memory performance
increased, multilevel caches became the norm. Figure 2.10 gives an idea of the pro-
cessor and memory performance trends during the 1990s. While processor speeds
increased by 60% per year, memory latencies decreased by only 7% per year. The
ratio of memory latency to cycle time, which was about 5:1 in 1990, became more
than one order of magnitude in the middle of the decade (the memory gap) and
more than two orders of magnitude by 2000 (the memory wall). Couched in terms
of latencies, the access time for a DRAM (main memory) is of the order of 40 ns,
that is, 100 processor cycles for a 2.5 GHz processor.

The goal of a memory hierarchy is to keep close to the ALU the information
that is needed presently and in the near future. Ideally, this information should be
reachable in a single cycle, and this necessitates that part of the memory hierarchy,
a cache, be on chip with the ALU. However, the capacity of this on-chip SRAM
memory must not be too large, because the time to access it is, in a first approxi-
mation, proportional to its size. Therefore, modern computer systems have multi-
ple levels of caches. A typical hierarchy is shown in Figure 2.11 with two levels of
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Figure 2.11. Levels in the memory hierarchy.

on-chip caches (SRAM) and one level of off-chip cache (often a combination of
SRAM and DRAM), and main memory (DRAM).

Note that the concept of caching is used in many other aspects of computer sys-
tems: disk caches, network server caches, Web caches, and so on. Caching works
because information at all these levels is not accessed randomly. Specifically, com-
puter programs exhibit the principle of locality, consisting of temporal locality,
whereby data and code used in the past are likely to be reused in the near future
(e.g., data in stack, code in loops), and spatial locality, whereby data and code close
(in terms of memory addresses) to the data and code currently referenced will
be referenced again in the near future (e.g., traversing a data array, straight-line
code sequences).

Caches are much smaller than main memory, so, at a given time, they cannot
contain all the code and data of the executing program. When a memory reference
is generated, there is a lookup in the cache corresponding to that reference: the
I-cache for instructions, and the D-cache for data. If the memory location is mapped
in the cache, we have a cache hit; otherwise, we have a cache miss. In the case of a hit,
the content of the memory location is loaded either in the IF/EX pipeline register in
the case of an instruction, or in the Mem/WB register in the case of a load, or else the
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content of the cache is modified in the case of a store. In the case of a miss, we have
to recursively probe the next levels of the memory hierarchy until the missing item
is found. For ease of explanation, in the remainder of this section we only consider
a single-level cache unless noted otherwise. In addition, we first restrict ourselves to
data cache reads (i.e., loads). Reads for I-caches are similar to those for D-caches,
and we shall look at writes (i.e., stores) separately.

2.2.1 Cache Organizations

Caches serve as high-speed buffers between main memory and the CPU. Because
their storage capacity is much less than that of primary memory, there are four basic
questions on cache design that need to be answered, namely:

1. When do we bring the content of a memory location into the cache?
2. Where do we put it?
3. How do we know it’s there?
4. What happens if the cache is full and we want to bring the content of a location

that is not cached? As we shall see in answering question 2, a better formulation
is: “What happens if we want to bring the content of a location that is not cached
and the place where it should go is already occupied?”

Some top-level answers follow. These answers may be slightly modified because of
optimizations, as we shall see in Chapter 6. For example, our answer to the first
question will be modified when we introduce prefetching. With this caveat in mind,
the answers are:

1. The contents of a memory location are brought into the cache on demand, that
is, when the request for the data results in a cache miss.

2. Basically the cache is divided into a number of cache entries. The mapping of
a memory location to a specific cache entry depends on the cache organization
(to be described).

3. Each cache entry contains its name, or tag, in addition to the data contents.
Whether a memory reference results in a hit or a miss involves checking the
appropriate tag(s).

4. Upon a cache miss, if the new entry conflicts with an entry already there, one
entry in the cache will be replaced by the one causing the miss. The choice, if
any, will be resolved by a replacement algorithm.

A generic cache organization is shown in Figure 2.12. A cache entry consists of an
address, or tag, and of data. The usual terminology is to call the data content of an
entry a cache line or a cache block.5 These lines are in general several words (bytes)
long; hence, a parameter of the cache is its line size. The overall cache capacity,
or cache size, given in kilobytes (KB) or megabytes (MB), is the product of the
number of lines and the line size, that is, the tags are not counted in the overall

5 We will use line for the part of a cache entry and block for the corresponding memory image.
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Figure 2.12. Generic cache organization. If (part of) the address generated by the ALU
matches a tag, we have a hit; otherwise, we have a miss.

cache size. A good reason for discarding the tags in the terminology (but not in the
actual hardware) is that from a performance viewpoint they are overhead, that is,
they do not contribute to the buffering effect.

Mapping of a memory location, or rather of a sequence of memory words of
line-size width that we will call a memory block, to a cache entry can range from
full generality to very restrictive. If a memory block can be mapped to any cache
entry, we have a fully associative cache. If the mapping is restricted to a single entry,
we have a direct-mapped cache. If the mapping is to one of several cache entries,
we have a set-associative cache. The number of possible entries is the set-associative
way. Figure 2.13 illustrates these definitions.

Large fully associative caches are not practical, because the detection of a cache
hit or miss requires that all tags be checked in the worst case. The linear search
can be avoided with the use of content-addressable memories (CAMs), also called
associative memories. In a CAM, instead of addressing the memory structure as an
array (i.e., with an index), the addressing is by matching a key with the contents of
(part of) all memory locations in the CAM. All entries can be searched in parallel.
A matching entry, if any, will raise a flag indicating its presence. In the case of a fully
associative cache, the key is a part of the address generated by the ALU, and the
locations searched in parallel are the tags of all cache entries. If there is no match,
we have a miss; otherwise, the matching entry (there can be only one in this case)
indicates the position of the cache hit.

While conceptually quite attractive, CAMs have for main drawbacks that (i)
they are much more hardware-expensive than SRAMs, by a factor of 6 to 1, (ii) they
consume more power, and (iii) they are difficult to modify. Although fully associa-
tive hardware structures do exist in some cases, e.g., for write buffers as we shall
see in this section, for TLBs as we shall see in the next section, and for other hard-
ware data structures as we shall see in forthcoming chapters, they are in general very
small, up to 128 entries, and therefore cannot be use for general-purpose caches.
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Figure 2.13. Cache organizations.

In the case of direct-mapped caches, the memory block will be mapped to a
single entry in the cache. This entry is memory block address mod C, where C is the
number of cache entries. Since in general-purpose microprocessors C is a power of 2,
the entry whose tag must be checked is very easy to determine.

In the case of an m-way set-associative cache, the cache is divided into m banks
with C/m lines per bank. A given memory block can be mapped to any of m entries,
each of which is at address memory block address mod C/m in its bank. Detection
of a cache hit or miss will require m comparators so that all comparisons can be
performed concurrently.

A cache is therefore completely defined by three parameters: The number of
cache lines, C; the line size L; and the associativity m. Note that a direct-mapped
cache can be considered as one-way set-associative, and a fully associative cache as
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C-way associative. Both L and C/m are generally powers6 of 2. The cache size, or
capacity, S is S = C × L: thus either (C,L,m) or (S,L,m), a notation that we slightly
prefer, can be given to define the geometry of the cache.

When the ALU generates a memory address, say a 32-bit byte address, how
does the hardware check whether the (memory) reference will result into a cache hit
or a cache miss? The memory address generated by the ALU will be decomposed
into three fields: tag, index, and displacement. The displacement d, or line offset,
indicates the low-order byte within a line that is addressed. Since there are L bytes
per line, the number of bits needed for d is d = log2 L, and of course these bits are
the least significant bits of the address. Because there are C/m lines per bank, the
index i of the cache entry at which the m memory banks must be probed requires
i = log2(C/m) bits. The remaining t bits are for the tag. In the first-level caches that
we are considering here, the t bits are the most significant bits.

EXAMPLE 3: Consider the cache (S,m,L) with S = 32KB, m = 1(direct-mapped),
and L = 16B. The number of lines is 32 × 1024/16 = 2048. The memory refer-
ence can be seen as the triplet (t,i,d), where:

The displacement d = log L = log 16 = 4.
The index i = log(C/m) = log 2048 = 11.
The tag t = 32 − 11 − 4 = 17.

The hit–miss detection process for Example 3 is shown in Figure 2.14.
Let us now vary the line size and associativity while keeping the cache capac-

ity constant and see the impact on the tag size and hence on the overall hardware
requirement for the implementation of the cache. If we double the line size and keep
the direct-mapped associativity, then d requires one more bit; the number of lines is
halved, so i is decreased by 1; and therefore t is left unchanged. If we keep the same
line size but look at two-way set associativity (m = 2), then d is left unchanged, i
decreases by 1 because the number of lines per set is half of the original, and there-
fore t increases by 1. In addition, we now need two comparators for checking the hit
or miss, or more generally one per way for an m-way cache, as well as a multiplexer
to drive the data out of the right bank. Note that if we were to make the cache fully
associative, the index bits would disappear, because i = log(C/C) = log 1 = 0.

From our original four questions, one remains, namely: What happens if on a
cache miss all cache entries to which the missing memory block maps are already
occupied? For example, assume a direct-mapped cache. Memory blocks a and b
have addresses that are a multiple of C blocks apart, and a is already cached. Upon
a reference to b, we have a cache miss. Block b should therefore be brought into
the cache, but the cache entry where it should go is already occupied by block a.
Following the principle of locality, which can be interpreted as favoring the most
recent references over older ones, block b becomes cached and block a is evicted.

6 m is not necessarily a power of 2. In that case, if m′ is the smallest power of 2 larger than m, then
there are m banks of C/m′ lines.



2.2 Caches 53

Tag

Tag

Tag

Tag

Tag to match
with tag from
address
generated by
ALU

Data

Data

Data

Data

ALU address

t(17) i(11) d(2)

17 bits 128 bits

=? Mux

No; cache miss;
to main memory

Yes; cache hit

Data to ALU

Figure 2.14. Hit and miss detection. The cache geometry is (32 KB,1,16).

In the case of an m-way set-associative cache, if all m cache entries with the same
mapping as the block for which there is a miss are occupied, then a victim to be
evicted must be selected. The victim is chosen according to a replacement algorithm.
Following again the principle of locality, a good choice is to replace the line that has
been not been accessed for the longest time, that is, the least-recently used (LRU).
LRU replacement is easy to implement when the associativity m is small, for exam-
ple m ≤ 4. For the larger associativities that can happen in second- or third-level
caches, approximations to LRU can be used (Chapter 6). As long as the (maybe
two) most recently used (MRU) lines are not replaced, the influence of the replace-
ment algorithm on cache performance is minimal. This will not be the case for the
paging systems that we discuss in the next section.

Write Strategies
In our answers to the top-level questions we have assumed that the memory refer-
ences corresponded to reads. When the reference is for a write, (i.e., a consequence
of a store instruction), we are faced with additional choices. Of course, the steps
taken to detect whether there is a cache hit or a cache miss remain the same.
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In the case of a cache hit, we must certainly modify the contents of the cache
line, because subsequent reads to that line must return the most up-to-date infor-
mation. A first option is to write only in the cache. Consequently, the information
in the cache might no longer be the image of what is stored in the next level of the
memory hierarchy. In these writeback (or copyback) caches we must have a means
to indicate that the contents of a line have been modified. We therefore associate a
dirty bit with each line in the cache and set this bit on a write cache hit. When the
line becomes a victim and needs to be replaced, the dirty bit is checked. If it is set,
the line is written back to memory; if it is not set, the line is simply evicted. A second
option is to write both in the cache and in the next level of the hierarchy. In these
write-through (or store-through) caches there is no need for the dirty bit. The advan-
tage of the writeback caches is that they generate less memory traffic. The advantage
of the write-through caches is that they offer a consistent view of memory.

Consider now the case of a cache miss. Again, we have two major options.
The first one, write-allocate, is to treat the write miss as a read miss followed by
a write hit. The second, write-around, is to write only in the next level of the mem-
ory hierarchy. It makes a lot of sense to have either write-allocate writeback caches
or write-around write-through caches. However, there are variations on these two
implementations, and we shall see some of them in Chapter 6.

One optimization that is common to all implementations is to use a write buffer.
In a write-through cache the processor has to wait till the memory has stored the
data. Because the memory, or the next level of the memory hierarchy, can be tens
to hundreds of cycles away, this wait is wasteful in that the processor does not need
the result of the store operation. To circumvent this wait, the data to be written and
the location where they should be written are stored in one of a set of temporary
registers. The set itself, a few registers, constitutes the write buffer. Once the data
are in the write buffer, the processor can continue executing instructions. Writes to
memory are scheduled as soon as the memory bus is free. If the processor gener-
ates writes at a rate such that the write buffer becomes full, then the processor will
have to stall. This is an instance of a structural hazard. The same concept can be
used for writeback caches. Instead of generating memory writes as soon as a dirty
replacement is mandated, the line to be written and its tag can be placed in the write
buffer. The write buffer must be checked on every cache miss, because the required
information might be in it. We can take advantage of the fact that each entry in the
buffer must carry the address of where it will be written in memory, and transform
the buffer into a small fully associative extra cache. In particular, information to be
written can be coalesced or overwritten if it belongs to a line already in the buffer.

The Three C’s
In order to better understand the effect of the geometry parameters on cache per-
formance it is useful to classify the cache misses into three categories, called the
three C’s:

1. Compulsory (or cold) misses: This type of misses occurs the first time a memory
block is referenced.
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2. Conflict misses: This type of misses occurs when more than m blocks vie for the
same cache entries in an m-way set-associative cache.

3. Capacity misses: This type of misses occurs when the working set of the program
is too large for the given cache size, even under ideal conditions: fully associative
cache and optimal replacement algorithm (cf. Section 2.3).

To these three C’s one can add a fourth one, coherence misses, which are present
in multiprocessor systems (cf. Chapter 7). However, even with single processors,
maintaining a coherent view of the memory hierarchy is a problem to be dealt with
because of I/O.

Caches and I/O
The presence of a cache will affect I/O operations. Consider the system shown in
Figure 2.15. A processor and its cache hierarchy are connected to the main memory
via a shared processor–memory bus. An I/O device, here a disk, is also connected to
that bus. Though this figure is an oversimplified representation of a microprocessor
system, it is sufficient for our purposes here. In reality, the main memory and the
I/O subsystem would be connected through a bus bridge, and there would be an I/O
bus connecting to a variety of I/O controllers.

We have to consider what happens when information is transferred from (to)
memory to (from) the disk. Let us look first at the case of an I/O read, that is, some
data are transferred from the disk to main memory. If some of the area where the
data are going to reside in main memory is already cached (the hatched portion in
the cache in the figure), the cached data will not be correct after the transfer. Either
the cached data must be marked as invalid, using a valid bit, or it has to be overwrit-
ten during the transfer so that it is consistent with the new memory contents. In the
case of an I/O write (i.e., transfer from main memory to disk), the contents of main
memory are always correct if the cache is write-through. However, if the cache is
writeback and data to be transferred are in a cached line with its dirty bit set, then
the most up-to-date data are in the cache and it is these data that should be written
to disk.
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Invalidation and transfer of correct data can be done either in software by
the O.S. or in hardware. In the software implementation, the O.S. scans entries
in the cache. The O.S. will demand the invalidation, in the case of a read, of the
cache entries that are mapped to the main memory area that will be overwritten. In
the case of a write and a writeback cache, it will purge those dirty lines whose con-
tents must be written, that is, the dirty lines will be written back to main memory
before the I/O write takes place. In a hardware implementation, a bus snoopy proto-
col will be used, and the cache controller must have the ability to listen and to react
to all activities on the bus. Depending on the type of bus transaction, cache entries
can be invalidated or cache lines transferred in lieu of memory blocks. Snoopy pro-
tocols will be described in much detail in Chapter 7 when we look at multiprocessors.
The I/O controller can be seen as a processor without a cache, and the I/O hardware
protocol is a simplified version of a general snoopy protocol.

2.2.2 Cache Performance

The basic performance metric for a cache is the hit ratio h, defined as

h = number of memory references that hit in the cache
total number of memory references to the cache

Since h is most of the time between 0.90 and 0.99, it is often more convenient
to talk about the miss ratio (1 – h). It is psychologically more appealing to reduce
the miss ratio from 0.05 to 0.04 (a 20% reduction) than to increase the hit ratio from
0.95 to 0.96 (an increase of 1%). Of course, what is important is the overall impact
on performance, for example, on IPC and execution time.

A metric related to h that takes into account all levels of the memory hierarchy
is the average memory access time. In the case of a single-level cache, we have

Av. Mem. Access Time = hTcache + (1 − h)Tmem

where Tcache is the time to access the cache, (e.g., 1 cycle), and Tmem is the main
memory latency, (e.g., 50 cycles). In the case of a hierarchy of caches, the formula is
expanded the obvious way. For example, with two levels of cache, we have

Av. Mem. Access Time = h1TL1 + (1 − h1) h2 TL2 + (1 − h1) (1 − h2)Tmem

where TL1 (respectively, TL2) is the access time to the first-level L1 cache (respec-
tively, second-level L2 cache), h1 is the hit ratio for L1, and h2 is the local hit ratio
for L2, that is, only the references that missed in L1 are counted for determining the
hit ratio for L2. In general, h2 is much lower than h1.

The goal therefore is to reduce the average memory access time. From the cache
design viewpoint, we want to increase h without increasing Tcache. Let us look at how
the geometry parameters of a cache affect h and Tcache. We consider each parame-
ter – capacity, associativity, and line size – in turn, modifying one parameter while
leaving the other two unchanged.
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Increasing the capacity S of a cache will certainly result in reducing both capac-
ity and conflict misses. Figure 2.16 shows this effect (we have plotted miss rates
because they show the effect more vividly). However, we cannot increase S indefi-
nitely, because at some point the access time Tcache will itself increase. For a given
clock frequency, the greater access time may result in an extra cycle in accessing the
cache, thus wiping out all benefits of an incremental decrease in the miss rate. L1
caches – both I-caches and D-caches – have 64 KB as maximum sizes. For on-chip
L2s, the maximum size depends mostly on how much area is left on chip. L3 sizes
can be several megabytes.

Similarly, the higher the associativity m, the better the hit rate h (cf. Fig-
ure 2.17), because conflict misses will be reduced. For L1 caches there is usually
a big drop when moving from direct-mapped to two-way, a smaller drop from two-
to four-way, and then no real change. As mentioned previously, the associativity is
limited by the number of comparisons that can be performed in parallel and by the
need to have their results available without increasing Tcache. Most L1s today are
two-way set-associative; there are less frequent occurrences of direct-mapped and
four-way set associativity. L2s’ associativities range from direct-mapped to 16-way.

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

1 2 4 8 full

Associativity

M
is

s
 r

a
te

 (
%

)

Figure 2.17. Miss rate vs. associativity. The data cache is (32 KB,m,64) with the associativity
m ranging from direct-mapped (1) to full. The application and the source are the same as in
Figure 2.16.
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Table 2.1. Geometries of two microprocessor families. Some of these numbers, mostly
for L2 caches, may differ depending on implementation

Processor I-Cache D-Cache L2

Alpha 21064 (8 KB, 1, 32) (8 KB, 1, 32) WT Off-chip (2 MB,1,64)
Alpha 21164 (8 KB, 1, 32) (8 KB, 1, 32) WT (96 KB,3,64) WB
Alpha 21264 (64 KB,2,64) (64 KB,2,64) Off-chip (16 MB,1,64)
Pentium (8 KB,2,32) (8 KB,2,32) WT/WB Off-chip up to 8 MB
Pentium II (16 KB,2,32) (16 KB,2,32) WB “Glued” (512 KB,8,32) WB
Pentium III (16 KB,2,32) (16 KB,4,32) WB (512 KB,8,32) WB
Pentium 4 Trace cache 96 KB (16 KB,4,64) WT (1MB, 8,128) WB
Core Duo (32 KB,2,64) (32 KB,4,64) WB (4MB,8,128) WB shared

The situation is not as clear-cut for the third parameter, the line size L. As
can be seen in Figure 2.18, the best line size depends on the application. On the one
hand, a larger L can reduce the number of compulsory misses by implicitly prefetch-
ing more data per miss. On the other hand, at equal S and m, longer lines may
increase capacity and conflict misses. It all depends on the amount of spatial locality
found in the application. For a given application, S, and m, there is an optimal line
size. In Figure 2.18, we see a case where longer line sizes are best (application ijpeg),
one where short lines yield the lowest miss rate (go), and one where a middle-size
line is best (gcc). In practice, L1 I-caches have slightly longer line sizes (64 or 128
bytes) than L1 D-caches (32 or 64 bytes). L2 line sizes are in the 64–512 byte range.

We have already mentioned other design parameters that influence the aver-
age access time: the write policy (writeback induces fewer memory writes and thus
is preferred), the replacement algorithm (of little importance when m ≤ 4), and
whether the caches are split into I-caches and D-caches (almost necessary for a clean
implementation of pipelining) or unified (better for all but L1 caches).

Table 2.1 shows the cache geometries and write policy of two families of micro-
processors: the DEC Alpha and the Intel Pentium. For the latter, some of the
numbers may have changed over time, depending on the particular Pentium imple-
mentation and intended usage. For example, some Xeon Pentium III systems have
large L2 caches (1 or even 2 MB). In the case of the Alpha, the 21064 and the 21164
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have the same microprocessor core. The 21264 has a much more complex execu-
tion engine, out-of-order instead of in-order (cf. Chapter 3). Because of this change
in instruction execution, the designers felt that longer access times for L2 could be
hidden better than in the 21164. Therefore, the chip has larger L1 caches and no L2
cache. In the successor to the 21264 (the 21364, which was never commercially pro-
duced because of the demise of DEC), the intent was to keep the 21264 execution
model but to return to the cache hierarchy philosophy of the 21164, namely, small
L1s and a very large L2 on chip. In the case of the Pentium, the L2 of Pentium II
was on a separate chip, but it was “glued” to the processor chip, thus allowing fast
access. In the Pentium 4, the I-cache has been replaced by a trace cache that has a
capacity equivalent to that of an 8 KB I-cache. The design challenges and the advan-
tages brought forth by trace caches will be discussed in Chapter 4.

Finally, we should remember that while we have concentrated our discussion
on h and Tcache, we have not talked about the parameter Tmem, the time to access
memory and send the data back to the cache (in case of a cache read miss). Tmem

can be seen as the sum of two components: the time Tacc to access main memory,
that is, the time to send the missing line address and the time to read the memory
block in the DRAM buffer, plus the time Ttra to transfer the memory block from
the DRAM to the L1 and L2 caches and the appropriate register. Ttra itself is the
product of the bus cycle time Tbus and the number of bus cycles needed, the latter
being L/w, where L is the (L2) line size and w is the bus width. In other words,

Tmem = Tacc + (L/w)Tbus

EXAMPLE 4 Assume a main memory and bus such that Tacc = 5, Tbus = 2,

and w = 64 bits. For a given application, cache C1 has a hit ratio h1 = 0.88 with
a line size L1 = 16 bytes. Cache C2 has a hit ratio h2 = 0.92 with a line size
L2 = 32 bytes. The cache access time in both cases is 1 cycle. The average mem-
ory access times for the two configurations are

Mem1 = 0.88 × 1 + (1 − 0.88) (5 + 2 × 2) = 0.88 + 0.12 × 9 = 1.96

Mem2 = 0.92 × 1 + (1 − 0.92) (5 + 4 × 2) = 0.92 + 0.08 × 13 = 1.96

In this (contrived) example, the two configurations have the same memory
access times, although cache C2 would appear to have better performance.
Example 4 emphasizes that a metric in isolation, here the hit ratio, is not suffi-
cient to judge the performance of a system component.

2.3 Virtual Memory and Paging

In the previous sections we mostly considered 32-bit architectures, that is, the
size of programmable registers was 32 bits. Memory references (which, in gen-
eral, are generated as the sum of a register and a small constant) were also 32 bits
wide. The addressing space was therefore 232 bytes, or 4 GB. Today some servers
have main memories approaching that size, and memory capacities for laptops or
personal workstations are not far from it. However, many applications have data



60 The Basics

sets that are larger than 4 GB. It is in order to be able to address these large data
sets that we have now 64-bit ISAs, that is, the size of the registers has become 64
bits. The addressing space becomes 264 bytes, a huge number. It is clear that this
range of addresses is much too large for main memory capacities.

The disproportion between addressing space and main memory capacity is not
new. In the early days of computing, a single program ran on the whole machine.
Even so, there was often not enough main memory to hold the program and its
data for the whole run. Programs and data were statically partitioned into overlays
so that parts of the program or data that were not used at the same time could
share the same locations in main memory. Soon it became evident that waiting for
I/O, a much slower process than in-core computations, was wasteful, and multipro-
gramming became the norm. With multiprogramming, more than one program is
resident in main memory at the same time, and when the executing program needs
I/O, it relinquishes the CPU to another program. From the memory management
viewpoint, multiprogramming poses the following challenges:

� How and where is a program loaded in main memory?
� How does one program ask for more main memory, if needed?
� How is one program protected from another, for example, what prevents one

program from accessing another program’s data?

The basic answer is that programs are compiled and linked as if they could
address the whole addressing space. Therefore, the addresses generated by the CPU
are virtual addresses that will be translated into real, or physical, addresses when ref-
erencing the physical memory. In early implementations, base and length registers
were used, the physical address being the sum of the base register and the virtual
address. Programs needed to be in contiguous memory locations, and an exception
was raised whenever a physical address was larger than the sum of the base and
length registers. In the early 1960s, computer scientists at the University of Manch-
ester introduced the term virtual memory and performed the first implementation of
a paging system. In the next section are presented the salient aspects of paging that
influence the architecture of microprocessor systems. Many issues in paging system
implementations are in the realm of operating systems and will only be glanced over
in this book. All major O.S. textbooks give abundant details on this subject.

2.3.1 Paging Systems

The most common implementation of virtual memory uses paging. The virtual
address space is divided into chunks of the same size called (virtual) pages. The phys-
ical address space, (i.e., the space used to address main memory), is also divided into
chunks of the same size, often called physical pages or frames. The mapping between
pages and frames is fully associative, that is, totally general. In other words, this is a
relocation mechanism whereby any page can be stored in any frame and the conti-
guity restriction enforced by the base and length registers is avoided.

Before proceeding to a more detailed presentation of paging, it is worthwhile
to note that the division into equal chunks is totally arbitrary. The chunks could
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be segments of any size. Some early virtual memory systems, such as those present
in the Burroughs systems of the late 1960s and 1970s, used segments related to
semantic objects: procedures, arrays, and so on. Although this form of segmentation
is intellectually more appealing, and even more so now with object-oriented lan-
guages, the ease of implementation of paging systems has made them the invariable
choice. Today, segments and segmentation refer to sets of pages most often grouped
by functions, such as code, stack, or heap (as in the Intel IA-32 architecture).

Figure 2.19 provides a general view of paging. Two programs A and B are con-
currently partially resident in main memory. A mapping device, or page table – one
per program – indicates which pages of each program are in main memory and gives
their corresponding frame numbers. The translation of virtual page number to phys-
ical frame number is kept in a page table entry (PTE) that, in addition, contains a
valid bit indicating whether the mapping is current or not, and a dirty bit to show
whether the page has been modified since it was brought into main memory. The
figure shows already four advantages of virtual memory systems:

� The virtual address space can be much larger than the physical memory.
� Not all of the program and its data need to be in main memory at a given time.
� Physical memory can be shared between programs (multiprogramming) without

much fragmentation (fragmentation is the portion of memory that is allocated
and unused because of gaps between allocatable areas).

� Pages can be shared among programs (this aspect of paging is not covered in this
book; see a book on operating systems for the issues involved in page sharing).
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Figure 2.20. Virtual address translation.

When a program executes and needs to access memory, the virtual address that
is generated is translated, through the page table, into a physical address. If the valid
bit of the PTE corresponding to the virtual page is on, the translation will yield the
physical address. Pages sizes are always a power of 2, (e.g., 4 or 8 KB), and naturally
physical frames have the same size. A virtual address therefore consists of a virtual
page number and an offset, that is, the location within the page (the offset is akin to
the displacement in a cache line). Similarly, the physical address will have a physical
frame number and the same offset as the virtual address, as illustrated in Figure 2.20.
Note that it is not necessary to have virtual and physical addresses be of the same
length. Many 64-bit architectures have a 64-bit virtual address but limit the physical
address to 40 or 48 bits.

When the PTE corresponding to the virtual page number has its valid bit off,
the virtual page is not in main memory. We have a page fault, that is, an exception.
As we saw in Section 2.1.4, the current program must be suspended and the O.S. will
take over. The page fault handler will initiate an I/O read to bring the whole virtual
page from disk. Because this I/O read will take several milliseconds, time enough
to execute billions of instructions, a context switch will occur. After the O.S. saves
the process state of the faulting program and initiates the I/O process to handle
the page fault, it will give control of the CPU to another program by restoring the
process state of the latter.

As presented in Figure 2.20, the virtual address translation requires access to a
page table. If that access were to be to main memory, the performance loss would be
intolerable: an instruction fetch or a load–store would take tens of cycles. A possible
solution would be to cache the PTEs. Although this solution has been implemented
in some research machines, the usual and almost universal solution is to have special
caches devoted to the translation mechanism with a design tailored for that task.
These caches are called translation look-aside buffers (TLBs), or sometimes simply
translation buffers.

TLBs are organized as caches, so a TLB entry consists of a tag and “data” (in
this case a PTE entry). In addition to the valid and dirty bits that we mentioned pre-
viously, the PTE contains other bits, related to protection and to recency of access.
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Table 2.2. Page sizes and TLB characteristics of two microprocessor
families. Recent implementations support more than one page size. In
some cases, there are extra TLB entries for a large page size (e.g., 4 MB)
used for some scientific or graphic applications

Architecture Page size I-TLB D-TLB

Alpha 21064 8 KB 8 entries (FA) 32 entries (FA)
Alpha 21164 8 KB 48 entries (FA) 64 entries (FA)
Alpha 21264 8 KB 64 entries (FA) 128 entries (FA)
Pentium 4 KB 32 entries (4-way) 64 entries (4-way)
Pentium II 4 KB 32 entries (4-way) 64 entries (4-way)
Pentium III 4 KB 32 entries (4-way) 64 entries (4-way)
Pentium 4 4 KB 64 entries (4-way) 128 entries (4-way)
Core Duo 4 KB 64 entries (FA) 64 entries (FA)

Because TLBs need to cache only a limited number of PTEs, their capacities are
much smaller than those of ordinary caches. As a corollary, their associativities can
be much greater. Typical TLB sizes and associativities are given in Table 2.2 for
the same two families of microprocessors as in Table 2.1. Note that there are dis-
tinct TLBs for instruction and data, that the sizes range from 8 to 128 entries with
either four-way (Intel) or full associativity (Alpha). Quite often, a fixed set of entries
is reserved for the O.S. TLBs are writeback caches: the only information that can
change is the setting of the dirty and recency of access bits.

The memory reference process, say for a load instruction, is illustrated in Fig-
ure 2.21. After the ALU generates a virtual address, the latter is presented to the
TLB.

In the case of a TLB hit with the valid bit of the corresponding PTE on and no
protection violation, the physical address is obtained as a concatenation of a field
in the PTE and the offset. At the same time, some recency bits in the TLB’s copy
of the PTE can be modified. In the case of a store, the dirty bit will be turned on.
The physical address is now the address seen by the cache, and the remainder of the
memory reference process proceeds as explained in Section 2.2. If there is a TLB hit
and the valid bit is off, we have a page fault exception. If there is a hit and the valid
bit is on but there is a protection violation (e.g., the page that is being read can only
be executed), we have an access violation exception, that is, the O.S. will take over.

ALU

Virtual address

TLB 

Main
memory

Miss

Miss

Real address

Cache

Hit

Hit

Figure 2.21. Abstracted view of the memory refer-
ence process.
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In the case of a TLB miss, the page table stored in main memory must be
accessed. Depending on the implementation, this can be done entirely in hardware,
or entirely in software, or in a combination of both. For example, in the Alpha fam-
ily a TLB miss generates the execution of a Pal (privileged access library) routine
resident in main memory that can load a PTE from a special hardware register into
the TLB. In the Intel Pentium architecture, the hardware walks the hierarchically
stored page table until the right PTE is found. Replacement algorithms are LRU
for the four-way set-associative Intel, and not-most-recently-used for the fully asso-
ciative TLBs of the Alpha. Once the PTE is in the TLB, after an elapsed time of
100–1000 cycles, we are back to the case of a TLB hit. The rather rapid resolution
of a TLB miss does not warrant a context switch (we’ll see in Chapter 8 that this
may not be the case for multithreaded machines). On the other hand, even with
small TLB miss rates, the execution time can be seriously affected. For example,
with a TLB miss rate of 0.1 per 1000 instructions and a TLB miss rate resolution
time of 1000 cycles, the contribution to CPI is 0.1, the same as would arise from an
L2 miss rate 10 times higher if the main memory latency were 100 cycles. This time
overhead is one of the reasons that many architectures have the capability of several
page sizes. When applications require extensive memory, as for example in large sci-
entific applications or in graphics, the possibility of having large page sizes increases
the amount of address space mapping that can be stored in the TLB. Of course, this
advantage must be weighed against the drawback of memory fragmentation.

In the case of a page fault we have an exception and a context switch. In addition
to the actions taken by the O.S. that are briefly outlined below, we must take care of
the TLB, for its entries are reflecting the mapping of the process that is relinquish-
ing the processor, not that of the incoming process. One solution is to invalidate the
TLB (do not confuse this invalidation with turning off the valid bit in a PTE entry
used to indicate whether the corresponding page is in main memory or not). A bet-
ter solution is to append a process ID number (PID) as an extension to the tag in
the TLB. The O.S. sets the PID when a program starts executing for the first time
or, if it has been swapped out entirely, when it is brought back in. PIDs are recycled
when there is an overflow on the count of allowable PIDs. There is a PID register
holding the PID of the current executing process, and the detection of a hit or miss
in the TLB includes the comparison of the PID in this register with the tag exten-
sion. On context switch, the PID of the next-to-execute process is brought into the
PID register, and there is no need to invalidate the TLB. When a program termi-
nates or is swapped out, all entries in the TLB corresponding to its PID number are
invalidated.

A detailed description of the page fault handler is outside the scope of this book.
In broad terms, the handler must (these actions are not listed in order of execution):

� Reserve a frame from a free list maintained by the O.S. for the faulting page.
� Find out where the faulting page resides on disk (this disk address can be an

extension to the PTE).
� Invalidate portions of the TLB and maybe of the cache (cf. Section 2.2.1).
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� Initiate a read for the faulting page.
� Find the page(s) to replace (using some replacement algorithm) if the list of

free pages is not long enough (a tuning parameter of the O.S.). In general, the
replacement algorithm is an approximation to LRU.

� Perform cache purges and/or invalidations for cache lines mapping to the
page(s) to be replaced.

� Initiate a write to the disk of dirty replaced page(s).

When the faulting page has been read from the disk, an I/O interrupt will be
raised. The O.S. will take over and, among other actions, will update the PTE of the
page just brought in memory.

Figure 2.21 implies that the TLB access must precede the cache access. Opti-
mizations allow this sequentiality to be relaxed. For example, if the cache access
depends uniquely on bits belonging to the page offset, then the cache can be indexed
while the TLB access is performed. We shall return to the topic of virtually indexed
caches in Chapter 6. Note that the larger the page size, the longer the offset and
therefore the better the chance of being able to index the cache with bits that do not
need to be translated. This observation leads us to consider the design parameters
for the selection of a page size.

Most page sizes in contemporary systems are the standard 4 or 8 KB with, as
mentioned earlier, the possibility of having several page sizes. This choice is a com-
promise between various factors, namely, the I/O time to read or write a page from
or to disk, main memory fragmentation, and translation overhead.

The time tx to read (write) a page of size x from (to) disk is certainly smaller
than the time t2x to transfer a page of size 2x, but t2x < 2tx. This is because tx is the
sum of three components, all of which are approximately the same: seek time, that
is, the time it takes for the disk arm to be positioned on the right track; rotation
time, that is, the time it takes for the read–write head to be positioned over the right
sector; and transfer time, that is, the time it takes to transfer the information that
is under the read–write head to main memory. The seek time, which ranges from
0 (if the arm is already on the right track) up to 10 ms, is independent of the page
size. Similarly, the rotation time, which is on the average half of the time it takes
for the disk to perform a complete rotation, is also independent of the page size.
Like the seek time, it is of the order of a few milliseconds: 3 ms for a disk rotating at
10,000 rpm. There remains the transfer time, which is proportional to the page size
and again can be a few milliseconds. Thus, having large page sizes amortizes the I/O
time when several consecutive pages need to be read or written, because although
the transfer time increases linearly with page size, the overhead of seek and rotation
times is practically independent of the page size.

Another advantage of large page sizes is that page tables will be smaller and
TLB entries will map a larger portion of the addressing space. Smaller page tables
mean that a greater proportion of PTEs will be in main memory, thus avoiding the
double jeopardy of more than one page fault for a given memory reference (see the
exercises). Mapping a larger address space into the TLB will reduce the number of
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Table 2.3. Two extremes in the memory hierarchy

L1 cache Paging System

Line or page size 16–64 bytes 4–8 KB
Miss or fault time 5–100 cycles Millions of cycles

5–100 ns 3–20 ms
Miss or fault rate 0.1–0.01 0.0001–0.000001
Memory size 4–64 KB A few gigabytes (physical)

264 bytes (virtual)
Mapping Direct-mapped or low

associativity
Full generality

Replacement algorithm Not important Very important

TLB misses. However, page sizes cannot become too large, because their overall
transfer time would become prohibitive and in addition there would be significant
memory fragmentation. For example, if, as is the custom, the program’s object code,
the stack, and the heap each start on page boundaries, then having very large pages
can leave a good amount of memory unused.

Cache and TLB geometries as well as the choice of page sizes are arrived at after
engineering compromises. The parameters that are used in the design of memory
hierarchies are now summarized.

2.3.2 Memory Hierarchy Performance Assessment

We can return now to the four questions we asked at the beginning of Section 2.2.1
regarding cache design and ask them for the three components of the memory hier-
archy that we have considered: cache, TLB, and main memory (paging). Although
the answers are the same, the implementations of these answers vary widely, as do
the physical design properties, as shown in two extremes in Table 2.3. To recap:

1. When do we bring the contents of a missing item into the (cache, TLB, main
memory)?

The answer is “on demand.” However, in the case of a cache, misses can occur a
few times per 100 memory references and the resolution of a cache miss is done
entirely in hardware. Miss resolution takes of the order of 5–100 cycles, depending
on the level of the memory hierarchy where the missing cache line (8–128 bytes) is
found. In the case of a TLB, misses take place two orders of magnitude less often,
a few times per 10,000 instructions. TLB miss resolution takes 100–1000 cycles and
can be done in either hardware or software. Page faults are much rarer and occur
two or three orders of magnitude less often than TLB misses, but page fault resolu-
tion takes millions of cycles to resolve. Therefore, page faults will result in context
switches.

2. Where do we put the missing item?
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In the case of a cache, the mapping is quite restrictive (direct mapping or low set
associativity). In the case of a paging system, the mapping is totally general (we
shall see some possible exception to this statement when we look at page coloring
in Chapter 6). For TLBs, we have either full generality or high set associativity.

3. How do we know it’s there?

Caches and TLB entries consist of a tag and “data.” Comparisons of part of the
address with the tag yield the hit or miss knowledge. Page faults are detected by
indexing page tables. The organization of page tables (hierarchical, inverted, etc.) is
outside the scope of this book.

4. What happens if the place where the missing item is supposed to go is already
occupied?

A replacement algorithm is needed. For caches and TLBs, the general rule is
(approximation to) LRU with an emphasis on not replacing the most recently used
cache line or TLB PTE entry. For paging systems, good replacement algorithms are
important, because the page fault rate must be very low. O.S. books have exten-
sive coverage of this important topic. Most operating systems use policies where the
number of pages allocated to programs varies according to their working set.

Memory hierarchies have been widely studied because their performance has
great influence on the overall execution time of programs. Extensive simulations of
paging systems and of cache hierarchies have been done, and numerous results are
available. Fortunately, simulations that yield hit rates are much faster than simula-
tions to assess IPC or execution times. The speed in simulation is greatly helped by a
property of certain replacement algorithms such as LRU, called the stack property.
A replacement algorithm has the stack property if, for (say) a paging system, the
number of page faults for a sequence of memory references for a memory alloca-
tion of x pages is greater than or equal to the number of page faults for a memory of
size x + 1. In other words, the number of page faults is a monotonically nonincreas-
ing function of the amount of main memory. Therefore, one can simulate a whole
range of memory sizes in a single simulation pass. For cache simulations, the stack
property will hold set by set. Other means of reducing the overall simulation time of
cache hierarchies and generalizing the results to other metrics and other geometries
include mechanisms such as filtering the reference stream in a preprocessing phase
and applying clever algorithms for multiple associativities.

Finally, while LRU is indeed an excellent replacement algorithm, it is not opti-
mal. The optimal algorithm for minimizing the number of page faults (or cache
misses on a set by set basis) is due to Belady. Belady’s algorithm states that the page
to be replaced is the one in the current resident set that will be accessed further in
the future. Of course, this optimal algorithm is not realizable in real time, but the
optimal number of faults (or misses) can be easily obtained in simulation and thus
provide a measure of the goodness of the replacement algorithm under study.
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2.4 Summary

Pipelining is the basic architectural principle found in all modern processors. It
allows overlapped execution of consecutive instructions. In a simple implementa-
tion, a processor pipeline consists of five stages: instruction fetch, instruction decode,
execution, memory access, and writeback of results in registers. Stages are separated
by buffers or pipeline registers. The state of the processor is modified only during
the last stage, thus allowing the treatment of precise exceptions and interrupts.

The theoretical throughput of the pipeline of one instruction per cycle (IPC = 1)
cannot be achieved, because of data and control hazards. Some data hazards due to
read-after-write (RAW) dependencies can be dealt with by forwarding results from
pipeline registers to the execution unit. Performance degradation due to control
flow instructions can be mitigated using branch prediction techniques.

An IPC of one requires that instruction fetches and memory accesses be per-
formed in one cycle. With main memory accesses taking 10–100 cycles, caches are
necessary to get close to an ideal IPC. Caches are high-speed buffers that contain
images of instructions and data stored in memory. The most common cache orga-
nization is set-associative, a compromise between the simplest and most restrictive
direct-mapped organization and the most complex and totally general fully associa-
tive scheme. Caches are characterized by their geometry: capacity, associativity, and
line size. The main performance metric associated with caches is the hit rate, that is,
the proportion of memory references that are found in the cache.

In general-purpose computer systems, the O.S. supports multiprogramming,
whereby several (parts of) programs reside simultaneously in main memory. Virtual
memory, and its implementation through paging systems, allows programs to be as
large as the address space and provides a means to keep in main (physical) memory
a portion of an executing program corresponding to its working set. Pages of vir-
tual space (i.e., fixed-size blocks of the program and its data) are mapped into main
memory. The mapping device is a page table. The virtual-to-real address transla-
tion is speeded up by the use of special caches, named translation look-aside buffers
(TLBs).

2.5 Further Reading and Bibliographical Notes

Textbooks on computer architecture or computer organization such as Patterson
and Hennessy’s [PH04] and Shen and Lipasti’s [SL04] give excellent introductions
to pipelining and the memory hierarchy. Instruction pipelining, originally called
instruction overlap or instruction lookahead, was first introduced in IBM’s Project
Stretch [Bu62], a precursor (1962) to the IBM System/360 Model 91. The f-p units of
the latter, designed in the mid 1960s, were pipelined [AEDP67]. Kogge’s book [K81]
is a superb reference on theoretical and practical aspects of pipelining, including the
design of dynamic configured pipelines where the pipelines can perform distinct
computations. Kogge states that, as of 1980, the distinction between overlap and
pipelining had become fuzzy. Today, pipelining is the term of choice.
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The five-stage pipeline of Section 2.1 is the one found in the MIPS R3000 and is
described in detail in Patterson and Hennessy [PH04]. The alternative design shown
in Figure 2.9 was implemented in the original Intel Pentium. A comparison between
these two approaches is given in Golden and Mudge [GM94]. A description of a
Wallace tree multiplier can be found in Kogge’s book.

Caches were first introduced in the IBM System/360 Model 85 [CGP68] in the
late 1960s; Wilkes [W65] had defined the concept of “slave” memory a few years
earlier. The story of the naming of caches, originally intended to be called high-
speed memory buffers or muffers (sic), is recounted in the book by Pugh, Johnson,
and Palmer [PJP91], which contains fascinating tidbits about the IBM System/360
and 370 models. A. J. Smith [S82] wrote an extensive survey on cache memories
(up to the early eighties). A review of the performance of caches was updated a
decade later by Przybylski [P90]. The classification of cache misses into three C’s
is due to Mark Hill [H87]. The data used for Figures 2.16 and 2.17 come from
Cantin and Hill [CH03]. Full cache performance data for SPEC 2000 can be found at
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/. Figure 2.18 uses data
from VanVleet et al. [VABBK99].

Virtual memory was first introduced in the Atlas computer designed by Kilburn
and his colleagues at the University of Manchester in the early 1960s [KELS62]. The
mapping device for the paging system was an associative memory! Denning’s sur-
vey [D70] is an early (1970) basic reference for virtual memory systems. Any good
textbook on operating systems will discuss virtual memory and its implementation
via paging or segmentation. There exist many papers on replacement algorithms.
Belady’s optimal algorithm [Be66] was published in 1966. TLBs were introduced
for the IBM System/370 in the early 1970s.

Translation look-aside buffers (TLBs) have also been called translation buffers
(TBs) in the DEC VAX, associative memory in the GE-645 Multics implementa-
tion, and directory look-aside in the early implementations of IBM System/370. It
seems that the first use of the term TLB was in a paper by Case and Padegs [CP78]
describing the architecture of System/370. The term “look-aside” comes from an
early paper by Lee [L69] describing a fully associative cache that was looked “aside”
the main memory, in contrast with the “look-ahead” property of pipelining.

Uhlig and Mudge [UM97] surveyed the state of the art in trace-driven simu-
lation a decade ago. Not much of a conceptual nature has changed since. Matt-
son et al. [MGST70] first proved the stack property for LRU and Belady’s
algorithm. Many trace-driven simulators are in the public domain. For example,
Dinero developed by Mark Hill and his students is available at http://www.cs.wisc
.edu/∼markhill/DineroIV/.

EXERCISES

1. (Sections 2.1.2 and 2.1.4) Assume that you want to use only one ALU for the basic
five-stage pipeline of Section 2.1.2. A problem arises when you implement branches
in that the ALU needs to be used twice: once for branch target computation and
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once for making the register comparison. Design the data path and control unit
with this constraint. What are the performance implications?

2. (Section 2.1.5) In the alternative five-stage pipeline of Figure 2.9, there are
already two ALUs. If these two were used respectively for branch target compu-
tation and register comparison, what would be the penalties for branch instructions:

(a) In the case where stalling occurs as soon as a branch is recognized?
(b) In the case where a branch-not-taken prediction policy is used?

3. (Section 2.1.4) Some authors have advocated that the target address calculation
for a branch and the register comparison be both done in the ID stage, arguing that
the comparison can be done very fast (e.g., at the same time as the source registers
are copied in the ID/EX register).

(a) What changes are to be made to the forwarding unit and the stalling control
unit in order to implement this optimization?

(b) How many cycles will be saved if both registers are available?

4. (Section 2.1.4) Assume that an interrupt is detected at time t. One of the instruc-
tions currently in the pipeline at time t generates an exception before its completion.
How would you solve this problem?

5. (Sections 2.1.3 and 2.1.5) What modifications are necessary for the pipeline
design and forwarding paths of Section 2.1.3 if load–store instructions include auto-
increment instructions of the form

Ri ← Mem[Rj + displ], Rj ← Rj + c

(and similarly for stores), where the two operations are considered to be part of the
same instruction and c is a constant that depends on the size of the data that are
loaded (or stored). Auto-increment loads (and stores) will have their own opcodes.

6. (Section 2.1.6) Consider the addition of two single-precision f-p numbers in the
IEEE standard representation. The last step in the addition is the normalization of
the result. What is the maximum number of bits that might have to be shifted left in
order to get a normalized result? What is the maximum number of bits that might
have to be shifted right in order to get a normalized result?

7. (Section 2.1.6) Repeat the previous exercise for the multiplication case.

8. (Section 2.2.1) Which of the following statements concerning the hit rate of a
direct-mapped cache is (are) generally true:

(a) The hit rate will increase if we double the cache capacity without changing
the line size.

(b) The hit rate will increase if we double the line size without changing the
capacity.

(c) The hit rate will increase if we keep the same capacity and line size but the
cache is made two-way set-associative.

9. (Section 2.2.1) Arrays A and B contain 1 K (1024) elements each. Each element
is 4 bytes. The first element of A (A[0]) is stored at physical address 0x0000 4000.
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The first element of B (B[0]) is stored at physical address 0x0001 0800. A physical
address is 32 bits. Assume that only arrays A and B will be cached in the following
fragment of code (i.e., the index i will be in a register):

for (i = 1023; i >= 0; i--) {
A[i] = i;
B[i] = A[i]+i;
}

The cache is a 4 KB direct-mapped cache with line size 16 bytes. The write policy is
writeback. Initially, all entries in the cache are marked as invalid.

(a) How many cache lines are there in the cache?
(b) What will be the cache contents at the end of the program fragment (i.e.,

when all 1024 iterations of the loop have completed)?
(c) How many read misses and write misses did occur? Would the number of

read and write misses have been different if the 4 KB cache had been two-
way set-associative (keeping the same 4 KB capacity and 16 byte line size)?

(d) How many bytes were written back to memory?

10. (Section 2.2.1) Repeat the previous exercise for a write-through cache.

11. (Section 2.2.1) As a designer you are asked to evaluate three possible options
for an on-chip write-through data cache. Some of the design options (associativity)
and performance consequences (miss rate, miss penalty) are described in the table
below:

Data cache options Miss rate Miss penalty

Cache A: Direct mapped 0.08 4 cycles
Cache B: Two-way set-associative 0.04 6 cycles
Cache C: Four-way set-associative 0.02 8 cycles

(a) Assume that load instructions have a CPI of 1.2 if they hit in the cache and
a CPI of 1.2 + (miss penalty) otherwise. All other instructions have a CPI
of 1.2. The instruction mix is such that 20% of instructions are loads. What
is the CPI for each configuration (you’ll need to keep three decimal digits,
i.e., compute the CPI as x.xxx)? Which cache would you choose if CPI is
the determining factor?

(b) Assume now that if the direct-mapped cache is used, the cycle time is 20
ns. If the two-way set-associative cache is used, the cycle time is 22 ns. If
the four-way is used, the cycle time is 24 ns. What is the average time per
instruction? Which cache would you choose if average time per instruction
is the determining factor?

(c) In the case of the two-way set-associative cache, the replacement algorithm
is LRU. In the case of the four-way set-associative cache, the replacement
algorithm is such that the most recently used (MRU) line is not replaced;
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the choice of which of the other three is replaced is random and not part
of the logic associated with each line in the cache. Indicate what bits are
needed to implement the replacement algorithms for each line.

12. (Sections 2.2 and 2.3) Here is the skeleton of part of a program that simulates
the memory hierarchy of a computer system. Only the instruction fetch simulation
is outlined:

Get_next_tuple (operation,vaddress);
case: operation = 0/∗ we have an instruction fetch∗/
Extract_TLB_fields;
Check_TLB;
If not TLBhit then Get_PTE_from_Main_Memory;
Get_physical_address;
Extract_cache_fields;
Check_cache;
If not cachehit then Get_Cache_Block_from_Main_Memory;
Put instruction in IR;
case: . . ..

From the instruction fetch viewpoint, the hierarchy consists of a four-way set-
associative TLB of 64 entries and a two-way 8 KB set-associative cache with 32
byte lines (each instruction is 4 bytes). Both structures use an LRU replacement
algorithm.

The computer system runs under an operating system with paging. The page
size is 4 KB. Both virtual and physical addresses are 32 bits.

The input to the program is a trace of tuples (operation,addresses). An opera-
tion of value 0 indicates an instruction fetch.

(a) The routine “Extract TLB fields” takes a 32-bit address, called vaddress, as
input parameter. It should return two values: tagtlb and indextlb, which will
be used to check the TLB. Indicate in pseudocode how you would get them.
An example of pseudocode (with no particular meaning) is:

xyz = abc shifted right by 16;
xyz = xyz and 0x0000 00ff

(b) The routine “Check TLB” takes tagtlb and indextlb as input parameters. It
returns a Boolean value TLBhit indicating whether there is a TLB hit or
a TLB miss. In the case of a hit, it returns also a physical frame number
value that indicates the mapping between the virtual page number and
the physical frame number. (You can assume that on a TLB hit there is
no page fault.) In the worst case, how many comparisons are needed in
“Check TLB” to see whether you have a hit or a miss? What are the the-
oretical minimum and maximum values of physical frame number? If the
first 16 K of physical memory are reserved for the operating system and I/O
and are not pageable, and if the physical memory is 256 MB, what are the
real minimum and maximum values of physical frame number?
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(c) In the case of a miss, the routine “Get PTE from Main Memory” will
return physical frame number. The routine “Get physical address” takes
vaddress and physical frame number as input parameters and returns a
32-bit physical address value. Write the pseudocode for “Get physical
address”.

(d) The routine “Extract cache fields” takes physical address as input parame-
ter and returns two values: tagcache and indexcache, which will be used to
access the cache. Write the pseudocode for this routine.

(e) Assume:
� No page fault.
� It takes 1 cycle to obtain physical address in the case of a TLB hit, and

100 cycles in the case of a TLB miss.
� Once physical address has been obtained, it takes 1 cycle to get the

instruction in IF/ID in the case of a cache hit, and 50 cycles in the case
of a cache miss.

If the TLB hit rate is 0.995 and the cache hit rate is 0.97, what is the average instruc-
tion fetch time?

13. (Section 2.3) Which of the following statements concerning the capacity of a
TLB is (are) true?

(a) A larger TLB will reduce the number of cache misses.
(b) A larger TLB will reduce the number of page faults.

14. (Section 2.3) Upon a load instruction, the event “data-TLB hit” followed by
“data-cache hit” is the most likely to occur among the four possibilities of the Carte-
sian product (data-TLB hit, data-TLB miss) × (data-cache hit, data-cache miss). Are
the three other events possible? Justify your answers with an example for each pos-
sibility or an explanation of the impossibility.

15. (Sections 2.2 and 2.3) Assume that it takes 1 cycle to access and return the infor-
mation on a data-TLB hit and 1 cycle to access and return the information on a
data-cache hit. A data-TLB miss takes 300 cycles to resolve, and a data-cache miss
takes 100 cycles to resolve. The data-TLB hit rate is 0.99, and the data-cache hit rate
is 0.95. What is the average memory access time for a load data reference? Now the
data cache is an L1 D-cache and is backed up by an L2 unified cache. Every data
reference that misses in L1 has a 60% chance of hitting in L2. A miss in L1 followed
by a hit in L2 has a latency of 10 cycles. What is the average memory access time for
a load data reference in this new configuration?
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3 Superscalar Processors

3.1 From Scalar to Superscalar Processors

In the previous chapter we introduced a five-stage pipeline. The basic concept
was that the instruction execution cycle could be decomposed into nonoverlapping
stages with one instruction passing through each stage at every cycle. This so-called
scalar processor had an ideal throughput of 1, or in other words, ideally the number
of instructions per cycle (IPC) was 1.

If we return to the formula giving the execution time, namely,

EXCPU = Number of instructions × CPI × cycle time

we see that in order to reduce EXCPU in a processor with the same ISA – that
is, without changing the number of instructions, N – we must either reduce CPI
(increase IPC) or reduce the cycle time, or both. Let us look at the two options.

The only possibility to increase the ideal IPC of 1 is to radically modify the
structure of the pipeline to allow more than one instruction to be in each stage at a
given time. In doing so, we make a transition from a scalar processor to a superscalar
one. From the microarchitecture viewpoint, we make the pipeline wider in the sense
that its representation is not linear any longer. The most evident effect is that we
shall need several functional units, but, as we shall see, each stage of the pipeline
will be affected.

The second option is to reduce the cycle time through an increase in clock fre-
quency. In order to do so, each stage must perform less work. Therefore, a stage
must be decomposed into smaller stages, and the overall pipeline becomes deeper.

Modern microprocessors are therefore both wider and deeper than the five-
stage pipeline of the previous chapter. In order to study the design decisions that
are necessary to implement the concurrency caused by the superscalar effect and
the consequences of deeper pipelines, it is convenient to distinguish between the
front-end and the back-end of the pipeline. The front-end, which corresponds to
the IF and ID stages, now must fetch and decode several instructions at once. The
number m of instructions brought (ideally) into the pipeline at each cycle defines
the processor as an m-way superscalar. The back-end, which corresponds to the
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EX, Mem, and WB stages, must execute and write back several instructions concur-
rently.

Superscalar microprocessors can be divided into two categories. In both cases,
instructions proceed in the front-end in program order. In in-order, or static, super-
scalar processors, the instructions leave the front-end in strict program order and
all data dependencies are resolved before the instructions are passed to the back-
end. In out-of-order, or dynamic, superscalar processors, the instructions can leave
the front-end and execute in the back-end before some of their program-order pre-
decessors. In a dynamic superscalar, the WB stage, now called the commit stage,
must be designed in such a way that the semantics of the program are respected,
that is, the results must be stored in the order intended by the source code. Out-
of-order processors are arguably more complex to design and to implement than in-
order ones. It is estimated that for the same number of functional units, they require
30% more logic, and, naturally, the design complexity translates into longer time to
market.

Theoretically, if we have an m-way superscalar with a clock frequency k times
that of a scalar one with the same ISA, we should realize an mk speedup. While
this theoretical speedup can be approached for small m and k, there are behavioral,
design, and technological factors that limit the increase in m and k. We give here a
nonexhaustive list of the most salient ones:

� In order to sustain the concurrent execution of many instructions, that is, have
a large m, we need to uncover a large amount of instruction-level parallelism
(ILP). This is especially difficult in an in-order processor, wherein instructions
that have (RAW) dependencies cannot leave the front-end until the dependen-
cies are resolved. In an out-of-order processor there is more latitude to find
independent instructions, but it is at the cost of increased hardware and design
complexity. While some researchers envisioned 8-way and even 16-way dynamic
superscalars, there is no current implementation that is more than 6-way, and
the trend is not towards increasing m.

� A second factor that limits m is that the back-end requires at least m functional
units. Although implementing a large number, say n, of functional units is not
limiting with respect to the amount of logic needed, the number of forwarding
paths grows as n2. Some of these paths will necessarily be long, and the wire
lengths may prevent forwarding in a single cycle.

� Several factors limit improvements in cycle time. A first constraint, already
mentioned, is that power dissipation increases with frequency. A second con-
straint is that pipeline registers, (i.e., the stable storage between stages, must be
written and read at each cycle), thus providing a physical lower bound on the
cycle time.

� Deep pipelines, (i.e., those having a large k), have a significant drawback. The
resolution of some speculative action, like a branch prediction, will be known
only late in the pipeline. In the case of a misspeculation, recovery is delayed
and may contribute to a loss in performance (lower IPC) compared to a shorter
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pipeline. The trend to deep pipes, exemplified by the Pentium 4 with a branch
misprediction penalty of 20 cycles (the pipeline was up to 31 stages in the Pen-
tium D) vs. only 10 stages in the Pentium III, was reversed in the Intel Core
architecture, which has a 14-stage pipeline.

In-order superscalar microprocessors, the logical successors of the pipeline proces-
sors of the previous chapter, were the first in production. When both in-order and
out-of-order microprocessors became available, the relative ease of implementa-
tion of in-order processors allowed their manufacture with faster clock speed. Until
the mid 1990s, the performance of in-order “speed demons” tended to dominate
that of the out-of-order “brainiacs,” which had slower clock speed but higher IPC.
After that time frame, the out-of-order processors started to take over, thanks in
part to Moore’s law, which allowed more functionality and more hardware assists
on chip.

Today high-performance single-processor microprocessors are out-of-order
ones. The speed advantage of the in-order processors has disappeared since power
dissipation has capped the increases in clock frequency. Because of the limit im-
posed on speed by power dissipation, because of the continuous validity of Moore’s
law, which allows more logic on a chip, and because the performance that can be
attained with a single processor cannot be increased without adding extreme design
complexity, the single processor is being replaced by multiprocessors. Whether mul-
tiprocessors on a chip (CMP) will consist of simple in-order or complex out-of-order
processors, or a mix, is still an open question (cf. Chapters 7 and 8). Thus, it is impor-
tant to study both types of microarchitectures.

This chapter gives overviews of the instruction pipelines of an in-order proces-
sor, the DEC Alpha 21164 (vintage 1994), and of an out-of-order one, the Intel
Pentium P6 architecture started in the early 1990s and still in use, as exemplified by
the Intel Pentium III (announced in 1999) and the recent Pentium Core. Whereas
we can describe the Alpha instruction pipeline with the knowledge that we have so
far, the transition from an in-order to an out-of-order processor requires the intro-
duction of new concepts such as register renaming, reorder buffer, and reservation
stations. In this chapter, the basic concepts are explained. Detailed and/or alter-
nate implementations, for components of both the front-end (such as branch pre-
diction and register renaming) and the back-end (such as instruction scheduling and
load speculation), will be presented in Chapters 4 and 5. Because of their historical
importance and because they have strongly influenced the design of current micro-
processors, we will also present the scoreboard of the CDC 6600 and Tomasulo’s
algorithm for the IBM System 360/91.

Because the focus of this book is on microarchitecture, we do not empha-
size compiler techniques that can enhance performance. Compiler optimizations
are quite important for in-order processors, for they can remove statically some
data dependencies. We conclude the chapter with an introduction to the design
paradigm of very long instruction word (VLIW)/ explicitly parallel instruction com-
puting (EPIC). In VLIW/EPIC processors, the compiler is responsible for detecting
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and scheduling the instruction-level parallelism. The compiler decides which opera-
tions can execute in the same cycle under the constraints of the concurrency offered
by the functional units and the data flow of the program. We will use the Intel Ita-
nium as the example general-purpose processor. The VLIW technique is also widely
used in embedded processors where programs are short and can be hand-tuned.

Finally, the reader may have noticed that so far we have not mentioned the
memory hierarchy design and whether memory latencies might be better tolerated
in static or dynamic superscalars. Part of the answer is that for long latencies, like
those occurring on misses that percolate up to main memory, both architectures
will suffer performance degradation. Latencies are of the order of 100 cycles, and it
is impossible to schedule statically enough instructions to cover that span of time.
In the case of dynamic superscalars, many queuing structures will be full before
the memory access is resolved, and the pipeline(s) will be stalled because of struc-
tural hazards. Since context switching, which requires saving and restoring states,
takes longer than a memory access, this is not a viable solution. An alternative is to
implement in hardware several contexts – that is, fast, stable storage units – that
can hold the state of a process. Context switching now can be very fast, especially
for lightweight processes, or threads, that share a common address space. This tech-
nique, called multithreading, will be discussed in detail in Chapter 8.

3.2 Overview of the Instruction Pipeline of the DEC Alpha 21164

3.2.1 General Organization

The DEC Alpha 21164 (Figure 3.1), introduced in 1994, is a four-way in-order RISC
superscalar processor. Its clock frequency was 300 MHz, and there were 9.3 million
transistors on chip. The RISC label means that the Alpha ISA is of the load–store
type with all instructions being register–register except for those accessing memory.
There are 32 64-bit integer registers and 32 floating-point registers, and an additional
8 integer registers used only by the Pal code (recall Section 2.3.1). Since it is four-
way, up to four instructions can pass through each stage of the front-end on any
given cycle. Its predecessor, the Alpha 21064, was only two-way.

The back-end consists of four functional units. There are two integer pipelines
and two floating-point pipelines. Both integer pipelines can perform the simple
arithmetic and logical operations, including the address computation for load–store
instructions. One integer pipe has a shifter and multiplier associated with it. The
multiply operation is partially pipelined, and its latency depends on the size of
the data (32 or 64 bits).The other integer pipe handles branches. Integer operations
other than multiply, conditional moves, and divide have a latency of 1 cycle. Integer
divide is handled in software. One floating-point unit is dedicated to multiplication;
the other one handles all other operations, including divide – the only operation that
is not pipelined. The latency of all floating-point operations except divide is 4 cycles.

The instruction pipeline is shown in Figure 3.2. As can be seen, the front-end
takes 4 cycles. The overall number of stages is seven for the integer pipelines and
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Figure 3.1. Alpha 21164 block diagram
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nine for the floating-point pipelines. Since some of the basic steps of instruction exe-
cution take more than one stage, this processor is sometimes referred to as super-
pipelined. This property is true of all general-purpose microprocessors of that era
and thereafter.

The on-chip memory hierarchy main parameters can be found in Tables 2.1
and 2.2 in Chapter 2. To recap, the L1 I-cache and L1 D-cache are 8 KB, direct-
mapped and with 32-byte lines. Since the page size is 8 KB or more, the caches can
be virtually addressed (cf. Chapter 6.1). The L2 cache is 96 KB, is three-way set-
associative, and has 32-byte lines. The L1 D-cache is write-through, and the L2 is
writeback. L1 data cache misses to the same line that has not yet been requested
from L2 can be merged in a miss address file (MAF). Stores can also be merged in
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Figure 3.2. The 21164 instruction pipeline (stage S4 of the memory pipe uses an integer pipe).
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a write buffer. Virtual–physical address translation is handled by a fully associative
48-entry I-TLB and a 64-entry D-TLB. Both TLBs can handle several page sizes,
all multiples of 8 KB. Figure 3.2 shows that the L1 D-cache hit latency is 3 cycles,
whereas a miss followed by a hit in L2 takes an extra 6 cycles. Prefetching (see
Section 6.2) is performed extensively for the L1 I-cache.

3.2.2 Front-end Pipeline

The front-end has four stages, labeled S0 through S3. In broad terms, the function
of each stage is:

� S0: Access the I-cache and bring four instructions into one of two instruction
buffers (IBs).

� S1: Perform branch prediction, calculate branch target address, and validate the
I-cache access.

� S2: Steer each instruction to an appropriate functional unit. This slotting stage
resolves all static execution conflicts, that is, structural hazards caused by the
contention of instructions for functional units.

� S3: Perform all dynamic conflict resolution: detect and schedule forwarding and
stalling due to any RAW or WAW dependencies.

Instructions can move from one stage to another only if all instructions in the sub-
sequent stage have been processed. Note that for integer programs, a maximum of
two arithmetic instructions can leave S3 on a given cycle. If there are more than
two instructions in S2 that require the use of an integer pipeline, only the first two
will pass to S3. Instructions in S0 and S1 will stall, and no new instructions will be
fetched. Note that this is not a bubble, for no stage is left empty.

Let us look in slightly more detail at each stage, starting with S0 and S1. In S0,
the I-cache and the I-TLB are accessed in parallel. Four instructions (they must be
aligned in the same I-cache line; otherwise, only those remaining in the line are con-
sidered) are returned and stored in one of two four-entry IBs, assuming that one
of these is totally empty. Each instruction is already partially decoded, that is, a
4 byte instruction is supplemented by 5 bits of information that will be used in S1
for branch prediction and in S2 for slotting. Since the I-cache is virtually indexed,
the verification of a hit or miss is done in S1. In case of a miss, a request is made
to L2, using a stream buffer prefetching technique that will be explained in Chap-
ter 6. Naturally, in the case of a miss the contents of the just-filled instruction buffer
are voided. In S1 branch prediction is performed (branch prediction is treated thor-
oughly in Chapter 4); suffice to say here that the branch predictor of the 21164 is not
very sophisticated by today’s standard. It uses the 5 predecoded bits to recognize
that one of the instructions is a branch and to perform the prediction. The branch
target address is also computed in S1, and if the prediction is for branch taken, the
PC is modified accordingly. Although it appears that a bubble in the front-end is
required for a successful branch-taken prediction, quite often this no-op slot will
be amortized because of the stage-to-stage instruction-passing mechanism requiring
total emptiness of a stage before it is refilled.
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S0 and S1 correspond approximately to the functionality of the IF and part of
the ID stage of a scalar processor. S2 and S3 correspond to the reminder of the ID
stage plus the functions that are provided by the forwarding and stalling units. Of
course, the latter are expanded, because the back-end has multiple functional units.
The S2 slotting stage takes the four instructions from the current instruction buffer
and places them in its slotting register if the latter is empty. When S3 does not have
any more instructions to process, the S2 stage passes to S3, in strict program order,
all instructions remaining in the slotting register that can be assigned to one of the
four execution and memory pipelines.

EXAMPLE 1: Assume that the four instructions in the slotting register are:

i1: R1 ← R2 + R3 # Use integer pipeline 1
i2: R4 ← R1 − R5 # Use integer pipeline 2. Notice the RAW with i1
i3: R7 ← R8 − R9 # Requires an integer pipeline
i4: F0 ← F2 + F4 # Floating-point add

The first two instructions only will be passed to S3 and the two integer pipelines:
the third one requires also an integer pipeline, and the fourth one cannot advance,
because the third one is blocked. S2 is therefore the stage where structural hazards
for functional units are detected.

S3 is the issue stage. The main logic apparatus is a scoreboard (cf. the Sidebar on
the CDC 6600 scoreboard) that monitors the execution of instructions in progress
and sends control signals for forwarding and writing in result registers. The status
of all registers and the progress of the instructions in the back-end are monitored
exactly, because all instructions have fixed latencies except for (i) integer multiplies
and floating-point divides, whose latencies can be easily computed by the score-
board once the size of the data is known, and (ii) load accesses to the L1 cache,
because there can be a hit or a miss. Once an instruction leaves the S3 stage, it
will run to completion unless there is a control hazard or it is dependent on a load
instruction that resulted in a cache miss (see next section).

Data hazards, (i.e., RAW and WAW dependencies), are resolved during S3. No
instruction can leave S3 unless the source registers are available either directly or as
a byproduct of forwarding in the next cycle. In the example above, because the inte-
ger subtract i2 has a RAW dependency with its integer add predecessor i1, it would
be stalled for one cycle and its successors would have to remain in the S2 stage.
While there is certainly a loss in IPC due to the RAW dependency, there is no bub-
ble in the overall execution. At least one instruction has progressed. This is the case
for the great majority of integer instructions (conditional moves – introduced in Sec-
tion 3.4 of this chapter – and multiplies are the major exceptions). RAW dependen-
cies in floating-point instructions reaching S3 in the same cycle stall the dependent
instruction for 4 cycles (floating-point divide takes longer). WAW dependencies are
resolved by preserving the program order for writes. In particular, if two instruc-
tions are scheduled to write the same register without an intervening RAW depen-
dency, they are prevented from doing so in the same cycle, and the first one in pro-
gram order must write the register first. This situation is extremely rare in in-order
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At time t0 the four instructions are in stage S0.
All four are in S1 at time t0  + 1 and in S2 at t0 + 2. New instructions fill stages S0 and S1.

At time t0 + 3 only i1 and i2 pass to S3. i3 and i4 remain in S2. No new instructions are fetched.

At time t0 + 4, i1 passes to the back-end. i2 remains in S3; i3 and i4 remain in S2. No new
instructions are fetched.

At time t0+ 5, i2 passes to the back-end. i3 and i4 pass to S3. The instructions in S1 and S0 can
progress, and new instructions are fetched.

t0 t0 + 1 t0 + 2 t0 + 3 t0 + 4 t0 + 5

i1

i2

i3

i4

Figure 3.3. Illustration of occupancy of the front-end.

processors, for if it took place the result of the first instruction would never be used
(see the exercises). Nonetheless, it needs to be checked for.

Figure 3.3 illustrates the progression in the front-end of the four instructions in
Example 1.

3.2.3 Back-end: Memory Operations and Control Hazards

On a load–store instruction, the address computation is performed during stage S4
in either of the integer pipelines. The beginning of the L1 D-cache and D-TLB
accesses is also done during S4. During S5, the cache and TLB controllers check
whether there is a hit or a miss. In case of a hit, the data are forwarded if needed
and written to either the integer or the floating-point register file during S6. Thus,
the latency of an L1 hit is 2 cycles, because the data are available at the end of S5.
In case of a miss, the L2 cache is accessed starting at stage S5. The data will become
available at S12.

Some details are omitted in this description because they are peculiar to the
21164. For example, the result of a floating-point load is available only one cycle
later for forwarding purposes. Let us simply note that several L1 misses can be
pending and that stores are written first in a write buffer. These two hardware assists
allow concurrency in memory operations but do not prevent totally the possibility
of structural hazards, because the buffers (MAF and write buffer) can become full.
The designs and uses of these buffers will be treated more fully in Chapter 6.

Since the latency of an L1 hit is 2 cycles, there can be a bona fide stall if the
consumer of the load is the instruction following it. The scoreboard prevents the
dependent instruction from issuing for the cycle where the load was issued and, as
was the case for the scalar pipelines, for the subsequent one. If both the load and its
dependent instruction reached S3 in the same cycle, say t, the load will be issued at
t + 1 and the dependent instruction at t + 3. A real bubble occurs during time t + 2,
because no instruction can move from S2 to S3 (not all instructions in S3 have been
issued) and the dependent instruction and its successors cannot move from S3 to S4.
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The scoreboard, though, cannot know whether there will be a hit or a miss. It
speculatively assumes a hit, because that is the common case; the guess will be right
over 90% of the time. If it guessed wrong – and this will be known at stage S5 –
instruction issue can still go on until an instruction dependent on the load wants to
issue. If such an instruction had already been issued, and the scoreboard knows that,
it will be aborted and reissued when the L2 access is over.

The resolution of control hazards is also dependent on information kept by the
scoreboard. In the case of branches, once the branch is issued in stage S3, it does
not matter whether it was predicted to be taken or not taken. The only difference is
that a branch predicted to be taken might have forced a bubble because of the need
for a target address computation. Branch resolution occurs in stage S5. On a mis-
prediction, all instructions that were issued after the branch, including those issued
during the same cycle but posterior in program order, must be aborted. The PC is
reset to the correct value, and the pipeline starts refilling. The penalty of mispredic-
tion is 6 cycles, but it can translate into a more damaging impact on IPC when one
considers the number of instruction issues (a maximum of four per cycle) that have
been missed. In the case of precise exceptions, the instructions following the one
causing the exception are aborted. Once the pipeline has been completely drained,
because further precise exceptions for instructions preceding in program order the
first one has been detected may occur (cf. Section 2.1.4), the Pal code will take over.
Floating-point arithmetic instructions are imprecise. Interrupts will force a complete
pipeline drain.

It is interesting to note that the branch misprediction penalty is more severe, by
1 cycle, in the 21164 than in its predecessor, the two-way 21064 processor. On the
other hand, the load latency in the 21164 is 1 cycle less than in the 21064. We can
surmise that, faced with the choice of optimizing the hardware to decrease either
the load latency or the branch misprediction penalty, the designers preferred the
former, perhaps because they were more confident in the accuracy of their improved
branch predictor.

We implied that all structural hazards were detected in stage S2. This is not
completely correct, as mentioned previously, because of the limited capacity of
some buffers associated with the D-cache. When such a buffer is full and some new
instruction wishes to store an entry in it, all following instructions are aborted and
the pipeline is refilled, starting at stage S0 with the PC pointing to the instruction
that could not proceed.

3.2.4 Performance Assessment

It is difficult to quantify exactly the improvements in execution time brought about
by the Alpha 21164 multiple-issue1 processor and by its deep pipeline compared
to that of a single-issue five-stage processor like the MIPS 3000 of the previous

1 We will sometime use “multiple-issue” instead of “m-way.” In the Alpha 21164 the maximum num-
ber of instructions that can be fetched at S0 (i.e., four) is the same as the maximum number of
instructions that can be issued at stage S3. That is not necessarily true of all superscalars.
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chapter. Architectural enhancements such as a more extensive memory hierarchy,
overlapping of memory accesses, and better branch prediction techniques cloud the
picture. These effects weigh still heavily, albeit to a lesser extent, when the 21164
is compared with its two-issue predecessor, the 21064, which has only one integer
and one floating-point pipeline. Nonetheless, the following measurements are of
interest:

� When running SPECfp92 and SPECint92, the average IPC is less than 1. It
almost reaches 2 on two of the Specfp92 programs. On floating-point programs,
the IPC is almost double that of the 21064, and on integer programs it is almost
50% better.

� Because the clock frequencies of the two processors are in a 3:2 ratio, the
improvements in execution time are more dramatic (ratios of 3:1 and more than
2:1).

� On commercial workloads, the IPC of the Alpha 21164 plummets to less than
0.3, the main reason being cache misses percolating through the whole memory
hierarchy. The 21164’s IPC is marginally better than that of the 21064 (less than
0.25). However, the execution time on the 21164 is faster by a factor of 60%
because of the differences in clock frequency.

� The ratio of instances when more than one instruction is issued in a given cycle
to the total number of instructions varies from about 50% to 70% (double the
ratio for the 21064), depending on the programs. In commercial and integer
programs, two instructions are issued in almost half of the issuing cycles (we
differentiate between issuing cycles and total cycles: in the latter, the pipeline
might be stalled because, mainly, of the occurrence of L2 cache misses). More
than one instruction is issued in floating-point programs in more than half of
the issuing cycles, and in more than 20% of the issuing cycles three or four
instructions are issued.

Finally, the importance of compiler optimizations is far from being negligible.

EXAMPLE 2: Consider the following code sequence:

i1 R1 ← Mem[R2] # Load in R1
i2 R4 ← R1 + R3 # RAW with instruction i1
i3 R5 ← R1 + R6 # RAW with instruction i1
i4 R7 ← R4 + R5 # RAW with instructions i2 and i3

Assume all instructions were in the slotting register (stage S2) at time t. At time
t + 1 instructions i1 and i2 can advance to S3. Instruction i3 cannot, because of struc-
tural hazards (only two integer pipes exist; and recall that load–store instructions use
one integer pipe for address computation). The only action that occurs at time t + 2
is the issuing of the load instruction. Instruction i2 cannot issue because of the RAW
dependency. Only instruction i1 progresses at time t + 3, because loads have a 2-
cycle latency. Instruction i2 issues at time t + 4, and during that cycle instructions i3
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and i4 advance to the S3 stage. At time t + 5, i3 will issue, but i4 won’t because of
the RAW dependency and will do so only at time t + 6.

The reader can verify that if an integer no-op were inserted between instructions
i1 and i2, instructions i2 and i3 would be advancing together to S3 at time t + 2. They
would both issue at time t + 4, and instruction i4 would issue at time t + 5, that is,
one cycle earlier than in the original code.

3.2.5 Recap

In this section, we have presented an in-order four-way superscalar, the Alpha
21164. The major advances over a single-issue five-stage scalar processor are:

� A wider pipeline: four functional units and access to the D-cache in the back-
end.

� A deeper pipeline: the front-end has four stages and the back-end from three to
five, depending on the function.

� A scoreboard monitoring all instructions in flight in the back-end, so that for-
warding and stalling can be implemented (this replaces the forwarding-and-
stalling unit of the five-stage pipe).

In the description of what might be called a second generation superscalar (the
Alpha 20164 being a first generation one), we have seen the importance of branch
prediction in that a misprediction causes a 6-cycle penalty that translates into 24 lost
issue slots. Similarly, speculation is needed when accessing the cache, at the cost, on
a misspeculation, of replaying some of the instructions that are in flight.

Still, there is some room for improvement. For example, with more logic, in-
structions could proceed through the front-end even if a successor stage were not
completely empty. Nonetheless, this processor has reached one of the goals of a
superscalar: many programs can have an IPC greater than 1.

Sidebar: The Scoreboard of the CDC 6600

The CDC 6600, introduced in 1964, was a major step forward in the design of pow-
erful computers. There are four features that at that time were advances in the state
of the art:

� Separate functional units (not pipelined; pipelining came about with the CDC
7600 a few years later), which could operate concurrently under the supervision
of a scoreboard (i.e., a control unit).

� Interleaving of main memory modules.
� Relocation registers for multiprogramming.
� Multithreading of I/O peripheral processors.

Here, we present only the first feature and take some liberties with the actual
ISA of the CDC 6600, mostly in not differentiating the specific roles of the three
sets of registers: floating-point, long integer, and address integer.
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Figure 3.4. The CDC 6600 back-end.

A simplified block diagram of the layout of the functional units is shown in
Figure 3.4. The CDC 6600 had 10 functional units divided physically into four
groups:

� Group I with a long-integer adder, a floating-point adder, and a shifter.
� Group II with two floating-point multipliers.
� Group III (which shared its data buses with group II) with a floating-point

divider and a logical unit (Boolean).
� Group IV with two incrementers for address calculations.

The astute reader will have noticed that we have listed only nine units. The tenth one
is a branch unit that works in cooperation with a partner unit to modify the PC, if
necessary. The same reader will also have noticed that there is no integer multiplier
or integer divider. Integer multiplication can be performed through the floating-
point multiplier without conversion of the numbers (using the double precision man-
tissa), and integer division requires either software or conversion to floating-point
numbers.

Once an instruction has been fetched and decoded, it will follow four steps
under the control of the scoreboard:

1. Issue: If there is a free functional unit for the instruction and if there is no
WAW hazard, the instruction is said to be issued. If either of these conditions is
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Table 3.1. Conditions and actions in the CDC 6600 scoreboard

Condition checking Scoreboard setting

Issue step: Issue step:
Unit free Ua = 0 and no WAW (Pi = 0) Unit busy Ua = 1; record Fi , F j , Fk

Record Q j , Qk and R j , Rk (e.g., R j = 1 if P j = 0
else if P j = b then R j = 0 and Q j = b)

Record Pi = Ua

Dispatch: Dispatch:
Source registers ready: R j and Rk = 1 Send F j and Fk to unit a

Execute: Execute:
At end, ask for permission to write

Write result: Write result:
If some issued but not dispatched instruction

before this instruction in program order is
such that either its Q j or Qk = a, then stall

Set Ua = 0 and Pi = 0

false, the instruction, and its successors, is stalled until both conditions become
true.

2. Dispatch: When the instruction is issued, the execution unit is reserved
(becomes busy). Operands are read in the execution unit when they are both
ready (i.e., are not results of still-executing instructions). This prevents RAW
hazards.

3. Execution: One or more cycles, depending on functional unit’s latency. When
execution completes, the unit notifies the scoreboard that it is ready to write the
result.

4. Write result: Before writing, the scoreboard checks for WAR hazards. If one
exists, the unit is stalled until all WAR hazards are cleared (note that an instruc-
tion in progress, i.e., whose operands have been read, won’t cause a WAR).

Of course, there are opportunities for optimization such as buffering and forwarding
(see the exercises), and also there are occurrences of extra stalls, for example, when
two units in the same group want to store results in the same cycle.

In order to control the four steps in the back-end, the scoreboard needs to know:

� For each functional unit, whether it is free or busy: flag Ua for unit a.
� For each instruction in flight, including the one that wishes to issue:

� The names of the result Fi and source Fj, Fk registers.
� The names Qj, Qk of the units (if any) producing values for Fj, Fk.
� Flags Rj, Rk indicating whether the source registers are ready.
� Its status, that is, whether it is issued, dispatched, executing, or ready to write.

� For each result register Fi, the name of the unit, if any, that will produce its
results, say Pi (this is slightly redundant, but facilitates the hardware check).

Then, the scoreboard functions as in Table 3.1. Note that the write result step
requires an associative search.
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Table 3.2. Snapshot of the scoreboard

Unit Inst. status U Fi F j Fk R j R j Q j Qk

Mul1 Exec 1 4 0 2 1 1
Mul2 Issue 1 6 4 8 0 1 Mul1
Add Exec 1 8 2 12 0 0

Reg. 0 2 4 6 8 10 12 14 16
Unit Mul1 Mul2 Add

EXAMPLE 3: Assume that the two multipliers have a latency of 6 cycles and the
adder has a latency of 1 cycle. Only registers with even numbers are shown in the
following table, because it is assumed that these are floating-point operations
using pairs of registers for operands. Assume all registers and units are free to
start with:

i1: R4 ← R0 ∗ R2 # will use multiplier 1
i2: R6 ← R4 ∗ R8 # will use multiplier 2; RAW with i1
i3: R8 ← R2 + R12 # will use adder; WAR with i2
i4: R4 ← R14 + R16 # will use adder; WAW with i1

The progression of the instruction through the first few cycles is elaborated on
below. Table 3.2 is a snapshot of the scoreboard after cycle 6.

� Cycle 1: i1 is issued, and the first row of the scoreboard is as shown in Table 3.2
except that the instruction status is issue. Note that the contents (i.e., the Pi) of
register 4 indicate the Mul1 unit.

� Cycle 2: The status of i1 becomes dispatch, and instruction i2 is issued. This is
indicated by the second row of the table and the contents of register 6.

� Cycle 3: Instruction i1 is in execute mode, but i2 cannot be dispatched, because
of the RAW dependency (Rj = 0). Instruction i3 can issue, though, as shown in
the third row and the contents of register 8.

� Cycle 4: Instruction i3 can dispatch, but i4 cannot issue, for two reasons: the
adder is busy, and there is a WAW dependency with i1 (this latter condition is
easily checked by looking at the contents of register 4).

� Cycle 6 (no change in the scoreboard during cycle 5): Instruction i1 is still exe-
cuting, instruction i2 is still in the issue stage, and instruction i3 asks for permis-
sion to write. The permission will be refused because of the WAR dependency
with instruction i2.

� The situation will remain the same until instruction i1 asks for permission to
write, at cycle 8, which is granted immediately.

� At the next cycle, (i.e., cycle 9), instruction i2 will be dispatched and instruction
i3 will be able to write, allowing instruction i4 to issue, and so on.

Note that despite all these restrictions, most notably the requirements that instruc-
tions issue in order, instructions can complete out of order.
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3.3 Introducing Register Renaming, Reorder Buffer,
and Reservation Stations

The fetch and decode stages of in-order and out-of-order processors need not be
different. Front-end tasks such as multiple instruction fetch, branch prediction, and
decoding are independent of how the back-end will execute the stream of instruc-
tions. The differences between the two types of superscalar microprocessors start
with the decision of when instructions leave the front-end and how they are pro-
cessed by the back-end.

In an in-order processor, instructions must leave the front-end in program
order. Instructions may be prevented from issuing because of RAW and WAW
dependencies. In an out-of-order processor, WAR and WAW dependencies will
be avoided by register renaming. Because instructions can complete out of program
order, means to impose the program order are necessary, and this will be the func-
tion of the reorder buffer. Moreover, instructions may leave the front-end and not
be ready to execute yet because of either RAW dependencies or structural hazards
such as busy functional units. These instructions will have to wait in reservation sta-
tions, or equivalently, remain in an instruction window.

3.3.1 Register Renaming

Whereas RAW dependencies are algorithm-dependent, WAR and WAW are
present because of a scarcity of resources, namely registers. Instead of being true
dependencies, they are name dependencies. WAW and WAR dependencies can be
avoided with register renaming. To illustrate the concepts of register renaming, con-
sider the following example.

EXAMPLE 4.A: Assume all registers are available at the beginning of the follow-
ing sequence of instructions and that three instructions can issue per cycle:

i1: R1 ← R2/R3 # division takes a long time to complete
i2: R4 ← R1 + R5 # RAW dependency with i1
i3: R5 ← R6 + R7 # WAR dependency with i2
i4: R1 ← R8 + R9 # WAW dependency with i1

In an in-order processor such as the Alpha 21164, only the first instruction would be
issued, because of the RAW dependency between i2 and i1. Instruction i2 would
be issued when the divide was in its last cycle of execution, and instructions i3 and
i4 would be issued at the same time as i2, or maybe at the next cycle, depending on
the rules of issue for the particular processor. The WAR and WAW dependencies
would disappear as soon as the RAW dependency was removed.

In an out-of-order processor, the RAW dependency will of course be enforced.
But its presence should not prevent instructions following the dependent one to start
their execution if they do not need the results that have not yet been generated. The
WAR and WAW dependencies are avoided by providing extra register, or register-
like, storage.
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In this first pass at explaining register renaming, we simply give a high-level view
without paying attention to the number of physical registers, how they are obtained,
and how they are released. Let us call the ISA-defined registers the logical or archi-
tectural registers, and the total register storage the physical registers. The logical
registers of an instruction will be renamed, or mapped, to physical registers when an
instruction reaches the last stage of the front-end. The source operands’ names are
replaced by the physical registers to which they map, and the destination register is
given a new physical register name. In other words, if Ri ← Rj op Rk is the (next)
instruction whose registers must be renamed, Rename(Ra) is the current mapping
table, and Freelist is a list of physical registers that have not been allocated with first
pointing to the next one available, then register renaming proceeds as follows:

Renaming Stage. Instm: Ri ← Rj op Rk becomes Ra ← Rb op Rc, where
Rb = Rename(Rj);
Rc = Rename(Rk);
Ra = freelist(first);
Rename(Ri)= freelist(first);
first ← next(first).

EXAMPLE 4.B: Continuing Example 4.a, let us assume that at the beginning of the
sequence all logical registers are renamed to their own name. Freelist contains,
in numerical order, physical registers R32, R33, and so on. When instructions i1,
i2, and i3 reach the renaming stage together under our three-way assumption,
then:

� For instruction i1, the source registers R2 and R3 retain their names. The
destination register R1 is renamed R32.

� For instruction i2, the source register R1 has become R32 and the source
register R5 retains its name. The destination register R4 is renamed R33.

� For instruction i3, the source registers R6 and R7 retain their names. The
destination register R5 is renamed R34.

After the first cycle, the sequence is now:

i1: R32 ← R2/R3 # Division takes a long time to complete
i2: R33 ← R32 + R5 # Still a RAW dependency with i1
i3: R34 ← R6 + R7 # No WAR dependency with i2 anymore
i4: R1 ← R8 + R9 # Unchanged yet

At the next cycle both instructions i1 and i3 can start executing (not i2, because
of the RAW dependency), and register renaming can be done for i4. R1 will be
renamed R35, and instruction i4 becomes:

i4: R35 ← R8 + R9 # No WAW dependency with i1 anymore

Note that R1 has been renamed twice. It is clear that instructions following i4 and
using R1 as a source operand expect the result of i4 as the correct one, and register
renaming must enforce the latest mapping.
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3.3.2 Reorder Buffer

Let us continue with Example 4.b. It is very likely that instructions i3 and i4 will
compute their results before i1 and i2. We must prevent the results stored in R34
and R35 from being put in their corresponding logical registers (R5 and R1) before
the contents of R32 and R33 are stored in R1 and R2, respectively. Otherwise, when
i1 stores its results in R1, it would overwrite the value already stored in R1 as a result
of instruction i4. As another possibility, if i1 generated an exception, (e.g., a divide
by zero), we would not want the value computed by i3 to be part of the process
state.

Storing the results in program order is achieved with the help of a reorder
buffer (ROB). Conceptually, the ROB is a FIFO queue where each entry is a tuple
(flag, value, result register name, instruction type) with the following meanings for
the tuple components (we restrict ourselves to arithmetic instructions for the time
being):

� The flag indicates whether the instruction has completed execution.
� The value is the value computed by the instruction.
� The result register name is the name of the logical register where the results

must be stored.
� The instruction type shows the type of instruction such as arithmetic, load, store,

branch, and so on.

When an instruction is in the renaming stage, an entry corresponding to it is inserted
at the tail of the ROB with the flag false indicating that the result has not been
computed yet. That is, we have the following additional steps in the renaming stage:

Renaming stage (additional steps)

ROB(tail) = (false, NA, Ri, op);
tail ← next(tail)

When the execution of the instruction is completed, the value is put in the corre-
sponding entry in the ROB, and the flag indicates that the result can be stored in
the result register.2 However, this last action, called commit, will be performed only
when the instruction is at the head of the ROB. That is:

Commit stage

if ((ROB(head) = Instm) and flag(ROB(head)))
then begin Ri = value; head ← next(head) end
else repeat same test next cycle

Note that either an instruction must carry the index of the ROB entry or some equiv-
alent scheme must be provided so that instructions and corresponding ROB entries
are identifiable when the instruction completes the execution stage.

2 Putting the value in the ROB is one possible implementation. We shall see another scheme in Chap-
ter 4.
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Table 3.3. Snapshots of the reorder buffer (ROB)

Flag Value Reg. name Type

(a) After renaming of the first three instructions
i1 Not ready None R1 Arit Head
i2 Not ready None R4 Arit
i3 Not ready None R5 Arit

Tail

(b) After completion of execution of i3 and i4
i1 Not ready None R1 Arit Head
i2 Not ready None R4 Arit
i3 Ready Some R5 Arit
i4 Ready Some R1 Arit

Tail

(c) After commit of i1
i1 Ready Some R1 Arit
i2 Not ready None R4 Arit Head
i3 Ready Some R5 Arit
i4 Ready Some R1 Arit

Tail

EXAMPLE 4.C: Let us continue our example, and let us assume that the ROB is
empty when instruction i1 reaches the register renaming stage.

After the renaming of the first three instructions, the ROB looks like the one
depicted in Table 3.3(a). The three instructions that are having their destination reg-
isters renamed are entered in the ROB in program order. In the next cycle, instruc-
tion i4, and the following two not shown in the example, will be entered at the tail
of the ROB.

Some cycles later, instructions i3 and i4 will have computed their results before
i1 has completed its own. These results will be entered in the ROB, as shown in
Table 3.3(b), with the flags of the respective entries indicating that results are ready
to be stored. However, the results will not be stored in the logical result registers,
because these instructions are not at the head of the ROB.

When instruction i1 completes, identical actions are performed. Now, at the
next cycle, the result from i1 can be written in logical register R1, because i1 is at
the head of the ROB. This commit operation, performed by a retire unit, can be
considered as the last stage of the instruction pipeline. The ROB contents now look
like Table 3.3(c).

After the cycle in which instruction i2 terminates, the remaining three instruc-
tions are ready to commit. In general it is a good idea to balance the number of
instructions able to commit in the same cycle with the number of instructions that
can be entered in the ROB at the renaming stage, so in a three-way processor, all
three instructions i2, i3, and i4 would commit in the same cycle. In the same way as
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register renaming must identify the last renaming instance of a register, instruction
committing must ensure that the youngest entry in the ROB can overwrite older
entries. If, for example, i2 and i4 were to try to write in the same cycle in the same
logical register, only i4 would be allowed to do so.

3.3.3 Reservation Stations and/or Instruction Window

In the preceding sections, we have identified actions that must be performed by the
front-end, namely, register renaming and inserting instructions in program order in
the ROB. We have also shown how the results of computations are stored in logical
registers in program order via the commit operation. However, besides implemen-
tation considerations, we have skipped over important parts of the process, such as
where instructions wait before being executed and how an instruction knows that it
is ready to be executed.

After the front-end has renamed the registers of an instruction and entered its
corresponding tuple in the ROB, it will dispatch3 the instruction to a reservation
station. A reservation station is a holding place for an instruction and must contain,
in one form or another:

� The operation to be performed.
� The values of the source operands or their physical names (a flag should indicate

whether there is a value or a name).
� The physical name of the result register.
� The entry in the ROB where the result should be stored.

Reservation stations can be grouped in a centralized queue, sometimes called
an instruction window, or can be associated with (sets of) functional units according
to their opcodes. Independently of whether the instructions queues are centralized
or not, when more than one instruction is ready in a given cycle for a functional unit,
there is contention for that functional unit and a scheduling decision must be taken.
Quite often, the oldest instruction, that is, the first one in program order, will be the
one issued first. Other possibilities, such as issuing first those instructions identified
as critical, are possible (see Chapter 5).

The last task that we have to describe is the detection of the readiness of an
instruction to issue. This will occur when both its source operands are values. The
operands will be the inputs to a functional unit that will execute the operation. In
order to know when to issue, we can associate a ready bit with each physical register
to indicate whether the result for that register has been computed or not. When

3 Academic authors and industry manuals show no consistency in the distinction between dispatch
and issue. We will say that a dispatch is a front-end task (filling a reservation station) and an issue is
a back-end task (sending the ready instruction to a functional unit). Note that we are guilty of some
inconsistency in that, for historical reasons, we have shown the issue step before the dispatch step
for the CDC 6600 scoreboard.
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the destination register of an instruction is mapped, during the renaming stage, we
turn its ready bit off. When an instruction is dispatched, if the ready bit of a source
register is on, we pass to the reservation station the contents of the register and set
the corresponding flag to true (ready). If the ready bit of a source register is off, we
pass the name of the register and set the corresponding flag to false. The instruction
will be issued when both flags are true. Thus:

Dispatch Stage. For instruction Im : Ra ← Rb op Rc, where the reg-
isters are physical registers:

If all reservation stations for op are full
then stall and repeat next cycle;

fill (next) reservation station for op with the tuple
{ operator = op,
if Ready(Rb) then (value[Rb],true) else (Rb, false),
if Ready(Rc) then (value[Rc],true) else (Rc, false),
Ra,
pointer to ROB entry

}

and:
Issue Stage

If (flag(Rb) and flag(Rc))
then send (value[Rb], value[Rc]) to functional unit
else repeat next cycle

When an instruction completes, it broadcasts the name of the physical register and
its contents to all the reservation stations. Each reservation station that has the name
of this physical register as one of its source registers will grab the contents and set the
corresponding flag to true. At the same time, the contents are stored in the physical
destination register with its ready bit turned on. The results are also stored in the
ROB if the latter is the resource for physical registers.

EXAMPLE 4.D: We have assumed that all registers were available. More pre-
cisely, we assumed that the contents of the logical registers were committed and
that all other physical registers were free. When R1 is renamed R32 (instruc-
tion i1), the ready bit of R32 is turned off. When i2 is dispatched, the name
“R32” is sent to the reservation station holding i2 and the corresponding flag is
turned off. Therefore, i2 is not ready to be issued. When i1 completes its exe-
cution, it broadcasts the name “R32” along with the result of the operation it
performed. The reservation station holding i2 recognizes the name, grabs the
result, and turns the corresponding flag on, allowing i2 to be issued at the next
cycle.

The sidebar on the IBM System 360/91 and Tomasulo’s algorithm gives one
specific implementation of renaming, ROB, and instruction issuing. As we shall
see in the next section, the implementation of the Pentium P6 architecture follows
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Table 3.4. Instruction flow and resources involved in an out-of-order processor

Resources written
Step Resources read or utilized

Front-end Fetch PC PC
Branch predictor Instruction buffer
I-cache

Decode–rename Instruction buffer Decode buffer
Register map Register map

ROB
Dispatch Decode buffer Reservation stations

Register map ROB
Register file (logical and physical)

Back-end Issue Reservation stations Functional units
D-cache

Execute Functional units Reservation stations
D-cache ROB

Physical register file
Branch predictor
Store buffer, and so on.

Commit ROB ROB
Physical register file Logical register file
Store buffer Register map

D-cache

Tomasulo’s algorithm quite closely. Other mechanisms are described in Chap-
ter 4.

3.3.4 Recap

Table 3.4 summarizes the flow of an instruction in an out-of-order processor. We
have chosen to split the decode–rename–dispatch steps into two steps (decode–
rename and dispatch) because in many microarchitectures there is a queue of
instructions ready to be dispatched that are in an internal representation different
from what was stored in the instruction buffer. Similarly, we have split the issue–
execute steps into issue and execute although both involve execution in the func-
tional units or the D-cache. Our motivation is that issue removes instructions from
the reservation stations whereas execute will, as its last action, modify the reserva-
tion stations, the ROB, and the physical register file as well as other data structures,
depending on the type of instruction (e.g., the use of store buffers will be explained
when we look at memory operations).

Sidebar: The IBM System 360/91 Floating-point Unit
and Tomasulo’s Algorithm

In the mid 1960s, IBM was looking for a response to the CDC 6600 at the high
end of computing power. The Model 91 was introduced in 1967, three years after
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the 6600, as an answer to the CDC 6800, a projected follow-up to the 6600 that
was never delivered. In 1968, the Model 91 was renamed Model 95, with the main
improvement a faster core memory. CDC answered in 1969 with the CDC 7600, a
pipelined version of the 6600. By that time, the production of Models 91 and 95 was
stopped, in part because a cheaper and simpler model, the Model 85, was able to
outperform them with the inclusion of a major system component: cache memory.

The IBM System 360/91 has its roots in Project Stretch, a one-of-a-kind super-
computer that emphasized pipelining and optimized design of floating-point units.
The Model 91 was intended mostly for scientific computations, and great care was
taken to have the peak capability of delivering a floating-point result per cycle. In
this sidebar, we present only an abstraction of the design of the floating-point unit
of the Model 91, which consisted of:

� A pipelined floating-point adder with three reservation stations.
� A pipelined floating-point multiplier–divider with two reservation stations

(divisions were implemented by an iterative reciprocal followed by a multipli-
cation).

� A (floating-point) instruction queue.
� A set of floating-point registers.
� Load buffers for loads from main memory.
� Store buffers for stores to main memory.
� A common data bus (CDB) to broadcast results from the adder, multiplier, and

load buffers to the reservation stations, the register file, and the store buffers.

In this presentation, load and store buffers are not considered. On the other hand, a
reorder buffer (ROB) is included so that instructions can be committed in order, a
requirement that did not exist in the original floating-point unit of the Model 91, as
well as a register map, which was not strictly necessary either, because the renaming
was performed with names of reservation stations rather than with ROB entries
(a flag associated with the register file was sufficient to distinguish between names
and values). The resulting structure, on which the concepts of register renaming,
reservation stations, and ROB are illustrated, is shown in Figure 3.5.

In this implementation, a variant of what has become known as Tomasulo’s
algorithm, a reservation station entry consists of six fields:

� a bit indicating whether the reservation station is free or not;
� two fields per source operand – a flag and a data field – so that if the flag is on,

the datum is a value, and otherwise it is a tag;
� a field that contains a pointer (tag) to the ROB entry where the result of the

instruction will be stored.

The basic idea is that the ROB will serve a dual purpose: First, the original
one, that is, the structure will ensure that instructions are committed in program
order, and, second, it will also implement the set of physical registers. The mapping
between logical registers and physical registers will be a table indexed by logical
register number. The name of a physical register will be either an index to an ROB
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Instruction 
queue

F-p registers
and map

Reservation 
stations F-p units

Reorder buffer

CDB

Figure 3.5. Abstracted structure of the
IBM System 360/91 floating-point arith-
metic unit.

entry, also called a tag, or the logical register itself. In our descriptions we will
denote by R0, R1, . . . , Rm the logical registers, and by E0, E1, . . . , En the ROB
entries.

An ROB entry consists of three fields: two fields for the physical register, that
is, a flag and data (if the flag is on, a result has been computed by the instruction
and stored in the ROB; otherwise, the content of the associated field is a tag), and
a field with the name of the logical register where the result should be stored when
the entry is at the head of the ROB.

The instructions are in the instruction queue. We can consider that we are at
the decode–rename stage. We will only perform one decode–rename per cycle; it is
fairly simple to extend the description to a wider machine (see the exercises).

Once the instruction is in the instruction queue, the five steps outlined in
Table 3.4 proceed as follows:

1. Decode–rename. The decoding will steer the instruction towards one of the two
sets of reservation stations (recall that we only consider floating-point opera-
tions). If the intended set is full, we have a structural hazard. At the same time,
we check if there is a free entry in the reorder buffer (the latter is best imple-
mented as a circular queue). If the ROB is full, we have another instance of a
structural hazard. If either form of structural hazard is present, we stall the flow
of incoming instructions until all structural hazards are removed. In the absence
of structural hazards or once they have been removed, we reserve a reservation
station and the tail entry of the ROB for the instruction.

2. Dispatch. We fill the reservation station and the tail entry of the ROB. More
precisely:
a. We look at the map for the source operands. For each operand, if the map

indicates a logical register, this register contains a valid value. If the map
indicates an ROB entry, the flag in the latter is checked to see whether the
entry contains a value or a tag. In all cases, the contents of either the logical
register or the ROB entry are sent to the reservation station with the ready
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bit set on if the reservation station now contains a value, and off if it contains
a tag.

b. We set the map of the result register to the tag (the name of the tail entry of
the ROB) and enter the tag in the reservation station. Note that this step must
be done after the source operands have been looked at, because a register can
be both a source and a result.

c. We enter the instruction at the tail of the ROB with the result flag off.
3. Issue. When both flags in a reservation station are set to ready (are on), the

instruction can be issued to the functional unit to start execution unless all
stages of the latter are stalling because the unit is waiting for the CDB to broad-
cast its result. If more than one reservation station in the same set is ready
to issue in the same cycle, some scheduling algorithm will resolve the conten-
tion.

4. Execute. Execution proceeds normally until the last execution cycle. At that
point, the unit asks for ownership of the common data bus (CDB). If there is
more than one unit asking for the CDB in the same cycle, some (hardwired)
priority scheme will resolve the contention. Once the unit has ownership of the
CDB:
a. It broadcasts the result of its operation and the tag associated with the

instruction.
b. The result is stored in the ROB entry identified by the tag, and the flag indi-

cating a result in the ROB entry is set.
c. The result is stored as well in all reservation stations that have the tag as

an operand. In such reservation stations, the result replaces the tag, and the
corresponding flag (ready bit) is set.

5. Commit. At each cycle, the bit indicating a result in the entry at the head of the
ROB is checked. If it is on, the result is stored in the logical register indicated
by the ROB entry, and the entry is deleted.

To illustrate Tomasulo’s algorithm (cf. Table 3.5), we consider the same example as
for the CDC 6600 scoreboard, namely, the following sequence of instructions:

i1: R4 ← R0 ∗ R2 # will use reservation station 1 of multiplier
i2: R6 ← R4 ∗ R8 # will use reservation station 2 of multiplier; RAW with i1
i3: R8 ← R2 + R12 # will use reservation station 1 of adder; WAR with i2
i4: R4 ← R14 + R16 # will use reservation station 2 of adder; WAW with i1

The adder and multiplier are pipelined with latencies of 1 and 4 cycles, respectively.
If there were no dependencies, a multiplication (respectively, addition) being

decoded at time t0 would be dispatched at time t0 + 1, be issued at time t0 + 2, start
executing at time t0 + 2, finish executing at time t0 + 5 (respectively, at time t0 + 2),
broadcast at time t0 + 6 (respectively, at time t0 + 3), and commit if it were at the
head of the ROB at time t0 + 7 (respectively, at time t0 + 4).
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Table 3.5. Illustration of Tomasulo’s algorithm

Logical
Flag Data register
0 E1 R4 Head
0 E2 R6

Tail

ROB
Index . . . 4 5 6 7 8
Map E1 E2

Register Map
Free Flag1 Oper1 Flag2 Oper2 Tag
0
0
0

Adder Reservation Stations
Free Flag1 Oper1 Flag2 Oper2 Tag
0
1 0 E1 1 (R8) E2

Multiplier Reservation Stations
(a) At cycle t0 + 2. Reservation station 1 of the multiplier is now

free.
Logical

Flag Data register
0 E1 R4 Head
0 E2 R6
0 E3 R8
0 E4 R4

Tail

ROB
Index . . . 4 5 6 7 8
Map E4 E2 E3

Register Map
Free Flag1 Oper1 Flag2 Oper2 Tag
0
1 1 (R14) 1 (R16) E4
0
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Adder Reservation Stations
Free Flag1 Oper1 Flag2 Oper2 Tag
1 0 E1 1 (R8) E2

Multiplier Reservation Stations
(b) Cycle t0 + 4. Reservation station 1 of the adder has become

free. Note the change in the register map for R4.
Logical

Flag Data register
0 E1 R4 Head
0 E2 R6
1 (i3) R8
0 E4 R4

Tail

ROB
Index . . . 4 5 6 7 8
Map E4 E2 E3

Register Map
Free Flag1 Oper1 Flag2 Oper2 Tag
0
0
0

Adder Reservation Stations
Free Flag1 Oper1 Flag2 Oper2 tag
0
1 0 E1 1 (R8) E2

Multiplier Reservation Stations
(c) Cycle t0 + 5. The first addition has stored its result in ROB.
Flag Data Logical register
1 (i1) R4 Head
0 E2 R6
1 (i3) R8
1 (i4) R4

Tail

ROB
Index . . . 4 5 6 7 8
Map E4 E2 E3
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Register Map
Free Flag1 Oper1 Flag2 Oper2 Tag
0
0
0

Adder Reservation Stations
Free Flag1 Oper1 Flag2 Oper2 Tag
0
1 1 (i1) 1 (R8) E2

Multiplier Reservation Stations
(d) Cycle t0 + 7. The second multiplication is ready to issue, and

instruction i1 is ready to commit.
Flag Data Logical register
0 E2 R6 Head
1 (i3) R8
1 (i4) R4

Tail

ROB
Index . . . 4 5 6 7 8
Map E4 E2 E3

Register Map
Free Flag1 Oper1 Flag2 Oper2 Tag
0
0
0

Adder Reservation Stations
Free Flag1 Oper1 Flag2 Oper2 Tag
0
0

Multiplier Reservation Stations
(e) Cycle t0 + 8. Instruction i1 has committed. The only instruction in
execution is i2.
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Table 3.5 shows snapshots of the reservation stations, register map, and ROB
at important junctures.

� At cycle t0 + 2 (see Table 3.5(a)) instruction i1 has started to execute. Instruc-
tion i2 has been dispatched and is in reservation station 2 of the multiplier,
waiting for the result broadcast of instruction i1. Instructions i3 and i4 are still
in the instruction queue.

� At cycle t0 + 4, that is, 2 cycles later (Table 3.5(b)), instruction i3 is now ready
to broadcast and i4 has been dispatched. Note that register R4, which was
renamed as ROB entry E1 and tagged as such in reservation station Mult2, is
now mapped to ROB entry E4.

� At cycle t0 + 5 (Table 3.5(c)) i3 broadcasts its result, which is stored in the ROB
entry E3. Both the adder (instruction i4) and the multiplier (instruction i1) are
ready to broadcast. Let us assume the adder has priority.

� At cycle t0 + 6, the adder broadcasts its result.
� At cycle t0 + 7 (Table 3.5(d)), the multiplier can finally broadcast its result,

which is picked up by reservation station Mult2 and the head of the ROB.
� At cycle t0 + 8 (Table 3.5(e)), instruction i1 can commit. Instruction i2 has issued

and is in its execute stage.

Tomasulo’s algorithm, or a variant of it, is the basis of the design of out-of-order
microprocessors.

3.4 Overview of the Pentium P6 Microarchitecture

3.4.1 General Organization

The Intel family of Pentium processors is by far the most prevalent general-purpose
microprocessor architecture today. The first Pentium, introduced in 1993, was a suc-
cessor to the ×86 series of Intel microprocessors. The Pentium ISA, called IA-32
at Intel, has been extended with the introduction of MMX (for “multimedia exten-
sions”) instructions for the Pentium II and SSE instructions for the Pentium III.
The implementation of MMX instructions was intended to improve the perfor-
mance of multimedia communications and numeric-intensive applications by using
limited single-instruction multiple-data (SIMD; see Chapter 7) features. SSE (for
“streaming SIMD extension”) instructions extend MMX for streaming in both the
floating-point units and the memory subsystem. However, all Pentium processors,
including the Pentium 4 and the Core architecture, are binary-compatible with their
predecessors. While the compatibility is certainly a boon for application designers,
the inherent constraints of an antiquated ISA, such as the paucity of programmable
registers and the CISC instruction set, have presented the designers with additional
challenges. Intel engineers – and their counterparts at AMD, which uses the same
ISA for its processors – have responded brilliantly.
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Fetch/decode
(front-end)

Issue/execute
(back-end)

Retire unit
(commit)

Instruction pool
(window and ROB)

Figure 3.6. A high-level view of the P6
microarchitecture. The fetch–decode
unit is the front-end; the dispatch–
execute unit is the back-end: the
retire unit restores program order in
instruction completion. (Adapted from
http://www.x86.org/ftp/manuals/686/
p6tour.pdf.)

The original Pentium was an in-order two-issue superscalar. The two integer
pipelines shared their IF and ID stages and had the structure of the five-stage
pipeline described in Section 2.1.5. Floating-point instructions were also pipelined in
a floating-point unit. RAW and WAW dependencies were checked at the ID stage.
With the introduction of the Pentium Pro in 1995, Intel followed a radically dif-
ferent implementation approach, called the P6 microarchitecture. The Pentium II,
a renaming of the Pentium Pro; the Pentium III (circa 1999); the Pentium 4 (circa
2001), which has significant implementation differences from the Pentium III; the
Pentium M (circa 2004); and the Core Architecture (circa 2005) are based on the
out-of-order P6 model, with the microarchitectures of the latter two models resem-
bling more the Pentium III’s than the Pentium 4’s.

A high-level view of the instruction flow in the P6 microarchitecture is shown in
Figure 3.6. To recast it in terms we have introduced before, the fetch–decode unit
will implement the front-end of the pipeline. It will fetch, decode, rename, and dis-
patch instructions in the centralized reservation station (the instruction window),
which is part of the instruction pool in the figure. Instructions from the pool will be
issued to the dispatch–execute unit, that is, the functional units and cache hierarchy.
The results will be returned to the reservation station and the reorder buffer, the lat-
ter being also part of the instruction pool. Finally, the instructions will be committed
by the retire unit, which will write results in registers and the storage hierarchy.

Before describing the instruction pipeline of the P6, it is worth noting that
the number of transistors needed for the implementation of the Pentium Pro (not
including caches) was twice that of the Alpha 21164 (more than 4 million vs. less
than 2 million). The Pentium Pro pipelines are about twice as deep as those of the
Pentium, thus allowing fewer logic gates per stage and leading to the possibility of
higher clock frequencies. For integer benchmarks, such as SPECint95, that hardly
exercise the memory hierarchy, the Pentium Pro running at 200 MHz had almost the
same performance as the Alpha 21164 at 333 MHz (both processors were announced
in the first quarter of 1996). On floating-point applications, the Alpha had a clear
advantage, in part due to its much larger on-chip caches (recall Table 2.1).

The CISC instruction set of the IA-32 architecture requires a more complex
decoding than that of a RISC processor. Several stages of the front-end will be
devoted to it. Part of the decoding will consist in transforming the variable-length
IA-32 instructions into RISC-like sequence of operations, called µops. Depending
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L2 cache

Bus interface

L1 I-cache ITLB L1 D-cache

Branch pred.

DecoderMIS

Reg. map (RAT)

RS

ROB

RF

Mem ROB

Agu

Fpu

Iu

MMX

Fetch/decode
( front-end)

Instr. pool

Issue/
execute

Figure 3.7. Block diagram of the P6 microarchitecture. Some liberties have been taken with
the number of functional units, the memory interface unit, and so on. The fetch–decode unit
of Figure 3.6 is at left: I-cache, ITLB, branch prediction, decoder, and register map. The
execution unit, D-cache, and associated MOB are at the right. The instruction pool consists
of the reservation stations (RS) and the ROB. The register file (RF) is close to the ROB.

on the implementation, three to six µops at a time can pass from the front-end to
the instruction pool for the back-end. In the following, a P6 implementation with a
maximum of three µops per cycle that can pass from the front-end to the back-end,
that is, a three-way superscalar (although, since five µops can be issued from the
instruction pool to the execution units, one could call it a five-way superscalar) is
described. The CISC ISA also constrains the retire unit. All the µops that consti-
tute an instruction must be retired in the same cycle, because instructions must be
committed atomically.

A somewhat simplified block diagram of the P6 microarchitecture, as imple-
mented for example in the Pentium III and fairly similar to what is present in the
Core architecture, is shown in Figure 3.7. The descriptions that follow are mostly
based on the Pentium III implementation. In several instances in later chapters, we
will mention features of the Pentium 4. Multicores will be presented in Chapters 7
and 8.
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3.4.2 Front-end

Following the nomenclature given in Table 3.4, the front-end consists of instruction
fetch (IF plus branch prediction done in four stages), decode (ID in two stages),
rename (two stages), and dispatch (one stage).

The first four stages of the front-end bring (part of) an I-cache line, that is, a
variable number of instructions in an instruction buffer (IB) along with marks that
show the boundaries of the individual variable-length instructions. The first stage is
used to select the source of the PC value – either the address of the next instruction
in the sequence, or a predicted target address for a branch, or a corrected branch
address if the prediction was wrong. Branch prediction is also performed during this
first stage. It implies not only guessing the branch direction, but also predicting (and
not computing) the target address. The hardware structure to perform this task is a
branch target buffer (BTB; cf. Chapter 4). The BTB is organized as a cache indexed
by the PC, and it takes 2 cycles to access it and deliver the target address back to
the first stage. Therefore, a bubble must be inserted in the pipeline when a branch is
predicted to be taken. As was the case for the Alpha 21164, and even more so here
because of the large number of instructions in the pool, it is almost certain that the
bubble will be absorbed long before instructions slowed by it are ready to retire. If
there is no branch, or rather no branch predicted to be taken, the I-cache and I-TLB
are accessed during stages 2, 3, and 4 and, assuming no cache or TLB miss, deliver
marked instructions in the instruction buffer if the latter is empty. In case the IB is
not empty, stalling in the fetch mechanism will occur.

Decoding, that is, translating IA-32 instructions into µops, takes two stages.
First, three instructions are taken from the IB and are sent, in order, to three
decoders that will operate in parallel. Because of the instructions’ variable lengths,
the 16 byte IB can hold between 1 and 16 instructions (the average is between
5 and 6), so in general there will be work to do in the next stage for the three
decoders. However, there are several conditions that prevent full usage of the three
decoders. For example, only the first decoder can decode complex instructions, that
is, those that require the microinstruction sequencer (MIS in Figure 3.7), and only
one branch at a time can be decoded. If the branch is predicted to be taken, and
this fact was marked by the BTB when the instructions reached the IB, the target
address is computed and verification of the predicted branch address is performed in
the next stage. In case of a difference, we have a misfetch (see Chapter 4): the front-
end is flushed and restarted at stage 1 with the new address (the BTB is updated
correspondingly). The same actions take place if the branch was unconditional and
not detected by the BTB. If the flow of instructions was correct, up to six µops are
stored in a six-entry µop queue.

The next two stages of the front-end will take three µops at a time from the
µop queue, rename the registers they use, allocate them in the reorder buffer and,
if need be, in load–store buffers, and dispatch them in reservation stations. Register
renaming follows the scheme presented in the previous section, that is, ROB entries
are used as physical registers.
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The register map, called the register alias table (RAT) in Intel parlance, indi-
cates by setting an appropriate bit whether a register is mapped to a logical regis-
ter (e.g., the EAX, EBX, etc., integer registers) or to one of the 40 ROB entries,
with the ROB implemented as a circular queue. The mapping is not as straight-
forward as one would expect, because of the intricacies of the IA-32 ISA, such as
integer registers that can be partially read or written and floating-point registers
that are organized in a stack fashion. We refer the reader to Intel manuals for these
details. In order to rename three µops at a time, the RAT is six-ported to read the
names of the six source operands. An allocator checks that there are three ROB
entries available. If this is not the case (structural hazard), the renaming stalls until
this availability condition is fulfilled. The names of the ROB entries become the
names of the destination registers. However, the RAT renaming of source operands
must be overridden in two cases, namely: (i) if some µop(s) commits in the same
cycle and its ROB name corresponds to one of the renamed source operands, then
the latter must be changed to refer to the logical register that is committed; and
(ii) name dependencies within the three currently renamed µops must be resolved
as indicated in the example in the previous section.

Once the µops have been through the renaming process, they are dispatched4

in the next cycle to reservation stations that are organized in a centralized instruc-
tion window. The allocator must check that there are three available reservation
stations. This checking is slightly more complex than the one for the ROB, because
reservation stations are not cleared in order. A bit map is used to indicate which
reservation stations are free.

Finally, some extra work is needed for load–store instructions. We shall study
the actions that need to be taken when we look at memory operations in the next
section.

3.4.3 Back-end

The structure of individual reservation stations and of entries in the ROB follows
what has been described in the previous section. The number of entries in the
single instruction window depends on the particular model, for example, 20 reser-
vation stations in the Pentium III, but over 120 in the Pentium 4 (cf. Table 5.1). The
number of functional units also depends on the model. In the Pentium III, because
three µops are inserted in the register window in a cycle, the window is three-ported
for the control part of the reservation stations (ready flags and result tag) and six-
ported for the two operands with three ports for sources from the register file and
three from the ROB. Issuing of µops to the functional units or the cache hierarchy
proceeds as in Tomasulo’s algorithm with the further optimization of forwarding,
that is, results can become inputs to functional units in the same cycle as they are
written in in the ROB. Up to five µops can be issued per cycle, but this number

4 We keep the terminology of the preceding section. Intel’s literature uses dispatch for what we call
issue.
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is constrained by the readiness of the µops, as well as by the type of functional unit
they require and the availability of the result bus when the operation completes. For
example, in some implementations the floating-point units and one of the integer
units share the same port out of the instruction window; therefore only one floating-
point instruction and one integer unit, using another port, can be issued concur-
rently. When several µops are ready in the same cycle, scheduling gives priority to
instructions that have waited longest in the window. Once a µop has been issued, its
reservation station is freed and becomes available for another µop. Scheduling and
issuing occupy each one stage.

The latencies of individual functional units depend on the operation being per-
formed and the particular Pentium model. For example, an integer unit has a latency
of one cycle, that is, the back-end pipeline (not including the retire step) has three
stages. Upon completion of execution of a µop in a functional unit, the result is
broadcast (unless there is contention for a result bus) and stored in the ROB as in
Tomasulo’s algorithm. It is at this point that control hazards, branch misprediction,
and exceptions are resolved. When a branch has been mispredicted, the following
actions take place:

� The front-end is flushed, and new instructions are fetched at the correct PC. The
front-end processes these new instructions up to the renaming stage.

� The back-end continues to execute until all µops have written their results. µops
that were ahead of the branch in the ROB commit.

� When the back-end is drained and all µops ahead of the branch have commit-
ted, the µops behind the branch in the ROB are discarded, and all mapping
in the RAT for ROB entries is discarded. The mispredicted branch is retired,
and normal operation can continue, that is if the front-end was stalled at the
renaming stage it can now proceed.

When an instruction (more specifically a µop) has raised an exception, the result
carries a flag that identifies that condition. When the µop reaches the head of the
ROB and is ready to be committed, the whole processor is cleared of all µops and
fetching of new instructions is prevented. Since all µops before the faulting one
were retired, (i.e., the results stored in the register file), the processor is in a valid
architectural state and the exception handler can be activated. Interrupts are treated
in a similar fashion.

Branch misprediction is quite detrimental to performance. In the best case for
the implementation we have discussed (viz., the branch has been scheduled and
issued without delay), 12 cycles have elapsed since the branch was predicted when
the prediction has been found erroneous: 9 cycles in the front-end, and 3 cycles
(scheduling, issue, execute) in the back-end. In case of a misprediction, a significant
number of µops could be in the pipeline, either in the front-end, in the back-end,
or already in the ROB. As pipelines get deeper, the importance of a sophisticated
branch predictor becomes crucial.

Out-of-order processing adds a new twist to memory operations.
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EXAMPLE 5: Consider the following sequence of loads and stores that are sepa-
rated by nonmemory operations that we do not show:

i1: ld R1, memory address 1
. . .

i2: st R2, memory address 2
. . .

i3: ld R3, memory address 3

If the three memory addresses are different, the three instructions can access
the memory hierarchy in any order, subject of course to potential dependencies
with nonmemory operations. If memory addresses for instructions i2 and i3 are the
same, the only correct access order for these two instructions is the program order.
Renaming would not help if instruction i3 were to put its result in the ROB before
instruction i2 had completed, for we have restricted renaming to registers and it
has no influence on memory addresses. On the other hand, because such address
conflicts are not the common case, there can be significant gains in allowing loads
to be executed before previous stores. Therefore, there needs to be a mechanism
for such occurrences of load speculation. We shall return to this subject in detail in
Chapter 5. At this point, we just give an overview of a rather conservative scheme
that will nonetheless explain the presence of the memory order buffer (MOB) in
Figure 3.7.

The main idea is that a load is checked against all previous (in program order)
stores and that stores are committed to the memory hierarchy in program order. In
the case of a load, the load can proceed:

� If all previous stores have been committed to the memory hierarchy.
� If all previous stores have computed the memory addresses they will access and

they differ from the memory address accessed by the load.
� If some previous store accesses the same address as the load and the data to be

stored are ready; in that case the load can proceed with the ready data without
accessing the memory hierarchy.

However, the load must wait:

� If some previous store has its memory address not computed yet, or if some
previous store has the same address as the load and the data to be stored are
not ready.

Moreover, as can be expected from an out-of-order processor, a cache miss for a
load should not prevent instructions not depending on this load from proceeding.
In particular, other loads and stores should be able to access the cache, and thus the
cache hierarchy must be lockup-free (also called nonblocking; cf. Chapter 6), that
is, more than one memory request should be able to be in progress at any given
time.
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The conditions for load speculation require that loads5 and stores be buffered
not only in the ROB but also in a structure connected to the cache hierarchy inter-
face. This structure is the MOB. In the P6 microarchitecture, loads are executed as a
single µop, whereas stores are a sequence of two µops, one for the data and one for
the address. The MOB has a 16-entry load buffer (LB) and a 12-entry store buffer
(SB); an entry in the SB has room for an address and data. Both LB and SB are
circular buffers.

When, in the last stage of the front-end, µops are entered in reservation stations
and in the ROB, load µops are entered in the LB and store µop pairs are entered in
the SB. Their positions in the buffer are their identifications (MBIDs). An LB entry
will contain the MBID of the previous store, thus allowing the checking against
stores described in the paragraph before last. In fact, this checking, performed when
the load address is ready, is done on only the bits used to index the L1 D-cache
(12 bits). This partial checking may lead to some false positives, but it simplifies
the MOB logic and allows concurrency between the checking and cache access. If
the load is allowed to proceed per the conditions stated above, the LB entry will
be vacated when the data are returned. If the data are not ready or in case of a false
positive, the load remains in the LB until the constraining condition is removed.
Stores are committed to the memory hierarchy in order. That is, stores remain in
SB until they are at the head of the queue, both the address and data have been
computed, and their corresponding entries in the ROB have been committed.

The most common occurrence is for a load to hit in the L1 D-cache with a small
latency (in general 2 cycles). If there is a miss, the load remains in the LB until the
data come back from the next level in the memory hierarchy. We shall see how to
deal with the impact of this miss in forthcoming chapters.

The last event that takes place for an instruction is its retirement or commit-
ment. Note that we are talking about instructions and not µops, for the IA-32 ISA
expects instructions to be atomic. To that effect, µops are marked in the ROB as
being the first or the last (or both, or neither) of an instruction. All µops constituent
of the same instruction retire together, although not necessarily in the same cycle.
Therefore, during a multicycle retirement, interrupts are not handled, in order to
preserve the atomicity of the instruction and a valid architectural state. Retirement
is a 2 cycle operation: read the contents of the ROB and write the register file. These
two actions can themselves be pipelined.

3.4.4 Recap; P6 Microarchitecture Evolution

The P6 microarchitecture, and its first implementation the Pentium Pro, were rad-
ically different from those of the ×86’s and Pentium processors. Besides the out-
of-order paradigm – by far the most striking novelty in the P6 – other factors were:

5 The IA-32 ISA allows operations with memory operands. For example, an add can have an operand
source register, and a second source operand can be the content of a memory address. Such an
operation would be decoded into a load µop followed by an add µop.
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much deeper pipelines in the front-end and the back-end, more functional units
and thus a better chance at exploiting instruction-level parallelism, and a nonblock-
ing memory hierarchy that could alleviate the load latency penalties. Granted, the
increased depth of the instruction pipeline was needed because of the extra work to
be done, such as renaming in the front-end and scheduling and issuing in the back-
end, but nonetheless each stage had less to do, and therefore the clock frequency
could be increased. The downside of deeper pipelines and higher clock frequencies
was longer penalties due to branch misprediction and cache misses.

When the Pentium Pro was introduced in 1995, it ran at 200 MHz vs. 60 MHz for
the 1993 Pentium and had 5.5 million transistors vs. 3.1. Four years later the clock
frequency was 500 MHz and the die had 8.2 million transistors, the increase resulting
mostly from the addition of MMX instructions and extra registers to facilitate their
execution. An important jump in the number of transistors occurred when the L2
cache was put on chip. The 1999 Pentium III Xeon with a 256 KB L2 cache required
28 million transistors and ran at 700 MHz.

In 2000, the Pentium 4 was introduced. Its microarchitecture, relabeled Net-
burst, presented several new features (whether they generate performance improve-
ments or not depends on the application). In particular the front-end used a trace
cache instead of an L1 I-cache (cf. Chapter 4) that allowed shortcuts in decod-
ing of instructions into µops, and the back-end used ALUs that could compute at
twice the clock rate of other parts of the instruction pipeline (in other words, some
single-stage parts of the front-end now took two stages). The first Pentium 4 ran at
1.5 GHz – that is, the ALUs ran at 3 GHz – and had 42 million transistors. In 2002,
the first hyperthreaded Pentium 4 was introduced (hyperthreading is a limited ver-
sion of simultaneous multithreading (SMT) that will be discussed in Chapter 8) and
was clocked at slightly over 3 GHz with 55 million transistors.

Newer implementations ran at faster clock speeds until 2003 and, as a conse-
quence of Moore’s law, had more transistors on chip. The increased availability
of transistors on chip has mainly been translated into increases in the amount of
on-chip cache memory. However, other structures also grew (larger queues, larger
ROB, more reservation stations, etc.), and more sophisticated algorithms could be
implemented for, say, branch prediction and cache access. It is also around this time
that the 32-bit architecture was extended to a 64-bit architecture. While the raw
speed improved, the penalties of wrong predictions became more costly (>20 cycles
for a branch misprediction in the Pentium 4, vs. >10 in the Pentium III), and it took
more cycles to access some structures such as caches and branch target buffers. Most
importantly, though, the combination of increased speed and increased number of
transistors put the power problem at the forefront (recall Figure 1.4).

Reducing power dissipation and the ever-increasing importance of the mobile
computing market led Intel to the design of the Pentium-M, introduced in 2003 and
specifically targeted for laptops and hand-held devices. The Pentium-M microarchi-
tecture resembles that of the Pentium III with a slightly deeper pipeline, enhance-
ments in the cache hierarchy, and more sophisticated branch prediction and load
speculation.
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The confluence of Moore’s law still being valid and of speed limitations imposed
by power issues has motivated the introduction of a new computing paradigm: chip
multiprocessing (CMP, an on-chip implementation of symmetric multiprocessing
(SMP)), which will be discussed in Chapters 7 and 8. Intel processors on CMPs run
at clock speeds between 2 and 3 GHz. In 2006, Intel announced a four-processor
CMP following its two-processor chip introduced in 2004. Each processor follows
the Intel Core microarchitecture design, which looks like an improved Pentium III
or Pentium M with enhancements such as µops fusion (i.e., replacing two µops by a
single one) and great attention to power consumption control (cf. Chapter 9).

3.5 VLIW/EPIC Processors

3.5.1 The VLIW/EPIC Design Philosophy

In Chapter 2, where we presented a simple pipelined processor, we did not elaborate
on how its control unit was implemented. Today, most often the control unit is built
as an array of AND–OR gates (or equivalent), called a PAL (for “programmable
array logic”). When transistors were not as plentiful, another method, called micro-
programming, was used. Even today, both array logic and microprogrammed con-
trol units can coexist with the microprogramming used for those instructions in the
ISA that are deemed to be too complex for PALs. A case in point is the implemen-
tation of string instructions in the P6 architecture (recall the MIS associated with
the decoder in Figure 3.7).

As we saw in the previous chapter, the execution of an instruction can be bro-
ken into a series of elementary steps such as incrementing the program counter, a
register-to-register transfer, an add for the ALU, and so on. In the microprogram-
ming context, each elementary operation is called a microoperation. A micropro-
gram is a sequence of microoperations that interprets the execution of (part of)
the instructions in the ISA. If a very limited number of microoperations, say a sin-
gle one, can be activated in a given cycle, we have a vertical microprogramming
implementation. If, on the other hand, a large number of them can be activated,
say one per possible control point in the processor, we have horizontal micropro-
gramming.

Our point here is not to discuss microprogramming but to note that the
VLIW concept descends directly from horizontal microprogramming. In a VLIW
processor, a long instruction specifies multiple operations that can be performed
simultaneously, for example, a memory operation (load or store), an integer arith-
metic operation, and a floating-point operation. The EPIC philosophy builds on the
VLIW concept and embodies three main principles:

� The compiler should play the key role in detecting the instruction-level paral-
lelism (ILP).

� The architecture should provide features that assist the compiler in determining
the most common ways of exploiting ILP.
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� The architecture should provide mechanisms to communicate the parallelism
detected by the compiler to the underlying hardware.

A VLIW ISA then would define templates of long instructions, that is, the pat-
terns of those operations that can be performed simultaneously. The compiler would
generate code by putting together in a single long instruction operations that can be
performed in the same cycle without hazards.

EPIC processors are therefore statically scheduled. Instructions are executed
in program order, and it behooves the compiler to find optimizations in detect-
ing instruction level parallelism. However, even if the compiler can detect a large
amount of ILP, difficulties remain for static scheduling because of the uncertainties
of branch prediction and the various latencies that can arise in memory operations.
Extensive software and hardware assists for branch prediction, load speculation, and
associated recoveries are therefore the architecture features that must be provided.

In view of the fact that out-of-order processors were found to have better
performance, why did designers at Intel and Hewlett-Packard advocate an EPIC
approach in the mid 1990s? Their two main arguments were:

� The hardware of in-order statically scheduled processors is much simpler than
that of out-of-order processors. There is no need for mechanisms such as reg-
ister renaming or hardware structures such as reorder buffers. The real estate
saved can be used for other structures, and the ease in logic should allow for
faster clock cycles. Time has shown that the speed-related claim did not hold
true, in part because of the ingenuity of out-of-order processor designers and in
part because the limitation in clock speed stems not only from logic complex-
ity but also from factors, such as power dissipation, that hinder performance in
similar fashion for both types of processors.

� Compiler-based exploitation of ILP should be favorable in that the compiler
can look at the whole program rather than the comparatively small instruction
window. Because in addition the compiler is aware of the availability of func-
tional units at each cycle, it should be able to create multiple operation instruc-
tions more effectively than a purely dynamic scheme. Moreover, the knowledge
of operation latencies should allow alleviating the advantage that renaming
registers gives to out-of-order processors for preventing WAR and WAW
dependencies. Consider, for example, the following two instructions with the
WAR dependency on R3:

R1 ← R2 + R3
R3 ← R4 ∗ R5

The multiplication could start up to m − 2 cycles before the addition if multipli-
cation takes m cycles and addition takes 1.

Predication
Nevertheless, the problems due to branch prediction and memory latencies need
to be addressed. The number of branches to be executed can be reduced by using
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predication. Predicated instructions are tagged with the name of a predicate, (i.e., a
Boolean value), typically generated by the result of the computation of the condi-
tional expression following an “if” statement. If the predicate is true the instruction
is executed otherwise it is not. The simplest form of a predicated instruction is a
conditional move, such as the one found for example in the ISA of the DEC Alpha.
As an illustration, the sequence of two instructions corresponding to the high-level
statement “if A = = 0 then B = C” with the values of A, B, and C being respec-
tively in registers R1, R2, R3 would be translated into an ISA without conditional
moves as

bnez R1,Label /∗ branch if R1 �= 0∗/
move R2, R3 /∗ R2 ← R3 ∗/
Label: add R4, R5, R2

With the availability of a conditional move, the first two instructions can be replaced
by a single instruction as in

cmovz R2,R3,R1 /∗ R2 ← R3 if R1 = 0∗/
add R4, R5, R2 /∗ no need for label∗/

Predication can be very useful to avoid branches in the case of if–then–else state-
ments. An if-conversion is shown for the “diamond” example of Figure 3.8, cor-
responding to the high-level language statement “If (conditional expression) then
S1 else S2.” On the left is the usual code: The conditional expression is evaluated.
It is then tested: if true, the branch is taken and the sequence of statements S1 is
executed; if false, the sequence of statements S2 is executed. Note that we need an
unconditional branch after the last statement in S2. With predication the conditional
expression is computed and yields a predicate. All statements in S1 and S2 are pred-
icated with the name of the predicate. The statements in S1 are to be executed if the
predicate is true, and those in S2 are to be executed if the predicate is false. Note
that the value of the predicate is needed only when the results have to be committed,
so if, for example, S1 is a single statement with long latency, it can be started before
the value of the predicate is known. Also, statements in S1 and S2 can be executed
concurrently. The example shows that two transfer-of-control instructions, one of
which needs to be predicted, have been avoided. As shown in this example, predica-
tion is quite attractive if the number of instructions in S1 and S2 is rather small and
the branch is highly unpredictable.

However, predication has some drawbacks. First, there must be resources,
namely, registers, dedicated to storing predicates, because several branches can be
performed concurrently. Granted, predicated registers are only 1 bit wide, and this
will not much affect the amount of processor state. However, the names of these
registers are the tags used for the predicated instructions. In the example in Fig-
ure 3.8, the value of the predicate would be stored in a register and the name of
the register would be part of the instructions in S1 and S2. Thus, each predicated
instruction needs a field as wide as the logarithm of the number of predicate
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p = cond. expr. p = cond. expr.

p?

S1

T

S2

F

S1.p

S2.~p

(a) (b)

If cond. expr. then S1 else S2

Figure 3.8. Example of if-conversion: (a) usual
code, (b) predicated code.

registers. This might increase substantially the length of instructions and/or result
in awkward instruction formats. Second, predicated instructions that will not com-
mit still use resources until the last pipeline stage. There might be means to abort
the instructions as soon as it is discovered that the predicate is false, but it would
add complexity to the design, something that EPIC designers would frown upon in
view of their first argument listed. In any case, the predicated instructions must be
fetched from the I-cache, thus potentially decreasing the bandwidth from the latter.
Whether predication enhances performance or not is still a subject of debate.

Control Speculation
In addition to predication, EPIC designers advocate the use of control speculation.
This means hoisting a basic block of instructions above a branch. These instructions
become speculative. Of course, speculative instructions cannot be committed until
the branch condition is known. The advantages of this speculation are that resources
can be better utilized in portions of programs that exhibit low ILP, the heights of
long dependence chains can be lowered, and instructions with long latency can be
started earlier, as was the case for predication. In addition, however, to the fact that
results of speculative instructions must be buffered until the branch condition has
been resolved, another problem that may arise is that of exceptions. An exception
raised by a speculative instruction, or a predicated instruction, should not be han-
dled if the speculative instruction is not to be executed. A way to avoid this problem
is to append a 1-bit tag, often called a poison bit, to the result register of a speculative
instruction that has raised an exception. The poison bit percolates through to result
registers of instructions that use a register with a poison bit as a source operand. If
the speculation was correct, then the exception must be handled (and hence a mech-
anism must be provided to let the hardware know where the exception occurred);
otherwise it can be ignored.

Finally, the prediction of the latency of load operations is quite difficult. We
already have seen that in both in-order and out-of-order superscalars, some guessing
and subsequent repair work was needed. The same will be true for EPIC processors.
Statically managing the cache hierarchy by software prefetching (cf. Section 6.2.1),
and specifying in which member of the cache hierarchy a particular datum should
be stored, are attempts at solving this difficult problem.
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3.5.2 A Brief Overview of the Intel Itanium

Until Intel and Hewlett-Packard announced their intention to build an EPIC pro-
cessor, there had been two VLIW general-purpose commercial systems: Multiflow
and Cydra-5, both built in the mid 1980s. Although these machines showed some
promising performance, they were never successful commercially. They used com-
pilers based on trace scheduling, a technique whose description is outside the scope
of this book. The main idea is to allow the scheduling of concurrent operations
across basic blocks. It involves detecting or guessing the execution frequencies of
basic blocks and scheduling first those on the critical path. The remainder of the
program is then filled in, taking advantage of long instructions to schedule concur-
rent operations.

The VLIW approach has been used successfully in a number of embedded pro-
cessors. Because the code for a given application is fixed and generally quite short, a
lot of time can be devoted to compiler or manual optimizations to find the right pat-
terns to put in long instructions. Many of the difficulties presented in the previous
section can therefore be avoided, for generality is not of concern.

In 2000, Intel and Hewlett-Packard announced the Itanium (originally called
Project Merced). The first generation ran at 800 MHz, and the second generation of
these processors is now available. The Itanium 2 processors released after 2004 have
a 1.6 GHz clock. There is also a CMP with two hyperthreaded Itanium 2 proces-
sors per chip. In the following, we give a brief introduction to the Itanium architec-
ture. The reader interested in the compiler and microarchitecture implementations
should consult the references given at the end of the chapter.

General Organization
The Itanium is a realization of Intel’s IA-64 architecture. As the name implies, this
is a 64-bit ISA. Contrary to the IA-32, which has a paucity of programmer-visible
registers, the Itanium realization of IA-64 is register-rich (some will say excessively
so), but of course, because visible registers are meant to be statically scheduled,
they cannot be augmented by physically renamed registers. Although the Itanium
literature mentions renamed (rotated or stacked) registers, these are a subset of the
registers mentioned here and are used for procedure call–return protocols and for
software pipelining. More specifically, there are:

� 128 65-bit general registers, where the 65th bit is a poison bit as explained previ-
ously (an NaT – i.e., “not a thing” – bit in Itanium parlance); 96 of these registers
can be rotated in software pipelined portions of code and can also be used in the
call–return stacking scheme.

� 128 82-bit floating-point registers, of which 96 can be rotated.
� 64 1-bit predicate registers, of which 48 can be rotated.
� 8 64-bit registers for function calls and returns.

Instructions are packaged in bundles of three with a template indicating the types
of the three instructions. An example of a typical template is MMI, that is, the first
two instructions are memory operations and the third one is an integer operation.
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Instruction 2
(41 bits)

Template
(5 bits)

Instruction 1
(41 bits)

Instruction 0
(41 bits)

(a) A 3-instruction 128-bit bundle

Opcode
14 bits

Register 1
7 bits

Register 2
7 bits

Register 3
7 bits

Predicate
6 bits

(b) Instruction format

Figure 3.9. Bundle and instruction formats in the Itanium.

There is also the possibility of indicating with a stop that some of the operations
must be completed before the following ones can go on. In the preceding example,
a stop might be necessary between the two M operations (think of a pointer refer-
ence followed by a load of a given field). The stop might also be needed at the end
of a bundle. Because not all combinations of possible types are possible, the com-
piler might have to insert no-ops (early studies of code generated for the Itanium
found that the number of generated no-ops was nonnegligible). As shown in Figure
3.9, each instruction is 41 bits long and consists of an opcode and room for three
registers (7 bits each, because there can be as many as 128 registers of a given type)
and for a predicate register. Three instructions plus a 5-bit template form a 128-bit
bundle.

A block diagram of the Itanium is shown in Figure 3.10. The pipeline is 10 stages
deep, with three stages for the front-end and seven for the back-end. There is a
buffer in between the front-end and the back-end that can store up to eight bundles.
The buffer allows instruction fetches to continue in case the back-end stalls, and,
conversely, the buffer can feed the back-end in case of instruction cache misses or
erroneous branch prediction. The back-end consists of four integer units (six in the
Itanium 2), four multimedia units (six in the Itanium 2), three branch units, two
single-precision floating-point units and another two for extended precision, and
two load–store units. The ALAT structure is a fully associative buffer used for load
speculation.

The on-chip cache hierarchy is extensive and even more imposing in the
Itanium 2. To wit, it consists of:

� 16 KB, four-way set-associative L1 I-cache and L1 D-cache with 32-byte lines.
The D-cache is write-through dual-ported, physically addressed and tagged, and
has a load latency of 2 cycles. In Itanium 2, the latency has been reduced to
1 cycle even though it has a faster clock.

� L2 is 96 KB, six-way set-associative, uses 64-byte lines, and has a 12 cycle
latency.

� L3 is off chip. Its is 4 MB, four-way set-associative, and has 64-byte lines. The
latency is 20 cycles.

The dual-processor Itanium 2 running at 1.6 GHz is quoted as having 2.5 MB of L2
and 24 MB of L3 on chip with, for the latter, a latency of 14 cycles.
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Figure 3.10 Itanium block diagram (from Sharangpani and Arora [SA00]).

The goal of the implementation is to execute two bundles, that is, six instruc-
tions, per cycle. To that effect, compiler and hardware need to cooperate more
closely than in a purely dynamic scheme.

Front-end Operation
The front-end performs fetching of instructions and branch prediction. A sophisti-
cated two-level branch predictor (see Chapter 4) is enhanced in several ways. First,
because of the presence of predicated and speculative instructions, several basic
blocks can collapse at the end of the same bundle, and this gives rise to multiway
branches. A multiway branch prediction table and associated target address table
(in a sense an extension of a branch target buffer) are added to the two-level pre-
dictor. Second, four registers can be set programmatically by the compiler for keep-
ing the target addresses of highly predictable branches such as end of loops. Taken
branches, the usual case, are resolved in a single cycle, and there is no bubble in the
pipeline. Branch instructions can also contain hints for the prefetching of instruc-
tions from the L2 cache into an instruction buffer. Of course, these prefetches are
not performed if the instructions are already in the L1 I-cache. The third stage of
the front-end inserts the bundles into the decoupling buffer.
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Back-end Operation
The dispersal of instructions found in the bundles in the decoupling buffer – at
most two bundles at a time, with a new bundle considered whenever one has been
totally exhausted – is the first stage of the back-end. Instruction dispersal is rela-
tively simple, because the compiler has inserted stop bits whenever necessary. More-
over, the per-bundle templates allow an easy check of the availability of resources.
Because some instruction types can appear only in some specific parts of the bun-
dle, the interconnection network between the two bundles under consideration and
the functional units does not need to be a complete crossbar (an n-by-n switch that
allows complete parallelism in interconnection; see Chapter 7).

Software Pipelining
In the next stage of the back-end, the processor performs a register renaming that
is much simpler than the renaming of out-of-order processors. The first form of
renaming is called register rotation. It is most useful in the software pipelining of
loops. Software pipelining is a technique to rearrange the body of loop iterations to
increase the parallelism when there are resource constraints or loop-carried depen-
dencies between iterations.

EXAMPLE 6: Assume that you want to double each element of an array. The
sequence of instructions will be:

For each element of the array do
i1: R1 ← A[i]
i2: R1 ← R1 + R1
i3: A[i] ← R1

If there were no resource constraint except that only one load can proceed at a time,
we could start iteration at each cycle as shown on the left in Figure 3.11. In soft-
ware pipelining, statements from consecutive iterations are brought into the same
iteration of the new code by taking “horizontal” slices of the old code as shown on
the left of the figure. In a VLIW implementation, the “store, use, load” of consec-
utive iterations can be done in the same VLIW instruction if the “use” is a single
operation as shown in Figure 3.12. Even if the “use” is not a single instruction, the
load and store latencies can be hidden with a short “use” basic block.

Whereas traditional architectures suffer from overhead in the unrolling of
loops, such as the renaming of registers and the prologue and epilogue at the start
and at the end of the iterations, software pipelining circumvents many of these
problems, especially if the register renaming can be automated in a simple fash-
ion. In Figure 3.12, we see how the sequential code, possibly unrolled, looks in
a straightforward implementation and with software pipelining. The Itanium
implementation helps by having some of the registers hold loop counts and pipe-
line lengths used in the epilogue. Moreover, the register numbers for integer,
floating-point, and predicate registers used in the body of the loop are incremented
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Load x[i − 2]

Use x[i]

Store x[i]

Iter. i

Iter. i + 1

Iter. i + 2

Store x[i]

Use x[i − 1]

Load x[i]

Figure 3.11. Software pipelining. On the left the original code; on the right, the new code.

modulo the number of available registers of a given type that can be rotated at every
iteration if the opcode so indicates.

Register Stacking
The second form of renaming has to do with implementation of the stack. The reg-
ister model is such that the first 32 registers of the 128 general registers are used as
they would be in a conventional RISC processor. The others can be used to imple-
ment stack frames in procedure call–return protocols. For example, if a procedure A
called from the main program uses four local registers, they can be allocated to reg-
isters 32 to 35. If procedure A calls another procedure, say procedure B with three
parameters, the parameters will be passed to output registers 36 through 38. When
this second procedure starts executing, the local registers of the caller are hidden
and the output registers of the caller become the first local registers of the callee.
Their renamed identities start at 32. In this example, the additional local registers
will then be from 35 on. During the renaming stage, a simple adder is sufficient to

Time

Use x[i]

Load x[i]

Store x[i]

(a) (b)

Figure 3.12. Executions of (a) sequen-
tial loop and (b) the same loop software
pipelined in a VLIW machine.
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get to the right register numbers. It is the compiler’s responsibility to indicate via a
specific instruction how many local and output registers there are for a given proce-
dure. If the stack so created overflows, that is, requires more than 96 registers (128
– 32 = 96), then the beginning of the stack is spilled in memory. A special register
stack engine (cf. Figure 3.10) takes care of spilling and restoring between registers
and memory.

The extensive register set does not come without cost. Indeed, an expensive
part of the Itanium is its large register file and its numerous ports. For example,
the integer register file has eight read ports and six write ports to support the four
integer ALUs and two writes in registers from loads that can occur simultaneously.
Register reads are performed in the stage after renaming.

Although the compiler resolves all data hazards due to dependencies among
arithmetic–logical operations, load latencies cannot always be predicted accurately.
A scoreboard takes care of these hazards and that of register bypassing. If a hazard
is detected, the pipeline stalls until the data become available. With this policy, there
is no problem in having several cache misses outstanding (the caches can be lockup-
free; see Chapter 6), and there is no need for a replay mechanism like the one in the
DEC Alpha 21124. Moreover, the scoreboard can take advantage of predication to
nullify a stall if either the producer or the consumer of a stalled operation has a
predicate that is false. These actions take place in the pipeline stage following the
register reads, and some might be deferred till the next stage (the execution stage)
by preventing the reading of operands that were to be bypassed.

The last three stages of the pipeline are execution, exception detection, and
writeback of registers. The instruction set is rich and well supported by the func-
tional units and the register file ports. Of course, it is during these stages, or earlier
if possible, that care must be taken of predication, speculation, and exceptions. Con-
trol speculation is handled with poison bits as explained previously. The only type of
data speculation that can occur is the one due to the inaccuracy of load latency pre-
diction. The ALAT mentioned previously plays the roles of load and store buffers,
as will be explained in Chapter 5. Recovery is necessary for both control and data
misspeculation, as well as in the case of a mispredicted branch. Because Itanium is
an in-order processor, the steps to be followed are simpler than in an out-of-order
superscalar.

Predicate registers are most often set during a compare operation. The values
of predicate registers are used in bypassing, instruction nullification, and branching.
When, as we saw in Chapter 2, a source register of an instruction is the destina-
tion register of another one that is still in the pipeline, bypassing is necessary if the
pipeline is not to be stalled. However, if the instruction involving the destination
register has a predicate that has become false, the forwarding should not take place.
Thus, consumer instructions can be nullified in the read register stage if a source
register predicate is false. In a similar vein, some data hazards can be removed if a
producer’s predicate becomes false. Hence, the predicates must be available when
the instructions enter the execution stage. So if we make an inventory of where pred-
icate registers must be available, we see that they are needed for the two bundles
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(six instructions) in the read register stage and six instructions in the execution stage.
In addition, three branches can be resolved in the exception detection stage, involv-
ing another three predicate registers. All together, 15 read ports must be available
for the predicate register file. A similar analysis indicates that 11 write ports are
necessary for the generation of the predicates from various compare instructions.
Although 15 read ports and 11 write ports for a register file appears to be a huge
investment, recall that predicate registers are only 1 bit long and therefore the read-
ing and writing of the predicate register file can be implemented using multiplexers
and decoders.

Predicate values might have to be forwarded to the above points of consumption
before they are stored in the predicate register file. Because bypass logic for these
predicates would be very expensive, a speculative predicate register file is imple-
mented instead, and a register (a single bit) in that file is written as soon as its value
has been computed. It is this speculative register file that is used as a source for
predicates. The predicate register that is used to keep the state of the program is
written only during the writeback register stage.

Although the hardware support for predication, speculation, and exception han-
dling is nonnegligible, it is much less than what is required for an out-of-order pro-
cessor. The proof of the pudding, though, is in the performance that can be attained
by an EPIC processor. Is the combination of (relative) hardware simplicity and
compiler assists sufficient to outweigh the benefits of out-of-order execution? At
this point in time (say, Itanium 2 vs. Pentium 4 or Core architecture), the jury would
say that it really depends on the type of applications.

3.6 Summary

Superscalar processors were introduced in the late 1980s and early 1990s. They allow
the simultaneous execution of several instructions in each stage of the pipeline.
To that effect, pipelines are wider than the simple ones presented in the previous
chapter, and, to accommodate the added complexity of the operations to be per-
formed at each stage and the decreases in cycle time, they are also deeper.

Although all instructions proceed in program order in the front-end (fetch,
branch prediction, and decode) of the pipeline, a major distinction exists in the
ordering of execution in the back-end (execution and writeback). In in-order pro-
cessors, exemplified in this book by the Dec Alpha 21164, all data dependencies
are checked in the last stage of the front-end. Instructions leave the front-end in
program order, and once they leave the front-end they will complete without delay
(except, of course, if there are branch mispredictions or cache misses). Control of
the interface between the front-end and the back-end and monitoring of the exe-
cution in the back-end are performed with a scoreboard. The scoreboard idea was
originated in the Control Data 6600.

In out-of-order processors, instructions can leave the front-end in any order.
This implies that WAR and WAW dependencies must be resolved, that instructions
that have passed through the front-end but are not ready to be executed must be
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queued, and that some mechanism must be implemented in order to store the results
in a semantically correct way, that is, in program order. These functions are realized
respectively through register renaming, reservation stations (instruction window),
and the reorder buffer. A classical way to integrate these mechanisms is through
Tomasulo’s algorithm, first implemented in the floating-point unit of the IBM Sys-
tem 360/91.

The first out-of-order microprocessor was Intel’s Pentium Pro. Since then, the
Intel P6 microarchitecture, whose basic implementation follows closely Tomasulo’s
algorithm, has given birth to numerous Intel microprocessors, each new model
showing definite microarchitectural improvements. During the period where speed
was able to increase at the same rate as Moore’s law, the tendency was to have
deeper pipelines, the Pentium 4 being the flagship of this trend. However, with
power limitations, with the difficulty of exploiting more instruction-level parallelism
because of the design complexity of adding more features to barely increase perfor-
mance, and with the increased penalties with pipeline depth due to misspeculation,
we are now seeing slightly less deep pipelines, as in the Core architecture, which are
the building blocks of Intel chip multiprocessors.

By the beginning of the century, it was clear that out-of-order processors would
perform better than in-order superscalars. However, the emergence of chip multi-
processors reopens the question of whether at equal chip area the performance of a
larger group of simple processors might surpass that of a smaller number of complex
processors.

Finally, we can make the hardware simpler by passing the complexity to the soft-
ware, namely, the compiler, which can be made to schedule and allow the parallel
execution of instructions. This is the basic idea behind the VLIW/EPIC model, rep-
resented in general-purpose processors by the Intel Itanium family. Though there
are success stories for VLIW processors for embedded systems, and though they
reportedly consume less power, it is not clear the concept will lead to improved
performance and reduced cost in the general-purpose area.

3.7 Further Reading and Bibliographical Notes

The study of superscalar processors is a staple of modern computer architecture
texts. An excellent early survey is by Smith and Sohi [SS95]. Gwennap first intro-
duced the characterization of “speed demons” versus “brainiacs” in a 1993 Micro-
processor Report Newsletter editorial. Six years later, Gwennap in his farewell
editorial [G99] noted that “brainiacs” had all but disappeared since out-of-order
processors, even with CISC ISAs, had joined the camp of the speed demons thanks
to advances in microarchitecture implementation.

It is interesting to note that the earliest processors that allowed multiple instruc-
tion issue were of the VLIW type, thus relying mainly on compiler sophistication.
This is not to say that the potential of exploitation of instruction-level parallelism
was not studied. Already in the 1960s Bernstein had formalized in a more general
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form what we now call RAW, WAR, and WAW dependencies [B66]. Two early
interesting studies among many are those in the early 1970s by Tjaden and Flynn
[TF70] that showed that parallelism within basic blocks was severely limited, and
by Riseman and Foster [RF70] that demonstrated that this parallelism was much
more prevalent if one could avoid control hazards – a nice motivation for branch
prediction that really came into full bloom only a decade later. Taking a slightly
different tack, Kuck and his group at Illinois [ABKMNW69] showed that a substan-
tial amount of parallelism could be exploited in scientific programs if one were to
perform loop transformations and remove some conditional hazards with the use
of what we call now predication. Nonetheless, it took almost two decades before
production superscalar processors started to be commercially successful.

The DEC Alpha architecture and its first two implementations, the 21064 and
21164, are described in the book by Bhandarkar [B95]. See also Edmonson et al.
[ERPR95] for further details on the 21164. The measurements reported in Section
3.2.4 are extracted from Cvetanovic and Bhandarkar [CB96]. Seymour Cray and
James E. Thornton designed the CDC 6600. Thornton’s book is a classic [T70]. A
very readable introduction to the CDC 6600 by the same author [T64] can be found
in Bell and Newell’s anthology.

Reservation stations and the register renaming concept were first implemented
in the IBM System/360 Model 91. A whole issue (January 1967) of the IBM Jour-
nal of Research and Development is devoted to this machine. The most germane
paper for this chapter is Tomasulo’s paper [T67], but the paper by Anderson et al.
[AST67] is also worth reading in that it discusses also pipelining, branch handling,
and memory interleaving. In Tomasulo’s original scheme, reservation stations were
the renamed physical registers. A more general renaming scheme was presented in
Keller’s survey [K75] that will be elaborated on it Chapter 4. Because imprecise
interrupts were allowed in the Model 91, there was no need for a reorder buffer
(ROB). Smith and Pleszkun [SP88], while studying precise interrupts, were the first
to introduce the ROB as a means to squash instructions following the one that gen-
erated the interrupt. Sohi [S90] generalized the concept and was the first to suggest
that the ROB could also be used as the physical medium for renamed registers. At
approximately the same time, Hwu and Patt [HP86] used an instruction window to
combine (centralized) reservation stations and ROB.

The Intel P6 microarchitecture was introduced in 1995. A brief general tour can
be found in an Intel publication [I95]. Descriptions of the implementation of the
various concepts, as found in the Pentium Pro, the Pentium II, and the Pentium III,
are given in the papers by Colwell et al. [CPHFG05], Papworth [P96], and Keshava
and Pentkovski [KP99]. The Pentium 4 is described in Hinton et al. [HSUBCKR01]
and in Boggs et al. [BBHMMRSTV04]. The Pentium M and its power-saving facil-
ities are described in Gochman et al. [GRABKNSSV03]. The same group designed
the Core architecture.

Fisher, the chief designer of Multiflow, and Rau, the principal architect of
Cydra-5, have been the main advocates for EPIC. The design philosophy is laid
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out in Schlansker and Rau [SR00]. The IA-64 architecture and Itanium micro-
architecture are presented in Huck et al. [HMRKMZ00] and Sharangpani and
Arora [SA00], respectively. McNairy and Soltis [MS03] describe the Itanium 2
enhancements. Hwu and his group have developed IMPACT, a highly sophisti-
cated compiler for EPIC architectures; see for example [ACMSCCEOH98]. Soft-
ware pipelining and its application to VLIW processors were introduced by Lam
[L88]. Register stacking resembles the register windows originally found in Berke-
ley’s RISC [PS81] and then later commercialized in the Sun SPARC architecture.

EXERCISES

1. (Sections 3.2.2 and 3.2.3) The Alpha 21124 is called “in order.” However, instruc-
tions can complete out of order. Give two examples of such an occurrence.

2. (Section 3.2.2) There is no check for a WAR dependency in an in-order Alpha
21164 processor. Why?

3. (Section 3.2.2) Give an example of a WAW dependency that could happen in an
Alpha 21164. This is also called a producer–producer problem and does not make
much sense, but it can occur when programs have been patched too often.

4. (Sections 2.2 and 2.3) What does the scoreboard of an Alpha 21164 entail? Is it
more or less complicated than the CDC scoreboard?

5. (Section 3.2.3) In the Alpha 21164, interrupt handling requires draining the whole
pipeline. Could the back-end only be drained and instructions restarted with the first
instruction in stage S3? Justify your answer.

6. (Section 3.2.3) On a TLB miss (either instruction or data) in the Alpha 21164,
PAL code is called upon to retrieve the missing information and bring it to the
TLB. During that time, interrupts are disabled. Why?

7. (Section 3.2, Sidebar) In Figure 3.3, several functional units with various latencies
(e.g., the integer adder, the floating-point multipliers, and the shifter) share the same
buses to transmit results to registers. How could the scoreboard control the start of
computation on these units so that buses will be free when a result has to be written
back? (Hint: Think of a clever way to maintain a busy–idle structure that shifts at
every cycle.)

8. (Section 3.2, Sidebar) Consider a CDC 6600-like processor with the following
latencies:

� 4 units for an add.
� 10 units for a multiply.
� 20 units for a divide.

Suppose the segment of program with the three instructions (all registers are free at
the onset) is
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i1: R2 ← R3/R5
i2: R1 ← R2 + R4
i3: R4 ← R6 * R6

If i1 is issued at t0, at what time will each instruction complete?

9. (Section 3.2, Sidebar) Repeat Exercise 8, but now assume that each functional
unit has buffers to hold input values from registers.

10. (Section 3.2, Sidebar) The CDC 6600 had a successor, the CDC 7600, which had
input buffers and pipelined functional units. What major differences between the
CDC 6600 and CDC 7600 scoreboards can you think of?

11. (Section 3.3) Consider a three-way out-of-order processor. In the renaming
stage, three instructions have to be renamed simultaneously. If there is one (or
more) RAW dependency between these instructions, the correct renaming cannot
be done solely by table lookup. Show the logic – that is, a diagram with compara-
tors, priority encoders, and multiplexers – necessary to perform a correct renaming.
(Hint: If you are stuck on this problem, consult, e.g., [SBP00] referenced in Chap-
ter 5.)

12. (Section 3.3) In Exercise 11, we have considered a three-way processor. Con-
sider now the more general case of an m-way processor. How do the number of
comparators and the number of priority encoders grow with m?

13. (Section 3.3) There is some fuzziness in the definitions of dispatch and of issue.
In Table 3.4, we have put dispatch as part of the front-end and issue as part of the
back-end. Does this mean that dispatch should be done in order and that issue can
be done out of order? Justify your answers.

14. (Section 3.3, Sidebar) Repeat Exercise 9 for Tomasulo’s algorithm. Is there any
major difference in your results? Give an example sequence where Tomasulo’s algo-
rithm would certainly do better than a CDC 7600 scoreboard scheme.

15. (Section 3.3, Sidebar) In the sidebar, we illustrated Tomasulo’s algorithm with a
single-issue processor. What are the minimal hardware additions that are needed if
we want to issue two instructions per cycle?

16. (Section 3.3, Sidebar) In its original implementation, Tomasulo’s algorithm was
restricted to the floating-point unit of the IBM System 360/91. Floating-point regis-
ters were used instead of the ROB. Now that you have seen an implementation of
the algorithm for a more complete processor (the P6 microarchitecture), state why
it was not necessary to have an ROB in the floating-point unit of the System 360/91.

17. (Sections 3 and 4) Entries in the ROB must be able to store integers as well as
floating-point numbers. What would be the advantages and the drawbacks of split-
ting the ROB into two parts, one for the integer results and one for the floating-point
ones? Be sure to consider topics such as register allocation and branch misprediction
recovery.
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18. (Section 3.4) In the P6 microarchitecture, instructions of the form R1 ← R2 +
Mem[R3] are translated into two µops at decode time: one for the load with a tem-
porary register as result, and one for the addition. AMD processors with the same
ISA consider the instruction as a single macro-op that is issued twice, once to a load
unit and once to an integer unit. Are there some advantages to the AMD imple-
mentation? If so, what are they?

19. (Section 3.4) In the recent Intel Core architecture, instructions of the form
R1 ← R2 + Mem[R3] are fused into a single µop. Is this consistent with the RISC
philosophy? What are the advantages of fusion?

20. (Section 3.5) Consider the following fragment of code:

If a < 0 then
{b = 1;
c =2}

else {d = 3;
e = 4};

(a) Recode this fragment using predication.
(b) How many static instructions will be generated if the original code is used?

Assume a RISC architecture that can test registers for equal, greater than,
or less than in one instruction.

(c) How many static instructions will be generated using the modified predi-
cated code? You can assume full predication.

(d) How many instructions will be executed in the original code if there is a 0.4
probability that a < 0? How many instructions if the probability is 0.6?

(e) Repeat (d) for the predicated code. Is predication a good choice if the
branch is very unbalanced, that is, the probability of branching one partic-
ular way is very high? (You can assume that the programmer knows which
way the branch is likely to go, e.g., for a break from a loop.)
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4 Front-End: Branch Prediction, Instruction
Fetching, and Register Renaming

In this chapter, we revisit the actions that are taken during the front-end of the
instruction pipeline: instruction fetch, instruction decode, and, for out-of-order pro-
cessors, register renaming.

A large part of this chapter will be devoted to branch prediction, which in turn
governs instruction fetch. We have already seen in previous chapters the importance
of branch prediction in that (i) branch instructions, or more generally transfer of
control flow instructions, occur very often (once every five instructions on average),
and (ii) branch mispredictions are extremely costly in lost instruction issue slots. The
performance penalty of misprediction increases with the depth and the width of
the pipelines. In other words, the faster the processor (the greater the depth) and
the more it can exploit instruction-level parallelism (the greater the width), the more
important it is to have accurate branch predictors.

We shall start our study of branch prediction by examining the anatomy of a
branch predictor, an instance of a general prediction model. This model will high-
light the decision points: when we predict, what we predict, how we predict, and how
to provide feedback to the predictor. For the two types of prediction, branch direc-
tion and branch target address, the emphasis will first be on the “how.” Because
there have been hundreds of papers devoted to branch direction prediction, the
highlight will be on what may be considered to be the most important schemes, his-
torically and performancewise. We shall look only briefly at branch statistics and
static prediction schemes, and concentrate on dynamic schemes using branch pre-
diction buffers (BPBs), starting with the simplest ones, the pattern history tables
(PHTs), which can have accuracies of over 80%, and moving on up to the most
complex schemes, which can have accuracies of over 95%. In the case of target
address prediction, we shall examine branch target buffers (BTBs) and their inter-
actions with BPBs. We shall then integrate these buffers within the structure of the
front-end of the instruction pipeline. The placement of the BTB will motivate us
to introduce trace caches, a form of instruction cache that has been mentioned in
connection with the Pentium 4.

In the remainder of this chapter, we shall look very briefly at the decoding stage,
which is not simple for processors that run an instruction set based on the Intel
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Figure 4.1. Anatomy of a branch pre-
dictor.

IA-32 ISA. Then we shall revisit the register renaming stage. In Chapter 3, we saw
how the reorder buffer (ROB) could be used as an extension to the logical registers.
We shall examine another way of providing register renaming, namely, using an
extension of the ISA-defined register file with a physical file of extra registers. The
pros and cons of each method will be presented.

4.1 Branch Prediction

4.1.1 Anatomy of a Branch Predictor

A general predictor model consists of an event source, an information predictor,
and, most often, a feedback mechanism. In the case of branch prediction, we have
(Figure 4.1):

� Event source: The source of events, that is, branches, is the program dynamic
execution. It might contain some predictive information. The information can
be expressed explicitly if the ISA allows it, for example, by having a bit in the
opcode indicating the most likely outcome of the branch. Or it can be deduced
implicitly: For example, a predictor of the branch’s outcome could be linked to
whether the branch is forward or backward. Input from a feedback mechanism,
such as profiling, can improve on the prediction at that level.

� Event selection: The events on which predictions will be made are the transfer
of control (branch, return from functions) instructions, but, as we shall see, we
can attempt predictions on all instructions and never use the predictions for
nonbranch instructions. These extraneous predictions are similar in spirit to the
computation of branch target addresses in the decode stage of the five-stage
pipeline in Section 2.1.4. If the instruction was not a branch, the result of the
target address calculation was discarded.

� Predictor indexing: Prediction schemes access one (or more) table(s), some-
times organized in a cachelike fashion. Indexing of these tables can use (parts
of): the program counter (PC) pointing to the branch instruction on which pre-
diction is performed, the global history of the outcomes of previous branches,
the local history of the outcomes of previous branches with the same PC, the
history of the path leading to the current instruction, or a combination of some
or all of these selectors.
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Table 4.1. Control flow instruction statistics (data from Lee et al. [LCBAB98])

% Control % Cond. branches % Uncond.
Application flow (% those taken) (% direct) % Calls % Returns

SPEC95int 20.4 14.9 (46) 1.1 (77) 2.2 2.1
Desktop 18.7 13 (39) 1.1 (92) 2.4 2.1

� Predictor mechanism: This can be a static scheme (in which case the predictor
indexing step does not exist), or a dynamic scheme such as a finite-state machine
(saturating counters) or a Markov (correlation) predictor.

� Feedback and recovery: The real outcome of the predicted branch is known
a few cycles after the prediction. If the prediction was correct, the feedback
mechanism should reinforce the predictor’s confidence. If the prediction was
erroneous, not only should the predictor state be changed, but also a recovery
process has to take place. Note that the feedback can influence the index (past
history) as well as the mechanism (actual prediction) itself.

About 20% of executed instructions are control flow instructions: conditional
and unconditional branches, function calls, and returns. Table 4.1 lists some of the
characteristics of these control flow instructions for the averages of five SPEC95
integer benchmarks and five desktop applications. Although the data are over
10 years old, they are still representative of integer programs, desktop applications,
and commercial database queries, with the exception that the percentage of indi-
rect branches in unconditional branches has slightly increased in applications pro-
grammed with object-oriented languages.

Conditional branch instructions in these types of programs occur, on the aver-
age, every six or seven instructions. In scientific programs, branches occur slightly
less often and are more predictable, because many of the branches are of the end-
of-loop variety.

To put these statistics in perspective, consider a four-way superscalar. The fre-
quencies of branches shown in Table 4.1 mean that a branch will have to be pre-
dicted, on the average, every other cycle. Figure 4.2 shows the interbranch latencies
between prediction requests in a (simulated) four-way out-of-order processor. As
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can be seen, 40% of the time there is no or only one cycle separating predictions.
Since branch resolution might take of the order of 10 cycles, about five branches
will be in flight in a predicted state. When one of these predictions turns up to be
erroneous, up to 40 (four-way × 10 stages) instructions will have been issued on the
“wrong path.” If there was any doubt in the mind of the reader of the importance of
accurate and fast branch prediction, these statistics should be convincing enough.

4.1.2 Static Prediction Schemes

Early branch prediction schemes were of the static type, that is, a branch was pre-
dicted to be taken or not taken once for all its executions. The strategy followed
most often was to predict that the branch was to be taken. Although the data in
Table 4.1 do not seem to support this choice, early studies included both conditional
and unconditional transfers of control, and quite often the evidence was gathered
on traces of scientific programs where taken branches were more prevalent. In the
most comprehensive study of the early 1980s on this topic, it was reported that about
two-thirds of branches were taken, but 30% of all branches were unconditional
transfers, including function calls1 and returns, which are of course taken. These
figures are consistent with those of Table 4.1: for conditional branches, there is no
clear indication of the dominance of one direction over the other. Variations on the
branch-taken strategy included (i) taking advantage of the opcode and (ii) observing
that most backward branches (e.g., ends of “for” loops) are taken, whereas forward
branches are not taken as often, because a nonnegligible proportion of them are
included to take care of unusual cases in the computation (e.g., termination of a
linked list traversal). However, improvements in accuracy with these changes were
barely noticeable. Slightly better results were obtained via profiling, but clearly this
methodology can only be applied to production programs.

The other side of the coin is that implementing a branch-not-taken strategy,
in the context of pipelined processors, has no associated cost (recall Section 2.1.4).
Naturally, such a strategy by itself is not conceivable today, because the penalties of
misprediction are so high.

4.1.3 Simple Dynamic Schemes

The need for accurate branch prediction schemes was recognized as soon as pipe-
lined machines became the norm. The increase in branch misprediction penalties
fueled the quest for more and more accurate dynamic predictors that are probed on
each branch instance. Schemes evolved from simple finite-state machines encoding
the state of a few previous instances of a branch to predict the next outcome, to more
complex predictors that rely on the history not only of the branch but also of other,
correlated parts of the program. Investigations for improved branch predictors have

1 In the IBM ISA, the instruction “Branch and Link Register” used for function calls is sometimes a
not-taken branch if used solely for setting the register.
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been a staple of microprocessor implementation and microarchitecture research for
the past 25 years.

In the static strategies, the prediction is done at decode time when it is recog-
nized that the instruction is a branch. In dynamic schemes the “when to predict” can
be advanced to the instruction fetch stage. If the “what to predict” is only whether
the branch will be taken or not, the earlier prediction stage is not important. Of
course, the situation will be totally different when we wish to also predict the branch
target address. For the time being, though, we restrict ourselves to the branch
direction.

The two problems we have to solve to predict the direction for a given branch
are (i) where to find the prediction and (ii) how to encode the prediction. Let us
start with the second of these problems.

As in many other aspects of speculation in computer systems, the most educated
way we can guess the future is to look at recent past behavior. For a conditional
branch, the simplest most recent past fact of interest is the direction it took the last
time it executed. So if the branch was taken at its ith execution, chances are that it
will be taken at its (i + 1)th one (and vice versa for “not taken”). Therefore we can
associate with each branch a single bit that is set at resolution time and indicates
whether the branch was taken or not. The next time this same branch is fetched, or
decoded, the setting of the bit will yield the prediction.

This very simple scheme can be improved by providing a little hysteresis and
requiring two wrong predictions in a row before changing the prediction. Of course,
we have to extend the recent past to include a record of the last two resolutions
of the branch. The main motivation for this modification lies in the prediction of
branches at the end of loops. In the case where the prediction is simply the direction
that the branch took last, the prediction for the branch terminating the loop, (i.e.,
being taken), will be correct until it is time to exit the loop, when the prediction will
become wrong. There is nothing much that one can do about that exit misprediction
if the number n of loop iterations is large, for the n − 1 previous instances of the
branch will indicate that it was taken. When the loop is executed anew – for example,
if it is an inner loop in nested loops or in a function called several times – the first
prediction for the end of the loop will be “not taken,” because that is what happened
the last time that branch was executed. Of course, the prediction is incorrect. We can
eliminate this wrong prediction by enforcing that two wrong predictions in a row are
necessary for a change in the prediction.

The mechanism to record the directions of the last two branches is called a
2-bit saturating counter. This is a four-state finite-state machine with the following
states:

� Strong taken: The last two instances of the branch were taken (encoding 11).
� Weak taken: The last instance was not taken, but the previous one was taken

(encoding 10).
� Weak not-taken: The last instance was taken, but the previous one was not taken

(this is also the initial state, i.e., a default not-taken strategy) (encoding 01).
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� Strong not-taken: The last two instances of the branch were not taken (encod-
ing 00).

The state diagram is shown in Figure 4.3. The encodings are arbitrary but have
been chosen here so that the highest bit of the encoding yields the direction (1 for
taken, 0 for not taken) and the counter uses a Gray code (only one bit changes per
transition). The “saturating” part comes in when the counter is in a strong state and
the prediction is correct. The state is therefore left unchanged.

Getting back to our motivating example, consider the following fragment of
code where m and n are large:

EXAMPLE 1:

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
begin S1; S2; ...;Sk end;

It is easy to see that there will be two mispredictions per instance of the outer
loop, that is, 2m, in the single-bit scheme. In the 2-bit saturating counter scheme,
the loop-ending branch will be in the strong taken state after two iterations of the
inner loop. When the last instance of the loop is executed, there is a misprediction
and the state becomes weak taken. At the first iteration of the new execution of the
loop, the prediction of the loop-ending branch that is in the weak taken state will be
correct, and the state will become strong taken again. The saturating counter scheme
mispredicts 1 + m times if there are m instances of the outer loop, that is, half as
much as the single-bit scheme. Of course, one can find examples where the single-
bit scheme would perform better (see the exercises), but they do not correspond as
well to common programming patterns.

We should note also that the transitions between states are open to more
choices. As long as the strong states are saturating and are reached from all other
states in at most two transitions – that is, strong taken (respectively, strong not-
taken) reached when two consecutive executions of the branch yield a “taken”
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Figure 4.4. Accuracy (inflated) of simple dynamic branch prediction schemes. The bars at the
left are averages for 26 traces (IBM System/370, DEC PDP-11, CDC 6400) as reported in Lee
and Smith [LS84]. The bars at the right are for 32 traces (MIPS R2000, Sun SPARC, DEC
VAX, Motorola 68000) as reported in Perleberg and Smith [PS93].

(respectively, “not taken”) outcome – the intent of the method is respected. Exper-
iments have shown that the state diagram of Figure 4.3 gives marginally the best
performance, but there can be instances of applications where a different four-state
finite-state machine with or without saturating states would yield higher accuracy.

What is important, though, is to see the improvements of the 2-bit saturating
counter over static schemes and single-bit history. Figure 4.4 gives an idea of how
much improvement can be expected. The prediction accuracies are inflated for two
reasons: (i) unconditional branches are included (for 20% of unconditional branches
and a 0.92 prediction rate, this inflates the result by about 2%), and (ii) prediction
bits are associated with each possible branch after its first execution, a feature that
is unrealistic, as we soon shall see. A “not taken” policy is followed on the first
encounter of the branch.

The 0-bit strategy is one where the branch prediction is determined once and for
all by the direction taken by the first execution of the branch. It yields the same pre-
diction accuracy as a static strategy based on opcodes. There is a significant improve-
ment when we use a 1-bit strategy. The improvement of the 2-bit saturating counter
over the 1-bit is small but not negligible (between 1.3% and 4.3% in prediction accu-
racy, but more encouragingly we can say that it is a decrease in mispredictions by
15% to 35%).

Why stop at 2-bit counters? Why not have 3-bit saturating counters with eight
states? The prediction could be the dominant direction: For example, if the last three
executions of a branch were taken, not taken, taken (a state TNT), the prediction
would be “taken.” Experiments have shown that the additional number of states
yielded minimal improvements that, most of the time, were not worth the extra
storage cost.

Now we return to the first problem we mentioned, namely, how the predictions
are stored and accessed. The data in Figure 4.4 were obtained by assuming that
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prediction bits are associated with each individual branch, that is, with every pos-
sible address. This is of course unrealizable practically; it would involve a table of
the order of 230 entries for a 32-bit addressing space, assuming that each instruction
takes 4 bytes. Storing the prediction with the instruction is not an option either, for
it would imply modifying code every 5 instructions on the average. Taking our cue
from memory hierarchy studies, we could organize the prediction table, or BPB, as
a cache. This would be quite wasteful of space, because the tags would be much
more costly in storage than the “data,” that is, the prediction bits. Nonetheless, it is
interesting to see what the degradation in accuracy would be. If the “infinite” BPB
were replaced by a four-way set associative cache of 1024 entries, the accuracy for
the 2-bit saturating counter scheme in the second set of traces in Figure 4.4 would
drop by 2% or 3%. If the cache had only 256 entries, then the drop would be 7% or
8%. So, clearly, the size of the BPB is important.

One way to circumvent the cost of tags is to suppress them. We can have then
a BPB with a large number of entries, since each of them is only 2 bits. The table,
called a pattern history table (PHT), is indexed by selected bits of the PC or some
hashing function thereof (cf. Figure 4.5). From time to time, with a frequency that
decreases with increasing PHT size, two different branches are assigned the same
2-bit counter when the PC bits that are used result in the same index for the two
branch addresses. This aliasing degrades the performance slightly compared to the
cache approach, but it is more than compensated by the fact that at equal storage
cost, the PHTs can have an order of magnitude more entries.

Figure 4.6 shows the accuracy of a PHT-based predictor, often called a bimodal
predictor, as a function of the size of the PHT. In this particular experiment, the
average accuracy of conditional branches in the first 10 million instructions of 10
SPEC89 traces reached 93.5% for a bimodal predictor with a PHT of 2 KB (8 K
counters).

Bimodal predictors were present in many microprocessors of the early 1990s.
Sometimes, the predictor is embedded in the instruction cache. There can be one
counter per instruction (Alpha 21264, i.e., 2 K counters), or two counters per cache
line (one for every two instructions in the Sun UltraSPARC, also 2 K counters), or
one counter per cache line (1 K counters in the AMD K5, which has the same ISA as
the Intel IA-32 and therefore can have a variable number of instructions per cache
line). In other cases, the predictor uses a separate PHT, as in the Sun SPARC 64
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(1 K counters), the MIPS R10000 (512 counters), or the IBM PowerPC 620 (2 K
counters). In the Pentium, the predictor is integrated with the target address predic-
tion mechanism (BTB), and therefore the cache model is needed (cf. Section 4.1.7).
The combined PHT–BTB has 512 entries.

Returning to our model of Section 4.1.1, we have discussed the timing of the
predictions and the predictor structure. What remains to be described is the last
box of the diagram, namely, feedback and recovery. For the bimodal predictor that
we have considered, the only feedback needed is an update of the 2-bit counter
corresponding to the branch that is executing. Accessing the predictor for the update
is done in a similar fashion to the access for prediction. However, there is a choice
for the timing of the prediction. It can be done:

� when the actual direction of the branch has been found in the execute stage, or
� when the branch commits, or
� speculatively when the prediction is performed.

In the case of a bimodal predictor, the last choice does not make much sense (it
can only reinforce the decision), but, as we shall see in the next section, it needs to
be considered for more complex predictors. Updating either in the execute stage or
at commit time has the inconvenience that several predictions of the same branch
might have occurred already, (e.g., in tight loops), because of the depth of the
pipeline and the multiple-instruction issue. Though updating in the execute stage
will occur earlier than in the commit stage, it has the disadvantage that, because
of out-of-order execution, some branches that are on the wrong path of a previous
branch might have their predictors modified. Overall, though, studies have shown
that in the case of bimodal predictors the update timing has practically no effect on
the prediction accuracy and therefore can be done at commit time.

We have seen in Chapter 3 how branch misprediction recovery was handled in
the case of in-order processors, where all information is stored in a scoreboardlike
fashion, and in the case of out-of-order processors, using a reorder buffer as the
renaming register file. In Section 4.4 of this chapter, we shall address the recovery
problem for other renaming schemes.
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To close this section on the first dynamic predictor, we examine the specific
actions related to branch prediction, branch execution, PHT updating, and potential
misprediction recovery that are taken at various stages of the pipeline.

BIMODAL BRANCH PREDICTOR. (PCsubsetarethe bits of the PC used in indexing the

PHT; a "taken" prediction will have the value "true"; a "not taken" the value

"false"; PC+ points to the instruction after the branch.)

Fetch Stage. Access PHT; pred ←higherbit[PHT[PCsubset]]

Decode Stage. compute taken_branch_address;

case:
...

Conditional branch: if pred then PC ← taken_branch_address;
...

Rename Stage. When the branch instruction is entered in the ROB, taken_branch_

address will be part of the ROB entry.2

Execute Stage. The branch condition brcd is evaluated and set to "true" if the

branch was to be taken, and to "false" otherwise.

Commit Stage.

if (pred = brcd) then PHT[PCsubset] ← (PHT[PCsubset],pred) /∗state transition∗/

else begin PHT[PCsubset] ←(PHT[PCsubset],not pred); /∗update∗/

flush ROB;

if pred then PC ← PC+ else PC ←taken_branch_address;

end;

4.1.4 Correlated Branch Prediction

The bimodal dynamic strategy is a tremendous improvement over any static scheme,
but still is not sufficiently powerful for modern microprocessors. One of the weak-
nesses of the 2-bit method is that it only takes into account a small amount of the
past history of the branch that is predicted. In contrast with this local approach, a
number of global schemes use the history of the outcomes of other branches whose
executions directly precede that of the branch being predicted. A well-known exam-
ple that motivates the global schemes is the segment of code from the SPEC pro-
gram eqntott shown in Example 2.

EXAMPLE 2:

if (aa==2) /∗b1 ∗/
aa=0;

if (bb==2) /∗b2 ∗/
bb=0;

if (aa!=bb){ /∗b3 ∗/
.....

}

2 Recall that every instruction “carries” its PC in order to implement precise exceptions.
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As the reader can easily verify, if both branches b1 and b2 are taken, branch b3

will necessarily be not taken. No local predictor scheme for b3 can deduce this
information. In order to correlate the outcomes of b1 and b2 with that of b3 we
need to record and use the fact that b1 and b2 were taken. The recording can be
done by using a global (shift) register, also called a history register, in which a 1
is inserted (at the right) whenever a branch is taken, and a 0 is inserted when a
branch is not taken. Bits that are shifted out at the left are lost. Now, instead of
selected bits of the PC to index the PHT, we use the global register (Figure 4.7).
This type of predictor is often called two-level, the first level being the global regis-
ter (and its extensions, as we shall see below) and the second level being the table of
counters.

Now we need to address the update problem. In the case of the bimodal pre-
dictor, only the data structures storing the predictions needed updating, but in the
case of two-level predictors, both the index (i.e., the global register) and the table
of counters require updates. For the same reasons as those set forth for the bimodal
predictor, the PHT(s) will be updated nonspeculatively. However, such is not the
case for the global register.

We have two options for the update of the global register: (i) a nonspeculative
update, whereby a bit in the global register will be inserted at (branch) instruction
commit, and (ii) a speculative update, whereby a bit is inserted when the branch is
predicted at decode time. The mechanism to implement the first strategy is therefore
extremely simple. However, it has two major defects. Consider a branch instruction
b that is predicted at time t and committed at time t + ∆t. In Example 2, this could
be branch b1. Any branch b′ that needs to be predicted during the interval ∆t, say
in our example b2 or b3, will not benefit of the outcome of b even if the latter is
very predictable. Moreover, the global register for two consecutive predictions for
any branch, say branch b, might include different ancestors of branch b, even if the
same path leading to b was repeated, because of effects such as mispredictions or
cache misses that alter the timing of branches before b. For these two reasons, cor-
relations like the one presented in Example 2 might be overlooked. The alternative
is to speculatively update the global register when the prediction is performed. A
bit is inserted according to the prediction. Of course, now we need a repair mecha-
nism when there is a misprediction, because all bits following the mispredicted one
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correspond to branches that originated from the wrong path. We shall deal with
repair in Section 4.1.6.

Now the specific actions at each stage, with no detail on how the repair is done,
become:

GLOBAL REGISTER BRANCH PREDICTOR

Fetch Stage. Access PHT; pred ←higherbit[PHT[GR]]

Decode stage: compute taken_branch_address;

case:

...

Conditional branch: begin GRold←GR; GR ← concatenate (leftshift(GR,1), pred);

if pred then PC ←taken_branch_address;

end;

...

Rename Stage. When the branch instruction is entered in the ROB, the taken_branch_

address will be part of the ROB entry.

Execute Stage. The branch condition brcd is evaluated and set to "true" if the

branch was to be taken, and to "false" otherwise.

Commit Stage.

if (pred = brcd) then PHT[GRold] ← (PHT[GRold],pred)

else begin PHT[GRold] ← (PHT[GRold],not pred);

flush ROB; GR ← concatenate(repairedGR, not pred);

if pred then PC ← PC+ else PC ←taken_branch_address;

end;

Experiments have shown that global predictors do not perform as well as local
predictors when the number of counters is small, or equivalently the global register
is short. They perform better and their accuracies continue to increase when the
number of entries is large, for now the global register pattern can identify more
accurately which branch is predicted.

The global scheme just presented has lost an important component that was
present in the bimodal predictor, namely, the location within the program of the
branch being predicted. Therefore, in order to reduce aliasing we might want to
reintroduce the PC, in some form, in the indexing process. One of the simplest ways
to do so is to hash (e.g., XOR) bits of the PC and of the global register to form
the indexing function for the PHT (cf. Figure 4.8). This particular scheme is called
gshare. Its predictors follow the performance pattern described in the previous para-
graph for the global register scheme. However, their accuracy is consistently better
than that of global predictors. Some experiments have shown that a gshare predictor
with a 14-bit global register and a PHT with 214 counters yielded conditional branch
accuracy almost perfect for floating-point benchmarks and accuracies from 0.83 to
0.96 for the SPEC 95 integer benchmarks (the program go was an outlier with a
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dismal accuracy of 0.65). gshare predictors are used in the AMD K6 Altheon, the
Sun UltraSPARC III, and the IBM Power4 among others.

The specific actions for gshare are similar to those of the correlated predictor,
the only difference being in the indexing of the PHT.

gshare BRANCH PREDICTOR

Fetch Stage. Access PHT; pred ←higherbit[PHT[hash(GR,PCsubset)]]

Decode Stage.

Compute taken_branch_address;

case:
...

Conditional branch:

begin GRold←GR; GR ← concatenate(leftshift(GR,1), pred);

if pred then PC ←taken_branch_address;

end;
...

Rename Stage. When the branch instruction is entered in the ROB, taken_branch_

address will be part of the ROB entry.

ExecuteStage. The branch condition brcd is evaluated and set to "true" if the

branch was to be taken, and to "false" otherwise.

Commit Stage.

if (pred = brcd) then

PHT[hash(GRold,PCsubset)] ← (PHT[hash(GRold,PCsubset)],pred]

else begin PHT[hash(GRold,PCsubset)] ←
(PHT[hash(GRold,PCsubset)], not pred];

flush ROB; GR ← concatenate(repairedGR, not pred);

if pred then PC ← PC+ else PC ← taken_branch_address;

end;

4.1.5 Two-level Branch Predictors

Although gshare reintroduces some locality in the indexing process, it is not suffi-
cient for deducing patterns of individual branches. Consider Example 1, and assume



142 Front-End: Branch Prediction, Instruction Fetching, and Register Renaming

that the inner loop is executed only five times (n = 4). The bimodal predictor will
mispredict the branch at the end of the inner loop one out of five times, and a global
predictor might mispredict it from zero to five times, depending on the number
of branches and their outcomes inside the loop. On the other hand, if a local his-
tory register were associated with the branch at the end of the loop, the pattern of
“4 taken, 1 not taken” would be recognized after a training period, and the predic-
tion would be correct after that. Therefore, we can attempt to have the first level of
the two-level predictor be more attuned to the locality of the branches and replace
the single global register with a table of local history registers (BHT).

If we go back to the global scheme of Figure 4.7, we see that not only can we
extend the global register with a BHT as mentioned in the previous paragraph, but
we could also have several PHTs, each of them selected by bits of the PC, thus giving
a new dimension in which to reintroduce part of the branch address information. At
the extreme, we could have a history register per branch address, thus recording the
history of each possible branch, and a PHT also for each possible branch address. In
summary, the choices could be:

� One global history register and one PHT (cf. Figure 4.7), or Global–global.
� One global history register and several PHTs (cf. Figure 4.9(a)), or Global–set

(at the extreme, the “set” is one per branch address). Bits from the PC select
the PHTs.

� One BHT (at the extreme, one entry per branch address) of registers (selected
by bits of the PC) and one PHT (cf. Figure 4.9(b)), or Set–global.

� One BHT and a set of PHTs (cf. Figure 4.9(c)), or Set–set.

Note that having several PHTs can be quite expensive in storage (see the exer-
cises). In a first approximation, the table of history registers uses fewer bits than one
PHT as soon as the number of counters in the PHT is sufficiently large. For exam-
ple, 32 registers of 8 bits require 32 bytes of storage, and the associated PHT needs
28 counters, or 512 bits, that is, twice as much. Introducing a second PHT with the
same length for the history registers would make the PHT storage 4 times as much as
what is used for the history registers. Therefore, if the Set–set or Global–set scheme
is chosen, the number of PHTs will be small.

Experiments have shown that either a Set–global or Set–set configuration per-
forms slightly better than gshare for the same PHT size and with a limited number
of history registers. The latest Intel microprocessors, from the Pentium III on, use
two-level predictors of this type.

The introduction of local history registers allows the detection of patterns but
might hide the correlation that was discovered with the global scheme. However,
correlations are not that frequent, and in order to achieve the same accuracy, the
global register in the Global–global scheme must be significantly longer than the
local history registers in the Set–global configuration. For example, a Set–global
scheme with 1024 local history registers of 12 bits each and hence a PHT of 212 coun-
ters take less storage than a Global–global scheme with a global register of 14 bits
and an associated PHT of 214 counters. However, the accuracy of the Global–global
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PC

PHTs

(a) 1 Global register, several PHTs (global–set). Selected bits of the PC point to
      a PHT; the GR points to a row of the PHTs.

PC

PHT

BHT

BHT

(b) Table of local history registers (BHT) and one PHT (set–global). Selected
      bits of the PC point to a local history register, which in turn points to a
      saturating counter in the PHT.

PC

PHTs

(c) Table of local history registers (BHT) and several PHTs (set–set). Selected
      bits of the PC point to a local history register, which in turn points to a row
      in the PHTs. Other bits of the PC select the PHT.

Figure 4.9. Alternatives in two-level predictors.

scheme would be lower on most programs. Arguably, what is needed is a scheme
that can predict both the correlations and the patterns. These hybrid predictors will
be introduced in Section 4.1.8.

The functions to be performed in each stage of the pipeline are similar to those
of the global register scheme, which itself is a two-level predictor. Changes occur in
the functions to access the BHT if it is present instead of a single global register, and
in the choice of the PHT. The repair mechanism is more complex, as we see next.

4.1.6 Repair Mechanisms

Because the repair mechanism introduces some complexity, it is important to know
whether there is a benefit to having speculative updating and a repair mechanism.
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Figure 4.10. Repair mechanism for global regis-
ter (or gshare) predictor. At prediction time, the
GR is shifted left. If the prediction is “taken”
(bit 1), a 0 is inserted at the right of the GR
before inserting it into the FIFO queue. At
repair time, the right new GR will be at the head
of the queue.

The answer is an emphatic yes: speculative updating without repair is sometimes
better and sometimes worse than nonspeculative updating, but speculative updating
with repair is always a win. If the number of in-flight branches is limited, because
for example of the checkpointing that has to be done for repair (see the next para-
graph) and for other structures such as the register map (see Section 4.4 of this
chapter), the win is not as great, but still sufficiently important to warrant the repair
mechanism.

Repair in the global predictor and gshare schemes is based on checkpointing
the global history register at each prediction. This is what we indicated earlier with
the notation GRold←GR. Since the front-end does not disturb program order, the
global register up to the current bit not included can be checkpointed and entered
in a FIFO queue. At the same time, the predicted outcome is shifted in the global
register. If the prediction is correct, when the branch is committed its checkpointed
global register will be at the head of the queue, because commitment is also in pro-
gram order. The head of the queue is simply discarded. In the case of a misprediction
with repair at commit time, the head of the queue appended with the bit comple-
ment of the prediction becomes the new global register, and all other entries are
discarded. A simple optimization, shown in Figure 4.10, inserts the corrected GR in
the FIFO queue. If repair is to be done at execute time, then as soon as a mispre-
diction has been detected, the global register can be restored similarly, but only the
entries in the queue between the one corresponding to the misprediction and the tail
are removed. To implement this optimization, each branch must carry a tag indicat-
ing the index of its entry in the FIFO queue. Such a scheme is used in the global
predictor of the Alpha 21264. It requires little hardware: a FIFO queue where each
entry is a pair (tag, history register) and where the number of entries is the max-
imum number of branches that can be in flight in the back-end at any given time
(or some smaller number, if a full queue is a structural hazard). Note that the saved
global register, and the PC for gshare, are also needed for indexing the PHT for
nonspeculative update purposes. Of course, other optimizations are possible (see
the exercises).

When a local scheme is used, speculative update with repair is still beneficial, but
somewhat less so than in global schemes, because many of the entries in the BHT are
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not dependent on the mispredicted branch. However, a speculative update without
repair does not give good results. On the other hand, a commit-time nonspeculative
update yields acceptable performance without the repair complexities. If one were
to implement a repair mechanism, checkpointing of the whole BHT would not
be acceptable because of the time and space involved as soon as the BHT has more
than a few entries. An alternative would be to checkpoint only the predicted local
history registers and save them in a FIFO queue as in the global scheme. Whereas
checkpointing is fast and easy, repair is more difficult, because not only the mispre-
dicted local register must be repaired, but also all subsequent local registers that
were inserted in the queue after it.

A better way, which we only sketch here, is to use a FIFO queue as in the global
scheme, with each entry now consisting of the branch address and the speculatively
updated local register. The queue will be used during prediction as well as for the
repair. When a prediction is to be made, the BHT is indexed as usual and the FIFO
queue is searched associatively for the branch address at the same time. If the branch
address is found in the queue, the local register of the entry is used to index the
access to the PHT in lieu of a local register in the BHT. For each prediction, a new
entry is inserted in the queue, independently of whether it comes from the queue
already or from the BHT. If the branch at the head of the queue was correctly
predicted, and this is known at commit time, the entry in the queue replaces the
local history register in the BHT. Upon a misprediction, entries in the queue are
discarded as in the global scheme. Because several entries in the queue might cor-
respond to the same branch address, the mispredicted branch must still be uniquely
identified (see the exercises).

Before continuing with even more sophisticated predictors, we turn our atten-
tion to branch target address prediction.

4.1.7 Branch Target Address Prediction

When a branch is taken, predicting its direction is only part of the task. The other
part is to predict the branch target address. Without this latter prediction, the fetch-
ing of new instructions has to wait till address computation. In the simple pipelines
of Chapter 2, this was not too much of a burden. Address computation was done
speculatively during the decode stage, and a single cycle was lost if the branch was
correctly predicted. Of course, the full penalty was incurred in the case of a mispre-
diction. With a superscalar the speculative address computations, one per instruc-
tion in an m-way machine, cannot all be performed early without adding a definite
burden to the front-end, such as m extra adders in the simplest case of a RISC
ISA. In the case of an ISA like the IA-32 of the Intel P6 microarchitecture, detect-
ing the beginning of instructions and performing address computations can take
several stages, as shown in Chapter 3. Therefore, if we want to avoid target address
computation penalties, we need a mechanism to predict target branch addresses. To
facilitate the discussion, we consider first the case of a processor that fetches a single
instruction at a time. We then extend the concept to the case of superscalars.
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Tag (cache-
like) Pred.

Target instruction address or I-cache line target
address, i.e., next predicted PC

Figure 4.11. Organization of an inte-
grated branch target buffer (BTB).

Recall that we can make a prediction on the direction that a branch will take at
instruction fetch time, because the indexing in the predictor, say the PHT, depends
only on the PC and maybe history registers that are speculatively updated. If the
instruction is not a branch, no harm is done: the prediction is simply discarded.
Unfortunately, we cannot do the same to predict a target address.

If we were to associate a target address with each 2-bit counter in the PHT, a
prediction of branch taken would update the PC to the associated target address
even if the instruction were not a branch. Fetching new instructions starting at this
bogus address is certainly to be avoided. An alternative is to have a cachelike struc-
ture, or BTB, that records the addresses of the branches and the target addresses
associated with them. At instruction fetch, if there is a hit in the BTB and the branch
is predicted to be taken, then the PC is set to the target address stored in the BTB,
and an instruction fetch with this new PC can be instantiated.

Figure 4.11 shows an integrated BTB–PHT. As can be seen, the amount of stor-
age occupied by the BTB is much larger than that for the PHT. Moreover, the num-
ber of entries in the BTB is somewhat limited in that it functions as a cache and
needs to be accessed in a single cycle. Two possible other organizations are shown
in Figure 4.12 and Figure 4.13.

In the case of a decoupled BTB–PHT (cf. Figure 4.12), accesses to the BTB and
the PHT are performed in parallel. If the PHT indicates that the branch is predicted
to be taken and there is a BTB hit, then the PC is set to the next address field in
the BTB and the next instruction is fetched from this new address. If the PHT indi-
cates that the branch will not be taken or if there is a BTB miss, then the branch
instruction proceeds with the PHT prediction as if there were no BTB. In order

PHT
BTB

Tag Pred. PC

PC

Figure 4.12. Organization of a decou-
pled BTB–PHT.
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Tag Target address, i.e., next (predicted) PC Local hist.

BTB + BHT

PHTs

PC

Figure 4.13. Integrating a BTB with a Set–set two-level predictor.

to make the BTB more space-efficient, only taken branches are entered in it, and
this filling of the BTB occurs after it has been determined in the back-end that the
branch was taken. The BTB is managed as a cache with the usual replacement algo-
rithm if it is set-associative. In some architectures, like the IBM PowerPC 620, the
access to the (256-entry, two-way set-associative) BTB is performed in the first cycle,
and access to the PHT (2 K counters) in the second. If there is a BTB hit and the
PHT indicates a not-taken prediction, the fetching resumes with the old value of
the PC. In this case, there is a penalty of one cycle, but it is not as important as the
penalty due to a misprediction.

So far, we have considered only a PHT predictor for the branch direction.
Of course, we could have a two-level predictor in the decoupled case. Another
alternative is to integrate the BTB with the BHT. The combined BTB–BHT (Fig-
ure 4.13) has the same structure as the original BTB, but now the local history reg-
ister associated with the branch replaces the field in the entry devoted to the 2-bit
counter. The second level of the predictor, (i.e., one or several PHTs), is the same
as in Set–global or Set–set predictors. Note that we need to enter both taken and
not taken branches in the BTB, because we need their histories independently of
their outcome. A scheme of that sort is implemented in the P6 microarchitecture
with 4-bit-wide local registers and 512 entries in the BTB (the number of distinct
PHTs is never specified in the Intel literature). On a BTB miss, a static prediction
“backward taken, forward not taken” is performed.

When we consider predictions of both the branch direction and the target
address, we see two instances where we can have mispredictions. The first one,
the more costly, is when the direction of the branch is mispredicted. In that case,
all instructions fetched after the branch must be nullified, and there can be a large
number of them, because recovery happens only when the mispredicted branch is
at the head of the reorder buffer. The second is when a branch is correctly pre-
dicted to be taken but there is a BTB miss. In that case the penalty is that no new



148 Front-End: Branch Prediction, Instruction Fetching, and Register Renaming

instruction can be fetched until the branch target address is computed during the
decode stage. This penalty affects the filling of the front-end of the pipeline. There
is a third instance where the prediction can be incorrect, namely, when the branch
is correctly predicted to be taken and there is a BTB hit, but the target address is
not the right one. This situation, called a misfetch, can occur because of indirect
jumps. In that case, the penalty is the same as if there had been a BTB miss, with
the additional requirement of squashing the instructions that have been fetched.
Although relatively rare, the indirect jump and indirect call instructions (returns
are treated separately, as explained below) are becoming more frequent in appli-
cations programmed according to an object-oriented paradigm. Unfortunately, the
typical optimizations for cachelike structures, such as larger capacity or associativ-
ity, will not help in decreasing misfetches. Associating a saturating counter with each
entry and modifying the target address in the BTB after two misfetches can improve
somewhat the target address prediction accuracy. In the Intel Pentium M, there is
an indirect branch predictor that uses global history registers associated with target
addresses and that helps in decreasing the number of misfetches.

We examine in the following the main changes with respect to a bimodal pre-
dictor in the branch prediction mechanism in the case of an integrated BTB with a
bimodal predictor (see the exercises for the other BTB organizations).

INTEGRATED BTB WITH BIMODAL BRANCH PREDICTOR. (In addition to its own PC,

the branch will carry the index of its BTB hit.)

Fetch Stage. Access BTB:

if BTBhit then /∗returns the index to the entry with the hit∗/

begin pred ←higherbit[BTB[Pred[index]]];

if pred then

begin predPC← BTB[Target[index]];

PC ← predPC

end

end

else pred ←false; /∗BTB miss∗/

Decode Stage.

compute taken_branch_address;

case:
...

Conditional branch: if pred then

if predPC �= taken_branch_address/∗misfetch∗/

then begin

squash instructions in fetch stage;

BTB[Target[index]] ←taken_branch_address;

PC ← taken_branch_address

end;
...
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Execute Stage. The branch condition brcd is evaluated and set to

"true" if the branch was to be taken, and to "false" otherwise.

Commit Stage.

if (pred = brcd) then

if pred then BTB[Pred[index]] ← (BTB[Pred[index]], pred);

else begin

if brcd then createBTBentry(PCbranch,

taken_branch_address,WT);

/∗ This is a cachelike replacement∗/

flush ROB;

if pred then PC ← PC+
else PC←taken_branch_address;

end;

Table 4.2, where mpred is the penalty for a mispredict and mfetch the one for
a misfetch, summarizes the possible situations. We assume that the BTB and the
branch direction predictor (PHT or two-level) are accessed in the same cycle and
that the direction predictor’s outcome has the highest priority.

The metric for mfetch and for mpred can be a number of cycles or, in the case
of a superscalar, the number of instruction issue slots that have been lost. With
Missf and Missp the percentages of branches that are misfetched and mispredicted,
respectively (some branches can be both, as shown in two rows of Table 4.2), the
contribution to the CPI due to branch execution, or the branch execution penalty
bep expressed as a number of cycles, can be written in a first approximation (see the
exercises) as

bep = Miss f × mfetch + Missp × mpred

Which of the decoupled and the integrated BTB predictor yields the smaller
bep? For the same number of entries in the BTB and roughly the same amount of
storage in both designs for the BHT and PHTs in one case, and for a Global–set
or Global–global predictor in the other, there is no clear winner. The integrated

Table 4.2. Penalties for BTB and predictor (mis)predictions

BTB Dir. Pred. Target Pred. Outcome Penalty

Hit Taken Correct Taken 0
Hit Taken Wrong Taken mfetch
Hit Taken Correct Not taken mpred
Hit Taken Wrong Not taken mfetch + mpred
Hit Not taken Don’t care Taken mpred
Hit Not taken Don’t care Not taken 0
Miss Taken None Taken mfetch
Miss Taken None Not taken mfetch + mpred
Miss Not taken None Taken mpred
Miss Not taken None Not taken 0
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BTB will store fewer predicted target addresses, because both taken and not taken
branches are entered. In a first approximation, we can say that its Missf is double
that of the decoupled design. On the other hand, its prediction accuracy is generally
slightly better, and this is more than enough to compensate, for mpred is at least
three times more than mfetch in current microprocessors. However, it is cheaper in
storage to improve the accuracy of the decoupled scheme by extending the length
of the global register than to increase the capacity of the BTB in the integrated case.
On the other hand, the integrated scheme does not require communication between
two different hardware structures, and this could be the determining factor in case
the prediction is on the critical path.

Until now, we have avoided the slight complexity brought upon by the fact that
several instructions can be fetched together. However, the only BTB hit of impor-
tance is for the first one in program order whose address is equal to or greater than
the PC. We can therefore design the BTB with tag comparators that implement this
operation. An alternative is to use partial tags with the possibility of having bogus
hits. Since the latter will be extremely infrequent and checked at address verifica-
tion time in the decoder, as is done for all branch-taken predictions, the additional
penalties are minimal.

We close this subsection with three optimizations. In each case, we cannot mask
completely the misfetch or mispredict penalties, but we can save a few cycles.

Call–Return Mechanisms
A procedure call is an unconditional branch to a target address that will remain the
same during program execution. So it is a prime candidate for an entry in the BTB.
If the call is indirect, there is no easy remedy for a misfetch. A return from a proce-
dure is implemented either as an instruction of its own or as an indirect jump to the
contents of a specific register that has been loaded by the procedure call. In contrast
with calls that select the same target address, returns transfer control to many differ-
ent addresses, depending on the location of the call. A typical example is the use of
a print routine: its call address remains the same during execution of a program, but
because it is called from various parts of the program, the returns will be to different
locations. Entering the return address in the BTB will lead to frequent misfetches.
These misfetches can be almost all avoided in one of two ways. When an instruction
call is recognized, the corresponding return address is pushed on the top of a return
address stack. In the first approach, when a return is recognized, the stack is popped
and the BTB miss corresponding to the taken prediction associated with the return
will be squashed. Instead, new instructions will be fetched from the PC set to the
popped address. Note that this scheme requires waiting until a return is recognized
(decode stage), and therefore only a portion of the misfetch penalty is recovered.
If instead the address of the return instruction and its target address are entered on
the stack, then this partial penalty can be avoided if the branch prediction mecha-
nism checks the BTB and the return stack in parallel. The downside of this second
approach is that one has to wait for the first return instruction to be decoded and
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for its target address to be computed. If each time the procedure is called it is from
a different location, there will be no gain.

Misfetches can still occur if the stack overflows. Generally, the stack is imple-
mented as a circular queue, so that in case of overflow the most recent entries can
overwrite the oldest ones. Note also that the stack must be repaired in case of call–
returns on a misspeculated path. Saving the pointer to the top of the stack register
at branch prediction time and restoring it when the mispredicted branch reaches the
head of the reorder buffer is sufficient for this purpose. Most microprocessors today
use a return stack with a few entries: from 1 in the MIPS R10000 to 12 in the Alpha
21164 and 16 in the Intel Pentium III and successors.

Resume Buffers
The roots of the second optimization lie in the dual-path implementation found in
older machines such as the IBM System 360/91. The main idea is that when a branch
is decoded, both the fall-through instructions and those following the target address
are fetched, decoded, and enqueued in separate buffers. At branch resolution time,
one of the buffers becomes the execution path and the other is discarded. The same
idea can be applied in a restricted fashion for processors that cannot predict a target
address and modify the PC on a BTB hit in a single cycle (the Intel P6 microarchi-
tecture and the MIPS R10000 are two such examples). On a BTB hit and “taken”
prediction, the fall-through instructions in the same cache line as the branch and in
the following cache line are kept in a resume buffer. If the prediction was incorrect,
the correct path is in this resume buffer. One or two cycles may be saved that way
at a very low implementation cost.

Loop Detector and Count Predictor
When a given branch shows a repeated pattern of many taken followed by a single
not taken, one can assume that an end-of-loop branch has been encountered. Since
the number of iterations can be much larger than the length of a history register, a
special loop predictor can be useful. It is easy to set up and requires a counter for
each recognized loop that contains the predicted recorded count. Such an additional
predictor can be found in the Intel Pentium M.

4.1.8 More Sophisticated and Hybrid Predictors

There are at least two sources of potential inaccuracy in the predictors we have seen
so far. The first one, common to all structures that cannot contain information for all
possible cases, is due to the limited capacity of the predictors. Because storing and
updating information for all possible dynamic executions of all branches is not pos-
sible, either the information may not be present or there is a possibility of aliasing.
The second one, mentioned previously, is that there is a tension between prediction
for branch correlation, (i.e., global information), and particular patterns for each
branch (i.e., local information).



152 Front-End: Branch Prediction, Instruction Fetching, and Register Renaming

The first source of inaccuracy can be viewed as similar to what happens in cache
accesses. The equivalents for branch predictions to the three C’s types of misses
(cold, capacity, and conflict) are:

� The first prediction for a branch (cold miss) is the default prediction, (i.e., “not
taken”), in the case of an integrated BTB–PHT. In the case of a decoupled
BTB–PHT, either the initialized prediction in the PHT or the prediction for an
aliased branch will be the result.

� The limited size of the PHT implies that not all distinct branches can have their
prediction stored at the same time (capacity miss).

� Predictions for two branches can map to the same PHT entry (conflict miss).

In all cases except that of an integrated BTB–PHT, what is needed are means to
reduce the effects of aliasing. This is not necessarily an argument in favor of the
integrated BTB–PHT, for the latter is likely to have the largest number of capac-
ity misses. It has been observed that in global prediction schemes (those of main
interest here), branch prediction aliasing due to lack of associativity occurs more
often than aliasing brought about by limited capacity. In decoupled BTB–PHTs,
associativity cannot be provided in a straightforward manner, because PHTs do not
carry tags. An alternative is to use several PHTs, with some discriminatory factor in
choosing which one to use for a particular branch.

Aliasing is not always detrimental. When two branches are biased the same way,
either most often taken or most often not taken, there is no harm if they share the
same PHT entry. We have a case of neutral aliasing. On the other hand, if their
biases are opposite to each other, or if one is easily predictable while the other
fluctuates between taken and not taken, we have destructive aliasing.

Because most branches are often heavily biased, it is possible to associate this
information with the branch address, for example in the BTB. One possibility is
to record a potential branch outcome as a bias bit in the BTB entry when the
branch is first entered or when entered upon a replacement. This bias bit can be
determined by the compiler or can be based on whether the branch is forward or
backward. The PHT, which in this scheme should be addressed differently than the
BTB, is again a table of 2-bit saturating counters, but instead of predicting whether
the branch should be taken or not, it predicts whether the branch direction should
agree with the bias bit. Only the PHT entry is updated when the branch outcome
is known, that is, the counter is incremented if agreement held, and decremented
otherwise.

In other words, the following action for branch direction prediction should be
taken in the fetch stage:

AGREE PREDICTOR. (Only a sketch for the branch direction prediction
is given; it requires a decoupled BTB−PHT.)
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Fetch Stage. Access BTB:

If BTBhit then /∗returns index∗/

begin bias ← BTB[Biasarray [index]];

Access PHT; agreebit ←higherbit[PHT[PCsubset]]

pred ← XNOR(bias,agreebit);

end

else pred ← false;
...

Commit Stage.

if index is valid /∗ we had a BTB hit∗/

then if brcd = bias then PHT[PCsubset] ← (PHT[PCsubset],bias)

/∗reinforce∗/

else PHT[PCsubset] ← (PHT[PCsubset],not bias)

Now, two branches that alias in the PHT and are both strongly biased, but possibly
in different directions, will not destroy each other. Of course, the scheme does not
help if one branch is strongly biased and the other one is not.

A related design is to associate not only a bias bit with each BTB entry, but also
a saturating counter that indicates the confidence that can be given to the bias bit.
If the counter is saturated, then the prediction is that of the bias bit, and the PHT is
neither consulted nor updated. Otherwise, the PHT is consulted and updated upon
knowledge of the branch outcome, as in the agree scheme. The advantage of this
scheme is that biased branches will be predicted with their entries’ saturating coun-
ters and will not access the PHT. The latter is used only for less predictable branches.
Thus, the amount of aliasing is reduced by the filter imposed on very predictable
branches, because they do not influence the PHT contents.

We can mitigate the effects of destructive aliasing by replicating the PHT. One
possible design is to have two PHTs, accessed similarly, for example in a gshare
fashion, where one of the PHTs is intended for branches biased towards “taken”
and the other for branches biased towards “not taken.” A third PHT, a choice PHT
accessed through the branch address only, will decide which of the two direction
PHTs’ predictions should be chosen for that particular branch. In this bi-mode pre-
dictor, updating is done only for the PHT that was chosen to give the direction.
The choice PHT is also updated unless its prediction was not the branch outcome
but the direction PHT was correct. In other words, if for example the choice PHT
said to consult the “taken” PHT and the latter correctly predicted “not taken,” the
choice PHT is left unchanged. In this design, aliasing of branches that are mostly
taken (or mostly not taken) is not destructive. Of course, destructive aliasing still
occurs in the case of one branch outcome agreeing with the choice while the other
does not.

A second possible design is the skewed predictor, whereby three different hash-
ing functions index three PHTs. A majority vote indicates the predicted direction.
By use of the skewing functions, the probability of aliasing in more than one of the
PHTs is made quite small. In some sense, the skewing provides associativity (the
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Figure 4.14. The YAGS predictor (adapted from Eden and Mudge [EM98]).

same reasoning has been applied as a proposal to decrease conflict misses in caches;
see Chapter 6). If the prediction is wrong, the three PHTs are updated; if it is correct
only those that are correct are updated. The rationale for the partial updating is that
the PHT that had the incorrect prediction must be holding the correct prediction for
another branch.

The bias bits and confidence counters added to a BTB entry represent a small
additional investment for a design that is already expensive in storage. On the
other hand, having three PHTs instead of one in the replicated PHT designs can
be overly taxing. What might be best in designs that either have no BTB or use a
decoupled BTB–PHT organization is to take advantage of the bias that exists from
most branches as in the bi-mode predictor and to limit the aliasing of those less
predictable branches as in the skewed case. At the same time, we do not want to
expand storage unduly. A proposal along these lines is the YAGS (“yet another
global scheme”), shown in Figure 4.14.

As in the bi-mode predictor, YAGS has a choice PHT that is indexed by
the branch address and directs the prediction to one of two predictors. However,
because the choice predictor already indicates a bias towards “taken” or “not taken”
and therefore takes care of neutral aliasing, what would be useful is to discover
instances where the bias is not followed consistently. So we can replace the bi-mode
direction PHTs by structures that indicate exceptions to the direction predicted by
the choice PHT. More precisely, when the choice PHT indicates “taken” and the
outcome is “not taken,” the branch address is entered, via a gshare-like indexing, in
a “not taken” cache (NT cache in the figure). The T cache is filled in the same way
for a “not taken” choice and a “taken” outcome. An entry in these caches consists
of a (partial) tag and a 2-bit saturating counter. Now, when a prediction is to be
made, the choice PHT and the caches are accessed concurrently. If the choice PHT
indicates “taken” (respectively, “not taken”) and there is a miss in the NT cache
(respectively, T cache), the prediction is “taken” (respectively “not taken”). If there
is a hit, the prediction is what is given by the 2-bit counter in the NT cache (respec-
tively, T cache). This is the function of the three muxes in Figure 4.14, summarized
in another format in Table 4.3.
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Table 4.3. Decision process for the prediction in the YAGS predictor

Choice PHT “Taken” cache “Not taken” cache Prediction

T N/A Miss T
T N/A Hit Higherbit[NT2BC[index]]
NT Miss N/A NT
NT Hit N/A Higherbit[T2BC[index]]

Updating of a cache occurs if the cache was used. A new entry in a cache is
created, eventually replacing an old one, if the choice PHT made the wrong decision.
Because the caches record exceptions, their number of entries does not have to be
as large as the number of counters in the choice PHT. It has been shown that at
equal storage, the accuracy of a YAGS predictor with 6-bit tags was slightly better
than that of the bi-mode predictor, which in turn was better than gshare. Of course,
as soon as the PHTs’ capacities are sufficient to almost nullify the effect of the lack
of associativity, the schemes perform similarly.

In the bi-mode and YAGS predictors there is a choice PHT that selects other
PHTs, or similar tables, to yield the prediction. The design can be generalized in
such a way that the choice PHT now selects one of two complete predictors, for
example, a global gshare-like predictor on one hand and a local predictor driven by
a BHT on the other hand. The choice PHT can be a tournament predictor (PT) with
transitions for individual entries as shown in Figure 4.15, which, in fact, is nothing
more than a variation on the saturating counters PHT. The overall scheme, called a
combining or hybrid predictor, is shown in Figure 4.16. When a branch needs to be
predicted, the tournament predictor PT indicates which of the two predictors P1 or
P2 should be followed (cf. the dashed arrows in Figure 4.16). Since P1 and P2 oper-
ate independently accesses to individual entries in each of the predictors can use
different indexing functions. Updating of P1 and P2 can be done either speculatively

Use P1 (s)

Use P1 (w)

Use P2 (s)

Use P2 (w)

0/0, 1/0, 1/1

0/1 0/11/0 1/0

0/0, 0/1, 1/1

0/0, 1/1 0/0, 1/1

0/1

1/0

Strong P1 Strong P2

Weak P1 Weak P2

0: pred. is incorrect; 1: pred. is correct; a/b: pred. for P1/P2

Figure 4.15. State diagram for an entry in a tournament predictor.
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Figure 4.16. Schematic of a hybrid (or
combining) predictor.

or when the branch is known depending on the predictor’s type. Updating of PT

follows the state transitions of Figure 4.15, that is, no modification is made if P1

and P2 were in agreement (both right or both wrong, indicated in the figure by 0/0
and 1/1). In the other cases, it depends on the previous states. By analogy with Fig-
ure 4.3, we have labeled the two states at the top of the figure as “strong” and those
at the bottom as “weak.” For example, it takes two incorrect predictions from P1

along with two correct predictions from P2 to move from a strong P1 choice to a
weak P2 one, with the possibility of both P1 and P2 being correct or incorrect simul-
taneously in between these two incorrect (correct) predictions from P1 (from P2).
A hybrid predictor is used in the Alpha 21264 (see the sidebar at the end of this
section).

There exist many other types of sophisticated branch predictors, and the inten-
tion here is not to give a complete survey. The few examples that are given now are
just a sample of what is still a vigorous area of research.

As a follow-up on the gshare philosophy, indexing of the PHT can be performed
by using bits of a single global history register and bits of a PC-selected local his-
tory register, thus attempting to rely on both global and local information. Other
schemes aim to replace the history Boolean vector of the last n branches by an
encoding of the control flow path of these last branches. Since encoding the path
takes many more bits than the simple taken–not-taken bit used in history registers,
care must be taken to provide compression algorithms or good hashing schemes to
index in the PHT. Techniques based on artificial intelligence learning methods, such
as the use of perceptrons, have also been advocated. In the case of hybrid predictors,
the number of predictors can be greater than two with a selection process based on
past performance for a given branch or by combining the predictions of each pre-
dictor to form an index for a final prediction PHT. Though these hybrid predictors
can be quite accurate, they are expensive in storage, and updating (and repairing)
them is not simple.

To close this section, the reader should remember that there is a way to avoid
branch prediction, namely predication. We have seen how this concept could be
applied when we looked at the VLIW/EPIC architectures in Section 3.5.4.
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4.1.9 Recap

Branch prediction is a performance requirement for pipelined processors, and the
need for accuracy increases with the depth and the width of the pipeline. In an
m-way superscalar with a span between the recognition that an instruction is a
branch and its resolution of c cycles, the misprediction penalty is of mc instruc-
tion issue slots. Since typical numbers for m and c are 4 and 10, respectively, it is
no surprise that an enormous amount of effort has been expended to build accurate
branch predictors. Today, sophisticated branch predictors have accuracies of over
95% for integer programs and 97% for scientific workloads.

The basic building block of branch predictors is the 2-bit saturating counter
that predicts the direction of the next instance of a branch. Because PHTs, (i.e.,
tables of 2-bit counters), have limited capacity, aliasing occurs for their access. In
modern branch predictors, both local information and global information are used
to access the PHTs. The local information includes as one of its indexing compo-
nents the branch address and consists of one or more PHTs. The global information
is related to the history of previous branches on the path to the current one and
consists of one or more history registers. These two-level branch predictors can be
classified according to the number of history registers (one or several) and the num-
ber of PHTs (again, one or several). The most sophisticated branch predictors use
a tournament predictor, based on the same idea as that of saturating counters, to
choose which of the two predictors (say, one mostly based on local information and
one based on global information) will be used for predicting the branch direction.
Because of the distance between a branch prediction and its execution, history regis-
ters are most often updated speculatively. Repairing the history is not a simple task
if the number of registers is large.

Branch predictors can also predict the target of the branch. BTBs, organized
as caches, are used to that effect. In performance assessment one must distinguish
between a misprediction (wrong direction; will be known at execution time) and the
less costly misfetch (wrong target address; will be known at decode time).

Sidebar: The DEC Alpha 21264 Branch Predictor

Although the DEC Alpha 21264, introduced in 1998, has the same ISA as the in-
order four-way Alpha 21164 presented in Section 3.1, its microarchitecture is quite
different in that it is a four-way out-of-order superscalar processor. Its pipeline is
also longer, so that a branch misprediction results in a loss of 7 cycles vs. the 6 cycles
of the 21164; this small difference is more important than it appears, for the out-of-
order execution will allow more in-flight instructions.

The branch predictor of the Alpha 21264 consists of three components (cf.
Figure 4.17):

� A tournament predictor of 4 K entries. Indexing is done via a 12-bit global reg-
ister that records the outcomes of the last 12 branches.
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Figure 4.17. The Alpha 21264 branch
predictor (adapted from Kessler [K99]).

� A Global–global predictor PHT of 2-bit counters. It has 4 K entries and is
accessed via the same 12-bit global register used for the tournament predictor.

� A Set–global predictor using a BHT of 1 K local registers. The local registers
in the BHT are 10 bits long and are used to access a single 1 K PHT of 3-bit
saturating counters. Selection of the local registers is performed via bits of the
PC.

The global register is updated speculatively, whereas the local, global, and tour-
nament predictors are updated when the branch commits and retires.

The accuracy of this branch predictor shows definite improvements over the
simple bimodal predictor of the Alpha 21164, which has a single PHT with 2 K
entries (twice the size of the local PHT of the 21264). In the SPEC95 floating-
point benchmarks, the misprediction rate is now almost negligible except in one case
(su2cor). In the integer benchmarks, the misprediction rate is often cut in half. How-
ever, when a transaction-processing workload is considered, the simple bimodal pre-
dictor is slightly superior. The reason may be that the number of branches is quite
large and they don’t correlate with each other. Therefore, the larger predictor of the
21164 performs slightly better.

The reader might have noticed that we have not described target address pre-
diction. In the Alpha 21264, a form of BTB is embedded in the I-cache and will be
described in Section 4.3 in connection with line-and-way prediction.

4.2 Instruction Fetching

4.2.1 Impediments in Instruction Fetch Bandwidth

In an m-way superscalar, the goal of the fetching unit, (i.e., the part of the front-end
that feeds instructions to the decoder), is to deliver m instructions every cycle. Three
factors contribute to make this goal of fetching m instructions difficult to achieve:

� The determination of the next address from which the instructions should be
fetched: This is taken care of by branch prediction – with, of course, the possi-
bility of misprediction.
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� The instruction cache bandwidth: If the m instructions are in two different cache
lines, then it is most likely than only the first line can be fetched in a given cycle.
Of course, if there is an I-cache miss, the delay will be much greater.

� Break in the control flow (taken branches): This last factor has two components.
First, the fetched address can be such that it starts in the middle of a cache line
and therefore the instructions in the cache line before it must be discarded, and
second, only a subset of the m instructions may be useful if a branch that is taken
is not the last of the m instructions.

The fact that fewer than m instructions might be passed on to the decode stage
in a given cycle does not necessarily imply that the overall IPC will be significantly
reduced. As we have already seen, true data dependencies (i.e., lack of instruction-
level parallelism) and structural hazards (i.e., lack of resources) play an important
role in limiting IPC. Moreover, depending on the mix of instructions, not all m
instructions can always be decoded in one cycle (see the next section). Furthermore,
buffering of fetched instructions, as present in the two processors that we have stud-
ied in Chapter 3, smoothes over the limitations introduced by the lack of a perfect
instruction fetch bandwidth. Nonetheless, attempting to have m instructions ready
for the decode stage(s) at each cycle is certainly worthwhile.

Having dealt at length with branch prediction in the previous section, we con-
sider here only the two other bulleted factors, starting with the effect of the instruc-
tion cache bandwidth. Reducing I-cache misses through optimized code placement
is a topic we shall touch upon in Chapter 6. Having longer I-cache lines will increase
the probability that the m instructions are in the same line at the expense of possibly
more I-cache misses. So there is certainly a limiting line size; going beyond it would
be detrimental (recall Table 2.1; I-cache line sizes are generally 32 or 64 bytes, i.e.,
between 8 and 16 instructions). If the hardware senses that the remainder of the
current line will not hold m instructions, a possibility is to prefetch the “next” line
in the instruction buffer.3 The prefetch can be done in the same cycle in a direct-
mapped I-cache if the cache is organized in banks so that consecutive lines are in
different banks. However, the concept of “next” becomes muddy when the cache
is set-associative, the current trend as per Table 2.1. The savings due to a higher
hit ratio brought about by the set associativity generally outweigh those resulting
from this limited form of prefetch. Even in the case of a direct-mapped cache, the
prefetch can also cause a misfetch if the next line does not correspond to the next
sequence of code, for example because of a replacement. Thus, address checking,
and eventually repair, are necessary even if there is no transfer of flow of control.
The situation is somewhat similar to what we encountered in the data cache access
in the Alpha 21164 (recall Section 3.1.3) where on a load–store operation it was opti-
mistically assumed that there was an L1 hit in a first cycle, but this decision could be
overridden in the next cycle when a miss was detected.

3 The “next” prefetch in the instruction buffer is not to be confused with nextline prefetching in the
I-cache, which will be covered in Chapter 6.
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Figure 4.18. Line-and-way prediction in an I-cache.

When the m instructions do not start at the beginning of a cache line or when
they straddle two cache lines (either through the prefetch just discussed or because
the target instruction of a taken branch can be fetched in the same cycle), they have
to be aligned in the instruction buffer. This merging can be done in a collapsing
buffer that sits in front of the instruction buffer. If such a scheme is implemented,
the front-end requires an extra pipeline stage and hence the misfetch penalty is
increased by 1 cycle.

Fetching in the same cycle both the sequential code via access to the I-cache
and the target instruction plus some of its followers is quite demanding, for the
latter implies a BTB lookup plus an I-cache access in the case of a hit. Even if the
sequential code and the target address are in different banks, this is too much to ask,
especially if the cache is set-associative. To assess the difficulty, recall that in the
P6 microarchitecture even a BTB hit resulted in a 1-cycle bubble. This extra cycle
can be eliminated in many instances if the BTB is integrated within the I-cache. A
possible design is as follows (Figure 4.18).

A cache line contains k sublines of m instructions each. Associated with each
subline is a pair (position, next) that indicates the position within the current line
of the first branch predicted to be taken and the target address in the I-cache for
where the next block of m instructions should be fetched. The next field is itself
a triple (index, displacement, way) wherein index points to the line where the next
block of instructions reside, displacement is the number of bytes since the beginning
of the target address line, and way is the bank in case the I-cache is set-associative.
During the fetch cycle, the branch direction predictor is consulted. If it indicates
that a branch is going to be taken, a line-and-way prediction is used to fetch the
next block of instructions. Line and way fields are set when there is a cache miss
and a new line is brought in. Line-and-way predictions are trained like BTB entries,
with the possibility of having saturating counters to provide hysteresis. The advan-
tages of the integrated I-cache–BTB are that (i) both the instruction TLB and the
tag comparison (for access, not for checking later) can be bypassed and that instruc-
tions can be fetched on consecutive cycles in case of taken branches, and (ii) there is
a significant savings in space (see the exercises). The drawback is that the informa-
tion is not quite as precise as in a BTB because the contents of a target line might
have been replaced. Thus, there is a slight increase in misfetches of bogus addresses.
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BTB-like designs integrated with the I-cache, similar to the one just described, have
been implemented in the AMD Athlon K5 and successors as well as in the Alpha
21264.

4.2.2 Trace Caches

The impediments to fetching instructions that we have described in the previous
subsection show that if the instruction fetch unit is limited to one branch prediction
per cycle (which is the general case, as we shall see in the next section), then at most
one basic block or m instructions, whichever is smaller, can be fetched per cycle.
If we were willing to lengthen the front-end part of the pipeline and incur more
costly misprediction penalties, the single-basic-block constraint could be lessened
to the straddling of two basic blocks. If we were to allow multiple branch predic-
tions per cycle, for example, with a multibanked BTB, then contiguous basic blocks,
(i.e., basic blocks linked by branches that are not taken), could be fetched. A better
scheme would be one that would allow the fetching of multiple basic blocks, whether
they are contiguous or not. Trace caches are an attempt to achieve this goal.

The basic idea behind trace caches is to supplement, or even replace, the instruc-
tion cache with a cache that contains sequences of instructions recorded in the
order in which they were decoded (or committed). Such sequences are called traces.
Instead of the PC indexing into the I-cache, it indexes into the trace cache. Assum-
ing all predictions are correct, the whole trace can be fetched in one cycle, and all
instructions within the trace will be executed. Naturally, there are restrictions on
the length and composition of traces, choices of how to design the trace cache, and
issues of how and when traces are to be built and subsequently fetched.

Figure 4.19(a) gives an abstracted view of a conventional instruction fetch unit
using an I-cache, and Figure 4.19(b) shows the same unit when a trace cache is
present. We describe the new components in this latter part of the figure.

As in any cache, a trace cache entry consists of a tag and data. Here the data
constitute a trace as defined above. A trace is limited in length primarily by its total
number of instructions, a constraint stemming from the physical implementation of
the trace cache. Other trace selection criteria may be: (i) the number of conditional
branches in the traces because of the number of consecutive predictions that can
be assumed to be correct is limited, (ii) the fact that merging the next block would
result in a trace longer than the trace line (i.e., no partial blocks), and (iii) the last
instruction is a procedure call–return or an indirect jump. The tag is primarily the
address of the first instruction in the trace, but this alone may not be sufficient.

To illustrate this last point, consider, for example, the diamond-shape portion
of code shown in Figure 4.20, corresponding to a basic block B1 starting at address
L1 followed by an if–then–else construct (basic blocks B2 and B3) and another basic
block B4 that finishes with a branch instruction.

Let us assume that a trace is at most 16 instructions and that it cannot contain
partial blocks. There are two possible traces in the code of Figure 4.20 that start
at address L1. The first one, corresponding to the “then” path, consists of B1, B2,
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Figure 4.19. Block diagrams of two pos-
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and B4, for a total of 16 instructions. The second, corresponding to the “else” path,
consists of B1, B3, and B4, a total of 15 instructions; merging in the next block would
overflow the 16-instruction limit. If we want to store both traces in the trace cache –
that is, obtain path associativity – the tag needs more information than address L1.
One possibility is to record the number of branches and their predicted outcomes.
There could be more information stored in an entry if more flexibility is desired:
for example, target addresses of not-taken branches could be added so that if the
branch is indeed taken, fetching of the next trace could be done rapidly.

Continuing with the building blocks of Figure 4.19(b), we see that the contents
of a trace are fed to the register renaming stage in the front-end of the pipelining,
bypassing the decode stage. This is not always necessarily so – that is, the instruc-
tion sequence of a trace need not be fully decoded – but it is a big advantage for

B1: 6 instructions

B2: 5 instructions
B3: 4 instructions

B4: 5 instructions

L1:

then else
Figure 4.20. Diamond-shape portion of
code.
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processors with CISC ISAs such as Intel’s IA-32, because the trace can consist of
µops rather than full instructions.

In a conventional fetch unit, static images of the object code are used to fill
the I-cache lines. In contrast, the trace cache lines must be built dynamically. As in
the I-cache, new traces will be inserted when there is a trace cache miss. The se-
quences of instructions that are used to build the traces can come either from the
decoder (the Intel Pentium 4 solution, as shown in Figure 4.19(b)) or from the
reorder buffer when instructions commit. The drawback of filling from the decoder
is that traces corresponding to wrong path predictions might be in the trace cache;
but they may be useful later, so this is not much of a nuisance. The disadvantage of
filling from the reorder buffer is a longer latency in building the traces. Experiments
have shown that there is no significant difference in performance between these two
options.

On a trace cache miss, a fill unit that can hold a trace cache line collects
(decoded) instructions fetched from the I-cache until the selection criteria stop the
filling. At that point, the new trace is inserted in the trace cache, with (naturally) a
possible replacement. On a trace cache hit, it is not sure that all instructions in the
trace will be executed, for some of them are dependent on branch outcomes that
may differ from one execution to the next. Therefore, the trace is dispatched both
to the next stage in the pipeline and to the fill unit. If all instructions of the trace
are executed, no supplementary action is needed. If some branch in the trace has
an outcome different from the one that was used to build the trace, the partial trace
in the fill unit can be completed by instructions coming from the I-cache, and this
newly formed trace can be inserted in the trace cache.

Branch prediction is of fundamental importance for the performance of a con-
ventional fetch unit. In the same vein, an accurate next trace predictor is needed.
There are many possible variations. Part of the prediction can be in the trace line,
namely, the starting address of the next trace. An expanded BTB that can make sev-
eral predictions at a time, say all those that need to be done for a given trace start
address, can furnish the remaining information to identify the next trace. An alter-
nate way is to have a predictor basing its information on a path history of past traces
and selecting bits from the tags of previous traces to index in the trace predictor
table.

In the Intel Pentium 4, the data part of the trace cache entries contains µops.
Each line can have up to six µops (recall that the decoder in this processor can
decode three µops per cycle). The Pentium 4 trace cache has room for 12 K µops,
which, according to Intel designers, means a hit rate equal to that of an 8 to 16 KB
I-cache. In fact, the Pentium 4 does not have an I-cache, and on a trace cache miss,
the instructions are fetched from L2. The trace cache has its own BTB of 512 entries
that is independent of the 4 K entry BTB used when instructions are fetched from
L2. With the same hit rate for the I-cache and the trace cache, the two advantages of
an increased fetch bandwidth and of bypassing the decoder seem to be good reasons
for a trace cache in an m-way processor with large m and a CISC ISA. Of course,
the trace cache requires more real estate on the chip (see the exercises).
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Although the Pentium 4 is the only industrial microprocessor that has replaced
its I-cache by a trace cache, newer implementations of the P6 microarchitecture use
toned-down versions of it. In the Intel Core2, there exists an 18-instruction buffer
between the fetch and decode stages that is associated with the loop detector and
predictor. If the detected loop is straight code, (i.e., we are in loop stream mode),
and short enough, then its instructions can be stored in the buffer, thus bypassing
the instruction fetch and branch prediction stages. In a more recent version of Core,
the buffer is now full of µops, like a Pentium 4 trace, and therefore can be accessed
after the decode stage.

4.3 Decoding

In the case of a single-issue pipeline and RISC processor ISA, decoding is straight-
forward. Recall, however, that it is during decoding that branch address calculation
takes place.

When we increase the width of the pipeline so that now m instructions pass con-
currently from stage to stage in the front-end, not only does the number of needed
decoders grow from 1 to m, but also, if we were to follow the branch address cal-
culation speculation for each instruction, we would need m adders. Even in the
case of RISC instructions, the decoders are not hardware-cheap. For an opcode
of 8 bits, this is one-out-of-256 decoding hardware for each of the m instructions.
Moreover, performing branch address calculation for every possible instruction is
overkill. When the ISA is for a CISC computer, there is the additional problem of
detecting the start and the end of the variable-length instructions.

Several techniques and limitations have been used to alleviate some of these
complexities, namely:

� Restrict the number of branch instructions decoded to one per cycle. If the res-
olution of the branch is c cycles away, this still allows c branches in flight, which
is more than sufficient when c is the order of 10.

� Use predecoded bits appended to the instruction, or to each individual byte,
during an instruction cache miss transfer from L2 to the I-cache.

� In the case of CISC ISAs, reduce the number of complex instructions that can
be decoded in a single cycle. For example, the P6 microarchitecture implemen-
tation presented in Chapter 3 has three decoders: two for simple instructions,
(i.e., instructions that are translated into a single µop), and one for complex
ones. In the more recent Intel Core architecture, there are now three sim-
ple decoders. In the AMD Athlon, which has the same IA-32 ISA (albeit
with 64-bit registers), there are three decoders, which can translate instructions
into one or two macro-ops (the equivalent of µops) and a microprogrammed
vector decoder for more complex instructions. In the AMD processor, the
decodes can proceed concurrently, for instructions are steered to the correct
decoder in parallel thanks to the predecoded bits.

� Have an extra decoding stage for, for example, steering instructions towards
instruction queues, or perform optimizations such as fusion (recall Sec-
tion 3.4.4).
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Predecoded bits can be used to facilitate the decoding, dispatch, and issue stages.
For example, in the MIPS R10000, 4 bits are appended to each instruction to des-
ignate its class (integer, floating-point, branch, load–store, etc.) and the execution
unit queue to which it should be dispatched. The partial decoding is done when the
instruction cache line is loaded into the I-cache. In the AMD Athlon, each individ-
ual byte is predecoded as if it were the beginning of an instruction. In the AMD
K7, a 3-bit field (it used to be 5 in the AMD K5) is logically appended to each byte.
It indicates how many bytes away is the start of the instruction following the one
starting on the given byte. These 3-bit fields are stored in a predecode cache that
is accessed in parallel with the I-cache. A clear advantage of this technique is that
detection of instruction boundaries is performed only once, when the instruction
is loaded into the I-cache, and not at every one of its executions. This saves work
(and thus power dissipation). On the other hand, the size of the I-cache is almost
doubled.

The Intel designers have taken a different approach. In the Core architecture,
the latest P6 microarchitecture instantiation, one stage of the pipeline is dedicated
to bringing instructions into an instruction buffer (more like a queue), where their
boundaries are determined. They are then steered toward either a simple decoder
or the complex decoder. It is during this stage that fusion possibilities are recognized
(the typical example is compare-and-test followed by a branch instruction), and if
possible the two instructions together are sent to a single simple decoder.

Although decoding might not be considered an area where there exist great
intellectual challenges, the sheer amount of hardware and work that is needed
during that stage is one of the roadblocks to increasing the width of superscalar
processors.

4.4 Register Renaming (a Second Look)

We have seen in Chapter 3 that register renaming was a common technique to avoid
WAR and WAW dependencies in out-of-order processors. We saw in Section 3.2
one possible register renaming scheme using the reorder buffer as an extension to
the register file. The idea is based on Tomasulo’s algorithm (Section 3.2 sidebar),
and a variation of it is implemented in some instantiations of the Intel P6 microar-
chitecture (Section 3.3.2) among others. We now undertake a more complete cov-
erage of register renaming. We avoid unnecessary repetition of what was covered in
Chapter 3; in particular, we do not expand on the motivation for having a register
renaming mechanism.

There are basically three ways to implement the register renaming concept,
namely:

1. Use the reorder buffer (ROB) as presented earlier.
2. Have a monolithic physical register file where any register can represent at any

given time the committed value of an architectural register.
3. Extend the architectural register file with a physical register file. Committed val-

ues are found in the original architectural register file (as in the reorder buffer
implementation).
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Each of these implementations has its own advantages and drawbacks, and each
of them can be found in some recent microprocessor.

When implementing a register renaming scheme, decisions have to be taken on:

� Where and when to allocate and release physical registers.
� What to do on a branch misprediction.
� What to do on an exception.

In all three implementation schemes, allocations occur in a front-end stage fol-
lowing decoding. There have been proposals for “virtual registers” where allocation
is delayed until it is known that the instruction is on a correctly speculated path,
but we shall not consider them here. In the postdecoding stage, every architectural
result register is renamed to a free physical register, and a map of these renamings
is updated. In the case of the ROB, the physical register is (part of) the next ROB
entry. In the other two schemes, a list of free registers is maintained, and renamed
registers are taken from this list.

Releasing a physical register is easy in the case of the ROB. When renaming
occurs, the ROB entry contains the name of the register where the result should be
stored. When the instruction commits, the ROB entry is released and the register
file is written. In the other two schemes, the releasing decision is more complex.

Let us return to the example at the beginning of Section 3.2.

EXAMPLE 3: Consider the segment of code:

i1: R1 ←R2 / R3 # division takes a long time to complete
i2: R4 ← R1 + R5 # RAW dependency with i1
i3: R5 ← R6 + R7 # WAR dependency with i2
i4: R1 ← R8 + R9 # WAW dependency with i1

and the renaming:

i1: R32 ← R2 / R3 # division takes a long time to complete
i2: R33 ← R32 + R5 # still a RAW dependency with i1
i3: R34 ← R6 + R7 # no WAR dependency with i2 anymore
i4: R35 ← R8 + R9 # second renaming of R1

Because instruction i1 takes a long time to execute, instruction i2 will not be
issued when register R1 is renamed for a second time in instruction i4. Therefore the
value of register R32 must be kept, because it is an input operand for i2. Note also
that it is quite probable that register R35 will contain its result before register R32
obtains its own, but the commitment of instruction i4 must follow that of instruction
i1 to protect program order. This latter property is enforced by the reorder buffer
(sometimes called an activity list when the ROB is not used as an extension of the
register file), independently of the register renaming scheme.

In the monolithic register scheme there is no real distinction between the archi-
tectural registers and the physical registers. The register map contains the latest
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Init: The architectural
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architectural registers
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Misprediction/
exception
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Figure 4.21. State diagram for the state
of a register in the monolithic scheme
(adapted from Liptay [L92]).

mapping of architectural registers to physical registers. In the above example, after
the renaming stage of instruction i4, architectural register R1 is mapped to physi-
cal register R35. We shall see the consequences of this mechanism when we look at
recovery of mispredicted paths and exceptions. For the time being, we concentrate
on the register release mechanism.

Consider register R32. As soon as all readings of R32 have been done (i.e., in
our example, after instruction i2 has been issued and the architectural register it
had been renamed for is renamed again, here at instruction i4), R32 can be put
on the free list of registers. A possible way to implement this is to use a counter
per renamed register that would be incremented every time the register is refer-
enced as a source operand (e.g., the counter for register R32 would be incremented
during the renaming stage of instruction i2) and decremented when the instruction
using the renamed register is issued. Then the renamed register could be released
when the architectural register mapped to it is had been renamed anew (at instruc-
tion i4 in our example) and the value of the counter was null (after instruction i2
had been issued).

However, maintaining counters along with registers and having the test depend
on two conditions – null counter and renaming of the architectural register – is too
cumbersome. A slightly more conservative approach, in the sense that registers are
released later than in the counter scheme, is to release a renamed register once
the instruction with a new instance of its renaming is committing. In the previous
example this would mean that register R32 would be released when instruction i4
commits.

If we follow this last releasing condition, a physical register passes through
four states as shown in Figure 4.21. Initially, the architectural registers are in the
state assigned and the remaining registers in the state free. When a free register is
used as a result register, it becomes allocated, for example, R32 at the renaming
stage of instruction i1. When the result value is generated, at the end of the exe-
cution of the instruction, its state becomes executed, that is, its contents are avail-
able for following instructions that could not issue because of RAW dependencies
depending on it. This happens at the end of execution of instruction i2 for R32.
When the instruction for which it was a result register commits, the state becomes
assigned, that is, in essence, this register becomes an architectural register. When the
release condition of the previous paragraph happens, at commit of instruction i4, the
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register’s contents (here R32) are obsolete, and its state that was necessarily
assigned now becomes free. The transitions corresponding to mispredictions and
exceptions will be explained shortly.

With this scheme, we see that we need to know the previous mapping of a result
register so that the register corresponding to the previous mapping can be released
at the commit time of the next instruction using the same (architectural) result reg-
ister. In our example, R32 is to be released when i4 commits. This can be taken care
of by having a “previous” vector that shows the previous instance of the physical
renaming. In our example, when R1 is renamed in i4, the “previous” field for R35
will be R32.

The monolithic scheme and where it influences the various stages in the pipeline
are therefore as follows:

MONOLITHIC RENAMING

Renaming Stage. Instm: Ri ← Rj op Rk becomes Ra ← Rb op Rc, where

Rb = Rename(Rj); Rc = Rename(Rk);

Ra = freelist(first); Prev(Ra) = Rename(Ri);State(Ra) = allocated;

Rename(Ri) = Ra;first ← next(first);

ROB(tail) = (false, NA, Ra, op);tail ← next(tail);

Issue Stage. ...if ((State(Rb) = (executed or assigned)) and (State(Rc) =
(executed or assigned))) then issue Instm.

Execute Stage (End). State(Ra) = executed;

Commit stage.

if((ROB(head) = Instm) and flag(ROB(head)))

then begin Ra = value; State(Ra) = assigned;

State(Prev(Ra)) = free; head ← next(head) end

else repeat same test next cycle

In the extended register file case, only physical registers can be in the free state,
and the state diagram for these registers needs to be modified (see the exercises).
When an instruction commits, the result must be stored in the architectural register
mapped to the physical register. This implies that either the map has the capability of
being associatively searched for the physical register yielding the architectural reg-
ister, or a field with the name of the resulting architectural register must be present
in each ROB entry, that is, the ROB entry is a five-tuple (flag, value, arch, reg, phys,
reg, op).

We now turn our attention to repair mechanisms when a branch has been mis-
predicted. We have already seen that no harm is done in the case of an ROB-
based renaming. When the branch instruction percolates to the head of the ROB,
all instructions after the branch are canceled, and since the ROB entries implic-
itly carry the mapping of physical registers, the only action to be taken, from the
register-renaming viewpoint, is to invalidate all mappings from architectural to
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physical registers, that is, ROB entries. A valid bit is present to that effect in the
mapping table. A similar solution is possible for the extended register file when the
ROB entries carry the architectural result register name.

However, that method will not work in the monolithic scheme, because the
mapping cannot be deduced directly from the ROB. Instead, at each branch pre-
diction, the mapping table and its associated state and previous fields need to be
saved. When the branch reaches the head of the ROB, if the prediction was success-
ful, then the saved map can be discarded; otherwise, the saved copy is used when
computation restarts on the corrected path. Because several branch predictions can
be in flight, several copies of the map may need to be saved. Saving them in a cir-
cular queue with head and tail pointers indicating the earliest and latest maps is a
possible implementation. Note that when there is a misprediction, all registers that
were not in the assigned state become free. This is shown by the dashed transitions
in Figure 4.21.

In the ROB and extended register schemes, when an exception occurs, the
repair mechanism used for branch mispredictions is sufficient. This is not true for
the monolithic scheme, because maps are not saved at every instruction. The only
recourse is to undo the mappings from the last instruction renamed up to the instruc-
tion that caused the exception. This may take several cycles, but fortunately, this is
at the time when the exception must be handled, which in itself will take hundreds
if not thousands of cycles; therefore, the overhead is not important.

From a functional viewpoint, the ROB-based implementation seems the most
natural and elegant. Register renaming repair is easy for branch mispredictions and
exceptions. There is no need for map saving. However, there are major drawbacks
in comparison with the monolithic scheme (we leave it as an exercise to find advan-
tages and drawbacks of the extended register implementation). First, space is wasted
in the ROB-based scheme in that each entry must have fields for register renaming
purposes, even if the instruction does not generate any result. Of course, there is no
need to save maps, so some of the monolithic scheme’s space advantage disappears.
Second, at commit time, the need to store a result in an architectural register implies
that the commit will take 2 cycles. However, retiring the instruction and writing in
the register file can be pipelined. Third, and in the author’s view the most important
factor, the ROB serves many purposes: physical register file for both integer and
floating-point values, and holder of in-flight instructions. Thus, it must be designed
so that it can supply operands to all integer and floating-point functional units as
well as values to the register file at commit time. The number of read ports neces-
sary is much greater than in the case of the monolithic scheme, where register files
for integer and floating-point units can be split and where there is no need to transfer
values at commit time. The same analysis holds true for write ports. Because read
and write ports are expensive in space and power, the current trend would appear
to be for implementations with a monolithic scheme, but the simplicity of the ROB
scheme still seems to be compelling.

As said earlier, each of the three schemes can be found in modern microproces-
sors. The P6 microarchitecture is ROB-based with an ROB that can hold 40 µops
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for the Intel Pentium III and Pentium M and more than double that in the Intel
Core. In contrast, the Intel Pentium 4 uses a monolithic scheme with 128 physical
registers. The MIPS R10000 and the Alpha 21264 also use a monolithic register file.
The 21164 has 41 extra integer and 41 extra floating-point registers. The ROB has
80 entries. The IBM PowerPC uses an extended register file mechanism.

4.5 Summary

The front-end of an m-way superscalar should deliver m decoded instructions per
cycle waiting to be issued to the execution units. This ideal situation presents numer-
ous challenges that necessitate a steady flow of more than m instructions until its last
stage.

Feeding the pipeline with the instructions on the correct path of execution
cannot wait until control flow decisions are made deep in the back-end. Accurate
branch prediction is a necessity. We have shown how branch direction prediction
has evolved from a table of simple four-state counters to two-level and tournament
predictors that rely on the local history of a branch as well as the global history
of branches that precede it in the dynamic execution. These direction predictors
are often supplemented by target address predictors, either as standalone structures
or embedded in the I-cache. Repair mechanisms needed when mispredictions and
exceptions occur add to the complexity of branch prediction schemes.

The instructions fetched from the I-cache, or in some instances a trace of already
decoded instructions, are kept in buffers or queues before being sent to the decode
stage. For processors with complex ISAs the decode stage must also determine the
boundaries of instructions. This process can be helped by the use of a predecoder
inserted between the L2 cache and the L1 I-cache.

In the case of out-of-order processors, the decoded instructions are passed to
the rename stage so that WAR and WAW dependencies can be eliminated. We
have seen in Chapter 3 how the reorder buffer, needed to enforce the program order
semantics, can be used to implement this renaming and provide the processor with
extra registers. In this chapter, we have shown two schemes that extend the architec-
tural register file by providing an extra set of physical registers. We have given the
mechanisms needed to allocate and free these extra registers as well as for restoring
the correct register state after mispredictions and exceptions.

4.6 Further Reading and Bibliographical Notes

The anatomy of a predictor has its roots in a paper by Cheng et al. [CCM96] and
in the literature of feedback control. Many studies, such as Lee et al. [LCBAB98],
have reported the frequencies of branch occurrences, and others, such as Jiménez
et al. [JKL00], also give the interbranch distances.

There have been hundreds of papers on branch prediction mechanisms. For
a recent substantial bibliography, see Loh [L05]. Jim Smith published the seminal
study that introduced the two-bit saturating counter scheme in 1981 [S81]. Alan
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Smith and his students (Lee and Smith [LS84], Perleberg and Smith [PS93]) per-
formed early studies of its efficiency. The gshare predictor and the first mention of
a hybrid predictor can be found in McFarling’s 1993 report [M93]. Two-level and/or
correlator predictors were introduced concurrently by Pan et al. [PSR92] and Yeh
and Patt [YP92b]. Patt and his students have published extensively on the topic, and
their taxonomy of two-level predictors is widely used [YP92a]. Calder and Grun-
wald [CG94], as well as Hao et al. [HCP94], have shown the performance advan-
tages of speculative updating of global prediction schemes. The paper by Eden and
Mudge [EM98] introducing the YAGS predictor also reviews alternatives that lead
to hybrid branch predictors. Early design options for BTBs can be found in Per-
leberg and Smith [PS93] and later in Fagin and Russell [FR95]. The first return-stack
mechanism evaluation can be found in Kaeli and Emma [KE91]. Repair mecha-
nisms for global and local predictors are investigated and evaluated by Jourdan et
al. [JSHP97] and Skadron et al. [SMC00].

Conte et al. [CMMP95] investigated instruction fetch mechanisms for high
bandwidth. The original line-and-way prediction is found in Calder and Grunwald
[CG95]. Trace caches were first introduced in a patent by Peleg and Weiser [PW94].
Rotenberg et al. [RBS96] and Patel et al. [PFP99] have investigated and evalu-
ated several trace cache design options. Performance limitations of trace caches are
found in Postiff et al. [PTM99] and might give a clue to why further implementa-
tions of the P6 microarchitecture have reverted to conventional I-caches. The “look
behind” mechanism of the CDC 6600 [T70] can be considered as an early version of
the loop buffers found in the Intel Core.

The register renaming techniques described in this chapter can be found in
Smith and Sohi’s paper [SS95]. Sima [S00] surveys register renaming techniques.
The detail of one possible implementation of the monolithic scheme, as done in
the IBM System/9000, is described by Liptay [L92]. The reader should refer to the
bibliography of Chapter 3 for sources on the ROB-based design.

Kessler [K99] is a good source for the Alpha 21264 microarchitecture. Cve-
tanovic and Kessler [CK00] report on its performance. The Intel Pentium 4 is
summarily described in Hinton et al. [HSUBCKR01], and the Intel Pentium M in
Gochman et al. [GRABKNSSV03]. Christie [C96] describes the AMD K5 architec-
ture.

EXERCISES

1. (Section 4.1.3) The outcomes of branch execution for a given branch can be seen
as a string of bits, 1 for taken and 0 for not taken. For example, the string for the
end of loop branch looks like “111 . . . 1110111 . . . 1110. . . . 111 . . . 1110”.

(a) Consider a diamond structure, that is, code of the form “if condition then
S1 else S2.” What are the prediction accuracies of a 1-bit scheme and of
a 2-bit scheme when the conditional expression’s value alternates between
true and false?
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(b) Find a string where the prediction accuracy for a single-bit scheme is 50%
and that of a saturating counter scheme as depicted in Figure 4.3 is zero in
steady state. Can you think of a programming pattern that fits this type of
string?

(c) Can you modify the state diagram of Figure 4.3 so that the string you found
in part (b) yields a 50% prediction accuracy? If so, find another string for
this new state diagram that yields zero accuracy in steady state. Does it
correspond to a more likely programming pattern?

2. (Section 4.1.3) Show a state diagram for a scheme where the 2-bit counter is
replaced by a 3-bit shift register keeping track of the last three executions of the
branch and predicting according to the majority decision of these three executions.
Is this a reasonable alternative to a 2-bit saturating counter in terms of performance
and cost?

3. (Section 4.1.4) Assume a 3-bit global register (initialized to all 0’s) and a two-level
Global–global scheme.

(a) How many entries are there in the PHT?
(b) Show the contents of the global register and of the PHT (where each entry

is initialized to the weak not-taken case and follows the state diagram of
Figure 4.3), after the following sequence of branch executions has taken
place: 1 taken (T) branch, 3 not-taken (NT) branches, 1 T branch, 3 NT
branches, 1 T branch. With pred being the prediction and act the actual out-
come as per the given string, show your results for each branch, for example,
in the form (GR) (pred) (Updated GR) (act) (PHT). Assume a speculative
update for GR and a nonspeculative one for the PHT that occurs before the
next branch prediction. Two typical entries could be

(i) (000)(0)(000)(1)(01, 01, 01, 01, 01, 01, 01, 11) or
(ii) (000)(0)(000)(1)(01, 01, 01, 01, 01, 01, 01, 11);

misprediction, restore GPR to (001).

4. (Section 4.1.5) Assume that the global register is k bits long and that m bits of the
PC are used to select among PHTs.

(a) How many bits are used to implement the Global–global scheme?
(b) How many bits are used to implement the Global–set scheme?

5. (Section 4.1.5) Assume that k bits of the PC are used to access the BHT, that the
local history registers are p bits long, and that m bits of the PC are used to select
among PHTs.

(a) How many bits are used to implement the Set–global scheme?
(b) How many bits are used to implement the Set–set scheme?

6. (Section 4.1.5) The question that microarchitects usually face in the context of
a two-level branch predictor is: “If I have a certain amount of chip area that I can
devote to branch prediction, how should I divide it among the various branch pre-
diction data structures?” Answer this question assuming a budget of 8 K bits plus a
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few extra bits, say less than 100. Of course, you should come up with more than one
possible design.

7. (Section 4.1.6) In the repair mechanism for a Global–global scheme, a FIFO
queue of global registers is accessed at three different times:

� When the branch prediction is made (insertion at end of the queue).
� When the branch prediction is correct and the instruction is committed (dele-

tion from the front of the queue).
� When the branch prediction is incorrect at the end of the execute stage (deletion

of several consecutive entries in the FIFO queue).
(a) What extra hardware (tags, pointers, etc.) must be added so that recovery

is possible? If there is a maximum of m branches in flight, can the FIFO
queue be less than m entries? If so, what are the consequences?

(b) A suggestion is to have each FIFO entry tagged with the PC of the branch
it corresponds to. Then the branch would not have to carry a tag. Why is this
not possible?

8. (Section 4.1.6) [JSHP97] In the global repair scheme, one can avoid the FIFO
queue of saved global registers by using a longer global register. Indicate how long
the global register should be, and describe the implementation structures and the
steps necessary for each of the three bulleted points of the previous exercise.

9. (Section 4.1.7) In the equation giving the branch execution penalty bep of a pro-
cessor with a BTB and a PHT, we approximated the term Missf × mfetch. Give a
better formulation, following the entries in Table 4.2.

10. (Section 4.1.7) Show that when a special call–return stack is implemented,
returns corresponding to calls from various locations can be predicted as soon as
the return instruction is fetched if the return address is flagged appropriately in the
BTB.

11. (Section 4.1.8) There are several possibilities in updating policies for a tourna-
ment predictor. Indicate which ones you would recommend when the local predictor
is a bimodal one and the global predictor is of the gshare type.

12. (Section 4.2.1) Consider an I-cache of 16 KB, two-way set-associative with line
size of 32 bytes. Assume a RISC machine with each instruction being 4 bytes. How
much real estate (i.e., how many bits) is needed to implement the line-and-way pre-
diction depicted in Figure 4.18 when branch prediction fields are available every
four instructions? How large a direct-mapped BTB could be implemented using the
same number of bits?

13. (Section 4.2.2) [PTM99] In addition to the conventional hit rate, other metrics
have been identified for the evaluation of trace caches, namely fragmentation, dupli-
cation, and indexability. Give your own definitions of these metrics. If one defines
the efficiency as the ratio (unique instructions)/(total instruction slots), how do frag-
mentation and duplication relate to efficiency?
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14. (Section 4.4) In Example 3, why can’t register R32 become free in the monolithic
scheme as soon as instruction i4 finishes executing?

15. (Section 4.4) Draw a state diagram for the extended register file’s physical reg-
isters similar in spirit to that of Figure 4.21 for the monolithic case.

16. (Section 4.4) State advantages and drawbacks of the extended register file
implementation for register renaming vs. the monolithic and the ROB-based imple-
mentations.

Programming Projects

1. (Section 4.1.3) Using a simulator (which you might have to modify slightly),
instrument a number of applications to test the accuracy of a bimodal branch
predictor and of a gshare predictor when the PHT is 8 K bits.

2. (Section 4.1.5) Implement your solutions to Exercise 6 in a simulator, and test
which solution gives the best accuracy for a sample of applications on a suitable
benchmark (e.g., a selection of parts of SPEC2006 integer programs). Do not
draw any general conclusion from this experiment.

3. (Section 4.1.8) Using a simulator, implement a hybrid branch predictor of your
choice, assuming that you have a budget of 6 K bits plus a few more bits if
necessary for some history register(s). Record the accuracy of your predictor
on the same benchmarks as in the previous programming project, and compare
your results.
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5 Back-End: Instruction Scheduling, Memory
Access Instructions, and Clusters

When an instruction has passed through all stages of the front-end of an out-of-order
superscalar, it will either be residing in an instruction window or be dispatched to a
reservation station. In this chapter, we first examine several schemes for holding an
instruction before it is issued to one of the functional units. We do not consider the
design of the latter; hence, this chapter will be relatively short. Some less common
features related to multimedia instructions will be described in Chapter 7.

In a given cycle, several instructions awaiting the result of a preceding instruc-
tion will become ready to be issued. The detection of readiness is the wakeup step.
Hopefully there will be as many as m instructions in an m-way superscalar, but
maybe more, that have been woken up in this or previous cycles. Since several of
them might vie for the same functional unit, some scheduling algorithm must be
applied. Most scheduling algorithms are a variation of first-come–first-served (FCFS
or FIFO). Determination of which instructions should proceed takes place during
the select step. Once an instruction has been selected for a given functional unit,
input operands must be provided. Forwarding, also called bypassing, must be imple-
mented, as already shown in the simple pipelines of Chapter 2 and the examples of
Chapter 3.

One particular instruction type that is often found to be on the critical path is the
load instruction. As we have seen before, load dependencies are a bottleneck even
in the simplest processors. Moreover, load latency is variable, because it depends on
cache accesses. To add to this variability, it is often not known at compile time if a
given load is conflicting with a previous store, because the analyses of some indexing
functions are practically intractable. As was the case with flow of control, specula-
tion can be performed, and we shall consider several schemes for load speculation
and their repair mechanisms.

In the last section of this chapter we present briefly some back-end optimiza-
tions. The treatment is not exhaustive. Many more schemes have been proposed
to increase performance or to reduce power consumption with as little effect as
possible on execution time. For example, we introduce yet another form of specu-
lation called value prediction. As another example, because windows are large, it is
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quite possible that FIFO, or oldest instruction first, may not be the best scheduling
strategy. We shall discuss the detection of critical instructions and see how the recog-
nition of critical instructions can influence scheduling. Finally, because of the larger
number of functional units and the concomitant lengthening of the wires used to
connect them, forwarding such that a result becomes available in the cycle follow-
ing the cycle where it was generated may not be possible. We shall look at the con-
cept of clustered microarchitectures, which deal explicitly with the forwarding and
scheduling problems.

The last stage of instruction execution is commitment. We have introduced the
reorder buffer previously and considered its role in repair mechanisms for branch
mispredictions and exceptions. We shall not return to it explicitly in this chapter.

5.1 Instruction Issue and Scheduling (Wakeup and Select)

5.1.1 Centralized Instruction Window and Decentralized
Reservation Stations

Instructions leaving the register rename stage, the last stage of the front-end, may
not be ready to execute right away because of RAW dependencies or structural haz-
ards such as the lack of a free functional unit. As we saw in Chapter 3, in-order pro-
cessors would put these stalled instructions in a FIFO queue and instructions would
be removed from it in program order, that is, the order in which they were put in.
However, in an out-of-order processor, a queue is not a good design choice, because
instructions following a stalled one in program order are allowed to start their exe-
cution as soon as the right conditions – such as readiness of operands and avail-
ability of the right functional unit – are met. In Chapter 3, we found two solutions
for storing stalled instructions. These solutions are at opposite ends of the spectrum
of possibilities. In the case where the implementation strictly follows Tomasulo’s
original algorithm, reservation stations sitting in front of their associated functional
unit hold the stalled instructions and the ready flags and names for their operands.
This decentralized design is followed, for example, in the IBM PowerPC series. At
the other end of the design options, the instructions, again with the ready flags and
names of their operands, are added to an instruction window, which can be seen as
a centralized reservation station for all functional units. The Intel P6 microarchitec-
ture follows this scheme.

Naturally, nothing prevents a hybrid solution between these extremes. Reser-
vation stations can be shared among groups of functional units. For example, in the
MIPS R10000 there are three sets of reservation stations of 16 entries: a set each
for the integer and address calculation functional units, the floating-point units, and
the load–store units. Table 5.1 gives the number of reservations station windows
and their sizes as well as the numbers of functional units they serve for a few recent
microprocessors. The numbers and types of functional units are not quite accurate:
we have blended together address generation units and what are commonly called
load–store units, that is, those units that hold the resolved addresses for pending
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Table 5.1. Numbers of reservations stations and functional units (integer, |, and floating-point)
in selected microprocessors. See text for notes

Number of
Functional units:

Processor RS type res. stations int. l/s fp

IBM PowerPC 620 Distributed 15 4(1) 1 1
IBM Power4 Distributed 31 4(2) 2 2
Intel P6 (Pentium III) Centralized 20 3(3) 2 4(4)

Intel Pentium 4 Hybrid (1 for mem. op., 1 for rest) 126 (72,54) 5(5) 2 2(6)

Intel Core Centralized 32 4(3) 3(7) 7(8)

AMD K6 Centralized 72 3 3 3
AMD Opteron Distributed 60 3 3 3
MIPS R10000 Hybrid (1 for int., 1 for mem., 1 for fp) 48 (16,16,16) 2 1 2
Alpha 21264 Hybrid (1 for int/mem, 1 for fp) 35 (20,15) 2 2 2
UltraSPARC III In-order queue 20 2 1 3(9)

(1) The branch unit is included in this count.
(2) The branch unit and a unit for manipulating condition registers are included in this count.
(3) A jump unit is included in this count.
(4) Two multimedia (MMX) units and a catch-all unit are included in this count.
(5) Two pairs of integer units run at double speed.
(6) These units are for MMX and floating point.
(7) Store address and store data are distinct units, to allow fusion.
(8) There are two floating-point and five MMX–SSE units.
(9) One unit is for MMX-like operations.

memory instructions. We have also included the multimedia units with the floating-
point units for the Pentium, AMD, and SPARC architectures. The idea is to give
an estimate of the parallelism in the back-end. More often than not, each func-
tional unit is designed for a particular purpose. For example, it would be incorrect
to assume that three floating-point multiplications can be issued simultaneously for
a processor that is shown as having three floating-point units. In general, only one
floating-point multiplier is present (although it can be pipelined as indicated in Sec-
tion 2.1.6).

Independently of whether the instruction window is centralized, hybrid, or dis-
tributed, each instruction slot in the instruction window(s) (or reservation stations)
will contain tags (names), flags for each of its operands, and some bit(s) indicating
the state of the instruction (e.g., waiting to be issued or already issued). The tags
identify the renamed registers that will provide the source operands, and the flags
indicate whether the operands are ready or not. Instruction issue then will consist of
two steps, which we elaborate on below: wakeup and select.

The variety of options shown in Table 5.1 indicates that there are a number of
compromises that must be considered while choosing between centralized, hybrid,
and distributed instruction windows. From a strict resource allocation viewpoint, at
equal number of entries a single large window is better than several windows based
on instruction type, for it is well known that static partitioning of resources yields
worse performance than dynamic allocation (as the study of virtual memory systems
has taught us in a definite fashion). However, as the windows become larger, other
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considerations, related to efficiency and power, come into play. Let us elaborate on
some of them, starting with a discussion of the wakeup step.

5.1.2 Wakeup Step

The wakeup step corresponds to the “dispatch” in Tomasulo’s algorithm. When a
result is generated, the tag identifying it is broadcast to the reservations stations (in
the following we consider a centralized instruction window as a unique set of reser-
vation stations). An associative lookup is performed in the reservation stations, and
for each match the corresponding flag is set to ready. When all flags of a reservation
station are set to ready, the instruction is woken up and, potentially, can be issued.
However, because there could be more than one instruction ready to issue compet-
ing for the same functional unit, a selection, or scheduling, process is needed (see
next section).

In a back-end that has f functional units, up to f results can be generated in a
cycle. This implies that f buses must carry the results and that f comparators must be
associated with each operand entry in the instruction window. Because there are two
operands per instruction, this means that 2fw comparators are needed for a window
of w entries. The larger f and w are, the longer the lines (wires) carrying the iden-
tification tags of the results will be and, of course, the larger the number of buses
and comparators. All these factors increase the wakeup–select time and the power
requirements. More realistically, we can group functional units so that they share
some buses and restrict the number of comparators for each operand per reserva-
tion station to be equal to the issue width. Nonetheless we are still confronted by the
fact that trying to have more instructions concurrently in the back-end – by either
increasing the window size so that we have more instructions candidates for issue on
a given cycle, or making the back-end wider to achieve more concurrency in execu-
tion, or both – is expensive in both logic and power and might result in wakeup and
select times exceeding the intended cycle time (or portion thereof if both wakeup
and selection must be performed in the same cycle).

In a noncentralized instruction window scheme, the lengths of the tag-carrying
lines are shorter, because each distributed window is itself shorter. Moreover, the
number of lines is also smaller, for not all functional units can generate results of a
given type. As a consequence, the overall number of comparators and the wakeup
time are reduced. The risk of missing some instruction ready to issue that would
have been present in a centralized window is minimal as long as the distributed
windows are not too small.

5.1.3 Select Step

The select step corresponds to the “issue” step in Tomasulo’s algorithm. The design
advantage of distributed windows is even greater when we consider this schedul-
ing step. After wakeup, a number of instructions are ready to start their execution.
Some of them may conflict, that is, ask for the same resource. To solve this problem,
instructions woken up in this cycle and the not yet issued entries that were woken
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Figure 5.1. Pipeline execution for three consecutive dependent instructions. The three
instructions were decoded and renamed in the same cycle.

up in previous cycles will send a request signal to a priority encoder. The latter will
answer with grant signals to those entries that should move forward in the pipeline
in the next cycle. In general, the priority is related to the position in the instruc-
tion window, with the older instruction having the highest priority. Each entry can
be seen as a leaf of a tree, and requests walk up the tree till its root, the priority
encoder. Grants walk back from the root to the leaf entries. As can be readily seen,
the depth of the tree will be shorter for smaller instruction windows, although the
depth is often shortened for large windows by providing a scheduler per (group of)
functional unit(s) of a given type. In that case, the instruction window is closer to
the Tomasulo implementation as described in Chapter 3.

Once an instruction has been selected, the tag of the result register can be
broadcast. If the latency of execution is one cycle, this will allow a RAW-dependent
instruction to be stalled only for 1 cycle, as shown in Figure 5.1.

In summary, the wakeup and select stages are as follows:

WAKEUP–SELECT. (woken is a flag associated with the instruction in
its reservation station; it is set when the instruction is woken
and reset after the instruction has been selected.)

Wakeup Stage

if not woken then
begin

if any broadcast_result_register_name = tag1
then flag1 ← true;

if any broadcast_result_register_name = tag2
then flag2 ← true;

if (flag1 and flag2) then woken ← true;
end;

Select Stage

if woken then
begin

top ← check(priority);
/∗returns true if instruction is top priority∗/
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if top then
begin

issue;
woken ← false;
if latency_execution = 1 then

broadcast_result_register_name;
end

end;

5.1.4 Implementation Considerations and Optimizations

The question facing designers is at which point a centralized window scheme should
be abandoned in favor of a distributed or hybrid one. The main criterion for the
choice is whether the wakeup–select steps are on the critical path. If this happens to
be the case, an alternative solution is worth investigating. Windows of 64 entries in a
4-wide superscalar with a clock in the gigahertz range are close to the decision point.
As can be seen in Table 5.1, the multigigahertz Intel Pentium 4 has two (large) win-
dows with two schedulers each, whereas its slower predecessor and successor, the
Intel Pentium III and Intel core, have a smaller centralized window. Similarly, the
AMD Opteron, also a multigigahertz processor, has four sets of reservation sta-
tions, a departure from the microarchitecture of the 500 MHz AMD Athlon with its
centralized window.

An alternative, or a requirement when the wakeup–select time is more than
the intended 2 cycles even with hybrid or distributed windows, is to introduce a
third pipeline stage for, for example, broadcast. Simulations at the circuit level have
shown that wakeup is more time-consuming than selection, but the times for the
two steps are of the same order of magnitude. However, a problem can occur for
two instructions with a RAW dependency as in the following example.

EXAMPLE 1:

i : R51 ← R22 + R33

i + 1: R43 ← R27 − R51

If wakeup–select is done as shown in Figure 5.1, then after instruction i has
been selected, it is safe to wake up and select instruction i + 1 in the next cycle.
However, if wakeup–selects are in two consecutive stages and broadcast in a
third one, then the wakeup for instruction i + 1 has to wait till it is sure that
instruction i has been selected; that is, the two instructions cannot be executed
in the back-end on consecutive cycles. In the example above, if instruction i was
not selected and then at the next cycle instruction i + 1 was, then the wrong
value of R51 would be an operand of the subtraction. A possible palliative is to
speculate that the woken-up instruction will be selected and allow the second
instruction to proceed. Measurements have shown that more than 90% of the
time, an instruction that has been selected will subsequently wake up either no
or one instruction; thus, the probability of being wrong is small. Nonetheless, the
cost of such a solution is that some checkup and abort logic is required in case
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the guess was erroneous. Moreover, increasing the depth of the front-end of the
pipeline in order to provide more concurrency in the back-end is not without
an associated increased performance penalty when branches are mispredicted.
For example, in the Pentium 4, which has one wake-up stage followed by three
scheduling stages, the branch misprediction penalty is 20 cycles, vs. 10 cycles in
the simpler Pentium III with a single scheduling stage. Of course, the addition
of these specific scheduling stages is only part of the reason for a doubling of
the penalty in terms of loss of instruction issue slots. Though the introduction
of the trace cache (cf. Section 4.2.2) saves decoding steps, many other stages of
the front-end that were performed in a single cycle in the Pentium III now take
2 cycles in the twice as fast Pentium 4.

The two-instruction sequence in Example 1 highlights the fact that the name
given to the result of the selected instruction (in this case R51 for instruction i)
must be broadcast as soon as the selection is performed if its forthcoming execu-
tion has a single-cycle latency, because instruction i + 1depends on the broadcast
tag to be woken up. If one waited until the end, or even the start, of execution, one
or more cycles later, it would be too late. For longer-latency operations, delays are
inserted before the broadcast. Once again, this broadcast can be speculative, for in
one instance, a load operation, it is not certain that the predicted latency, that of a
first-level cache hit, will be correct. In case of a cache miss, all instructions depen-
dent on the load that have been woken up and possibly selected must be aborted,
and their ready bit corresponding to the result of the load must be reset.

The speculative wakeup and the cache miss possibility imply that an instruction
must remain in its reservation station after it has been scheduled, for it might have
been selected erroneously. Because instructions should not be reselected unless
there was some misspeculation, each entry in the window will have a bit indicat-
ing that the selection has been done. This bit will be reset in the same way as a ready
bit. A reservation station will be freed only once it is ascertained that its correspond-
ing instruction has not been speculatively selected. Of course, the removal can also
be a consequence of aborted instructions due to branch misprediction. In order to
keep a scheduling policy approximating “oldest instruction first,” a window can be
compacted when instructions are leaving it, or some circular queue scheme can be
implemented. At any rate, we can understand now why the windows appear to be so
large compared to the number of functional units and the issue width: there can be
many instructions in flight past the stage where they are decoded and inserted in a
window.

Once an instruction has been selected, the opcode and the operands must be
sent to a functional unit. In schemes that follow closely Tomasulo’s reservation
station implementation, the opcode and operands that were already computed will
come from the reservation stations or from the ROB. In the case of an integrated
register file, the instruction window (opcode) and the physical register file supply
these items. In both cases, though, one of the operands might be the result of
the instruction whose result allowed the wakeup. In Example 1, instruction i + 1
requires the result R51 of instruction i. This result must be forwarded from the stage
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in the integer unit where it was computed to the input of the integer unit (the same
one or another) that will use it as an operand, bypassing the store in, say, the physical
register file at commit time. Although conceptually this is as simple as forwarding
in the five-stage pipeline of Chapter 2, the scale at which it must be done makes it
challenging. The number of required forwarding buses is the product of the number
of stages that can be the producers of the forwarding (it can be more than one per
functional unit if the latter implements several opcodes with different latencies) and
the issue width. Trying to improve performance by increasing the number of func-
tional units and the issue width is translated into a quadratic increase in the number
of wires as well as an increase in their overall length. In multigigahertz processors,
this might imply that forwarding cannot be done in a single cycle. In the last section
of this chapter, we shall introduce clustered processors, which are a possible answer
to the challenge.

5.2 Memory-Accessing Instructions

Instructions transmitting data to and from registers, namely the load and store
instructions, present challenges that are not raised by arithmetic–logical instruc-
tions. Load instructions are of particular importance in that many subsequent
instructions are dependent on their outcome.

An important feature that distinguishes memory-accessing instructions from the
other instruction types is that they require two computing stages in the back-end,
namely address computation and memory hierarchy access. The presence of these
two separate stages led to irresolvable RAW dependencies in the simple five-stage
pipelines of Chapter 2. In the first design that we presented, a bubble had to be
inserted between a load and a subsequent instruction, depending on the value of
the load; in the second design a bubble needed to be introduced when the RAW
dependency was between an arithmetic–logical instruction and the address genera-
tion step of a load–store instruction.

In superscalar implementations, the address generation is either done in one
of the integer units (cf. the Alpha 21164 in Section 3.1.3) or done in a separate
pipeline that is interfaced directly with the data cache (the most common alternative
in current designs; see, for example, the AGU in the Intel P6 microarchitecture of
Section 3.3.3). In in-order processors, like the Alpha 21164, RAW dependencies
between a load and a subsequent instruction decoded in the same cycle will delay
the dependent instruction, and therefore all following instructions, by 1 cycle. As
mentioned in Chapter 3, the check for such an occurrence is done in the last stage
of the front-end, using a scoreboard technique that keeps track of all instructions
in flight. In out-of-order processors, in a similar fashion, the wakeup of instructions
depending on the load is delayed by the latency of the data cache access. A number
of compiler techniques have been devised to alleviate the load dependency delays,
and the reader is referred to compiler technology books for more information.

In contrast with the simple pipelines of Chapter 2, where we assumed that the
Mem stage always took 1 cycle, real implementations dealing with caches need to
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“guess” the latency of the load operation. As we saw in Chapter 3 in the case of
the in-order Alpha, the guess was the common case, namely, a first-level data cache
hit. In case of a miss, instructions dependent on the load cannot be issued, and if
one of them has already been issued, it is aborted. We also saw in the first section
of this chapter that the wakeup stage in out-of-order processors was speculative
because of the possibility of cache misses. A consequence was that instructions had
to remain in their windows or reservation stations until it was certain that they were
no longer subject to speculation (i.e., committed or aborted due to branch mispre-
diction), because they might be woken up again if they were dependent on a load
operation that resulted in a cache miss.

As already mentioned in Section 3.3.3 when giving an overview of the Intel P6
microarchitecture, out-of-order processors add another opportunity for optimiza-
tion, namely load speculation. There are two circumstances wherein a load cannot
proceed without speculation: (i) the operands needed to form the memory address
are not yet available, and (ii) the contents of the memory location that will be
addressed are still to be updated. Speculation on the load address is mostly used in
conjunction with data prefetching. We will return to the topic of address prediction
when we discuss prefetching in Chapter 6. In this section, we present some tech-
niques for the second type of speculation, generally called memory dependence pre-
diction because the dependencies are between load and preceding store instructions.

5.2.1 Store Instructions and the Store Buffer

Let us first elaborate on the way store instructions are handled. There are two possi-
ble situations once the memory address has been generated (whether address trans-
lation via a TLB is needed or not is irrelevant to this discussion): either the result to
be stored is known, or it still has to be computed by a preceding instruction. How-
ever, even in the first case, the result cannot be stored in the data cache until it is
known that the store instruction will be committed. Therefore, store results and,
naturally, their associated store addresses need to be stored in a store buffer. The
store buffer is organized as a circular queue with allocation of an entry at decode
time and removal at commit time. Because the store result might be written in the
cache later than the time at which it is known (because instructions are committed
in order), status bits for each entry in the store buffer will indicate whether:

� The entry is available (bit AV).
� The store has been woken up and the store address has been computed and

entered in the store buffer, but the result is not yet available in the store buffer
(state AD).

� The store address and the result are in the store buffer, but the store instruction
has not been committed (state RE).

� The store instruction has been committed (state CO).

When the store instruction has been committed (head of the ROB and head
of the store buffer), the result will be written to the cache as soon as possible, and
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Figure 5.2. Load–store unit.

the corresponding entry in the store buffer will then become available. In case of a
branch misprediction, all stores preceding the mispredicted branch will be in entries
with state CO, showing that they are committed when the branch reaches the head
of the ROB. As part of the misprediction recovery process, all other entries in the
store buffer will become available. In the case of an exception, the process is similar
except that entries in state CO must be written in the cache before handling the
exception. An abstracted view of the load–store unit with a store buffer is shown in
Figure 5.2. The presence of the load buffer will be explained in the forthcoming
paragraphs.

Actions that are specific to stores in various stages are summarized below:

STORE-INSTRUCTION-SPECIFIC ACTIONS. (These result from instructions of
the form Mem[op.address] ← Ri. We do not show actions such as
inserting the instruction in the ROB or committing the instruc-
tion. Each entry in the Store buffer consists of the tuple {AV
bit, state, address, name or value}.)

Dispatch Stage

if store buffer full then stall for 1 cycle;/∗ structural hazard∗/
else begin

reserve entry at tail (AV off, st. unknown, ad. unknown, Ri.name);
end;

Memory Address Computation Stage (End)

entry ← (AV off, AD, op.address, Ri.name);
if Ri has been computed then
entry ← (AV off, RE, op.address, Ri.value)
else wait for broadcast of Ri name to modify entry

Commit Stage

entry ← (AV off, CO, op.address, Ri.value);
/∗some cycles later the value will be stored in the memory hierarchy AV
will be turned on∗/
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5.2.2 Load Instructions and Load Speculation

Let us consider now how load instructions will proceed. While keeping the basic
framework of an out-of-order processor, we start by imposing restrictions on the
order in which loads and stores can interact and then relax some of these constraints
with the goal of improving performance by increasing potential concurrency. Of
course, implementation cost and complexities grow when we introduce predictors
and concomitant recovery mechanisms.

In order to simplify the presentation, we will assume that the load and store
instructions share a dedicated instruction window. It is not difficult to generalize to
the case of a single centralized window.

In the most restricted implementation, the load–store window is a FIFO queue.
Load and store instructions are inserted in program order (this will always be true,
as the front-end processes instructions in program order), and they are removed in
the same order, at most one instruction per cycle. Moreover, a load can be issued
only when the store buffer is empty. Clearly, all memory dependences are resolved
at that point, and the load will find the correct value in the memory hierarchy.

This solution does not take advantage at all of the information that can be found
in the store buffer. A more natural scheme is to compare the address of the load
operand with all store addresses in the store buffer. If there is no match, the load
can proceed. This mechanism is often called load bypassing. Note that it requires
an associative search of the address portion of the store buffer, and one must also
be careful that the operand address of the last store, which could be an instruction
issued in the cycle just preceding that of the load, is already stored in the buffer or
available for comparison. However, if there is a match and the matching address
store has not yet committed, (i.e., is not in state CO), then the load cannot proceed
or, more precisely, the cache will not be accessed. In case of multiple matches, the
last store in program order is the one considered to be the match, and we assume
in the following discussion that “match” is synonym with “last match in program
order.” The load will be reissued when the corresponding store has left the store
buffer.

The result information contained in the store buffer is not used in the load
bypassing scheme. In the case of a match between the load address and a store
address in the store buffer, if the latter has a result associated with it (state RE or
state CO), this result can be sent directly to the result register of the load. We have
now what is called load forwarding, and the load instruction has completed (but not
committed, for it is not at the head of the ROB). If the match is for an entry that is
waiting for its result (state AD), then the load will wait until the store entry reaches
the state RE. Forwarding and load completion will then occur simultaneously.

In summary:

LOAD BYPASSING AND FORWARDING. (Instruction of the form Ri; ← Mem[op.
address]; in case of a match, storebuffer.field are the components
of the most recent matching entry in the store buffer.)
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Address Generation (Execute) Stage

if (op.address = storebuffer.address) then
begin abort cache access;
if (storebuffer.state = RE or storebuffer.state = CO)

then begin Ri; ← storebuffer.value;
broadcast (Ri.name, Ri)

end;
else repeat test at next cycle;

end

We now return to the full generality of out-of-order processors, except that we
restrict the stores to issue in program order. It has been shown that there is no
impact on performance by doing so, and it makes the detection of the last store to
match slightly easier. The store buffer is still needed to process the store instructions,
but it is not sufficient for checking dependencies between stores and loads. Loads
can be issued speculatively in advance of stores preceding them in program order –
with, of course, the need for recovery in case of a RAW memory dependence
between the load and a not yet completed store. Issuing loads as early as possi-
ble has performance advantages in that very often loads are on the critical path of
the computation.

Three approaches are possible to solve the dynamic memory disambiguation
problem:

� Pessimistic: wait until it is certain that the load can proceed with the right
operand value. This is very close to the load bypassing and forwarding scheme.

� Optimistic: always speculate, that is, continue with load execution immediately.
In this case, we need to remember such speculative loads in the load buffer
(i.e., a tag identifying the load and its operand address) and implement recovery
mechanisms in case there was a dependence with an in-program-order preced-
ing store.

� Dependence prediction: use some predictor to see whether the load should pro-
ceed or not. As in the optimistic case, remembering speculated loads and recov-
ery mechanisms are needed, but the intent is to have fewer time-consuming
recoveries while allowing the majority of safe loads to proceed immediately.

To illustrate these policies, consider the following example:

EXAMPLE 2: Prior to this instruction, all stores have been committed:

i1: st R1, memadd1
. . . . . . . . . . . . . . . . . . .

i2: st R2, memadd2
. . . . . . . . . . . . . . . . . . .

i3: ld R3, memadd3
. . . . . . . . . . . . . . . . . . .

i4: ld R4, memadd4
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All instructions are in the instruction window. We assume that the two load
instructions are ready to issue and that there exists a true memory dependency
between instructions i2 and i3.

In the pessimistic approach, neither of the load instructions will issue until the
stores have issued and computed their addresses. At this point instruction i3 will
wait till instruction i2 has computed its result (or is in state RE in the store buffer).
Instruction i4 will proceed as soon as the two stores have reached state AD.

In the optimistic scheme, both load instructions will issue as soon as possible,
and load buffer entries will be created for each of them. When a store instruction
reaches the state CO, its operand address is (associatively) compared with those in
the load buffer. If there is no match, as is the case for instruction i1, nothing happens.
However, when instruction i2 reaches state CO, its memory address, memadd2, will
match the address memadd3 entered for instruction i3. The load instruction i3 will
have to be reissued, as well as all instructions in program order after it, including
instruction i4, although in some implementations the reissuing of instructions can
be limited to those dependent on i3.

If dependence prediction is used and predicts correctly that instruction i3
depends on instruction i2 and that instruction i4 has no memory dependence, then
instruction i3 will have to wait until instruction i2 passes to state CO, while instruc-
tion i4 can proceed.

We now look at implementation considerations. In the pessimistic approach,
we proceed as in the case of load bypassing and forwarding, with the additional
check that there is no store in the instruction window that precedes the load in
program order and that has not been issued yet. Because instructions are entered
in the window in program order and because, as we saw in the previous section,
there is a bit in each reservation station indicating whether the instruction has been
issued or not, this additional check is conceptually easy. It is even easier if there is
a dedicated instruction window devoted to memory operations. This is basically the
solution used in the Intel P6 microarchitecture prior to the launching of the Core
architecture.

At the other end of the spectrum, in the optimistic approach all loads are con-
sidered speculative, that is, all loads proceed unhampered by possible conflicts after
they have computed their operand address. However, the store buffer is checked so
that if there is a match with an entry in state CO, the result is forwarded and the
cache access is aborted. Regardless of whether this match occurs or not, the load
and its associated address are entered in the load buffer. Subsequently each store
entry that passes from any other state to the state CO will check entries in the load
buffer. If there is a match between the store and a load in the load buffer, the load
was misspeculated and must be aborted, as well as all instructions following it in
program order (we discuss recovery mechanisms in the following). On the other
hand, if the load reaches the head of the ROB, then the speculation was right and
the load entry is removed from the load buffer.

The optimistic scheme is based on experiments that have shown that memory
dependences are rare, significantly less than 10% of the time for most programs
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and for implementations with large load–store instruction windows. Nonetheless,
load misspeculations are expensive and can be reduced by using dependence pre-
dictors. These cautious optimistic approaches require a load buffer as in the opti-
mistic approach. On the other hand, not all loads are speculated. We describe three
schemes, from the simplest to the most complex.

SCHEME 1: SINGLE CHANGE. Because memory dependencies are infrequent, a first
strategy is to predict that all loads can be speculated as in the optimistic solution.
When a load misspeculation occurs, subsequent instances of the misspeculated load
will be forced to wait, as in the pessimistic scheme. The change from speculated
to nonspeculated will occur only once for a given load instruction. A single bit,
appended to the instruction in the instruction cache, is sufficient to indicate the
course to follow. Because the bit can be checked at decode time, there is no extra
effort required for the issuing of speculated load instructions. When a cache line is
replaced and then brought back on a cache miss, the appended bit will be reinitial-
ized to indicate that the load is to be speculated even if prior instances predict the
opposite. Because, in general, tens or hundreds of thousands of cycles separate the
cache replacement and subsequent miss, the potential change in prediction may in
fact be correct. This is basically the scheme used in the DEC Alpha 21264.

SCHEME 2: LOAD PREDICTOR TABLE. The next step in sophistication is to keep a pre-
dictor structure that records recent loads and whether they should be speculated or
not. A particular implementation could be as follows. The predictor is a set of hash
tables indexed by bits of the PC and containing saturating counters with states of
the form “strong speculate”, “weak nospeculate” and so on. A load buffer entry will
be a 4-tuple (tag, op.address, spec.bit, update.bit). The spec.bit indicates whether we
have a speculative load, and the update.bit, which is set by store instructions, dic-
tates whether the predictor should be updated at commit or abort time. Each load
instruction also carries a loadspec bit. Now for a load:

Load Decode Stage. Access the predictor, and set loadspec according to the
value of the counter associated with the load PC.

After the Operand Address of the Load Has Been Computed. We have the follow-
ing cases:

� There are no uncommitted younger stores in either the store buffer or the
instruction window. Enter (tag, op.address, off, off ) in the load buffer, and issue
the cache access.

� There are younger unresolved stores, and loadspec is off. Enter (tag, op.address,
off, off ) in the load buffer, and wait as in the pessimistic solution.

� There are younger unresolved stores, and loadspec is on. Enter (tag, op.address,
on, off ) in the load buffer, and issue the cache access.

Before dealing with what happens at commit, we need to consider the actions at a
store commit.
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Store Commit Stage

if no match in load buffer do nothing;
For all matches with spec.bit off set update.bit on;
/∗ it was correct not to speculate, and no speculation is to be kept∗/
For all matches with spec.bit on proceed to load abort;

Now we can return to the load commit and the abort process, which takes place
before the commit for those loads that were misspeculated.

Load Commit Stage

if spec.bit off then
if update.bit on then reset saturating counter predictor
entry to "strong nospeculate"
else increment saturating counter /∗ would like to speculate
in the future∗/

else increment saturating counter /∗speculating was correct∗/

Load Abort

reset saturating counter predictor entry to "strong nospeculate";
recover from the misspeculated load as in the case of an exception
/∗or a branch misprediction, depending on the register renaming scheme∗/

The saturating counter should be initialized so that it takes a few nonspeculative
execution instances for a load that would have been correctly speculated before it
is indeed speculated. If the register renaming scheme uses the ROB, the recovery
is similar to the one after a branch misprediction. Otherwise, because register maps
are not saved at every load instruction, the recovery is similar to what happens after
an exception and is more expensive. A scheme resembling this one is implemented
in the Intel Core architecture.

Let us now envision what an ideal predictor would do, namely, keep all pairs
(load, store) that will conflict. Assuming this was possible, the first time a conflict
is recorded, the (load, store) pair is entered in an associative table. Since a store
(i.e., a writer) can have several loads (i.e., readers) dependent on it, there can be
multiple pairs with the same load entry. Similarly, there can be multiple pairs with
the same store entry – for example, as a consequence of writing the same variable in
both branches of an if–then–else construct and reading that variable after the join
of the branches. Now, when a load is speculated, the table is searched. If there are
one or more matches on the load address, a check is made to see if the associated
store(s) has(ve) been recently fetched and has(ve) not yet reached the CO state in
the store buffer. If so, the load is stalled until the store(s) has(ve) reached the CO
state. Because keeping large associative tables is impractical, we are going to restrict
this scheme by using store sets.

SCHEME 3: STORE SETS. A store set is a structure that associates stores with individ-
ual loads. Instead of keeping (load, store) pairs, we associate a set of stores with each
load. The store sets are initially empty and build up on failed optimistic speculations.
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Figure 5.3. Illustration of the store set
memory prediction scheme.

However, with regard to implementation we have not made much progress, for sets
are not easily represented in hardware. A saving feature is that we still restrict stores
to issue in program order, so for each load we will keep only the pair with the last
fetched store. So we are going to restrict store sets to contain only one store, the
most recently fetched. However, this is not quite sufficient, as we are going to see
below.

In the store set scheme, two tables, initially empty, are used (cf. Figure 5.3): the
store set ID table (SSIT) and the last fetched store table (LFST). The SSIT, indexed
by the address of the load–store instructions (PC), contains set ID numbers for each
load and store instruction involved in misspeculation. A set ID number is a pointer
to an entry in the LFST that keeps track of the last store in each store set, if any,
that has been decoded and has not yet reached the state CO. This store is identified
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by some tag that allows retrieving its position in the store buffer or the instruction
window.

Before showing how these tables are filled and updated, let us see how they
are used. When a load is decoded, the SSIT is accessed. If the entry is valid and
points to a valid LFST entry, then this indicates that a recently fetched store is
not yet in state CO in the store buffer; as in the other schemes presented previ-
ously, the load cannot proceed until the conflicting store reaches the state CO in the
store buffer. If the LFST entry is invalid, then it indicates that the store has already
reached the state CO or has committed and the load can proceed with forwarding if
possible.

When a store is decoded, it accesses the SSIT. If there is a corresponding LFST
entry, then that entry is replaced by the identification of the just-decoded store.
When a store reaches the state CO, it must remove itself from the LFST by making
itself invalid if it is still there.

When a speculative load is found to have been mispredicted, both the load and
the store instruction on which it depends must be entered in the SSIT. There are
four possible cases:

� Neither the load nor the store has a store set ID. A new one is created and
assigned to both instructions.

� The load has been assigned a store set, but the store has not. The store is
assigned the load’s store set and becomes the LFST entry (this takes care of
multiple stores for the same load if it happens only once).

� The store has been assigned a store set, but the load has not. The load is assigned
the store’s store set. This takes care of multiple loads for the same store. How-
ever, it might create false dependencies with other stores already in the set; the
alternative would be to have a store belong to multiple store sets and would
complicate the dependence checking.

� Both the load and the store have (distinct) store sets. One of them is declared
the winner, and the pointer to the LFST of the loser points to that of the winner.
Choosing the winner with the smaller index in the SSIT allows convergence of
the process. However, false dependencies may occur.

These four cases are illustrated in Figure 5.3. In Figure 5.3(a), in a first pass over
the code, the load at instruction j was mispredicted, for it is in conflict with the store
at instruction i. SSIT entries for both instructions are created pointing to an entry
in the LFST that identifies instruction i. In a second pass over the code, the load at
instruction k is mispredicted. An entry in the SSIT is created, pointing to the already
existing LFST entry that contains the identification of the conflicting store (this is
shown with the dashed line).

In Figure 5.3(b), in a first pass the store at address i and the mispredicted load
are in conflict. In a second pass, it is the store at address j and the load that are
in conflict. Both stores point to the same entry in LFST, but because only one of
them will be decoded in a given pass over the code (representative of an if–then–
else pattern), the identification in the LFST entry will be correct and the load will
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always be stalled after each branch has been taken once; that is, there are only two
possible mispredictions.

In Figure 5.3(c), we illustrate the merging process. In a first pass over the code,
each load–store pair contributes one entry in the LFST. In a second pass, the load at
instruction l conflicts with the store at instruction j. The SSIT entry at instruction l
now points to the LFST entry. If there is a new misprediction (j, l), the entry cor-
responding to the store at instruction j will point to the same entry as that of the
store at instruction i, and the process is stabilized. However, this might create false
positives, for example, if the pair (j,k) has no conflict.

Both the limited size of the SSIT table and several of the options mentioned
above create false dependencies. These can be alleviated with confidence counters
(2-bit saturated) or periodic invalidations of the store sets through valid bits.

When the processor is in recovery mode from some prediction, be it from a
branch prediction or a load–store prediction, there is no need to modify the SSIT.
In the case of the LFST, it is sufficient to treat the aborted stores as if they had
committed, that is, make their entries invalid.

5.2.3 Load Speculation Evaluation

Performance benefits from load speculation depend on the availability of specula-
tion, the miss rate of the speculation, and the cost of misspeculation recovery. These
factors are all dependent on the size of the instruction window (store instructions
that are in the store buffer in states other than CO remain in the instruction window
as per the requirements stated in Section 5.1).

Let us adopt the following terminology. We will say that a load is conflicting if
at the time it is ready to be issued (i.e., have its operand address computed) there
is a previous store in the instruction window whose operand address is unknown. A
conflicting load is colliding if it is dependent on one of the stores with which it con-
flicts. What is important to know for a given instruction window size is the number
of nonconflicting loads (these will be issued correctly by all policies) and, among the
conflicting loads, those that are noncolliding (these can be speculated successfully)
and those that are actually colliding (these should not be speculated; if they are, they
will result in some recovery penalty). Measurements have shown that in a typical
32-entry load–store queue there will be approximately 25% of nonconflicting loads,
and among the remaining 75% of conflicting ones, only 10% actually collide with
previous stores. With larger window sizes, the percentage of nonconflicting loads
decreases and the percentage of colliding ones increases. Thus, intelligent predict-
ing policies become more important with larger instruction windows, because the
performance of both the pessimistic policy (favorable when there is a large percent-
age of nonconflicting loads) and the optimistic policy (favorable when there is a
small percentage of colliding ones) will suffer.

In the same sense that branch prediction accuracy gives a feel for the goodness
of a particular predictor, the percentage of predicted loads and the outcomes of
these predictions give some idea of the benefits that could be achieved for memory
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dependence predictors. In scheme 1 of the previous section, an important metric is
the percentage of predicted loads, for after a misprediction the load will not be
speculated. However, false dependencies may then result, thus preventing some
loads from being speculated successfully. Simulations have shown that for the
SPEC95 integer programs, from 68% to 95% (average 85%) of loads were specu-
lated. For a couple of floating-point programs the average was 95%. Although these
simulations were reported for a very aggressive and unrealistic 16-wide superscalar
with a 256-entry load–store instruction window and a 64 K I-cache, they should not
be very different for a more realistic processor. Unfortunately, there are no data on
false dependencies.

In the case of the store set scheme, the sizes of the instruction window and of
the SSIT and LFST is more pertinent to the coverage (number of loads predicted)
and accuracy of the predictions. With sufficiently large SSITs, the misprediction rate
is negligible, but the number of false dependencies cannot be overlooked. False
dependencies can be almost completely removed by introducing confidence (2-bit
saturating) counters, with each store entry in the SSIT indicating whether there is a
high probability of a real conflict or not.

Again, in the same vein as for branch prediction, what is essential is not the cov-
erage and accuracy of the predictor, but the performance gains that one hopes to
achieve. Recall that a misprediction can be costly in that the state has to be recov-
ered and instructions have to be reissued and executed anew. The range of potential
gain can be assessed by simulating a policy with no speculation and one with perfect
speculation. Simulations for a processor quite similar to the Alpha 21264 showed a
potential for a 300% speedup for the perfect case; some performance degradation
could, albeit rarely, occur for the optimistic implementation.

The same simulations showed that a store set scheme with sufficiently large
SSIT (say, over 4 K entries) and LFST (over 256 entries) approaches the perfor-
mance of perfect prediction. Confidence counters are not necessary, for the number
of false dependencies is rather small, and periodic clearing (cycling policy) of the
tables is sufficient to obtain the same level of performance.

5.3 Back-End Optimizations

In this chapter and in the previous one we have examined three optimizations based
on speculation, which we can rank in order of importance as:

1. Branch prediction.
2. Load-bypassing stores.
3. Prediction of load latency.

Clearly, branch prediction is a must. It is present, quite often in very sophisticated
ways, in all standard microprocessors. Without it, most of the performance advan-
tages of deeply pipelined superscalar processors would evaporate. Load specula-
tion is also important in that loads are often producers of values for subsequent
instructions and delaying their execution might be quite detrimental to overall
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performance. However, not all loads are of equal importance, as we shall see further
in Section 5.3.2. Most high-performance microprocessors today have some form of
load speculation. Finally, guessing that the load latency will be that of a first-level
cache hit is common for the wakeup and select operations. We shall see in the next
chapter ways to tolerate or hide load latency in the cache hierarchy.

In this section, we briefly present some optimizations that have been proposed
as means to increase performance or to reduce power consumption, goals that are
often conflicting. Although none of these optimizations are standard fare, they
might be useful in future microprocessor generations. Inasmuch as none of them
have been implemented in silicon except in a restricted fashion for the last one, we
only briefly present the concepts, assess potential benefits, and point to implemen-
tation difficulties.

5.3.1 Value Prediction

As we saw as early as Chapter 2, three types of hazards can slow down pipelined
processors:

� Structural hazards, such as a paucity of functional units to exploit fully
instruction-level parallelism, or limited capacity for structures such as instruc-
tion windows, reorder buffer, or physical registers. The increase in capacity is
not always an answer, and we discuss this further in Section 5.3.3.

� Control hazards, such as those induced by transfer of control instructions.
Branch prediction is the main mechanism by which the effect of these hazards
is minimized.

� Data hazards, such as data dependencies and memory dependencies. Out-
of-order processors remove non-RAW dependencies with the use of register
renaming. Forwarding and bypassing take care of interdependent instructions
that can be scheduled sufficiently far apart without creating bubbles in the
pipeline. Load speculation permits one to lessen the number of situations where
false memory dependencies could slow down the flow of instructions.

However, we have not been able to deal with true data dependencies whereby a
RAW dependency cannot be hidden because there is not enough work for the pro-
cessor to do before the dependent instruction needs to execute. In the first simple
pipeline of Chapter 2, this happened when a load was followed by an instruction
requiring the result of the load. In more complex processors, this particular exam-
ple, along with simple generalizations of such a producer–consumer paradigm, is
still a source of performance (IPC) degradation. A possible remedy for this true
dependence is to predict the value of the result that is needed.

How realistic is it to envision such value prediction? If we follow the model of a
branch predictor (cf. Figure 4.1) and apply it to value prediction, we have to define
the event for which prediction will occur – its scope – as well as the predictor’s struc-
ture and feedback mechanism. Again, as in other forms of prediction, our only way
to predict the future is to rely on the recent past. It is therefore necessary to assess
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Figure 5.4. Value locality for load in-
structions. The white bars are strict last
values; the black bars are for the recur-
rence of one of the last 16 values (data
from Lipasti and Shen [LS96]).

if (parts of) programs exhibit some value locality, for example, the repeated occur-
rence of a previously seen value in a storage location, or the repetition of a known
pattern such as consecutive values that differ from each other by a common stride.
Clearly, looking at the whole addressing space is not practical, and realistically value
locality must be limited to the architectural registers and the instructions that write
into these registers. Figure 5.4 shows the value locality for a variety of benchmarks
when the scope is limited to load instructions and the value locality is defined as
the fraction of the time the value written in a register was the same as the last one
(left bars) or the same as one of the last 16 instances (right bars). As can be seen,
in some benchmarks the value locality is quite high, over 40% even with a strict last
value, whereas in the remaining three it is quite low (see for example the next to last
benchmark tomcatv). If the same experiment is repeated for all instructions (that is,
unlimited scope), the value locality diminishes significantly.

Leaving aside for a moment how values are predicted, let us assume a predictor
structure that holds predicted values for some selected instructions. The hardware
structure for the predictor can take forms similar to those for branch prediction,
including a confidence counter for whether the prediction should be taken or not.
The value predictor can be checked in some stage of the front-end. If there is a
predicted value, say for instruction i, it can be stored in the renamed result register,
and for subsequent instructions, it looks as if instruction i had executed normally.

Now of course, not only does the value-predicted instruction i need to be exe-
cuted to be sure that the prediction is correct, but the result of instruction i must
be compared with the predicted value. A suggested implementation is to store the
prediction in the reservation station when the instruction is issued. At the end of
execution of instruction i, its result is compared with the predicted value. If the
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comparison yields agreement, nothing further needs to be done except to update
the confidence counters; otherwise, in addition to the predictor update, a recovery
procedure similar to that of a wrong load speculation has to be performed. As was
the case for the load speculation, either all instructions following the mispredicted
one or only those that depend on it need to be reexecuted, the former alternative
being simpler to implement.

Let us assess succinctly the resources required for value prediction in addition
to the predictor itself. First, reservation stations have to be wider in order to accom-
modate the predicted values. Second, each functional unit that generates results for
predicted instructions must have a comparator associated with it. The comparison
itself may take an extra cycle. This additional time is of no consequence if the predic-
tion is correct, but adds 1 cycle to the recovery penalty. Third, because instructions
can be mispredicted, they need to remain in their instruction window or reservation
stations until they are committed – which may not be an extra burden if the wakeup–
select is speculative, because that requirement is satisfied in that case. Some of these
requirements are alleviated if the scope is limited, for example, to load instructions,
and if there is a separate load–store instruction queue.

Value predictors could take various forms: last value, stride, context (several
past values are recorded and one of them chosen, depending on past patterns),
or some hybrid combination of those. Performance evaluation of value prediction
according to these schemes is difficult to assess because of the large number of
parameters, such as the number of instructions that can be predicted in a single
cycle, the penalty for recovery, and the size of the instruction window. Simulations
have shown that the context predictors may not be worth the expense. On the other
hand, simpler predictors that could potentially increase IPC by 5–10% are far from
reaching perfect prediction. The gap is due to both the limited coverage of instruc-
tions that can be predicted with confidence by simple predictors and the signifi-
cant penalty incurred on mispredictions. To date, no commercial implementation
of value prediction has been proposed, because the performance gains seem too
tenuous to be worth the supplemental logic and power that are needed.

5.3.2 Critical Instructions

There are several instances where back-end optimizations should only be performed
for instructions whose executions greatly influence the time of execution. These
instructions lie on the critical path or, if delayed too much, would become part of the
critical path. As potential applications of the identification of these critical instruc-
tions, the latter could be woken up and selected in priority, or they could be the
only ones to which some speculation would be applied. Other possible applications
of the detection of critical or noncritical instructions would be the scheduling of
instructions in clustered microarchitectures (cf. Section 5.3.3) or steering noncritical
instructions towards slower functional units that dissipate less power. In this section,
we focus on how to detect critical instructions.
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Figure 5.5. Program execution represented as a PERT chart. The critical path is in bold. It is
assumed that the branch at instruction I7 has been mispredicted (from Fields et al. [FBH02]).

The execution of a program can be seen as a weighted acyclic directed graph
where nodes represent instructions and arcs represent the dependencies between
instructions with weights indicating the interinstruction latency. Such a graph is
called a PERT chart or CPM1 graph in operations research and is used very often for
representing and scheduling large projects. Those instructions that lie on the critical
path(s) of the PERT chart should have priority, for delaying any one of them would
increase the execution time. Scheduling according to the execution of the whole pro-
gram is of course unrealizable in real time, because the future is not known. So we
shall need approximations obtained by looking at segments of programs, the more
natural ones being the contents of the instruction window.

Program dependencies are not the only constraints in the program’s execution.
The limitation on hardware resources brings other dependences (structural haz-
ards). For example, only a limited number of instructions can be concurrent in each
stage of the front-end, and similarly, only a limited number of them can be commit-
ted in a single cycle. Moreover, the number of execution units that can accommo-
date instructions of the same type is also restricted. To represent these precedence
relations, each instruction can be decomposed as a front-end node, followed by an
execution node and ending with a commit node. Such a graph is shown in Figure 5.5,
where the front-end nodes are denoted by D (for dispatch, the last stage in the front-
end), the execution nodes by E, and the commit nodes by C. Data dependencies and
functional unit contention are modeled by edges between E nodes. Limitations on
the front-end are modeled by edges between D nodes. To show concurrency in an
m-way superscalar, m−1 consecutive edges between D nodes will have a weight of 0.
The same holds for edges between C nodes for commit limitations. In addition, the
size of the reorder buffer (ROB) limits the number of instructions that can be dis-
patched, and therefore there are edges between some C nodes and some D nodes.

1 PERT stands for the program evaluation review technique, which was used for the first time by the
U.S. Navy in the 1950s to monitor the Polaris submarine missile project. CPM stands for the critical
path method, which was developed at approximately the same time.
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As an example, Figure 5.5 shows the precedence graph in a two-way out-of-
order processor that can commit two instructions per cycle and that has an ROB of
size 4. Therefore, every other edge between D nodes has a weight of 1, and there
are precedence relationships between nodes Ci and Di + 4 in addition to the edges
between E nodes due to data dependencies.

Branch predictions (and mispredictions), instruction and data cache misses,
TLB misses, procedure calls, and so on, can be modeled within this framework.

Building such an elaborate tool online is not practical. Even being able to detect
the critical path online might not be very useful, because only a small fraction of
instructions lie on it. What is more interesting is what has been called the slack of
an instruction, that is, the maximum amount of time the instruction can be delayed
without affecting the overall execution time. However, the computation of the slack
of instructions in real time is not any simpler than identifying the critical path. The
saving grace is that an approximation of the slack is often sufficient for practical
purposes. For example, if the approximation to the slack is above a certain thresh-
old, say 5 cycles, then the instruction can be considered as noncritical. Compiler
techniques might be able to yield this approximation. For example, in the code of
Figure 5.5, it is pretty clear that instructions I4 and I5 do not lie on the critical path
and could be computed on a slower integer unit, if one existed, for power-saving
purposes.

An interesting approximation, implementable in hardware while the program
executes, is to inject a token in an instruction and delay that instruction by a given
threshold. The token, represented by a bit passed along during the wakeup select
stage, is propagated to the immediate successors of the instruction, but it is removed
if it was not on the last arriving edge, that is, the condition that can trigger the issuing
of the instruction. After a few instructions (maybe hundreds), the hardware checks
whether the token is still alive. If so, the originating instruction was critical with high
probability; otherwise, it certainly was not.

A criticality predictor could have a general structure identical to those of the
predictors we have already encountered: a table with entries having at least a tag to
check whether the instruction should be predicted, and a confidence counter indi-
cating the prediction. An important feature of a criticality predictor is that it does
not require a recovery procedure in case of a misprediction. The predictor table can
be filled using heuristics such as the following, in order of increasing implementation
complexity:

� At each cycle make critical (or increase the confidence counter of) the oldest
instruction in the instruction window or in the ROB.

� At each cycle make critical (or increase the confidence counter of) the instruc-
tion in the instruction window that has the largest number of immediate depen-
dent instructions, as long as this number is over a certain threshold.

� Use the preceding token heuristic.

Note that these heuristics can be quite conservative. For example, it has been
shown via simulation that although in many programs over 80% of the instructions
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have a slack of over 5 cycles, approximations using only local knowledge yielded
only 20% of instructions that were classified as noncritical.

How important is criticality? It is somewhat unclear at this point for the type of
processors that we have been looking at. For example, it has been shown that it is
not beneficial to try to manage the cache hierarchy by looking at criticality of load
instructions rather than locality of data. However, detection of criticality becomes
more important for the types of processors introduced in the following.

5.3.3 Clustered Microarchitectures

The width of an out-of-order processor, (i.e., the parameter m in an m-way super-
scalar), is limited by a number of factors. Some of these factors are associated with
functions performed in the front-end, such as limitations on the instruction fetch
bandwidth and on the number of decoders. There are also limitations that become
apparent in the back-end, in particular:

� The size of the instruction window(s). In order to find m instructions to be
woken up each cycle, the instruction window must be large (and consequently
the ROB must be large also). However, large instruction windows are expen-
sive, both in hardware expended and in power dissipated, mainly because of the
associative logic needed at each entry.

� In order to increase m, the number of functional units must become larger.
This expansion affects forwarding, because the number of point-to-point paths
increases proportionally to the square of the number of units. Moreover, with
a larger number of functional units, the wires connecting them become longer,
and forwarding from any unit to any other unit in a single cycle may not be
feasible.

� Finally, the demands on centralized resources will necessarily increase. One par-
ticular instance where this is true is in the additional number of read and write
ports for the centralized register file.

Each of these drawbacks could be dealt with in isolation. For example, there have
been proposals to split the instruction window into a small and fast one for critical
instructions (with “critical” defined as in the previous section) and a larger, slower
one for noncritical instructions. However, the most promising approach is a clus-
tered microarchitecture.

In the context of microarchitectures, a cluster can be defined as a set of func-
tional units, an associated register file, and an instruction window (or reservation
stations). Various implementations are possible, depending on whether the register
files are completely duplicated or partitioned among the clusters. A generic view of
clustered microarchitectures is shown in Figure 5.6.

Let us assume for the time being that each cluster has its own copy of the
whole register file. In the case of fully replicated register files, the number of clusters
must be small, because the file takes a significant amount of real estate and power;
therefore, a crossbar switch for the interconnection network is feasible. Though the
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Figure 5.6. Generic clustered micro-
architecture. Each cluster has its own
register file and instruction window.

register replication may appear costly, it facilitates significantly the operations of
the back-end. It is the solution chosen by the designers of the Alpha 21264, where
the integer execution unit consists of two clusters, each of them having a full copy
of the 80 physical registers.

In a clustered microarchitecture, the front-end needs to perform one more task
than in a conventional monolithic out-of-order processor, namely, steering instruc-
tions towards the instruction window of one of the clusters. The back-end cluster
operations are slightly more complex in that first the results must be copied into the
register files of the other clusters, and second the wakeup and select operations have
to take into account the latencies caused by intercluster transmissions.

Instruction steering can be done either statically, that is, at compile time, or
dynamically by the hardware. The selection of the cluster in which the instruction
will execute has a significant influence on performance. Compared to a hypothetical
monolithic processor with the same number of functional units and the same issue
width, the clustered architecture suffers from two performance effects: (i) some
results from one cluster are forwarded to functional units of another cluster with
some latency penalty, and (ii) the limitation of resources (functional units) in each
cluster requires that the workload be well balanced amongst all clusters.

Instruction steering policies must take into account these two effects, which can
sometimes point to conflicting assignments. For example, consider an instruction,
most likely a load instruction, whose result is needed by several instructions. From
(i) above, steering should be such that the instruction producing a result and the
instructions that consume it will be in the same cluster. Furthermore, the instruc-
tions that depend on the results from the previous consumers should also be in the
same cluster, and so on. Clearly, this will soon violate the requirements for load
balancing indicated in (ii). Nonetheless, the general philosophy is to try and assign
dependent instructions in the same cluster. However, the number of clusters and the
type of interconnect, (i.e., the intercluster latency), play important roles in the steer-
ing strategy. A heuristic that works well for a small number of clusters is to assign
an instruction to the cluster that will produce the majority of its source operands
unless a load imbalance threshold is exceeded. In particular, because memory oper-
ations (load–store) are often on the critical path, all instructions that are needed
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to compute the operand address for the memory operation should be on the same
cluster as the memory operation. For a larger number of clusters, a first-fit policy –
whereby the instruction window of a cluster is filled by successive instructions and,
when it is full, the next cluster’s window is filled up, and so on – is a simple method
that is good enough.

Back-end operations become more complex when the register file is distributed
among clusters. Steering is performed in conjunction with renaming. The decision
of which cluster, say cluster ci, will execute the instruction precedes renaming, and it
will be a free register from ci that will be used as the result register. Its name and ci

are entered in the global renaming map. If a source operand is generated in another
cluster, say cj, the hardware inserts a copy instruction that copies the source operand
to another free register in ci. The copy instruction is issued in cj and follows logi-
cally the instruction that generates the contents of the source operand. The copy
instruction is also inserted in the ROB so that free registers can be reclaimed. Map-
ping of the copied register is kept in the renaming table so that if another instruction
in ci needs it, it does not have to be recopied. Note that this requires that the renam-
ing map contain fields for each cluster.

One can assess the performance of a clustered microarchitecture by comparing
it with that of a monolithic processor of the same width. Parameters of importance
are the number of clusters and the intercluster latency. Designers of the Alpha 21264
report a loss of a few percent or less for their two integer clusters with an intercluster
latency of 1 cycle. Simulations using a criticality-based steering policy report aver-
age losses of 5% for two-cluster, 10% for three-cluster, and 20% for four-cluster
processors when the intercluster latency is 2 cycles and the monolithic processor is 8
wide. These results are certainly encouraging: with a wider processor, the instruction
mix that can be issued in a cycle becomes more restricted.

Clustered microarchitectures are an evolutionary path toward getting around
the limitations of wide-issue monolithic processors. Important advantages of clus-
ters are that the design of each cluster can be easily replicated and that the pro-
gramming model is not affected. As we shall see in Chapters 7 and 8, multiprocess-
ing and multithreading are more powerful approaches to increase the parallelism on
chip, but they come with more complex designs and with required software modi-
fications.

5.4 Summary

The challenges in sustaining a throughput of m instructions per cycle for an m-way
superscalar are also present in the back-end of the pipeline. We have shown the
steps that must be taken in the dispatch–issue stages, also known as the wakeup–
select process, in order to meet that goal. The larger the designer wants m to be,
the more costly it becomes to achieve m issues per cycle, because (i) the instruction
window must be larger so that there are enough instructions ready to be executed,
and (ii) the number of functional units must also increase. Expanding the instruction
window, or equivalently the number of reservation stations, in turn requires more
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associative logic, thus consuming real estate and power. Having more functional
units leads to a quadratic growth in the number of wires for forwarding.

Large instruction windows might potentially create more instructions ready to
issue than there are functional units of a certain type. Scheduling of these instruc-
tions is generally performed on a “longest in the instruction window” priority, but
we saw that there are means to detect the critical instructions, that is, those most
likely to reside on the critical path of the computation. A possible solution to the
wire problem when there are many functional units is to use clustered microarchi-
tectures.

Among the critical instructions, loads are those most often encountered. Wait-
ing for all stores preceding a load in program order to be completed before issu-
ing the load can significantly impair performance. The use of a store buffer allows
issuing of a load once it can check that there is no memory operand conflict with
any preceding store. Issuing a load before all memory operands of the preceding
stores are known is a speculative mechanism that can be implemented in a vari-
ety of ways. The more aggressive solutions to this dynamic memory disambiguation
problem require the use of a load buffer and a load–store conflict predictor, and the
implementation of a recovery mechanism.

5.5 Further Reading and Bibliographical Notes

Details on the design and implementations of microprocessors cited in this chapter
can be found in Keshava and Pentkovski [KP99] for the Intel Pentium III, Hinton
et al. [HSUBCRP01] for the Intel Pentium 4, Gochman et al. [GRABKNSSV03] for
the Intel Pentium M, Weschler [W06] for the Intel Core microarchitecture, Kessler
[K99] for the DEC Alpha 21264, Tendler et al. [TDFLS02] for the IBM Power 4,
Keltcher et al. [KMAC03] for the AMD Opteron, and Yeager [Y96] for the MIPS
R10000.

Palacharla et al. [PJS97] discuss a number of issues relative to the timing of
several stages in the pipeline, in particular, wakeup, select, and forwarding. They
also propose a clustered microarchitecture slightly different from the one presented
in the text. Stark et al. [SBP00] propose several optimizations for the wakeup and
select stages.

Load speculation has been studied thoroughly. Franklin and Sohi [FS96] and
subsequently Moshovos et al. [MBVS97] gave comprehensive descriptions of the
problem and presented solutions of which the store set scheme, described and eval-
uated in detail in Chryzos and Emer [CE98], is a direct descendant. (As an aside,
[CE98] is a good illustration of how a limit study should be conducted.) Calder
and Reinmann [CR00] simulated various load speculation schemes as well as value
prediction. Yoaz et al. [YERJ99] investigate the relationships between load spec-
ulation and instruction scheduling. Srinivasan et al. [SJLW01] show that locality is
more important than criticality when it comes to the management of a first-level
cache.

A comprehensive review of value prediction can be found in Shen and Lipasti’s
book [SL04]; these two authors were early investigators and proponents of the
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scheme. One of their main publications on the topic is [LS96]. Fields et al. [FBH02]
have studied the detection of critical instruction using slack. Applications of critical-
ity to value prediction are used in Tune et al. [TLTC01].

Studies of clustered microarchitectures have been concentrating on the instruc-
tion steering mechanisms. Canal et al. [CPG00] studied instruction assignment for a
small number of clusters, and Aggarwal and Franklin [AF05] for a larger number.
Salverda and Zilles [SZ05] performed a limit study showing where performance
losses occur in comparison with an ideal monolithic processor.

It should be mentioned that compiler analysis can be very helpful in scheduling
instructions, whether for variable load latencies (e.g., Kerns and Eggers [KE93]),
for clustered microarchitectures (e.g., Ozer et al. [OBC98]), or for other aspects of
static scheduling. As we saw in Chapter 3, compiler analysis is crucial for VLIW
processors.

EXERCISES

1. (Sections 5.1.3 and 5.1.4) Consider a four-way out-of-order superscalar with two
integer add–subtract units and one integer multiply unit. At time t there are four
instructions in the rename stage:

R1 ← R2 + R3 /∗latency of add is 1∗/
R4 ← R1 − R5 /∗latency of sub is 1∗/
R6 ← R4 ∗ R7 /∗latency of mul is 4∗/
R8 ← R2 + R9 /∗latency of add is 1∗/

(a) Show the instruction sequence after renaming.
(b) Show a timing diagram of execution, assuming that selection and tag broad-

cast can be done in a single cycle as in Figure 5.1.
(c) Repeat part (b), assuming only one integer add–subtract unit. Does it mod-

ify the overall execution time?

2. (Section 5.1.4) In the discussion of the wakeup–select steps we have assumed that
the execution units have a latency of 1 so that a result tag could be broadcast in the
same cycle as the selection. How would you modify the entries in the reservation
stations so that other latencies can be considered? You can assume that the latency
of a given operation is known during the decode stage.

3. (Section 5.2.2) We have noted that the store buffer is implemented as a circular
queue. Should the load buffer also be a circular queue?

4. (Section 5.2.2) In the optimistic load speculation approach, a speculative load
must be entered in the load buffer even if a match was found in an entry in the store
buffer in state CO. Why?

5. (Section 5.2.2) In the store set scheme, when merging was necessary, we chose
to merge in the store set of the instruction with smallest index. Show what would
happen if we chose to always merge in the store set of the store instruction (start
with the example of Figure 5.3(c), and add a conflict to show instability). Repeat,
but choose the store set of the load instruction.
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6. (Section 5.2.2) What is the performance effect of aliasing in the SSIT table in the
store set scheme? Discuss the cases for store aliasing and for load aliasing.

Programming Project

1. (Section 5.2.2) Using a simulator, perform limit studies on the performance
gains that can be attained with the load speculation schemes of Section 5.2.2.
You will have to assume a penalty for misprediction recovery commensurate
with the other parameters of the simulator.
(a) For scheme 1, assume an infinite L1 instruction cache.
(b) For scheme 2, assume an infinite load table predictor.
(c) For scheme 3, assume infinite SSIT and LFST tables.
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6 The Cache Hierarchy

We reviewed the basics of caches in Chapter 2. In subsequent chapters, when we
looked at instruction fetch in the front-end and data load–store operations in the
back-end, we assumed most of the time that we had cache hits in the respective first-
level instruction and data caches. It is time now to look at the memory hierarchy in a
more realistic fashion. In this chapter, our focus is principally on the cache hierarchy.

The challenge for an effective memory hierarchy can be summarized by two
technological constraints:

� With processors running at a few gigahertz, main memory latencies are now of
the order of several hundred cycles.

� In order to access first-level caches in 1 or 2 cycles, their size and associativity
must be severely limited.

These two facts point to a hierarchy of caches: relatively small-size and small-
associativity first-level instruction and data caches (L1 caches); a large second-
level on-chip cache with access an order of magnitude slower than L1 accesses
(L2 cache generally unified, i.e., holding both instructions and data); often in high-
performance servers a third-level cache (L3) off chip, with latencies approaching
100 cycles; and then main memory, with latencies of a few hundred cycles. The goal
of the design of a cache hierarchy is to keep a latency of one or two cycles for L1
caches and to hide as much as possible the latencies of higher cache levels and of
main memory. At the same time, techniques that will improve the hit ratio at any of
the cache levels are sought for. In essence, the wall in the memory wall (cf. Section
2.2) is replaced by a series of hurdles.

Starting with the L1 caches, we will first look at how to achieve fast access, tak-
ing into account that the address generated by the processor is a virtual address
(recall Section 2.3.1, Figure 2.20). We will then present means to improve on the L1
hit ratios by hardware and software techniques such as implicitly increasing associa-
tivity with victim caches or column-associative caches, code placement in instruction
caches, and way prediction for set-associative caches.

We will then study means to hide latency, mostly between L2 and the next level
in the hierarchy. The main technique is prefetching, either via hardware mechanisms
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or with compiler help or both. Although not exactly in the same vein, allowing more
than one cache miss to be in progress is also a way to hide latency. Because out-
of-order processors can feed the back-end with instructions following stalled ones,
an L1 data cache miss should not prevent other memory instructions from accessing
the memory hierarchy. The caches must become lockup-free.

We then look at interactions between the cache levels, and notably into shield-
ing of L1 from unnecessary checks required for cache consistency during I/O trans-
fers and actions from other processors in a multiprocessing environment (the full
treatment of cache coherency in multiprocessor environments will be done in Chap-
ter 7). We define the multilevel inclusion property and show how it can be enforced.
We also look at possible trends in the design of large on-chip caches, notably high
associativity and the concomitant problem of replacement algorithms, as well as the
fact that with large caches wire lengths may impose different access times for parts
of the same cache, giving rise to nonuniform cache architectures (NUCAs).

We shall conclude this chapter by looking at advances in main memory design.
Buffering to improve latency, high-bandwidth channels, and intelligent memory
controllers will be discussed.

6.1 Improving Access to L1 Caches

6.1.1 Physical and Virtual Indexing

In Chapter 2 we looked at caches that were indexed with physical (or real) addresses
and with tags that contained the high-order bits of physical addresses. Therefore,
access to the cache had to be performed after a TLB access (with a hit in the best
case) for the virtual-to-physical address translation. Although it appears that this
translation requires an additional pipeline step when fetching an instruction, recall
that instructions are often fetched sequentially within the same cache line, from a
branch target buffer that contains the next instructions’ physical addresses, or from
computation on real addresses. Therefore, the translation, when needed, can easily
be performed in parallel with the delivery of previous instructions.

In the case of data access, there are three possible organizational choices to
access the cache and check for a hit or a miss, namely, use:

� Physical index and physical tags (the organization that we have seen so far).
� Virtual index and virtual tags.
� Virtual index and physical tags.

We discuss each of these in turn, using load operations as the primary example
(it is left it to the reader to see that using a physical index and virtual tags makes no
sense). We also assume a TLB hit. If there is a TLB miss, it must be resolved before
continuing.

Physical Index and Physical Tags
In the discussion that follows, let 2k be the page size; then the last k bits of the vir-
tual and physical addresses are the same. If the cache can be accessed using only
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Figure 6.1. Accessing the TLB and the (direct-mapped) cache in parallel.

these k bits, then the first and third organizations above are identical. Assuming a
direct-mapped cache of size 2k or less, TLB and cache accesses can occur in paral-
lel as shown in Figure 6.1. The low-order k − d bits of the virtual address are used
to access the cache (2d is the line size), and the remaining high-order bits are used
to access the TLB and check whether there is a TLB hit or a TLB miss. Thus in a
first pipeline stage the TLB and the cache are accessed in parallel. At the end of
that stage, data are forwarded to the register (in case of a load) unless there is a
TLB miss. During the second stage, the tag in the cache is compared with the phys-
ical address in the TLB entry. If there is a mismatch, the data in the register are
voided and a replay mechanism is initiated, because we have a cache miss. Other-
wise, the execution proceeds normally. In essence, a pipeline stage has been saved
in the common case of a TLB hit followed by a cache hit.

In the case of a direct-mapped cache, the comparison involves a single tag. This
good news is not sufficient to overcome the fact that an L1 cache of size 4 or 8 KB,
the usual page sizes, is too small. Therefore, assuming that the page size cannot
be changed, two solutions are possible: increase the associativity, or increase the
number of bits that won’t be translated.

Increasing associativity is limited by the time it takes to perform the compari-
son step and the levels of multiplexing necessary to latch the correct data into the
register. A possibility is to have large associativity and to predict the set that is being
referenced. This way prediction can be extremely simple, like the MRU policy that
predicts the most recently used set as the next one to be referenced. In case of a mis-
prediction, the other tags accessed with the same index need to be checked. Such a
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mechanism can be used for an L2 or an off-chip cache, but its accuracy is not good
enough for an L1 data cache. Moreover, there is a need to access the information
giving the MRU set, which may lengthen the comparison step, because there is
a predictive structure to be accessed and this access cannot take place until the
cache index has been determined. An alternative is to have a predictor that can
be accessed using an XOR combination of bits from the PC of the load and from
the index register used in computing the effective address. Both are known long
before the actual cache access needs to take place, and therefore the technique is
adequate for L1 caches.

Instead of increasing associativity so that TLB and cache can be accessed in par-
allel, we can increase the number of bits that are the same in the physical and virtual
addresses. One way to do this is to restrict the mapping of virtual pages to physical
frames so that l additional bits are common in the physical and virtual addresses.
Now the direct-mapped cache that can be accessed concurrently with the TLB has
a capacity of 2k+l bytes. In this page coloring technique, the mapping for the pag-
ing system is slightly more restrictive, and a number of heuristics can be devised to
mitigate the effects of potential increase in the page fault rate. An alternative to
page coloring is to once again use prediction, that is, have a structure that predicts
the l extra bits. The prediction can be similar to the way prediction described in the
previous paragraph or can use the low-order bits of the virtual address, as in the
TLB-slice mechanism used in the MIPS R6000.

Virtual Index and Virtual Tags
Why not use the virtual address both for indexing and for tags? At first glance this
scheme, that we call virtual cache, is attractive in that the TLB would have to be
accessed only on a cache miss. However, there are a number of drawbacks that
make this solution more complex than it seems.

First, the TLB contains information about page protection and recency of use
that must be checked or updated on each cache reference. So the TLB has to be
accessed. (However, in the case of virtual addressing that can be done in parallel
with the cache access without difficulty.) Second, at each context switch a new
virtual address space is activated and therefore the contents of the cache are stale.
Either the cache must be flushed on each context switch, or a PID (recall Sec-
tion 2.3) must be appended to the tag. Still, flushing part of the cache is required
when PIDs are recycled back. Third, and most importantly, is what has been called
the synonym problem.

The synonym problem arises when two virtual addresses correspond to the same
physical address. Such synonyms occur when some segment of code or data is shared
among processes and their positions in their respective address spaces are not the
same (the general case). In a virtual cache, two synonyms might be cached simulta-
neously. If one of them is modified, the second one becomes inconsistent. Synonyms
can be avoided by a variant of page coloring: for a direct-mapped cache indexed
with k bits (or equivalently an m-way set-associative cache indexed with k − log m
bits), the software requires that these k bits be the same for synonyms. Of course,
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this requires that the software know about potential synonyms, which is easier for
instruction caches than for data caches (hence the virtual instruction cache in the
Sun UltraSPARC systems running under Unix). A hardware solution is to prevent
synonyms from being loaded in the cache. On a cache miss, all lines in the cache that
could contain a synonym are checked. This requires that the tags of these lines be
translated and checked against the physical address of the missing item. If there is
a match, the in-cache synonym is invalidated and its contents are stored in the line
that the missing item maps to.

EXAMPLE 1: We have an 8 K direct-mapped virtual D-cache with a 16 byte line
size; hence, there are 512 lines. The page size is 4 KB. Page 4 of process A and
page 17 of process B map to the same physical page, say physical page 14. As
can readily be seen (cf. Figure 6.1), from the paging system viewpoint the page
offset is 12 bits long and the virtual page number is 20 bits (we have a 32-bit
architecture). From the cache viewpoint, the displacement is 4 bits and the index
is 13 − 4 = 9 bits. Therefore, the lowest bit of the page number is part of the
index.

Assume that the cache is initially empty and process A reads line 8 of its page 4,
that is, line 8 of physical page 14. It will be stored in cache line 8. Now process B
reads line 8 of its page 17, again line 8 of physical page 14. Without further checking,
it will be stored in line 264 (256 + 8). Now process B writes its line 8, a write hit,
resulting in two inconsistent values of line 8 of physical page 14 in the cache, that
is, an instance of the synonym problem. It will be avoided if on a cache miss two
checks are made: (i) the first one, performed on virtual tags to ensure that there is a
miss (this would be the tag at line 264), and (ii) a comparison between the physical
page number of the missing item (here page 14) and the physical tag(s) of all other
locations in the cache that could potentially be synonyms (here the physical page
number corresponding to the virtual tag of line 8).

In the case of a cache hierarchy where the L2 is physically addressed and tagged
(always the case), the tag in L2 can be augmented with the identifications of the L1
lines (there may be more than one if the L2 line size is a multiple of the L1 line size)
that contain the same memory image as the L2 line. On a miss, checking is done at
the L2 level, so that synonyms in L1 are avoided.

Another drawback of the virtual cache is that I/O addresses are physical. As
we shall see, the mechanisms used in the interaction between I/O devices and the
memory subsystem, as well as those providing cache coherency in multiprocessor
systems, are handled using physical addresses.

In sum, the disadvantages of virtual data caches are sufficiently severe so that
they are practically not used.

Virtual Index and Physical Tags
This last scheme is a combination of the preceding two. If page coloring is not imple-
mented or not sufficient to ensure that the virtual bits used in the indexing will
remain unchanged after the translation, we still have the possibility of synonyms.
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The hardware or software methods just described can be used to avoid them. In
a memory system with a cache hierarchy, the L2 scheme is preferred because it
meshes well with the I/O and multiprocessor coherency requirements that will be
seen in Chapter 7. An alternative, implemented in the IBM PowerPC 620, is to have
a large associativity while limiting the mapping in a way similar to page coloring but
applied to the cache. For example for an m-way set-associative cache of capacity
m · 2k , we can enforce that each line in the set has a pattern of l virtual bits (l < m)
above the lower k bits that is different from those of all other lines. On a reference to
the cache, the set is determined by the k untranslated bits, and a prediction is made
in a fully associative way on the m patterns of the l virtual bits. Of course, complete
tag matching is done in the TLB at the same time. The prediction, that is, the match
on l bits, is quite accurate. The drawback of the method is a small potential loss in
the number of data that can be stored because lines mapping to the same set with
the same l-bit pattern cannot be in cache simultaneously.

6.1.2 “Faking” Associativity

Checking for a hit or miss is one component of the time it takes to access the cache.
The second component of prime importance for cache performance is the miss
ratio. As we showed in Chapter 2 (Figure 2.17), there is a significant drop in the
miss ratio when a direct-mapped cache is replaced by a two-way set-associative one
with the same capacity and same line size. In the case of L1 caches, the drop is less
significant when one passes from two-way to four-way set associativity, but it is still
not negligible.

Providing more associativity to a direct-mapped cache can be done in one of
two ways: (i) use the same cache structure, but slightly modify the tagging system
so that two lines that would conflict in a direct-mapped structure can be present
concurrently, or (ii) add a small buffer that can contain recently replaced lines from
the direct-mapped cache.

One instance of the first scheme is the column-associative cache. The basic idea
is to consider a direct-mapped cache as two independent halves. On a memory ref-
erence, say a load, the cache is accessed using the usual index. On a hit, we are done.
On a miss, the address is rehashed and a second access takes place. On a hit in this
second access, the entries for the first miss and the hit are swapped at the same time
as data are forwarded to the register. The swapping is to ensure an LRU ordering
for the two entries. Note, however, that it took one or maybe two more cycles to
perform the whole operation. On a miss on the second access, we have a bona fide
cache miss. The missing line is loaded in the location of the second miss and then
swapped with the line in the first half, again to ensure LRU ordering. If we want
to limit the second access to a single extra cycle, the rehash must be simple. In the
column-associative cache, the rehash is simply to flip the high-order bit of the index.
As a consequence, this bit must be also part of the tag.

However, we are not quite finished. Consider the string of references
a,b,c,b,c,b,c, . . . where a and b index in the same location and c indexes in the
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bit-flipped location from a and b. In a regular two-way set-associative cache with
LRU replacement, we would have misses on the first references to a, b, and c and
then a series of hits, because b and c would be resident in the cache from there
on. In the column-associative cache as we have presented it so far, we would first
have a miss on a, then a miss on b with now b in the first half and a in the second.
The reference to c accesses the location where a is currently stored first, because
c’s high-order index bit is the opposite of a and b’s. Since the reference is a miss, a
second access is performed at the location where b is stored. On this second miss, b
is ejected; c takes its place and then is swapped with a, which itself is returned to its
original location. But the next access to b will first check the location where a is now,
and the reader can see that c will be ejected, and so on. In effect we have a miss at
every reference as would happen with a direct-mapped cache. The fix is to append a
rehash bit that indicates, when it is on, that the entry is not in its original correct loca-
tion (the case for a in the above example after it has been swapped with b). When
a cache access is performed (in our example, the reference c) and there is a miss on
the first access to an entry with the rehash bit on (in our example, a), we know that
there will be a miss in the second access (here, to the location containing b) and that
the LRU entry is the one just accessed (in our case, a). Therefore, we can eject the
LRU entry and replace it with the line for which there was a miss. The rehash bit
for the latter is set to off. The reader can verify that the only misses are the initial
ones to a, b, and c.

COLUMN-ASSOCIATIVE CACHE ALGORITHM. An entry in the cache consists
of the tuple {tag, rehash bit, data}. An entry has an index, and
a new entry at line index in the cache is filled by the command
enter(index, tag, rehash bit, data). A cache access is decomposed
into its index and tag ref:

if tag(index) = tag ref then begin hit; exit end; /∗hit on first access ∗/
if rehash bit(index) then begin miss; /∗miss since rehash on∗/

enter(index, tag ref, false, data); exit
end;

index1 = fliphighbit(index);
if tag(index1) = tag ref then begin hit; /∗hit on second access∗/

swap [entry(index1), entry(index)];
rehash bit (index1) ← true; exit

end;
enter(index1, tag(ref), true, data); /∗miss on second access∗/
swap [entry(index1), entry(index)];
rehash bit (index1) ← true;

The miss ratio for a column-associative cache is smaller than that of a direct-
mapped cache of same capacity and line size. On the other hand, the access time to
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Figure 6.2. Operation of a victim cache.

the second half of the cache is longer. How these two opposing factors influence the
average access time to the cache, and the memory subsystem in general, depends on
the relative hit ratios and the latency to the next level of the memory hierarchy. As
for a comparison with a two-way set-associative cache with the same capacity and
line size, the miss ratio of the column-associative cache approaches that of a two-
way cache (in fact, in some pathological situations it can be smaller; see the exer-
cises). If a column-associative cache were selected over a two-way cache it would be
because the processor cycle time would have to be lengthened if the two-way cache
were chosen instead of a direct-mapped cache. This does not appear to be the case
anymore in modern microprocessors, but the technique could be applied to other
cachelike structures such as TLBs or branch predictors with tags.

Column-associative caches could be expanded to higher associativity, but the
rehash bit scheme would not carry over. A proposal to improve the hit ratio of two-
way set-associative caches is to use different hashing functions for each of the two
banks. In a skewed-associative cache, one bank is accessed using the usual index bits
while the other is accessed through some XOR combinations of PC bits. The advan-
tage is that conflict misses that would occur in the standard version of set associativ-
ity have a low probability of happening in the skewed version because of interbank
dispersion (i.e., the hashing function would yield a different set in the second bank)
and local dispersion (i.e., lines with consecutive addresses might be placed more
randomly). Experiments have shown that miss ratios of two-way skewed associa-
tive caches were similar to those of four-way standard set-associative caches, but
longer access times and the complexity of the hashing have discouraged industrial
implementations.

The second option that we mentioned was to add a small buffer that will contain
recently replaced lines from the L1 cache. Such a buffer is called a victim cache. The
victim cache is a small fully associative cache that will be accessed after there is a
miss in the L1 cache (Figure 6.2). The victim cache is behind the L1 cache and before
the next level in the memory hierarchy, that is, generally the L2 cache.
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In the presence of a victim cache, a memory reference proceeds as follows
(we assume that physical addresses are used throughout and that the L1 cache is
direct-mapped; it is easy to generalize to set-associative caches). First, the L1 cache
is accessed. If there is a hit, we are done; otherwise, the line that would have been
replaced in a regular direct-mapped cache becomes the victim. Then the victim
cache is probed. If there is a hit in the victim cache, the victim and the line hit in
the victim cache are swapped. Thus, the most recently used reference in the set is in
the direct-mapped cache. If there is a miss in the victim cache, the line that is evicted
from the regular cache, that is, the victim, is stored in the victim cache (if the latter is
full, one of its lines is evicted to the next level in the memory hierarchy). When the
miss is resolved in a higher level of the memory hierarchy, the missing line is sent to
the regular cache.

VICTIM CACHE. An L1 cache access is decomposed into its index and
tag ref. A victim cache (VC) access is an associative search of all
tags in VC (array VC.tag)

L1 Access

if tag(index) = tag ref then begin hit; exit end/∗hit in L1∗/

VC Access

victim ← line(index) /∗index is concatenated with the tag of the victim ∗/

if (one of VC.tag[∗] = concat(tag ref,index), say i then

begin swap (victim, VC[i]); /∗hit in VC∗/

modify LRU(VC); exit

end

Miss

Select LRU line in VC, say j;

Writeback(VC[j]);

VC[j] ← victim;

Because the victim cache is fully associative, the tag of a victim cache entry
consists of the whole physical address except for the d least significant bits, which
are used for the displacement within a line. On a swap, the tag of the victim line in
the cache will be concatenated with its index, and the index will be stripped from
the line in the victim cache when replacing a line in the cache. In general, accessing
(swapping) the victim cache takes one extra cycle, but it is worth it if misses can
be substantially reduced. Experiments show that small victim caches (say four to
eight entries) are often quite effective in removing conflict misses for small (say less
than 32 K) direct-mapped caches. The first victim cache was implemented for the
HP 7100. In its successor, the HP 7200, the victim cache has 64 entries and can be
accessed as fast as a large off-chip L1 data cache of 1 MB (this is 1995 vintage with
both the processor and the cache clocked at 120 MHz).

Larger victim caches have been proposed to assist L2 caches. However, a
related concept, exclusive caching, is preferred. We shall return to the topic in Sec-
tion 6.3.
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6.1.3 Code and Data Reordering

In an out-of-order processor, data cache read misses might be tolerated if there are
enough instructions not dependent on the data being read that can still proceed. On
an instruction cache miss, though, the front-end has to stall until the instructions can
be retrieved, hopefully from the next level in the memory hierarchy. Thus imple-
menting techniques to reduce as much as possible the number of I-cache misses
would be very useful. In this section, we present one such technique, a software-
based approach called code reordering, whose primary goal from the I-cache view-
point is to reduce the number of potential conflict misses.

The basic idea in code reordering for improving cache performance, and also
for reducing branch misprediction penalties, is to reorder procedures and basic
blocks within procedures rather than letting the original compiler order be the
default. The reordering is based on statistics gathered through profiling. There-
fore, the method can only be used for production programs; but this is not much
of a deterrent, for production programs are those for which the best performance is
needed.

Procedure reordering attempts to place code that is commonly used together
close in space, thus reducing the number of conflict misses. For example, in the very
simple case where procedure P is the only one to call procedure Q, it would be
beneficial to have P and Q occupy consecutive portions of the I-cache. The input to
the procedure reordering algorithm is a call graph, an undirected graph where the
nodes represent the procedures and the weighted edges are the frequencies of calls
between the procedures. The most common algorithm is “closest is best,” using a
greedy approach to do the placement. At each step of the algorithm, the two nodes
connected by the edge of highest weight are merged. A merged node consists of an
ordered list of all the procedures that compose it. Remaining edges that leave the
merged node are coalesced. Procedures, or sets of procedures, say A and B, that
are selected are merged, taking into account which of the four possible orderings
AB, AreverseB, ABreverse, AreverseBreverse yields the heaviest connection between the
procedures at the boundaries of the two sets.

Basic block reordering is nothing more than trying to maximize the number of
fall-through branches. From the cache viewpoint, its advantage is that increasing
the length of uninterrupted code sequences allows a more efficient prefetching of
lines from the cache into the instruction buffer as well as prefetching between the
cache and the next level in the memory hierarchy (see Section 6.2.1). Additionally,
because only taken branches are stored in the BTB, the latter can be better utilized.
Finally, as we saw in Chapter 4, the correct prediction of taken branches requires an
extra cycle in most deeply pipelined microarchitectures, a penalty that is not present
for successfully predicted not-taken branches.

Basic block reordering within a procedure proceeds in a manner similar to that
of procedure reordering, except that now the call graph is a directed graph, that is,
the positions of blocks within a merged node are dictated by the original control
flow. Further refinements, using techniques similar to page coloring but applied to
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the line level, can modify the resulting order so that blocks in concurrently executing
procedures are put in nonconflicting positions.

The more refined algorithms give significant improvements in the hit rate of
small direct-mapped I-caches. Because most I-caches today are larger than those
used in the experiments and because many I-caches are two-way set-associative, the
improvements in hit rate might be marginal in modern microprocessors. However,
code sequentiality is important for the front-end, as we saw in Section 4.2.1 when
considering the impediments in instruction fetch bandwidth.

Cache-conscious data placement is more complex. Algorithms must be devised
for the heap, the stack, and global variables. Profiling becomes more of an issue.
Consider a compiler like GCC. It performs its operations in roughly the same order
for all programs; therefore, code reordering should be beneficial. On the other hand,
the data that it uses, such as symbol tables, can be of wildly different sizes; thus
data reordering might work for some compilations and not for others. In general, in
order to optimize the D-cache performance, knowledge of the type of program by
the programmer or the compiler is often required. For example, in linear algebra
programs, changes in the code allow traversals of arrays that result in less cache
misses. In addition to these transformations, other compiler optimizations can be
used, such as cache tiling, which divides the loop iteration space into smaller blocks
(tiles) and ensures better reuse of array elements within each tile. Another example
is the design of sorting algorithms taking into account the cache hierarchy capacity
and organization. In both the linear algebra and sorting programs, not only has the
cache become exposed to the user (compiler) as a feature of the architecture, but in
addition the cache geometries are now inputs to the programs.

6.2 Hiding Memory Latencies

In the previous section, we looked at ways to reduce cache access time and to
increase hit ratios in small L1 caches. We now turn our attention to techniques to
hide latency.

6.2.1 Prefetching

Until now we have considered only on-demand caching, that is, a cache miss had
to be detected before filling in a cache line. Prefetching is a predictive technique
that attempts to bring data or instructions into their respective caches before their
use, so they can be accessed without delay. Prefetching can be implemented with
either software instructions or hardware assists. It can be applied to both instruc-
tions and data. Prefetching can be performed between any levels of the memory
hierarchy, including paging between main memory and disk. However, in this chap-
ter we restrict ourselves to the cache hierarchy in a single-processor environment.
Prefetching mechanisms have also been developed in the context of multiproces-
sors. We shall return to this subject in Chapters 7 and 8.

Because prefetching is predictive, we could try and apply the predictor model
that we presented in Section 4.1.1 for branch prediction, but tailoring it now to
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prefetching. However, there are fundamental differences between the two predic-
tors that prevent the use of the same model. First, the events on which prefetch-
ing will be activated are dependent on the technique that is used. For example, as
we shall see, prefetching can be done subsequent to a cache miss, or on the occur-
rence of specific instructions, or on scanning the contents of some cache line. This
is in contrast with branch prediction, where the predictor is looked up every time
new instructions are fetched. Second, and maybe most importantly, a mispredic-
tion in prefetching impacts performance only. The correctness of the program is
not at stake. There is no need for a recovery procedure. Of course, we know that
this is not the case for branch prediction. As a third difference, success or failure of
the prefetch prediction may be known only thousands of cycles after the event, not
within a few cycles as in branch prediction, and therefore a feedback mechanism is
much harder to implement. Furthermore, the prefetching predictors (from now on
abbreviated as prefetchers) do not have a structure that can easily take advantage
of such feedback.

Prefetchers can be assessed on three criteria:

� Accuracy. This is the ratio

useful prefetches
number of prefetches generated

� Coverage. This is the ratio

useful prefetches
number of misses when prefetching is turned off

� Timeliness. This criterion involves whether the prefetch was too early, thus dis-
placing some useful data in the cache that have to be reloaded before using the
prefetched data (this double jeopardy situation is called cache pollution), or too
late because the data were not yet there when they were needed (such cycles
are called hit–wait cycles). However, even in the presence of hit–wait cycles, the
prefetch is useful.

Note that we can trade off accuracy for coverage and vice versa. At the end, though,
what counts is the performance advantage incurred by the prefetcher that was used.

The goal of prefetching is to hide memory latency by increasing the hit ratio in a
timely manner. This responds to the “why” of prefetching; we should also answer, or
show the alternatives for, the “what,” “when,” and “where” before showing some of
the “how.” Ideally, what we would like to prefetch is a semantic object, as in the true
segmented schemes of virtual memory (recall Section 2.3.1). However, in practice
one or more cache lines will be the units of prefetching. The “when” question is
twofold: the first part refers to timeliness as just defined (prefetching should ideally
occur in such a way that the item being prefetched is in the cache just before its use),
and the second part deals with the event that triggers the prefetch. As mentioned
earlier, there are many possible such events. Where the prefetch item should be
stored refers not only to which level of the cache hierarchy should be the recipient
of the prefetched item, but also to whether there should be special prefetch buffers
that can (exclusively) receive the prefetched information.
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Before proceeding to describe a number of prefetching schemes, it is important
to warn about some potential disadvantages of prefetching. Independently of the
type of prefetcher, prefetch events will compete for resources that are used for reg-
ular memory operations. For example, before prefetching a line, one must be sure
that it is not already in the cache. In order not to penalize regular memory opera-
tions, this might require an extra port to access the cache tags. As another example,
prefetches will contend for the memory bus with regular load and store instructions.
Priority must be given to the latter, and moreover, as much concurrency as possible
should be allowed in transfers between memory levels. The caches therefore must
be lockup-free (cf. Section 6.2.2 in this chapter).

Software Prefetching
All powerful microprocessors today have a prefetch instruction in their ISA in one
form or another. The simplest one, for example in the Alpha architecture, is a load
instruction with the result register being hardwired to 0. This load is called non-
binding, in contrast with loads to other registers that result in a binding change
to the processor state. The line that contains the word being addressed is fetched
from the level in the memory hierarchy where it currently resides and is percolated
down to the lowest level in the L1 D-cache. More sophisticated prefetch instruc-
tions, with various names such as “fetch” and “touch,” perform the same operation
with the possibility of designating the level in the cache hierarchy where the prefetch
should stop, as for example in the Intel Itanium. Some prefetch instructions, associ-
ated with the subset of ISA instructions related to multimedia (SSE for Intel, VIS
for Sun), work on streams of data (cf. the stream buffers discussed later in this
section).

The challenge in software prefetching is related to timeliness. Where should
the compiler or programmer insert the instructions so that the data arrive in time?
Loops in programs that traverse arrays are prime locations where the prefetch
instructions can be used. A simple example is shown in Figure 6.3. Since a prefetch
instruction brings a line that will in general contain several elements of the array,
often the prefetches should be prevented from occurring every iteration, as would
happen in the naive prefetching of Figure 6.3. Thus, either the control structure of
the program must be modified with a test (predicate) preceding the prefetch instruc-
tion, or the loops must be unrolled as many times as there are array elements in a
cache line. Attempts have also been made to generate prefetches in pointer-based
structures. The difficulty is that most often loops are quite tight in programs that use
linked data structures, and there is very little leeway to generate prefetches unless
the algorithms are rewritten with prefetching in mind.

Performancewise, some of the gains that can be incurred via software prefetch-
ing must be balanced against the overhead – namely, the number of additional
instructions that need to be executed – and register pressure. At the very least,
prefetch instructions themselves are now part of the computational load, and some
register must be used as a component of the prefetch address. If other instructions
are used as a predicate surrounding the prefetch, instructions to compute the pred-
icate become part of the overhead. This can become quite costly, as in the example
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in Figure 6.3, where the predicate involves an expensive modulo operation. If loops
are unrolled to minimize the number of extra instructions as in the last segment in
Figure 6.3, the code is expanded and may lead to more instruction cache misses.
Moreover, in loop unrolling, registers are at a premium, and the extra registers
needed for the prefetch may lead to structural hazards. As a result, in order to
achieve timeliness and low overhead, software prefetchers will tend to have low
coverage and hopefully high accuracy.

Original program without prefetching:

for (i = 0; i< n; i++)
inner = inner + a[i]∗b[i];

Naive prefetch:

for (i = 0; i< n; i++) (
prefetch (&a[i+1]);
/∗ might generate an exception on last iteration∗/
prefetch (&b[i+1]);
inner = inner + a[i]∗b[i];

)

Naive prefetch with predicate:

for (i = 0; i< n; i++) (
if (i �= n−1 and i mod 4 = 0) then (
prefetch (&a[i+1]);
prefetch (&b[i+1]);
)
inner = inner + a[i]∗b[i];

)

With loop unrolling:

prefetch (&a[0]);
prefetch (&b[0]);

for (i = 0; i< n−4; i+=4) (
prefetch (&a[i+4]);
prefetch (&b[i+4]);
inner = inner + a[i]∗b[i];
inner = inner + a[i+1]∗b[i+1];
inner = inner + a[i+2]∗b[i+2];
inner = inner + a[i+3]∗b[i+3];

)
for (; i<n; i++)

inner = inner + a[i]∗b[i];

Figure 6.3. A program to compute an inner product using software prefetching. It is assumed
that a cache line contains four array elements. (Adapted from Vanderwiel and Lilja VL00.)
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Implementing prefetching instructions asks more of the microarchitecture than
just taking care of an extra opcode. As we mentioned above, the caches must be
lockup-free, but this is now the norm in modern microprocessors. In addition, as
mentioned already, some priority schemes must be embedded in the hardware to
give priority to regular memory operations over prefetches. Also, if the prefetch
instruction generates an exception, such as a page fault or a protection violation, the
instruction should not proceed and the exception should be ignored. Of course, all
these needs are also mandatory for hardware prefetchers, and software prefetching
implementation costs are low compared to those of hardware prefetchers.

Sequential Prefetching and Stream Buffers
Sequential prefetching, (i.e., the prefetch of a line adjacent to one that has just
been referenced), also called one-block lookahead (OBL) or nextline, is a means to
exploit spatial locality of code and data. As we saw before (cf. Figure 2.18) the best
line size for a D-cache depends on the application. Sequential prefetching allows
making the line size look larger. For I-caches, sequential prefetching will favor pro-
grams that have long sequences of code without branches or with branches that will
most likely fall through, a goal of the code-reordering algorithms that we have just
presented.

There are several variations on OBL, depending on when to initiate the
prefetch. Upon referencing line i, a prefetch to line i + 1 if it is not in the cache
can either (i) be always done, or (ii) be done only if there is a miss on line i, (i.e.,
prefetch on miss), or (iii) be more selective. The always-prefetch strategy will result
in high coverage but low accuracy. The prefetch on miss will perform better and is
the method of choice for I-caches. However, for D-caches it has in general lower
coverage than a tagged prefetch. An implementation of tagged prefetch is to asso-
ciate a tag bit with each line. The tag is set to 0 initially and reset to 0 upon replace-
ment. When a line is referenced or brought into the cache on demand, the tag is set
to 1, but it retains its 0 value if the line is brought in via a prefetch. A prefetch to line
i + 1 is initiated when the tag bit of line i is changed from 0 to 1. As can readily be
seen, the tagged scheme will perform much better than prefetch on miss on a series
of references to consecutive lines.

OBL can be enhanced for D-caches by allowing prefetching forward (line
i + 1) or backward (line i − 1), at the cost of an extra tag bit. In processors with
ISA that implement auto-increment of index registers, the prefetching can be done
after the auto-increment step. That is, if the effective address is the sum of some
register Rj and offset k, then the line at address Rj + k + (auto-increment constant)
will be prefetched if it is not already in the cache.

The most detrimental aspect of OBL and its variants is that their timeliness is
often poor, especially if the prefetch has to percolate through levels of the mem-
ory hierarchy. OBL can be adaptive in the sense that several consecutives lines are
prefetched rather than one, with the number of lines being prefetched depending on
the success or failure of prefetches. This feedback mechanism is not very reliable,
because its own timeliness is in question. An interesting twist to adaptive prefetching
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has been implemented in the IBM Power4 (see the sidebar in this chapter), whereby,
upon a miss on line i, lines i + x are prefetched with different x’s and different num-
bers of lines depending on the level in the cache hierarchy.

In order to prevent cache pollution in adaptive prefetching, the sequential lines
can be brought into stream buffers. These buffers are FIFO structures of fixed size
corresponding to the maximum number of lines that one would prefetch in adaptive
sequential prefetching. Upon a memory address reference, both the regular cache
and the head of the stream buffer are checked. In case of a hit in the stream buffer,
the line is transferred into the cache, and another prefetch to sequentially fill the
buffer is initiated. If there is a miss both in the cache and at the head of the stream
buffer, the latter is flushed. Starting a new stream buffer filling can be initiated as in
the OBL tagged scheme. A single stream buffer of (say) four to eight entries is suffi-
cient for enhancing significantly the performance of I-caches. For D-caches, not only
is there a need for more than one stream buffer, but also the technique, which caters
solely to improvements due to enhanced spatial locality, is not as comprehensive as
it could be.

Stride Prefetching
In a program segment with nested loops indexed by i1, i2, . . . , im, memory access
patterns can be classified as:

� Scalar: These are simple variable references such as to an index or a count.
� Zero stride: These are accesses to indexed variables in outer loops whose sub-

script expressions do not change while executing inner loops; for example,
A[i1, i2] while in the inner loop of index i3, or B[i1] while in the inner loop of
index i2.

� Constant stride: These are accesses to variables whose subscript expressions are
linear with the index of the loop; for example, A[i1, i2] while in the inner loop
of index i2.

� Irregular: None of the above, as in pointer-based structures or array variables
whose subscript expression contain other array variables; for example, A[i1,
B[i2]] in a loop of any nested depth.

Standard caches work well for scalar and zero-stride accesses. Caches with large
block sizes and sequential prefetching can improve the performance of constant-
stride accesses if the stride is small, but will be of no help, or even detrimental, if the
stride is large. In order to cater simultaneously to the first three categories above, a
more sophisticated scheme is needed.

Given a string of references a, b, c, . . . three references are needed to detect if
it is a stream, that is, a string of references whose addresses differ by a constant,
namely b − a, called the stride. Differences in hardware prefetchers that recognize
strides will arise in the implementation, namely, (i) whether the prefetched data will
be put in the cache or in stream buffers, (ii) the timing of the prefetches, (i.e., the
amount of lookahead), and (iii) how much is prefetched. We present two schemes,
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Figure 6.4. Reference prediction table (basic scheme) and its finite-state machine (adapted
from Chen and Baer [CB95]).

one based on a reference prediction table and one that is an extension of sequential
stream buffers.

As its name implies, the reference prediction table (RPT) method is based on
the building, updating, and looking up of a table that will indicate whether prefetch-
ing should be done upon the recognition of a memory access operation. The RPT is
organized as a cache. Minimally, each entry in the table will contain a tag related to
the instruction address; fields to record the last operand address that was referenced
when the program counter (PC) reached the instruction; the stride, (i.e., the differ-
ence between the last two addresses that were generated); and a state transition field
as shown in Figure 6.4.

Prefetching using RPT proceeds as follows. For notational purposes, let an entry
in the RPT be the tuple (tag, op.address, stride, state), and let index point to the
entry in the RPT. When a memory access instruction is decoded, a check is made
to see whether there is a corresponding entry in the RPT. If not, it will be entered
in the RPT after the memory operand address has been computed with a stride of 0
and the state initial. On a hit, thus determining index, and also after the operand
address has been computed, stride will be computed as the difference between the
current memory operand address, op.address, and the address at index(op.address).
Then, depending on the stride and the state, one of the following actions will take
place:

� The state is initial. The entry at index becomes (tag, op.address, stride, transient).
This corresponds to the second access to the memory instruction.

� The state is transient, and the computed stride equals index(stride).This cor-
responds to a third access and the detecting of a stream. The entry at index
becomes (tag, op.address, stride, steady), and prefetching can start (prefetch-
ing could also start at state transient with better coverage and lower accuracy).
Prefetching will be for the line at the address that is the sum of the instruc-
tion operand address and the stride. Of course, the cache is checked first to see
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whether the line to prefetch is already present in cache, in which case it will be
aborted; this will occur often for constant- and zero-stride items.

� The state is steady, and the computed stride remains the same. Prefetching con-
tinues to occur, subject to the absence of the line in the cache, and only the
address field is updated.

� The state is steady, but the computed stride becomes different. We have reached
the end of the stream (in fact, we have overflowed it). The state is reset to initial
with a stride of 0.

� The state is transient, and the computed stride is different from the one in
the table. No stream has been detected. The state is set to no-prediction,
and no prefetching is done, although index(op.address) and index(stride) are
updated.

� The state is no-prediction. There will be no prefetching. The stride is recom-
puted at each reference, and in case it is equal to index(stride), the state is set to
transient, because a new stream might have been detected.

The basic RPT scheme’s timeliness depends on the time interval between exe-
cutions of the same instruction, which is the time to execute an iteration of the inner
loop that contains the instruction. If the loop is tight, the prefetching will be ini-
tiated too late. A lookahead mechanism can be implemented whereby instructions
ahead of the current PC are addressed using a lookahead program counter (LA-PC).
Instructions accessed by the LA-PC that are neither memory nor transfer of control
are ignored. The LA-PC is modified by branch instructions according to the status
of the branch predictor at that time. Memory access instructions accessed by the
LA-PC look up the RPT and generate prefetches when appropriate, that is, when
the corresponding entry is in state steady. Memory instructions accessed by the PC
look up and update the RPT. Since the LA-PC can be several iterations ahead of
the PC, a new field per entry is needed, namely the number of iterations that LA-PC
is ahead of PC. This counter is incremented by the LA-PC and decremented by the
PC. A prefetch generated by LA-PC is for (op. address) + (stride × count). Since
the LA-PC can be way ahead of the PC, a limit must be imposed on how far it can
deviate from the PC. The limit is related to the latency to fetch an item from the
next level in the memory hierarchy. When a branch instruction executes and gives a
result opposite to its prediction, the LA-PC is reset to the value of the PC given by
the branch execution.

The lookahead RPT scheme requires a double-ported RPT. In addition, as in all
prefetching schemes, the regular cache is going to be accessed concurrently by reg-
ular requests and prefetch tests to see whether the item to be prefetched is already
there. Either an additional port to the tag array is required, or some form of filtering
is needed to limit the number of prefetch tests.

The second class of methods, which are extensions of stream buffers, is cheaper
to implement, but their accuracy and timeliness are more difficult to control. One
of the schemes was proposed as a replacement for off-chip L2 caches in high-
performance processors, such as Cray machines, that were intended for scientific
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programs where there is a dominance of stride accesses. The stream buffer exten-
sions consist of:

� More than one buffer: Then, of course, checking for a hit requires checking not
only in the cache, but also at the head of each buffer. When a miss is detected, a
new buffer is allocated. If there is no buffer available, the LRU one is replaced.

� Filtering: Instead of starting prefetching as soon as a buffer is allocated,
prefetching will be initiated only when there are misses to consecutive blocks.
Note that this is not really stride prefetching, but rather an extension of OBL.

� Nonunit stride: Since the PC is not available off chip, computation of the stride
as in the RPT method is not possible. Instead, a possibility is to implement finite-
state machines, similar to the one in the RPT, for regions of the addressing
space. The size of the regions must be assigned statically by the programmer
or compiler. Additional machinery can be used to be sure that the stride cor-
responds at least to consecutive blocks and to prevent overlapping addresses in
prefetch buffers.

An alternative, when the PC is available, (i.e., for L1 caches), is to replace the
unit-stride detection by a prediction table. The prediction table just predicts the
stride associated with a particular memory instruction address and thus is slighter
simpler than the basic RPT.

Prefetching for Pointer-based Structures
Hardware mechanisms for pointer-based structures are more complex and in the
case of the L1–L2 interface are hampered, as mentioned earlier, by the tightness of
loops in applications that use linked lists. Architectures that use a separate prefetch
engine that executes a subset of instructions selected by the compiler or the user
have been proposed. In contrast with the use of the RPT and/or stream buffer, this
prefetch engine is statically controlled.

Correlation Prefetchers
Sequential and stride prefetchers, and the prefetchers for linked lists, rely on mem-
ory access patterns as defined by programming language concepts. An alternative is
to use address correlation between misses as a basis for prefetching.

In Markov-based prefetching, the reference stream of misses to a given level
of the memory hierarchy is used to build a Markov model where nodes represent
missing addresses and where transitions among nodes, say between nodes A (the
source) and B (the target), represent the probability (transition frequency) that a
miss on A will be followed by a miss on B. A correlation table is built, indexed by
source nodes, where each row gives addresses of the targets as well as their frequen-
cies, which can be translated into probabilities. If there is a miss on A, if B has been
entered with probability p, and if B is not cached, a prefetch is enqueued for node B
in a prefetch queue ranked in decreasing order of probabilities, with actual misses
having probability 1. Note that this model can only be approximated, for the table is
limited in size both in number of rows (number of sources in the table) and in width
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of rows (number of potential targets following a given miss address). The concept is
best applied after checking a stride detector or predictor.

There are several problems associated with Markov prefetching as presented
here. In order to get good coverage, the number of targets for each source must
be more than one. This requirement means that the limitation of the method may
be in the bandwidth required between the level of the memory hierarchy where
prefetching is initiated and the next level. Second, because the accuracy is restricted,
cache pollution could ensue. Having small associative prefetch buffers outside the
cache can remedy the situation. Accuracy can be enhanced by correlating a miss
with two previous misses, at the expense of lower coverage. In all cases, though,
timeliness is an issue that cannot be controlled.

An alternative that caters to the pollution and timeliness concerns is to base the
correlation not on subsequent misses but on the presence of dead lines in the cache.
A dead line in a cache is a line that will not be referenced before being replaced.
If a predictor can detect the last touch to a line, say at address A, before its evic-
tion and predict the line, say B, that will replace it, then prefetching of B can occur
as soon as A has been detected to be dead. In general, this will be long before the
miss correlating with A would occur. Moreover, because B will take the place of a
dead line, there will be no cache pollution. It remains of course to predict accurately
both the dead line and its replacement! Instead of relying on a miss stream, instruc-
tions addresses that precede the last touch of a block are recorded, and the same is
done for the replacement. Because it is not practical to record strings of individual
addresses, a signature of the string of addresses is formed and used as an index in a
table that predicts whether a line is dead. If so, the same entry will give the address
of the line to prefetch.

A significant drawback of correlation prefetchers in general is the amount of
state that must be kept, that is, the overhead of storing the correlations. The tables
for an L1 cache are orders of magnitude larger than the cache but, of course, don’t
have to be accessed as rapidly. For L2 caches, the storage required for the tables is
of the same order of magnitude as the cache itself, thus raising the question whether
just allocating the storage to the cache itself would not yield as good or better
performance.

Stateless Prefetching
The timelessness of dead-line prefetchers is certainly an improvement on that of
Markov prefetchers, but still does not have quite the controllability found in the
lookahead RPT scheme. Besides the vast amount of state required for the correla-
tion tables, a secondary inconvenience of correlation prefetchers is that it may take
some time before the tables are warmed up.

Contentless prefetchers do not require any state. They answer the requirement
of lookahead clearly needed in pointer-based applications and should be used in
conjunction with a stride prefetcher. They are better suited for L2 on-chip caches in
that the demand requests from L1 to L2 provide a feedback on the success of previ-
ous prefetches, whose accuracy could be a problem, and in that they require knowl-
edge of physical addresses and thus access to the TLB. The basic idea is that when
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a line is fetched into L2, the line is scanned for the presence of virtual addresses
close to that of the one that has generated the loading of the line. If some of these
are detected and, once translated, if their corresponding lines are not in L2, they are
prefetched in some prefetch buffer. The process continues recursively, thus forming
a chain of prefetching, until either there is no candidate line to be prefetched or
the depth of recursion is greater than a given threshold related to the depth of the
buffers and the latency of the next level of the memory hierarchy. Feedback from
L1 occurs when there is an L1 miss serviced by the L2 buffer. The contents of the
buffer are transferred to L1 (partially if the line size of L2 is greater than that of L1)
and to L2, thus freeing an entry in the prefetch buffer and decreasing the depth of
the recursion.

The main implementation difficulty resides in uncovering virtual addresses in a
cache line. The premise for the heuristic is that in pointer-based structures there is a
good chance that the base address of the structure has the same high-order (virtual)
bits as the fields in the structure. Therefore, comparisons between the n (a parame-
ter of the method) high-order virtual bits of the address of the line just fetched (or
prefetched) and the n high-order bits of address-sized values in the cache line are
performed. On a match, the virtual-to-physical address translation is done and the
prefetch is initiated. The depth of the prefetch serves as a priority for enqueuing
requests to the next level of the memory hierarchy. If there is a TLB miss – not so
rare an occurrence, according to simulations – the miss has to be resolved. Although
the TLB miss certainly does not improve the prefetching timeliness, resolving the
TLB miss in parallel with what the processor is doing on the regular program is cer-
tainly worthwhile if the prefetching is accurate. The feedback provided by the L1
misses helps improve the accuracy by reinforcing the chains of prefetches that have
been successful.

A more greedy solution, which has been called scheduled region prefetching, is
to prefetch many lines surrounding the missing one. For example, on a cache miss,
the whole (physical) page that contains the line is brought into the cache. Of course,
this greedy approach will be beneficial only if the cache is large and the bandwidth
between the cache and the next level of the memory hierarchy is high. These criteria
imply that the cache should be the one closest to main memory, (i.e., L2 or L3),
depending on the overall system. A little intelligence in the method, besides not
prefetching lines already in the cache, will help: prefetching only when the interface
to memory (see Section 6.4 in this chapter) is idle, and placing prefetches in low
priority in the cache, for example, close to the LRU position. Intelligence in the
memory controller in scheduling the prefetches and giving priority to the real misses
is also beneficial.

Prefetching Summary
Modern microprocessors have prefetch instructions in their ISA. However, standard
compilers take little or no advantage of these instructions. Embedded systems with
their customized programs are more prone to use prefetch instructions. All micro-
architectures implement at the very least a variation of OBL for their L1 I-cache and
some form of sequential or stride–stream prefetching for their D-caches. We have
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examined a number of prefetching schemes for irregular patterns that have not yet
found their way in present microarchitectures. Because measurements and simula-
tions have shown that sophisticated microprocessors could be idle as much as 50%
of the time due to L2 or L3 misses, it should be simply a matter of time before some
combination of software and hardware prefetching that caters selectively to all types
of memory access patterns becomes more common in commercial products.

6.2.2 Lockup-free Caches

In in-order processors, instructions cannot proceed past a stalled instruction. In case
of a D-cache miss on a load, all instructions starting with the first one having a RAW
dependency on the load must wait till the miss is resolved before entering the back-
end. We saw how this led to rollback mechanisms for processors such as the Alpha
21164. By contrast, in out-of-order processors, instructions that follow the load that
missed can enter reservation stations and execute if their operands are ready. We
saw how cache misses then could lead to misspeculation and reexecution of some
instructions, but nonetheless computation could proceed until no instruction could
be selected for execution. However, in view of the fact that the cache is busy waiting
for the miss to be resolved, how do we resolve cache accesses?

Allowing cache accesses resulting in hits while a single miss is outstanding
does not add much complexity to the design, for all information related to the
cache miss is known. This hit-under-miss policy was implemented in the Hewlett-
Packard PA 1700. Whereas allowing a simple hit-under-miss policy reaps most
of the benefits that can be attained in the L1–L2 interface, more than one miss
should be allowed with more powerful processors. Not only will that provide more
opportunities for computation to proceed, but also mechanisms such as prefetching
and policies such as relaxed memory models for shared-memory multiprocessors
(cf. Chapter 7) depend on it. The design is more complex, for now the data coming
back from higher levels of the memory hierarchy can arrive in an order different
from that of the requests. Caches that allow several concurrent misses are called
lockup-free or nonblocking caches. Many L1 D-caches1 in current microprocessors,
and the great majority of L2 caches, are lockup-free. Note that having several main
memory requests outstanding will also affect the complexity of the memory con-
troller. In the following, we assume that write misses and dirty line replacements
are handled with write buffers, and we consider only the case of read misses.

The basic idea is to encode the information related to a miss in a missing sta-
tus holding register (MSHR). When a cache read miss occurs, an MSHR is asso-
ciated with it. Minimally, as shown in Figure 6.5, an MSHR for an L1 cache must
contain:

� A bit indicating whether it is free or busy. If there is no free MSHR, we have
an instance of a structural hazard. The processor must stall until an MSHR
becomes free.

1 In this section only L1 D-caches are of interest, and we will not mention the “D” part any longer.
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� Information regarding which missing line is attached to it. Assuming a physi-
cally indexed, physically tagged cache, the MSHR must contain the part of the
address that is needed to bring in the missing line and store it in the cache, that
is, all of the physical address except for the displacement bits. A comparator
is associated with this information, and it is used in two ways. First, on a miss,
all MSHRs are searched in parallel to see whether the missing line has already
been requested. If it has, the MSHR is updated or the processor is stalled as
discussed in the following, but no new MSHR is allocated. Second, when a
line returns from the next level in the memory hierarchy, again all MSHRs are
searched associatively, and one of them will necessarily match the returning
address. Note here the requirement for both address and data to be returned
via the memory hierarchy buses.

� A bit indicating whether the line is valid or not. This is a requirement imposed
by cache coherency protocols in shared-memory multiprocessor systems, which
will be discussed in Chapter 7.

� For each word (or basic addressable unit in the ISA) in the line, fields indicat-
ing to which physical register the data should be forwarded in case of a load,
whether the data are valid or not (they could have become invalid because of
the presence of store buffers and load speculation), and miscellaneous bits indi-
cating the type of operation (e.g., load word or load byte).

When a missing line returns from L2, all destination fields of the associated
MSHR and the cache line can be filled. In the most extreme case this would mean
that the register file should have as many ports as possible words in a line. If this is
not the case, the line must be buffered and the destination registers filled on consec-
utive cycles.

Note that stalls can still arise independently of those due to structural hazards
if two load misses refer to the same word. This is not so unlikely an occurrence in
string-processing programs where the basic unit of information is a byte. The basic
layout could be expanded to replace the “word” fields by “position” fields within
the line. Nonetheless, the same stall condition could still arise. A more costly design
that would prevent these secondary misses would then be an inverted MSHR file
whereby an MSHR is associated with each physical register. In view of the fact that
current microprocessor can have more than a 100 of those, this is clearly overkill.
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Simulations have shown that four MSHRs at the L1–L2 interface were more
than sufficient. With prefetching, more could be advantageous, mostly at the L2–
L3, or main memory, interface. The redeeming feature is that the MSHRs at the
L2 level are slightly less complex, in that the destination fields are lines in the
L1 cache.

6.2.3 Other Optimizations

Besides prefetching and lockup-free caches, other optimizations try to reduce the
latency between levels of the memory.

Critical Word First
This optimization is intended for L1 caches. A miss to an instruction or a datum is
not necessarily to the beginning of a line. Thus the cache controller at the L2 level
can determine which part of the line is critical – for example, the next instruction to
be executed in the case of an I-cache miss, or the byte, word, or double word to be
loaded in the case of a D-cache miss. The line is logically rotated, and the critical
word is sent first. It then can be forwarded directly to the instruction fetch buffer
for an instruction miss along with the remainder of the physical lineup, or to the
physical register that is awaiting it for a data read miss. Of course, the line is stored
in the corresponding cache in its original form. The only resource requirements are
a buffer and a shifter.

Write Strategies
We saw in Chapter 2 that one could implement any of the four strategies given by
the Cartesian product {writeback, write-through} × {write-allocate, write-around}.
Moreover, write buffers could be used to delay the writing to the next level of the
memory hierarchy, thus allowing loads to bypass stores as seen from the memory
hierarchy viewpoint. Furthermore, with load speculation, loads can bypass stores
even before the latter have received the data that should be written. As we shall see
(Chapter 7), this memory ordering, called processor consistency, violates the sequen-
tial consistency property for parallel programs but is of no correctness consequence
in single-processor environments.

Reads (loads) are certainly more important to optimize than writes (stores),
because they might prevent computations from proceeding. Reads occur twice as
often as writes, and miss rates for loads and stores are about the same. Although
scheduling priorities and speculation are thus directed towards loads, the perfor-
mance of writes should not be neglected, because storing from one level of the
memory hierarchy to the next uses a single communication resource, a bus, shared
by reads and writes. Write buffers are one way to allow read misses to be served
before write misses.

A succession of write misses will occur upon initialization of a data structure
such as an array. In writeback write-allocate strategies, there will be a succession
of write misses that will rapidly fill the write buffer, thus triggering a structural
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hazard that will most likely prevent the computation from proceeding, regardless
of whether a write-allocate or a write-around policy is implemented. A policy called
write-validate can be implemented whereby, upon a write miss, the data are writ-
ten directly in the cache. This policy requires a valid bit per writable field in the
line, because all other data in the line must be invalidated. The write-validate
policy is therefore best with write-through caches. A possible variation, good for
write-through direct-mapped caches only, is for all writes to write directly in the
cache in parallel with checking the tag. In the case of a miss, the rest of the line is
invalidated.

A mix of policies, writeback or write-through associated with write-allocate or
write-around or write-validate, can be implemented page by page. Hints given by
the compiler, with variations in the opcode if possible, could also help by letting the
hardware know which policy is best for a given static instruction.

6.3 Design Issues for Large Higher-Level Caches

Multilevel cache hierarchies are now a given for personal computers and worksta-
tions and, of course, for servers. In the following we will generically talk about L2
caches as on-chip and closest to main memory. In some systems, we have off-chip L3
caches between L2s and main memory; most of what follows can easily be adapted
to include the extra level if necessary.

6.3.1 Multilevel Inclusion Property

We saw in Chapter 2 the needed interactions, (e.g., invalidate or purge), between
cache and main memory when I/O operations had to be performed. In the case of
a cache hierarchy where L2 is closest to the memory bus on the processor side,
it is convenient to design the L1–L2 interface so that L2 can shield L1 from all
invalidation requests that have no effect on the contents of L1. In order to do so
we can impose the multilevel inclusion property (MLI). For an L1–L2 hierarchy, the
MLI property states that the contents of L2 are a superset of those of L1. In the case
of a write-through L1 cache, the definition is unambiguous. If L1 is writeback, MLI
is a space property, that is, there is a line in L2 that has been allocated to either have
the same contents as a line in L1 if the latter is clean, or receive the dirty contents
of L1 when the latter is replaced.

In the case of a single processor, imposing MLI is not difficult. As we shall see in
Chapter 7, MLI becomes more complex if several L1s are backed up by a shared L2.
Considering only the single-processor case and assuming a writeback L1, imposing
MLI is simple if L1 and L2 have the same line sizes. Let a, a′, and b be lines in L1
with corresponding lines A, A′, and B in L2.

� On a miss to L1 and L2, the new line is allocated in both caches: a in L1, A
in L2. The line a′ replaced in L1 is written back in A′ if it is dirty. If a line B
different from A′ is replaced in L2, then if there is an image b of B in L1, b must
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Figure 6.6. Illustration of imposing the MLI
property.

be invalidated and, if dirty, copied back in B before the latter is transferred
to main memory. The initial situation is shown in Figure 6.6(a) with two-way
set-associative L1 and L2. The final situation is in Figure 6.6(b).

� On a miss to b in L1 and hit to B in L2, the victim a that is going to be replaced
by b in L1 is transferred to A in L2 if it is dirty. The contents of B in L2 are
transferred to b in L1, and MLI is assured.

� On an invalidation request for a line, first a check is made to see whether the
line is in L2. If not, L1 does not need to be disturbed. If the line is present in L2,
a check must be made in L1 unless we provide some information in L2 stating
that the same line is cached in L1 (a single bit suffices). If the bit is on, the line in
L1 exists and must also be invalidated. If the bit is off (the usual case, because
L2 is in general an order of magnitude larger than L1), there is no need for
an L1 check. Adding an inclusion bit requires some action when a line in L1 is
replaced, even if the line is clean, because the inclusion bit of the corresponding
line in L2 must be cleared.

We have made two assumptions in describing how MLI can be enforced. First,
we have assumed that L2 had a larger capacity than L1. It is difficult to envision the
opposite. Second, we have assumed that different lines in L1 mapped to different
lines in L2. In other words, the associativity of L2 must be at least as much as the
associativity in L1.
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Imposing MLI becomes slightly more stringent when the line sizes are unequal.
Let B1 be the line size for L1, and let B2 be the line size for L2. We will consider
only the usual case where B2 ≥ B1 and B2 is a multiple of B1. Now, instead of a
single inclusion bit associated with the tag of a line in L2, we need B2/B1 such bits,
one for each line in L1 that is a subset of the line in L2. The handling of hits, misses,
and invalidations in L1 and L2 proceeds almost as before. If the unit of coherence
is the line size of L1, the latter will be disturbed for invalidation only when there is
a corresponding line in L2 that has the inclusion bit on for the line in L1. The main
difference is when a line in L2 is replaced. Now all lines in L1 that have the inclusion
bit on must be purged.

Imposing MLI requires that the associativity of L2 be at least B2/B1 times as
much as that of L1, that is,

AL2/BL2 ≥ AL1/BL1

EXAMPLE 2: MLI cannot be enforced with a 16 K direct-mapped L1 of line size
32 bytes and a 1 MB two-way set-associative L2 of line size 128 bytes. The ratio
of associativity is 2, and the ratio of line sizes is 4. Lines at address 0, 512 KB +
32, and 1 MB + 64 map respectively to sets 0, 1, and 2 in L1 and to set 0 in L2.
MLI in this case must be enforced by keeping only two of the three lines. Other
schemes to impose MLI will be discussed when the cache hierarchy has shared
components.

If the L1 and L2 capacities are close to each other, or if one does not want
to impose MLI because of associativity constraints, then it is preferable to have
multilevel exclusion so that a maximum of information is stored on chip. In this
case L2 is nothing else than a huge victim cache for L1. In order not to disrupt
L1 on all coherency requests, the caches are dual-tagged, with one set of tags used
by processor requests and one set for coherency purposes. Interaction between the
two sets of tags is needed only when dirty bits are set, or on misses, or on successful
invalidations. A design of this type exists in the AMD Athlon processor with L1
I-cache and D-cache of 64 KB each and a unified 256 KB L2.

6.3.2 Replacement Algorithms

Variations on LRU
In Chapter 2 we downplayed the importance of replacement algorithms for set-
associative caches. For two-way and four-way set-associative caches, the least
recently used (LRU) algorithm has very good performance and is cheap enough
to implement. However, with the large associativities, like 8-way or 16-way, that are
encountered in large L2 or L3 caches, strict LRU is too expensive to implement
(more than 100 bits per set for 16-way). Approximations to LRU are the norm, but
start to deviate seriously from the (unrealizable in real-time) optimal algorithm.

Although approximations to LRU for paging systems can be fairly sophisticated
because there is ample time to select a victim during a context switch, those for large
caches must not lengthen the access time.
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a b c d a b c d

(a) Corresponds to a cache
initially empty and the string of
references “bcad”

(b) The next reference is to
b. If the next reference is a
miss, c will be the victim

In this example, the algorithm gives the same result as true LRU. But the same tree 
would have been built if the original reference stream were “bacd”, and c would still
have been replaced, while in true LRU it would have been a.

MRU path

Figure 6.7. Illustration of the tree-based approximation to LRU. The cache is four-way set-
associative. In (a), when d is encountered, the right subset ab is MRU. In that subset a is
MRU. In (b), a reference to b makes ab the MRU subset; hence the arc switches between a
and b and at the root.

Two typical hardware-based approximations to LRU are the tree-based and
the MRU-based algorithms. Both methods are fast and require little extra logic and
hardware.

In the tree-based algorithm, used first in many L2 caches in IBM mainframes
and now in the IBM Power4 (see the sidebar in this chapter), the n lines in a set
are divided into two subsets recursively until the subsets contain only two lines. A
binary tree with the n lines being the leaves is constructed. At each nonleaf node
a bit indicates whether the MRU line is in the left or right subtree. Upon a hit, all
nodes that lie on the path from the line that was hit, that is, the current MRU line, to
the root have their bits set to indicate that the opposite direction of the path contains
lines that are not as recently used as the one just hit. On a miss, the non-MRU links
in the tree, as indicated by the setting of the bits, are followed from the root to a
leaf, which becomes the victim. The latter is replaced with the missing line, which
becomes the MRU line, and the tree is updated to that effect. This is illustrated in
Figure 6.7 for a four-way set-associative cache. This scheme requires n − 1 bits per
set for an n-way set-associative cache.

The MRU-based algorithm is even simpler. Each line has a hit bit associated
with it. The hit bit is set initially when a line is brought in and on subsequent hits to
the line because when all lines have their hit bits set, they are all reset. On a miss,
the first one with its hit bit off is replaced. If that first one is chosen on a round-robin
basis, we have the well-known clock algorithm used in paging systems. This scheme
requires n bits per set for an n-way set-associative cache.

Reducing L2 misses is an important performance factor because of the high
latency to access main memory. Measurements on various platforms have shown
that during L2 misses, the whole processor engine can stall because either its instruc-
tion window or its reorder buffer becomes full. To illustrate this point, consider the
following simplistic example.

EXAMPLE 3: Assume a processor and associated L1 caches with an IPC of 2
when there are no L2 misses. Numerous simulations have shown that this IPC



236 The Cache Hierarchy

TCPP with 2 K sets (32 byte lines)

Associativity (lines per set)

D
ec

re
as

e 
in

 m
is

s 
ra

te
 (

%
) 50%

40%

30%

20%

10%

0%
2 4 6 8 10 12 14 16

Figure 6.8. Performance of optimal and LRU replacement
algorithms for various associativities. The application is
TCPP, the cache is 256 KB with 32 byte lines, and the asso-
ciativity varies from 2 to 16 (from Wong and Baer [WB00]).

could be achieved on a modern four-way out-of-order processor with 32 KB
of L1 I-cache and 32 KB of lockup-free L1 D-cache with an L1–L2 latency of
6 cycles. Assume now that an L2 miss occurs once every 100 instructions, a rea-
sonable figure for a number of applications, and assume an L2 of 1 MB. If the
memory latency is 100 cycles, the IPC becomes 0.67 (it is easier to compute the
new CPI as CPI = 0.5 + 0.01 × 100 = 1.5, so that IPC = 1/CPI = 0.67). Now
if we can improve the L2 miss rate by 10%, (i.e., to 0.009 misses per instruc-
tion rather than 0.01), then IPC becomes 0.71, a 6% increase. This demon-
strates that improvements in L2 hit rates can yield substantial performance
benefits.

The first question, though, that we should ask is whether there is an opportu-
nity for improvement in the hit rate. Figure 6.8 shows that on some applications
and for high associativities LRU can generate as much as 20% more misses than
the optimal algorithm. Interestingly enough, a replacement algorithm that chooses
randomly from the lower half of the set, (i.e., among the eight LRU entries for a
16-way associativity), performs as well as true LRU in this case. There are instances
where LRU performs better than this half-random selection, and some instances
where it performs worse, but this result gives some reinforcement to the notion that
a tree-based LRU is quite sufficient if LRU-like performance is desired.

Inasmuch as there is an opportunity to do better than LRU, hardware and soft-
ware schemes have been investigated to improve on the replacement. The basic
idea in a hardware assist is to keep in cache those lines that exhibit some sus-
tained temporal locality even if they fall to the bottom of the LRU cache. One
possible scheme is to associate a temporal bit with each line in the cache. Upon
a miss in L2, the line that is replaced is the LRU with its temporal bit off, with
the exception that the most recently used (MRU) line is never chosen as a vic-
tim. Temporal bits are set when the same instruction references a line that is not
the MRU one. The temporal bit of the line in the MRU position is reset if the
next reference in that set is for the MRU line. Implementation of such a scheme
requires a separate table of locality bits accessed in a cachelike fashion with the PC
of the memory instructions. Because the PC is required to access the table, the
scheme is best for on-chip caches. The real estate overhead is small (less than 10%
of the cache’s area). Simulations have shown improvements over LRU similar to
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those realized by adding a victim cache to L2 using the same amount of area as
those required by the assist. The advantage over victim caching is a single-cache
structure and consequent simpler mechanisms for cache coherence and lockup-free
caching.

Reducing Hardware Requirements for Hit and Miss Detection
In a large-associativity cache, the replacement is a factor for performance, but real-
izing quickly whether there is a hit or a miss can take a significant amount of hard-
ware and power, namely, comparators and levels of logic to decide which entry is
the correct one. The hardware requirements can be reduced – at the cost, of course,
of longer access times, making it reasonable only for L2s and L3s.

Several strategies are possible. The first one, which we call MRU-based, uses a
single comparator per set to first check whether the reference is for the MRU line.
The latter can easily be identified with a single bit in the tag array. In case of success,
we are done, but if the MRU comparison fails, we have to look at the other tags in
some linear fashion. Luckily, temporal locality, the motivation for the replacement
algorithm discussed in this section, has been shown to exist in references to L2, so
this is an adequate strategy. If p is the probability that the reference is to the MRU
line, we have hits detected in one comparison with probability p. If the other entries
in the set are hit with the same probability, then it will take on the average p +
(1 − p)(n − 1)/2 comparisons to detect a hit, with n being the cache’s associativity.
For example, if the MRU line is hit 80% of the time, the average number of com-
parisons will be just over 2 for a 16-way set-associative cache. This translates into
an average of one extra cycle per hit with only one comparator per set instead of
the full-blown 16. It will take n comparisons to detect a miss, but this is of no great
concern, for the time to resolve the miss is quite large, an order of magnitude more
than the number of comparisons.

Another possibility is to perform the tag comparison in two steps. In the first
one, k bits of the tag field in the reference address are compared in parallel with
the corresponding k bits of the tags of all members of the set. In order to use the
same amount of hardware as in the MRU strategy – that is, a comparator that can
compare in one cycle two fields as large as a tag – the parameter k must be equal
to t/n, where t is the length of the tag. This does not make much sense for a 32-
bit architecture and a 16-way cache, and even for a 64-bit architecture one might
want to add a few extra bits beyond t/n. If there is no match, we have a miss. If
there are one or more matches, the remaining bits of the fields that matched must be
compared in a linear fashion. In the best case it takes two comparisons to detect a hit,
instead of one in the MRU-based method, whereas it takes only one comparison to
detect a miss instead of n. However, it is the hit access time that we want to optimize
and not the miss detection. Average cases depend on the selection of the k bits in
order to restrict the possible matches in the first comparison of the two-step scheme.
Because L2s are physically addressed and the tags are the high-order bits of the
addresses, there is no incentive to try to be clever, and any subset of k bits should be
fine.
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Improvements on LRU are a first step towards reducing L2 misses. A bolder
approach would be to make the cache fully associative and to use software-based
replacement algorithms similar in spirit to those that have been successful in other
contexts such as paging systems. Line tables, the equivalent of page tables, are
totally impractical because of their enormous space requirements; an alternative is
to use an inverted index structure. This type of indexing appeared first in the context
of paging systems when physical memory was very small compared to the virtual
address space. Instead of having large page tables directly indexed by the virtual
page number, an associative table containing as many entries as there are possi-
ble physical pages can be used. The ith entry in the table contains the virtual page
number currently mapped in the ith physical frame, that is, at the physical address
starting at i × page-size. Virtual address translation consists of an associative search
in this inverted page table. On a hit, the position of the hit yields the mapping. On a
miss, we have a page fault.

However, as soon as physical memory sizes became larger, this pure inverted
table scheme had to be abandoned. The inverted structure can still be used, but
now the mapping is kept in an open hash table. The hash table must contain more
entries than the number of physical frames, and moreover there must be some room
for chaining in case of collisions. Note also that the hashing, and the contents of
each entry, must include the process PID (because we don’t want to have one hash
table per process), the virtual page number, and the physical page number. Still, the
amount of physical memory needed for the mapping table is much less than that
required by straightforward direct mapping. The discussions of the pros and cons
of various implementations of direct mapping vs. inverted page tables in the con-
text of paging in operating systems is outside the scope of this book, but the con-
cept of inverted data structure can be applied to hit and miss detection in large
caches.

In the case of a fully associative cache, each table entry in the index structure
would not need to be as cumbersome as in a paging system. It would consist only
of a tag, status bits, a pointer to the cache line (i.e., the index), and a pointer to the
first entry in the chain table with the same hash function, if any. Some space could
be saved by having each entry in the hash table be a row of m entries with the same
hash function, and some time could be saved by comparing the tags in the same row
in parallel.

It is easy to see that the inverted index structure will take more space than a
conventional approach. At the very least, the tags are longer and the index has to be
stored rather than subsumed. On the other hand, we have a fully associative cache,
and the hit rate should be better. Of course, full LRU is not possible, but some
implementation of the clock scheme becomes feasible.

Other techniques that have been proposed are similar to those found in garbage
collection and use temporal locality, namely, lines are grouped in pools and are
given priorities based on whether they have been referenced in some previous
time interval. On a miss, the head and the tail in each pool are promoted or
demoted, depending on their recency of reference, and the victim is chosen from the
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lowest-priority pool. The number of pools is a parameter for both the performance
of the replacement algorithm and the time it takes to move lines from pool to pool.

6.3.3 Sector Caches

The original implementation of caches in the IBM System 360/85 used a sector cache
organization. Lines are divided into subblocks (see Figure 6.9) with each subblock
having a valid bit attached to it. On a miss, only the subblock belonging to the miss-
ing line will be brought in; all other subblocks will have their valid bits turned off.
A sector cache can be of any associativity. In the IBM System 360/85, the cache was
fully associative with 16 lines of 4 KB each, each line being divided into 16 subblocks
of 64 bytes.

The motivation for sector caches at the time they were introduced was twofold.
First, the number of transistors one could put on a chip (in fact, a chip external to
the processor) was limited, and therefore a small tag array was a necessity. Second,
the processors were not pipelined and were executing one instruction at a time. On
a cache miss the whole processor was stalled. Therefore, the time it took to bring a
line in was critical, and lines (subblocks) had to be short.

Neither of these conditions exists today for L1 caches. For caches closest to the
main memory, there is plenty of real estate to store tags, and the line size is not
usually a main performance problem, although line sizes of, say, 4 KB are not the
rule even for L3s. However, sector caches are used (see the sidebar) for L3s, for two
reasons. First, there is never enough room left on the processor chip for very large
L3s, but there can be room enough for an array of tags. Because L3s are enormous,
even the tag array can be too large. Using a sector organization cuts the needed area
by a factor proportional to the number of subblocks in a line. Second, very long lines
may be detrimental in a multiprocessor environment in that they lead to an increase
of false sharing (see Chapter 7). Hence, it is helpful to have the subblock as a unit of
coherence. As an example, the L3 in the IBM Power4 is an eight-way set-associative
sector cache, with lines of 512 bytes and four subblocks per line. The cache itself can
be as large as 16 MB.

Before leaving the subject of sector caches, it is worth mentioning that the write-
validate strategy of Section 6.2.3 has some flavor of sector cache organization.
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6.3.4 Nonuniform Cache Access

Because larger portions of the on-chip area are used for caches, the question arises
of how to organize the on-chip cache hierarchy. At the present time, L2 capacities
are of the order of several megabytes. This (sometimes) leaves room for L3 tags and
logic for the memory controller. With advances in technology, we can expect to have
16 MB available on chip with several on-chip processors (cf. Chapter 8). Though it
is still reasonable to assume that all accesses to a 2 or 3 MB cache take the same
time (namely, the worst-case time to access the bank furthest from the processor),
this won’t be true any longer with caches an order of magnitude larger.

A simple solution is to extend the hierarchy so that we now have an L2 and an
L3 on chip. Because the L3 will be large, the area devoted to tags will be signifi-
cant, even if we use a sector cache organization. Moreover, if we want to impose
multilevel inclusion, the ratio of capacities between the L3 and L2, say 5:1 rather
than the almost 50:1 between L2 and L1, can lead to significant replication of data
on the chip. If multilevel exclusion is used between L2 and L3, then the large tag
arrays in each cache must be duplicated for efficient cache coherence handling.

An alternative is to limit the on-chip hierarchy to two levels and recognize that
latencies to access the L2 will be dependent on the physical location of the data in
the cache. Having variable latencies is not an implementation problem, for lockup-
free caches are well equipped to deal with the variations. However, there are design
aspects that have to be taken into consideration, such as where to place data (stati-
cally or dynamically) and how to detect a hit or a miss.

We only sketch here a possible organization. The L2 cache is divided into banks,
say of capacity 256 or 512 KB. Because of the potentially large number of banks,
it is neither economical in chip area nor wise in terms of power to provide each
bank with its own channel (bus) to the processor. Instead, a simple interconnection
network such as a mesh (cf. Chapter 7) could be used to route requests and data
to the correct bank as selected, for example, by the lower bits of the index part of
the physical address as seen by the cache. Banks closest to the processor will be
accessed faster than those farther. A simple mapping is to divide the cache into m
columns of n banks of capacity c, for a total capacity of C = mnc and an n-way set
associativity. For example, we could have eight columns of four banks of 512 KB
each for a total of 32 banks for a four-way set-associative cache of 16 MB. Each of
the m columns contains a “way” from the n possible “ways” in a set. They have to
be searched linearly, and this is the only difference between this organization and a
conventional one. Note that there are different latencies between the first banks in
different columns, because they are at different distances from the controller, and
within banks of a column, for the same reason. One can design mappings to equalize
search accesses over all columns at the expense of a slightly more complex routing
mechanism. Other options include the sharing of the closest banks among multiple
bank sets.

In the above scheme, the data placed in a bank remain in the same bank until
replaced. It would be nice to have the most recently used lines in the closest banks.
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Since implementing LRU might require too many data movements, a simple promo-
tion strategy could be used whereby the line for which there is a hit is promoted one
bank closer to the closest bank by exchanging it with its neighboring bank. The dis-
advantage is that on a miss, the incoming line is placed in the furthest bank because
that is where the LRU line will tend to be.

Sidebar: The Cache Hierarchy of the IBM Power4 and Power5

The IBM Power4, introduced in 2001, and its successor the Power5, introduced three
years later, implement the IBM PowerPC ISA. In addition to their extensive cache
hierarchy, which we describe below, the Power4 and Power5 are out-of-order super-
scalars with very interesting characteristics that will be explored in more detail in
the forthcoming chapters. Specifically, they both have two processors on chip and
therefore are the first instance that we encounter in this book of chip multiproces-
sors (CMPs). Moreover, each processor in the Power5 has the capability of run-
ning two threads simultaneously. Multithreading, and simultaneous multithreading
(SMT) as in Power5, will also be covered in forthcoming chapters.

The frequency at which these two IBM microprocessors can operate does not
put them in the highest range of speed. The maximal frequencies are 1.7 GHz for the
Power4 and 1.9 GHz for the Power5. It is interesting to note that IBM introduced in
2007 a much faster in-order processor, called the Power6, which runs at frequencies
approaching 5 GHz while dissipating no more energy than its predecessors. Since
the memory hierarchies of these three models are quite similar and the design of
those of the Power4 and the Power5 is better documented, we will concentrate on
them.

In each model, the two processor cores are identical. Each processor is an out-
of-order superscalar with eight functional units. Up to eight instructions can be
fetched from the I-cache at each cycle, and eight instructions can be issued per
cycle. Branch prediction is performed in a way similar to that of the Alpha 21264
(cf. Section 4.1 sidebar), that is, it involves a local predictor, a global predictor, and
a predictor of the predictors, as well as special mechanisms for call–return and iter-
ative loop count predictions. Decoding, register renaming, and dispatching in issue
queues are performed on basic blocks, or groups, of maximum size 5. If the last
instruction is not a branch, the fifth instruction will be a no-op. Instructions are dis-
patched and committed group by group. Each type of functional units has its own
issue queue (cf. Chapter 5, Table 5.1), for a total of 11 queues and almost 80 instruc-
tions that can be queued up. These issue queues function on a FIFO basis. There are
80 physical integer registers and 72 physical floating-point ones. The reorder buffer
can hold up to 80 instructions, the actual number depending on the sequentiality of
the program. Load speculation is performed along the lines of what was discussed
in Section 5.2.2.

We now turn our attention to the memory hierarchy. The main differences
between the Power4 and the Power5 cache hierarchies are in the placement of the
L3 cache and of the memory controller. Although both microprocessors incorporate
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Table 6.1 Geometries of the Power4–Power5 cache hierarchy (the notation a/b indicates the
Power4/Power5 numbers. The Power6’s L1 D-cache and L2 are twice as big as the Power5’s)

Line size Write Replacement
Cache Capacity Associativity (bytes) policy algorithm Comments

L1 I-cache 64 KB Direct/2-way 128 LRU Sector cache
(4 sectors)

L1 D-cache 32 KB 2-way/4-way 128 Write- through LRU
L2 Unified 1.5 MB/2 MB 8-way/10-way 128 Writeback Pseudo-LRU
L3 32 MB/36 MB 8-way/12-way 512 Writeback ? Sector cache

(4 sectors)

the L3 directory on chip, the L3 data array is on the memory side in the Power4,
(i.e., between the L2 cache and the memory controller), but on the processor side in
the Power5, (i.e., adjacent to the L2). In the latter case, accesses to L3 do not share
the same bus with accesses to the main memory. Moreover, the memory controller
in the Power5 is on chip also.

An overall slightly simplified logical view of the Power4 cache hierarchy is
shown in Figure 6.10.

The geometric parameters of the various caches are shown in Table 6.1. Their
latencies are shown in Table 6.2. Note that the L2 latency of the Power5 is 13 cycles,
vs. 12 cycles for the P4, but the clock frequency of the P5 is higher, so that in reality
accesses to L2 are slighter faster in P5.

A fair amount of the design complexity of the L2 and L3 cache controllers
resides in the way they handle cache coherency. We will fully examine this important
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Figure 6.10 The IBM Power4 cache hierarchy (adapted from Tendler et al. [TDFLS02]).
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Table 6.2 Latencies (in cycles) for the caches and
main memory in the P4 and P5

P4 (1.7 GHz) P5 (1.9 GHz)

L1 (I and D) 1 1
L2 12 13
L3 123 87
Main memory 351 220

feature in the next chapter. In this sidebar, we give details on the cache hierarchy as
it pertains to a single processor.

L1 Caches
The L1 instruction cache is organized as a sector cache with four sectors (cf. Section
6.3.3 in this chapter). It is single-ported and can read or write 32 bytes/cycle. The 32
bytes thus correspond to one out of four sectors of the 128 byte line. 32 bytes also
correspond to eight instructions, the maximum amount that can be fetched at every
cycle on an I-cache hit.

A prefetch buffer of four lines is associated with the L1 I-cache. On an I-cache
miss, the prefetch buffer is searched. If there is a hit in the prefetch buffer, the
corresponding (partial) sector is forwarded to the pipeline as it would have been if
the line had been in the I-cache. On a miss to the prefetch buffer, we have a real miss.
The missing line is fetched from L2, critical sector first (i.e., the sector containing the
instruction that was missed on). The missing line is not written directly into the I-
cache, but rather in a line of the prefetch buffer, and the critical sector is sent to the
pipeline. The missing line will be written in the I-cache during cycles in which the
latter is free, for example, on a subsequent I-cache miss.

On a miss to the I-cache, sequential prefetching occurs as follows: If there is a
hit in the prefetch buffer, the next sequential line is prefetched. If there is a miss,
the two lines following the missing one are prefetched. Of course, if any of the lines
to be prefetched already reside in either the I-cache or the prefetch buffer, their
prefetching is canceled. The copying of prefetched lines to the I-cache occurs when
there is a hit in the prefetch buffer for that line. Thus, all lines in the I-cache must
have had at least one of their instructions forwarded to the pipeline.

The L1 write-through D-cache is triple-ported. Two 8 byte reads and one 8 byte
write can proceed concurrently.

L2 Cache
The L2 cache is shared between the two processors. Physically, it consists of three
slices connected via a crossbar to the two L1 I-caches and the two L1 D-caches.
Lines are assigned to one of the slices via a hashing function. Each slice contains
512 KB of data and a duplicated tag array. The duplication is for cache coherence
so that snoops, explained in the next chapter, can be performed concurrently with
regular accesses. Among the status bits associated with the tag is one that contains
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an indication of whether the line is in one of the L1s and which one, thus allowing
the enforcement of multilevel inclusion. The L2 is eight-way set-associative with
four banks of SRAM per slice, each capable of supplying 32 bytes/cycle to L1. The
replacement algorithm is tree-based pseudo-LRU (see Section 6.3.2 in this chapter).
The tag array, or directory, is parity-protected, and the data array is ECC-protected
(see Section 6.4.4).

Each slice contains a number of queues: one store queue for each processor cor-
responding to store requests from the write-through L1s, a writeback queue for dirty
lines needed to be written back to L3, a number of MSHRs for pending requests to
L3, and a queue for snooping requests. Each slice has its own cache controller, which
consists of four coherency processors for the interface between L2s on one side
and the processors and L1s on the other, and four snoop processors for coherency
with other chip multiprocessors. Each of the four types of requests from the pro-
cessor side, that is, reads from either processor or writes from either store queue, is
handled by a separate coherency processor. The snooping processors implement a
MESI protocol to be described in the next chapter.

In addition there are two noncacheable units at the L2 level, one per processor,
to handle noncacheable loads and stores – for example, due to memory-mapped
I/O operations and also to some synchronization operations that arise because of
the relaxed memory model (again see the next chapter) associated with the multi-
processing capabilities of the Power4.

L3 Cache
The L3 cache directory and the L3 controller (including the coherency processors
and queues associated with it to interface with main memory) are on chip. The L3
data array is on a different chip.

The L3 data array is organized as four quadrants, with each quadrant consist-
ing of two banks of 2 MB of eDRAM each (eDRAM, that is embedded DRAM,
allows higher operating speeds than standard DRAM but cost more). The L3 con-
troller is also organized in quadrants, with each quadrant containing two coherency
processors. In addition, each quadrant has two other simple processors for memory
writebacks and DMA write I/O operations.

L3 is a sector cache with four sectors. Thus, the unit of coherency (512/4 =
128 bytes) is of the same length as the L2 line. It facilitates coherency operations.
Note, however, that L3 does not enforce multilevel inclusion, which is not necessary,
because coherency is maintained at the fabric controller level (cf. Figure 6.10) that
is situated between the L2 and the L3.

Prefetching
We have seen already how instruction prefetching was performed at the L1 level.
Hardware sequential prefetching is also performed for data caches at all levels.
Eight streams of sequential data can be prefetched concurrently. Moreover, as
we shall see, the prefetching takes into account the latencies at the various lev-
els. A stream is conservatively deemed sequential by the hardware when there are
four consecutive cache misses in various levels of the hierarchy. However, a touch
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instruction generated by the compiler can accelerate the detection and can ask for
prefetching a sequential stream when executed.

Once a stream has been recognized as being sequential, when a new line, say
B0 (already prefetched in L1) is accessed for the first time, a prefetch of a single
line, say B1 at address B0 + 128, occurs from L2 to L1. At the same time a new
line is prefetched from L3 to L2, but instead of being the next line, it is one four
lines ahead in order to take into account the order-of-magnitude jump in latencies
between the two interfaces. Thus, B5 at address B0 + 4 × 128 would be prefetched
from L3 to L2. Similarly, the fourth line after B5 would be prefetched from main
memory to L3, but because the lines are four times as large in L3, this would corre-
spond to B17 (and B18 B19 B20). This last prefetching would be done only once every
four times. Prefetching can be done either in ascending addresses or descending
addresses, depending on the load address that generated the miss (low address in
the line yields descending prefetch, and high address yields ascending prefetching).

Prefetching is stopped when (virtual memory) page boundaries are crossed. For
the usual 4 KB page size this could happen fairly often, and therefore two page sizes
are possible: 4 KB, and 16 MB for (technical) applications that use large amounts of
data.

6.4 Main Memory

We have shown in the previous section of this chapter how computer architects are
expending much effort in trying to optimize the lower levels of the memory hierar-
chy. Of course, the main reason is that the highest level, namely main memory, was
getting relatively slower as processor speed kept increasing. With memory access
times of the order of 40–100 ns as shown in Figure 2.11, the number of cycles to
bring some data from main memory to a processor running at 3 GHz is between 120
and 300 cycles. So clearly, latency is a problem. Besides latency, the other two met-
rics that characterize main memory are capacity and bandwidth. Capacity growth
has followed Moore’s law, that is, the number of bits that can be stored on a chip
quadruples every three years. Though this is good news in terms of the amount of
storage, we shall see that it also poses some difficulties when expansion and band-
width are to be considered. Finally, although there are means to increase bandwidth,
care must be taken so that techniques to improve latency, such as prefetching, do
not reduce unduly the amount of bandwidth available.

6.4.1 From DRAMs to SDRAM and DDR

A memory access (say, a read corresponding to the filling of the highest-level cache
in the hierarchy, i.e., the cache closest to main memory) can be decomposed into
four separate actions (recall the simplified example of Section 2.2.2):

� The address is sent over the memory bus to the memory controller.
� The memory controller converts the request into a series of commands for the

device (DRAM).
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Figure 6.11. Basic page-mode DRAM.

� The data in the main memory device are read and stored into a buffer.
� The data are transmitted to the cache.

The times for the first and fourth actions depend on the speed and width of the
memory address and data buses. In this section we are mainly interested in the third
action, which is dependent on the design of the memory device. We shall touch upon
the second one – the design of an intelligent memory controller – later on. Note that
the first two actions can be delayed by contention and therefore queuing buffers are
needed: the memory address bus can be busy when the request due to a cache miss
is first uncovered, the memory controller can be busy when the request arrives, and
commands are not necessarily sent to the device in FIFO order.

The simplest instantiation of a memory device is a collection of chips, each of
which holds the same bit for all words stored in memory. Each chip is a rectangular
array as shown in Figure 6.11. The number of rows does not have to be equal to the
number of columns. For example, a 16 MB memory can be implemented using 32 4-
Mbit arrays. Each bit in the array consists of a transistor and a capacitor that needs
to be refreshed periodically; hence the term DRAM, for dynamic random access
memory. This is in contrast with the six-transistor cell in the SRAM (S for static)
technology used in higher-level caches.

The address lines are multiplexed into row access lines and column access lines.
For a read operation, the main commands generated by the memory controller are:

� Row access strobe (RAS), which brings to sense amplifiers the contents of the
whole row containing the bit of the array that is accessed; the time for this oper-
ation is tRAS.
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� Column access strobe (CAS), which selects the desired bit from the sense ampli-
fiers; the time for this operation is tCAS.

So, it appears that the time for the operation – the DRAM access time – is the sum
tacc = tRAS + tCAS. This is correct if the array was precharged beforehand. Otherwise
a precharge time has to be included. Note that reading is destructive, and therefore
the row that that was accessed must be written back. The access time plus the addi-
tional rewrite time yield the cycle time, that is, the minimum time between two row
accesses. Typical timings show that the precharge time tpre, tRAS, and tCAS are of the
same order of magnitude.

The first improvement to the basic DRAM is to have it operate in fast page
mode (the term “page” is, alas, a pretty bad one in that it has nothing to do with a
virtual memory page; however, it is the standard commercial appellation). Instead
of being deactivated at the end of the RAS probe, the whole row is kept activated.
Subsequent accesses to the DRAM that have the same row addresses can then be
fulfilled in tCAS time. For example, if the line size of the lower-level cache is a mul-
tiple of what can be delivered by the DRAM in a single command, filling the cache
line will require access to consecutive bits in each array, all of which share the same
row address with the possible exception of a wraparound. All DRAMs nowadays
operate in fast page mode. A further improvement is the extended data out (EDO)
DRAM, where an additional latch between the page buffer and the data-out buffer
allows more overlap between consecutive column accesses and data transfers.

Up to this point, the DRAMs that we have considered are asynchronous and
are controlled by the memory controller. The latency to fulfill a request once a com-
mand has reached the DRAM is either

� tCAS if the request is for the same row address,
� tRAS + tCAS if the request if for a new row address and the DRAM has been

precharged, or
� tpre + tRAS + tCAS if the device needs to be precharged.

In addition, there is the possibility that the row being accessed is in the process of
being refreshed. In that case, there is an additional component to the latency.

The next step in the evolution of DRAMs is to have a synchronous DRAM,
or SDRAM, that is, a device with an internal clock. The main advantage of the
SDRAM is that it can include a programmable register that holds a burst length,
which is the number of bytes requested. Instead of asserting CAS signals, the data
are delivered at each clock cycle, in general in about half of the tCAS time. Typically,
the clock of an SDRAM in a given system will have a slighter smaller cycle time
(higher frequency) than the memory bus to which it is connected, thus providing a
small amount of error tolerance. Otherwise, the internals of the SDRAM are pretty
much the same as those of a fast-page-mode DRAM. In a manner similar to that in
the EDO DRAM, the SDRAM can be enhanced (ESDRAM) by having SRAM row
caches (think of the sense amplifiers in Figure 6.11 being extended to a small cache).
This feature allows precharging of the device and refreshing of rows that are cached
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on the device to proceed simultaneously with the access of a cached row. Finally, by
transferring data on both edges of the clock, the data rate can be doubled, yielding
the DDR SDRAMs (DDR stands for double data rate).

6.4.2 Improving Memory Bandwidth

Improving memory bandwidth means that we want to transfer as much information
per (bus) cycle as possible. With a given memory data bus width, the DRAM chips
should be organized optimally to provide a bus width of data per request. With
current bus widths of 64 or 128 bits, the DRAM organization shown in Figure 6.11,
whereby a chip yields one bit of output per request, needs to be revisited so that it
yields a larger number of bits per request. Indeed, expansion is needed also so that
the number of chips does not increase unduly and to ease the modularity of capacity
expansion.

A first improvement is to allow more than one data output pin per chip, so that
consecutive bits in a row can be delivered at each cycle from a single chip. Chips are
organized into circuit board modules called dual inline memory modules (DIMMs),
an improvement over SIMMs, where S stands for single, by doubling the number of
connections on using the two edges of the physical connectors. As an example, a 256
Mbit SDRAM found in the marketplace could consist of four chips of 64 Mbit each.
The 64 Mbit chips can be either (i) 8 K rows and 2 K columns of 4 bits (dubbed 16
× 4 in the commercial literature), or (ii) 8 K rows of 1 K columns of 8 bits (8 × 8),
or (iii) 8 K rows of 512 columns of 16 bits (4 × 16). Generally, the cost of the mod-
ule increases with the width it can deliver because of the larger number of data
lines needed. Ideally, the number of bits that can be read on a read request should
be equal to the number of bits that can be transmitted on the memory data bus.
If the width is too narrow, a reassembling buffer must be included in the memory
controller to concatenate the results of consecutive requests.

The number of chips that can be included on a DIMM is limited by physical
constraints; 4 to 16 chips is a good order of magnitude. Because main memory is
a resource that users will often want to expand, having very large capacity DIMMs
means that jumping from one configuration to the next will involve large increments
in capacity, and hence cost, thus also placing a user-motivated limit on the overall
capacity of DIMMs.

Main memory is further divided into banks that can receive independent com-
mands from the memory controller. Banks can be interleaved in several ways,
depending on the mapping of memory addresses to banks. A popular mapping is
to have banks interleaved by units of bus width. For example, if a memory has two
banks and the data bus is 64 bits (8 bytes) wide, bank 0 stores all double words
(8 bytes) at addresses 0, 16, 32, . . . , while bank 1 stores those at addresses 8, 24, . . . .
If the cache line size of the higher-level cache is greater than 8 bytes, then both banks
can proceed in parallel to fulfill the request (except of course for the serialization on
the bus). Alternatively, a bank can serve the whole request for a cache line, and the
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next bank will then serve the next (addresswise) line. In the first case, because the
bus is in general faster than the DRAM even in page mode, the number of banks
should be larger than the number of cycles it takes to deliver data to the bus. Banks
are also interesting for writes, for they allow writes in independent banks to proceed
in parallel.

Banks can be grouped in banks of banks, or external banks. Within an external
bank, the internal banks are interleaved so that they can deliver a request to the
cache as fast as possible. The interleaving of the external banks is not as crucial,
but some mappings are better than others. In Figure 6.12, we show how the address
is seen from the cache’s viewpoint and with two different natural interleavings of
external memory banks.

As can be seen, in both types of interleaving the bank index overlaps with the
cache set index. This will happen for all reasonable higher-level cache and DRAM
page sizes. The consequence is that in case of cache conflict misses, the missing line
will have the same bank number as the replaced line, and therefore the same bank
will be accessed if there is line writeback (although this might be alleviated by the
presence of write buffers) and also if the conflicting misses are occurring in a Ping-
Pong fashion. In both cases, a full penalty of precharge and row and column access
is likely, because the high-order bits in the addresses of the conflicting lines (those
called pi at the left of the page offset) are likely to be different. A possible solution
is to have the bank index be the result of a hashing (a single XOR operation is suf-
ficient) of k bits in the tag field with the original k bits at the left of the page offset
(those indicated in Figure 6.13). The advantage is that the cache conflicting misses
will in all likelihood map to different banks and the contents of the pages remain
the same (only the bank index changes). Moreover, because the original bank
index is used in the hashing function, there is a uniform distribution of addresses
in banks.

We have centered our discussion within the context of a single request from
the processor, or rather the higher-level cache, to main memory. However, several
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requests could be pending, for the caches can be lockup-free. Moreover, I/O should
be done concurrently, and main memory can also be shared by several processors.
Holding the processor–memory bus busy during the whole latency of a request is
not efficient in these conditions. Waiting times for the bus can be reduced by using
a split-transaction bus. As its name indicates, with a split-transaction bus a request,
for example a read transaction, can be decomposed into sending the address on the
bus, releasing the bus while the DRAM reads the data, requesting the bus when the
data are ready in the DRAM buffer, and, when this last request is satisfied, send-
ing the data on the bus. While the data are read from the DRAM, other requests
can be sent on the bus and queued at the memory controller, or data read from
another transaction can be sent on the bus. If address lines and data lines of the bus
are distinct, then two transactions can be in progress concurrently. The address for
transaction A can be sent at the same time as the data for transaction B.

The presence of a split-transaction bus complicates the design of the memory
controller. Buffering is needed for incoming transactions and possibly for read–write
data. Of course, with this complication comes an advantage, namely, transactions do
not have to be processed in order. An intelligent controller could, for example, delay
prefetching transactions in favor of processing a real read miss as soon as possible.
The controller could also take advantage of hits in row buffers, delaying temporarily
a request that would destroy the locality of other transactions. However, because the
read requests are processed out of order, they must be tagged so that the recipients
can know when their requests are fulfilled.

Although interleaving and split-transaction buses improve the occupancy of the
bus, they do not reduce the latency of single requests. Latency speedup requires
faster devices and faster buses.
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Figure 6.14. Direct Rambus and RDRAM microarchitecture (from Crisp [C97]).

6.4.3 Direct Rambus

A different DRAM interface has been proposed and manufactured by Rambus (see
Figure 6.14). Now a narrow, very fast split-transaction bus carries the orders and
transmits data to and from banks of DRAMs. The rationale is that the fast bus will
provide more bandwidth for multimedia applications.

The bus is divided into row control lines (3 bits), column control lines (5 bits),
and data lines (18 bits: 2 bytes plus 2 parity bits). Each external bank, or DRDRAM,
comprises 16 internal banks that can deliver 16 bytes in 10 ns in the best conditions
(open pages). The Rambus interface then takes these 16 bytes and transmits them
2 bytes at a time on the 400 MHz bus (1.25 ns for 2 bytes) with transfers occurring
at both edges of the clock. Thus, peak bandwidth is 1.6 GB/s. Two adjacent internal
banks share a 1 KB row buffer. The 17 half-row buffers may not be as efficient as
the complete row buffers found in SDRAMs, but they occupy less space, which is at
a premium in this organization. Note, however, that because of the split-transaction
bus and decoupling of the row and column control lines, many operations such as
refresh, precharge, and column access can occur simultaneously.

At the time of introduction of the Direct Rambus (circa 1997), SDRAMs were
the norm and were running at best with 100 MHz internal clocks. With four banks,
each providing 8 bits/cycle, the peak bandwidth was 0.4 GB/s, a far cry from the
Direct Rambus’s performance. With the improvements brought about by DDR
DRAMs providing twice the bandwidth, a 64-bit bus, and a 133 MHz clock, the
peak bandwidth becomes equal to that of Direct Rambus. Also, the latencies for a
single access are about the same, of the order of 40 ns, because it takes several row
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and column orders to identify a random request in the Direct Rambus architecture.
Finally, DRDRAMs are larger in area and more costly.

6.4.4 Error-correcting Codes

Main memory is relatively cheap. However, its capacity, (i.e., the enormous number
of bits that it contains), makes it prone to transient errors. Since the early days of
computing, some form of error-detecting, and now also -correcting, codes have been
appended to memory words to increase mean times between failures.

Error-correcting codes (ECCs) can be classified according to the number of
erroneous bits that can be detected (1 bit errors, 2 bit errors, multiple-bit errors)
and corrected. The simplest form is parity checking, which allows detection of a sin-
gle error. Given an n-bit word, an (n + 1)th bit is appended so that the sum of all
bits is even (for even parity; of course, one could similarly use odd parity). With
even parity, upon retrieval of the word, a check for 0 of the XOR of the n + 1 bits
is done. If the result is not 0, an error has occurred. The implementation requires
only a simple circuit, but the detection is weak: only an odd number of errors can be
detected, and there is no means for correction.

Modern DRAMs and even some caches include more sophisticated error-
correcting schemes. They are based on Hamming codes, which we present briefly.

The minimum number of bits that must be changed to convert one valid word
to another is called the minimum distance of the code. For example, for n-bit
words, an (n + 1)-bit word consisting of n data bits and a parity bit forms a code
that has a minimum distance of 2. In general, a distance-k code will detect k − 1
errors.

Consider the case when we want to detect and correct one error. Detection
implies a minimum distance of 2. If we create a code with a minimum distance of 3
by adding more error-correcting bits, a single error will result in a pattern that will
be at distance 1 from the correct one and at distance 2 from all others. Hence, it
will be possible to detect and correct a single error. If we were interested only in
detection, the code of distance 3 would allow us to detect single and double errors.
If we want to detect and correct a single error and detect two errors, then the code
must have distance 4.

Let us see how a single error can be corrected and detected. We append m bits
to the n-bit word. These m bits must identify which of the n + m bits is in error, that
is, 2m patterns should identify one of the n + m positions as well as the error-free
condition. Thus, we must have

2m > n + m + 1

or, for all practical purposes,

2m > 2n and m = 	log2 n
 + 1
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For example, let us see how to correct and detect one error in an 8-bit word. In this
case we append m = 	log2 8
 + 1 = 4 bits. Now we have a 12-bit word. Each index
j in the 12-bit word can be represented as a sum of powers of 2, that is, j = ∑

ai 2i ,
where ai is either 0 or 1 and i = 0, 1, 2, 3. Each of the appended bits ck will be a
parity bit for all those indices that have 2k in their representation. So if the original
8-bit word were (x0, x1, . . . , x7), the new word is (y1, y2, . . . , y12) = (c0, . . . , c3, x0,
x1, . . . , x7). Here y1 is the parity bit for bits that have 20 in their representation, that
is, (y1, y3, . . . , y11) or (c0, c2, x0, . . . , x6). Similarly, y2 is the parity bit for bits that have
21 in their representation, that is, (y2, y3, y6, . . . , y11) or (c1, c2, x1, . . . , x6), etc. Upon
reading the word, the parity bits are computed, and if they are found different from
those that were stored, we have an error whose index is given by (c0, . . . , c3).

EXAMPLE 4: Assume that the bit x4 corresponding to y9 is in error. Then the
computed values for c0 (that is, y1) and for c3 (that is, y4) will be different from
those that are stored, yielding an error for the bit of index 20 + 23 = 9.

By adding a parity bit for the whole word, we increase the distance by 1 and
can now detect (but not correct) two errors. For 64-bit words, as often delivered
by DRAMs, we need to add 8 bits for single-error detection and correction and
for double-error detection. This represents 12.5% extra storage requirement.

6.5 Summary

The disparity in speed between processors and main memory has given rise to a
memory hierarchy, including several levels of caches. In modern microprocessors,
there are an L1 I-cache and an L1 D-cache plus a unified L2 cache on chip. Many
processors used for server applications have an off-chip L3 cache whose tag and
status array can be on chip.

Since the goal of the memory hierarchy is to bring close to the processor the
instructions and data that are going to be needed in the near future, a great deal of
effort has been expended to minimize the latency of access at each level in order
to minimize the average memory access time. The memory wall obstacle has been
reduced to a series of still-challenging memory hurdles.

While the capacities of L2 and L3 caches have increased, access time require-
ments have limited the size and associativity of L1 caches. Techniques allowing par-
allel lookup of caches and TLBs, as well as schemes, such as victim caches, giving at
low cost most of the benefit of larger associativities, have been implemented for L1
D-caches. Approximations to LRU for large-associativity L2 caches have minimized
the amount of logic and power needed while retaining acceptable access times and
miss ratios.

Prefetching, (i.e., bringing items into a cache before they are actually required),
is a technique present at all levels of the memory hierarchy. Stride prefetching,
an extension of the one-block lookahead technique, is particularly efficient for
instructions and for data structures accessed according to a regular pattern. Stride



254 The Cache Hierarchy

prefetchers can be complemented by more sophisticated prefetchers catering to
other data structures such as linked lists.

Out-of-order processors should not be hampered by stalling on a cache miss,
for instructions further in program order could still execute. Similarly, prefetching
implies that there could be several concurrent requests in the memory hierarchy.
To that effect, caches are lockup-free, that is, mechanisms are implemented to allow
more than one cache miss at a given time as well as return from higher levels of the
hierarchy in any order.

In order to minimize the large tag arrays for high-level caches, the latter can be
organized as sector caches with the unit of transfer between adjacent levels in the
hierarchy being subblocks rather than entire lines. The capacity of these caches is
such that uniform access times to all banks of the cache may not be possible any
longer. Static routing assignments and dynamic interbank transfers may be needed
to obtain better average access times.

The last level in the memory hierarchy, namely, main memory, has seen in-
creases in capacity following Moore’s law. However, latency and bandwidth have
lagged behind, in spite of technological advances such as synchronous DRAMs
(introduction of a clock on chip) allowing events on both edges of the clock (double
data rate) and permitting the decomposition and scheduling of requests via split-
transaction buses.

6.6 Further Reading and Bibliographical Notes

The literature on caches is very rich. We only provide a small sample of the major
references in the area.

Smith’s survey [S82] is the first paper to explain how the TLB and the cache can
be searched in parallel. The various alternatives to access L1 caches are reviewed
and analyzed in Peir et al. [PHS99]. Way prediction using an XOR technique was
proposed by Calder et al. [CGE96] and used in the Alpha 21264. The use of page
coloring is advocated in Kessler et al. [KJLH89].

An implementation and evaluation of column-associative caches can be found
in Agarwal and Pudar [AP93]. Skewed caches were proposed by Seznec [S93]. Vic-
tim caches were introduced by Jouppi [J90], and the first industrial implementation,
in the HP PA 7200, is reported in Chan et al. [CHKKSZ96].

The basic code-reordering algorithm is found in Pettis and Hansen [PH90].
Kalamatianos et al. [KKKM99] discuss possible improvements.

Software prefetching is covered in Mowry et al. [MLG92] and in Vanderwiel
and Lilja’s survey [VL00]. The simplest hardware sequential prefetching for instruc-
tions and data, (i.e., one-block lookahead), is proposed in Smith’s survey [S82]. A
variation taking into account the latencies of the various elements of the cache hier-
archy has been implemented in the IBM Power4 and Power5, as indicated in the
sidebar in this chapter. More details on these two microprocessors can be found
in Tendler et al. [TDFLS02] and Kalla et al. [KST04]. Stream buffers were intro-
duced by Jouppi [J90]. Palacharla and Kessler [PK94] showed that large stream
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buffers could advantageously replace higher-level caches in scientific applications.
Many implementations and evaluations of stride prefetching, including those using
a lookahead program counter, are presented in Chen and Baer [CB95]. Markov
prefetchers were introduced by Joseph and Grunwald [JG97], and more sophisti-
cated correlation prefetchers are evaluated in Lai et al. [LFF01]. Stateless prefetch-
ing is proposed in Cooksey et al. [CJG02]. The performance of greedy prefetching
in the higher levels of the hierarchy can be found in Lin et al. [LRB01].

Lockup-free caches were first proposed by Kroft [K81]. Farkas and Jouppi
[FJ94] discuss various implementations of MSHRs.

Baer and Wang proposed the multilevel inclusion property [BW88]. Wong and
Baer [WB00] and Hallnor and Reinhardt [HR00] have developed alternatives to
LRU replacement algorithms for L2 caches with large associativities.

Sector caches were the first caches ever implemented in the IBM 360/85, as
recounted in Conti et al. [CGP68]. Nonuniform cache access has been proposed by
Kim et al. [KBK02] among others.

A survey of various DRAM technologies as well as an evaluation of their timing
parameters is found in Cuppu et al. [CJDM01]. Strategies for interleaving of mem-
ory banks are discussed in Zhang et al. [ZZZ00]. Direct Rambus is presented by
Crisp [C97].

EXERCISES

1. (Section 6.1.1) In our presentation of the way prediction for physically addressed
and physically tagged data caches, the predictive structure was accessed using an
XOR of bits from the load PC and from the index register used in computing the
effective address. Why is that a better idea than using the effective virtual address?
How about waiting for the physical address?

2. (Section 6.1.1) For instruction caches, the way prediction can be embedded in the
cache itself. How? Can the same technique be used for data caches?

3. (Section 6.1.1) Is page coloring adequate for L1 or for L2 caches? Discuss the
various options.

4. (Section 6.1.1) Assume a page size of 4 KB and a direct-mapped virtual cache
(virtual index and virtual tags) of 8 KB. On a cache miss:

(a) How many lines have to be checked to see if the missing line has synonyms
in the cache?

(b) Generalize to the case of page size 2k and a direct-mapped cache of capacity
C.

(c) Now consider the general case of page size 2k, capacity C, and set associa-
tivity m.

5. (Section 6.1.2) In the column-associative cache (CAC), why should the high-
order bit of the index be part of the tag when using flipping of the high-order bit
of the index as a rehashing technique? What should be the setting of the rehash bit
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for an empty cache? Give examples of strings using references such as those defined
as a, b, c in the text, whereby:

(a) The miss ratio of the CAC is greater than that of a two-way set-associative
cache.

(b) The miss ratio of the CAC is smaller than that of a two-way set-associative
cache.

6. (Section 6.1.2) Expand the formula given for the average memory access time in
Section 2.2.2 in the following cases:

(a) L1 is a column-associative cache.
(b) L1 is a regular cache, and it is backed up by a victim cache.

7. (Section 6.1.3) In procedure reordering, when we merged two sets of procedures,
A and B, we considered only the options whereby all procedures in set A were
placed before those in set B. Does this mean that all procedures of set B will always
be behind those of set A in the final layout?

8. (Section 6.2.1) In the text we state that we can trade off accuracy vs. coverage in
prefetching. Discuss this assumption when varying the number of useful prefetches
and the number of prefetches generated.

9. (Section 6.2.1) Accesses to I-cache lines often have a pattern such as i,
i + 1, i + 2, . . . , i + n, j where each (sequential) reference is to a consecutive line
until some branch is taken, as represented by reference j. What would be the accu-
racy and coverage for this string when one of the following variants of OBL is used?

(a) Always prefetch.
(b) Never prefetch.
(c) Prefetch on miss.
(d) Tag prefetch.

10. (Section 6.2.1) On a system using prefetching and a prefetch buffer, the follow-
ing measurements were recorded during the run of some program:

� The total number of loads, N.
� The number of L1 misses due to the loads when there is no prefetching, m.
� The accuracy of prefetching, a.
� The coverage of prefetching, c.

Let l be the latency of accessing the L1 cache, l + 1 the latency of accessing a
prefetch buffer, and L the latency of accessing the L2 and/or main memory when
there is an L1 miss. Express the average memory access time for a load as a function
of N, m, a, c, l, and L under the following assumptions:

(a) The cost of a useless prefetch and the effect of prefetching on L are negli-
gible.

(b) A useless prefetch imposes an extra penalty of 1 cycle on the average mem-
ory access time.
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(c) Now the prefetched lines go directly in L1, and a useful prefetch will not
induce any cache pollution, whereas a useless prefetch will displace a line
that will result in a miss with a probability p.

11. (Section 6.2.1) Consider the inner product program loop without prefetching
shown in Figure 6.3. Each cache line can contain four elements, and initially none
of the elements of arrays a and b are cached and they will not interfere with each
other in the cache. Assume that the latency to access to the next level of the memory
hierarchy is about the same as that of a multiplication followed by an addition. What
would be the influence of the following hardware prefetchers on the time to execute
the loop?

(a) A single stream buffer.
(b) Two buffers operating in stream mode (note that there is a single path

between the cache and the next level in the memory hierarchy).
(c) A stride prefetcher using an RPT.

12. (Section 6.2.1) Consider straightforward matrix multiplication as implemented
in the following segment of code:

Int A[100,100], B[100,100], C[100,100];
for (i=0; i<100; i++)

for (j=0; j<100; j++)
A[i,j] = 0;
for (k=0; k < 100; k++)
A[i,j] += B[i,k] × C[k,j];

Assume that the arrays A, B, and C start respectively at addresses 0 × 0001 0000,
0 × 0004 0000, and 0 × 0008 0000. In the body of the innermost loop, there are three
load instructions, one each for the elements B[i,k], C[k,j], and A[i,j] at respective
addresses 0 × 0000 0100, 0 × 0000 0104, and 0 × 0000 010c. Show the contents of
the RPT for these three instructions after iterations 1, 2, and 3 of the inner loop. The
RPT is initially empty with all its fields initialized to 0.

13. (Section 6.2.2) Give the format of an MSHR for an L2–main-memory interface,
assuming an L2 line is twice the size of an L1 line.

14. (Section 6.3.1) Prove that for the MLI property to hold we must have (AL2 /

B L2) ≥ (AL1 /B L1). You can assume that the capacity of L2 is much larger than that
of L1 and that B L2 ≥ B L1

15. (Section 6.3.2) Show that true LRU can be implemented for an n-way set-
associative cache using n(n − 1)/2 bits per set.

Programming Projects

1. (Sections 2.2 and 6.1) Write application programs in some high-level language
of your choice that enable you to discover the cache size, associativity, line size,
and memory update policy of an L1 data cache. Check that your programs give the
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right answer by using a cache simulator (be sure that the cache simulator can use
the output of the compilation of your programs!). The order in which you run your
applications may be important, so think about this as you are designing them. You
should only consider cache sizes, associativities, and line sizes that are powers of 2.
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7 Multiprocessors

Parallel processing has a long history. At any point in time, there always have been
applications requiring more processing power than could be delivered by a single-
processor system, and that is still as true today as it was three or four decades
ago. Early on, special-purpose supercomputers were the rule. The sophisticated
designs that were their trademarks percolated down to mainframes and later on to
microprocessors. Pipelining and multiple functional units are two obvious examples
(cf. the sidebars in Chapter 3). As microprocessors became more powerful, con-
necting them under the supervision of a single operating system became a viable
alternative to supercomputers performancewise, and resulted in cost/performance
ratios that made monolithic supercomputers almost obsolete except for very spe-
cific applications. This “attack of killer micros” has not destroyed completely the
market for supercomputers, but it certainly has narrowed its scope drastically.

In this chapter, we consider multiprocessing, that is, the processing by several
processing units of the same program. Distributed applications such as Web servers
or search engines, where several queries can be processed simultaneously and inde-
pendently, are extremely important, but they do not impose the coordination and
synchronization requirements of multiprocessing. Moreover, there are a number of
issues, such as how to express parallelism in high-level languages and how to have
compilers recognize it, that are specific to multiprocessing. We do not dwell deeply
on these issues in this chapter; we are more interested at this junction in the archi-
tectural aspects of multiprocessing. However, these issues are becoming increasingly
more important, and we shall touch upon them in Chapter 9.

If it were not for Moore’s law (the increasing number of transistors on a chip)
and the fact that clock cycle times are at the same level now as they were in 2003,
we might not have considered including a chapter on multiprocessing in this book.
However, the presence of a billion or more transistors on a chip, the multicycle
access time of large centralized structures, the limitations on performance gains of
ever more complex designs, and power issues that limit the clock frequencies have
all converged toward the emergence of chip multiprocessors (CMPs), that is, the
presence of two or more complete CPUs and their respective cache hierarchies on
a single chip. The sidebar in the previous chapter (Section 6.3) gave one example of

260
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an IBM two-processor CMP. Intel is also producing dual and quad processor chips,
and there is a Sun eight-processor CMP, with a 16-processor soon to follow. It is
commonly acknowledged that a 64-processor chip should be available by the early
2010s.

We start this chapter with definitions of issues related to the structure of par-
allel computer systems. The forty-plus-year-old taxonomy due to Flynn is still use-
ful. Because we are mostly interested in multiprocessors, we refine the category
of multiple-instruction multiple-data (MIMD) systems and look at systems that
address memory uniformly from the hardware point of view (uniform memory
access (UMA) and symmetric multiprocessors (SMPs)), as well as at nonuniform
memory access (NUMA). We then consider the interconnection of processors and
memories, which plays an important role in this distinction.

The difference in memory addressing is also reflected in the cache coherence
protocols that are required to preserve the integrity of the systems: snoopy protocols
for the SMPs connected via buses, and directory protocols for the others.

Synchronization is essential for the correct behavior of parallel programs. We
look at how synchronization is reflected in the ISAs of microprocessors and how
atomic operations to acquire and release locks can be implemented. We then con-
sider how the strict sequentiality enforcement of memory accesses can be relaxed.

We finish this chapter with a section that is part of the parallelism found in most
contemporary general-purpose microprocessors but that does not really belong
under the multiprocessor heading. It deals with the single-instruction multiple-
data (SIMD) mode of operation, which is embedded in the many multimedia ISA
extensions.

7.1 Multiprocessor Organization

7.1.1 Flynn’s Taxonomy

As early as 1966, Flynn classified computer organizations into four categories ac-
cording to the uniqueness or multiplicity of instruction and data streams. By instruc-
tion stream is meant the sequence of instructions as performed by a single processor.
The sequence of data manipulated by the instruction stream(s) forms the data
stream. Then, looking at the Cartesian product

(single instruction, multiple instruction) × (single data, multiple data)

we obtain the four architectures

Single instruction, single data (SISD).
Single instruction, multiple data (SIMD).
Multiple instruction, single data (MISD).
Multiple instruction, multiple data (MIMD).

The SISD category corresponds to the usual single processors that we have
encountered so far. Granted, several instructions are executing concurrently in any
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pipelined machine, and moreover, superscalar processors have several functional
units, but nonetheless the instructions are generated from a single stream and there
is no streaming of data.

To our knowledge, there is no realization of the MISD concept, although some
streaming processors can be construed to belong to this category. A streaming pro-
cessor is composed of several processors of which each executes a dedicated set of
programming kernels on a single stream of data. Research machines of this type
are under consideration for applications such as image processing. One could also
argue that the VLIW paradigm (recall Section 3.5), whereby an instruction word
contains multiple instructions that are decoded and executed concurrently, is some-
what in between SISD and MISD in that the multiple instructions in the long word
are determined at compile time.

In SIMD architectures, a single control unit fetches, decodes, and issues instruc-
tions that will be executed on processing elements (PEs), which are CPUs with-
out control units. Transfer-of-control instructions are executed in the control unit,
whereas arithmetic–logical and load–store instructions are broadcast to all PEs. PEs
execute the broadcast instructions synchronously, and they have local data memo-
ries. Several supercomputers in the 1980s and 1990s, most notably the Illiac IV and
the first Connection Machine CM-1, were built according to the SIMD model. Vec-
tor processors can also be considered to belong to the SIMD category. Although
SIMD systems with full-fledged PEs are not cost-effective, the implementation of
multimedia instructions in many microprocessors follows the SIMD model. We shall
return to this topic in Section 7.5 of this chapter.

The MIMD organization is the most general. Several processors with their cache
hierarchies operate in parallel in an asynchronous manner. Whether processors
share a common memory and communicate via load–store instructions or whether
they communicate via message passing is a major distinction. A further distinction
for shared-memory systems is whether they access main memory in a uniform man-
ner or whether each processor has associated with it a portion of a common dis-
tributed shared memory. Moreover, the number of processors in the system, their
homogeneity, the interconnection fabric between processors and between proces-
sors and memories, means to assure cache coherence, and the way synchronization
is handled all contribute to a vast design space for MIMD multiprocessor systems.

In this chapter, we are interested in the impact that multiprocessors have had
on microprocessor and chip design. Therefore, we will limit ourselves to small to
medium parallelism, that is, to a number of processors that could fit on a chip in
the near future. This level of parallelism and the small distance between proces-
sors argue for a shared-memory organization. Large-scale parallelism and message-
passing communication are certainly worthy of study, but they are beyond the scope
of this book.

Before proceeding, it is worthwhile to remember Amdahl’s law, which we saw
in Section 1.2. Linear speedup in parallel processing is the exception rather than
the rule. It happens only for “embarrassingly parallel” applications. Portions of
the application that have to run sequentially, synchronization events where some
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processors may have to wait till some or all processors are finished with their por-
tions of a task, and contentions for shared resources (e.g., the interconnection fab-
ric) all limit the performance of parallel systems.

7.1.2 Shared Memory: Uniform vs. Nonuniform Access (UMA vs. NUMA)

In shared-memory systems, the parallel processes share a common address space.
Data movement between the CPUs is achieved via the usual load–store instructions.
Main memory can be at the same distance from all processors or can be distributed
with each processor. In the first case, we have uniform memory access (UMA), and
in the second, we have distributed shared memory, or nonuniform memory access
(NUMA).

A schematic view of a UMA system where the interconnection fabric is a shared
bus is shown in Figure 7.1. In some instances, processors can have an additional
shared bus for control purposes, for example, for synchronization. Each processor–
cache hierarchy in the figure could be a (chip) multiprocessor itself. The organiza-
tion shown in Figure 7.1 is often referred to as a symmetric multiprocessor (SMP),
although there is no need for the processors to be homogeneous as long as they have
the same ISA, and although the caches can be of various geometries.

The use of a shared bus limits the number of processors in an SMP for at least
two reasons: electrical constraints on the load of the bus, and contention for bus
access. A second organization of UMA systems, often referred as dance-hall archi-
tecture, is shown in Figure 7.2. Now, the interconnection network can be a crossbar
or an indirect network such as a butterfly network (cf. Section 7.1.3).

The drawback of the dance-hall architecture is that all noncached memory
accesses are very far from processors, even those for variables that are private to
the execution on a given processor. The alternative is to have nonuniform memory
access.

In NUMA shared-memory architectures, each processing unit (or “processing
element,” not to be confused with the PEs of SIMD systems) consists of a processor,
its cache hierarchy, and a portion of the global memory. On a load–store request
that misses in the processor’s cache hierarchy, a check is made first to see if the
request can be satisfied in the local memory hierarchy attached to the processor. If
so, the request is satisfied. If not, the request is sent to the appropriate local memory
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Figure 7.2. Schematic of a dance-hall (UMA) system.

of another processor through the interconnection network. The latter can either be
centralized as shown in Figure 7.3 (closely resembling, from the interconnection
viewpoint, the organization shown in Figure 7.2) or decentralized as in Figure 7.4.
In this latter case, a “processing element” conceptually includes a switch that allows
it to connect directly to some neighboring elements. Meshes and tori are typical
interconnection fabrics in the case of decentralized networks.

In chip multiprocessors the local memory will not be on chip, but the L2s can be
distributed in a manner similar to memories in UMA organizations or local mem-
ories in NUMA ones. Either buses, as in SMPs, or crossbars, as in NUMA with
centralized networks, or meshes, as in NUMA with decentralized networks, can be
the interconnection fabric.

…

Inter-
connect

…

Processors

Caches

Local
memories

Figure 7.3. Schematic NUMA organization with centralized interconnection network.
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Figure 7.4. Schematic NUMA organization with decentralized interconnection network.

7.1.3 Interconnection Fabrics

We limit ourselves principally to three types of interconnection fabrics that might
be used in CMPs: (i) shared bus, (ii) an example of a centralized switch, namely a
crossbar, and (iii) an example of a decentralized one, namely meshes. There exist
many more interconnection networks that have been used in MIMD and SIMD
multiprocessors. The reader is referred to books and publications on such topics.

Shared Bus
The simplest form of interconnection is the shared bus as shown in Figure 7.1. It
has several advantages in addition to its simplicity: low cost, ease of use, and, as we
shall soon see, the possibility of simple cache coherence protocols because of the
availability to broadcast information.

On the other hand, buses have severe limitations; in particular, they do not
scale well. The lack of scalability stems from two sources. First, physical constraints
(length, electrical loading) limit the number of devices that can be attached to a
bus. Second, the longer the bus, that is, the larger the number of devices that can be
attached to it, the slower it becomes. The loss of speed is due in part to the longer
length and in part to the increased contention for the shared resource.

Contention is indeed a serious performance problem for shared-bus systems. If
one defines bus utilization as

P = bus transaction time
processor time + bus transaction time

(1)
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then for a single processor we can estimate processor time as the average time
between L2 misses. This is already quite a simplification, for it does not take into
account the fact that there might be several misses queued up for lockup-free caches
and the possibility of prefetching. In other words, some requests for the bus that are
denied are resubmitted right away, and processor time as defined above is an upper
bound.

The analysis becomes more complex for multiprocessors. In an extremely sim-
plified manner, if we consider the quantity P from Equation (1) to be the probability
that the bus is busy for one processor, then the probability that the bus is busy for n
processors becomes

B(n) = 1 − (1 − P)n

B(n) is an approximation for the probability of bus occupancy. The point is that
even with high cache hit ratios, the bus can become saturated quickly because of the
long memory access times that are included in the bus transaction time.

We have seen in the previous chapter how split-transaction buses could remedy
this situation somewhat by allowing releases of the data and address lines of the
bus when they are not required by a given transaction. Thereby the bus transaction
time can be reduced to the transfer times of addresses to memory and data transfers
between caches and memory. Nonetheless, the bus cycle times are still much longer
than processor cycle times, and the tendency to have large L2 lines that cannot be
filled in a single bus transfer will increase bus data transfer times. Finally, contention
is exacerbated by cache coherence transactions.

Early SMPs (circa 1985) consisted of up to 20 processors, with a maximum
of about 30 a decade later. However, as processors became faster, bus saturation
soon limited this number. Most SMPs based on a shared-bus interconnection have
between two and eight processors (although these “processors” can themselves be
two or four processors on a chip). The same limitation will arise in chip multipro-
cessors, but because the bandwidth on chip is more abundant, CMPs of up to eight
processors may very well use a bus connection approach.

Rings are linear interconnects closely related to shared buses. In a ring, adjacent
nodes of the network are directly connected (see Figure 7.5). The average distance
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for a ring of n modules is n/2 hops, but on the other hand, several transactions can be
performed at the same time. The interconnect in the IBM Cell chip multiprocessor
uses rings (see Chapter 8).

Crossbar
Crossbars provide maximum concurrency between n processors and m memories,
that is, min(n,m), in the case of a UMA architecture as in Figure 7.2, and for n con-
current communications, (i.e., the mapping of one permutation of the n processors
to another), in NUMA architectures. The cost – that is, the number of switches –
grows as m × n in the first case and n2 in the second. Logically, a crossbar switch for
an n2 connection is a set of n multiplexers. However, more control is needed in the
case where several inputs are for the same output.

Crossbars are used extensively in specialized embedded processors such as net-
work processors (see Chapter 8), where they provide the switch fabric for incoming
and outgoing packets on different communication lines. If the number of lines is
large, then the crossbar will be implemented on a separate chip. More often than
not, capabilities for buffering and priority scheduling are included in the design.
Some large multiprocessors have used crossbars, but quite often in a hierarchi-
cal way. For example, the Convex Exemplar, built in the 1990s, was composed of
“hypernodes” connected via rings, where each hypernode was an SMP of eight pro-
cessors sharing a common memory via a crossbar.

In the CMP arena, the squaring factor in a crossbar will limit the area that can
be devoted to the interconnection network. We have seen examples of crossbars in
our presentation of the IBM Power4 and Power5 (in the sidebar in Section 6.3). A
crossbar connecting eight processors to four banks of L2 caches is present in Sun’s
Niagara (Chapter 8).

Crossbar switches are the building blocks for direct interconnection networks
such as the Butterfly Network (cf. Figure 7.6) that have been used in some NUMA
systems (IBM SP series). These multistage interconnection networks consist of logn
stages of n/2 switches each. Each switch is a 2 × 2 crossbar, but actual implementa-
tions could use larger crossbars by merging several stages into one. The cost of such
networks is proportional to nlogn, with the drawback that a connection takes logn
time. An advantage is that fault tolerance can be included in the design at the cost
of one or more extra stages.

Meshes
In direct connection networks, each processor is at the same distance from each
memory or from any other processor. In indirect interconnection networks process-
ing elements are connected to other processing elements at various distances. Quite
often, these interconnection networks are differentiated by their dimension. For
example:

� A ring (cf. Figure 7.5) is a unidirectional network;
� a 2D mesh (cf. Figure 7.7) where a processing element not at the edge is con-

nected to four neighbors by a link of length 1 is a two-dimensional network;
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Figure 7.6. Butterfly network of eight processors (three stages).

� a 2D torus, which is like a mesh but with links wrapping around at the edges, is
also a two-dimensional network;

� an m-dimensional hypercube, where each processing element is connected by a
link of length 1 to each of its m neighbors, is an m-dimensional network.

Many multiprocessors, and parallel processors using message passing, have
been built using indirect networks. For example, a ring was used in the Kendall KSR
machine and in the Sequent CC-Numa, where the ring connected shared-bus SMPs.
The Intel Paragon used 2D meshes to connect up to 512 nodes, where each node

Figure 7.7. Schematic view of a 2D mesh.
Each box is a processing element con-
nected by a link of length 1 to its four
neighbors.
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consisted of an Intel i860 processor for computing purposes and one for switching
purposes, along with DRAM memory. The Cray 3TD and 3TE use a 2D torus
interconnection. The Connection Machine CM-2, an SIMD processor, used a
12-dimensional hypercube where each node had 16 1-bit processors.

Routing of a message from one processing element to another can be done in
several ways. Higher dimension first is a common pattern. In a 2D mesh, this im-
plies that the message travels first vertically, then horizontally. A more important
question is control flow, that is, how messages make progress along the source–
destination path. Various techniques, such as wormhole routing and virtual cut-
through, have been developed. However, in the realm of CMPs, where “messages”
are memory requests, control flow might simply require acknowledgments and
retries. Although no commercial CMP uses indirect networks at this point, a num-
ber of research machines that can be classified under the rubric of grid processors
use 2D meshes. The investigation of interconnection networks, which was a topic of
high interest in the 1970s and 1980s, has seen a renewal of interest now that CMPs
with more than eight processors, grid processors, and special-purpose processors
with hundreds of ALUs on a chip are on the horizon.

7.2 Cache Coherence

The performance value of a well-managed uniprocessor cache hierarchy was docu-
mented in Chapter 6. In multiprocessors, main memory is even farther from each
individual processor, for the time to traverse the interconnection network will be
longer than that of access via the memory bus. Moreover, there will be more con-
tention, both in the network and at the memory modules themselves. Finally, a
new problem arises in shared-memory multiprocessors, namely, the consistency
of shared data in the various caches, which is referred to as the cache coherence
problem.

To illustrate the cache coherence problem, consider a three-processor system as
abstracted in Figure 7.8. Each rectangular box represents a processor and its cache
hierarchy. We show a UMA system, but the example would work similarly for a
NUMA architecture.

EXAMPLE 1: Initially, all caches are empty. Then processor P1 reads some
data A. After resolving the cache miss, the data are stored in P1’s cache. In the
next action involving A, let processor P2 read the same data A. On the cache
miss, a copy of A – coming from either memory or P1’s cache, depending on
the cache coherence protocol – is stored in P2’s cache. At this point, shown in
Figure 7.8(a), P1 (or rather its cache), P2, and memory all have a valid copy of A,
represented by a hatched box in the figure. Now let P3 have a write miss on the
same data A. Once a copy of A is in P3’s cache, there are two possible courses
of action. In the first case, P3 writes a new value for A and sends it to all other
caches that contain a copy of A as well as to main memory, so that all caches
and main memory have the same value for A. Figure 7.8(b) shows the results
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Figure 7.8. Illustration of the cache coherence problem.

of this write–update protocol, which resembles the write-through policy for
single-processor caches. The second case occurs when A sends an invalidation
message to all other caches containing A and to main memory. Now, as a result
of this write–invalidate protocol, P3’s cache is the only one holding a valid copy,
as shown in Figure 7.8(c). The similarity with the single-processor writeback
policy is apparent.

In Example 1, we see that there is a requirement for cache lines to have some
state associated with them to indicate whether they are valid (for invalidate proto-
cols), clean (i.e., unchanged from the image in main memory), or dirty (the oppo-
site of clean). Also, cache controllers issue messages and must answer messages
from other controllers. The design and implementation of coherence protocols will
depend on whether the architecture permits easy broadcasts or not. In the case
where broadcast is as simple as a direct message, (i.e., in the case of a shared-
bus system), we have snoopy protocols; in the other cases, we rely on directory
protocols.

7.2.1 Snoopy Cache Coherence Protocols

Snoopy protocols are implemented for shared-bus systems. In these protocols all
messages sent on the bus are snooped, (i.e., intercepted and listened to), by all cache
controllers that answer in appropriate fashion if they have a copy of the line that is
being processed. In the following, we concentrate on invalidation-based protocols,
because in SMP systems the (L2) caches connected to the bus are writeback. We
leave the design of an update protocol, which could be important for future CMPs,
to the exercises.
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Figure 7.9. Basic three-state write–invalidate snooping protocol.

The most basic protocol requires that each line be in one of three possible states:

� Invalid (I): The line that was present in the cache has been invalidated.
� Shared (S): There is one or more copies of the line in the system, and they all

have the same value.
� Modified (M), AKA dirty: The line is the single valid copy in the system.

Initially, all lines are in state I. We decompose the protocol into actions and state
transitions due to processor requests (Figure 7.9(a)) and those due to bus snooping
(Figure 7.9(b)).

Let us start with the processor actions.

� On a cache read hit, a line that was in either the S or the M state remains in the
same state.

� On a cache read miss, a new line is brought into the S state via a Bus read
transaction. If the line was already present, it had to be in state I. If the line
was not already there, a replacement is needed and the victim is written back
to memory if it is (or has been – see discussion of next action) modified. The
requested line will come from another cache if one of them holds a copy, and
from memory otherwise.

� On a write hit, no state change occurs if the line is in state M, because it is
already the only valid copy in the system. However, if the line is in state S, then
it must be put in state M, because it is modified by the writing; and all other
copies in the system must be invalidated. Hence, a Bus write signal is sent on
the shared bus along with the address of the line that is modified.

� On a write miss, the processor requests the line via a Bus read, and as soon as
the data arrive, it sends a Bus write transaction. At that point, the line is put in
state M. Replacement of a victim proceeds as in the read miss case.

We now consider the state changes due to the snooping on the bus for a cache
that did not initiate the transaction.

� If the line addressed in the Bus read or Bus write transaction is not in the cache
or is in the cache in state I, no action is necessary.
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� If the transaction is Bus read and the cache has the line in state S, it, as well as
all other caches that have the line in state S, requests the bus. The first one to
be granted the bus will send the data to the initiating cache.

� If the transaction is Bus read and the cache has the line in state M, the cache
requests the bus to send the data to the initiating cache. The state of its line is
changed to S.

� If the transaction is Bus write, then the line’s state is changed to state I.

Note that a line can pass from state M, where it was dirty with respect to mem-
ory, to state S. We have two possible ways to deal with this situation. The first one
is to retain the dirty bit that is set on a write hit or write miss, in addition to setting
the state to M. Then, if the line that had passed from state M to state S is replaced,
it will have its dirty bit on and will be written back to memory. The drawback is that
the same data may be written back several times from different caches to memory;
but this does not affect correctness. The second possibility is that when a line passes
from state M to state S and sends the data to the initiating cache, the data are sent at
the same time to memory. The dirty bit is not needed any longer, and on a replace-
ment the victim will be written back to memory only if it is in state M. In this option,
a Bus read can be served from memory as well as from another cache. Since we
are dealing with writeback caches, the dirty bit alternative seems more appropriate,
although it requires an extra bit of state.

The cache controller’s actions with respect to coherence actions are summarized
in the pseudocode below.

SNOOPY CACHE CONTROLLER’S COHERENCE ACTIONS (THREE-STATE WRITE–

INVALIDATE). We assume that there is a dirty bit per line. victim
is the line to be replaced. data_in is a signal indicating that
a line is being transmitted by a cache as an answer to Bus_read
and will be recognized by the sender of Bus_read as completion of
the transfer. The transfer from the bus data lines to the correct
cache line is subsumed by the recognition of data_in. No action
will be taken on Bus_read and Bus_write if the line is not in the
cache.

case ‘read_hit’: exit
case ‘read_miss’: begin Request_bus;

when bus_granted send ‘Bus_read’;
if dirty_bit.victim then write back victim;
when data_in then state←S;

end
case ‘write_hit’: if state = M then exit

begin Request_bus;
when bus_granted send ‘Bus_write’;
state←M;
dirty_bit←true;

end
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case ‘write_miss’: begin Request_bus;
when bus_granted send ‘Bus_read’;
if dirty_bit.victim then write back victim;
when data_in then begin Request_bus;

when bus_granted send
‘Bus_write’;

state ← M;
dirty_bit←true;
end

end
case ‘Bus_read’: if state = I then exit

begin Request_bus;
when bus_granted send ‘data_in’;
if state = M then state←S;

end
case ‘Bus_write’: state←I

A question that is often asked is: “What happens if two processors want to write the
same line at the same time?” The bus serves as a serialization device in that case. The
cache controller to which the bus is granted first will perform the first write. If the
writes are for the same data in the same line, then the result is not deterministic and
the programmer should take account of that, either using synchronization explicitly
in order to avoid this race condition, or developing the application in such a way that
it does not matter which write is performed first. The latter option is quite all right
for problems such as solving partial differential equations with relaxation methods,
where the final result is obtained through some convergence criterion.

Although the three-state protocol is simple, its actual implementation is more
difficult than it appears at first glance, especially when features such as split-
transaction buses, lockup-free caches, and prefetching are present. The finite-state
machine that is used to arrive in one of the three states defined above has in fact
many more than three states. To show why this happens, consider the following
example.

EXAMPLE 2: Processor cache P1 and processor cache P2 want to write to differ-
ent words of the same line L, which is in state I in both caches P1 and P2, and in
state S in cache P3. The shared-bus system uses a split-transaction bus. Assume
that the two writes happen “at the same time” but there is no indeterminism,
because the writes are to different words. A possible sequence of events among
the many that can arise is as follows (we use the notation of the pseudocode
above):

� Time t0: P1 submits a Bus read on the bus that is snooped by P3. P1 is in a
state not indicated in the diagram and akin to “waiting for data in.”

� Time t1: P2 submits a Bus read on the bus that is snooped and queued by
P3 (note that we have introduced a queue). P2 is also in the state “waiting
for data in.”
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Figure 7.10. A four-state MESI protocol.

� Time t2: P3 initiates a data transfer data in for line L towards P1 (note that
the transfer must be tagged with P1’s “address” so that P1 knows it is the
recipient; this is a requirement for split buses).

� Time t3: P1 has received the data and sends a Bus write. Both P2 and P3
must put line L in state I. In addition, P2 must pass in a state that will allow
it to resend its Bus read request, and P3 must dequeue the request from P2.

Although this situation is not difficult to analyze, it shows that the three-state
machine requires refinement at the implementation level.

A second complexity brought up by snooping is that requests from the processor
and snooping checks for different lines in the same cache should be able to proceed
in parallel. This concurrency is critically important for CMPs, where L1s might be
the caches on which coherence is applied and slowing access to L1 is not allowable.
A common practice is therefore to duplicate the tag array, with one array for pro-
cessor lookups (read and write hit or miss) and one for snooping lookups (bus read
and bus write). Of course, both arrays must be kept consistent.

With these caveats on the simplicity of the three-state protocol, we now describe
a slightly more complex protocol that has better performance than the three-state
one in that it will reduce the number of bus transactions. The early motivation for
introducing a fourth state was that it did not increase the number of bits required
for the encoding (2 bits for both three and four states) and therefore came for free.

A fourth state, called exclusive (E), can be used to indicate that an unmodified
line that is being cached is the only cached copy in the system. The advantage is
that on a write hit to an E line, there is no need to broadcast an invalidation signal.
Of course, the line will then transit to the M state. The presence of the E state
is particularly useful for private variables (e.g., variables that are on the stack). A
protocol using the M, E, S, and I states is shown in Figure 7.10.
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On a read miss, if the data are in another cache, then they must come from
there. Thus, the bus must have a special control line that indicates, as an answer
to a Bus read transaction, whether the data are transferred from a cache or from
memory. When they come from another cache, the line will be loaded in state S. If
they come from memory, they will be loaded in state E. On a Bus read transaction,
if a cache has the line in state E, it must transfer the data to the requesting cache
and change the state of its line to S. Other transitions are similar to those in the
three-state protocol, with the addition of raising an extra control line on transfers of
lines in state E or S, as explained in this and the previous paragraphs.

An alternative to state E is an ownership state (O), whereby a distinction is made
between a shared line (state S) and the latest shared line that has been modified, for
example when there has been a transition from state M to state S (now state O).
Only the lines in states M and O need to be written back, and one can dispense with
the dirty bit.

The requirements of cache coherence introduce a new kind of miss, namely
coherence misses. The three C’s defined in Section 2.2 now become the four C’s.
As the cache sizes increase, the number of coherence misses will also increase, and
therefore the assumption that we made, “the larger the cache, the better the perfor-
mance,” might not hold in multiprocessor systems. We shall return to performance
aspects of cache coherence once we have presented protocols for non-shared-bus
systems.

7.2.2 Directory Protocols

When the interconnection network is not a shared bus (or a ring), snooping is not
a realistic option. Broadcast, or even multicast, (i.e., sending a message to several
selected processing elements), is not easy, although it is certainly more convenient
in centralized networks than in decentralized ones. Therefore, another mechanism
for cache coherence is needed. The basic idea is to have a directory that indicates
for each line in memory:

� whether the line is cached or not;
� where the line is cached (this could be only partial information);
� whether the cached line is clean or dirty.

In the full directory scheme, complete information is provided for all lines
in memory. For an n-processor-cache1 system, a Boolean vector of size n + 1 is
appended to each memory line. If a bit i (i = 1, . . . , n) is set, it indicates that the ith
cache has a copy of the line. Bit 0 indicates whether the cached line is clean or dirty.
A vector of all zeros means that the line is only in memory. If bit 0 is set, only one
of the other bits can be set.

1 Several processors and L1 caches could share an L2 cache to form a unit of coherence. Coherence
would have to be maintained first among the L1s within a unit and then between the L2s of various
units. We consider here coherence between the L2s, but we shall see examples where directory
protocols can be used at the L2 and L1 levels.
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In a distributed shared-memory NUMA system, each processing element has
the part of the directory containing the information related to the lines stored in
its memory. The processing element whose memory contains the initial value of a
line will be called the home node of the line. Any other processing element will be a
remote node. On a cache miss, the request will be sent to the home node’s directory
of the missing line. Replaced dirty lines will be written back to the memory of their
home node.

The basic protocol for coherence is as follows. We assume writeback caches with
each line having a clean–dirty bit. Consider actions emanating from the ith cache.
Let L be the line that is being accessed, let j be the index of L’s home node, and V
the Boolean vector of the directory associated with L.

� Read hit on a clean or dirty line and write hit on a dirty line: Do nothing.
� Read miss: A request is sent to the directory of the home node.

� The directory indicates that the line L is uncached or that the line is cached
in the clean state (bit V0 = 0). The data will be sent to cache i, and Vi, the ith
bit in V, is set.

� The directory indicates that the line L is cached and dirty (bit V0 = 1), and it
gives the index k of where the line is cached (bit Vk = 1, and it is the only bit
except V0 that is set).
� If k = j, the line is cached in the home node. The data are written back

from the home node’s cache j to the home node memory. Line L’s dirty bit
is reset to clean in cache j. The data are then sent to cache i. Bit Vi is set to
1, and bit V0 is reset to 0. This is called a one-hop process.

� If L is cached in cache k �= j, the home node asks cache k to write back
the data and to reset its dirty bit for line L to clean. Then, once the data
arrive at the home node, they are stored in the home node’s memory and
forwarded to cache i. Bit Vi is set to 1, and bit V0 is reset to 0. This is called
a two-hop process.

� Write miss: A request is sent to the directory of the home node.
� The directory indicates that the line L is uncached: The home node sends the

data, and bits Vi and V0 are set to 1.
� The directory indicates that the line is cached in the clean state: The home

node sends an invalidation message to all caches whose bits are set in V (this
is in fact a series of messages if multicast is not possible). Upon receiving
an acknowledgment from a targeted cache, its corresponding bit in V will be
reset. When all acknowledgments have been received, the home node for-
wards the data to cache i. Bits Vi and V0 are set to 1.

� The directory indicates that the line is cached in the dirty state in cache
k (V0 = 1 and Vk = 1).
� If k = j, the home node, the data are written back from the home node’s

cache to the home node’s memory. Line L is invalidated in cache j. The
data is then sent to cache i. Bits Vi and V0 are set, and bit Vj is reset (one
hop).
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� If L is cached in cache k, the home node asks cache k to write back the data
and to invalidate its copy of line L. Then once the data arrive at the home
node, they are forwarded to cache i. Bits Vi and V0 are set, and bit Vk is
reset (two hops).

� Write hit on a clean block: Proceed like a write miss on a clean block as
described, except that the invalidation message is not sent to cache i, the
requesting cache, and that the data do not need to be sent from the home node
or any other cache.

When a dirty line is replaced, it is written back in the home node and its asso-
ciated vector is reset to all zeros. When a clean line is replaced, we could just do
nothing, as in a regular writeback cache, but then the directory would be slightly
erroneous. At the very least, superfluous invalidation messages might be sent later
on. A better solution is to have a message be sent to the home node asking for a
modification of the directory, namely, a reset of the bit corresponding to the cache
where the line is replaced.

The protocol is summarized in the following pseudocode:

FULL DIRECTORY PROTOCOL. We assume that there is a dirty bit per line.
victim is the line to be replaced. write back(victim) will write
back victim to its home node if it is dirty and in any case change
victim’s directory vector according to whether it is clean (reset
a single bit) or dirty (reset to all 0’s).

L is the line that is accessed in cache i. The home node is j.
V is the directory vector associated with L. If L is dirty, its
only copy is in cache k.

Request read asks the home node j for line L, and Request write
does the same, but asks also for invalidation of all cached
copies. Request invalidate asks the controller at the home node
to invalidate all copies except that from cache i.

Send line sends a copy of line L from home node j to cache i.
Purge is a request from the home node j to cache k to write back
its copy of line L in the memory of j and Invalidate it in cache
k. Send invalidate(m) is a message from the home node asking a
cache m to Invalidate its copy of L. It will be answered by an
Ack(m). We do not differentiate when k = j.

case ‘read_hit’: exit
case ‘read_miss’: begin Request_read; write_back(victim); /∗at i ∗/

if V0 = 0 then begin Send_line; Vi ← 1; end /∗ at j ∗/
else begin Purge; /∗at j ∗/

write_back(L); L.dirty ← 0; /∗at k ∗/
Send_line; V0 ← 0; Vi ← 1; /∗at j ∗/

end
end
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case ‘write_hit’: if L.dirty = 1 then exit /∗at i, L is dirty∗/
else begin Request_invalidate; /∗at i, L is clean∗/

for all m �= i s.t. Vm = 1 /∗at j ∗/
begin Send_invalidate(m);
Invalidate(L); Ack(m); /∗at m ∗/

Vm ← 0; /∗at j ∗/
end{for}

V0 ← 1; /∗at j ∗/
L.dirty ← 1; /∗at i ∗/

end
case ‘write_miss’: begin Request_write; write_back(victim); /∗at i ∗/

if (V0 = 0 and all Vi = 0) then
begin Send_line; Vi ← 1; V0← 1; end /∗at j ∗/

else if V0 = 0 then
begin for all m �= i s.t. Vm=1

begin Send_invalidate(m); /∗at j ∗/
Invalidate(L); Ack(m); /∗at m ∗/
Vm ← 0; /∗at j ∗/

end{for}
Send_line; V0 ← 1; Vi ← 1 /∗at j ∗/

end
else begin Purge; /∗at j∗/

write_back(L); /∗at k∗/
Send_line; Vi ← 1; Vk ← 0 /∗at j∗/

end
L.dirty ← 1 /∗at i∗/

end

A drawback of the full directory scheme is that the size of the directory grows
linearly with the number of processing elements in the system. For example, the
amount of memory overhead for the directory of an eight-processor system when
the L2 cache lines (we assume that L2s are the caches on which coherence is applied)
are 64 bytes would be less than 2% (9/(64 × 8) = 0.18). If we have 64 processors,
it becomes almost 13%. An alternative is to encode only partial information on the
location of the cached lines.

The most memory-economical protocol must encode whether the line is
uncached (state I), or, if it is cached, whether it is clean (state S) or dirty (state
M). Recall that these requirements were those of the three-state snoopy protocol.
Thus, two bits of encoding are necessary. A fourth state can be added for free, and
the best choice is to have an exclusive state (state E) that has the same meaning as
the one of the same name in snoopy protocols. However, this two-bit protocol is a
directory scheme, and the states are encoded once per line in the directory mem-
ory, and not at each cache as in snoopy protocols. The drawback of this encoding
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relative to the full directory scheme is that there is no information on where the line
is cached.

The main differences between this two-bit protocol and the full directory one
are as follows.

� On a read miss:
� If the line is in state I, the state in the directory becomes E. Of course, data

are sent from the home node’s memory.
� If the line is cached and in state E, the data are sent from the home node’s

memory, and the state becomes S.
� If the line is in state S, the data are sent from the home node’s memory, and

the state is unchanged.
� (Major change:) If the line is in state M, broadcast a writeback message to all

caches. Those that do not have a copy of the line will simply acknowledge.
The one with a copy of the line will send it back to the home node memory,
resetting its own clean–dirty bit to clean. The home node will then forward
the data to the requesting cache. This can be either a one-hop or a two-hop
process, depending on the location of the dirty line. The state becomes S.

� On a write miss:
� If the line is in state I, the state in the directory becomes M. Of course, data

are sent from the home node’s memory.
� (Major change:) If the line is in state E or S, broadcast an invalidation mes-

sage to all caches. Caches with a copy of the line invalidate it. All caches
acknowledge receipt of the broadcast. Data are sent from the home node’s
memory after all acknowledgments have been received and the state becomes
M.

� (Major change:) If the line is in state M, proceed as in the case of the read
miss except that the line in the cache holding it becomes invalid and that the
state in the directory becomes M.

� On a write hit to a clean block:
� If the line is in state E, the home node acknowledges and changes the state

to M.
� If the line is in state S, proceed as in the case of a write miss for a line in state

S (above), but do not send any data.

If the interconnection network is decentralized, broadcasts can be very expen-
sive. In order to reduce their occurrence, a number of schemes have been proposed
midway between the full directory and the two-bit protocols. The basic motivation
is that quite often the lines are shared by a limited number of processors, say two or
three.

Many variants have been proposed for these partial directories. In one class of
protocols, instead of having n + 1 bits as in the full directory, each vector has i log
n + 1 bits, that is, the encoding for i cache locations. The protocols can be dis-
tinguished by whether they will use broadcast when more than i caches have a
copy of a line (the so-called DiriB protocols), or whether there will be some forced
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invalidation when more than i caches request a copy (the DiriNB protocols), or
whether the directories can overflow in main memory.

An alternative is to have directories embedded in the caches themselves. All
copies of a cached line are linked together by a doubly linked list. The list is doubly
linked to allow easy insertions and deletions. The head of the list is in the home
node. An insertion is done between the new cache and the home node. Deletions
can be done in place. The amount of memory needed – two pointers of size logn per
line in each cache – is proportional to the amount of memory devoted to caches, not
to the total amount of memory. The drawback of this scalable scheme (its name is
SCI, for “scalable coherent interface”) is that invalidations require the traversal of
the whole list.

In first-generation CMPs, like the two-processor IBM Power4 and Power5
or the eight-processor Sun Niagara, the L1 caches are kept coherent with respect
to the shared L2 with a full directory protocol. The protocol is in fact easier because
the L1 are write-through, write-no-allocate caches.

As was the case for snoopy protocols, directory protocols are more complex
to implement than the description we have provided here. Of course, there is no
atomic transaction, because it would lead right away to deadlocks. To see how this
could be happening, think of two processors, each requesting a line from the other
one’s cache, with their home nodes different. In the same vein, only one transac-
tion for a given line should be in progress. If a second one is initiated, it should be
acknowledged negatively (beware of starvation) or buffered (beware of buffer over-
flows and hence deadlocks). This is of course even more important for protocols that
use broadcasts. Solutions, besides imposing both positive and negative acknowledg-
ments, might use duplicate interconnection networks, one for requests and one for
replies, and/or buffer reservation schemes.

7.2.3 Performance Considerations

A number of issues have definite influences on the design and performance of coher-
ence protocols. First, we have to revisit the multilevel inclusion (MLI) property that
was introduced in Section 6.3.1, for now an L2 can be shared by several L1s, as in
the multicore CMPs (see Chapter 8).

Recall that the MLI property in a hierarchy consisting of a parent cache and
a single child cache – with the number of sets in the parent being greater than the
number of sets in the child and the line size of the parent being at least as large as
that of the child – holds if

Aparent/Bparent ≥ Achild/Bchild

where A is the associativity and B the line size. If the parent has k children (we
assume they are identical, but the analysis can be carried out even if they are not),
the MLI property holds if

Aparent/Bparent ≥ k(Achild/Bchild)
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EXAMPLE 3: A direct-mapped L1 of capacity 1 KB and line size 4 bytes has
a parent L2 of capacity 32 KB and line size 16 bytes. In the case of a single
processor, the MLI will hold if the L2’s associativity is at least 4. If the L2 is now
shared by four L1s, the L2’s associativity must become 16.

As evidenced by Example 3, if the ratio between line sizes and/or the number
of children caches becomes larger, meeting the required associativity of the parent
cache becomes impractical. Instead of a strict MLI, the property has to be partial
MLI, that is, invalidation of child lines must be performed even if there is no need
for it from a strict coherence viewpoint. Some form of partial directory can be asso-
ciated with each parent cache line in order to regulate the number of copies that can
be cached.

A second performance issue directly associated with coherence misses, the
fourth C in the taxonomy of misses, is that of false sharing. False sharing occurs
when two (or more) processors write in an interleaved fashion two (or more) dif-
ferent subsets of the same line. As the line size increases, the probability of false
sharing also increases. On the other hand, we saw previously that applications with
good spatial locality have better performance with larger cache lines. In the same
way that for each application on a single processor there is an optimal line size,
there is also an optimal, and maybe different, line size in the case of multiproces-
sors. Various compiler and hardware protocol tweaks have been proposed to reduce
the detrimental effects of false sharing.

Because of the long latencies to access memory, many techniques have been
proposed to adapt cache coherence protocols to specific patterns and to prefetching.
Speculative techniques have also been investigated. All these optimizations lead
to more complex protocols with concomitant possibilities of race conditions and
deadlock. In the realm of CMPs, all protocols have been kept simple so far, although
in Chapter 8 we shall see some more sophisticated schemes when multithreading is
implemented.

7.3 Synchronization

In single-processor multiprogramming systems, several processes appear to run con-
currently although only one process at a given time can execute instructions because
there is only one CPU. This concurrency has often been called logical or virtual.
In multiprocessor systems, the concurrency can be both logical and physical, for
now several processes can proceed concurrently on different processors. Concur-
rent processes may want to access shared data or acquire a physical resource “at
the same time,” where the time coincidence may be virtual or physical. Concur-
rent processes may also want to coordinate their progress relative to each other.
Thus, concurrent processes must be synchronized. The synchronization may take on
a competing aspect as, for example, in gaining access in a mutually exclusive way to
critical sections where shared data must be modified in an orderly fashion, or global
access to common shared data structures. In other cases, synchronization reflects the
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Process P1 Process P2

A       A  +  1 A       A  +  2

ld       R1, A ld      R1, A
addi   R1,R1,1 addi   R1,R1, 2
st        R1, A st        R1, A

(a) Original sequence

ld      R1, A ld      R1, A
addi   R1,R1, 2
st        R1, A

addi   R1,R1,1
st        R1, A

(b) A timing sequence giving the result A + 1

Figure 7.11. Example showing the need
for synchronization.

cooperation of processors as, for example, in producer–consumer relationships or
the termination of all iterations of a loop in a parallel program. Many of the mecha-
nisms used in single processors can be applied to multiprocessors. However, efficient
implementations may differ.

Synchronization quite often implies the acquisition and release of locks. We
start by presenting basic instruction primitives that allow the implementation of
locks. We then describe some extensions that are geared towards multiprocessor
systems. We also introduce a construct that is used for cooperation among processes,
namely barriers.

There are numerous textbooks on operating systems that describe the creation
of concurrent processes and their synchronization via higher-level primitives such as
semaphores or monitors. Classical synchronization problems, such as the bounded
buffer or producer-consumer problem and the five dining philosophers, are typically
used to illustrate the concepts. We do not dwell on these problems, and instead we
concentrate on the architectural aspects of locking and barrier mechanisms.

7.3.1 Atomic Instructions

Consider the very simple example of Figure 7.11, where two concurrent processes P1
and P2 update a common variable A. If the two increment operations were atomic,
then the result would be A + 3. This corresponds to the execution of the three
instructions (Figure 7.11(a)) of process P1 followed by the three instructions the of
process P2 (or vice versa; there are several other sequences that would yield the
same result). However, if the timing of the execution of instructions is as in Fig-
ure 7.11(b), where loading A in a register takes longer for P1 than for P2, then the
result is A + 1. This situation could occur if, for example, variable A was cached in
the processing element on which P2 executes and not cached for the one executing
P1. It is not difficult to see that any of the three results A + 1, A + 2, and A + 3 can
be the final one. Even if cache coherence mechanisms were present, we could have
problems, for the invalidation of, say, processor P2 could arrive after the value of A
computed by processor P1 was used by the latter.

In order to proceed in an orderly fashion, we must provide a lock for the vari-
able A such that only one process is allowed to access A at a given time. The general
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paradigm for the use of a lock, including its release, is:

while (!acquire(lock)) {waiting algorithm}
computation on shared data

release (lock)

Because several processes might want to acquire a lock simultaneously, the
acquisition process must be atomic. Before proceeding on how to implement the
acquisition, let us note that there are two main possibilities for the waiting algorithm
that the processes that did not acquire the lock must execute. One is busy waiting,
whereby the process repeatedly tries to acquire the lock, which in this case is called
a spin lock (to be discussed). The other is blocking, whereby the process suspends
itself and releases the processor on which it was running. The blocked process will
be reawakened when the lock is released. Whether busy waiting or blocking or a
combination of both (several attempts using busy waiting and then, if unsuccessful,
the use of blocking) is best is often application-dependent. Since this distinction is
more in the realm of operating systems, we do not consider it further.

Let us now return to the lock acquisition problem. In its simplest form, a lock
will be a variable stored in memory that can have only the values 0 (lock is free) or
1 (lock is already acquired). The steps for acquire are therefore to test whether the
value is 0 or 1 and, if it is 0, to set the value to 1. However, the test and the sub-
sequent set must be indivisible; otherwise, two processes could test simultaneously
that the lock has value 0 and both acquire the lock. What is needed is an instruction
that can read, modify, and write a memory location without interference. Such an
instruction, called test-and-set, was already part of the ISA of the IBM System/360.
It was implemented by preventing the use of the memory bus by other instructions
while it was being executed. All microprocessors today have some form of test-and-
set in their ISA. Releasing a lock is of course much simpler. We just need to write
the value 0.

Test-and-set is the simplest instance of an atomic exchange operation. It can
be generalized to exchange-and-swap, which allows values other than 0 and 1 by
exchanging the values of a register and a memory location. Compare-and-swap is
a further generalization that allows the value in memory to be changed only if it is
equal to the test value supplied. Both these instructions are present in the ISAs of
the Intel IA-32 and Sun SPARC. In addition, in the Intel architecture, most integer
arithmetic and logical instructions can be used with a lock prefix that makes them
atomic.

For the example of Figure 7.11, none of the above instructions present an advan-
tage over test-and-set, for a simple Boolean lock is all that is needed for synchroniza-
tion. However, there are applications where more sophisticated atomic exchanges
are useful, for example by using bits or bytes within a memory location (word) as
individual locks for subsets of a data structure.

A second type of atomic operations is the fetch-and-Θ operation, which is a
generic name for fetch-and-increment, fetch-and-add, fetch-and-store, and so on.
The basic idea, for example for fetch-and-increment, is that the two operations of
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loop: test-and-set R2,lock /* test and set the value in location lock*/
bnz R2, loop /* if the result is not zero, spin*/
ld R1, A /*the lock has been acquired*/
addi R1,R1,1 /*increment A*/
st R1, A /*store A*/
st R0, lock /*release the lock; R0 contains 0*/

(a) Use of test-and-set. This instruction returns the value of lock in R1 and sets the value in lock to 1.

fetch-and-increment A

(b) Use of fetch-and-Θ, in this case fetch-and-increment

loop: ll R1, A /*A loaded in R1 and its address loaded in link register*/
addi R1,R1,1 /*increment A*/
sc R2, A /*test of the link register with address of A; if equal, sc returns 1*/
bz R2,loop /* if failure try again; memory was not modified*/

(c) Use of ll-sc

Figure 7.12. Example of the use of three synchronization primitives.

fetching a value from memory into a register and then incrementing the value in
memory are indivisible. Thus, in the example of Figure 7.11, process P1 would sim-
ply use the instruction “fetch-and-increment A.” Process P2 would use “fetch-and-
add A, R1,” where R1 would have been previously loaded with the value 2. We shall
see further examples of the use of fetch-and-� when we look at spinning locks and
barriers.

Instead of atomic exchange, we can have an instruction pair that can be deduced
to have operated in an atomic fashion. The DEC Alpha ISA provides such a pair,
namely, load-locked (ll) and store-conditional (sc). With the ll instruction, a value is
loaded into a register. This is the read part of the read–modify–write cycle. Instruc-
tions that follow ll can modify the value in the register. The last part of the cycle,
the write, is provided by the sc instruction. sc checks whether the value in mem-
ory that was loaded by ll has been modified by another process. If it has not been
modified, the atomic operation was successful. For implementation a special regis-
ter, often called a linked register, is needed. It contains the address of the memory
location whose contents have been loaded by ll. If this link register was not modi-
fied, sc writes the contents of the register in memory and returns the value 1. If the
link register has been modified, for example because of an invalidation in a cache
coherence protocol or a context switch, then sc fails, returning the value 0.

Figure 7.12 gives three corrected versions of Figure 7.11 for process P1, using
respectively test-and-set, fetch-and-increment, and the pair ll–sc.

The pair ll–sc is in fact easier to implement in that it does not require the indivis-
ibility of the atomic exchanges. It was first used in some MIPS and Alpha processors
and is now part of the ISA of the IBM PowerPC and Intel IA-64.

7.3.2 Lock Contention

One of the waiting algorithms that we mentioned above, namely, spinning locks,
is to repeatedly try to acquire a lock when the latter is already held by another
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process. We consider now how lock contention can degrade performance and how
to enhance the atomic instructions of the previous section so that spinning locks can
still be a viable tool in cache-coherent shared-memory multiprocessors.

Let us first look at the simplest mechanism, namely, test-and-set – or, as we
are simply dealing with a lock, any of the atomic exchanges of the previous sec-
tion. The first processor that wants to acquire a lock succeeds and caches the lock
in a line in the modify (M) state. The first processor that requests the lock subse-
quently will get a copy of the lock and test it (unsuccessfully), but because the “set”
part always writes a value, it will invalidate the copy in the cache of the holder and
keep its cached copy in the M state. If there are other processors wishing to acquire
the same lock, the last one that requests it will have the sole copy of it in the M
state. However, since all tests are unsuccessful until the holder releases the lock, all
requesters are repeatedly trying to read and modify the lock, which is in the M state
in another cache. These attempts will result in heavy utilization, or even saturation,
of the common bus in a snooping environment, or result in a “hot spot” in the case of
a directory protocol, because all requests will be directed to the directory that con-
tains the state of the lock. Moreover, the processor that holds the lock and wants
to release it will have to contend with all the requesters before having the right to
write it back.

In addition to the contention, which will slow down all other memory refer-
ences, the test-and-set primitive does not allow a fair selection of the next lock
holder. Worse, if there are more than two processors that request the lock and some
of these want to reacquire the lock, then the request for acquisition of a particular
processor can be permanently denied, leading to the starvation of the requesting
process. In order to mitigate these effects, a mechanism called exponential back-off,
used in another context in the Ethernet protocol, is advocated. When, after a few
attempts, a processor has been denied the acquisition of the lock, instead of asking
for it again immediately, it waits for some time t. If the attempt is again unsuccessful
after a few renewed attempts, it waits for time 2t, and then 4t, 8t, and so on, until
finally it succeeds.

Rather than taking advantage of the caching process, the acquisition and release
of spinning locks are hindered by it. In order to alleviate the number of requests to
memory, a new primitive, test-and-test-and-set, has been proposed. The first part of
the primitive tests the value of the lock, and if the lock has already been acquired,
the procedure will spin without attempting to overwrite it. If it finds that the lock is
available, it then performs a test-and-set. The spinning can be expressed as follows:
“while ((lock = 1) and test-and-set(lock))” with the provision that the second part
of the Boolean expression need not be tested if the first part is true. Now, copies
of the busy lock can be cached in the shared state in all caches. Spinning will be
done on a shared variable without the need to communicate with other caches or
memory.

Although this new primitive certainly helps when a lock is already acquired, the
competition upon the release of the lock is worse than for test-and-set. To see why,
consider the scenario when the holder of the lock releases it. The write transaction
of the holder will invalidate all copies, and the requesters will start competing to
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init: flag[0] := 0; /*initially; 1st processor can have the lock*/ 
            for  (i :=0; i < n; i++)               /* all other processors will see a busy lock*/

flag[i] := 1;
tail := 0;

acq:     myindex := fetch-and-increment (tail);      /* the increment is modulo n*/
while (myindex = 1);               /*spin while the lock is held elsewhere*/

flag[myindex] := 1;               /*I got the lock. Make it busy for next round*/

rel: flag[(myindex + 1) mod n] :=0                  /* release the lock and pass it on to the next processor*/

Figure 7.13. Software implementation of queuing locks.

acquire the lock. All requesters first attempt to acquire a shared copy via the “test”
part. All requesters will succeed in the case of a shared bus and a round-robin bus-
granting mechanism. Many of them will succeed, even if the interconnect is not a bus
or there is some other scheme to grant the bus. The successful processes will then
attempt to do a test-and-set. The problem then is that the test-and-set writes the
value of the lock, thus invalidating all shared copies. All requesting processes that
were not yet attempting a test-and-set will have to perform a read (“test”) again.
This will go on as long as there are test-and-sets in progress. For each test-and-set
that is attempted, the number of pending test-and-sets is decreased but the number
of test attempts will increase. When all test-and-sets have been attempted, the test
will not have to be redone, and spinning will occur without bus or interconnection
network contention. Note that test-and-test-and-set does not solve the starvation
problem.

Locking using the two primitives above considerably slows down normal access
to memory, especially in shared-bus systems, if there are a substantial number
of processors competing for a lock. The problem has a negative feedback effect.
Because the critical section of code protected by the lock will most likely involve
accessing shared variables in memory, those accesses to memory are slowed down
by the remaining transactions due to the locking process after the lock has been
acquired. Although critical sections are generally meant to be short, the slowed-
down memory references make them last longer, thus allowing more processors to
contend before a new one gets the nod.

Queuing Locks
Memory contention can be reduced and at the same time starvation can be elim-
inated by having requesting processors enter a FIFO queue. We start by showing
a software implementation of queuing locks (cf. Figure 7.13). Elements of an array
are used to enqueue circularly the identities of the requesting processors. Initially
the first element of the queue contains a flag indicating that the lock is free while
all other elements contain a busy flag. A processor requesting the lock will perform
a myindex = fetch-and-increment(tail), that is, position itself at the end of the
queue and increment the queue counter (we omit the modulo operations needed
for the circular queue implementation). It will then read the array element of index
myindex, cache it, and either spin in cache if the corresponding flag is busy, or enter
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the critical section otherwise. While in the critical section, it will reset the flag at
myindex to busy. At the end of the critical section, the release operation will reset
the element at myindex + 1 to free. The write operation will invalidate the line
containing the lock in the cache of the processor corresponding to myindex + 1.
This will generate a read miss for the latter, and upon reading of its flag, its test will
be successful.

Note that this implementation has several drawbacks. First, it relies on the pres-
ence of a fetch-and-increment instruction. If this instruction is not present in the
ISA of the processor, then it must be simulated, that is, it requires the use of a lock
to access the queue. Of course, the critical section for updating the queue is very
short, but nonetheless contention can also arise there. Second, obtaining a lock may
take longer when there is no contention, because instead of a single test-and-set
there is now the task of incrementing a counter, reading a location, testing it, and
writing another location. Third, each lock must be in a different cache line. The
array is therefore an array of cache lines. This is somewhat wasteful of memory.
The main disadvantage, however, is that one cannot coallocate shared data with the
lock, because the lock is distributed. Coallocation has proved quite beneficial with
test-and-set synchronization whenever it is possible, that is, when there are a small
number of shared data in the critical section protected by the lock. Finally, if the
process holding the lock is suspended (context switch), then all processes depend-
ing on the lock must wait till the suspended process is reactivated and releases the
lock. This is true of all synchronization mechanisms. Queuing locks exacerbate the
problem, for in that case, if a process that is queued but not holding the lock is
suspended, its successors on the queue must wait till it is reactivated. Nonetheless,
measurements have shown that queuing locks are beneficial in heavy contention.
They were implemented in the shared-bus Sequent multiprocessor.

A hardware implementation of queuing locks, which in fact antedates the soft-
ware one, was also proposed. The QOLB (queue on locked bit) scheme maintains
a hardware queue of waiting processors. A succinct and not completely accurate
description is as follows. The enqueue operation allocates a shadow copy of the line
containing the lock in the processor’s cache and enqueues the processor in the hard-
ware queue. Spinning is performed in cache if the lock bit is set to busy. When the
processor holding the lock releases it, it performs a dequeue operation that directly
sends the freed lock and the data in the same line to the next waiting processor. In
this scheme, coallocation is possible. Simulations show that it outperforms other
mechanisms, but at a significant complexity cost. For example, it requires direct
transfer from one cache to another, more cache coherence states, and the ability
to perform some operations outside the cache coherence protocol.

Full–Empty Bits
In the full–empty bit scheme, each memory location can be used for synchronization
purposes by looking at a special synchronization bit. If the synchronization bit is 0, it
means that no value has been written in the memory location; if the bit is 1, a value
has been produced. A read will stall until the synchronization bit is 1, that is, no
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value can be consumed until it has been produced. The read will reset the synchro-
nization bit to 0. Similarly, a store to a location will stall until the bit is 0, because
otherwise it would overwrite a previous value that has not been used yet. When the
synchronization bit is 0 and the value is stored, the synchronization bit is reset to 1.
As can be seen from this description, full–empty bits are extremely convenient for
producer–consumer problems. Of course, not all load–store instructions should fol-
low the convention of the full–empty bits; the ISA should be extended with special
load–store instructions. An implementation of this concept was first done on the
Denelcor HEP computer and later on the supercomputer Tera.

How important is the ability to resolve lock contention efficiently? It really
depends on the scale (number of processors) of the system and on the applica-
tions. For example, investing in hardware queuing locks does not seem justifiable
for CMPs with a limited number of processors. Choosing between regular and soft-
ware queuing locks might be done application by application, or even critical section
by critical section.

Transactional Memory
With the number of processors expected to increase in CMPs and the clock
remaining at the same frequency, improved performance will be achieved through
expanded parallelism. However, more parallelism implies more synchronization.
Adequate locking may become difficult to achieve because (i) it might restrict
unduly the amount of parallelism because some locks needed to ensure correct-
ness are nonetheless superfluous for the great majority of program executions, and
(ii) overabundance of locks might make ensuring program correctness or debugging
much more strenuous.

To circumvent these difficulties, a new programming model has been proposed,
based on the concept of transactions. The basic idea is that a critical section, or
any section of code protected by locks, behaves in the same way as a transaction
in the database sense. In a database transaction all state changes within the trans-
action are considered to be atomic, that is, either they are all executed or none of
them are. This is indeed what is required of accesses to shared variables within a
critical section, although transforming all critical sections in such a way that they
become transactions can lead to deadlock in admittedly contrived examples. A sec-
ond important property of transactions is that their execution does not depend on
what other concurrent processes are doing, that is, transactions provide isolation.

One of the concurrency control mechanisms used in transaction-oriented sys-
tems is an optimistic scheme. When the beginning of the transaction is recognized,
all state change actions are buffered. When the end of the transaction marker is
reached, if there was no conflict in shared-variable access with another transaction,
then all the state changes are committed at once. If there were conflicts, then the
transaction is aborted and it has to be retried. The implementation of such a scheme
could be purely in software (with a significant performance degradation com-
pared to a lock-based implementation), purely in hardware, or in a combination of
both.
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The requirements of the optimistic scheme are that the beginning and the end
of the transactions be recognized and that all state changes occurring during the
transaction be buffered and subsequently either committed or aborted.2 Recogni-
tion of the boundaries of a transaction is not complex. Either the denotations of
the beginning and the end of the transaction will be incorporated in the program-
ming language, or the hardware can detect instructions corresponding to acquire and
release of locks. Although there is not yet any microarchitectural support for trans-
actions, some of the existing mechanisms could be expanded in the buffering and in
the detection of whether there have been conflicts or not. We do not present a for-
mal approach, because transactional memory is still at a research stage but indicate
some options that might be considered.

State changes are activated by stores to registers and memory. Because the
optimistic control of transactions is another instance of speculation, we can rely at
least partially on some of the same mechanisms as in other speculative schemes. In
particular, registers can be saved (at the beginning of the transaction), committed,
or restored (at the end of the transaction), in the same way as is done for branch
(mis)prediction. In the case of stores to memory, we can try and piggyback on the
actions of cache coherence protocols. The state of a cache line can be expanded to
indicate whether the line has been read-accessed (R) or write-accessed (W) during
the transaction. No line that was write-accessed can be written back to memory dur-
ing the transaction’s execution. Now, when the end of the transaction is reached,
the processor sends coherence messages for all lines that have a W bit on. If no
other cache has the same line with either an R or a W bit on, the transaction can
commit. This is done by resetting all R and W bits, which can be done in a single
gang-reset-like instruction. If at least one other cache has a line with an R or a W
bit, the transaction is aborted.

The cursory description in the previous paragraph leaves several questions
unanswered, such as what happens if a line with an R or W bit becomes a victim in a
cache replacement, and whether one should allow nested transactions. The reader is
referred to the current literature for this topic, which is generating a lot of interest.

7.3.3 Barrier Synchronization

A synchronization operation that requires concurrent processes to wait until all of
them have reached a given point is called a barrier. A typical use of a barrier is when
iterations of a loop can be executed in parallel on several processors, that is, each
loop iteration is independent of all others. However, all processors must cooperate
so that it is known when all loop instances have completed.

A software implementation of a barrier uses a counter that needs to be incre-
mented atomically and a spin lock for those processors that have reached the bar-
rier and are waiting for the last one to arrive to release the lock. The counter can be

2 This is called a deferred update policy. The optimistic control scheme can also be implemented using
an early conflict detection mechanism.



290 Multiprocessors

mycount := fetch-and-add (counter);
if (mycount = 0) then spin := 0;     /* if first to enter barrier, set the spin lock to busy*/
if (mycount = n) then         /*last to enter barrier*/

begin counter := 0;      /*not atomic but no processor should access counter, because they*/
              /*are all spinning*/

spin := 1;     /*release the spin lock*/
end

    else
while (spin = 0);     /*spin*/

Figure 7.14. Centralized barrier implementation.

incremented by using either a short critical section or a fetch-and-add instruction if
available in the ISA. Figure 7.14 shows sample code for this latter implementation.

There is a slight problem with the pseudocode in Figure 7.14. If the algorithm
uses several barriers consecutively:

some computation
code for barrier (counter, spin)
some computation
code for barrier(counter, spin)

with the same arguments for the barriers, then we might have a deadlock.
Consider the case when one of processes, say A, is suspended while spinning

(maybe because it has been spinning too long). All other processes have entered the
barrier, so the last one sets the spin variable to 1, and then one of them will enter the
second barrier, resetting the spin variable to 0. When process A is reactivated, it will
continue spinning in the code of the first barrier, thus preventing it from completing,
and will not enter the second barrier, thus preventing its code from completing as
well, because there the counter will never reach the total number of processes. The
reason for the deadlock is that we have counted the number of processes entering
the barrier and we should also count the number of processes exiting it. Another
possibility is to have several (counter, spin) pairs. A more elegant solution, called
sense reversal, is to initialize the value of the spin alternately at 0 and 1 between
consecutive barriers.

Contention will occur at the beginning of the barrier and usually at the end
when processors are released. In order to avoid bus overload in shared-bus systems
or hot spots in interconnection networks, the barrier can be implemented as a tree
of barriers. For example, if there are 32 processors, they can be grouped in eight
groups of four with each group having its own barrier. The groups can themselves
belong to two supergroups, each with its own barrier. Finally, a last barrier would
be needed for the two supergroups.

7.4 Relaxed Memory Models

In out-of-order single processors, we let operations proceed independently of the
program order. This is true even for memory operations. We showed how we could
even go further by allowing load speculation (Section 5.2). As long as results are
committed in program order and as long as recoveries exist in case of misspecula-
tion, all execution orderings are permissible. In particular, speculative values can be
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Process P1 Process P2

write (A); while (flag != 1);    /*spin on flag*/
flag := 1;                                                                               read (A);

 

Process P1 Process P2

X := 0; Y := 0;
…                                                                                             …
…                                                                                            …

if (Y = 0) then kill P2                                                           if (X = 0 ) then kill P1

(b) Example 2

(a) Example 1

Figure 7.15. Two examples to illustrate potential lack of sequential consistency.

loaded into registers, thus permitting faster progress. The only requirement is that
when a process is interrupted and has to relinquish the use of the single processor,
all instructions that have started execution must complete, including all stores that
are in the write buffers. At context switch, the states of the processor and of the
memory are stable. When the process is woken up and reassumes the ownership of
the processor, all values that were stored in memory are still there, although some
of them that were in a given cache can be in a lower level of the memory hierarchy
or even on secondary storage. Nonetheless, from a consistency viewpoint, the values
have not changed.

The situation is quite different when multiple processors and concurrent pro-
cesses are present. Although current cache-coherent systems impose some form of
consistency, they fail to guarantee the model of memory semantics that program-
mers are accustomed to. We illustrate this point with the two examples shown in
Figure 7.15

In the first example, the programmer intends to have a producer–consumer rela-
tionship by having process P2 read the value generated by process P1. Assume that
the write to A is “seen” by process P2 later than the write to the variable flag. Pro-
cess P2 then does not spin any longer and might read the old value of A. Such a
situation could happen in a NUMA environment if the write and/or invalidation to
A take longer to propagate to memory than that of flag.

In the second example, the intent of the programmer is to prevent P1 and P2
from both being killed. Either one of them, or both, should progress. However, if
we allow reads to bypass writes or if X and Y are kept in write buffers, or even if
in a cache-coherent system the invalidations of X and Y are both delayed, then the
two “if” statements will see the old values of X and Y, and thus both processes will
be killed.

The behavior of the processor and memory system that the programmer expects
is what is called sequential consistency, namely:

� The result of any execution is the same as if the instructions of each process
were executed in some sequential order, and

� the instructions of each process appear in that sequential order in program
order.
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The reader can easily verify that any interleaving of the statements in the two
processes of each example with the requirement that each instruction complete
before its successor will yield the results intended by the programmer.

Another way to state the properties of sequential consistency is that opera-
tions, or at least memory operations, should proceed in program order and that all
writes should be atomic, that is, seen by all processors at the same time. Does this
imply that structures such as write buffers should be forbidden, that there should be
acknowledgments from all caches that invalidations or updates have been received
before an instruction following a write can proceed, that loads should not bypass
stores (and certainly not be speculative)? Enforcements of all these requirements
would in many cases lead to tremendous losses in performance.

There are two ways to prevent those performance losses. The first one is to keep
the sequential consistency model and to rely on techniques we have seen before,
prefetching and speculation, adequately modified or supplemented so that the per-
formance degradation can be alleviated. The second is to provide a relaxed consis-
tency memory model.

We first look at ways to improve performance in the environment of a strict
sequential consistency model. Let us assume an invalidation-based cache-coherent
multiprocessor with out-of-order processors and a snoopy cache coherence proto-
col. The main goal is to avoid delays in loads and stores when there are cache misses.
To that effect, we introduce new commands in the cache access and cache coher-
ence protocols. If a load is encountered that is possibly conflicting with a previous
memory operation, then a read–prefetch is performed for the missing line. As a con-
sequence of this command, the line is put in the shared state. When the load is
allowed to proceed, according to the sequential consistency constraints, the value
is in the cache (or in progress towards the cache) unless it has been invalidated by
another processor. In the case where it was not invalidated, the latency of the miss
was (partially) hidden. If the read–prefetch hits in the cache, then the penalty is that
the cache was accessed twice for the same operation. This penalty can be avoided
by using the value speculatively. When the instruction is ready to commit, (i.e., is
at the head of the reorder buffer), a check is made to see if the line holding the
speculated value has been invalidated. If there was no invalidation, the computa-
tion can continue; otherwise, recovery has to proceed back to the load instruction in
the program in a way similar to what happens for a wrong branch prediction. This
recovery is not unduly onerous, because all the hardware mechanisms are present.
Note that if the prefetched line has to be replaced before ensuring that speculation
was correct, then it is treated as a misspeculation.

In the case of a store that should be delayed, a read–exclusive prefetch is per-
formed whereby, in the case of a miss, the line is prefetched in the exclusive state.
When it is time to perform the actual store, if the line is still in the exclusive state,
the value can be written and the line enters the modified state.

In sequential consistency, even with the additions of the previous paragraph,
the effects of loads and stores are as if they were totally ordered according to
the program order. In relaxed memory models, the ordering will become a weak
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ordering whereby some of the loads and stores will become synchronization points,
in a manner equivalent implicitly or explicitly to acquiring and releasing locks.
How “relaxed” the model is depends on how much freedom there is in concur-
rency between acquires and releases. As an example, in one such model, when a
synchronization point is reached, all memory operations preceding it in program
order must complete before the process can proceed. This requires new instructions,
such as fences or barriers (not to be confused with the barriers of the preceding sec-
tion) as well as the introduction of these instructions either by the compiler or by
library synchronization routines. The definitions and implementations of relaxed
models are quite subtle, and the programmer and compiler writer must be aware of
them.

One reason why we do not deal more with this topic is that it has been shown
that one of the simplest relaxed models, namely processor consistency, in conjunc-
tion with the optimizations to sequential consistency already described, yields per-
formance results comparable to those of more sophisticated models. Under pro-
cessor consistency, writes have to be performed in program order, but loads can
bypass writes. “Performed” in the preceding sentence means that all processors see
the writes in the same order. Thus, FIFO write buffers are admissible. Under this
model, Example 1 of Figure 7.15 will behave in the same way as if the system were
sequentially consistent. On the other hand, Example 2 will not. Therefore, program-
mers and compiler writers must still be careful and insert the right synchroniza-
tion operations. For example, the rules given for the Intel Itanium, whose perfor-
mance depends heavily on the quality of the compiled code, include the following
(there are other rules, but these are sufficient to show that careful programming is
needed):

� Loads are not reordered with other loads, and stores are not reordered with
other stores.

� Stores are not reordered with older loads, and in a multiprocessor stores to the
same location have a total order.

� Loads may be reordered with older stores to different locations, but not to the
same location.

EXAMPLE 4: Using these rules, with x = y = 0 initially, the sequences

P1 P2
R1 ← x R2 ← y
y ← 1 x ← 1

disallow R1 = R2 = 1 (stores cannot be reordered with older loads), whereas
the sequences

P1 P2
x ← 1 y ← 1
R1 ← y R2 ← x
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allow R1 = R2 = 0. This happens when both loads bypass their stores or when the
performance of the writes is not seen until the loads have executed. If this was not
the programmer’s intent, explicit synchronization is required.

Processor consistency with the optimizations described previously improves
performance over sequential consistency by about 10% for scientific programs that
exhibit a fair amount of parallelism (the best case to show the advantages of relaxed
consistency). A more sophisticated relaxed model could gain another 10% at the
cost of more complex hardware implementations and software sophistication.

7.5 Multimedia Instruction Set Extensions

Since the mid 1990s, multimedia applications have become an important component
of the computational loads of desktops, laptops, and embedded processors in smart
appliances. These applications require what has been called media processing, that
is, the creation, encoding and decoding, processing, display, and communication of
digital multimedia information such as images, audio, video, and graphics. A subset
of these applications can perform very well on embedded processors found in cell
phones, digital cameras, PDAs, and the like; but providing a full range of applica-
tions with real-time constraints requires a large amount of computational power. To
answer this demand, the ISAs of microprocessors have been enhanced by what we
will call multimedia instructions, and microarchitecture designs have been adapted
to cater to these new instructions. Even with these modifications, general-purpose
microprocessors and a standard cache hierarchy are not sufficient for games that
require, for example, very fast geometric and perspective transformations. Special-
purpose on-chip processors, (e.g., graphic accelerators), are needed. The reader
is referred to the specialized literature on this subject; we consider here only the
impact of multimedia applications on general-purpose processors.

There are two characteristics of multimedia data that have strongly influenced
the expansion of ISAs, namely: (i) the range of values is often limited (for example,
pixels in images and videos need only 8 bits), and (ii) the data sets are large, and
the same operations have to be performed on each element of a data set. The first
characteristic has led to the packing of several data in a single word, and the second
one has motivated the use of SIMD instructions. These instructions will operate on
all operands packed in a single word.

The first ISA that was expanded with multimedia instructions was that of the
Hewlett-Packard PA-RISC in 1994. Only nine instructions were added, because a
design constraint was that these new instructions should fit within the already well-
advanced design of the chip without additional hardware and without affecting the
clock cycle. In contrast, the SUN Visual Instruction Set (VIS), introduced a year
later, was comparatively complete. It included 121 new instructions, which have
remained as part of the UltraSPARC ISA. As mentioned in Chapter 3, the ISA
of the Intel IA-32 was expanded first by providing 57 additional instructions (the
MMX set) to the Pentium II, then another 13 for the SSE extension with the Pen-
tium III, and the extension comprised a total of 144 instructions in the SSE2 for the
Pentium 4, although this last count is inflated in that many instructions that were
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designed for 64-bit-wide registers are replicated for 128-bit-wide registers. Another
13 instructions were added for SSE3 in 2004.

Multimedia instructions fall into four categories:

� SIMD instructions that operate on data packed in a single word. Each datum is
considered as an integer. Typical instructions are add, subtract, multiply, mul-
tiply and add, multiply and accumulate, compare, and shift. For example, if a
64-bit word is divided into eight 8-bit data, eight adds can be performed concur-
rently. Similarly, four multiplications can be performed (only four because the
result can be longer than 8 bits). However, some instruction sets can have both
a regular multiply and a truncated multiply where only the low-order bits are
kept, and in that case eight multiplications can be performed simultaneously in
the previous example. Similarly, both modulo addition and saturated addition
can be present, the latter seeming more adequate in many situations. For exam-
ple, if “adding” two images yields a resulting pixel overflow because it is larger
than the 8-bit value, its modulo might be very close to 0, which would be at the
opposite end of the spectrum of colors. Saturation would leave its value at 255
(28 − 1).

� Conversion instructions to pack and unpack. Packing will, for example, convert
regular integers into smaller values, most often through truncation. Unpacking
does the opposite and transforms a datum from a low-precision data type to a
higher precision using sign extension.

� Data communication instructions. For example, bytes from two 32-bit regis-
ters can be interleaved into a 64-bit result register, or a particular byte can be
inserted in a specific position within a register.

� Memory transfer instructions such as block copy of 64-byte blocks and prefetch
instructions.

In implementation, a deliberate choice can be made to dedicate part of the on-
chip real estate to multimedia. This was the case for the design of the Sun Ultra-
SPARC I processor and the VIS instruction set extension. The decision was to
implement these instructions, as well as some for other functions helping the operat-
ing system and networking, rather than to use the transistors for the cache hierarchy.
The instructions that were selected had to fulfill three criteria: (i) execute in a sin-
gle cycle or be easily pipelined, (ii) be applicable to several multimedia algorithms,
and (iii) not affect the cycle time. The graphic unit that implemented the instruc-
tions was added to the floating-point unit so that multimedia instructions could use
the floating-point registers. Of course, this prevented concurrency between multi-
media instructions and floating-point ones, a factor that was not deemed important,
because few multimedia operations deal with real numbers.

On the other hand, the multimedia MMX instructions for the Pentium II were
implemented with compatibility of the IA-32 architecture in mind. As was the case
for the UltraSPARC, the floating-point registers were used, but no new functional
unit was added. No new architectural state had to be introduced, so that applica-
tions using the MMX instructions could run with existing operating systems. This
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meant that upon exiting the multimedia operations the floating-point stack had to
be in the same state as it was before the multimedia operations had begun. This
constraint was removed when SSE was introduced. New architectural states were
allowed, because the newer operating systems were aware of the extensions.

Have these extensions really improved the performance of multimedia applica-
tions? The question is difficult to answer, because there is no compiler that uses the
SIMD instructions effectively. If the software calls library routines, then one must
be careful that the overhead of the calls does not destroy the benefits of the new
instructions. If the algorithms are hand-tuned for the SIMD instructions, the com-
parison is not quite fair, and certainly, the outcome is biased towards the multimedia
extensions. With this caveat, it has been reported that in carefully tuned benchmarks
the use of the multimedia extensions can on the average halve the execution time.

When looking at the characteristics of multimedia applications, the first myth
that has to be dispelled is that data caches will not work effectively. This misstate-
ment is based on the premise that there are a large number of streaming data that
will not have temporal locality. However, on the contrary, media applications have
kernels of high computational intensity that reuse data significantly, and the emer-
gence of streaming processors lends credit to that observation. L1 data caches are
often very efficiently utilized, and miss rates for multimedia applications are slightly
lower than those of the SPEC integer applications. In many multimedia applications,
the L1 caches can be small and remain efficient, thus making them more suitable for
mobile devices. Making them larger does not improve the hit rates. Prefetching into
L2 helps significantly, and when that is done judiciously, the result is that the multi-
media applications are compute-bound if the SIMD instructions are used in a proper
manner.

Because one SIMD instruction replaces a number of integer instructions, the
number of instructions executed will decrease. Not only will loops be shorter, but the
number of iterations will be smaller, thus reducing the overhead due to increment
indexing. On the other hand, there is a need for packing and unpacking instructions,
which reduces the instruction count advantage. The number of executed branches
is also slightly smaller than that in regular integer applications, and the prediction
accuracy is similar.

Overall, the combined reduction in the number of instructions, the number of
branches, and the number of memory operations has a positive effect on perfor-
mance that outweighs the penalties due to the packing–unpacking effects. How-
ever, a word of caution is necessary: the multimedia instructions are applicable to
only a portion of a given multimedia application, and we should always remember
Amdahl’s law, which limits the possible performance gains.

7.6 Summary

In this chapter, we have introduced general concepts related to multiprocessor sys-
tems. As we shall see in the next chapter, CMPs are the present and future com-
puting commodities. However, we are not yet sure of many aspects of their archi-
tectures, as the number of processors on a chip is going to increase. According to
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Flynn’s nomenclature, they will be shared-memory MIMD, but will they be UMA
or NUMA? What will be their interconnect structure: shared bus, direct network,
indirect network? We have examined definitions and alternatives in the first section
of this chapter.

The form of interconnect, or rather the ability to broadcast messages and data
easily, dictates the implementation of cache coherence, a must to ensure program
correctness. In the case of easy broadcasts, as in a shared bus, write–invalidate four-
state snoopy protocols are the rule. When the interconnection prevents easy broad-
casts, directory protocols are preferred. The memory-costly full-directory protocols
can be advantageously replaced by partial-directory schemes that require less mem-
ory and bring little degradation in performance.

Parallel programs running on multiprocessors need to be synchronized. The
basic mechanism is that of a lock that protects portions of code and data structures
so that they cannot be accessed simultaneously. Locks must be acquired through an
atomic read–modify–write operation whose most basic instantiation at the ISA level
is the test-and-set operation. We have presented other ISA instructions and alter-
native schemes that fulfill the same role but that do not present as much overhead
contention in the presence of cache-coherent architectures.

Programmers are implicitly assuming a sequential consistency model. Many of
the optimizations in out-of-order processors that we have examined in previous
chapters do not follow this model. This is fine in the context of single processors,
but can lead to erroneous programs, or interpretations of programs, when applied
in a multiprocessor environment. In this situation, in order not to impede perfor-
mance as much as is done by a strict enforcement of sequential consistency, relaxed
memory models have been proposed and implemented in some commercial proces-
sors. In this case, programmers and compiler writers have to be aware that memory
operations – loads and stores – do not have to follow the total order of sequential
consistency. Among the relaxed memory models, one of the less relaxed is proces-
sor consistency, and it has been shown that it offers performance benefits almost as
good as more complex models.

We closed this chapter with a brief overview of multimedia instructions, the
only SIMD type of operations found in general-purpose microprocessors.

7.7 Further Reading and Bibliographical Notes

Flynn’s taxonomy [F66] appeared in 1966. The term “dance-hall architecture” was
coined by Robert Keller in the early 1970s. The book by Culler at al. [CSG99] is
an encyclopedic view of parallel processing up till 2000. It does not include either
a chapter on vector processors (see Hennessy and Patterson [HP07], Fourth Edi-
tion, Appendix F) or any mention of streaming processors (cf. [KRDKAMO03]).
It does describe in detail interconnection network topologies, routing, and control
flow. For the last, the key papers are Kermani and Kleinrock [KK79] (originally
intended for wide-area networks) and Dally [D90] (intended for message-passing
parallel computers). Among the many shared-memory multiprocessors, a typical
SMP shared-bus system is the Sequent Symmetry, described by Lovett and Thakkar
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[LT88], which was later extended into a ring of SMPs as described in Lovett and
Clapp [LC96]. A hierarchy of rings was used in the KSR machine [K92]. The Con-
vex Exemplar is described in Baetke [B95]. Information on IBM SP series switching
can be found in Stunkel et al. [SHAS99] and in IBM manuals. The Intel Paragon is
well described in Culler’s book [CSG99], and further details can be found in Intel
manuals. Scott describes the Cray 3TE [S96]. The SIMD Connection Machine CM-2
is presented in Tucker and Robertson [TR88].

Snoopy cache coherence protocols are described in Archibald and Baer [AB86],
and the MOESI framework in Sweazey and Smith [SS86]. The particular four-state
protocol of Section 7.2 is due to Papamarcos and Patel [PP85]. The full-directory
protocol is due to Censier and Feautrier [CF78]. The two-bit solution can be found
in Archibald and Baer [AB85]. The notation DiriB and DiriNB is due to Agarwal
et al. [ASHH88]. The MLI for multiprocessors is developed in Baer and Wang
[BW88]. A good study on how to mitigate the effects of false sharing can be found
in Jeremiassen and Eggers [JE95].

Test-and-test-and-set was proposed by Rudolf and Segall [RS84]. Hardware
queuing locks were first introduced by Goodman et al. [GVW89]; Anderson [A90]
and Graunke and Thakkar [GT90] presented software implementations. Perfor-
mance comparisons can be found in Anderson [A90] and in Kagi et al. [KBG97].
Full–empty bits were first proposed by Smith [S78]. Issues related to transactional
memory are surveyed by Larus and Kozyrakis [LK08].

Sequential consistency was formally defined by Lamport [L79]. A compre-
hensive survey on relaxed models of memory consistency is given by Adve and
Gharachorloo [AG96], two of the main contributors in the area. Hardware opti-
mizations for the sequential consistency model were proposed by Gharachorloo et
al. [GGH91]. Weak ordering was first introduced in Dubois et al. [DSB86]. Hill
[H98] advocates the use of processor consistency with prefetching and speculative
execution.

The original multimedia extensions for the Sun (VIS) and the Intel IA-32
(MMX) are presented respectively in Tremblay and O’Connor [TO96] and Peleg
and Weiser [PW96]. Slingerland and Smith [SS05] survey multimedia extensions;
Ranganathan et al. [RAJ99] is one of several papers assessing the performance of
these extensions.

EXERCISES

1. (Section 1.1) Describe an application that would benefit from a streaming pro-
cessor. Does this make a case for a streaming processor to be classified as MISD?

2. (Section 1.1) Do you consider vector processors to be SISD or SIMD? Discuss
the pros and cons for each classification.

3. (Section 1.1) Does a split-transaction bus present any advantage over a regular
bus in a single-processor environment? Justify your answer.
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4. (Section 2.1) Consider a shared-bus multiprocessor with three processors C1,
C2, C3 whose respective direct-mapped caches C1, C2, and C3 are attached to the
bus. Lines at addresses A and B will conflict in each of the three caches. Initially,
the entries in the three caches (say X1, X2, and X3) corresponding to A (and there-
fore B) are in state invalid (I). Assume that it takes less than 500 cycles to complete
a miss and associated transactions on the bus. In the case of the write–invalidate
three-state protocol, show the events that occur (read miss, etc.), the transactions
on the bus (Bus read, etc.), and the states of and the values stored in X1, X2, and
X3 when the processors execute the following instructions:

At time 0, C1 reads A.
At time 1000, C2 reads B.
At time 2000, C3 reads B.
At time 3000, C3 writes B.
At time 4000, C2 writes A.
At time 5000, C3 reads A.

5. (Section 2.1) Repeat the previous exercise in the case of a MESI protocol with
the additional instruction

At time 1500, C1 writes A

6. (Section 2.1) Draw the state diagrams, one each for processor actions and bus
snooping, for a MOSI protocol. Find an example similar to that of Exercise 4 that
shows the role of state O.

7. (Section 2.1) Define a three-state protocol with states E, S, and M that combines
properties of write-through and writeback caches and a write-update protocol. On a
Bus read, caches answer on a special line MS whether they have a copy of the line or
not. (Hint: Recall that Bus write is always preceded by a Bus read; also, only lines
in state S should see a Bus write command, and memory must be updated on writes
emanating from lines in state S.) Repeat Exercise 4 for this protocol.

8. (Section 2.2) Compare the memory overhead for the full directory with that
required for ECC. You should consider both line sizes and the number of proces-
sors.

9. (Section 2.2) What simplifications occur in the full directory protocol if the system
uses a centralized memory, that is, a UMA architecture rather than a NUMA one?

10. (Section 2.2) Show that deadlock could easily occur if the transactions in direc-
tory protocols were atomic.

11. (Section 2.2) Design a full directory protocol where the caches are write-
through, write–no-allocate.

12. (Section 2.2) What partial directory implementation would you choose if it were
known that most shared variables are either shared by two processors or by many
processors?
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13. (Section 3.1) If a lock cannot be acquired, the process can either busy-wait or
block. An alternative is for it to spin for a few times and then, if the lock is still not
acquired, be blocked. This latter option is called a competitive algorithm, and the
difficulty is to know when to switch (this is out of the scope of this book). Define a
snooping protocol using a competitive algorithm between write–update and write–
invalidate commands.

14. (Section 3.2) Consider n processors in a write–invalidate snooping cache-
coherent multiprocessor contending for a lock. They use a test-and-test-and-set
primitive. Show that there can be O(n2) bus transactions after release of the lock
by one processor before another processor can acquire the lock.

15. (Section 3.2) Implement the test-and-set and the test-and-test-and-set primitives
using ll and sc.

16. (Section 4) Consider a shared-memory multiprocessor with the processors con-
nected by a shared bus. The processors do not have caches, and there are no write
buffers. Consider the following fragments of program run on two different proces-
sors (initially, the variables flag1 and flag2 both have the value 0):

Process 1 Process 2
flag1 = 1; flag2 = 1;
if (flag2 = = 0) if (flag1 = = 0)
Critical section Critical section

(a) Show that under a sequential consistency model, the processes will never
be simultaneously in their critical sections.

(b) Assume that both processors have write buffers. Is sequential consistency
sufficient to ensure that both processes will never be simultaneously in their
critical sections?

(c) Now processors have writeback caches, and the cache coherence protocol
is write–invalidate. Is sequential consistency sufficient to ensure that both
processes will never be simultaneously in their critical sections?
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8 Multithreading and (Chip) Multiprocessing

Parallel processing takes several flavors, depending on the unit of parallelism and
the number of processing units. Early on in the development of computer sys-
tems, we saw the emergence of multiprogramming (Section 2.3), whereby several
(portions of) programs share main memory. When the program currently execut-
ing requires some I/O processing, it relinquishes the use of the CPU via a context
switch, and another program takes ownership of the CPU. Parallel processing occurs
between the program using the CPU and the programs (there may be more than
one) executing some I/O-related task. Here, the unit of parallel processing is a pro-
gram, or process, and the parallelism is at the program level. An efficient implemen-
tation of multiprogramming requires the use of an operating system with a virtual
memory management component. At the other extreme of the spectrum of granu-
larity, we have the exploitation of instruction-level parallelism. Several instructions
of the same program are executing simultaneously. Pipelining (Section 2.1) is the
simplest form of the concurrent execution of instructions. Superscalar and EPIC
processors (Chapter 3) extend this notion by having several instructions occupying
the same stages of the pipeline at the same time. Of course, extra resources such as
multiple functional units must be present for this concurrency to happen.

In the previous chapter, we gave a strict definition of multiprocessing, namely,
the processing by several processors of portions of the same program. Multipro-
cessors must include hardware and software to facilitate the creation of concurrent
processes and their synchronization, as well as protocols to ensure the consistency
of data across the memory hierarchy. Multiprocessors can also be used to execute
different programs simultaneously, thus becoming an extension of multiprogram-
ming. In multiprocessors, the granularity of parallelism ranges from the instruction
level within one processor to complete applications running on different processors
under the supervision of a common operating system.

In this chapter, we consider thread-level parallelism and its implementation,
multithreading. To differentiate between processes and threads (also called light-
weight processes), we use the operating system terminology in which a process is
an executing program along with its state, represented by the values of the program
counter, registers, and settings, which are found in a data structure of the operating
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system often called a process table. Two examples among many of entries in the pro-
cess table are a pointer to the beginning of the table that holds the virtual–physical
page mappings of the process, and the process PID that prevents complete flush-
ing of TLBs during a context switch. We can contrast this dynamic definition of
a process with the more static one of a program, which consists of the encoding
of an algorithm, the layout of its data structures, and the input–output files it will
use. With these definitions, multiprogramming is somewhat ill named and should be
called multiprocessing, and multiprocessing then should be called multiprocessor-
ing to indicate that there are several processors. However, leaving aside this hair-
splitting terminology for historical reasons, we consider a sequential process to be
defined as we have done and to have a single thread of control. However, we can
allow a process to have several threads of control, whereupon threads will have the
same properties as processes, but with the distinction that threads within a process
share the same address space. Performing a switch from a thread to another thread
in the same process is not as costly as a context switch, because, for example, the
virtual memory mappings are not modified. The interleaved execution of threads
belonging to the same process is called multithreading. Recently, the definition of
multithreading has been expanded to include the same concepts as multiprogram-
ming, but with the understanding that a context switch, or thread switch, is much
cheaper in a multithreaded organization, because part of the process state is repli-
cated for each thread.

Multithreading can be implemented on one or on several processors. The gran-
ularity of multithreading is defined by the events that mandate a change in thread
execution. At the finest grain, the change can occur on every cycle, or even several
threads can share the same stage of the pipeline at the same time, as in simultaneous
multithreading (SMT). At a coarser grain, a thread switch can happen on an event
where the current thread would be obliged to wait a number of cycles much larger
than the number of cycles needed to switch threads. A typical example would be a
miss in the whole cache hierarchy, requiring an access to main memory. In the first
section of this chapter, we will present several implementations of multithreading
on a single processor.

As indicated in the previous chapter, chip multiprocessors (CMPs) are becom-
ing increasingly common in servers and high-end workstations. In the second and
third sections of this chapter, we will show how multiprocessing and multithreading
can be integrated to provide increased performance. We will differentiate between
general-purpose CMPs, with the Niagara Sun and Intel Core Duo as prime exam-
ples, and special-purpose CMPs, with brief introductions to the IBM Cell Processor
and the Intel IAX 2400 Network Processor.

8.1 Single-Processor Multithreading

8.1.1 Fine-grained Multithreading

Multiprogramming came about so that the main resource in the system at the
time, namely the processor, would not remain idle when I/O tasks were performed.
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Multithreading’s intent is similar, that is, its goal is to tolerate high-latency opera-
tions. In fine-grained multithreading, as soon as an instruction stream in a thread is
going to be delayed even for as little as one cycle (as in a RAW hazard), the control
of the processor is given to another thread. Evidently, such thread switching should
take “no time.”

The first implementation of fine-grained multithreading (it was not called that
at the time) had a thread switch at every cycle. In the sidebar of Section 3.2, we
introduced the CPU of the CDC 6600 and its scoreboard. The CPU handled all
program computations, but input–output tasks were performed by ten peripheral
processor units (PPUs). These ten processors were sharing a common ALU and
associated logic as well as a common memory. Each of the ten processors had its
own set of registers and program counter. They took ownership of the ALU on a
round-robin basis (in the original documents it was said that they formed a “barrel”)
with ownership changing every minor cycle. This is equivalent to saying that there
was a thread switch at every cycle. A minor cycle was sufficient to execute a register
operation. If some variable had to be loaded from memory, it took a major cycle
that was equal to 10 minor cycles so that the value would be present the next time
that the PPU that was performing the load would have ownership of the ALU. Note
that all instruction executions took at least one major cycle, because the instruction
itself had to be fetched from memory.

The PPU example shows that in fine-grained multithreading, each thread must
have its own register set and program counter. Moreover, the number of threads
ready to execute at a given time must be able to hide the latency of the longest
operation. This longest operation must be pipelined so that several threads can be
in the process of executing an instance of it. Since thread switching can occur cycle
by cycle, instructions must be processed so that there is no need to flush the pipeline.
Each instruction must carry a tag identifying the stream to which it belongs.

These concepts were incorporated in the design of the supercomputer Tera
MTA (MTA stands for multithreaded architecture). Tera is a multiprocessor. Each
processor can execute multiple threads (called streams in early papers) simultane-
ously. Each processor has a provision for 128 program counters, and thus up to
128 independent instruction streams can be active concurrently. Each stream has its
own set of 32 64-bit registers, as well as eight target registers that are used to spec-
ify branch addresses and allow prefetching of instructions. There are no caches in
the system, but instruction stream buffers are present. Virtual memory per se is not
implemented, but each processor can have up to 16 domains that are relocatable,
and therefore 16 different applications can run concurrently on a single processor.
The longest operation is a memory fetch, and not only the processor but the inter-
connection network leading to the memory modules is pipelined.

If the PPU model were strictly adopted, there should be as many streams
ready to execute at each cycle as the number of cycles required to perform a
memory fetch, of the order of 70 in Tera’s first implementation. Tera circum-
vents part of the problem by including in each instruction a field (3 bits) that indi-
cates how many instructions (i.e., a maximum of 7) will execute before a potential
data or control hazard may occur. Thus, stream switching is not theoretically
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necessary at every cycle, and the number of ready streams can be reduced. In
the best of cases, it would appear that if the compiler can organize code in inde-
pendent chunks of eight instructions, then 9 streams instead of 70 might be suffi-
cient. However, this analysis does not take into account the delay due to instruction
latency between consecutive instructions from the same thread, and in reality,
more streams are necessary. Some instruction-level parallelism in each stream can
be exploited by an ISA having VLIW characteristics (cf. Section 3.4) – namely,
a load–store operation, an arithmetic operation, and a control operation can be
present in the same instruction. Although this presents a distinct advantage for the
execution of a thread, it makes it even more difficult to find independent VLIW
instructions in the same thread, and hence might require a larger number of ready
streams.

Fine-grained multithreading aims to increase throughput and relies on the
assumption that there are enough threads available. It is therefore a good match for
“embarrassingly parallel” applications, which constitute a fair amount of the work-
load of supercomputers. However, a Tera-like implementation is not viable if there
are very few threads so that the high-latency memory operations cannot be over-
lapped with processor computations. In the specific case of Tera, the lack of caches
is a great concern, especially for the performance of single-threaded applications,
but it can be alleviated in other implementations – with some additional complexity
due to the uncertainty about when a particular memory operation will terminate.
Another drawback is the lack of virtual memory support; virtual memory features
could be added, again with a more complex design. We shall deal with this issue in
the next section, on coarse-grained multithreading. On the other hand, any applica-
tion that would incur a lot of cache misses and that could be parallelized would be
favorable to a Tera-like fine-grained multithreading implementation, because the
accesses to memory would be pipelined and would not incur the overhead of checks
for hits or misses.

In summary, fine-grained multithreading is a good architectural model for run-
ning applications on which one can extract a large number of threads, as in some
scientific applications, or for running multiprogramming loads where each process
requires significant memory bandwidth and low processor computational power.
Tera is a system for the first type of applications, and Niagara, introduced in Sec-
tion 8.2.1 of this chapter, is meant for Web servers whose applications fit the second
characterization.

8.1.2 Coarse-grained Multithreading

In coarse-grained multithreading a thread switch will not occur at every cycle,
but only when the currently executing thread encounters a long-latency operation.
Here, “long” is relative and depends on the processor implementation, the hardware
support given to each thread (that is, the time it takes to perform a thread switch),
and the timings of accesses to various parts of the memory hierarchy such as caches
and TLBs.
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In the following, we consider a microprocessor system with a cache hierarchy
and running under the control of an operating system with a paged virtual memory
and TLBs. Let us assume first an in-order processor where caches are physically
tagged. Because several threads can have outstanding cache misses, the cache hier-
archy must be lockup-free. TLBs use PIDs because we want to consider both threads
belonging to the same program and threads belonging to different programs. With
the number of registers available on current machines, it is evident that an effi-
cient implementation of multithreading requires that each thread have its own reg-
ister set; otherwise, the saving and restoring of registers might take longer than the
latency that is supposed to be hidden. In addition, a number of control registers,
such as those indicating the addresses of the page tables and the respective tops
of the stacks or the actions to be taken on some exceptions, have also to be saved
and restored. The amount of processor state that identifies a thread is often called a
context. A thread switch is not, however, as extensive as a context switch that occurs
on an exception or interrupt in a conventional multiprogrammed machine, because
the contexts are replicated in hardware.

In an in-order processor, several threads can occupy different stages of the
pipeline as long as instructions carry a tag identifying the set of registers attached
to their thread. So, in theory, a coarse-grained multithreaded processor would take
“no time” for a thread switch, as was the case for fine-grained multithreading. One
of its problems, though, is that all instructions in the pipeline after the instruction
that triggers the thread switch must be voided, and the instruction buffer must be
filled with the instructions of the thread taking over the processor. This latter per-
formance impediment can be avoided by having one instruction buffer per context.
Nonetheless, there will be a definite start-up cost to fill up the pipeline.

The number of contexts is necessarily limited, not only because of the additional
hardware that they require, but also because the threads are sharing a number of
resources such as caches, TLBs, and branch predictor tables. Moreover, there is an
overhead in choosing among the ready threads, and this overhead should be kept as
small as possible. A naive rule of thumb on the number of hardware contexts that
should be provided could be: “If the longest latency to be hidden by multithreading
is n cycles and operations with this longest latency occur on the average every m
cycles, then there should be n/m hardware contexts.” For example, if the latency
to main memory is n = 200 cycles and L2 cache misses occur every m = 50 cycles,
then there should be four hardware contexts if thread switches are to occur on L2
misses. However, the value 50 cycles for m might involve the assumption that its
measurement was taken when a thread had total occupancy of the L2 cache. With
four contexts, m might be lower, thus arguing for more contexts. The other side of
the coin is that with more contexts, L1 and TLB misses as well as branch prediction
errors would occur more frequently than with a single thread of control, for these
structures are shared, and therefore the intervals between L2 cache misses would be
greater, and the need for contexts reduced.

The first implementation of coarse-grained multithreading was done on a
research multiprocessor, the Alewife machine at MIT, in the early 1990s. Each
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processor was a modified in-order SPARC processor with four hardware contexts,
but an unlimited number of threads could be generated. Thread switching was trig-
gered by either cache misses (there was a single off-chip cache) or failed synchro-
nization attempts. A thread switch was implemented via a trap and took about
10 cycles. In order to simplify the implementation, the pipeline was flushed on a
thread switch. Although Alewife was supposed to support virtual memory, the pro-
totype did not do so.

A commercial and more complete implementation of coarse-grained multi-
threading can be found in a variation of the IBM PowerPC microprocessor. The
multithreaded processor was intended for commercial workloads that have large
working sets and therefore are subject to significant cache miss rates. In order to
be able to run existing software, threads were considered as if they were running
on a multiprocessor, a concept similar to the one that guided the design of Alewife.
The in-order processor supported only two contexts, so a single bit was sufficient
to indicate which thread was running in any part of the short five-stage pipeline.
Instruction buffers were replicated, that is, there was one for each thread. Thread
switching occurred on L1 cache and IERAT misses. IERAT is an IBM acronym
for “instruction cache effective [i.e., virtual] to real address translation,” meaning
an array that contains virtual-to-real address translations for recently referenced
instructions, which can be seen as a first-level I-TLB. The 128-entry IERAT was
evenly split between the two threads, with provision for being totally dedicated to a
single thread if multithreading was not in use. In case of an L1 D-cache miss (at least
8 cycles to get a line from L2) that was detected in the last stage of the pipeline, the
switching penalty was to fill the pipeline. Since instructions of the new thread were
already in an instruction buffer, the start-up time was only 3 cycles. In the case of an
IERAT miss (at least 8 cycles to find the translation in the TLB), new instructions
could start filling the pipeline at the next cycle.

The rule for thread switching was as follows. On an L1 miss or IERAT miss,
a switch occurred unless the other thread was servicing an L2 miss or a TLB miss.
The rationale for the latter case is that an L1 miss or IERAT miss is most often
resolved in the L2 or the TLB, so switching from a thread waiting for a short-latency
resolution to a thread waiting for a long-latency resolution is counterproductive. If
the L1 or IERAT miss results in an L2 or TLB miss, then the switch will occur.

Performance results showed an improvement in throughput by up to 30% for
commercial workloads, although the miss rates in the shared L1 D-cache were sig-
nificantly higher than in the single-thread case. However, those in the L1 I-cache,
L2, and TLB were not much affected, and multithreading allowed hiding the long
latency to main memory.

The thread switching time becomes longer if the processor is out of order. Now
all instructions preceding in program order the instruction that triggers the thread
must complete, that is, be committed. With current designs, this will most likely take
longer than the time to resolve an L1 miss. Therefore, thread switching should occur
only on L2 misses.
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(a) OOO superscalar (b) Fine-grained MT (c) Coarse-grained MT (d) SMT

n idle cycles

m idle cycles

Figure 8.1 Typical occupancy of pipeline issue stage for (a) out-of-order superscalar (n is
the latency of an L2 cache miss that cannot be hidden), (b) fine-grained multithreading (six
threads, occupying the six-stage pipeline), (c) coarse-grained multithreading (m is the start-
up cost for a new thread; m n), (d) simultaneous multithreading with four threads. (Adapted
from Eggers et al. [EELLST97]).

8.1.3 Simultaneous Multithreading

In Figure 8.1(a) we show an example of the occupancy of the issue stage of the
pipeline of an out-of-order four-way microprocessor. A row of the figure represents
occupancy of the stage at a given time (a blank square represents a vacant issue
slot), and consecutive rows represent consecutive cycles. As can be seen, not all slots
are occupied in a given cycle. The causes may be that there is contention for some
functional units or that a data hazard prevents the issuing of some instructions. For
example, it could be that only loads and adds are ready to be executed and there
is only one adder and one load unit. Second, a whole row, (i.e., a whole cycle),
might pass with no instruction being issued. The causes of that could be again data
hazards, for example, waiting for data to come from the L2 cache, or cycles spent in
recovering from a mispredicted branch. In one row, we have collapsed n consecutive
rows to represent stalling due to an L2 miss. The number of empty cycles, n, should
be less than the latency of accessing main memory (of the order of hundreds of
cycles), but can be quite significant.

The intent of multithreading is to reduce the loss in performance due to these
n empty cycles. In the fine-grained multithreading shown in Figure 8.1(b), there are
no empty rows – if there are enough threads to cover the n empty cycles. This might
be a tall order if n is of the order of several hundred cycles, even if we switch from
one thread to the next only on a data hazard occurrence. Because fine-grained MT
implies an in-order processor, the rows are less filled than with the superscalar.

Coarse-grained multithreading is represented in Figure 8.1(c). It has a pattern
similar to that of the superscalar except that the number of empty rows on the occur-
rence of a long-latency event is smaller. Here m is the number of cycles needed
to refill the pipeline on a thread switch if the processor is an in-order one, or to
flush and refill if the processor is out of order. m is always less than n, but – as we
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saw previously – there are some additional hardware costs to implementing multi-
threading, and also the gains may not be quite as great as expected, because some
hardware data structures have to be shared among threads, thus diminishing their
performance benefits.

In order to fill up both the horizontal slots (i.e., those that are left empty because
there are not enough instructions to issue in a single thread) and the vertical slots
(i.e., empty rows due to latencies, caused mostly by cache misses and mispredic-
tions), we need to have several threads occupying the front end and the back end
of the pipeline at the same time. This new organization is called simultaneous mul-
tithreading (SMT). Its effects are shown in Figure 8.1(d). As can be seen, almost all
slots are filled now. The vacant issue slots (including some possible totally empty
cycles that we have not shown) might be due to structural hazards – for example,
all eligible threads requesting the same resources, or all threads waiting for cache
misses.

How much more hardware and logic is needed to implement SMT features
on top of a conventional out-of-order microprocessor? Not as much as one would
think, if the number of threads that can execute simultaneously is limited. Com-
mercial implementations of SMT are limited to two threads, as in the Intel Pen-
tium 4 and Intel Core (where SMT is called hyperthreading) and the IBM Power5. A
four-thread implementation was planned for a successor to the DEC Alpha 21364,
but the company was sold to Intel before the processor was fabricated. It is esti-
mated that a two-thread Pentium 4 requires 5% additional logic, and the prediction
was that the inclusion of a four-thread SMT in the Dec Alpha would have added
8–10% to the amount of hardware needed for the processor.

In an SMT processor some of the hardware resources need to be replicated,
and some can be totally shared, as could be done for coarse-grained multithread-
ing. However, because several threads can be using the pipeline concurrently,
some resources that were totally devoted to the currently executing thread in the
coarse-grained implementation must now be either shared or partitioned among the
threads.

Recall that in coarse-grained multithreading, the architectural registers, pro-
gram counter, and various control registers need to be replicated. SMT imposes the
same replications. In the same vein, the execution units and the cache hierarchy
can be totally shared, as well as some other resources such as physical registers and
branch predictors. As we saw earlier, TLBs can be either shared, with the inclusion
of PIDs, or partitioned.

We can analyze the requirements for the remaining resources by walking
through the main stages of the pipeline. The first decision is instruction fetching.
There is no practical difficulty in sharing the I-cache or, in the case of the Intel
Pentium 4, the trace cache, although in that latter case each thread must have its
own trace-cache pointer. Each thread nonetheless must have its own instruction
buffer. Sharing an instruction buffer among active threads is impractical when fill-
ing is performed with prefetching and when flushing occurs on a branch mispredic-
tion. Even with per-thread instruction buffers, some additional decisions that were
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not required for either superscalars or coarse-grained multithreading must be taken,
such as which instruction buffer to fill on a given cycle, and from which instruction
buffer instructions should proceed down the front-end. The first choice is fairly easy,
for most likely a single instruction buffer will be empty in a given cycle. If not, any
kind of round-robin access will be fine. In the IBM Power5, which restricts SMT to
two threads, instruction feeding of the front-end alternates between the two threads.
A more sophisticated algorithm in case there are more than two threads is to favor
the thread(s) that have fewer instructions in the front-end. Once an instruction is in
the pipeline, it must carry a tag identifying the thread to which it belongs.

As we have mentioned, branch predictors and branch target buffers can be
shared except for the return stack predictors. Even with tagging, mixing returns
from various threads in the return stack would quickly become unwieldy. In a simi-
lar vein, the logic needed to treat exceptions and interrupts should be replicated for
each thread.

Moving down the front-end, the next stage that requires attention is the one
where register renaming occurs. Whereas physical registers can be shared, the
renaming tables must be individualized with each thread. A shared renaming table
could be envisioned, with some tagging indicating to which thread a given physical
register belong, but the difficulties in storing the table on a branch prediction and
restoring it on a branch misprediction make the sharing solution quite unpalatable.

At the conclusion of the front-end, in-flight instructions join queues, or an
instruction window, where they wait for free execution units and/or operand avail-
ability. In an SMT processor, these queues should be shared among active threads.
Having separate physical queues for each thread is not the best solution, because
of the dynamic nature of computation whereby threads advance often in spurts and
have varying needs for instruction queuing. Moreover, a tenet of SMT processing
is that one should be able to run a single thread using all available resources, and
thus the entireties of the queues should be available to single-thread execution. The
queues are therefore shared. The sharing does not prevent equal partitioning, but
a better solution than that is to allow a variable number of entries with a maxi-
mum for any given thread, so that one thread does not occupy the whole queue and
prevent other threads from progressing while it is itself waiting for a long-latency
event. Dispatching instructions to execution units happens in the same fashion as in
a superscalar – for example, based on the age of ready-to-dispatch instructions in
the queue. This scheduling can be done independently of thread ownership of the
instructions.

At first glance, the execution units do not seem to require any changes. How-
ever, one must be careful when designing forwarding units so that comparisons are
performed between register names of instructions of the same thread. Because for-
warding units require very simple logic, replicating them, one per thread, is the eas-
iest solution. Similarly, the logic to restore state after a branch misprediction should
be replicated.

Finally, we have to look at the structure of the reorder buffer and the commit-
ment of instructions. On the one hand, the reorder buffer should be shared by all
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Table 8.1. Replicated, partitioned, and shared resources in a
typical SMT design

Resources

Replicated � Architectural registers
� Program counter
� Various control registers
� Instruction buffer
� Return stack predictor
� Register-renaming logic
� Forwarding and recovery logic
� Interrupt controller

Partitioned � Issue queues for execution and load–store units
� Reorder buffer

Shared � Physical registers
� Cache hierarchy
� TLBs
� Branch predictor and branch target buffer
� Execution units

threads, so that in the case of single-thread execution it can be used in its entirety.
On the other hand, interspersing instructions from various threads in the reorder
buffer leads to difficulties when voiding instructions in the event of branch mis-
predictions or exceptions. A reasonable solution, adopted in the Intel (two-thread)
hyperthreaded Xeon (Pentium 4), is to statically partition the reorder buffer equally
among threads. Instructions can commit in the same cycle from either partition. A
different approach is taken in the IBM Power5, because there instructions are clus-
tered in sequential groups when sent from the instruction buffer to the front-end
of the pipeline and thereafter when allocation is performed in the reorder buffer.
This allocation is consistent with the alternate fetching of instructions between the
two threads, as mentioned earlier. It also allows commitment of instructions to be
done group by group, that is, whenever all instructions in the oldest group in a
thread have completed. Two groups, one from each thread, can commit in the same
cycle. Although this design is satisfactory for two threads, it is unsuitable when more
threads are allowed, and in that situation, partitioning is the solution of choice.

A summary of the various SMT requirements is shown in Table 8.1. SMT cer-
tainly enhances resource utilization and yields better throughput than superscalar
and coarse-grained multithreading. High-priority or deadline-driven applications
can be run on an SMT machine if single-thread execution can use entirely all the
partitioned and shared resources. Thread selection and scheduling can be included
in the hardware and the operating system with little added cost compared to a con-
ventional multiprogrammed environment.

On the other hand, the number of threads executing simultaneously in an SMT
processor is limited because of resource sharing and resource contention. Resource
sharing implies that some hardware data structures, such as L1 caches and branch
predictors, must be larger so that individual threads have adequate performance.
The same is true of the physical register file so that register spilling can be as rare
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Figure 8.2. Improvements achieved via multithreading and multiprocessing: (a) “simple”
processors and (b) “complex” processors (adapted from Chaudhry et al. [CCYT05]).

as in single-thread execution. Because larger resources imply longer access times, it
might be that some stages in the pipeline that take only one cycle in a superscalar
will need to take two in an SMT processor. Resource sharing also implies concurrent
access to the shared structures, hence requiring a larger number of read–write ports.
Resource contention will result in more frequent structural hazards on an individual
thread, which is another way to say that SMT is engineered for enhancement of
throughput and not of single-thread latency.

Finally, the design and verification of an out-of-order processor is already a
challenge. SMT increases the difficulties. In view of these considerations, it is not
a surprise that industrial implementations have been limited to two concurrent
threads. However, a two-thread SMT is cheaper than a two-processor CMP, and
combination, on a small scale, of SMT and CMP is already on the market with the
two-processor (or four-processor) SMT Intel Core and IBM Power5.

8.1.4 Multithreading Performance Assessment

In the previous sections of this chapter we have stressed how multithreading helps
in improving throughput. Figure 8.2(a) and (b) show respectively the (simulated)
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relative performances of multithreading for in-order simple processors and pow-
erful out-of-order superscalars (in these simulations a “complex” processor was
between 4 and 10 times more powerful than a “simple” one). The benchmark is
a large database application.

It is interesting to observe that the improvement due to multithreading is larger
when the processors are simple. For example, as shown in Figure 8.2(a), a sin-
gle four-way multithreaded processor performs almost as well (within 10%) as a
multiprocessor with four single-threaded processors. When multithreading and mul-
tiprocessing are combined, a factor-of-10 improvement can be found with four pro-
cessors and four threads, that is, 16 threads. Because simple processors have low
utilization of resources, they can support several threads before the performance
per thread diminishes. The nonlinear rise in performance is mostly due to synchro-
nization requirements.

When the processors are more complex, resource utilization per thread
increases and there are fewer opportunities for competing threads. Nonetheless, as
shown in Figure 8.2(b), a four-threaded single processor performs as well as a mul-
tiprocessor with two single-threaded processors. As the numbers of processors and
threads increase, the relative speedup is less pronounced than with simple proces-
sors. Absolute performance comparisons between simple and complex processors is
difficult in that we would have to know the area and power dissipated per type of
processor so that we could establish equivalences between a complex processor and
several simple ones. As we shall see soon, there are commercial chip multiproces-
sors with either simple or complex multithreaded processors.

In the case of SMT, simulations of an eight-thread SMT processor that can
fetch eight instructions per cycle have shown throughput improvements on database
workloads between 150% and 300% compared to an out-of-order superscalar. More
realistic measurements on the IBM Power5 showed that out of eight workloads,
seven were improved using SMT. Under single-thread execution a copy of each
program was bound to each processor. In SMT mode, a copy of the program was
bound to each SMT context. The performance range was from a degradation of
11% (an exception due to very high miss rates in the L2 and L3 caches in both
single-thread and SMT modes) to an improvement of 41%. Higher efficiency was
achieved when the number of L2 and L3 cache misses was small. Measurements
on a hyperthreaded (two threads) Intel Pentium 4 reported performance improve-
ments between 15% and 27% over a single Pentium 4 processor, both for multi-
threaded multimedia applications and for a set of three independent applications
such as Word, Acrobat, PowerPoint, and Virus Scan running simultaneously.

We have also mentioned that a good design for any variety of multithreading
should not impede best performance for single-thread execution. Since most current
applications are single-threaded, as exemplified by the IBM Power5 experiment of
the previous paragraph, the question arises of whether one can use multithreading
to improve on single-thread execution in the absence of languages and compilers
that will make multithreading explicit. As we have seen repeatedly in this book, one
possibility is to rely on speculation.
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8.1.5 Speculative Multithreading

In the previous section, we have assumed that threads were explicitly exposed by
either the programmer or the compiler or the operating system. In this section we
show possible applications of the concept of multithreading when applied specula-
tively at run time. We start by the case of a single-processor environment.

Run-ahead Execution
When an instruction with a long latency, in all likelihood an L2 or L3 cache read
miss, reaches the head of the reorder buffer and cannot commit because its result
is not available, the instruction window and/or issue queues fill up. When no more
instructions can be fetched and all the instructions sitting in the windows and queues
are waiting for the oldest instruction to commit, the processor must stall. For some
workloads, this situation can be severe enough that the processor stalls 70% of the
time. Increasing the size of the instruction window (or reorder buffer) and issue
queues is an option, but not a pleasant one, for these resources are addressed
associatively and therefore are of high cost both in area and in power dissipation.
A larger L2 cache would of course alleviate the problem, but most of the time
the on-chip caches are already at the maximum size permitted by the chip’s total
area.

Taking its cue from multithreading, run-ahead execution, also called hardware
scouting, is a technique that is used to implement some form of cache prefetching
and of warming up of branch predictors. When a processor stall is detected and the
oldest instruction is an L2 cache miss (we assume L2 to be the cache farthest from
the processor), a bogus value is given to the result of the operation so that execution
can continue. At this point, the context is saved, namely, the architectural registers,
the return address stack, and possibly some register maps and history-based struc-
tures related to branch prediction. Execution continues in run-ahead mode (see the
following paragraphs). When the blocking instruction yields its actual result, the
context will be restored and execution will proceed normally from the point where
run-ahead execution was initiated.

In order to detect and propagate bogus values, registers have an extra invalid
bit per register indicating whether the result that is generated is bogus (invalid) or
not. Invalid bits from registers are propagated so that a result register has its invalid
bit set if any of its source operands is invalid. Run-ahead execution proceeds faster
than normal execution, because when invalid computations are detected, they are
not performed and the back-end of the processor is not used. An invalid instruction
is also retired immediately from the instruction window, providing another means
to speed up run-ahead execution. Note that during run-ahead, an invalid register
might be redefined and become legal again. However, neither legal nor bogus stores
can be put in cache and in memory; instead they are stored in a small run-ahead
cache so that dependent loads in run-ahead execution can get the values they need
(this is in fact slightly more complex, but we skip some technical details such as the
fact that evicted lines from the run-ahead cache are just dropped).
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The main goal of run-ahead execution is to discover loads and stores that will
potentially generate cache misses and to prefetch the corresponding lines. When a
valid store instruction completes during run-ahead, the data cache is checked, and if
the check results in a miss, the corresponding line is prefetched. If a load is deemed
valid after checking the source register and potential conflicts with invalid stores,
then it proceeds as a regular load, except that if it misses in L2, then its result register
is marked invalid. The rationale is that this cache miss will return after the one
that spurred the run-ahead execution. However, the prefetch of the missing line is
performed.

Various solutions can be implemented with respect to the branch predictor
structures. First, branch prediction is performed as in normal execution. If any of
the sources for the branching is invalid, run-ahead execution may proceed on the
wrong path until the next correct – and valid – branch without ever being cor-
rected. Because difficult-to-predict branches are quite often in short if–then–else
constructs, the correct path will be soon followed again. The worst outcome would
be some extraneous prefetching. More open to question, though, is the updating of
the branch prediction apparatus. Simulations have shown that updating the branch
predictor tables as in normal execution does not yield performance significantly
worse than the expensive option of duplicating the branch predictor when run-
ahead is initiated. Overall, the correct paths are followed in run-ahead execution
with almost the same prediction rate as in normal execution.

Because instructions executed in run-ahead mode do not commit to architec-
tural state, the technique is mostly a prefetch mechanism with another potential
beneficial effect, namely, training the branch predictor. Although we have centered
our discussion on the initiation of run-ahead due to an L2 miss halting normal exe-
cution, other structural hazards, such as a full store buffer, could also be used to start
run-ahead execution. In multiprocessor environments, run-ahead could also be used
when locks are encountered.

Run-ahead execution requires a minimal hardware investment: a shadow reg-
ister file, 1 extra bit per register, a small run-ahead cache, and some temporary
storage for various small components of the branch predictor and store buffer.
Simulation evaluations of run-ahead added to an aggressive Pentium 4-like pro-
cessor and hardware scouting associated with a Sun-like processor show significant
improvements in performance, and, quite interestingly, almost the same results are
obtained on the two platforms. IPC improves more with run-ahead than with a
stream prefetcher. Even on benchmarks that do not exercise the memory hierar-
chy much, like SPECint2000, the benefits are evident: up to 12% with a 512 KB
L2 cache. For more memory-intensive workloads, the improvement can reach 40%.
Another interesting way to look at these results is that run-ahead is equivalent to
putting extra cache on chip. For example, the same IPC results can be obtained
for SPECint2000 with a normal processor and a 1 MB L2 cache and with the same
processor, a run-ahead engine, and half (512 KB) of the L2 cache. In the case of
SPECfp2000, the run-ahead with a 512 KB L2 attains the same result as if a 4 MB
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cache were present without run-ahead. Clearly these savings overshadow the run-
ahead area requirements.

Speculative Multithreading
Run-ahead execution achieves impressive results with limited hardware and no soft-
ware intervention. Only one run-ahead thread executes when the main thread stalls.
Even with this restriction, some work done while in run-ahead mode is wasted.
When the main thread resumes execution, instructions are refetched and their
results recomputed even if they were correct.

With speculative multithreading, threads are spawned ahead of the time they
would execute in a purely sequential process. In some sense it is an extension of run-
ahead execution except that (i) the initiation times are not controlled by a stalling
processor, (ii) several threads execute simultaneously, and (iii) some of the work
performed by the speculative threads, and hopefully most of it, does not have to be
redone. Of course, because several threads run concurrently, the platform on which
they execute must be either an SMT processor or some multiprocessor architecture.

We can distinguish between control-driven and data-driven multithreading. In
control-driven multithreading, new threads are spawned at specific control points in
the flow of the program. The detection of these control points could be facilitated by
the compiler or a profiler. Although there is growing interest in the matter, there has
been little effort in that direction to date. However, in the absence of software sup-
port, the hardware can speculatively generate threads at easily recognizable control
flow constructs. Some examples, which can be combined, are:

� When the beginning of a loop is encountered: The following loop iterations can
be started simultaneously.

� At procedure calls: The main thread is the one that executes the procedure. A
speculative thread can be started at the instruction following the call.

� When a backward branch is encountered and predicted taken: The main thread
is the one that follows the backward branch. A speculative thread can start at
the instruction following the branch.

The main difficulty with control-driven speculative multithreading arises in the
recognition and execution of producer–consumer relationships. Here also the com-
piler can help by flagging the variables that are defined in a thread and that are used
in a subsequent thread. Communication can be done through memory or through
general- or special-purpose registers. However, the compiler cannot always be cer-
tain that the addresses of loads and stores are different. This so-called memory
disambiguation problem is a well-recognized impediment to the automatic paral-
lelization of programs. We saw a flavor of how it can be resolved in an out-of-order
processor when we looked at load speculation (Section 5.2.2). In a multithreaded
environment, temporal versions of stores can be used to check and potentially
recover from load–store dependencies. Overall, though, the mechanisms required
for this type of multithreading are rather complex, and, to our knowledge, the only
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industrial implementation of the concept has been that of the Sun MAJC (Micropro-
cessor Architecture for Java Computing) chip. In MAJC the speculation is helped
by the Java language virtual machine structure, which helps differentiate between
stack and heap operations; nonetheless, several versions of a given heap variable
may have to be kept.

The finest-grained data-driven multithreaded architecture is a data-flow ma-
chine. The pure data-flow concept is based on two premises:

� An instruction executes when and only when all the operands required are avail-
able.

� Instructions are purely functional and produce no side effects.

The second requirement, highly favored by mathematicians in particular in that
it facilitates proofs of correctness, imposes a single–assignment rule: no variable
should be assigned more than once. The first one imposes some machinery for the
matching of the source operands of instructions with already generated results. In
some sense, a data-flow implementation could be realized with an instruction win-
dow that contains the whole program, and matching could be performed by having
each operand carry a token identifying the instruction for which it is a source. Some
research data-flow machines were realized in the late 1970s and early 1980s, but their
performance has suffered from the requirements of token matching and from lack
of locality in the programs’ execution. Moreover, the need to transform customary
imperative programming languages into some single-assignment language has been
another roadblock.

Speculative data-driven multithreading has been proposed. Helper threads that
accompany the main thread of computation are not spawned at specific control
points, but instead contain operations that are predicted to be of long latency, like
cache misses, or not well predictable, like some branches. When the main thread
recognizes the proximity of these long-latency operations, it spawns a helper thread,
which executes faster because it can be pared down to the operations that are crit-
ically important (recall Section 5.3.2 for a possible definition of these critical oper-
ations). When the main thread’s execution requires data computed by the helper
thread, it can integrate the results obtained by the latter or reexecute the computa-
tion, hopefully much faster in that, for example, the helper thread might have moved
data in the lower level of the cache hierarchy. The difficulties in this approach lie in
the recognition of the long-latency operations and the building of the helper threads.
To date, no practical implementation of this concept has been realized.

8.2 General-Purpose Multithreaded Chip Multiprocessors

We have mentioned several times already the emergence and current ubiquity of
chip multiprocessors (CMPs). We have referred to the multiprocessing and multi-
threading capabilities of the dual-processor IBM Power4 and Power5 and of the
dual-processor Intel Pentium 4. The Power5 and the dual Pentium 4 are instances
of SMT, with the SMT level limited at two concurrent threads. Other dual (or
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quad) CMPs have been delivered and/or announced by Intel (the Core architec-
ture), AMD, and Sun. In all these cases, each of the processors on the chip is a
full-fledged complex out-of-order superscalar, although the Intel Core microarchi-
tecture is more of a descendant of the Pentium III and Pentium M than of the Pen-
tium 4. The Intel Itanium is a VLIW in-order processor (cf. Section 3.4.2), and the
dual-processor Itanium is far from simple; when it was announced, it had the largest
number of transistors on a chip, namely 1.7 billion (recall Figure 1.2). At the other
end of the complexity spectrum, Sun’s Niagara has eight simple processors, each
of which can support four threads concurrently in a fine-grained multithreading
fashion.

There are several characteristics that are pertinent to the categorization of
general-purpose CMPs:

� The number of processors. The first CMPs had two processors on a chip. By
2006, four-processor and eight-processor CMPs were delivered. There have
been predictions that, following Moore’s law, the numbers of processors on
a CMP will double every 18 months, but that has not yet happened, maybe
because of the software challenges (see the next chapter).

� The amount of multithreading. There can be none, there can be SMT as men-
tioned above, or there can be coarse-grained or fine-grained multithreading.
The Sun Niagara is an instance of the latter, with the possibility that each pro-
cessor will support 8 threads (16 threads in the Sun Niagara 3 announced in
2008).

� The complexity of each processor. The dual and quad processors we listed at
the beginning of this section are full-fledged out-of-order superscalars (except
for the Itanium). In contrast, the Sun Niagara processor is a simpler in-order
processor. We describe Niagara and Intel multicores in more detail below.

� The homogeneity of each processor. There have been proposals for a combina-
tion of simple and complex processors on the same chip. However, to date only
homogeneous general-purpose CMPs have been realized. Along the same lines,
we should mention that the identical processors on the chip do not all have to
run at the same frequency. Slowing down of some processors might be needed
in order to reduce power requirements and heat dissipation (we will return to
the important topic of power in the last chapter of this book).

� The cache hierarchy. In all current general-purpose CMPs, each processor has
its own L1 I- and D-caches. The L2 cache can be either private, that is, one per
processor, or shared among processors. When there are two processors on chip,
if the L2 is shared, we have dual cores; if they are private, we have dual proces-
sors (see Figure 8.3). This terminology expands to more than two processors,
and almost all current CMPs are multicores.

� The interconnection between processors and L2 caches. L2 caches are divided
into banks, and the connection between the n processor–L1 caches and the m
memory banks is currently via buses or crossbars, that is, a uniform (cache)
memory access structure. However, if the prediction about the doubling of cores
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Figure 8.3. Generic dual-core and dual-processor con-
figuration.

holds true, other interconnection schemes such as those described earlier (Sec-
tion 7.1.3) will be needed, and sharing of the L2 cache will present even more
challenges.

We illustrate some of these characteristics first with a description of the Sun
Niagara and then the Intel Core Duo.

8.2.1 The Sun Niagara Multiprocessor

The Sun Niagara is an eight-processor multicore CMP. Each processor implement-
ing the SPARC ISA is four-way fine-grained multithreaded so that 32 threads can
be active at any given time. Niagara is meant to be used in applications that do
not require high computational rates and that exhibit potential for parallelism. Web
servers and database applications fit into these categories: their computational loads
are not extensive, and the Web and/or database queries exhibit only a small number
of synchronization requests, thus lending themselves well to multithreading. Perfor-
mance speedups relative to a single-threaded uniprocessor should be close to those
exhibited in Figure 8.2(a).

In Niagara each processor has its own L1 instruction cache (16 KB, four-way
set-associative, line size 32 bytes, random replacement algorithm) and data cache
(8 KB, four-way set-associative, line size 16 bytes, write-through), which is quite
small by today’s standards. The rationale is that the applications that we just men-
tioned have large working sets and would need much larger L1 D-caches to reduce
significantly the miss rate, assumed to be of the order of 10%. Moreover, the fine-
grained multithreading can hide much of the latency of L1 misses. The unified L2
is 3 MB and 12-way set-associative, and has 64 byte lines. It consists of four banks.
The Niagara on-chip architecture is of the dance-hall variety, the interconnection
between processors and L2 being an 8×4 crossbar switch. The I/O subsystem is also
connected to the crossbar, and DMA accesses are routed via the L2 banks and four
memory channels to and from main memory. An overall block diagram of Niagara
is shown in Figure 8.4.

The processor is simple. It has a six-stage pipeline and issues a single instruction
per cycle. In addition to the five stages of the pipeline described in Section 2.1, a sixth
stage between IF (instruction fetch) and ID (instruction decode) performs thread
selection (TS). Each of the four thread contexts has its own program counter (PC)
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Figure 8.4. Sun Niagara block diagram (adapted from Kongetira et al. [KAO05]).

and register file. Each thread also has its own instruction buffer and store buffer.
When all threads are available, each thread occupies the pipeline in a round-robin
fashion as explained in Section 8.1.1 of this chapter. The front-end feeds a back-
end with four integer functional units and a load–store unit. Two integer functional
units, adder and shifter, have single-cycle latencies; the other two, multiplier and
divider, have long latencies. A hit in the L1 D-cache returns the value after 3 cycles.

The first two stages of the pipeline, namely instruction fetch and thread selec-
tion, are replicated for each thread. The thread selection logic is the same for these
two stages, so that if it is an instruction from thread i that is selected to be passed
on to the decode stage, then it is the PC from the same thread i that will determine
the I-cache and I-TLB access to load two instructions in the ith thread instruction
buffer. The selection logic takes its inputs from the instruction type via predecoded
bits in the I-cache that indicate long-latency operations, resource utilization, cache
misses, and traps. When more than one thread is ready, the thread selection logic
gives priority to the least recently used thread, thus avoiding starvation. As usual,
loads are speculatively assumed to hit in the L1 cache with a latency of 3 cycles.
However, the thread that issued the load is considered to have lower priority than
the other ready threads.

Forwarding is implemented for the single-latency operations, although it is not
needed if there are four threads sharing the pipeline, for then the writeback to
the register file will occur 2 cycles before the same thread is in the execute stage
again. However, long-latency operations such as multiply, divide, branches, and
cache misses will stop temporarily the progression of a given thread. Therefore, in
these cases the forwarding logic is needed. Furthermore, if the whole complement
of threads is not available, a load becomes a long operation.
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L1 D-cache coherence is handled at the L2 level via a directory scheme. Each
L2 line has associated with it the tags and ways of the L1 lines for which it is the
image. Since L1’s are write-through and write-around, a single valid bit is sufficient
for the L1 lines. On a load miss to the L1 D-cache and a hit in L2, the L1 tag address
and way are entered in the directory and data are forwarded to the L1. On a store,
the L2 line is first updated, and then the directory is checked and corresponding
L1 lines are invalidated. The thread that initiated the store can continue without
waiting for the coherence actions to take place. In the case of multiple concurrent
stores, the updates are delivered to the caches in the same order, thus making sure
that transactions are completed in order. L2 is writeback and write–allocate; on an
L2 miss all L1 lines mapping into the L2 victim are invalidated, thus implementing
partial MLI.

Sun Niagara designers chose simplicity in order to have more processors and
more contexts. Notice, among other decisions, the short pipeline, the absence of
branch predictors, and the absence of floating-point execution units and SIMD-type
enhancements. Though we consider Niagara to be general-purpose, it would not
perform well in scientific and data-streaming applications. The goal is to enhance
thread throughput, not single-application latency, and hence the cycle time is not of
utmost importance (the Niagara is supposed to run at a maximum of 2 GHz).

8.2.2 Intel Multicores

Intel has developed CMPs in each of the two architectural types shown in Figure 8.3.
In the case of the two cores having private L2 caches, each core is on a separate die
and there are two dies on the chip. When the two (or more) cores share a common
L2 and are on the same die, we have so-called monolithic multicores.

Looking first at the architecture of Figure 8.3(a), there have been dual Intel Pen-
tium 4 processors (or similar renamed processors such as Pentium D and Pentium
Extreme) intended for servers with each processor running close to 4 GHz with
its own private L2 cache. Power dissipation has prevented extensions to a larger
number of cores, and it appeared at the end of 2008 that this product line had been
discontinued. At that time, there were imminent announcements for dual, quad, and
even octo processors with hyperthreading, also intended for servers and desktops,
based on the Intel Core architecture. As we have already seen, the Core architec-
ture is more of a descendant of the Pentium III and subsequent Pentium M pro-
cessors than of the Pentium 4. We have also mentioned significant improvements in
the Core architecture, such as microinstruction fusion, load speculation, and mini
trace cache. The most powerful multicores will have private L1 and L2 caches and a
shared L3 cache.

In this section, we describe some aspects of the Intel Core Duo architecture,
intended mostly for laptop and mobile markets (the Centrino line), whose archi-
tecture belongs to the class represented in Figure 8.3(b). The processor is based
on the Pentium M, thus still belonging to the complex category contrasting with
the simple Niagara, and has even more significant design efforts to reduce power
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Figure 8.5. Cache hierarchy: from single core to dual core.

dissipation. We shall return to this aspect of the design in Chapter 9. There are also
some minimal microarchitectural improvements over the original Pentium M, such
as more sophisticated hardware for SSE instructions, a decoder for SSE instructions
that allows three of them to be decoded in the decode stage instead of a single one,
a faster nonpipelined integer divide unit, and a slightly more sophisticated stream
prefetcher between the L2 and main memory.

Our focus here is on the CMP aspect of the Core Duo and on the design of the
cache hierarchy. Once the decision of having a shared cache has been taken, there
still remains another major choice: Should the two L1 caches remain coherent via a
directory scheme with the directory hosted in the L2 cache, as in the IBM Power5
and Niagara, or should they use a snoopy protocol? Simulations showed that there
was no clear winner performancewise. The snoopy protocol was adopted, for two
reasons: (i) it is closer to the design of the single-core Pentium M, and (ii) it requires
less logic (no directory), and therefore less leakage power will be dissipated.

We elaborate a little more on the first reason. Figure 8.5 shows schematic dia-
grams of a single-core (Pentium M) and dual-core (Core Duo) cache hierarchies.
When running in a multiprocessor shared-bus environment, the Pentium M fol-
lows a MESI cache coherence protocol. Because mutual level inclusion (MLI) is
not imposed, snoops are performed in parallel in both the L1 and L2 caches. This
function is diagrammed by the L2–bus-controller box.

When passing from single to dual cores, on a Bus read from one of the L1 caches
a snoop is performed on the second L1 cache first, because that is faster than looking
at L2. In case of a hit in the second L1, the data are passed to the first L1. In case
of a miss in L1, the request passes to L2 via the L2 controller. These functions are
summarized in Figure 8.5(b) by the diamond box. Now if L2 has a copy of the line, it
will pass it to the requesting L1. Otherwise, the request in sent on the bus via the bus
controller, and when the data return the line is stored in both L2 and the requesting
L1. Of course, on a Bus write invalidations are sent to the other L1 and the L2 and,
if needed (depending on the various L1 and L2 states), on the bus. The bus request
to invalidate is avoided when the dual core is working in a standalone environment.

How scalable is this design? It is interesting to note that the quad-core member
of this family is in fact two dual cores of the type shown in Figure 8.3(a), each on
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its own die with two dies on the chip, with communication between the private (per
dual core) L2s through the external bus as in Figure 8.3(b).

As the number of cores continues to grow, it is not difficult to see that intercon-
nect structures and cache coherence will become challenging issues to the computer
architect.

8.3 Special-Purpose Multithreaded Chip Multiprocessors

There are many different ways of assembling special-purpose multiprocessor sys-
tems, mostly for embedded applications. In this section, we show two examples of
multithreaded CMPs that are indeed specialized for some form of computation but
that are also user-programmable and therefore not as tightly coupled to a partic-
ular application as a purely one-application-of-a-kind embedded system. The two
examples are the IBM Cell Broadband Engine Architecture, commonly called Cell,
originally intended for the Sony 3 game station but also useful for scientific applica-
tions, and the Intel IXP 2400 Network Processor, which can be used as an edge or
core router in high-performance networks.

Although these two CMPs are used in completely different environments, they
present similarities in their overall architecture, namely:

� A general-purpose processor.
� Specialized multithreaded engines that are simple (compared to an out-of-order

superscalar) and whose ISAs are limited.
� Local memories associated with each of the engines rather than caches.
� Fast access to global memories.
� Simple interconnects between the various processors.
� Lack of good compiler support requiring extensive use of assembly language or

libraries for good performance.

8.3.1 The IBM Cell Multiprocessor

The Cell Broadband Engine Architecture is a joint project of IBM, Sony, and
Toshiba that started in 2000. The intent was to define an architecture for the Sony
PlayStation 3 that would be two orders of magnitude faster than the PlayStation 2.
More generally, the architecture was envisioned for a digital entertainment cen-
ter, therefore emphasizing game and multimedia applications as well as real-time
response for the user. The designers felt that they needed more thread-level par-
allelism than could be achieved by replicating a conventional superscalar like the
IBM Power5, as well as processors that could efficiently compute on stream and
vector data. Since the chip would include several cores and each of them would pro-
cess large data sets, solutions that provided large memory bandwidth were sought.
Of course, as is true of all designs in this century, the resulting product needed to
be power-efficient. The first instantiation of the architecture, the Cell processor,
became available in 2005.
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Figure 8.6. IBM Cell multiprocessor
(from Kahle et al. [KDHJMS05]).

A block diagram of the Cell processor is shown in Figure 8.6.
If we consider the list of features that we listed at the beginning of this section,

we see that Cell has a general-purpose processor, called the power processor ele-
ment (PPE in the figure) with its own cache hierarchy; eight synergistic processor
elements (SPEs), each with its own local storage (LS); and an interconnection net-
work (on-chip coherent bus) between the PPE, the eight SPEs, a memory controller,
and a bus controller. Let us look in more detail at some of these components.

The power core processor in the PPE implements the IBM power ISA in a man-
ner that has significant differences from the IBM Power4 and Power5. First of all, the
design is simpler. It is a single processor, not a dual core. Although it is still two-way
SMT like the Power4, only four instructions are fetched on each cycle, alternately
from each thread, as compared to eight for the previous models. The lowering of the
instruction fetch bandwidth is reasonable in that the power processor in the PPE is
an in-order (almost; see the following discussion) two-way processor whereas the
Power4 and Power5 are four-way out-of-order. On the other hand, the Cell power
processor is much faster: it runs at 3.2 GHz, almost twice as fast as the Power4 (1.7
GHz) and its contemporary the Power5 (1.9 GHz). Among the other simplifications,
besides of course those that result from the in-order microarchitecture, we mention
two important ones:

� A much less sophisticated branch predictor that uses a 4 KB 2-bit counter
addressed by the global histories of the last six branches of each thread rather
than the tournament predictors of the other two processors.

� A smaller cache hierarchy with 32 KB L1 I- and D-caches (lockup-free) and
a 512 KB L2 cache (the reader should compare with the figures given in the
sidebar of Section 6.3). An interesting point here is that the TLB and L2 can be
managed by software tables that allow data in a given range to be pinned in L2.
Because the Cell power processor is a single core and because it is not part of a
multiprocessor system, the coherency controllers are not needed.
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On the other hand, the resources for floating-point and multimedia computa-
tions are much more extensive. The processor contains not only a floating-point unit
and a load–store unit for the floating-point registers, but also an SIMD component
with two units: one that can perform operations on 128-bit vectors of various sizes
from 128 × 1 bits to 2 × 64 bits, including all powers of 2 in between; and one used
for word or subword permutations such as those mentioned in Section 7.5. Instruc-
tions that use the floating-point and SIMD units are queued at issue time and can
be issued out of order with those using the integer units.

The eight synergistic SPEs are designed to optimize SIMD and short-vector pro-
cessing. An SPE consists of an execution unit SXU, a local store LS (not a cache),
and global memory and bus interfaces (DMA). The execution unit SXU has 128
(vector) registers of 128 bits with the data types ranging from a quadword (16 bytes)
to a bit vector organized in the same way as the SIMD unit of the power proces-
sor. Instructions are RISC-like, that is, register to register. The SXU has four func-
tional units: a vector integer unit, a vector floating-point unit, an SIMD-like data
permute unit, and a load–store unit. All data paths are 128 bits wide. As can be
seen, there is no scalar processing unit. However, the programmer, or the compiler,
can optimize scalar processing in the vector units by placing the scalar variables
in their leftmost natural positions in the 128-bit register. If need be, this position-
ing can be accomplished with the help of the permute unit. All subsequent vec-
tor instructions using the scalar variables in these positions will yield the intended
results.

The SXU can issue two instructions per cycle, one to either of the vector units
and one to either the permute or the load–store unit. Instructions are prefetched
from the local store in 128-byte chunks to an instruction buffer. Since the Cell engine
runs at high frequency, the pipeline of the SXU is relatively long: about 13 stages
in the front end for instruction fetch, buffering, decode, and register read (the reg-
ister file has six read ports and two write ports). The back-end functional units have
latencies ranging from 2 to 6 cycles, but the writeback stage is such that all functional
units access it in the same stage, 8 cycles after the last register read cycle. Predication
is used as much as possible on a vector-wide basis. The load–store unit can read and
write 16 bytes (i.e., a register width) per cycle directly to the local store. There is no
provision for reading or writing units of smaller size, but, as we just explained, scalar
processing is optimized within the vector units. If alignment of data is necessary, it
will be performed via the permute unit.

The local store in the current implementation is 256 KB. A programmable local
memory is used instead of a cache for several reasons. First, it can be better opti-
mized for streaming purposes, that is, for getting large numbers of sequential data
via programmed block transfers from main memory. Second, the chip area used by
the local store is about half of what would be used by a cache of the same capacity,
because there is no need for tags and the access and control logic is simplified. Third,
the programmable DMA allows more concurrency and a larger variety of programs
than would be possible with a cache. The local store has both narrow (16 bytes) and



8.3 Special-Purpose Multithreaded Chip Multiprocessors 327

wide (128 bytes) ports. The narrow path is for direct load–store communication with
the SXU; the wide path is for instruction prefetch and DMA transactions with main
memory, the PPE, and other SPEs.

The on-chip interconnect between the PPE, the eight SPEs, the memory con-
troller, and the I/O interfaces is called the element interconnect bus (EIB). This is
something of a misnomer in that the EIB is made up of four circular rings, two in
each direction. Each ring can cater to three transactions simultaneously if they are
spaced appropriately. The EIB is clocked at half the processor speed. Each ring
transaction carries 16 bytes of data. So, in theory, the bandwidth on the EIB is
16 × 4 × 3/2 = 96 bytes per processor cycle. In practice, this bandwidth will not
be attained, because of conflicting transactions or because the memory controller
and I/O interfaces cannot sustain that rate. Note that each “unit,” (i.e., each of the
12 elements connected to the EIB), is at a maximum distance of 6 from any other.
The EIB can be seen as a compromise between a bus and a full crossbar.

Before leaving the description of the Cell processor, we want to emphasize the
challenges faced by the user or the compiler to exploit such an architecture and thus
the reasons why we consider it to be special-purpose.

� Applications must be decomposed into threads, with the additional constraint
that some threads might be better suited for the PPE and others (hopefully
more) for the SPEs.

� SIMD parallelization must be detected for the SPEs and to a lesser extent for
the PPE. This is not a simple task, as evidenced by the difficulties encountered
by compiler writers who want to use MMX-like instructions efficiently.

� Not only SIMD but also code for short vectors has to be generated for the SPEs,
with special attention to making scalar processing efficient.

� Because the SPEs have no cache, all coherency requirements between the local
memories of the SPEs have to be programmed in the application. In other
words, all data allocation and all data transfers have to be part of the source
code.

� Because there is no hardware prefetching or cache purging, all commands for
streaming data from and to memory have to be programmed for the memory
interfaces.

� Because the pipelines of the PPE and the SPEs are long and their branch pre-
dictors are rather modest, special attention must be given to compiler-assisted
branch prediction and predication.

Granted, some of these challenges – for example, vectorization and message-
passing primitives – have been studied for a long time in the context of high-
performance computing. Nonetheless, the overall magnitude of the difficulties is
such that, though the Cell can be programmed efficiently for the applications it was
primarily intended for (namely, games and multimedia), it is less certain that more
general-purpose scientific applications can be run effectively.
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8.3.2 A Network Processor: The Intel IXP 2800

Wide-area networks, such as the Internet, require processing units within the net-
work to handle the flow of traffic. At the onset of networking, these units were
routers whose sole role was to forward packets in a hop-to-hop fashion from their
origin to their destination. The functionality required of routers was minimal, and
their implementation in the form of application-specific integrated circuit (ASIC)
components was the norm. However, with the exponential growth in network size, in
transmission speed, and in networking applications more flexibility became a neces-
sity. While retaining the use of fast ASICs on one hand and dedicating general-
purpose processors on the other hand had their advocates for some time, it is
now recognized that programmable processors with ISAs and organizations more
attuned to networking tasks are preferable. These processors are known as network
processors (NPs).

The workloads of network processors are quite varied and depend also on
whether the NP is at the core or at the edge of the network. Two fundamental tasks
are IP forwarding at the core and packet classification at the edge. These two tasks
involve looking at the header of the packet. IP forwarding, which as its name implies
guides the packet to its destination, consists of a longest prefix match of a destina-
tion address contained in the header with a set of addresses contained in very large
routing tables. Packet classification is a refinement of IP forwarding where matching
is performed on several fields of the header according to rules stored in relatively
small access control lists. The matching rule with highest priority indicates the action
to be performed on the packet, e.g., forward or discard. Among other tasks involv-
ing the header we can mention flow management for avoiding congestion in the
network and statistics gathering for billing purposes. Encryption and authentication
are tasks that require processing the data payload.

To understand the motivations behind the design of network processors, it is
worth noting several characteristics of the workload:

� In the great majority of cases, packets can be processed independently of each
other. Therefore, NPs should have multiple processing units. For example,
Cisco’s Silicon Packet Processor has 188 cores, where evidently each core is
much less than a full-fledged processor.

� The data structures needed for many NP applications are large, and there is
far from enough storage on chip to accommodate them. Therefore, access to
external DRAMs should be optimized. To that effect, and because processing
several packets in parallel is possible, coarse-grained multithreading with the
possibility of process switching on DRAM accesses is a good option. The Intel
IXP 2800 that we present in more detail below has 16 cores, called microengines,
which can each support eight hardware threads.

� Access to the data structures has little or no locality. The tendency in NPs is
to use local data memories rather than caches, although some research studies
have shown that restricted caching schemes could be beneficial.
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Figure 8.7. The Intel IXP 2800 network processor (from Adiletta et al. [ARDWW02]).

� Programs running on the microengines are short, both statically and dynami-
cally. Source code can be downloaded on small memories attached to the micro-
engines rather than using instruction caches with potential conflicts.

� There is no need for providing floating-point arithmetic. The ISA of the micro-
engines should be biased towards integer and character (byte) processing.
Special-purpose instructions, and hardware, can be present for functions such
as cyclic redundancy check (CRC) or encryption.

We use the Intel IXP 2800 as an example NP. As will be seen, the general fea-
tures of special-purpose multiprocessors that we listed at the beginning of this sec-
tion are present, and the design objectives just listed have been followed.

Figure 8.7 shows the general architecture of the Intel IXP 2800. The main
building blocks are a general-purpose processor, the Intel XScale; two clusters of
eight microengines with their own local memories; interfaces to fast SRAM and to
DRAM; and some special-purpose functional units.
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The XScale processor, whose ISA is that of the ARM microprocessor, is used
for packet exception handling and management tasks. It has a 32 KB I-cache and
a 32 KB D-cache. It can communicate with the microengines through the external
SRAM.

Each microengine has eight hardware contexts. Coarse-grained multithreading
can be initiated under user (or compiler) control when external memory accesses
are performed. Therefore, 16 × 8 = 128 packets can be processed concurrently.
Each microengine has its own 4 K words control store, (i.e., instruction memory),
to store application programs, and 640 words of local data memory. A context con-
sists of a program counter, 32 general-purpose registers, 16 registers to communicate
with a neighboring microengine, and four sets of registers for either input or output
to either SRAM or DRAM. The neighbor registers facilitate communication for
pipelined algorithms often used in NP applications, by means of a technique rem-
iniscent of stream processing where each stage consists of several instructions or a
kernel that will be applied to all packets.

Microengines have a six-stage pipeline. They are in-order, provide single-
instruction issue, and run at 1.4 GHz. Standard memory operations access the local
memory; SRAM and DRAM are accessed through I/O operations. A special feature
is a 16-entry content-addressable memory (CAM) that allows multiway comparisons
and is quite useful in many packet-processing applications.

In many NP applications, the SRAM is used for storing control information
about packets and flow control in the form of queue descriptors or linked lists. The
IXP 2800 has four SRAM programmable controllers that can operate concurrently.
They can be programmed to synchronize processes through synchronization primi-
tives very much like those we have encountered in general-purpose multiprocessors.
The controllers are optimized for fast linked-list and circular-list insertions and dele-
tions. There are also three controllers for access to DRAM banks. The amount of
real estate devoted to SRAM and DRAM controllers emphasizes the importance of
concurrent and fast access to memory.

Finally, there are two special-purpose functional units for encryption and
authentication that are critically important at the edge of the network, but also in its
core if applications are to perform some processing in the network – the so-called
active network paradigm. There is also a hashing unit that computes a sophisticated
hashing function quickly.

As can be seen, the IXP 2800 is built for packet parallelism and fast memory
access, and includes some functional capabilities geared toward very specific appli-
cations. Its programmability ensures that it will not be obsolete when it needs to
support new applications. On the other hand, it is far from being a general-purpose
engine, and therefore its deployment is limited.

8.4 Summary

On-chip parallel processing at the thread level is now available in commodity pro-
cessors. We have introduced three flavors of multithreading that can complement
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the multiprocessing capabilities described in the previous chapter, namely fine-
grained, coarse-grained, and simultaneous (SMT). In all cases, each thread requires
its own context, which is, at least, a set of general-purpose registers and a program
counter.

In fine-grained multithreading, thread switching can occur on every cycle. In
the coarse-grained case thread switches will occur on long-latency events, that is,
events that will take noticeably longer than a thread switch. The typical example
is an L2 miss. In SMT, several threads will occupy the pipeline concurrently, thus
filling instruction issue slots lost to either hazards or lack of instruction-level paral-
lelism. Coarse-grained multithreading concepts can also be applied to single-thread
execution with the goal of warming up caches.

In the microprocessor environment, fine-grained multithreading will be res-
tricted to “simple” processors. Coarse-grained multithreading is rare, and the com-
plexities of SMT have limited its implementation to two concurrent threads (also
called hyperthreading in Intel products).

Chip multiprocessors (CMPs) are now the commodity computational engines
in commercial microprocessor systems. We have presented the characteristics of
general-purpose and special-purpose CMPs. In general-purpose CMPs we have
made a distinction between architectures where each core, (i.e., a processor and
its on-chip L1–L2 cache hierarchy), has a private L2 (multiprocessors) and those
where all cores share their L2 (multicores).

We have described two families of general-purpose multicores. The first one,
Sun Niagara, is based on simple fine-grained multithreaded processors connected
via a crossbar switch to a shared L2. The second one, Intel Core Duo, is based on
complex processors sharing an L2 cache and whose L1s remain coherent through a
snoopy protocol.

To show a vivid contrast between general-purpose and special-purpose micro-
processor systems, we have also described two special-purpose CMPs: the IBM
Cell, intended for game and multimedia processing, and the network processor Intel
IXP2800.

8.5 Further Reading and Bibliographical Notes

Multithreading in one of its three flavors, namely fine-grained, coarse-grained, and
simultaneous, is now a feature of most high-performance microprocessors. Fine-
grained multithreading has its origin in the design of the peripheral processors of
the CDC 6600 as described in Thornton’s book [T70]. Fine-grained multithread-
ing for central processors was proposed and then implemented by Burton Smith
for the HEP multiprocessor [S78]. The Tera supercomputer [ACCKPS90] is a
direct descendant of HEP. Coarse-grained multithreading has its roots in soft-
ware threads and was first introduced for NUMA multiprocessor systems, whereby
long-latency events were accesses to global memory. Agarwal and his students
at MIT [ALKK90, ABCJKKLMY95] built the Alewife multiprocessor prototype
using modified SPARC processors with four hardware contexts. The multithreaded
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characteristics of the IBM PowerPC processor that we described can be found in
[BEKK00]. Simultaneous multithreading (SMT) was developed at the University of
Washington by Eggers, Levy, and their students [TEL95, EELLST97, LBEGLP98].
Commercial implementations exist for the Intel ISA (where SMT is called hyper-
threading) [KM03] and the IBM Power5 [KST04, MMMEK05], among others. The
relative performance benefits of multithreading and multiprocessing when proces-
sors are in order or out of order are discussed in [CCYT05].

Coarse-grained multithreading concepts can be applied to the execution of a
single application without explicitly defining threads at compile time. On a long-
latency event, the application can continue speculatively, thus warming up caches as
in run-ahead execution [MSWP02], hardware scouting [CCYT05], or dynamic mul-
tithreading [AD98]. The Multiscalar project headed by Sohi [SBV95] is the seminal
precursor of many speculative multithreading studies, whose challenges and poten-
tial benefits are discussed by Sohi and Roth [SR01]. Sun’s MAJC was an attempt
at a commercial implementation of these concepts [TCCCT00]. At the limit, multi-
threading, or a superscalar with an “infinite” instruction window, can lead to data
flow [DM74], an elegant paradigm for (functional) program execution. Data flow
has a long history and fervent advocates, but has not yet been shown to be compet-
itive with the contemporary optimized von Neumann architectures.

All major microprocessor manufacturers have introduced CMPs, some (like
AMD, IBM, and Intel) with the same ISA and overall microarchitecture complexity
as their previous top-of-the-line single processors (for example, the Intel Core Duo
[MMGSCNK06]), and some (like Sun) with a larger number of simpler processors.
Niagara [KAO05] is an example of the latter design.

There are many flavors of special-purpose CMPs. The IBM Cell is introduced
in [KDHJMS05, GHFHWY06]. The Intel IXP 2800 [ARBWW02] is one example
among many of network processors.

EXERCISES

1. (Section 1.1) Give two examples of nonscientific programs for which a fine-
grained multithreading approach would be good. Assume that there is no cache
in the system.

2. (Section 1.1) What type of branch prediction mechanism would you advocate for
a Tera-like system?

3. (Section 1.2) In our simplistic analysis of the number of coarse-grained threads
needed (on average) so that long latencies can be hidden, we did not include the
time needed to switch hardware contexts. Let nsat be the number of threads so that
saturation occurs (i.e., long latencies are tolerated), m be the run length, that is, the
(average) number of cycles between context switches, c be the time for a (hardware)
context switch, and L be the long latency that is to be tolerated. Express nsat as a
function of m, c, and L. What is the value of nsat if m = 50, c = 5, and L = 200?
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4. (Section 1.2) What are additional steps that must be taken in coarse-grained mul-
tithreading if the processor is out of order?

5. (Section 1.2) Are there any additional complexities in the implementation of
caches, TLBs, and branch predictors when coarse-grained multithreading is added
to a (multiprogrammed) processor?

6. (Section 1.3) Show a scenario where having a single queue without maximum
threshold for instruction issue in an SMT can lead to loss of performance.

7. (Section 1.3) The hyperthreaded Intel Pentium 4 Xeon replicates the I-TLB, so
that each of the running two threads has its own I-TLB. The IBM Power5 does not,
that is the I-TLB is shared between the two threads. Discuss pros and cons of these
choices, considering the way instructions are fetched in the two implementations.

8. (Section 1.3) Which of the two main possible ways of register renaming – using
a distinct physical register file, or using the reorder buffer – is most attuned to an
SMT implementation?

9. (Section 1.4) What policy should be followed if there is an exception during run-
ahead execution? How should an interrupt be handled?

10. (Section 2) Find advantages and drawbacks to homogeneous general-purpose
CMPs in contrast with heterogeneous ones.
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9 Current Limitations and Future Challenges

Since 2003, the peak frequency at which single processors and chip multiprocessors
have operated has remained largely unchanged. One basic reason is that power dissi-
pation effects have limited frequency increases. In addition, difficulties in extracting
more parallelism at the instruction level, design complexity, and the effects of wire
lengths have resulted in a performance plateau for single processors. We elaborate
on some of these issues in this chapter.

While improvements in clock frequency and in ILP exploitation have been
stalled, Moore’s law is still valid, and the amount of logic that can be laid out on
a chip is still increasing. Adding more cache memory to a single processor to fill
all the on-chip real estate has reached a point of diminishing return, performance-
wise. Multithreaded processors, which mitigate the effects of the memory wall, and
multiprocessors on a chip (CMP, also called multicores) are the current approach
to attaining more performance. A question that is of primary importance to com-
puter architects and to computer users in general is the structure of future CMPs, as
mentioned in the previous chapter.

In a conservative evolutionary fashion, future CMPs might look like those we
have presented in Chapter 8, with naturally a slightly larger number of cores. Ques-
tions of whether there should be many simple cores vs. fewer high-performance
ones, and of whether the cores should be homogeneous or not, have already been
touched upon previously. Although speed is still the primary metric, other aspects
such as reliability and security have gained importance. Looming very large in the
picture is how to take advantage of the many cores available, that is, how to exploit
parallelism at a coarse granularity. Although parallel programming is not a topic for
this book, we would be remiss not to consider it along with the other challenges for
the next generation of computing systems.

A more aggressive evolution would imply changes in the ISA. Current CMPs
have essentially the ISA of their single-processor counterparts. Additions such
as support for transactional memory do not constitute an enormous leap and, if
deemed profitable, could happen very soon. More radical architectures are those
that derive from dataflow concepts. Inasmuch as they are still in the research stage

335



336 Current Limitations and Future Challenges

and no clear winning direction for them has been agreed upon, we will not elaborate
on these interesting options.

Finally, there is a revolutionary way that we will not touch upon, that of nanos-
tructures: quantum computing, synthetic biological engines, nanotubes, DNA com-
puters, etc. It is left to the reader to explore these fascinating topics.

9.1 Power and Thermal Management

9.1.1 Dynamic and Leakage Power Consumption

The reader should look one more time at Figure 1.4, which illustrates in a striking
manner the power dissipation issue. It affects all computerized devices, from those
powered by batteries such as cell phones, PDAs, and laptops to the very large data
centers that require extensive and expensive power and cooling.

Recall that power = work/time is expressed in watts, whereas energy = power ×
time = work is expressed in joules. In the context of computers, work is program
execution (CPU, memory, and I/O operations), power is the rate at which the com-
puter consumes electrical energy, including the amount it dissipates in heat, and
energy is the total amount of power over a certain amount of time. Power manage-
ment is a set of techniques that reduce power consumption without sacrificing much
performance. For a device that operates with a battery storing a given maximum
amount of energy, reducing the power will allow work to be performed for a longer
period of time. For servers and data centers, it will lead to savings in electricity and
cooling. Moreover, for the latter another primary concern is reducing peak temper-
atures through thermal management techniques so that the devices do not overheat.
An additional challenge is that temperatures are not uniform on the chip and hot
spots have to be detected.

Although conserving power is important in main memory and I/O devices, we
focus on means to reduce power consumption and detect hot spots on processors
and on-cache chips. Of the two components of power dissipation, the main one,
namely, the dynamic, is due to circuit activity that occurs when input data to a circuit
are changed. The second one, the static or leakage power consumption, results from
the imperfection of transistors and the fact that current leaks even when a transistor
is not switching.

In first approximation, dynamic power consumption can be expressed as

Pdyn ∼ aCV2 f (1)

where

� V is the supply voltage,
� f is the clock frequency,
� C is the physical capacitance,
� a is an activity factor related to the number of 0 → 1 and 1 → 0 switchings.
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Power reduction techniques can be applied to each of these factors, either individu-
ally or in groups, at both the circuit and microarchitectural levels.

Leakage power can be expressed as

Pleakage ∼ VIleak

where V is again the supply voltage and Ileak is the current that flows through tran-
sistors even when they are off. Pleakage increases with the number of transistors on
a chip. Because Moore’s law is still applicable, it would appear that it is more of a
long-term threat than Pdyn. So far, technological improvements at every new gen-
eration of chips, such as using other materials than silicon, and circuit-level tech-
niques have limited the effects of leakage. We will therefore concentrate on means
to reduce the dynamic power, some of which, as we shall see, also reduce the leakage
power.

Modeling thermal effects on a chip is made more difficult by the fact that what is
important is not the average temperature but the detection of hot spots. There is not
much correlation between power dissipated over some time interval and the temper-
atures at various locations on the chip. Nonetheless, power management techniques
and thermal management techniques have a lot in common.

We will not give any detail on circuit level techniques. Most often, the tech-
niques are meant to reduce switching activity by, for example, ordering transistors
in circuits so that the amount of switching is minimized and, similarly, ordering the
states in finite-state machines for the same reason. Variations in gate logic, for exam-
ple, a tree vs. a cascade, and in bus encodings produce similar effects.

9.1.2 Dynamic Power and Thermal Management

Since power and thermal management became a vital issue in modern micropro-
cessor designs, research in the area has blossomed. Analytical models have been
devised, and power and thermal simulators have been implemented, with the pri-
mary intent of identifying the structures that would benefit most from power reduc-
tion. For some microprocessors, mostly of the embedded type, the models and
simulators can guide operating systems and compilers to modify the voltage through
specialized instructions. Heuristics to manage power at run time have been pro-
posed and evaluated, often in the context of real-time systems.

In this subsection, we present only a small sample of these activities. Our focus
is on microarchitectural techniques to reduce two factors in the previous formulas:
voltage supply and activity. Note that reducing activity and/or supply voltage will
influence both dynamic and leakage powers. The techniques that we present are
mostly adaptive. They consist in:

� monitoring the state of the processor and of its memory activities;
� detecting whether some potential action should be taken – the so-called trigger-

ing step;
� deciding on the action to take.
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The monitoring step depends on whether the intent is power management or ther-
mal management. In the latter case, the temperature readings are performed via
thermal sensors whose output can be digitized. The sensors must be on chip, because
otherwise there is a significant delay between the rise of temperature on chip and
the off-chip readings. The difficulty is in choosing where to put the sensor(s), for the
hot-spot locations may vary with the application. In the Intel Pentium 4, for exam-
ple, the location was chosen after extensive simulations of various applications.

Monitoring for power cannot use direct sensorlike instruments. In essence,
monitoring for power consists in assessing performance. The basic idea is to record
the performance of the processor during some time interval using some appropriate
metric and to predict what the performance requirements are for the next interval, a
common speculative pattern that we have encountered numerous times before. The
activities of the whole processor or of the most power-hungry parts of the chip –
such as the instruction issue mechanism (instruction queue or window, reservation
stations, reorder buffer, scheduler) and the caches – can be monitored and assessed
in several ways. For example, during a time sample interval, one can:

� Assess the proportion of idle time.
� Count the number of instructions that have been fetched; this may be slightly

better than the number of instructions committed (a metric akin to the IPC), in
that it takes into account the work done while speculating.

� Assess the location in the instruction queue of the issued instructions. If the
most recently fetched instructions are not issued often, then the instruction
queue may be too long; thus, not all of it needs to be searched at every cycle.

� Assess whether the instruction queue is full. If so, that might indicate that it is
too short and that performance could be enhanced by having a larger window.

� Assess the cache miss rates, both on chip and off chip. If the count of off-chip
misses is significant, it might mean that the processor is often idle. This metric
is particularly easy to monitor in that most microprocessors have performance
counters that can be programmed specifically for this type of measurements.

� Assess the decay of a cache line, that is, the amount of time since it was last
accessed.

� Detect phases in an application, with the goal of using the characteristics of
recurrent phases when a phase change is detected. Such a scheme implies recog-
nition of phases, (e.g., through some signature of the working set), and storing
their characteristics.

Triggering of an action to be performed is generally induced by comparing a
measurement with some threshold. For example, the digitized output of a thermal
sensor can be compared with values stored in some hardware registers indicating
the low and high ends of the range of operating temperatures. Similar thresholds
can be stored for the metrics that we have listed in the previous paragraphs. More
qualitative criteria can be used, such as whether a laptop is plugged in or operates
under battery power, or whether a display screen has been modified in the last x
minutes.
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There are two main techniques that can be used once the triggering step has
been detected and it has been decided that an action should take place: dynamic
voltage and frequency scaling (DVFS) and resource adaptation.

Dynamic Voltage and Frequency Scaling
We start our discussion of DVFS in the context of power management. Because
voltage is a quadratic factor for dynamic power and because reducing the supplied
voltage will also reduce the clock frequency, a decrease in voltage could have the-
oretically a cubic effect on power reduction. As a result of slowing the clock, there
will be a linear loss in performance according to the execution time formula (2) in
Section 1.2.1.

While theoretically correct, neither the cubic decrease in power nor the linear
loss in performance is necessarily encountered in practice when voltage is scaled
down. As an example for each case:

� The formula (1) we gave is true for CMOS transistors and therefore is a good
approximation for the processor and on-chip caches. However, DRAM memo-
ries and I/O devices such as disks also draw power, and sometimes significantly
more than the processor chip. Moreover, there can be different power supplies
for the processor chip and the other components of the system.

� Slowing down the processor should not matter when the processor is idle
because, for example, it is waiting for the resolution of a cache miss. Therefore,
there are periods of time where the frequency can be lowered without impact
on the total execution time.

Nonetheless, reducing the voltage selectively can have beneficial effects, because
most systems are designed for continuous peak performance, which is not always
needed. This is particularly true in a number of real-time systems that are designed
for the worst case. If there is a possibility to assess that some part of an application
can be run at slower speed without affecting the outcome, (i.e., without missing
deadlines), then the power can be reduced effectively.

DVFS can be applied at various levels of granularity. Depending on the imple-
mentation, there can be a limited number of possible voltages, or it can be possi-
ble to vary the voltage in a continuous fashion, as for example in the Intel XScale
processor, which we encountered when we discussed network processors (Section
8.3.2). Most implementations allow a privileged software instruction to set a mode
register to modify the voltage. However, it is important to be aware that scaling
up or down of the voltage or frequency is not instantaneous. It can take tens of
microseconds before the clock network is stabilized anew.

At the coarsest grain, the voltage can depend on whether a mobile device
is plugged in or is battery-operated (lower voltage). Some laptops with an Intel
Pentium 4, Pentium M, or Intel Core processor operate thus in order to prolong the
battery’s lifetime. Granted, this “threshold” that we mentioned previously is hardly
“dynamic”! A more interesting distinction is whether the scaling is done task by task
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(e.g., via the O.S.), or within a task. A further distinction is whether the monitoring
step is offline, for example via profiling, or online.

Offline DVFS techniques have been mostly applied to real-time systems that
run a limited number of applications. Platforms are generally mobile devices that
have relatively simple processors. For a given application, voltage schedules to meet
deadlines can be devised offline, and, theoretically, optimal power reduction can be
achieved. Naturally, optimality is not really achievable, because of the variations in
the workload even within an application. Nonetheless, one can see why it might be
useful to have different speeds of execution for widely different applications such as
deadline-driven audio and leisurely consulting one’s calendar.

Online DVFS techniques are more general. Like offline techniques, they are
often meant for real-time systems, but they can also be used for desktops or servers.
The first DVFS algorithms monitored the proportion of processor idle time during
a given time interval. Triggering occurred if either this proportion was smaller than
some minimum threshold or larger than some maximum threshold. Upon trigger-
ing, the processor was either slowed down or speeded up. An easy improvement
on the method is to use an average of the last n intervals before comparing with
thresholds in order to reduce the possibility of thrashing due to peak computational
periods followed by mostly idle ones. Better yet is to have a probability distribution
of a given task’s computational requirement based on past executions of the task
or of similar ones, or some phase signature that indicates how to set the voltage or
frequency for the next interval.

In the case of thermal management, an alternative used in the Pentium 4 is to
stop execution for a short period of time. The interrupt for STOPCLOCK has high
priority, and idleness can be achieved in about 1 µs.

Resource Adaptation
Every laptop user is cognizant of the hibernation feature of her computer. Hiber-
nation at that level is an operating system (O.S.) feature that dumps the processor
state and the contents of volatile memory on the hard disk before powering off the
system. Restarting after hibernation will result in a state similar to the one before
hibernation and is faster than a complete restart. A generalization of this feature is
to hibernate some of the resources selectively.

Resource hibernation, which can be considered as a subset of such hibernation
processes, is aimed at whole components, such as the disk or the display, that con-
sume a significant portion of the power in portable devices (but not so in servers
and workstations, where processor(s) and memory dominate). In the case of the
disk on a laptop computer, the O.S. can monitor disk usage and prevent disk rota-
tion, a major source of the power dissipated by the disk, when it has observed a given
period of idleness. It will power it up again when there is a disk request. This sim-
plistic approach, even with the use of adequate thresholds to mitigate up and down
thrashings, can fail to reduce power if the workload is irregular, because restart-
ing the rotation is more power-consuming than regular operation. Moreover, the
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technique cannot be used in a server, where there is practically always a request
for disk access. In this case, the rotation speed can be regulated according to the
demand, again using thresholds for the number of requests in the disk access queue,
because power consumption is proportional to rotation speed. In the case of dis-
plays, the O.S. can dim or totally darken the display when there has been no user
activity for some time.

Selectively turning off partially or totally some resources in a general-purpose
processor has been advocated as a means to conserve power. In the same way as
DVFS is used to take advantage of variations in workload and reduce power when
peak performance is not needed, resource adaptation (the term that is most often
used in this context) can be performed when (a phase of) an application is assumed
not to need a complete set of resources. The resources that are targeted in such
an approach are those that consume significant proportions of the total processor
chip power, namely, the instruction issue apparatus (windows, reservation stations,
reorder buffer, decoders, and schedulers/dispatchers) and caches.

At the beginning of this section, we saw some examples of how performance
could be monitored and how a resource adaptation could be triggered. We now
expand on some of the adaptations that can be performed for the instruction issue
mechanism and the caches. It should be noted that additional logic is needed for the
partitioning of resources – at the very least, gating of the clock in some portions of
the circuit. Care should be taken that this extra logic does not consume too much
power and/or real estate.

In the case of the instruction queue, downsizing or upsizing can be done on step
by step. We list some options that have been implemented or proposed, from the
most stringent to the least disruptive, and also from the easiest to implement to one
that requires (slight) modifications to the microarchitecture.

� Prevent fetching of new instructions. This could be done for thermal manage-
ment, where significant slowdowns can be required. Instruction fetching can
resume when appropriate cooling has been reached.

� Fetch instructions every other cycle.
� Limit the number of instructions issued or decoded per cycle. In the case of an

m-way issue, it can be temporarily reduced to (m − 1)-way or further down if
needed.

� Split the queue into several partitions, and remove or add one partition at a
time.

If caches are the adaptation targets, power savings are obtained by shutting down
parts of them. Not only dynamic power, but also leakage power is decreased if large
chunks of the caches are gated off. From the coarsest granularity down, bank(s),
set(s), and line(s) are possible targets. In the case of writeback caches, care must be
taken to save dirty lines prior to the shutdown so that there is no loss of information.
An alternative is to have so-called drowsy caches whereby the energy supplied to
a line or a set is lower than that needed to access the data but sufficient to keep
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the integrity of data. Another possibility is to partition the cache so that only part
of it is first accessed, using some form of MRU approximation on a way-by-way
basis.

Before leaving the topic of power consumption and reduction, it is worth
emphasizing that the DVFS and resource adaptation can be combined. This combi-
nation is particularly attractive in workstations that are used for multimedia applica-
tions; thereby resource adaptation can be used as an additional benefit to DVFS. In
addition, other microarchitectural techniques can be used at design time to reduce
power consumption.

Examples of processors designed specifically for mobile devices, where battery
life is at a premium, are Intel’s Pentium M and the dual-processor Centrino Duo
Mobile. In both cases, the trade-off between performance and power was of pri-
mary concern at design time. The Intel IA-32 ISA is kept for compatibility, and
the processors are out of order for performance’s sake. A sophisticated branch pre-
dictor is implemented because accurate branch prediction means fewer instructions
executed, which means it yields both performance improvement and power savings.
Micro-op fusion (recall Section 4.3) saves accesses to the instruction issue queue
and retirement buffer, thus saving some energy. The reader might recall that a sim-
ilar technique is present in the IBM Power4, whereby instructions are dispatched
in groups for reasons of simplicity of implementation, but also with the side effect
of limiting power consumption (cf. the sidebar of Chapter 6). Pentium M also has
a DVFS feature that allows it to expand on the lowest frequency mode (LFM) and
highest frequency mode (HFM) found in earlier Intel mobile processors. In the Cen-
trino Duo, some microarchitectural design decisions were added, and, of course, this
is a dual-core CMP (cf. Section 8.2.2). Both resource adaptation, mostly to decrease
leakage power dissipation, and DVFS, for dynamic power, are implemented with a
concerted hardware–software effort.

Resource adaptation is achieved by providing each processor with its own
power-saving states for smaller savings and combined chip-set states for larger sav-
ings. The idea is to use the techniques and mechanisms of the Advanced Configura-
tion and Power Interface (ACPI), a standard for O.S. power-directed management,
to enter various forms of idleness. When a given core is active, it is in a state named
C0, but when it is idle for some time, the O.S. will make it enter a state Ci. (i =
1, . . . , 4) with the goal of balancing power saving with the overhead of coming back
to state C0 when the processor becomes active again. States C1, C2, and C3 are per
processor and correspond to various clock stoppages: processor only, processor and
bus, and clock generator. State C4 is reduced voltage, but because both cores share
the same power plane, it must be applied to the whole chip set (in fact, there is an
additional state for further voltage reduction). Note that because multilevel inclu-
sion is not implemented, shutting off L1 means that its dirty lines, which have to
be written back to L2, might imply replacements in L2 and flushing of L2 lines to
memory. Dynamic sizing of the L2 cache while in state C4 is also a possibility, with
reduction when the cores have been idle for a long time or there is low activity (e.g.,
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Figure 9.1. Illustration of the FO4 metric.

handling only interrupts that do not require the L2 cache) and expansion when there
is a new burst of activity.

Dynamic power reduction in the Centrino is performed by monitoring the com-
putational needs of the executing application when in state C0. Several operational
points, (i.e., frequency–voltage combinations), are defined with the aim for the O.S.
to make each processor run at the lowest operational point that meets the required
performance.

9.2 Technological Limitations: Wire Delays and Pipeline Depths

Power dissipation and thermal concerns that we have introduced in the previous
section are the major reasons for the standstill in clock speed that we have observed
since 2003. However, there are other technological reasons for which performance
would not gain as much from higher frequencies. We elaborate on two of them:
wires and pipeline depths.

In this section we will use the metric that has been adopted to quantify gate and
wire delays, namely FO4, (i.e., the delay for an inverter driving four identical copies
of itself), as shown in Figure 9.1. The advantage of this metric is that it acts as a
normalizing factor. Any delay in a combinational circuit can be divided by FO4, and
the ratio will remain constant over a wide range of technologies.

Wires
In the late 1990s, picking up on the political slogans of the time, the outcry was “It’s
the wires, stupid” when discussing the impact of Moore’s law and speed increases
on performance growth. In other words, the concern was not putting more tran-
sistors on a chip, nor cranking up the clock, but mitigating the delays that would
be incurred in communication. Today, even though the clock cycle has essentially
remained constant, it is small enough that sending signals from one part of the chip
to another cannot always be done in a single cycle. Furthermore, as feature size con-
tinues to decrease, absolute wire delays may increase slightly. The counterargument
to that effect is that with smaller feature sizes, the wires can be shorter.

Without dwelling in the physics of delays in wire, let us just state that the delay
can be viewed in a first approximation as proportional to the product of the resis-
tance and the capacitance of the wire, in symbols RC. As technology improves, that
is, feature sizes decrease, R increases significantly, and so does C, although to a
much lesser extent. Thus, the absolute delay increases, and wire delay relative to
gate delay could have skyrocketed if the frequency had kept increasing at the same
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rate. In addition to the delay on the wire, there is an overhead if a gate is used to
drive a wire; this overhead can be assumed to be equal to FO4.

Wires can be characterized by their lengths and the entities that they connect.
We can distinguish between:

� Local wires, such as those found in standard cells, for example, in an adder.
These wires connect entities that are close to each other. Improved technologies
will make them even shorter. They do not present a performance problem.

� Global wires, such as those connecting modules, for example, the wires con-
necting the register file to the inputs of the functional units. Global wires do not
scale in length, and they are the wires that present a challenge.

Global wires that do not scale in length arise as a consequence of decreases in fea-
ture size that are at the basis of Moore’s law. More logic on the chip results in
more modules, and some of these modules’ capacities get larger. We have seen that
sophisticated superscalars have more functional units than their simpler counter-
parts; their branch predictors consist of several tables rather than the unique branch
predictor table of two-bit counters; second-level caches are larger, and there can
be a hierarchy of TLBs, etc. The multiplicity of modules implies an explosion in
the number of wires. For example, forwarding the results of functional units to the
other n functional units implies an n2 growth in the number of wires. So, architects
are confronted with more wires and the certainty of more delays in communication
relative to computation speed. Luckily, for some global wires such as those for clock
propagation, one can use repeaters, which in essence make their delays scalable.

Nonetheless, there are instances where wire delays influence the design and
performance of modern processors. It cannot be taken for granted that on-chip dis-
tances do not count. A typical example is the use of clustered microarchitectures
(cf. Section 5.3.3). Pushed a step further, clustered processors become CMPs.
Another frequently cited example is that of the Intel Pentium 4, where reading a
register takes two stages of the pipeline, the trade-off being that forwarding is done
in a single cycle.

Optimal Pipeline Depth
The previous paragraph is an excellent motivation for this topic. In an ideal com-
putational world, (i.e., one without hazards), a pipeline stage should be as short as
possible to yield maximum throughput. If need be, extra stages in the pipe may be
inserted, but this is of no consequence performancewise, because the throughput is
the number of instructions executed per cycle and does not depend on the depth of
the pipeline.

In reality there are constraints on the depth of the pipeline; some are technolog-
ical, and some are due to the nonideality of computations, namely the presence of
hazards. First, the pipeline stages are separated by pipeline registers that must pro-
vide stable storage. It has been estimated that writing and then reading the contents
of these registers takes slightly less than 2FO4 time. Second, the trick of spending
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extra pipeline stages to access data structures such as registers, caches, and branch
predictors does not always work. For example, in recent microprocessors with deep
pipelines and fast clock, the successful prediction of a branch taken along with a
hit in the branch target buffer – that is, the perfect scenario – still imposes a one-
cycle bubble. This extra cycle is needed because a data structure, the BTB, has to be
accessed; the value of its entry has to be read and used as an index to the I-cache,
which itself must be read; and the I-cache line which was read has to be transferred
to the instruction buffer. Clearly, all these actions cannot be performed in the same
cycle if the cycle time is associated with the time to read a register. Third, there are
some RAW hazards that cannot always be circumvented even with fast forward-
ing and speculation, because of the latency of some operations. As a consequence
of short stage times, the latencies of some units (for example, the L1 data cache
and the floating-point units) become larger and hence counteract the benefits of
pipeline depth. Finally, and most importantly, the deeper the pipeline is, the costlier
the recovery from misprediction will be. As we have seen, the branch mispredic-
tion penalty, computed as a number of stages, almost doubled when passing from
the 10-stage Intel Pentium III to the 20-stage Pentium 4, while the clock frequency
increased only by a factor of 1.67. Therefore, IPC might suffer from longer pipelines.

In essence, what the previous two paragraphs say is that the execution time of
an application is the sum of three components that are respectively:

� independent of the number of stages, p, in the pipe, for example, the proportion
of instructions in a program that will cause hazards;

� inversely proportional to the number of stages (so that, in an ideal world with-
out hazards, we should have as many stages as possible in order to increase
throughput);

� proportional to the number of stages, because mispredictions are more costly
when the number of stages that need to be recomputed increases.

Therefore, very abstractly, we can write

Exec. Time = a + b/p + cp

where a, b, and c are constants. Differentiating the above equation with respect to
p and setting the resulting formula equal to 0 will yield a (noninteger) value for
p. Granted, there is difficulty in finding the values of the constants, but the model
shows that for a given application and a set of hardware parameters there is an
optimal value. Simulations have indeed confirmed that there is a range of values of
p that lead to “best” performance. That there is no single value of p is not surprising.
The reader might recall a similar type of result: there is no single value for the cache
line size that benefits all applications (recall Figure 2.18).

Another way to look at the same problem is to find, via simulation, the “opti-
mal” logic depth per pipeline stage, expressed as a multiple of FO4. We put “opti-
mal” in quotes for the same reason that we put “best” in quotes in the previous
paragraph, namely because optimality will be different for various ISAs, capacities
of structures such as register files and caches, and sets of applications. Nonetheless,
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Table 9.1. Parameters in the evolution of CMPs

Parameter Simplest Most complex

Number of cores Small (2–8) Large (100–1000)
Multithreading No SMT
Core structure Simple (in order, short pipe) Complex (OOO, deep pipe)
Homogeneity Yes No
Cache hierarchy Shared L2 Private L2
Interconnection network Bus Indirect network (mesh)
Hardware assists None Several (e.g., for transactions)

the FO4 abstraction allows ignoring variations in technology in that the variations
due to feature size may be less than the accuracies of the simulations. Finding the
optimal depth of a pipeline stage, including the overhead of the pipeline registers,
gives an indication that increasing frequency will not yield performance improve-
ments after a certain limit has been reached. The simulation methodology must
include ways to assess the number of cycles needed to access hardware structures
as well as the latencies of functional units as multiples of FO4.

Results from two papers conducting somewhat different studies show that
indeed there is a “sweet spot.” In the study looking at the number of stages, the best
p was about 20 stages. In the study looking at the depth of a stage, the best value
was between 6 and 8 times FO4, that is, the amount of time allotted to computation
should be between 2 and 3 times that of the stable storage overhead between stages.

9.3 Challenges for Chip Multiprocessors

The increasing power demands accompanying faster processor frequencies, the
practical limit on how much ILP can be exploited, and the design complexity needed
for improving performance, even slightly, in out-of-order superscalars have helped
in clearing the way for chip multiprocessors (CMPs). Small-scale CMPs are now the
rule. However, what will be the microarchitectural evolution of CMPs is not clear.
In Table 9.1 we show the main parameters in the design of chip multiprocessors with
extremes (simplest, most complex) for each parameter. These parameters were dis-
cussed in Section 8.2 except for the last one, which was mentioned in Section 7.3.2.

Challenges that exist in the design and performance of high-performance super-
scalars are also present for CMPs, and new ones arise because of the added coarse-
grain parallelism. We consider very succinctly some of these challenges from the
technology level up to the level of applications.

Technology: Because Moore’s law is still viable, the number of transistors on a
chip will continue to grow. Leakage power dissipation, which has been contained by
recent technological advances for CMPs with a small number of processors, might
become more of a problem when this number is scaled up. Dynamic power dissipa-
tion controls, such as DVFS, will have to be implemented on a core-by-core basis.
The amount of activity will have to include that of transmitting data from one core to
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another, independently of the chosen methods of data transfer and interconnection.
Technology trends will favor simpler processors that are more area- and energy-
efficient. A looming problem is how to handle I/O bandwidth, for this factor will be
exacerbated by the presence of more requests per unit time because of the larger
number of active processors.

Microarchitecture: The multithreaded multicore paradigm will be successful
only if fast and inexpensive launching of new threads is possible and if the syn-
chronization of these threads can be done efficiently. Should there be new instruc-
tions in the ISA to perform these tasks? Should there be any hardware assists to
do so? With the increased amount of data transfer on chip, shall we see a renewed
debate on message passing vs. shared memory in that message passing can be done
on chip whereas the use of shared memory might require frequent accesses to off-
chip DRAM? Inasmuch as neither shared buses (because of contention) nor cross-
bars (because of cost) scale well, what type of interconnection will be most useful?
How will the cache hierarchy be managed; for example, where will (partial) direc-
tories be stored, and will there be replication and/or migration of data close to the
producers or consumers? Of course, there are many more challenges that will arise,
including those of homogeneity of processors and associated caches, and variations
in clock frequencies among the cores.

Programming Languages, Compilers, Debuggers, etc.: Creating a large number
of threads is a must if multicore computing is to be a success. This is the greatest chal-
lenge as CMPs become the norm. Although automatic parallelization via compilers
can be successful for array-based scientific applications, this method is not a scal-
able answer for many other applications. Similarly, programming languages used for
high-performance computing (HPC) cater mostly to scientific applications. What is
needed is not only programming languages that explicitly create threads or that give
compilers directives for where threads can be spawned, but also a new philosophy of
programming, where the underlying model is not sequential but parallel program-
ming. This paradigm shift requires a severe mind change in programmers’ educa-
tion. Functional languages such as those that were favored by advocates of dataflow
machines are maybe too far off the model that programmers are accustomed to
be practical. In imperative languages, parallel programming will create new, sub-
tle rules such as relaxed models of memory consistency (recall the relaxed models
sketched in Section 7.4). Not to be ignored is the increased difficulty in debugging
that will arise because parallelism will result in nondeterministic timings.

Operating Systems: The challenges here might not be as great, in that operating
systems for multiprocessors already exist. Scaling to more processors will require
performance optimizations, but maybe no fundamental changes if the onus of cre-
ating threads is placed on the programmer.

Applications: CMPs are best suited for increased throughput. Applications that
fall within the appellation of distributed services – for example, responses to queries
to Web servers – will benefit from the increased parallelism brought about by CMPs,
for these applications exhibit a very small amount of sharing and synchronization.
“Embarrassingly” parallel applications can also benefit from a large number of
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cores. However, in some applications of this type – for example, those dubbed RMS
(recognition, mining, synthesis) by Intel – the transfer of data between threads can
be frequent although the number of data transferred each time is small. The CMP
microarchitecture will have to deal with reducing overhead in these cases. In gen-
eral, though, whereas in single processors increasing throughput was generally syn-
onymous with reducing latency, this is no longer the case with CMPs. Increased
throughput can be achieved with a large number of simple processors, but the
absence of high-performance processors hurts the latency of single-thread appli-
cations. We saw that in multithreaded processors, there was always a provision to
give (almost) all the resources to a single thread in case only one thread was run-
ning. The analog in CMPs is not possible unless there is a way to create a substantial
number of threads in an application, that is, the challenge we just mentioned in the
Programming Languages paragraph.

Finally, we should mention another challenge: how does one predict the perfor-
mance of CMPs? Simulation has been used successfully in the design and evaluation
of complex single processors. Multiprocessor performance has also been simulated –
but, alas, with simulation programs running on single processors and taking hours if
not days of computer time. The situation becomes untenable when the single pro-
cessor’s performance does not improve but the number of processors (or threads)
increases dramatically.

Can these challenges be met by a straightforward evolution of current CMPs?
Are new architectural paradigms needed, or should old ones, such as dataflow, be
revisited? For example, a number of research projects investigate arrays of sim-
ple processors, often called tiles, on a chip connected via meshes. The distinctions
among them include the underlying programming model, how accesses to memory
are serialized, how code is placed or brought in on the various tiles, etc. One such
architecture with 64 tiles, called Tilera, is being commercialized, but only for spe-
cific applications. In essence this is similar to the Cisco Network Processor with 188
microengines. Will future generations of CMPs be split into (i) those with a large
number of very simple processors for applications that can use them, (ii) those with
a limited number of complex processors, and (iii) some hybrid heterogeneous com-
bination?

9.4 Summary

We have examined the two forms of power dissipation that have prevented increases
in speed in current microprocessors: Static, or leakage, power dissipation is propor-
tional to the number of transistors on chip and to the voltage; dynamic power con-
sumption is related to the activity of switching devices, is proportional to the square
of the voltage, and is linear in frequency. We have introduced two run-time tech-
niques to reduce power consumption that require microarchitectural mechanisms
and O.S. cooperation, namely, dynamic voltage and frequency scaling (DVFS) dis-
sipation and resource adaptation.
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Other factors that we have briefly introduced that can limit performance or
clock frequency are wire lengths and pipeline depth.

We have concluded this chapter with an outline of the challenges that will face
computer architects, basic software writers, and application designers when con-
fronted with the scaling of the number of processor cores on a single chip.

9.5 Further Reading and Bibliographical Notes

A comprehensive survey of power reduction techniques can be found in Venkat-
achalam and Franz [VF05]. The first DVFS interval-based algorithm is due to
Weiser et al. [WWDS94]. There are numerous online DVFS algorithms, mostly for
portable devices, some of which are criticized in Grunwald et al. [GLFMN00]. Quite
often DVFS algorithms are linked with scheduling policies to meet hard deadlines.
The interested reader should consult the literature on real-time systems and embed-
ded processors.

Albonesi et al. [ABDDFHKMSSBBCS03] presents a methodology and a survey
of techniques for resource adaptation on a general-purpose processor. Instruction
queue dynamic sizing is investigated in Ponomarev et al. [PKG01] and Folegnani
and Gonzales [FG01]. Cache and TLB reconfigurations for better performance and
energy savings are investigated in [BABD00]. Drowsy caches are introduced in Kim
et al. [KFBM02], and cache line decay in [KHM01].

Thermal management is investigated in Brooks and Martonosi [BM01] and
Skadron et al. [SSHVST03].

An analysis of the effect of improved technology on wire delays and the
resulting performance aspects are described in [HMH01]. The two studies that we
referred to for optimal pipelines are by Harstein and Puzak [HP02] and Hrishikesh
et al. [HJFBKS02].

Design decisions relative to power and thermal management for the Intel Pen-
tium 4 are described in [GBCH01], those for the Intel Pentium M in Gochman
et al. [GRABKNSSV03], and those for the Intel Centrino Duo Mobile in
[NRMGCKK06].
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branch misprediction penalty, 83
branch predictor, 80
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dirty (in paging systems), 61
full-empty, 287
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temporal, 236
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valid (in paging systems), 61

bogus address, 146
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Boolean vector, 275
BPB. See Branch Prediction Buffer
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Branch History Table. See BHT
branch instruction frequencies,
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branch misprediction, 166
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for global predictor, 144
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branch prediction
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hybrid, 155
in Alpha 21264. See Alpha 21264
in IBM Power4, 241
indirect, 148
loop predictor, 151
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branch predictor update
bimodal predictor, 137
global register, 139
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Branch Target Buffer. See BTB
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integrated with instruction cache, 160
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C
cache access, 209

with physical index and physical tags, 210
with TLB access in parallel, 210, 211
with virtual index and physical tags, 212
with virtual index and virtual tags, 211

cache block. cache line
cache coherence, 269

2-bit protocol, 279
3-state basic snoopy protocol, 271–273
directory protocols, 270, 322
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DiriNB protocols, 280
full directory protocol, 275–278
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remote node, 276
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write-invalidate protocol, 270
write-update protocol, 270

cache hit detection, 52, 237
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MRU-based, 237
two step, 237

cache miss
3C, 54
capacity, 55
coherence, 55, 275
cold. See compulsory
compulsory, 54
conflict, 55

cache organization
column-associative. See column-associative

cache
direct-mapped, 51
fully-associative, 50
generic, 49
geometry, 52
hierarchy, 208
L1 D-cache, 208
L1 I-cache, 208
L2 unified, 208
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lock-up free. See lock-up free cache
non-blocking. See lock-up free
non-uniform access, 240
sector. See sector cache
set-associative, 51
skewed-associative, 215
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