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ABSTRACT

The rapid advancement in the field of wireless camitations that has
been expedited by the commercial demand for beterices has led to the
application of wireless systems in many fields ité. IRanging from military
radio communication systems, to cellular systenasvaineless sensor networks;
purposely emitted radio waves occupy major parttheffrequency spectrum.
The past few decades have seen the developmerdnyf wireless systems that
have been permanently allocated spectrum by regylauthorities.

Direct and indirect observation of spectrum usags lentified the
temporal and spatial availability of spectrum wnitlaillocated frequency bands.
This implies that although spectrum scarcity isdmtig a major problem,
however intelligent access to pre-allocated spectas the potential to enable
usage of licensed spectrum by unlicensed userbepre-agreed condition of
minimum interference.

Cognitive networks promise to solve these problefrspectrum scarcity
by accommodating unlicensed (secondary) users dgertilized segments of
the spectrum. Spectrum sensing forms the primamgukis for a cognitive
radio and is vitally important for ensuring thaé thinlicensed users do not offer

intolerable levels of interference to licensed rf@aty) users. Cooperative



spectrum sensing provides the capability to cogmithetworks to overcome
problems related to “hidden” primary users. In tl@search, we have presented
a novel strategy that takes advantage of cooperativersity to establish
grouping among cooperating secondary users. Tragegy is then extended to
group-based spectrum sensing to establish a schgdthsking mechanism.
The strategy ensures enhanced agility that willultegh a reduction of

interference to primary users through their eadedtion
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CHAPTER — 1

1. Introduction

1.1 History: In 1864, James Clerk Maxwell presented the
Electromagnetic Theory of Lighand predicted the presence of radio waves.
The revolutionary concept of using these waves dommunication was
practically demonstrated by Oliver Lodge in 1894 anbsequently by Marconi
[1]. In 1901, the first trans-Atlantic wireless comnication link was
demonstrated. Radio broadcast was demonstratecepndtd Fessenden using
amplitude modulation (AM) in 1906. The use of wasd communication in
merchant shipping helped save over 700 lives inTikemic disaster of 1912.
World War | contributed to the rapid deployment dasdting of various radio
communication techniques and standards. Develommerthis field led to the
use of various AM and FM techniques in VHF and Hgbency bands. World
War |l saw the development of multiplexed and treshkadio access systems.
Police and other emergency services joined the vbagon and large scale
metropolitan networks began to appear for theseices. In 1946, the first
Public Mobile Telephone Systdsacame operative in five American cities [2].
Spread Spectrum technigues appeared in the samewitrathe primary

objective of enhancing security of wireless commanons [3]. With the



launch of the SCORE satellite in 1958, radio comications was extended to
space [4]. In 1981, the first analog cellular commation system, Nordic
Mobile Telephone (NMT), commenced services in Stenda [5]. This was
soon followed in 1983 by the Advanced Mobile Ph&eevice (AMPS) in USA
[6]. Digital wireless communication led to the dmment of various ? and
3 generation standards such as GSM, CDMA 1S-95, CEAB80, UMTS,
EV-DO, etc [7]. The quest for higher data rates &asured that research and
development in this field will yield better and recefficient standards. These
standards continue to tax the spectral resourceaticg a spectrum scarcity
situation.

1.2 Spectral Resource Management:  Radio or wireless communications
gained immense popularity and application due doinherent advantages of
mobility and deployment speed. These advantagese wdr paramount
iImportance to applications in military, police ar@imergency services
communications. Thus a lot of development in thetdfwas sponsored directly
or indirectly by various government agencies. Trhsant availability of large
research endowments as well as ease in regulatetyenmi Government
regulatory authorities, such as Federal Commuminaiommission (FCC) in

USA have made permanent allocations of large frequébands to various



services. Many of these services include non-comiaesystems such as
military, police and emergency communications. bkiBtan, the Frequency
Allocation Board (FAB) is responsible for such atitions. Additionally, these
organizations must conform to any applicable Iragéamal Telecommunication
Union (ITU) regulations as set forth during the riiml World Radio

Communication Conferences. The ITU's Radio commation Sector

coordinates spectrum use on an international legekking to globally

harmonize RF spectrum bands and to reduce harmfatféerence between
countries to improve the use of RF services. Adgiospectrum allocation cycle
Is shown in Fig.1 [8].

Whenever a company receives a license to operat@anticular segment
of the spectrum, it attains exclusive rights ofgesand any unauthorized use of
this segment is considered as interference. Thmepmotivation for purchase
of larger than needed segments is to guarantemalpsiervice to the primary
(licensed) users. Another aspect is the availgbiit spectrum for future
expansion of user-base. Another large scale us#reofrequency spectrum is

terrestrial TV broadcast.
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Fig.1. Spectrum Allocation Cycle

With the advent of satellite TV broadcast and IBdaacable distribution
systems, terrestrial TV seems to be outdated. Aatyais carried out by FCC
revealed that an average of 50% of allocated gpacits unused at any given
place or time [9]. A more thorough analysis reveha#t while 50% of allocated
spectrum is unused, a further 30% of the allocapttrum is under-utilized.
Thus it can be safely said that approximately 8@%hmhe allocated spectrum is
under-utilized [10]. This implies that existing mi¢s need to be revisited to
ensure that spectral resources are optimally etlliz

A review of existing policies on Spectrum Managemmeas conducted

by FCC [11]. As a result of this review, FCC retgm$sued a second report



and order in the matter of Unlicensed OperatioiiVhBroadcast Bands on 14
November 2008 [12]. This document essentially aefithe parameters under
which unlicensed users would be permitted to operat TV bands. It
categorized these unlicensed users into Fixed dsvand Personal/ Portable
devices. The ability to sense spectrum occupansybbkan considered as a pre-
requisite. This ability may be on an individual isagwvith a lower cap on
permissible EIRP) or centralized/ cooperative.

This re-evaluation of spectrum management poliay bpened up new
avenues for research into the fields of Dynamicc8pen Sensing and Access.
It has also assured a better management policyigHaturistic, efficient and
technology friendly. With this policy, it is now psible to incorporate greater
advancements in sensor and ad-hoc networks. Theakpgct remains the
ability of the nodes (or the network) to sense terhspaces’ or spectrum
opportunities for further allocation. Thus the peinstimulus for access to
under-utilized spectrum is the ability of Spectr8ensing.

1.3 Spectrum Deficiency: There is a definite need to understand the
gravity of the spectrum deficiency situation. A gmehensive review of the RF
environment is often misleading, especially in dhivorld countries such as

Pakistan. A snapshot view of spectral availabilipbtained through



measurements with Spectrum Analyzers reveals laspte spaces’. This

means that there is virtually no deficiency of $¢pen, even in the TV band.
However, if we correlate these measurements waHHBC allocations that are
also complied by Frequency Allocation Board of Btdm, we observe that
large portions of this band are allocated to lieehgsers [13]. Thus, in reality,
there is a virtual spectral deficiency that doet permit further allocations of
the spectrum. Apparently, this is a legal issuee phmary (licensed) users or
PUs have been guaranteed spectrum access initdesiséd bands. However,
the actual occupation of the spectrum is varying geographical as well
temporal basis. Thus the spectral deficiency canotercome by using

techniqgues that permit intelligent access to spéctesources through
interference avoidance, dynamic sensing of oppdi#snand appropriate
allocation. Emerging concepts in this regard inelUspread Spectrum [14]
(CDMA and UWB), Software Defined Radios [15] andg@tive Radios [16].

FCC has defined a metric on the basis of aggregateference temperature
and maximum EIRP that is permissible [12]. The emican be seen in Fig.2

[17].



Min service range with

. . interference cap
Licensed Signal

v

Power
at RX

New Opportunities for
Spectrum Access

Service range at original
noise floor

\
f \

Interference Temperature
Limit

/

Distance from TX

Fig.2. Interference Temperature Model

1.4 The Cognitive Radio Paradigm: The  word ‘cognitive’ or
‘cognition’ pertains to the mental process of pptia, memory, judgment and
reasoning [18]. It is essentially a human functiamerein there is a stark
contrast to emotional or volitional motivations. gbdtive ability, when applied
to a radio device implies that the radio is capaiflebserving, orientating,
planning and acting. This term was originally cairt®y J. Mitola in an article
in 1999 [19] and was elaborated in great detailisnPh.D. dissertation of 2000

[20]. He described the Cognitive Radio paradigrifas



“The point in which wireless personal digital adsaists (PDAs) and the
related networks are sufficiently computationahyeiligent about radio
resources and related computer-to-computer commatioits to detect
user communications needs as a function of useexprand to provide
radio resources and wireless services most appabgto those needs.”
With this paradigm in mind, it is logical to conde that the Cognitive
Radio (CR) platform will provide the solution toettproblems of spectrum
scarcity due to its ability to observe and adapCR platform will be able to
detect spectral opportunities coupled with usedaemnd adapt accordingly. In
its entirety, the CR concept is still in its deyaieent phase. A lot of ongoing
research is related to its various functions, saglspectrum sensing, spectrum
management, spectrum mobility and spectrum shawith machine learning
capabilities, the CR will be able to continuoustiapt to changing user needs,
RF environments and emission policies, transformirtg a truly intelligent
communication device.
Due to the importance of this emerging field, maysting research
organizations have joined the bandwagon in a bithfmtalize on developments.
The SDR Forum is an industry funded research gthaphas focused on the

development of Software Defined Radios (SDR) [28]its report, the SDR



Forum describes SDR as the enabling technologyCRr[23]. However, the
difference between the various involved technoledias been clarified by J.

Mitola [20]. Fig.3. describes the dimensions oftwafe radio implementations.
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Fig.3. Dimensions of Software Radio Implementations

The implementations from A to D are present-dayRSDThe virtual
radio at V is an ideal single-channel SDR basedaddEC Alpha processor
running UNIX. Implementation X is the ideal SoftwaRadio with RF digital
access. All functions are programmable; howevéiag implementation issues
that are being subjected to research. Thus, SRRpiatform that can utilize a
large range of RF bands and air interface modesugjir software. An ideal

software radio would further incorporate all bamdsl modes required by a user.



Add the ability to learn from all this and adaptaingly — you would create
the blend necessary for a CR.

1.5 Motivation for Research: With the present state of research in this
field, it is obvious that this area is one of thattést areas of research in the
field of wireless communications. It has rightlyelnedeclared as the gateway to
the next generation networks. Pakistan has beenthat forefront of
technological adoption in the telecommunicatiorenar Pakistan was the first
country in South Asia to get a nation-wide optifider backbone. It also
achieved the highest rate of consumer growth ihuleel communications.
Telecommunications is a major stimulus for econogn@vth and prosperity in
any country. Research into enabling technologies\éxt generation networks
Is of vital importance in this regard.

It is a well established fact that Software Radas finding immense
applications in military communications. A lot edsearch in this area has been
funded and sponsored by Defense departments anbendorld. The active
participation of IEEE MILCOM conferences in thigffi is a testimonial to this
fact. Battlefield communications are adversely cH#d by the presence of
numerous emitters that are temporary entities, noft®t under a single

command structure. It has been estimated that enddéployment area of a

10



mechanized division spread over 70km by 45 km, nioa@ 10,700 individual
emitters would be transmitting in a shared spect[@4). This is a network
managers’ nightmare for military communication plars. Unless more
efficient techniques of spectrum management areodated, military
communication planners will have to consider mowiejl beyond 3 GHz. The
SDR has the capabilities to offset this disadvasag spectral situation.
Pakistan Army has been contemplating the develogmretuction of SDRs for
guite some time. A lot of work has been done is tiegard. The CR concept
for military network deployment is, logically, theext step in the development
of next generation wireless communication systemsihfe armed forces.
Spectrum sensing is the primary stimulus for teshnology. FCC has
made it mandatory for all unlicensed devices tooiporate effective
mechanisms of spectrum sensing [12]. A lot of wials been done on spectrum
sensing techniques. Cooperative spectrum sensinodwogies are still a
relatively open area of research. These methodedogke advantage of
cooperative diversity to expand the informationebas well as to reduce the
workload on individual sensing nodes. The primestjoa is when to cooperate

and with whom.
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This work focuses on developing a methodology feifective
cooperation that addresses the questions relatedestablishment of a
cooperative environment. The effectiveness of tmethodology would depend
upon the correctness of the fused decision ab@&upthsence or absence of a
primary user (PU) on a particular frequency. It Wowalso depend upon
minimizing the time taken to detect the presenca &U so that a decision to
vacate the frequency by the CR is taken in minintume. This latter metric is
often termed as ‘agility’.

1.6 Goalsof Research: This research has been undertaken with the
following goals:
1.6.1 Academic Goals:

* To carryout a study of Cognitive Radio Networks as enabling
technology for Next Generation radio networks irspectrum scarcity
scenario.

» To extend the study to the specific area of spettgensing in a
cooperative environment.

1.6.2 Technical Goals:
 To simulate a suitable spectral environment fotingsof cooperative

spectrum sensing functions.

12



* To develop an algorithm that permits schedulingkitag of cooperative
spectrum sensing functions on the basis of coroeladf individually
sensed environments.

1.7 Structure of Document: This document has been prepared to present a
comprehensive overview of this research. Chaptef the document is an
introductory chapter that covers basic conceptgeadlto issue being researched.
Chapter 2 focuses on the overall concept of CR vatévant details about the
existing work in this field. Chapter 3 describes firoposed methodology for
CSS and presents the flow of this algorithm. Chagtexplains the simulation
details and the results obtained. The last chapt€hapter 5, which concludes
the thesis report while describing some of theritesearch issues that need to

be addressed. A comprehensive bibliography is gatehe end.
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CHAPTER — 2
2. The Cognitive Radio (CR)

2.1 Conceptual Development of CR:

2.1.1 TheFrequency Hopper: Military radio communications opted for
frequency hopping [25] as a mode of achieving tagedegree of resistance to
Electronic Counter Measures [26] such as jammirg. [Bhitial hopper radios
were able to jump over a wide range of frequenace®rding to pre-designated
hopping algorithms or Transmission Security Keys.falure to establish
synchronization at a particular frequency was a®ergid jamming and the link
would shift to new frequencies. Due to data trassion, a certain degree of
latency was accepted. These hoppers gradually edelith the help of a small
degree of spectrum sensing. Subsequent versiorfombers were able to
modify the hopping sequences according to sensectrsipn occupancy. It has
been made possible due to adaptive spectrum exijdwitas can be seen in Fig.

4.

14
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2.1.2 The Software Defined Radio: Adaptive spectrum exploitation has
permitted a frequency hopper radio to sense thetrspe. The era of the SDR
has been ushered in due to the capability to adaptdio terminal’s
transmissions through software IF stages. The S@Rrk [15] defines an SDR
as “Radio in which some, or all of the physical layemnctions are software
defined”. Hardware based radios limit the cross-functiamwadnd can only be
modified through physical intervention. This intemtion may be in the form of
tuning, channel modification or modulation changése changes are restricted

to the types of hardware modules incorporated e dbmmunication device.
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This results in minimum flexibility in terms of spprted waveform standards.
In contrast, SDR technology provides an efficiealuson to this problem,
allowing multi-mode, multi-band and/or multi-funatial wireless devices that
can be enhanced using software. SDR defines a ocatidm of hardware and
software where some or all of the physical layaycpssing is implemented
through software on programmable processing teogmd. These devices
include field programmable gate arrays (FPGA),tdlgignal processors (DSP),
general purpose processors (GPP), programmablerysh Chip (SoC) or
other application specific programmable procesdafy. The use of these
technologies allows new wireless features and dhfped to be added to
existing radio systems without requiring additiohatdware. The SDR Forum

has defined a generalized modular architectur&RR [28] (Fig.5).
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Fig.5. Multiband, Multi-mode SDR Functional Model
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In the model, a common baseband processing engmeearvice multiple RF
front ends. Each of these supports a specifimtarfiace. The interface between
the baseband processing engine and the RF frontisetkden switched to
connect to the appropriate RF front end suppothmsymode of operation.

2.1.3 Development of theCR Concept:  Mitola suggested the development
of SDR to the next level by personalizing the SDReet user needs through a
process of adaptation and learning [19]. He furtwned the term ‘Cognitive
Radio’ for this new architecture [20]. The SDR farithhe basic platform for
development of CR. Fig.3 described the evolutiontemhnology, ultimately
leading to an ideal software radio. This radio witimately have all functions,
related to the physical layer, implemented in safev To transform this
concept into reality, Mitola focused his work [20f development of suitable
knowledge representation ontology. Through thisologly, he developed
definitions of air interfaces and protocols. Whdealyzing other languages
such as SDL and UML, Mitola suggested the use oRRKRadio Knowledge
Representation Language) for comprehensively d®egriair interfaces and
radio protocols. In order to be effective as a dbggnetwork, it may be asked
from a handset to specify the number of multipailmgonents seen by it. The

primary problem is that the network may not havg atandard language to

17



pose such a question. The secondary issue ishihditaindset has the answer in
the form of time-domain structure of its equalizgps but cannot access this
information [19]. Thus the handset does not knovatwhknows! This is not a
small issue, if we are considering CR as a majghrtelogy for next generation
networks. Cognition means being aware, and awasdangdies the acquisition
of knowledge. Knowledge has to be exchanged to remhaawareness.
Exchange of knowledge, logically, requires a comnomtology or language
that facilitates inter-communication. This can lomsidered analogous to two
people exchanging information verbally. The joibtliy to understand what is
being exchanged is absolutely essential for battviduals. Mitola’s work [20]
on development of RKRL received worldwide acceptaand further work on
CR was based on the concepts introduced by him.nfddels underlying CR
include RKRL (Radio Knowledge Representation Lamg)a reinforced
hierarchical sequences, and the cognition cyclé [Pfe architecture is based
on neural-network-like nodes that respond to exestimuli and then process
the resulting data structures. These structurepostipa cognition cycle
consisting of Observe, Orient, Plan, Decide, and plkases. This cycle

encompasses the radio’s interaction with the envnent.
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After Mitola, the research community embraced tliReddncept and a lot
of work was done on various aspects. The SDR Foestablished a CR
Working Group under its Technical Committee to geerresearch in this area
[29]. The group is sponsored heavily by industgikeholders suc@eneral
Dynamics™ C* System$30] andCognitive Radio Technologi€swhich offers
services for intelligent wireless communicationtsyss [31].

There have also been numerous publications onuam@spects of CR
under the auspices of IEEE. The effects of incapon of CR in a network
have been analyzed in [32]. The adaptability of tORiser requirements was
discussed in [33]. A CR test-bed for analyzing genelgorithms has been
described in [34]. Spectrum sensing issues have éealyzed in great detail in
[35]. G.Ganesan et al [36-38] took it a step furthe discussing cooperative
spectrum sensing. Physical Layer issues were athlyzdetail in [39]. Simon
Haykin [40] critically analyzed the major issues@sated with CR, namely
radio-scene analysis (or spectrum sensing and idejischannel state
estimation, transmit power control and dynamic 8p@c management.

The conceptual development of CR is ongoing witbtaf work being
done on higher layer issues as well physical lasgwes. Test-beds are being

created and used for developing and analyzing tegrnengine algorithms as

19



well as cross-layer management. With the acceptahsmart multiband radios
in many applications around the world, the logicakt step is the intelligent
CR.

2.2 Cognitive Functions: The major functions of CR [9] are:

2.2.1 Spectrum Sensing: Spectrum sensing serves as the primary
stimulus for CR networks. It is the ability of a GRetwork or node to detect
spectrum opportunities so as to allow their usageis spectrum sensing gives
a CR its characteristic adaptability. Detectionpaimary users is an efficient
way of assessing spectral opportunities or ‘hol&stognitive node (secondary
user or unlicensed user) utilizes spectrum whdmatvs that the primary user
(licensed user) is not using the particular segn@nthe spectrum. This
knowledge is possible through spectrum sensing. flingher usage of this
spectrum is possible through techniques such asmynSpectrum Allocation.
2.2.2 Spectrum Management: This function pertains to the capturing of
best available spectrum that meets user commuancatequirements. It
involves the performance of two sub-functions. thirsthe analysis of the
sensed spectrum and secondly, the optimal decwlole giving fundamental

importance to user requirements.
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2.2.3 Spectrum M obility: Adaptability and dynamism are the hallmarks
of CR networks. These are made possible by a aonigprocess of evaluation
of existing decisions and channel feedback to maintnecessary QoS.
Spectrum mobility, thus allows a CR node to effithg migrate to new
frequencies or wireless standards to meet thesep@aneters.

2.2.4 Spectrum Sharing: The objective of this function is to allow the
provision of fair spectrum scheduling. It is onetloé major challenges in open
spectrum usage. In a typical CR environment, all @iles would try to
provide optimal services to their users in ‘gregdghion [41]. This behavior of
CR nodes is understandable because each CR willotgnhance its QoS
parameters whenever it sees better opportunity teod Game theory has been
applied to this problem to analyze it further. Tihduction of CR technology
into a radio network has been analyzed using gdmery in [32]. A game-
theoretic model has been used by [42] to analygentim-cooperative behavior
of the secondary users in IEEE 802.22 networkss Wark was then extended
to propose a ‘Nash Bargaining Solution’ to enhatimeeefficiency of dynamic
spectrum allocation. A price-based iterative wéiteng algorithm has been

proposed in [43] that allows CR nodes to conveoge Wash Equilibrium [44].
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2.2.5 Application of Functionsof CR in OSl Model Context: The

above mentioned functions can be analyzed in théegbof the OSI model to
get a broader picture of the CR OSI model. The N8¥heration program or
XG is a technology development project sponsoredDBWRPA's Strategic
Technology Office, with the goals ofdeveloping both the enabling
technologies and system concepts to dynamicallyistrdnite allocated

spectrum along with novel waveforms in order to viie dramatic

improvements in assured military communicationsupport of a full range of
worldwide deployments[45]. DARPA, as a part of its xG networks projast,

attempting to implement CR networks. Fig.6 show® thG network

communication functionalities in this regard [9].

Application control QoS
‘—ﬂ Application “—’
Handoff Reconfig
‘—" Transport "—’
Spectrum ) ) Spectrum
mobility Routing Routing management
functions ‘—ﬂ Network “—’ functions
Link Delay
Scheduling
«—  Spectrum ‘ Link ‘
sharing
. Spectrum
‘ Physical ‘ Sensing
Sensing
Info
Sensing
Info

Handoff decision, current and candidate spectrum info

Fig.6. xG Network Communication Functionalities
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2.3 Advanced Functionsof CR

2.3.1 The Cognitive Lifecycle: The Cognitive engine of a CR undergoes
various phases in performance of its various fomsti{20]. These are shown in
Fig.7. During the observe phase, the radio gatimosmation through various
sensors and inputs regarding location, RF environmyriemperature, time, etc.
In the orientate phase, the radio orients itself dnalyzing the possible
responses to the various stimuli gathered during tibserve phase. It
determines priorities associated with each respamgkis phase. Planning is
the process of generation of plans. In this phémeradio develops models of
causality that are embedded in the planning tddisre is a reasonable degree
of ‘reasoning’ in this phase. The decide phasecteline best plan from the
candidates developed during the plan phase. Thephate entails the
implementation of the decided plan. The radio nzainst a certain degree of
observation during all these phases. This givesathentage of ‘urgent’ or

feedback based responses.
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Fig.7. The Cognition Cycle
2.3.2 The CR Ontology: Digital radios of today have considerable

flexibility but they lack computational intelligeac To make the lifecycle
effective, it is necessary that the results/ densiof the CR during the various
phases are registered as knowledge by the CR. dfortine, the various
functions that a CR performs have to be logicalheiconnected. This
interconnection in the form of information excharagel knowledge acquisition
requires the development of ontology. In the woold Computer Science,
ontology is defined as a representation of knowde{4p]. This issue was
initially addressed in great detail by Mitola [20hen he presented the concept
of RKRL for his proposed CR framework. With the fhedff RKRL, the CR

would achieve actual cognition. Fig.8 shows a CBmiwork [20] that
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incorporates machine learning and RKRL. A compateati model of the radio

and its equalizer function would form an essemt&t of such a model.

Cognition
RKRL <—+ Model-Based Reasoning ‘
Frames
Equalizer ‘ Antenna H RF H MODEM ‘
Model
User [ Baseband [ INFOSEC |
Interface
Variable e \
Bindings Software
Software radio... Modem, Protocol
Software Equalizer Stack
modules... / /
Hardware
Antenna H RF H MODEM H INFOSEC H Baseband }7 User
Interface

Fig.8. The CR Framework
The issue of knowledge representation for a CRit@atlnre was also discussed

in [47]. A CR, by definition, should have a knowdgddriven differential
response capability; that is, it should be ableus® knowledge of radio
technology and policy, representations of the goalsd other contextual
parameters to reason about a failed attempt tgfgadi goal and to identify
alternative actions that would achieve the goabrtter to satisfy this definition,
[47] proposed a general architecture for CR thablmoed ontology and rules

with the processing structures of existing SDR. Hnehitecture was based
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upon Mitola’s proposed structure [20]. Essentidltys architecture extends the
existing processing capabilities of SDR to inclueasoning, perception and
exchange of knowledge. This is still a very activea of research.

2.3.2 Sensory Perception for CR:  The concept of sensory perception is
what differentiates human beings from animals; &aditionally, this was the
capability that was lacking in all types of comgiagmal machines. Machine
learning and atrtificial intelligence have totallpamged this. Understandably,
this is a developing field and its implicationstirte context of CR are still in
stages of infancy. Artificial intelligence and mawh learning are very broad
subjects and are beyond the scope of this thessvelkr, it needs to be
understood that learning, perception and awareaessvhat differentiate CR
from SDR. Thus true CR cannot be wholesomely studvwithout at least a
conceptual introduction to this important fieldsafientific research. | will try to
do justice to the related concepts in the succegquamagraphs.

2321 Context, Concept, Reasoning and Knowledge: Context is the
direct outcome of sensing in any form or from aypetof sensor. For example,
my sense of vision (with some assistance from nanbthat identifies it as
snow) tells me that there is snow on the groundisTthecontextis that | have

observed snow on the ground. An establistmtteptis that if there is snow on

26



the ground then it must have snowed recently. Bweldpment of thisoncept
Is as a result ofeasoning The absorption of this outcome is the creation of
knowledggwhich is that it has snowed recently).
2322 Knowledge Spacefor CR: Concepts exist in knowledge
representation space [20]. The knowledge repres@mtapace for cognitive
radios includes:

* Radio hardware

* User

* Network

* Subset of Space-Time
There are two levels of knowledge space. One idMé-level and the other is
the physical space based level. The meta-leveuded concepts that are
formed on the basis of sensory perception acqumad space-time, location,
user-requirements, spectrum situation, network andégional policies, etc.
The physical level of radio knowledge relates tm tsub-aspects. These are
knowledge about the physical world and about tlkoréself. The presence of
information in the cumulative knowledge space imglia certain degree of

awareness. This awareness is characteristic of CR.
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2.3.2.3 Machine L earning: Machine learning is a subfield of
artificial intelligence that is concerned with tlesign and development of
algorithms and techniques that allow computatiomakchines to "learn". In
general, there are two types of learning: inductamed deductive. Inductive
machine learning methods extract rules and pattuhsf large data sets [48].
Here it would be useful to consider the definitiaisieduction inductionand
abductionin relation to reasoning and learning [4Bkductionallows deriving

b as a consequenceafin other words, deduction is the process of dagithe
consequences of what is assumed. A valid dedugtianantees the truth of the
conclusion if the assumptions used for deriving theduction are true.
Induction allows inferringa from multiple occurrences df whena entailsb.
Induction is the process of inferring probable inputs agsult of observing
multiple outputs. An inductive statement requirescpption for it to be true.
For example, the statement 'it is snowing outsgl@ivalid until one looks or
goes outside to see whether it is true or not. Thoguction requires a
substantial experience of sensory percep#diductionallows inferringa as an
explanation ofb. Because of thisabductionallows the preconditiom to be
inferred from the consequente Deductionand abductionthus differ in the

direction in which a rule like & entailsb” is used for inference. As such
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abduction can be considered equivalent to the false logat #ffirms the
outcome, because there are multiple possible irfputs Unlike deductionand
induction abductioncan produce results that are incorrect. Howe\mtuetion

Is still useful as a heuristic, especially when setining is known about the
probability of different inputs that can causeMachine learning has been used
in telecommunications, e.g. in call-admissions nalgorithms [50]. The
common algorithms in this regard address networglieaions like call
admissions control, and do not address user ora@nwent specific knowledge
in the context of a radio. The latter is the foafisCR. In the context of CR,
consider a simple case of learning based on enwieohand user requirements.
If a CR user accesses his emails through GPRS/ED@GEnever he is
commuting then this repeated action would haveateitl a learning process.
The CR would have queried possible networks oncbhimmuting route for
minimum cost and maximum data throughput. Thusingamegotiated the best
possible solution, the CR would provide near-optiservice. On the other
hand, if the CR user habitually sends or receiwesevcalls only while in office
(uses the office network for emails), the CR wamjdto negotiate best possible
voice quality with minimum cost for the user. Thesanging requirements of

the user would have been inferred from experierideaation, time, network/
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spectrum, usage and cost. Thus, in such a scerma@R would be able to
provide optimal service to its user under mostuwnstances. The overall effect
of this ‘learning’ by the CR is a generalized awass related to sensory
perception and of parameters that can be modiftedptimize service. The
ability to modify these parameters is a functionaofoftware radio and the
higher ability to take conscious decisions in thegard is the cognitive
capability of a CR. A further capability, affordeldie to the learning process,
relates to the ability of the CR to cope with sitoias that may have not been
foreseen at the time of design of the CR.

2.4  Spectrum Sensing: Spectrum sensing serves as the primary
stimulus for the cognitive capability of CR netwsrkCRN). Technological
developments have improved spectral efficiency riraasing the number of
users in each frequency band. CR promises moraesftispectrum utilization
through environmental awareness. By using advanoatputational power to
sense the existing radio frequency (RF) environmaesér requirements and
network policies, CR become aware of and can raesporthat environment
[51]. CR may help improve spectrum management byimgoit from the rigid
framework of regulations to the flexible realm oblility and dynamism. In the

United States, there are three spectrum managemedels — command and
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control, exclusive use, and unlicensed use, ofefermred to as ‘spectrum
commons’ [51]. Under the command and control regilRE spectrum is
divided into frequency bands, in which specificruhals are licensed to specific
users for specific services. These frequency banelsubject to explicit usage
rules governing the designated RF service or tregssom type. In the exclusive
use regime, a licensee is authorized to use afgpfequency band or channel
for whatever service or purpose they desire. Thigbgs are subject to general
emission rules that are designed not to interfert weighboring spectrum
users. In return for not interfering with other tssdicensees are afforded the
freedom to use their spectrum however they chauoseh like property rights.
In the ‘spectrum commons’ regime, RF devices opeoat a first-come, first-
serve basis. Devices transmitting in this band safgect to certain emission
rules, but are not guaranteed any interferencesgtion rights or the exclusive
use of dedicated channels [52]. This is where geetsum awareness afforded
through spectrum sensing comes in. Thus, cognitexaces would be able to
operate in areas/ spectrum governed by any of tmeskels, and as such, must
be aware of spectrum occupancy and/or be able twnldad software

describing the unique rules of each regime.
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Advanced technigues of digital signal processingehpermitted more
efficient spectrum sensing methods to be employredpectrum sensing the
needs for signal processing are: firstly, the improent of radio front-end
sensitivity by processing gains, and secondly, aninuser identification based
on knowledge of the signal characteristics. Thetgpm sensing problem is to
positively detect the presence of a primary usesifaply spectrum occupancy)
on a particular frequency. In this section we dsscuadvantages and
disadvantages of three techniques that are us#dusimegard [35]. These are
energy detection, matched filter and cyclostatigri@ature detection.

2.4.1 Energy Detection: This is the simplest technique for spectrum
sensing. It is considered simple due to minimum @emity. This technique
was suggested in [53] and was applied to fadingnobiag in [54]. The concept
has been employed in simple radiometry [53]. Thablem of spectrum sensing
using energy detection can be considered on this bashe front-end of the
receiver employed for the purpose. The radio resean RF signai(t). This
signal may contain the primary signal at centequencyf, with bandwidth(-
fo,fy) Hz The RF signal is down converted, passed througid@al low-pass

filter and sampled. The bandwidth of the filtel(4.,f,w) Hz Sampling ratd
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Is 1/2f,,. We then get the baseband sigpa}. This signal is processed by the
energy detector, which gives:

X, =175, +V, (2-1)
wheres, is the primary baseband communication signal\and the complex
noise process. The value pfi{01} determines the presence or absence of the
primary signals,. Thus the problem is simplified to a binary hypestis testing
problem:

H,:n7 =0; implies primary is absent,

H,:n7=1; implies primary is present.
The primary signa{s,} is unknown and is modeled as a complex-valued-zero
mean wide-sense stationary (WSS) process. Altewlgti{s,} can also be
modeled as a cyclostationary process (instead WSS process) [55]. The
challenge in utilizing this simple detection teajue is the uncertainty involved
in the complex noise process [54] As the exact noise level is unknown to the
detector, therefore it has to be estimated. ThenaBbn error causes an ‘SNR
Wall’ [57]. Small modeling uncertainties are unalale in any practical
system and so robustness to them is a basic penmfmemmetric. The impact of

these modeling uncertainties can be quantified Hgy gosition of the ‘SNR
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wall’ below which a detector will fail to be robustrespective of the time for
which it observes the channel.

The simplest implementation of an energy detasttnrough a spectrum
analyzer. This is done by averaging the frequenioys lof a Fast Fourier
Transform (FFT) [58]. The method used is the WeRdriodogram [59] as
follows:

The signal is split up into overlapping segmentie Toriginal data
segment is split up into L data segments of leiytlbverlapping by D points.

If D =M/ 2, the overlap is said to be 50%

If D =0, the overlap is said to be 0%.

After the data is split up into overlapping segmserthe individual L data
segments have a window applied to them (in the tiomain). Most window
functions permit more influence to the data atdaeter of the set than to data
at the edges, which represents a loss of informafio mitigate that loss, the
individual data sets are commonly overlapped iretidfter doing the above,
the periodogram is calculated by computing therdiscFourier transform, and
then computing the squared magnitude of the restihe individual
periodograms are then time-averaged, which redukbesvariance of the

individual power measurements. The end result is aaray of power
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measurements vs. frequency "bin". The implememdt®] of this concept is

shown in Fig.9.

Threshold

xft)

AD N-Pt FFT Averageover T | | Energy

Fig.9. Implementation of an Energy Detector usingjal' Periodogram

Processing gain is proportional to FFT sike and observation timer.
Increasing the FFT size improves frequency resmiuind correspondingly
helps narrowband signal detection. Also, longereoksion time reduces the
noise power thus improving SNR. However, due to-odmerent processing
O(1/SNR) samples are required to meet a probability oeat&n constraint
[60].

There are several disadvantages of using energgtdes. Some of these
are [35]:

* The threshold used for primary user detection ghlyi dependent

upon unknown or changing noise levels.
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» For frequency selective channels, it is very difficto define the
threshold.

» The energy detector does not differentiate betweedulated signals,
noise and interference.

* It cannot recognize the interference, hence it carbenefit from
adaptive signal processing for interference cangeli

* An energy detector does not work for spread specton hopping
signals.

» As spectrum policy for using the band is constrdiogly to primary
users, therefore a cognitive user should treat en@sd other
secondary users differently. This is not possiltlesimple energy
detection.

In general, it is possible to enhance the efficjent a detector by
analyzing the primary signal characteristics suemadulation type, etc. This
results in increased complexity and is highly delest upon a-priori
knowledge about primary signal features. Thus,nfest important advantage
of the energy detector is its independence of pymsaignal features

diminishing the need for intensive a-priori knownded
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2.4.2 Matched Filter Detection: The optimal way for any signal detection
IS a matched filter, since it maximizes receivegnal-to-noise ratio [61].
However, such a detector requires effective denatidul of a primary user
signal. This means that the CR should have compsaye a-priori knowledge
of primary user signal e.g. modulation type, pudeaping, packet format, etc.
Such information might be pre-stored in CR memaory, the cumbersome part
Is that for demodulation it has to achieve coheyemith primary user signal by
performing timing and carrier synchronization. Tigspossible because most
primary users have pilots, preambles, synchromaatiords or spreading codes
that can be used. Examples of such signals incaud@/ signal (pilots for
audio/video), CDMA signals (dedicated spreading esodor pilots and
synchronization), OFDM/ OFDMA (pilots in each syniboThe main
advantage of matched filter is that due to coherahcequires less time to
achieve high processing gain since only O(1/SNRR)ptas are needed to meet
a given probability of detection constraint [60h€Imost significant drawbacks
of a matched filter detector are:

* A CR would require a dedicated receiver for evergnpry user class.

» Detailed a-priori knowledge of primary user is regd. Such

knowledge has to be pre-configured or downloaddiden some
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network control entity. This type of learning haseh described by
Mitola as ‘rote’ learning [20] and requires cont@mmunications
through a dedicated control channel.

A sensing method based on matched filtering fontifigng the unused
spectrum for opportunistic transmission by estin@tthe RF transmission
parameters of primary users has been proposed 2h [Bhe process of
estimation of primary user parameters is an inter@gproposition and it has
the potential to offset the disadvantage of reqgiria-priori knowledge,
generally associated with matched filtering. Asagecstudy, the effectiveness
of this technique was tested in a simulated enwemt of WiMAX. The
technigue makes use of energy detection to estinia¢e primary user
parameters. After estimating the parameters, thbntque of [62] shifts to
matched filtering. Generally, the estimated featuireclude bandwidth and
center frequency. This variation of typical matcHiédr detection is innovative,
however it is computationally intensive. The CR tigan is expected to
incorporate machine learning algorithms in ordemsike it fully cognitive. The
technigue of [62] can support machine learning,imately reducing

computational intensity through learned optimizatio
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Matched filtering was further analyzed in [63]atlialyzes the problem of
sensing presence of digital TV broadcasts of AT84] [ctandard in the TV
VHF/UHF bands. In these types of signals, a synthation sequence occurs
every 24.2 msec. Matched filtering is used to idgrind detect the presence of
this sequence. This work strengthens the concepnthtched filtering requires
intensive a-priori knowledge and a separate recdoreeach class of primary
user.

Detection of primary users through matched filtgns, undoubtedly, the
optimal solution at present. However, its effeatiess is diminished by the
stringent requirements of having a-priori knowledg®out the primary user.
Thus the technique is reduced to being a primagy detector rather than a
system capable of sensing spectrum occupancy chemsiely.

2.4.3 Cyclostationary Feature Detection: The spectral correlation theory of
cyclostationary signals was used in [65] to presebroad treatment of weak
random signal detection that clearly reveals thetiosships among the variety
of detectors. It presented several arguments wifip@rting results that favor
cyclic- feature or cyclostationary detection ovenemyy detection for

accommodating the problems associated with unknamth changing noise

levels. Modulated signals are in general coupldth wine wave carriers, pulse
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trains, repeating spreading, hoping sequencesyatic prefixes which result in
built-in periodicity. Even though the data is atist@ary random process, these
modulated signals are characterized as cyclostitorsince their statistics,
mean and autocorrelation, exhibit periodicity. Tlueriodicity is typically
introduced intentionally in the signal format sattla receiver can exploit it for
parameter estimation. This can then be used factdeh of a random signal
with a particular modulation type in a backgrourichoise and other modulated
signals. Common analysis of stationary random $sgnia based on
autocorrelation function and power spectral dens®dn the other hand,
cyclostationary signals exhibit correlation betweeidely separated spectral
components due to spectral redundancy caused lmdmety.

Consider a stochastic proceg$). The autocorrelation function aft) is
given as:

R (t;7) = E{x(t—7/2)x* (t+7/2)} (2-2)

The signalx(t) is said to be wide-sense cyclostationary withqeefi, if
R(t;7)= R(t+Ty; 7) for all t, 7 [65].

Similarly, the spectral correlation function [39EF) can be written as:

lim  lim af2
Sf(f):lim i J- 1XT('[,f +g)Xr*(t,f —g)dt (2-3)
T - oAt - oo At —At/2T 2 2
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SCF is also termed as cyclic spectrum. Unlike P3ikvis real-valued
one dimensional transform, the SCF is two dimerddidransform, in general
complex valued and the parameteis called cycle frequency. Power spectral
density is a special case of a spectral correldtination fora=0 [35].

This very important characteristic of modulatednsig is exploited to
perform cyclostationary feature detection of priynasers. Signal analysis in
cyclic spectrum domain preserves phase and freguef@rmation related to
timing parameters in modulated signals [65]. Défar types of modulated
signals (such as BPSK, QPSK, SQPSK) that have icdnpower spectral
density functions can have highly distinct spectcairrelation functions.
Furthermore, stationary noise and interferencebéixhio spectral correlation.
Implementation of a spectrum correlation function ¢yclostationary feature
detection [35] is shown in Fig.10. It can be desijas an add-on of the energy

detector from Fig.9.

— | ap || Npont | | Comelate || Average | | Fealure
FFT X{f+a)X"(f-a) over T Detect

Fig.10. Cyclostationary Feature Detector using SCF
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2.5 Cooperative Spectrum Sensing: Cooperative  spectrum  sensing
(CSS) [37],[38],[66] is an environment where two more spectrum sensing
nodes, that form part of a CR network, combine rtrepectrum sensing
capabilities leading to centralized [67] or decalited [68] decision fusion.
CSS allows individual nodes to gain a more glolejrde of awareness about
spectrum occupancy [69]. It also has the inherdmaiatages of increased levels
of agility as well as greater accuracy due to thiéty to detect a primary user
(PU) that is obscured to a sub-set of sensing nddedo channel behavior [70].
Here, agility means the ability of a CR to senseamh spectrum and quickly
shift to it and the corresponding ability to seasprimary user in a particular
CR-used band and quickly shift out of it. CSS hashé¢ considered in the
context of increased communication overhead [3I5fhe inherent advantages
of CSS are more important as compared to the dosterhead then it is a
viable trade-off.

2.5.1 Cooperative Diverdgty & Information Gain: The  concept  of
cooperative diversity forms the foundation stone @sS. To understand the
full implications of cooperative diversity, we williscuss a real life analogy.
CSS nodes can provide information gain to eachradhe to the diversity in

individually sensed spectra. This can be considareogous to two people
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having finite fields of view. If they both see axpletely overlapping view (Fig.
11a) of the environment then they do not providg iaformation gain to each
other through sharing of information. On the othend, it is also possible that
both individuals have a partially overlapping vi€hig.11b). This implies that
they would give a partial information gain to easther. The information gain
is directly proportional to the difference in theiews indicated by the dotted
lines in Fig. 11b and Fig.11c. If the overlappingw is reduced to zero (Fig.
11c), then a maximum information gain is possibfesharing of information

between the two individuals.
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Fig.11. Correlation analogy to determine informatigain
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Above analogy highlights the fact that correlatidretween the
individually sensed spectra determines the exténinformation gain that
would be possible as a result of information exgeabetween sensing nodes.
By increasing the number of CSS nodes, it is ptesstbenhance the agility and
accuracy of the fused decision related to specteoupancy. However, the
information gain is not linearly proportional toettnumber of sensing nodes
because the varying cross-correlation betweenrsgpsiirs tends to increase or
decrease the cumulative information gain [71]. Tdwel of information gain
should define whether two CSS nodes should cooperatot.

2.5.2 Hidden Node Problem: This is often the most discussed issue with
regards to spectrum sensing. This problem was skgcliin great detail in [66]
and has also been analyzed subsequently. The hidntkn problem arises

because of shadowing (Fig.12).

TX1:Primary TX
TX2:Secondary TX
RX1:Primary RX
RX2:Secondary RX

Fig.12. Hidden node problem
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Fig.12 shows the classical case of the hidden podelem. There is a
possibility that secondary users may be shadowey &wm the primary user’s
transmission however, there may be some primargivers close to the
secondary users that are not shadowed from theapritransmitter. In Fig.12,
the secondary transmitter TX2 is shadowed fromptiv@ary transmitter TX1.
In the event of stand-alone sensing, this node avbal unable to detect the
presence of TX1. If it chooses to use the parhefdpectrum occupied by TX1,
then it would create problems for RX1 and RX2 thet not shadowed from
both TX1 and TX2. Hence, TX2 may interfere with themary receiver’s
reception. Having users cooperating provides ub wipossible solution to the
hidden-terminal problem, since this problem wouldsea only if all the
secondary users are shadowed away from the prirffatlye secondary users
are spread over a distance that is larger tharcohneslation distance of the
fading, it is unlikely that all of them are undedeep fade simultaneously. Thus,
CSS potentially resolves the issue of *hidden node’

2.5.3 Correlation Metrics.  Correlation between the sensed spectra, plays a
very important role when it comes to evaluating #féectiveness of any
cooperation scheme for CSS. While correlation hesnbdiscussed in great

detail in the past, very little analysis on its uee effective cooperation
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schemes has been considered. A critical analyswélation metrics in the
context of CSS, was carried out in [72] as a phtiheir measurement campaign.
The statistics gathered in various joint measurésneh the spectrum were
analyzed in this campaign. Two units were used;afrtaem was mobile (on a
trolley) while the other was a static unit. Eacht wonsisted of a spectrum
analyzer with rugged laptops. The units were véybtne synchronized to
analyze the correlation between the measurementde niy each unit.
Measurements were taken in dense urban as wellbagl®n environments. It
was established that CSS can improve the detectioability and lower the
sensitivity requirements on single sensors. It vWagher validated that
correlated spectrum measurements will lower thepemion gain and that
such correlations decrease with increasing distff#tJe Various techniques for
correlation were analyzed, which are summarizétiersucceeding paragraphs.
2531 Basic Correation: The cross-correlation between two

processes U and V is given by:

RUV) =LYUY, @)

t=1
where U and V are the two vectors of length L. Tgreblem with this
evaluation methodology is its dependence on thg dytle [72]. Here, duty

cycle implies the time for which a primary trangmritkeeps transmitting. The
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effect it has on the correlation can be understodh the fact that the
correlation also depends on the resemblance instefitonsistency in time.
Thus a lower absolute power received on a partidtéguency by two sensing
nodes for a longer duration would have a higheretation as compared to a
higher absolute power for shorter duration. Thus thetric fools the statistics
by depicting greater correlation between sensedtigeAnother factor is the
AWGN noise present in the entire spectrum. Sinteaperating nodes would
be sensing approximately the same levels of naisaldrequencies at all times,
therefore most of the correlation would be attrdouto this noise and very little

to the actual sensing of primary users. This caseea in Fig.13.
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Fig.13. Sensed spectrum including AWGN. A largenktui correlation would be associated
with the AWGN visible at the bottom of the spectrum
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A higher duty cycle can result in high cross-catien whereas the
absolute power may not be that correlated. This laiighlights the need to have
proper time-synchronization. Timing errors wouldnttdute to unnecessary
correlation increases or decreases. In some disepresence of one primary
user detected by a secondary user may be refutaddiizer secondary user.
2532 Covariance: One way of reducinghe dependence on the
absolute power is by subtracting the average redgpower. Thus, the resulting

covariancecov(U,V)is written as [72]:

covU,V) :Niz(ut -U).(V, - V) (2-5)

whereuU andV denote the average received power by the two sacpmuisers.

The covariance can also be normalized to attairemaevant results [72]:

L
pUV)= =y PU MY

Ns t=1 UU UV

(2-6)

whereoy andoy are the standard deviations of the received pawetors. The
covariance, thus obtained is independent of thelatesvalue of the received
power vectors because of the correction by the mdawever, this may also
be counter-productive. Consider, for example, & lsastion in a CDMA-based
network, which will constantly use the broadcasaroiel to announce its

presence to new handsets trying to join the netwiRdsultantly, the measured
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received power shows noise-like characteristicy timee although on a much
higher level. The correction by the mean, in these; would filter out the
higher power level and a CDMA base station signalilel look like noise. Thus,
simple covariance with mean subtraction (with otheiit normalization) is
sub-optimal.

2533 Binary Covariance: In a dynamic spectrum access scenario,
we are interested in the decision about the presenotherwise of the primary
user. The conveyance of this decision is binana,dbaécause it either is ‘1’
indicating presence or ‘O’ indicating absence ofpamary user. This
considerably simplifies the problem. Combination d&inary vectors
corresponding to the usable frequency vector isal gption for reducing the
complexity. Such a combination process is basedaot-decisions made by the
individual sensing nodes. Although it has been shthwat soft-decision making
may perform better in some situations [73],[74], perform decision fusion
using logicalOR-combining. Information gain, in this case is awbig from
those samples in which the sensed results arerehtfefor the individual
sensing nodes. In simple words, if CSS node A detdwe presence of a
primary user at a particular frequency whereas @& B does not detect the

primary user at the same frequency then CSS nodewd be in a position to
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give information gain to CSS node B. The logiCdt function evaluates binary
vectors to perform such a comparison. This is etifflem the following:
0ORO0=0
10R1=1
OOR1=1
10RO0=1
The logicalAND function is also useful, because it brings outilsinties
between sensed decision vectors. It evaluates saraplfollows:
0 ANDO0=0
1AND1=1
0AND 1=0
1 ANDO=0
The most useful measure of binary covariance isiobt from the
logical XOR function because it highlights the differenceswesn binary
vectors.
0 XOR0=0
1 XOR1=0
0 XOR1=1

1 XORO0=1

50



The XOR metric is used for evaluating the differences leetvvectors
whereasAND is used for counting similarities in detected @i users. For
this purpose, [72] defines tND-Ratioand XOR-Ratiofor frequency index.

The AND-Ratiois given as:

a(f) :NiiQA(t, £)0Q,( f) (2-7)

s t=1

whereas th&XOR-Ratias given as:

E(N=530,61)00,01 9

e
In these expressionl is the number of samples at the frequency irfdex
Q, is the sensed result (binary) at frequency inderd sample timé out of
the totalNs samples taken by sensing ngdleThe same is correspondingly true
for sensing noddB. The ratiosa(f) and &(f) describe the probability that a
sample is either detected by both CSS nodes ombyane of them. A high
value for a(f) indicates that cooperation would not improve s&psi
significantly because most samples were detecteablly nodes. A high value
for &(f), on the other hand, describes the situation wititiple samples that
were detected by a single node, and thus, situsatidrere cooperation would
improve the sensing reliability at the other nodesimple terms, a high value

of a(f) implies that cooperation would not yield a relativhigh information
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gain, whereas a high value &ff) implies that a higher information gain is
expected through cooperation. It was also estaddigh [72] that sensing nodes
that are closer to each other would be expectgtetd lower information gain
through cooperation and conversely, nodes thatfatber apart would give
higher information gain to each other.

2534 Weighted Correlation Metric:The AND-Ratio and the XOR-
Ratio consider solely the binary energy detection residlherefore, a
comparison of the received power is not taken adoount. The above ratios
are also susceptible to varying primary system adytfes [72]. For example, if
the received power at both CSS nodes is very ddas¢he detection threshold
Is exactly in between, the binary energy detectidhfalsely indicate that the
measurement results of the CSS nodes are diffefiéns. problem can be
corrected by considering the weighted binary catr@h. Let the difference in

received power be:
AR, (¢, ) =[Pa(t, 1)~ Ry (t, F) (2-9
The objective is to have the following behavior floe correlation metric:
o If APL(t, f) is very large and both measurements trigger detes;tthe

specific AND event should contribute less to thmiksirity-metric

compared to the case with smaP,,(t, ).
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o If APL(t, f) is small but only one of the measurements triggers
detection, the specific XOR-event should lower simailarity metric
much less compared to the case of lardg®(t, f) and only one
detection.

To achieve this behavior, [72] applied the follogiweighting functions:

2

10log,4(C
Wano (AP (t, F)) =€ et (2-10)
where Canp iS the normalization constant. Similarly, th€OR weighting

function is defined as:

2\ 10logo(Cxor

W,or(AR, (L, T)) =€ (2-11)
where Cxor IS the XOR normalization constant. These constants have been
chosen in accordance with the standard deviatiass,already described.

Applying these weights to a combination of the bmanetrics gives the

weightedAND-ORmetric as follows:

NS
D W, o-ANDRatig, 4 (t, f)
q)( f) = o t=1

> ANDRatiq; (t, f) + W, XORRatiQ (t, f)

t=1

(2-12)

This relationship is a ratio of the weightddNDRatioto the weighted

ORRatiobecause the denominator sums up to a weigbi@Gum ofAND and
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XOR). This weighted correlation metric describes thmilarity behavior
comprehensively, irrespective of the type of comivaton [72] (GSM,
CDMA, UMTS, etc.).

2.5.4 Decison Fusion: The main objective of cooperation is informationnga
This information gain is possible, only through @gess of decision fusion.
Decision fusion implies the combining of individlyasensed results to achieve
a relatively higher degree of global awareness alo@ spectrum. In the
context of CR in CSS, there are essentially twes$ypf decision fusion. Firstly,
hard-decision fusion implies the combining of sehdecisions. Secondly, soft-
decision fusion combines the received power at eaehuency with the
corresponding received power of another node teeaetan aggregate decision.
Majority rules can be applied to hard-decisions nghe soft-decisions require
applications of thresholds combined with majorityes [72]. The issue of
decision fusion has been critically analyzed inel@ss sensor networks in the
past. Depending upon the volume of data to be fubede are numerous ways
to achieve the desired level of accuracy in thaltgsin the context of wireless
sensor networks (WSNs), the decision fusion rubesrfulti-hop networks have
been analyzed in [75]. Channel-aware decision fusiales have been

developed for resource-constrained WSNs where Yidacisions from local
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sensors may need to be relayed through multi-hapsinission in order to
reach a fusion center. The estimated binary degtislmased on channel
impairment estimation, is transmitted to the neodauntil it reaches the fusion
center.

In the context of CRN, in which multiple CSS no@des cooperating, [76]
analyzed the integration of spectrum sensing schewith decision fusion
algorithms. The effects of varying the number oftipgoating neighbors on
fusion values have been studied in detail. In Bf [78], optimum fusion rules
have been investigated under the assumption ofittmmal independence.
Many research papers, such as [68],[79] and [8@},ehalso analyzed the
problem of distributed detection with constrainesmenunication resources.
The results in these papers, however, are mostigirdal based on the
assumption of lossless communication. This asswmpis not realistic for
many WSNs where the transmitted information haerndure both channel
fading and noise/interference. This motivates thugs of the fusion of local
decisions corrupted by channel fading/noise impaiin The optimal
thresholds, both at the fusion center and the Iseasors by assuming a simple
binary symmetric channel between sensors and #ierficenter were derived

in [81].
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There is no doubt that the problem of decisiondindgor CSS nodes can
be modeled on grounds similar to WSNs, howevergenteavork on the
combination of CSS with data fusion is more relévahe issue was simplified
in [82] by considering simple counting rules forct#on fusion. Spectrum
sensing places extreme sensitivity requirements@iridual CR nodes. Local
decision fusion as a low complexity method can wnpr the detection
performance by simply increasing the number of sineé observation and
decision. The procedure involved makes use of pilaltiobservations to
strengthen or modify its belief. The fusion rulédazal decision were analyzed
in [82] and their properties and conditions werdub®d under the assumption
that all the decisions are independent and folldwe same probability
distributions. These properties and conditions banused to increase the
detection probability and to lower the false algrabability. The performance
of such a local detector can be optimal when cimgpsippropriate decision
number and fusion rule [82].

The most important advantage of an effective decigiision rule is that
it has the potential to overcome the sub-optimaunmaof the actual sensing
technigue employed. It has already been highlighhted energy detection is

sub-optimal. By having a counting rule decisiondnsalgorithm, we achieve a
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belief strengthening mechanism to confirm or deogal decisions. This
reduces the probability of false alarm in detectdmprimary users [82]. Thus,
even if we do not use matched filter or cyclostaiy feature detection (which
are more optimal than energy detection), we cdinestiieve optimal results by
using an effective decision fusion mechanism ofgnédetection decisions that
takes full advantage of the cooperative diversitairive at the correct decision
about spectrum occupancy.

The aspect of having centralized or decentralizadsibn fusion can be
studied on the basis of the application. Deceredlidecision fusion has often
been considered in the context of multi-hop WSNs $ame can be applied to
CSS in CRN. In this regard, multiple CSS nodes woldroadcast’ their
sensing results in hard or soft form (depending nuptbmmunication
constraints). These would be carried through mieltipops on various
cooperating CSS nodes, ultimately leading to aasdn of ‘global awareness’
about spectrum occupancy. With regard to centmlidecision fusion, each
CSS node transmits its sensing results to a ces@sion fusion center where
the results are fused using simple counting rulé® latter strategy is more
favorable for CRN as opposed to WSNs. Accordinghe advantages of a

centralized fusion scheme are:
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Maximum advantage of cooperative diversity is aobike

Network complexity is reduced as each CSS nodetigaquired to
fuse decisions.

Communication overhead emanating from multi-ho@duiced.
‘Greedy’ network entities are avoided.

Can be implemented in accordance with pre-designetivork

hierarchies.

The advantages of a decentralized fusion scheme are

Local decisions are quickly achieved.
Local decisions allow greater flexibility in termef spectrum
allocation.

Ad-hoc nature of networks can be supported.

2.5.5 Concept of Grouping/ Clustering: In general, the decision fusion

hierarchy can be considered for forming any sogrofiping within CSS nodes.

The main objectives for forming grouping could be:

For optimizing decision fusion.
To achieve redundancy in terms of sensed data.
To cluster together, those CSS nodes that do no¥igeg much

information gain to each other.
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Cluster-based CSS in CRN was suggested in [83]veercome the
problems associated with information loss due &nclel impairments resulting
in errors in decision fusion. By separating all #exondary users into a few
clusters and selecting the most favorable useragh eluster to report to the
common receiver, the proposed method can expleiutier selection diversity
so that the sensing performance can be enhancedthiso purpose, [83]
considered that the reporting channel (channel éstwognitive users and the
common receiver) experiences Rayleigh fading armmbgsed a cluster-based
cooperative spectrum sensing method to overcomanehampairments. By
employing such a technique, the reporting error uthe fading channel can
be reduced. Moreover, both hard and soft decisisionh were applied to the
clustering method to analyze results. It was alssumed that clustering had
been done by upper layers. No further investigaitiom the actual formation of
clusters was done. Thus, the first two objective$istied above were achieved,
l.e. redundancy in data communication (reportingneiel) and optimal data
fusion through majority counting. The third objeeti related to optimization of
cooperation to achieve maximum information gains wat addressed.

In [84], CSS algorithms that were inspired by nplétiaccess algorithms

were proposed. The concept was quite revolutiorsinge it proposed a new
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way of looking at CSS. CSS has the advantage aératcuracy over non-
cooperative schemes. One of the critical problamS8$S is the delay between
sensing and decision. Wideband spectrum sensiagather challenge due to
its complexity. To solve these problems, [84] pregmb new cooperative
spectrum sensing techniques inspired by multipleesg methods: Time-
division (TD), frequency-division (FD), staggeregduency-division (SFD),
frequency hopping (FH), irregular sub-band (IS) ataggered irregular sub-
band (SIS) cooperative spectrum sensing. Cooperatsers are first divided
into groups. In TD-CSS, the groups of CSS nodegcdtiethe presence of
primary users in turns to reduce delay. To tackk difficulties of wideband
spectrum sensing, FD-CSS assigns different graugdferent spectrum bands.
SFD-CSS can solve time delay and wideband specsemsing issues at the
same time by making each group sequentially deddfgrent frequency in
different order. FH-CSS performs better than FD-CBSthe channel
information is unknown. Finally, asymmetric bandcegs concepts can be
applied to CSS to allow different groups to focus feequency bands with
irregular sub-band bandwidth using I1S-CSS or SIS CEhe most important
advantage is the increased agility made possibéetdunulti-tasking of CSS

nodes to different bands as is done in the FD dd SEhemes. While [84]
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proposed very effective schemes for CSS, they slggested the formation of
groups/ clusters. The FD scheme distributes trgpecy band among sensing
nodes to enable sharing of workload. This shargiglone in groups. The
proposed techniques are very innovative and prommpeoved agility. In [84],
however, the authors had not verified the claimeslits through simulation.
Furthermore, no criterion for establishment of gnog had been suggested.

2.6 Adgility Gain: Aqgility is defined as the ability of a cognitivedia to
sense vacant spectrum and quickly shift to it [36also indicates the time
taken by a CR to vacate spectrum after it detegisiraary user. Agility is
measured in terms of time and its threshold isetyoselated to the maximum
time for which a primary user (PU) can tolerateeifédrence from a secondary
user (SU) [36][85]. An important requirement of & @rchitecture is to detect
the presence of primary or licensed users as quakipossible. For this reason
cognitive users should continuously sense the gspactConsider a network
with two cognitive radio useitSR1andCR2operating in a fixed TDMA mode
for sending data to some base station. Supposethatnary (licensed) user
starts using the band. Then the two cognitive useesl to vacate the band as
soon as possible to make way for the primary udewever, the detection time

becomes significant if one of the users, $2R1 is in the boundary of
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decodability as shown in Fig.14. The signal reagifrem the primary user is so
weak thatCR1 takes a long time to sense its presence. The ignfarther
increased if it uses a belief strengthening medmarnihrough majority counting
rule for decision fusion. Cooperation between thgnitive users can reduce the
detection time of the “weaker” useCRR1) thereby improving the agility of the

overall network.

Boundary of
Decodability

PU: Primary User
CR1: Cognitive Radio 1
CR2: Cognitive Radio 2

Fig.14. Advantage of Cooperation for Weaker CR

In a cooperation scheme, the agility gain can dmmputed as given in
[36]. Let T, be the number of time slots taken by USB1in a non-cooperative
network to detect the presence of the primary Wercan model this detection

time as a Geometric random variable [36].
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Pr{T, =kt = - p,”)*p,” (2-13)
Here,p." is the probability of detection by us€Riin a single slot in a

non-cooperative environment. This probability [&given as:

1

p, =a™ (2-14)

whereP; is the received power at th® CR from the particular primary
user andx is the false alarm probability determined uniquiely CRi on the
basis of the sensing technique used by it.

The total time taken by botbR1andCR2to vacate the band is [36]:

1 1 1
T =2 —t——
" [mm P, mm+m@—mmmmJ

If p.” is the probability of detection &Riin a cooperative scheme, then

(2-15)

the total time taken in cooperation [36] is given b

@ @
o P+,

- 2
Tooop = pc(l) + pn(z) _ pc(l) pn(z) (2-16)

Agility gain has been defined [36] as the ratiotiofie taken in non-
cooperation to time taken in cooperation. Thus; it

Tn
:un/cé?c (2-17)

The same result has been extended to a multiemseonment in [36].
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Agility gain quantifies the effectiveness of awetk with regards to
interference avoidance for the primary users. Thabasic issue for CRN, and

it has been stressed by FCC as well [12].
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CHAPTER — 3
3. Proposed M ethodology for CSS

3.1 Introduction: CSS has the potential to offset the problems
associated with spectrum sensing, the foremostgbéme ‘hidden node’
problem. It can also produce greater accuracy msisg decision due to belief
strengthening algorithms when the same resultseaeived from multiple CSS
nodes. Another advantage of CSS is that agility alan be enhanced through
machine learning processes that are inherently astggp by CR. These
advantages and the potential applications of CRni@logy have motivated this
research. The concept of grouping of CSS nodesmirasiuced in the previous
chapter. Grouping of CSS nodes was proposed in t@B4upport algorithms
inspired by multiple access techniques. However cititeria for establishment
of grouping were left to higher layers. These ciatevere of critical importance
because the effectiveness of these grouping-bdgedthms depends entirely
on the procedure involved in creation of groupsouping of CSS nodes was
also proposed in [83], however the objective faation of groups was to have
redundancy in the sensed results (same resultsedcdeom multiple nodes) in
order to mitigate the effects of fading in the ngépg channels. The above

mentioned proponents of grouping ignored the catir its establishment and
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hence did not tap the full potential of such tegaes. These issues have been
addressed in this research.

In this chapter, we present a novel technique this¢s advantage of
cooperative diversity to establish grouping amoogperating secondary users.
This technique is then extended to group-basedrspesensing to establish a
tasking mechanism. The technique ensures enhargibty ahat ultimately
results in a reduction of interference to primarsens through their early
detection. The presentation of this technique is pimses for ease of
understanding and implementation.

3.2 Spectral Environment: An  intensive  large-scale  measurement
campaign was carried out to assess spectral emvaots for studying CSS
applications [72]. The statistics gathered in vasigoint measurements of the
spectrum were analyzed in this campaign. Two unégse used; one of them
was mobile (on a trolley) while the other was distanit. Each unit consisted
of a spectrum analyzer with rugged laptops. In otdemake the correlation
statistics accurate, the two units needed timehsypmization. For this purpose,
mobile cellular phones were used to verbally syocize the units. This was
considerably inaccurate, imposing restrictions lom wse of similar laboratory

equipment.
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In order to analyze and develop techniques for @%#$ementation in a
networked environment, it becomes necessary to amnthe advantages of
using simulations or empirical measurements. Emglirmeasurements yield
the most realistic results; however, certain pcattaspects/constraints related
to an effective measurement campaign have to beidened while making a
choice to wuse measurements or simulated data. Thpssctical
aspects/constraints include:

3.2.1 Equipment Composition: The minimum equipment composition of
each CSS test node should include a spectrum amalyzugged laptop and a
data communication terminal with time synchronatapplications. The test
node should be self-contained for power requiresiantd mobility.

3.2.2 Quantity: The number of such nodes should be sufficientlgdato
establish reasonable statistics about the envirohrigvo or three such nodes
would be too less.

3.2.3 Time Synchronization: Each of the spectrum analyzers should have the
ability to be time synchronized with its peers astibuld have equivalent
configuration.

3.2.4 Comprehensive Tests: Empirical measurements do not permit the

testing of the worst-case scenarios, since thesems be artificially simulated.
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Thus comprehensive testing of any CSS techniguetipossible on empirical
measurements.

Due to non-availability of devices that comprehegly meet these
requirements, simulation is the best available avptior development and
testing of CSS management algorithms and techniditles aspect creates a
bound on the extent of realism that can be appddbe testing scenario.

To overcome these issues, we created a spectvabement that is
closest to reality while ensuring that worst-casenarios are also tested. This is
achieved by having maximum randomness in the positof the primary users
(PUs) and secondary users (SUs) within a squaie @ensidering a trunked
radio environment, a random assignment of freq@snaias made to each PU
from within a specified band. The assigned freqiemare non-repetitive. By
computing the distance from each PU to each SUummp this distance to
calculate received power, we were able to creattov® of received power
corresponding to each usable frequency for eachByladding AWGN noise
floor figures, we were able to create received spdor all SUs. A sample of

such a spectrum is shown in Fig.15.
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Fig.15. Simulated spectrum

We thus create a received power maRj% wheren corresponds to the

number of SU and corresponds to the number of PU.
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3.3 Individual Sensng Phase: In the first phase of our technique, each

CSS node senses the entire spectrum of concer eisergy detection. For this

purpose, we perform hypothesis testing consideaiigresholdy that is higher
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than the maximum AWGN level (normally taken as -tBin as per [12]). In
the event of a detected PU at a particular frequeme have Hypothesis-1:

H:P,2Vy=T (3-2)

In the event of no PU at a particular frequenay have Hypothesis-0:

Hy:Rn<y=0 (39

This results in the creation of vectors with eatdment (either ‘0’ or ‘1)
corresponding to the sensing decision at each démexu To understand this,
consider the following:

If Phr=-23 dBm, which is greater thgn(-114 dBm), then we replace the
corresponding element &, with ‘1. However, if we haveP,,=-125 dBm,
which is lesser thap (-114 dBm), then we replace the corresponding ef¢m
of Pomwith ‘0O’. We have thus created a matfx consisting of binary sensing
results with all elements being either ‘1’ or ‘0’.

Depending upon the population of PUs and the faqu band being
considered, we would expect to have a sparse [8Ffrixmn wherein the
occurrences of ‘1’ are much greater than thoseObfSuch a matrix can be
easily compressed using zero-counting algorithmsréduction of data size.
Each SU sends its corresponding vector to a cedtaision fusion centre

(CDFC). It is assumed that the reporting channslfficiently reliable.
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3.4 Binary Corréation Phase:  The encoded vectors are transmitted to a
pre-designated central decision fusion centre (CDHC a centralized
cooperation environment. Under normal circumstandes CDFC would
combine the results after decompressing all theovec However, in our
technique, we do not wish to create a global pectirthis stage. Instead, we
compute the binary correlation between the senssudlts of each pair of SU.
The technique selected for the purpose is simiathe binary correlation
evaluation criterion that was employed in [72]. Trginal technique of binary
correlation, as previously described in Chapterhds been considerably
modified to suit our data set. Primarily, we haw¢ nsed a time index. Instead,
we have just used a frequency index. This is becawes have communicated
just one observation on each frequency by each B#llief strengthening is
done by multiple observations from different SUstla¢ same time. We

therefore created the followigNDs,,andXORs,minstead of ratios:

AND,, (ab) = 3'SU,(F) DS (1) (3

f=F

wherea andb correspond to the two SUs for which correlatiomesng
calculated. The frequency index fisvhich ranges front; to F,, in discrete
predefined intervals.

Similarly, theXORs,mcan be computed using the following relationship:
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XOR,(a,h) = 3°SU,(f) 0 SU,(T)

f=F,

(3-5)

A high value ofANDs,, implies that a high degree of correlation exists

between the pairs. Thus cooperation would not givagnificant information

gain. On the contrary, a high value XORs,,implies that cooperation would

result in a significant information gain. A binacgvariance matrix is created

from these two sums. This matrix is a square foratrimthat depicts the binary

covariance between each pair of SUs. This matrmpictie the distance in terms

of covariance between each pair of SU. It is usedchrrying out clustering

analysis. To understand the concept of a squane fiistance matrix, consider

the data of distances between cities of Pakistbtgireed from Google Earth

[88], given in Table 1:

Karachi Lahore Peshawar| Quetta Islamabpd  Multan
Karachi 0 1045 1110 610 1149 730
Lahore 1045 0 380 720 267 315
Peshawar | 1110 380 0 613 145 420
Quetta 610 720 613 0 660 430
Islamabad | 1149 267 145 660 0 421
Multan 730 315 420 430 421 0
Table 1: Distance between various cities of Pakisaown in a square form matrix.
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In a similar fashion, the covariance distancesiolktd between each pair

of SU can be shown in a square form matrix as under

C, C, Cu Cuu... Cy

O
0
0
0
#
O
2

XOR, =1C; Gy Gy Gy Can (3-6)

Cuwi Cno Cus Cugeeee Can

where C,,, are obtained fronXORs,, for corresponding pairs of SUSs.
SinceXORsymis zero for the same SU (ime=n), thereforeC,,;=0 for n=n on the
diagonal. Such a matrix can be easily used fortetungy analysis, as will be
shown in the next section.
3.5 Grouping Phase: In this phase, the CDFC performs grouping/ clusteri
on the basis of thEOR,, matrix. We use the hierarchical clustering aldont
[89] because of the size and suitability of ouradaet. The hierarchical
clustering algorithm relies on the Johnson algaritf90] in this case and
proceeds as follows:

The algorithm erases rows and columns in the pribximatrix as old
clusters are merged into new ones. Nt&\ proximity matrix isD = [d(i,))] .
The clusterings are assigned sequence nunthérs...., (n-l)andL(k) is the

level of thekth clustering. A cluster with sequence numbers denotedm)
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and the proximity between cluste(® and (s) is denotedd [(r),(s)]. The

algorithm is composed of the following steps:

Begin with the disjoint clustering having leugD) = 0 and sequence
numbem = 0.

Find the least dissimilar pair of clusters in therent clustering, say
pair (r), (s), according tod[(r),(s)] = min d[(i),(j)] where the
minimum is over all pairs of clusters in the cutrelustering.
Increment the sequence numbar= m +1 Merge clustergr) and(s)
into a single cluster to form the next clusteringSet the level of this
clustering ta.(m) = d[(r),(s)]

Update the proximity matrixD, by deleting the rows and columns
corresponding to clusters) and (s) and adding a row and column
corresponding to the newly formed cluster. The pnity between the
new cluster, denoted ggs) and old cluste(k) is defined ag[(k),
(r,s)] = min d[(k),(n)], d[(k).(s)] (3-7)

If all objects are in one cluster, stop.

When we apply this procedure to our distance sqfmare matrix given

in Table 1, we proceed in the following manner:

In the first step, cluster level L=0. All citieseain separate groups.
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The nearest pair of cities is Islamabad and Peshawdistance 145.
These are merged into a single cluster called fialzad/Peshawar".
The level of the new cluster is L(Islamabad/Peshmpwdl 45 and the
new sequence numberis m = 1.

Then we compute the distance from this new compalnelct to all
other objects. In single link clustering the ridehat the distance from
the compound object to another object is equaldcshortest distance
from any member of the cluster to the outside dbj@o the distance
from "Islamabad/Peshawar" to Lahore is chosen t@@¥% which is
the distance from Islamabad to Lahore, and so on.

This clustering is summarized in the hierarchichlstering tree

shown in Fig.16.

‘Islamabad‘ ‘ Peshawar H Lahore H Multan H Quetta ‘ ‘ Karachi ‘

Fig.16. Hierarchical Tree for Sample Data of Taltle
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When we apply this technique to our binary covargadata fronKOR,,,
we obtain grouping carried out in a similar form@he hierarchical tree for
such a data set in which 30 SUs were considergiven in Fig.17 and the

corresponding grouping is shown in Fig.18.

Spectrum based grouping

| h
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% 18 24 11 28 20 1 2 24 13 12 3 19 28 23 30 10 14 26 5 9 29 22 6 4 1B 8§ W 1 27

Fig.17. Hierarchical Tree for clustering of 30 SUs
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Fig.18. Grouping of 30 SUs. SUs are numbers wherea® the PUs.

3.6 Tasking of Grouped CSSNodes:  The grouping, as performed in the
previous section, has resulted in the clusterimgetteer of highly correlated
CSS nodes. The threshold used in this case is depenpon the total number
of SUs and dictates the maximum number of groupbet®B0% of the total
number of SUs. The actual objective of groupingpignable the employment
of a tasking mechanism within groups. The groupimgchanism, itself, has

ensured that maximum information gain is obtainddough sharing of
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aggregated sensed spectra between groups. Weotteepebpose the following

tasking mechanism for grouped CSS nodes:

A group decision fusion centre (GDFC) is defineddach group.

The GDFC is informed about the members of its gitoythe CDFC.
Each GDFC divides the entire spectrum to be sengedequal parts
according to the number of group members thusiageatjual sub-bands
within the group.

These non-overlapping sub-bands are sensed bggked SU according
to the instructions of the GDFC.

Each GDFC fuses the results obtained from each me®b and passes
the aggregated result to the CDFC.

The CDFC fuses the results from each GDFC to ol#agtobal picture
of the sensed spectrum.

The tasking mechanism can be understood from grarchy shown in

Fig.19.
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Fig.19. Hierarchy for tasking and decision fusidnG8S nodes

3.7 Advantagesof Proposed Methodology:  Formal results, based on
simulations, will be used to discuss the achievidgatages in the next chapter.
However, basing on the mathematical model of thep@sed methodology,
certain characteristics have emerged that are idiregr advantages of this
technigue. These are summarized below:

3.7.1 Greater Agility: Considerar, to be the average time taken by an

individual CSS node to sense the entire specurinof interest. Let there be
CSS nodes under the control of the CDFC, all ofitheing treated as peers. In
the event that cooperation is restricted to refudion only, then we have a
typical centralized or peer-based CSS environnitiittakes timet; to fuse the
decision at CDFC/ GDFC then the total time takeramave at a decision is

given by:
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Tpeer = tf + ATs (3‘8)
Now consider the scenario in which all the CSS saale working in an FD

tasking scenario. In such a case, the entire spactf interesiar is divided
into n CSS nodes. Thus each CSS node takes time to sense the spectrum.
Fusion of decision takes approximately the same timThus the total time

taken to arrive at a decision in an FD tasking ageris given by:

AT,
n

Tep =0 + (3-9)

In our technique, a grouping mechanism is in plae¢.the average group size
including the GDFC be& such that is less tham and greater than one. Thus

the total time taken to arrive at a decision in@ahnique is given by:

AT
TGroup =t + > (3-10)
K
Sincex <n, therefore we have:
Tpeer 2 Group 2 TFD (3'11)

This is a very important conclusion that proved tha technique should take
lesser time as compared to the peer-based coapemtnong CSS nodes. The
only situation in which the two can be equal is wh® grouping can be
established due to minimum correlation, which ighhy unlikely. The agility

gain is also measured in terms of the ability o€8S node to detect the
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appearance of a new PU. In the case of a peer-@@S&Jconfiguration, the

maximum time that would be taken to detect a newaUld bear,. Using our
technique, this time is reducedin/« wherex=>1. It may be noted here that the

result obtained using the FD technique is evereletdgan our technique using
grouping. Apparently, the FD technique is givingigher agility gain; however,
as our next result will show, it is doing so at tost of accuracy.

3.7.2 Better Accuracy: The probability of detection of a new PU depends
upon the probability of a CSS node being presethimwithe area of detect-
ability of the PU. For a peer-based CSS techniqaesider the average area of
detect-ability of a PU to by (Fig.20) If the total area of concern to usAg:,

then the probability that a CSS node is in thevaaié detect-ability area is

Fig.20. Probability of Detection of a new PU

peer ®

Agotal

Poeer 1S GiVEN DY:
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A
Aotal

In the FD technique all nodes have been tasked matbn-overlapping

Y peer = (3- 12)

sub-bands. The probability that a particular CS&ene sensing the sub-band of
interest isl/n. The probability of a CSS node being present erievant area

of detect-ability isA,/A,. .- Thus the probability that the correct CSS node is

present within the area of detect-abilityps and is given by:

Peo :(AAH J% (3'13)

In our technique, we have employed binary correhatto establish
grouping. If we achieve a relatively higher valdeA®Ds,,then the probability
that the correct CSS node from a group is withm dnea of detect-ability is

and is given by:

pgroup

pgroup = AAj (3- 14)
otal

3.7.3 Near Optimal Information Gain:  Information gain is determined by
the XORsy In the peer-based network, due to high binaryetation (that
would exist between some of the CSS nodesXtbBs,»would be much lower
than desired. The maximuKORs,nis possible when no two CSS nodes detect

the same PU. This is only possible when not moen thne CSS node is
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available inside the detect-able area of any Plsuich a rare distribution of
SUs, the chance of missing a PU is unacceptabtaile®ly, the chance of
missing a PU in the FD scenario is even higherthisdwvould also result in loss
of desired information. Our technique addressespitobdlems of both peer-
based as well as FD tasking scenarios. The grodg@egd on binary correlation
addresses the problem of agility by tasking of Babes within groups. When
the sensed results are aggregated at the GDFE pliserved that thEORs,,
between groups is much higher than both the oewhmiques. This implies a
drastic increase in information gain. By havingugre consisting of CSS nodes
with high binary correlation, it is ensured thag¢ tthances of missing a PU are
minimal. Thus we have achieved a near-optimal m#iron gain in our

technique.
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CHAPTER — 4
4. Simulation Details & Results

The computer used for achieving the results giverthis chapter was HP
Compaqg Presario ® C700 laptop with genuine Winddigta. It had a 1 GB
RAM and a dual core Intel Pentium ® T2310 processoning at 1.46 GHz.

The MATLAB ® version was 7.3.0.

4.1 Spectrum Simulation: The objective was to simulate a spectrum that
depicts a reasonable level of spectrum occupanoydar to comprehensively
test the proposed methodology. It was also necgedsamaintain a certain
degree of realism while ensuring the possibilityoaturrence of worst case
scenario without design. Accordingly, maximum ramiess was incorporated
in the placement of SUs and PUs, and in the assghmf frequencies. The
randomness was within the bounds of the MATLAB wafe used. PUs and
SUs are considered to be randomly placed in a scaraa of 30x30 ki This
parameter is modifiable in the original code. Th&ATMAB function for the

placement of these is as under:
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function[PUx PUy SUx SUy PUxy SUxy]=placeSUPU(numPU,numeslJ,
%Created by Maj Rizwan Akhtar, MSEE-13, CollegeéSafnals, NUST.
%Randomly place the PUs and SUs in a 30km squaead a
PUx=random(inif',1,ar,1,numPU);

PUy=random(nif',1,ar,1,numPU);

scatter(PUx, PUyd''b), holdon

% Create the Secondary Users (Cognitive sensings)od
SUx=random(nif',1,ar,1,numSU);

SUy=random(nif',1,ar,1,numSU);

scatter(SUx, SUy;+','r),hold off, title(PUs-Blue Diamonds ; SUs-Red P)us'
% Combined Position Matrices

PUxy=[PUx;PUyY]";

SUxy=[SUx;SUY]";

This results in the creation of position matriéddxy and SUxy In our initial
tests, we have assumed 30 SUs and 200 PUs invae giea of 30x30 kin
Therefore,PUxy is a 200x2 matrix. The first column is the x-pmsitand the
second column is the y-position. The rows corredptanthe number of PU.
Similarly, SUxyis a 30x2 matrix. The resultant matrices are etbth a scatter
form and are shown in Fig.21. The blue diamondsPd#e and the red ‘+’ are

SUs.
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Fig.21. Random placement of PUs and SUs inx@B&nt area.
We then compute the Euclidean distance betwedm $dcand each PU.

We use the following relationship:

Gy = 0 = %) + (Y0 = Vi) (41
Here, we have assumed timatorresponds to the SUs amdcorresponds
to the PUs. Therefore=1,2,3...... 30andm=1,2,3...... 200Thus the distance

matrix is created, which is 30x200. We have callddistSPin the simulation.
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dy, d, dy dye. 0, 200
d2,1 d2,2 d2,3 d2,4 """ d2,200
DistSP=|d,, d,, dj; dg,...... 0200 (4-2)

_d30,l d30,2 d30,3 C|3O,4 """ d30,200_

The MATLAB function used to compute tHeistSP matrix is given

below:

function[DistSP DistSPm]=DistSUPU(SUx, SUy, PUx, PUy, nulm&umPU)
%Created by Maj Rizwan Akhtar, MSEE-13, Collegesafnals, NUST.
DistSP=]];
idx1=1;
idx2=1;
for w=1:1:numSU;
for v=1:1:numPU;
DistSP(idx2,idx1)=sqgrt(((SUx(idx2)-PUx(idR22)+(SUy(idx2)-PUy(idx1))"2);
idx1=idx1+1;
end
idx2=idx2+1;
idx1=1;
end
DistSP;%SU are in rows and PU are in columns
DistSPm=1000*DistSP0Convert the DistSP into meters

The frequency band to be sensed is 50 MHz to 1®z.MThis is
modifiable from the main file. We will sense thenbdaat intervals of 25 kHz.
This channel spacing is modifiable. A smaller cledrspacing would result in
greater resolution. However, since we are workmg¢ghe lower part of the TV
band, we expect to see broad band transmissioterrefstrial TV as well as
some individual radios. Therefore, the channel isigaealistically ensures that

no usable part of the spectrum is being missed out.
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We then create a vector of usable frequenciesdhiatiains the lowest
frequency to the highest frequency in steps of B%.Kn our simulation, we
have created the vectaFreq With the above mentioned parameters, it is

1x2001 in size.

The MATLAB function used to create this vector is:

function[vFreq]=FreqVector(LowFreq, HighFreq, BandSpace)
%Created by Maj Rizwan Akhtar, MSEE-13, Collegesafnals, NUST.
vFreq=[]; %oEmpty Frequency Spectrum created
%Creation of the vFreq vector:
idx=1;
for v=LowFreq:BandSpace:HighFreq
vFreq(idx)=v;
idx=idx+1;
end
vFreq;%/Final Frequency Spectrum

We then assign these frequencies randomly to the E&sing a uniform
distribution from thevFreq vector already created. It is ensured that each PU
has a distinct frequency. This creates a ved®bfFreq containing the
frequencies being used by each PU arranged inaime ©rder as the matrix

PUxy. The function used for this purpose is:

function[PUFreq]=FregAsgn(vFreq, numPU)
%Created by Maj Rizwan Akhtar, MSEE-13, CollegeéSafnals, NUST.

PUFreq=[];%Empty PUFreq vector created

idx=1;

idxrange=length(vFreq);

idxasgn=randint(1,numPU,[1,idxrange]);

for y=1:numPU
PUFreq(idx)=vFreq(idxasgn(idx));
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for x=1:idx-1
if PUFreq(idx)==PUFreq(x)
PUFreq(idx)=vFreq(idxasgn(idx)+1);
end
if PUFreq(idx)==PUFreq(x)
PUFreq(idx)=vFreq(idxasgn(idx)-2);
end
end
idx=idx+1;
end
PUFreq;

We then compute the received power at each SU &ach PU on the
basis of distance and the frequency assigned. Wisid®r the standard free-

space path loss [91] as follows:

2
R(dnm’A) = M

" @ dL, (4-3)
whereP,(d,) is the received poweF,; is the transmitted power of the P\,
Is the transmitter antenna gain (for the PGl)js the receiver antenna gain (for
the SU), 1 is the wavelength obtained from the allocated Ueggy to the
concerned PUd,, is the relevant distance from tl® matrix andL; is the
system loss factor. For purposes of simulationhexe assumehl, as 5 Watts,

G is 1,G; is 1 andL; is also 1. This results in the creation of a mati

received power that is 30x200 in size.

P, P, Ps; Py P, 200
P,y Py Py Py P, 200 ( 4- 4)
P=| Py P, Py Py Ps 200

P30,1 P30,2 P30,3 P30,4 """ P30, 200

The MATLAB function used to create the received powatrix is:

89



function[Pr]=RxPower(PUFreq, numSU, PUGt, SUGr, DistSPnr,LPt)
%Created by Maj Rizwan Akhtar, MSEE-13, CollegeéSafnals, NUST.
%Convert PUFreq into Hz from kHz
PUFreq=1000*PUFreq;
%Compute the wavelength PUlambda by dividing freq b
PUlambda=c./PUFreq;
idx5=1;
for g=1:1:numSuU
Pr(idx5,:)=(Pt.*PUGt.*SUGr.*PUlambda."2)./((43p2.*DistSPm(idx5,:).*L);
idx5=idx5+1;
end
Pr; %Received Power at SUs with rows correspondindt@®d columns corresponding to
each PU.
%We now apply equalization:
idx6=1;
for k=1:1:numSU
Pr(idx6,:)=Pr(idx6,:)./PUlambda."2;
idx6=idx6+1;
end
Pr% Received Power after applying equalization

Equalization in the above mentioned function hasnbapplied to cater
for large bands. If we are sensing relatively semddlands, such as 50MHz, then
this part of the function can be converted to rdemarhe resultant matrix Br.

The next step is to create association betweeretteved power and the
corresponding elements of the frequency veatéreq on the basis of the
frequency assigned to each PU. This is the fingh $b the creation of the

spectrum.

function[PUFreqMHz PUFregkHz PrSU vFreq]=CreateSpectrunied, numSuU, vFreq,
numPU, Pr)
% Created by Maj Rizwan Akhtar, MSEE-13, Collegé&afnals, NUST.
PUFreqMHz=PUFreq/1000sCreates a vector of PU freq in MHz
PUFregkHz=PUFre¢cCreates a vector of PU freq in kHz
PrSU=zeros(numSU,length(vFreq));
for s=1:numPU
for t=1:length(vFreq)
if vFreq(t)==PUFregkHz(s)
PrsuU(:,t)=Pr(;,s);
end
end
end
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Having performed this step, we have simulated geetsum in the given
band. The matri¥rSUis 30x2001. Each row of this matrix correspondsirto
SU. This is the individually sensed spectrum ohe@U.

4.2 Simulation of Proposed M ethodology: Having simulated  the
spectrum, we then proceed to simulate our proposethodology. The first
phase, as already explained in the previous chaptardividual sensing. The
outcome of this phase is energy detection on tleived spectrum. This
performs simple hypothesis testing to ascertainpifesence or absence of a
valid PU signal. It is carried out on each elemehthe matrixPrSU. As a
result of this step, we achieve a binary matrixwhich ‘1’ indicates the
presence of a PU and ‘O’ indicates its absence. MTAG@LAB function that

performs this is:

function[Sensed SenseCount tocl]=GlobalSensing(numSUgyPrSU, PrThresh)
% Created by Maj Rizwan Akhtar, MSEE-13, CollegeSafnals, NUST.

tic
Sensed=zeros(humSU,length(vFreq));
for d=1:numSuU
for e=1l:length(vFreq)
if PrSU(d,e)>PrThresh
Sensed(d,e)=1;
end
end
end
for g=1:numSu
SenseCount(g)=sum(Sensed(g,:));
end
SenseCount
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'Global Spectrum Sensing'
tocl=toc

Through this function, we were able to compare edement ofPrSU with the
predefined threshold for sensing, which was assumé -114 dBm. We also
proceeded to count the number of PUs sensed by ®dchnd the total time
taken in this ‘global’ or peer-based sensing precédl this stage, the entire
sensing process is non-cooperative.

In the next step, we carried out pair-wise binayaciance of the sensed
results of all the SUs. The procedure for simutaivas in accordance with the
outline given in the previous chapter. We were dblereate theANDMatrix
and theXORMatrix Together these define the correlation and theamance,
respectively, for binary data. We used the follayviiunction to perform the

binary covariance:

function[ANDMatrix XORMatrix]=BinaryCovariance(numSU,TC)
% Created by Maj Rizwan Akhtar, MSEE-13, College&Sanals, NUST.

for k=1:numSuU
for I=1:numSU
ANDMatrix(k,l)=sum(TC(k,:)&TC(l,>));
XORMatrix(k,l)=sum(xor(TC(k,:),TC(l,:)));
end
end

The XORMatrixhad zeros on the diagonal (row=column). As sudk,a
square form matrix and can be used for grouping.thkig purpose, we have

used the built-in clustering function of MATLAB waon 7.3.0. First we
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identified theXORMatrixas a square form matrix to MATLAB. Then we used
the singldinkagefunction as per the Johnson algorithm [90]. Wenthsed the
clusterfunction of MATLAB to perform clustering witihaxclustparameter set
to 30% of the total number of SUs. This identifitbe point at which the

hierarchical tree is to be cut. The function usadHis purpose is:

function[X1 X2 Groupl I1]=Grouping(SUxy, XORMatrix, maxgpUx, PUy)
%Created by Maj Rizwan Akhtar, MSEE-13, Collegesafnals, NUST.
%Grouping on the basis of received spectrum
X1=squareform(XORMatrix);
X2=linkage(X1);
Groupl = cluster(X2naxclustmaxgp);
SUxy'
Groupl'
figure,dendrogram(X2),titl&Spectrum based grouping'
I1=inconsistent(X2);
%Create plot (Spectrum Based Grouping)
figure,axis ([0 30 0 30])
scatter(PUXx, PUy;+','g),title (Spectrum Based Groupijg'
for i=1:maxgp
idx=find(Groupl1==i);
x=SUxy(idx,1);y=SUxy(idx,2);
text(x,y,num2str(i);olor,'r"),holdon
end
hold off

This grouping function also created two separate figures. Tist fis the
dendrogram, which is a depiction of the groupinghi@ form of a hierarchical
tree. For the parameters described above, the agradn that was created is in
Fig.21. The x-axis of the plot identifies the SUnher and the y-axis represents

the covariance distance that was used to creatgrdgping.

93



Spectrum based grouping
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Fig.22. Hierarchical Tree Dendrogram

On the basis of this dendrogram, ttlaster function created groups of SUs.
The grouping can be seen in Fig.23. The greemtdiciate the PUs whereas the

numbers signify the grouping of the SUs.
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apectrum Based Grouping
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Fig.23. Grouping of SUs

The next phase was the tasking of groups. Forpilnipose, we selected
two groups. The first was the largest one and ¢leersd was the group that had
an average size. Since the members of a groupighdst correlation in terms
of sensed spectra, therefore each member withigtbep was tasked non-
overlapping parts of the frequency band to be senBeus the frequency band
of 50 MHz was split into sub-bands. The size ohesub-band was 50MHY,

whereM was the number of members in the respective grotpslo this, we
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first defined the new band to be sensed. Then weath the performance of
group based CSS on the new smaller band. The gepiiness was also timed.
In the end, the number of sensed PUs by each Salst counted. The

MATLAB function that was written to perform thisriation is:

function[NewBand NewLow NewHigh NewLen NewSensed NewSenseC
toc2]=groupCSS(HighFreq,LowFreq,maxMembers,numSELRPrThresh)
% We consider the largest group to show optimunS3
NewBand=round((HighFreg-LowFreq)/maxMembers)
%We define the lower freq limit for CSS FD in tleedest group assigned to
%the first CSS node:
NewLow=LowFreq
%We define the higher freq limit for CSS FD in thegest group assigned
%to the first CSS node:
NewHigh=floor(NewLow+NewBand)
%Now we create the new frequency band (smaller)
idx=1;
for v=NewLow:25:NewHigh
NewFreq(idx)=v;
idx=idx+1;
end
NewFreq;
NewLen=length(NewFreq);
%We now perform CSS FD on this new band
tic
NewSensed=zeros(humSU,NewLen);
for d=1:numSuU
for e=1:NewLen
if PrSuU(d,e)>PrThresh
NewSensed(d,e)=1;
end
end
end
'FD CSS'
toc2=toc
for g=1:numSu
NewSenseCount(g)=sum(NewSensed(g,:));
end

The final process of our technique is the fusibrthe results. An error

(missed PUs) is also computed in terms of percentag
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43 Resaultss The MATLAB simulation designed to implement our
proposed methodology, also included comprehenanatysis functions. The
objective was to verify the mathematical resultse Tesults included:

4.3.1 Analysisof Grouping: The proposed methodology is based on
grouping of SUs. Therefore, an analysis of theatifeness of the grouping is
of paramount importance. The function written forstpurpose, carried out
analysis of results obtained in twenty repetitiarisour methodology. Each
repetition entailed fresh random placements of Rldd SUs as well as

frequency assignments. The MATLAB function credtmdhis purpose is:

%Analysis File

%Maj Rizwan Akhtar, MSEE-13

clearall

closeall

clc

Repetitions=20;

for ct=1:Repetitions
[maxMembers minMembers medianMembers meanMesridewHigh NewLow

CSSTime FDCSSTime FDCSSAvgTime C1 ErrorSensedpesis();
MaxGpSize(1,ct)=maxMembers;
MinGpSize(1,ct)=minMembers;
MedianGpMembers(1,ct)=medianMembers;
AvgGpMembers(1,ct)=meanMembers;
NewBand(1,ct)=NewHigh-NewLow;
Cophenet(1,ct)=C1;
ErrorPercent(1,ct)=ErrorSensed,;
GlobalSenseTime(1,ct)=CSSTime;
GroupSenseTime(1,ct)=FDCSSTime;
AvgGroupSenseTime(1,ct)=FDCSSAvgTime;

end

MaxGpSize

MinGpSize

MedianGpMembers

AvgGpMembers

NewBand

Cophenet
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ErrorPercent

GlobalSenseTime

GroupSenseTime

AvgGroupSenseTime
figure,bar(MaxGpSizePisplayNamg"MaxGpSizg''YDataSource"MaxGpSize);
figure(gcf),title(Size of Largest Group'
figure,bar(AvgGpMembersDisplayNamg"AvgGpMembers"YDataSource'
'AvgGpMember3; figure(gcf),title(Average Group Size'
figure,bar(NewBandDisplayName"NewBand, 'Y DataSource"NewBand);
figure(gcf),title(Scanned Band in KHz by Group Membgrs'
figure,bar(CophenetDisplayName"Cophenet"YDataSourcg"Cophene};
figure(gcf),title(Cophenet Correlation Coefficient
figure,bar(ErrorPercenisplayNameg"ErrorPercent"YDataSource"ErrorPerceny;
figure(gcf),title(Percentage of Missed PYs'
figure,bar(GlobalSenseTim&isplayNameg"GlobalSenseTimg"yDataSource'
'‘GlobalSenseTimg'figure(gcf) title(Time Taken for Peer Based CES'
figure,bar(GroupSenseTim®isplayNameg"GroupSenseTimegYDataSource'
'GroupSenseTimg'figure(gcf),title(Time Taken for Group Based CSS of Max Group pize'
figure,bar(AvgGroupSenseTim&isplayNameg"AvgGroupSenseTimgY DataSource'
'AvgGroupSenseTimg'figure(gcf),title(Time Taken for Group Based CSS of Avg group
Size)

Our analysis included:

4311 Cophenet Analysis: In the hierarchical cluster tree, any two
SUs in the original data set are eventually linkeglether at some level. The
height of the link represents the distance betwhertwo clusters that contain
those two SUs. This height is known as the cophemistance between the
two SUs. One way to measure how well the clustee tgenerated by the
linkagefunction reflects the data set is to compare tphenetic distances with
the original distance data generated by the binawariance. If the clustering is
valid, the linking of SUs in the cluster tree shlibbhve a strong correlation with
the binary covariance between pairs of SUs. d¢tyghenetfunction compares

these two sets of values and computes their ctioe)aeturning a value called

the cophenetic correlation coefficient. The cloger value of the cophenetic
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correlation coefficient is to 1, the more accunmatéhe clustering solution
reflects the data. To verify this, we created aalysis function that performed
twenty repetitions of the methodology. Each repmetitnvolved a fresh random
placement of all the PUs and SUs as well as thequiency assignments. The

results of the cophenet analysis are in Fig.24.

Cophenet Correlation Coefficient
Dg T T T T

25

Fig.24. Cophenet Analysis in 20 Repetitions

It was observed that the cophenet correlation moefit was mostly

above 0.6, indicating a reasonably good degreecafjing.
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431.2 Maximum Group Size: Using the same analysis function, we
observed the maximum size of groups. The maximwumsize ranged from 6
to 15 members. In the case of 15 members, the oephgas below 0.5,
therefore this was not effective grouping. In dler cases (19 out of 20), the
maximum group size was quite realistic affordingasonable utilization of the

grouping to achieve effective FD CSS. The resuh i8ig.25.

oize of Largest Group
15 T T T

24

Fig.25. Size of Largest Group

43.1.3 Average Group Size:  In all cases, the average group size was

observed to be 3. This was because of the clugtaligorithm, which had a
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maximum cluster cutoff based on 30% of the totahbar of SUs. The average

group size observed in 20 repetitions is showngi2e.

Awarage Group Size

25

Fig.26. Average group size in 20 repetitions

4.3.2 Agility Gain: Since the frequency band was divided into sub-bands
for FD CSS within groups, therefore we were abladhieve an enhancement
in agility. The new, smaller bandwidth that wassaghin twenty repetitions is
shown in Fig.27. Agility in terms of sensed freqogrband is assessed by
comparing the time taken in a peer based CSS sclieime8) with our FD

CSS (Fig.29) methodology. The time taken in a grofi@verage size is in
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Fig.30. It can be observed that we were able teegehan agility gain in terms
of reduction in sensing time. The FD CSS time foe targest group was
approximately 10% of the time taken for peer ba€&8S. Similarly, the FD

CSS time for the average sized group was 23% diirtieetaken for peer based

CSS.
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Fig.27. Sensed bandwidth in kHz by each membargést group
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” 10-3 Time Taken for Peer Based C35
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Fig.28. Time taken for peer based CSS (without gjra)

w1t Time Taken for Group Based C35 of Max Group Size
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Fig.29. Time taken for our group based FD CSS nusilogy with largest group
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Fig.30. Time taken for our FD CSS scheme with amaage group size of 3 members

4.3.3 Sensing Error:  In order to establish the accuracy of our propdss&

methodology, we analyzed the percentage of mistkdadd compared it with
the peer based sensing. We were able to achievaryalaw percentage of
missed PUs (Fig.31) and this percentage was colnlgai@the sensing error in
peer based sensing. The missed PUs were mostigrsusind were missed in

both cases. The results in this regard were:
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Fig.31. Percentage of missed PUs in our proposeithoa®logy
4.3.4 Tes of Frequency Change of PU: In order to assess the effectiveness

of our technique in the event that a PU shifts ey, we created a function
that would analyze the results after a PU shii$reéquency. The results proved
that there was no change in the grouping afterfteguency shift. The function
analyzed the results in four repetitions. In eagetition, the frequency of the
first PU was changed.

4.35 Test of Mobility Tolerance:  Mobility of the PUs or SUs directly
affects the grouping. This is because the distireteeen the respective nodes

iIs changing. However, it was observed that the gray was reasonably
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tolerant to motion, as long as the moving entity "ot encounter fading. This
implied that the correlation distance was reasonkdrhe at these frequencies.
To test this, a MATLAB function was written thatrfirmed five repetitions of
our algorithm after modifying the position of onktlee SUs in increments of 1
km. Out of the five repetitions, the grouping wasimtained in two-three
repetitions (2-3 km). In a more complex scenanoyhich multiple entities are
moving, some form of machine learning algorithm nheaye to be applied to
predict grouping and increase the correlation dtaThis, however, is beyond
the scope of this work.

44 Summary of Resultss CSS techniques can address numerous
problems associated with CR networks. We have deedl a technique for
grouping and tasking of CSS nodes on the basiseo$¢nsed environment. The
achieved results have shown that our technique remsunear-optimal
information gain while obtaining a quantum leapamility with an accuracy

that is close to the peer-based CSS.
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CHAPTER — 5

5. Conclusion and Future Work

In this dissertation, we have proposed a novdirtiegie for CSS that is
based on grouping of secondary CSS nodes. Nowlachieved through the
incorporation of correlation metrics to establigte tgrouping. In the past,
grouping had been recommended, however no tesitediaifor establishment
of groups was ever suggested. By basing our grgupmthe sensed spectra of
each SU, we have been able to ensure that the memlihin a group are
highly correlated. This high degree of correlatadlows us to resort to sensing
of non-overlapping bands within the groups. Assalteof this, the workload on
each sensing node within a group is reduced. Tdectmn of workload implies
consumption of lesser processing power as welessel time. Depending on
the network design requirements, this advantagebeaaxploited to enhance
agility (as has been done by us) or to increasesdresed bandwidth. Our
grouping technique further ensures that the cdroglabetween groups is
minimum, thus allowing us to gain maximum advantdgen cooperation
diversity to achieve near-optimal information gain.

We have compared our results with peer-based catpe, in which all

sensing nodes act as peers and then fuse theltsras@a centralized fashion.
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We were able to achieve a quantum jump in termegdity without incurring
any cost in terms of accuracy. We were also ablactoeve a high degree of
information gain through cooperation between highiyerse groups.

CSS will form an essential part of the deploymehtany future CR
network. Grouping of CSS nodes is the next loggtep due to its inherent
advantages. While our work establishes these aalgastcomprehensively,
there is still a dire need to continue researchimarea.

This work is a humble endeavor to extend the rgwailary vision of Dr.
Joseph Mitola. Dr. Mitola incorporated the concepitsnachine learning and
knowledge representation with the software radaifpim. The result was the
CR concept. Future work in this area could utiltre machine learning
capabilities of CR to achieve a high degree of tatality in the proposed
grouping. Such an adaptive grouping would allow G®8es to modify the
grouping on the basis of estimation of motion afiwdual entities including
PUs and SUs.

Further optimization of this algorithm can be adesed in terms of the
technigque used for grouping. There are numerousiligns in this regard. In

our proposed strategy, we used hierarchical clastetue to its suitability to
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our data set. This type of clustering has certamitdtions in terms of
complexity. Lower complexity algorithms may be ajza&d in future work.

Another area of possible future research is theeldpment of protocols
to support this methodology. Protocols designedsupport our proposed
grouping-based CSS technique would be based upenMidium Access
Control (MAC) layer as well as the physical layBuitable cross-layer designs
would have to be developed.

Research is an ongoing process and this work rohbyeans concluded,
rather it is hoped that it will serve as a founolatfor future endeavors in this

important field.
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