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ABSTRACT

Diabetic Retinopathy (DR) is a serious complication of diabetes that can lead to blind-
ness if not detected early. Diabetes, along with diabetic retinopathy, is associated with
causing harm to the eyes, characterized by the leakage of blood vessels damaging the
retina, leading to microaneurysms (MA), hard exudates (HE), and soft exudates (cot-
ton wool spots). As a chronic condition, DR poses a growing challenge worldwide,
often resulting in visual impairment or blindness if left undiagnosed. Early detection
is crucial, yet challenging, as symptoms manifest only after signi�cant retinal changes
occur. This study investigates the e�ectiveness of a multimodal approach using ma-
chine learning classi�ers for the early detection of DR, employing both binary and
multiclass classi�cation methods. We utilized K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), and ResNet-50 algorithms to classify retinal images. In binary
classi�cation, designed to distinguish between DR and non-DR images, KNN achieved
an accuracy of 88%, SVM reached 92%, and ResNet-50 outperformed both with an
accuracy of 98%. These results demonstrate the potential of machine learning, par-
ticularly deep learning with ResNet-50, in accurately identifying the presence of DR.
For multiclass classi�cation, which aims to classify images into di�erent stages of DR
(no DR, mild, moderate, severe, and proliferative DR), KNN achieved an accuracy of
70%, SVM achieved 71%, and ResNet-50 achieved the highest accuracy of 82%. The
study's �ndings highlight the superior performance of ResNet-50 in both binary and
multiclass classi�cation tasks, suggesting its suitability for automated DR screening
systems. The implementation of such advanced machine learning models can aid in
early diagnosis, thus facilitating timely treatment and potentially preventing vision loss
in diabetic patients.

Keywords: Diabetic retinopathy, classi�cation, machine learning, SVM, ResNet-50,
Exudates, microaneurysms, blood vessels.
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Chapter 1

INTRODUCTION

The eye is unquestionably a signi�cant part of the human body. In the context of
human existence, the value of the human eye is enormous. Our eyes, which are the
main visual organs, are essential to both our daily activities and general wellbeing.
One of our most important senses, vision enables us to interact and perceive the world
around us. The eye's relevance extends into disciplines like ophthalmology and vision
science, where work is done to improve and preserve its function, as a subject of ongo-
ing research and medical developments.

A critical area of research in contemporary healthcare is the early diagnosis of dia-
betic retinopathy using machine learning classi�ers. The primary factor contributing to
blindness in diabetic patients is diabetic retinopathy, and early identi�cation is essen-
tial for successful treatments. Automating the detection and classi�cation of diabetic
retinopathy from retinal images has shown tremendous potential when combined with
modern image processing algorithms. This study not only showcases the signi�cant
potential for arti�cial intelligence in revolutionizing healthcare but also underscores
the profound positive in�uence it can exert on patients well-being by enabling early
and precise disease identi�cation and classi�cation.

1.1 Machine Learning in Medical Imaging

In the �eld of medical imaging, machine learning and deep learning have become crucial
tools transforming diagnostic and therapeutic procedures. Machine learning automat-
ically extracts complex patterns and data from images generated by modalities like
X-rays, CT scans, and MRIs, aiding radiologists and physicians in prompt and accu-
rate diagnoses, especially for diseases like cancer where minor irregularities may be
imperceptible. Deep learning, a subset within the realm of machine learning, excels in
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medical imaging by employing neural networks with multiple layers, particularly con-
volutional neural networks (CNNs), which revolutionize tasks like image segmentation,
feature extraction, and classi�cation. CNNs are instrumental in tumour identi�cation,
organ segmentation, and image generation, enabling unparalleled precision in diagnosis
and treatment planning. Despite the remarkable progress, the expansion of data sets
in the past decade has strained processors and hardware capacity, impeding machine
learning algorithms' processing within projected timelines. These algorithms utilize
feature matrices to classify data precisely when supplied with relevant characteristics,
particularly in assessing the high-dimensional properties of medical images. The ad-
vancement of multimedia data, including image, text, video, and audio, underscores the
need for stronger search engines, especially in �elds like education, medicine, and enter-
tainment. However, the scarcity of publicly available medical data impedes progress,
although recent advancements have updated medical science, facilitating the diagnosis
of illnesses like skin, lung, breast, eye, and blood cancer using conventional procedures.

The future of healthcare is quite bright when machine learning and deep learning
are combined in medical imaging. These technologies allow for not only quicker and
more precise diagnosis but also the possibility of individualised treatment strategies and
illness progression prediction modelling. The incorporation of arti�cial intelligence into
medical imaging is poised to improve patient care, outcomes, and drive advancements
in the comprehension and management of a range of medical problems as the area con-
tinues to develop. A critical area of research in contemporary healthcare is the early
diagnosis of diabetic retinopathy using machine learning classi�ers. The major cause
of blindness in patients with diabetes is diabetic retinopathy, and early identi�cation
is essential for successful treatments. Automating the detection and classi�cation of
diabetic retinopathy from retinal images has shown tremendous potential when com-
bined with modern image processing algorithms. This study not only showcases the
signi�cant potential for arti�cial intelligence in revolutionizing healthcare but also un-
derscores the profound positive in�uence it can exert on patients well-being by enabling
early and precise disease identi�cation and classi�cation.
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Figure 1.1: Diverse applications of medical imaging, including X-rays, MRI, ultra-
sound, and PET scans, showcasing their pivotal role in diagnosing and treating vari-
ous medical conditions.

1.2 An Overview of Diabetic Retinopathy

According to the World Health Organization, diabetes a�ects over 347 million people
worldwide and is going to be the seventh dominant cause of mortality by 2030. Di-
abetes patients tend to develop retinal irregularities over time as a result of a recent
problem called diabetic retinopathy. A person over 30 who has had diabetes for more
than �fteen years is 78% likely to develop diabetic retinopathy. Diabetic Retinopathy
is caused by a long history of diabetic Mellitus. Retinopathy is the term for injury to
the retina that results in choking, leaking, and irregular blood vessel growth. Diabetic
Retinopathy is asymptomatic; it does not a�ect vision until it reaches the advanced
stage. As a result, screening for diabetic retinopathy is critical.

Diabetic retinopathy, or diabetic eye disease (DED), is a condition where there is
damage to the retinal blood vessels of the human eye. The term Retinopathy refers to
damage in the blood vessel of the retina, which is the light-receptive membrane of the
eye. The most prevalent cause of visual impairment or loss of vision in diabetic people
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is diabetic retinopathy, a common illness. It is the third most deadly illness, behind
cancer and heart disease. "Diabetic Retinopathy" is one of the e�ects of diabetes,
however it a�ects most of the body's organs. Diabetic retinopathy a�ects the patient
after damage to the vessels of the retina, as illustrated in Figure 1.2

Figure 1.2: A Visual Exploration of Eye Complications Caused by Diabetes

1.2.1 Diabetic Retinopathy

Diabetes-related retinal illness in humans is called diabetic retinopathy (DR). It is
a microvascular complication of diabetes that results from long-term elevated blood
sugar levels harming the retina, which is a crucial component of the eye that provides
vision. DR is among the leading factors contributing to blindness in those between the
ages of 25 and 74 worldwide. The most common reason for blindness among people
of working age in developed nations is diabetic retinopathy. It is intimately correlated
with diabetes mellitus and results in structural alterations in the retina that cause ir-
reparable damage. The medical retinal exam is expensive in terms of time and human
resources because it must be done on a frequent basis for diabetic patients.
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Figure 1.3: Variation in blood vessels including dilation, constriction, and irregular
branching occur in the retina, resulting in impaired vision and serving as important
indicators of disease advancement

Figure 1.4: comparison of the visual acuities of a healthy individual and a patient
with diabetic retinopathy

Diabetes mellitus (DM) is the primary cause of diabetic retinopathy, a type of dis-
ease that a�ects the retina due to elevated blood sugar. The blood supply is cut o�
as a result of the blood cells' circulation in the retina blocking blood vessels. As a
result, the eye creates new blood vessels to nourish the retina, but these vessels grow
improperly and soon start to leak, which can potentially cause blindness. Figures 1.3
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and 1.4 illustrate the di�erences between the DR and normal eyes as well as the visual
impairments that DR patients face.

Consequently, a request has been made for an automated detection method that
would assess the retinal images automatically and send only the patients who were
a�ected to the ophthalmologist. This could lead to quicker patient diagnosis and less
e�ort for the medical sta�. The goal of this study is to create a machine learning
algorithm-based approach to solve the Kaggle Diabetic Retinopathy Detection chal-
lenge, which involves detecting diabetic retinopathy using digital colour fundus pho-
tographs of the retina. Clinical studies indicate that DR progresses through �ve stages.
Table 1.1 lists the DR stages in the fundus eye along with associated clinical symptoms.

DR stages DR Classi�cation Clinical Signs
0 Normal No abnormality
1 Mild Microaneurysms only
2 Moderate Microaneurysms, hard/soft exudates, hem-

orrhages
3 Severe All abnormalities are observed at all four

quadrants
4 PDR Abnormal growth of blood vessels with all

abnormalities at all four quadrants

Table 1.1: Diabetic retinopathy progresses through stages marked by microa-
neurysms, hemorrhages, venous beading, intraretinal abnormalities, and neovascu-
larization.

1.2.2 Stages of Diabetic Retinopathy

It is a degenerative eye disorder that occurs in four stages and two types. There are two
categories: proliferative and nonproliferative. Nonproliferative disease is in its early
stages, while proliferative illness is a more advanced kind.

1.2.2.1 Mild Non-Proliferative Diabetic Retinopathy

This is the �rst stage of diabetic retinopathy, which is identi�ed by tiny blood vessel
enlargements in the retina. These enlarged areas are the �rst stage of microaneurysms,
also known as background retinopathy. At this stage, the macula may enlarge due to
minute quantities of �uid seeping into the retina. This is quite close to the middle of
the retina.
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1.2.2.2 Moderate Non-Proliferative Diabetic Retinopathy

Another name for the second stage is pre-proliferative retinopathy.The blood supply
to the retina is disrupted due to an increase in the size of tiny blood vessels, which
complicates the retina's regular feeding process. The macula clogged with blood and
other �uids as a result.

1.2.2.3 Severe Non-Proliferative Diabetic Retinopathy

Another name for this is proliferative retinopathy. At this point, a greater portion of
the retina's blood vessels block, signi�cantly reducing the amount of blood �owing to
this region. The body now gets signals to begin producing new blood vessels in the
retina.

1.2.2.4 Proliferative Diabetic Retinopathy

At this point in the disease's progression, the retina is starting to develop new blood
vessels. There is an increased chance of �uid leakage since these blood vessels are
frequently brittle. This can lead to a variety of visual issues, including fuzziness, a nar-
rower range of vision, and even blindness. The stages of diabetic retinopathy Normal,
Mild, Moderate, Severe, and Proliferative are depicted in Figure 1.5.

Figure 1.5: Retinal images depicting diabetic retinopathy with varying disease
grades, showcasing the spectrum of severity and progression
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1.2.3 Causes of Diabetic Retinopathy

Long-term elevated blood sugar levels in diabetics are the cause of diabetic retinopathy.
Overconsumption of blood sugar can eventually clog the tiny blood vessels that nourish
the retina, preventing blood �ow to the area. As a result, the eye tries to grow new
blood vessels.However, the improper development and easy leakage of these new blood
vessels can result in further loss of vision.

1.2.4 Symptoms of Diabetic Retinopathy

Symptoms of diabetic retinopathy are usually nonexistent in the early stages. When
an illness is further advanced, symptoms typically take longer to manifest. Diabetic
retinopathy usually a�ects both eyes. The warning signs and symptoms of this illness
may include

1. Blurred or distorted vision

2. Di�culty seeing at night

3. Floaters or spots in the visual �eld

4. Abrupt loss of eyesight in one or both eyes

5. Changes in color perception

6. Poor color vision

7. Eye pain or pressure

8. Fluctuations in vision

It's important to note that in the early stages of diabetic retinopathy, there may be
no noticeable symptoms. That's why it's important for people with diabetes to have
regular eye exams with an ophthalmologist or optometrist to check for any signs of
diabetic retinopathy or other eye conditions.

1.2.5 Risk Factors

Every diabetic has the potential to develop diabetic retinopathy. The prevalence of
the disorder in the eyes may be increased by the following factors:

1. Duration of diabetes

2. Poor control of blood sugar
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3. Elevated blood pressure, or hypertension

4. High cholesterol

5. Pregnancy

6. Smoking or using tobacco products

7. Genetics - a family history of diabetic retinopathy or diabetes can increase the
risk of developing the condition.

8. Obesity or being overweight

It's essential to keep in mind that while these factors may increase the likelihood of
developing diabetic retinopathy, not all people with diabetes will develop this condition.
To lower the risk of diabetic retinopathy and other issues connected to diabetes, it is
essential to properly control and monitor blood sugar levels, have eye exams on a
regular basis, and lead a healthy lifestyle.

1.3 Classi�cation

Classi�cation is under the supervised learning method which is concerned with devel-
oping a model for variable prediction. The response variable only deals with categorical
or qualitative data while the explanatory variables can be quantitative or qualitative.
Classi�cation techniques are also named Classi�ers.

Figure 1.6: This �gure illustrates a gray scale image in a high-dimensional space,
where each axis (x1, x2, . . . , xn) reveals detailed layers of grayscale imagery.
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Since the classi�cation works based on vectors, so �rst step is to read the images
and transform every image into a vector of pixel values. An image having N pixels in
an N-dimensional space is described by a vector and also it is assumed that it is a gray
scale image as shown in Figure 1.6. The pixel value is the weight of each dimension.

Figure 1.7: This �gure demonstrates the classi�cation of three di�erent images.

The goal is to split the �lled dots from the un�lled circles in Figure 1.7. The boundary
is almost linear on the left side of the �gure, but some points are not correctly clas-
si�ed. The right image of the �gure has no errors, but the classi�er is quite complex.
Finally, the middle image is a compromise between both extremes, and the classes are
separated e�ciently.

Classi�cation requires training datasets for modeling purposes. A model uses that
training data set which gives the most accurate representation of the problem to cal-
culate input data to specify class labels. For the classi�cation of disease, a critical area
of research in contemporary healthcare is the early diagnosis of diabetic retinopathy,
the fundas images are the most demanded medical examination owing to their e�ec-
tiveness. Classi�cation involves four classes, No DR, Mild DR, Moderate DR, Severe
DR and Proliferative. Our research problem is to classify disease and to map unique
numeric values for each class. In classi�cation tasks, classes can be divided into di�er-
ent types according to the number and nature of the classes involved.These di�erent
types of classes in classi�cation highlight the varying complexities and characteristics
of classi�cation tasks. The selection of the appropriate type of classi�cation relies on
the nature of the problem, the available data, and the speci�c goals of the application.
The commonly used types of classes in classi�cation are:

1.3.1 Binary Classi�cation

In machine learning, binary classi�cation falls under the category of supervised learning
since it is supported by high-quality training data that includes examples from two
classes and labels each example as either class 0 or class 1 using a set of feature
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values. In order to predict the unobserved binary labels of new instances from their
seen feature values, a binary decision rule is �rst built using the training data. A
broad class of algorithms that automatically learn prediction rules from training data is
represented by binary classi�cation [1]. Classifying incidents into one of two categories,
typically expressed as 0 or 1, positive or negative; true or untrue; etc. is the aim. For
applications like email spam detection, sentiment analysis, and medical diagnosis, this
kind of categorization is employed.

Figure 1.8: Multiclass classi�cation makes decisions across several categories by nav-
igating through a spectrum of options, whereas binary classi�cation concentrates on
di�erentiating between two classes.

1.3.2 Multi-class Classi�cation

The term "multi-class classi�cation" describes machine learning classi�cation problems
involving more than two classes. Performance measures are very useful for compar-
ing and assessing di�erent machine learning techniques or categorization models [2].
Sorting instances into one of several classes is the aim of this kind of machine learning
classi�cation problem. This kind of classi�cation is used for jobs such as photo, text,
and audio recognition classi�cation.

1.4 K-Nearest Neighbour (KNN)

It is a very simple, easy to understand, and versatile machine learning algorithm. One
of the core machine learning techniques is K Nearest Neighbour. Evelyn Fix and Joseph
Hodges pioneered the development of the k-nearest neighbors algorithm in 1951, intro-
ducing the concept of utilizing the closest neighboring data points to make predictions
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or classi�cations. Machine learning models forecast output values based on a variety
of input values.

It is a type of supervised machine learning algorithm used for both regression and
classi�cation. However, it is mainly used for classi�cation predictive problems in indus-
try. The classi�cation of the data point depends on the classi�cation of its neighbor.
KNN tries to predict the correct class for the test data by measuring the distance be-
tween each training point and the test data. The K locations that are closest to the
test data should then be selected.

Figure 1.9: Before and After KNN

1.4.1 How does KNN work?

It utilizes "feature similarity" to forecast the values of new data points, also indicating
that the new data point's value will depend on how similar it resembles the point in the
training set. We may comprehend how it functions by taking the subsequent actions.
By doing the following, we can understand how it operates.

1. Any method implementation requires a data set. Thus, we also need to load the
training and testing data during the �rst KNN stage.

2. The next step is to �nd the value of k, or the closest data points. Any integer k
is possible.
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3. To calculate the distance, use any of the following techniques: Manhattan, Eu-
clidean, or Hammering distance is the di�erence between each row in the test and
training data. The most used approach for calculating the distance is Euclidean.

4. For these k neighbours, �nd the total number of data points in each category.

5. Allocate the newly acquired data points to the group with the highest neighbour
count.

6. The model is ready.

Figure 1.10: Working of KNN

1.4.2 How to determine the value of k?

Selecting the optimal "k" value can be a trial-and-error process since there's no de�ni-
tive method to determine the best choice. However, a commonly favored value for k is
5. To determine the suitable k value for our data, we conduct multiple iterations of the
KNN algorithm using di�erent k values. We evaluate the performance using accuracy
as our metric. If accuracy varies in proportion to changes in k, it indicates a promising
choice for our k value.

1.4.3 Distance Metrics Used in KNN Algorithm

Several distance measurements are commonly used in the K-nearest neighbours algo-
rithm to determine the level of similarity or dissimilarity among data points. The choice
of a particular distance metric, which is contingent upon the properties of the data and
the particular task at hand, can signi�cantly impact the algorithm's performance. In
KNN, some of the distance measures that are commonly used are:
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1.4.3.1 Euclidean Distance(L2 Distance)

In KNN, this is the most often utilised distance metric. In Euclidean space, it deter-
mines the straight-line distance between the two points. The Euclidean distance for
two points in a two-dimensional space, (x1, y1) and (x2, y2), is as follows:

d(x1, x2) =
√
(x2 − x1)2 + (y2 − y1)2 (1.1)

1.4.3.2 Manhattan Distance (L1 Distance)

It determines the distance by adding the absolute di�erences between coordinates along
each dimension; it is also referred to as the taxicab distance or city block distance. In
two dimensions, it is represented by:

d(x1, x2) = |x2 − x1|+ |y2 − y1| (1.2)

1.4.3.3 Hamming Distance

Comparing binary or categorical data is the main application for this distance metric.
The number of points at which two binary strings diverge is counted. The properties
of the data and the speci�c issue at hand determine which distance measure is best for
KNN. Generally, experience in the relevant �eld and testing lead the selection of the
most appropriate distance metric.

1.5 Support Vector Machine (SVM)

It is a supervised machine learning algorithm originally proposed by Cortes and Vap-
nik, are powerful models widely employed for classi�cation and regression tasks. SVM
is particularly popular in the �eld of machine learning because it can handle data that
is high-dimensional and e�ectively classify both linearly and non-linearly separable
datasets.

"Multi-class classi�cation" in machine learning refers to classi�cation tasks involv-
ing more than two classes. Performance measures are also very helpful for comparing
and assessing di�erent machine learning or classi�cation models. [2]. The objective of
this sort of machine learning classi�cation issue is to place instances into one of many
classes. For tasks like speech recognition, text classi�cation, and image classi�cation,
this form of classi�cation is employed. Multi-class classi�ers can be easily obtained by
using many binary classi�ers. There are two well-known methods: �one versus All� and
�pairwise classi�cation� (or �one versus one�).
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1. One vs. All: Utilises M classi�ers if the number of classes is M. Each of these
classi�ers has been taught to distinguish one class from every other class. The
class for which the answer is higher is the ultimate outcome.

2. One vs. One: For every pair of classes, a classi�er is trained, and the class is
chosen using a voting mechanism.

Although the �rst option appears to be simpler because there are fewer binary classi-
�ers, but this is not always the case. A separation between each pair is easier to �nd
than a separation between one class and all the others. Therefore, even if it must train
M(M−1)

2
classi�ers in place of M classi�ers, the "one versus one" classi�er can still be

faster than the "one versus all".

Examine the image below as an illustration of a three-class categorization issue:
green, red, and blue.

Figure 1.11: A three-class classi�cation scenario in SVM, with distinct data points
representing di�erent classes

The following results are achieved when the two approaches are applied to this data
set:

A hyperplane is required to divide each class into two according to the One-to-
One approach, which ignores the points in the third class. This suggests that the
separation takes into account only the points from the two classes in the current split.
For instance, the red-blue line aims to maximise the distance between the blue and red
points only. It has nothing to do with green points.
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Figure 1.12: One-to-One SVM method focuses on pairwise class separation, ignoring
points from other classes, as depicted by the red-blue line

A hyperplane is required in the One-to-Rest method in order to divide a class
from all others simultaneously. This indicates that all points are considered in the
separation process and are split into two groups: one group is for class points, and the
other group is for all other points. The green line, for instance, seeks to maximise the
distance between green points and every other point simultaneously.

Figure 1.13: One-to-Rest SVM method employs hyperplanes to simultaneously sep-
arate each class from all others, utilizing all points in the classi�cation process, as
exempli�ed by the green line.
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1.6 Neural Network

A neural network, a popular machine learning technique, was created as inspiration for
the topologies of biological brain networks. It replicates how the human brain func-
tions by building an arti�cial neural network [3]. They are composed of interconnected
"neurons," or nodes, set up in layers. It provides a wide range of robust brand-new
techniques for dealing with pattern recognition, data analysis, and control concerns.
A feed-forward neural network is the most basic type of neural network. They consist
of a hidden layer or layers, an output layer, and an input layer. FNNs are used for
a range of tasks, such as picture classi�cation, regression analysis, and basic pattern
recognition [4].

Figure 1.14: Basic structure of Neural Network

In a neural network (NN), a layer called bias can have any number of nodes because
the layers are independent of one another. The bias nodes' initial value is always 1.
A bias value is signi�cant because it enables the activation function to be moved to
the right or left, which may be essential for the success of ANN training. The input
and output nodes of a NN used as a classi�er will correspond to the input features
and output classes. However, when the NN is utilised to approximation a function, it
normally contains an input and an output node. There are, however, more essential
designed hidden nodes than input nodes.
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CNNs are capable of processing pictures and other grid-like data. They use convolu-
tional layers in order to automatically learn hierarchical characteristics, They therefore
perform exceptionally well in picture segmentation, object detection, and classi�ca-
tion [5]. RNNs are designed to handle sequential data, such as time series and natural
language. They are excellent for tasks like language modelling and voice recognition be-
cause they feature a feedback loop that enables information to be transmitted from one
phase of the sequence to the next [6]. Recent studies have concentrated on developing
neural networks with fewer parameters to decrease processing costs and boost e�ective-
ness [7]. Many applications, including natural language processing (NLP), audio and
speech processing, visual data processing, and others, have shown that the most recent
DL techniques perform exceptionally well [8]. Bag of words and the scale-invariant fea-
ture transform [9]. A novel feature that is put into use and e�ectively shown generates
a new �eld of study that is investigated for decades [10]. Deep learning algorithms can
currently perform challenging tasks including audio and image identi�cation, natural
language processing, and autonomous vehicles. A few well-known deep learning frame-
works are TensorFlow, PyTorch, and Keras.

New architectures are always being developed for speci�c tasks and applications,
despite the fact that there are numerous di�erent types of neural networks, each with
a unique design and application area. Here are a few illustrations of the di�erent kinds
of neural networks we used in this research.

1.7 Convolutional Neural Network (CNN)

The Convolutional Neural Network, which takes its name from the "convolution" ma-
trix function in mathematics, is one widely used deep neural network. Convolutional
networks are essentially neural networks with at least one layer that substitutes convo-
lution for generic matrix multiplication. CNNs are a type of Arti�cial Neural Network
(ANN) that are frequently used for the analysis of visual content. They are used across
multiple domains, such as recommender systems, classi�cation, segmentation, medical
image analysis, and brain-computer interfaces. Notably, CNNs have demonstrated
great promise in picture-related applications, such as handling a huge image classi�ca-
tion dataset (ImageNet), computer vision, and natural language processing (NLP), as
indicated by the �ndings [11].
The CNN architecture is truly impressive. The three essential layers of CNN are
shown in Figure 1.15 the input layer, hidden layers, and output layer, also known as
the convolutional layer, pooling layer, and fully-connected layer, respectively. The �g-
ure demonstrates how the CNN processes the input provided to the model in order to
generate evaluated outputs once the model has been trained.
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Figure 1.15: An illustration of the fundamental structure of a convolutional neural
network

1.7.1 Convolutional Layers

The fundamental component of a convolutional network is the Conv layer, sometimes
referred to as the convolutional layer, initiating the process of extracting distinctive
features from the input images. Convolution is a mathematical process used in this
layer to apply a �lter of a particular size (MxM) to the input image. While computing
the dot product using multiple picture regions based on their respective sizes, the �lter
moves throughout the input image.

This process results in creating a feature map, which includes important insights
about the image, like its corners and edges. Subsequent layers receive this feature map
and use it to learn di�erent features from the input image. Three hyperparameters
determine the output volume size: stride, padding, and depth. A convolutional layer
has the following output size:
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Figure 1.16: Filters move across input images, performing element-wise multiplica-
tions and summations to �nd patterns and enhance feature representation for deep
learning models.

1.7.1.1 Padding

Before convolutional �lters are used, a source image's border pixels can be improved
using a technique called padding. It aids in maintaining spatial information and ad-
justing the duration map of the output feature. Padding comes in two �avours: "valid"
padding (no padding) and "same" padding (padding added to maintain output size)
[12]. Simply padding our input photographs with layers of zeros will eliminate the
problems mentioned above. This prevents shrinkage because, if p = the number of
layers of zeros applied to the image's border, our (x*x) image becomes (x + 2p)*(x
+ 2p) after padding as shown in Figure 1.17.
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Figure 1.17: By placing zeros around a picture, padding (zero padding) maintains
uniformity in size and speeds up computing processes while ensuring equal dimen-
sions.

1.7.1.2 Depth (Number of Filters/Kernels)

A tiny matrix called a kernel, �lter or feature detector is used to perform convolution
on the input image. By multiplying its values by the appropriate input pixel values
and summing the results, it retrieves particular features [13]. When a (x*x) image is
convolved with a (k*k) kernel, the resultant image is typical of size (xk + 1)*(xk +
1) and performs better due to the lesser reduction in layer dimensions.

Figure 1.18: The kernel is a matrix that sequentially moves across the input data,
applies the dot product operation to a portion of the data, and subsequently gener-
ates a matrix of dot product results.
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1.7.1.3 Stride

The stride of a convolutional �lter is the size of its step as it moves across the input
image, and it is typically measured in terms of the input image's dimensions. Using
a larger stride leads to smaller output feature maps because fewer convolutions are
conducted. Conversely, smaller strides can be useful for preserving a greater amount
of spatial information [64]. The stride represents the number of pixels by which the
input matrix is shifted. The formula for determining the output image dimensions,
considering padding (p), �lter size (k*k), input image size (x*x), and stride 's' is as
follows:

((x+ 2p− k + 1)/s+ 1) ∗ ((x+ 2p− k + 1)/s+ 1) (1.3)

Figure 1.19: In order to preserve spatial sampling and enhance the e�ectiveness of
feature recognition, the �lters move throughout the image, pixel by pixel with a
stride of one or two pixels at a time with a stride of two.

1.7.2 Pooling Layer

The primary purpose of the Pooling Layer, which comes after the Convolutional Layer,
is to save computational expenses by decreasing the convolved feature map's size.
This reduction is made possible by decoupling layers from one another and processing
each feature map separately. The feature maps are downsampled using methods like
max pooling and average pooling [14]. Typically, the Pooling Layer serves as the link
between the Convolutional Layer and the Fully Connected Layer. Depending on the
particular mechanism being used, di�erent sorts of pooling techniques are used.

1.7.2.1 Max Pooling

Max pooling is a straightforward method that helps move forward with the image's
most crucial attributes by taking the maximum of a region. The brighter pixels in the
picture are selected using max-pooling.
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1.7.2.2 Average Pooling

Average pooling is a technique that uses the average value for feature map patches to
build a pooled feature map that has been down-sampled.

Figure 1.20: Two types of pooling: average pooling, which computes the average to
summarise data while minimising spatial dimensions, and maximum pooling, which
retains maximum values to capture dominating features.

1.7.3 Fully Connected Layer

The FC layer holds the neurons, weights, and biases and links them between two lay-
ers. In a CNN architecture, the output layer is often placed before the �nal few layers.
Following this, there are numerous hidden layers that make it challenging to follow the
data since various weights are assigned to each neuron's output. This is where all of
the computation and data analysis takes place.

At this stage, the input images from the previous layers are �attened and sent to
the FC layer. Following that, a few more FC levels get the �attened vector and apply
conventional functional math operations to it. This initiates the classifying process.

1.8 Residual Neural Network (ResNet)

The Residual Network (ResNet) is the name given by He et al. (2015) to the arti�cial
neural network (ANN). Residual Neural Networks (ResNets), a type of deep neural net-
work architecture, introduced the concept of residual learning. They were developed
to address the problem of disappearing gradients and enable the training of extraordi-
narily deep networks. ResNets are extensively used in many di�erent computer vision
applications and hold a signi�cant impact on the deep learning space. It is designed
to process sequential data, such as audio signals, text written in natural language, and
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time series data. A few of its numerous versions are ResNet16, ResNet18, ResNet34,
ResNet50, ResNet101, ResNet110, ResNet152, ResNet164, ResNet1202, and so on.

Figure 1.21: Residual unit structure diagram

The residual block is the fundamental concept of ResNets. A residual block learns
the residual, or di�erence, between the input and output rather than the desired output
directly. To do this, a �shortcut� or �skip connection� is added, which connects the input
directly to the output of one or more layers. Deep networks can be trained more easily
as a result of the network's ability to learn the identity function. The direct link, which
avoids some triple-layer layers, is what immediately catches our attention. This link is
the decoder's connection, also referred to as the core of residual blocks. The output is
not pre-trained when there is no skip connection since input 'X' is multiplied by the
pre-trained layer before being added to a bias term.

1.9 Activation Functions

Activation functions are crucial in transforming arti�cial neural network output into
non-linear outputs because without this non linearity, the network's �ndings would
be less accurate. For back-propagation learning to take place, the activation function
needs to be di�erentiable. When utilizing neural networks to code fractal pictures, the
nonlinearity of the activation function is crucial since the coe�cients of the Iterated
Function System vary depending on the di�erent forms of fractals.The sigmoid function,
which yields a positive result, is the most often selected activation function. Other
functions that can have positive or negative values based on the input to the network,
such tans or arctan, have a tendency to train neural networks more quickly [68]. Some
of the most popular activation functions are listed below.
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1.9.1 ReLU (Recti�ed Linear Unit)

In deep learning, ReLU has emerged as the most popular activation function. While
all negative inputs are changed to zero, all positive inputs stay same. It is a popular
activation function in deep learning. This non-linear function keeps positive inputs
intact while converting all negative inputs to zero. The ReLU function can be explained
as:

max(0, x) = f(x) (1.4)

ReLU activation function is a common choice for deep neural network construction
since it is simple to implement and computationally e�cient. It has proven to be
e�ective across a variety of applications, having natural language processing, picture
classi�cation, and audio recognition.

1.9.2 Leaky ReLU

A di�erent form of recti�ed linear unit (ReLU) activation function is known as leaky
ReLU. It allows a slight negative slope for negative inputs, whereas the normal ReLU
activation function maps all negative inputs to zero. This is the main di�erence. The
Leaky ReLU function is de�ned as:

f(x) = max(α · x, x) (1.5)

where α is a small positive constant that, when set to 0.01, sets the function's slope
for negative inputs. A typical ReLU activation function may result in neurons that
never activate and eventually die, but the Leaky ReLU activation function can assist
reduce this issue. It is frequently used in a number of deep learning models and has
demonstrated success across diverse applications including speech recognition, picture
classi�cation, and natural language processing.

1.9.3 Sigmoid

The sigmoid function can be used to transform any input into a probability, transferring
it to the 0�1 range. The sigmoid activation function is expressed mathematically as
follows:

S(x) =
1

1 + e−x
(1.6)

where ex is the exponential function. The sigmoid function works well for binary
classi�cation issues because of its continuous and smooth transition. It does, however,
have some shortcomings, like the vanishing gradient issue, which can make training
deep neural networks di�cult.
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1.9.4 Softmax

Multi-class classi�cation issues are handled with the softmax activation function. From
the inputs, it generates a probability distribution over several classes. The softmax
function is de�ned as follows:

f(xi) =
exi∑
(exj)

(1.7)

where exj serves as the input for class i within the function and the total is calculated
across all classes j. The output total of a softmax function is guaranteed to never
exceed 1, hence they can be used to depict a probability distribution across several
classes. It is usually used to generate a probability distribution over several classes in
the output layer of a neural network. The class with the highest probability is then
determined by using the �nal forecast. It is commonly used in a variety of scenarios,
including picture classi�cation, speech recognition, and recommendation systems.

1.9.5 Tanh (Hyperbolic Tangent)

The tanh activation function accepts inputs between -1 and 1. Like the sigmoid acti-
vation function, but with several squashed values. The tanh function can be de�ned
as follows:

f(x) = tanh(x) =
2

1 + e−2x
− 1 (1.8)

Similar to sigmoid, the Tanh activation function translates its inputs to a di�erent
range, which is advantageous in some situations. Compared to other activation func-
tions, such the recti�ed linear unit (ReLU), it can be more challenging to optimise
since it can induce saturation at the extremities of the range. In many applications,
such as recurrent neural networks, the tanh activation function is employed extensively
to describe data sequences. It is frequently employed in CNNs as well, where it is used
to give each neuron's output more nonlinearity.
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Figure 1.22: Visual depiction of activation functions

1.10 Problem Statement

Finding the optimal classi�cation algorithms that can provide a reliable diagnosis.

1.11 Objective

The core objective of our study is to contribute towards enhancing the diagnosis of
diabetic retinopathy by providing an alternative machine learning methods for early
detection of Diabetic Retinopathy.

By achieving this objective, the research can contribute to the development of
an accurate, e�cient, and reliable method for the early identi�cation and diagnosis of
diabetic retinopathy, which can ultimately improve patient outcomes, reduce the risk of
blindness in individuals with diabetes, and allow for timely treatment and management

1.12 Organization of the Thesis

There are �ve chapters in this thesis. Following the introduction of machine learning
algorithms for picture detection and recognition, we go into each one's types, main
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structure, and brief history. We introduce the problem de�nition of diabetic retinopa-
thy classi�cation. In the second chapter, we summarise several prior investigations
on the classi�cation of diabetic retinopathy using various machine learning methods,
along with their �ndings. In chapter three, We elucidate our suggested approach util-
ising various machine learning algorithms in depth. In chapter four, We present the
experimental �ndings along with the graphical and numerical outcomes of our models.
Finally, in chapter �ve, We present our research's future directions and talk about the
�ndings. The list of references is provided in the Bibliography section.

28



Chapter 2

LITERATURE REVIEW

The previous approaches to the automatic detection problem are compiled in this
chapter. Previous researches has used machine learning and various models to perform
automated DR screening. We conducted a literature survey to describe DR features
and previous work to detect DR to develop our method and analyze the results. The
most pertinent published work, which mainly illustrates and represents the suggested
study in terms of applied algorithms, datasets used, number of classi�ed stages, and
overall obtained accuracy, is introduced in the following section.

On the subject of diabetic retinopathy grading, Jain et al. (2019) [15] devised a
framework for detecting and evaluating the severity of diabetic retinopathy by employ-
ing various Convolutional Neural Networks (CNNs) architectures, including VGG-16,
VGG-19, and Inception v3. The EyePACS dataset, which includes 35,126 images, was
split into three sections: 20% reserved for validation, 60% designated for training, and
the remaining 20% for classifying the �ve stages of Diabetic Retinopathy. The images
underwent preprocessing methods like data augmentation and normalisation, which
involve rotating the training images by 90° and 270°. The authors achieved accuracy
rates of 71.7%, 76.9%, and 70.2% for VGG-16, VGG-19, and Inception v3, respectively.
Junjun et al. (2018) [16] utilized the Residual Neural Network (ResNet) method on
the EyePACS dataset, which contained approximately 35,126 images. They employed
30,000 images during the training phase and approximately 5,000 images for testing
purposes. To ensure accuracy, the pictures were scaled to 256 by 256 pixels. To avoid
over-�tting, the authors augmented the images of the other classes by �ipping and ran-
domly rotating them between 0° and 360° because there are a lot of pictures from class
0. As a result, they achieved a 78.4% accuracy rate for classifying the �ve stages of di-
abetic retinopathy. Li et al. (2019) [17] suggested a framework for categorizing the two
phases and �ve distinct stages of diabetic retinopathy by utilizing Deep Convolutional
Neural Networks. The researchers utilized a Kaggle dataset that had been split into
three parts, with 34,124 training samples, 1,000 validation samples, and 53,572 testing
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samples. As a result of their experiments, the authors achieved an 86.17% accuracy
rate for the �ve-class classi�cation and a 91.05% accuracy rate for the binary class.
Lian et al. (2018) [18] employed three neural network frameworks (AlexNet, ResNet-
50, and VGG-16) to analyze a dataset provided by EyePACS via kaggle. The dataset
consisted of 35,126 retinal images that were sorted into �ve categories: normal, mild,
moderate, severe, and proliferative, with each category accounting for 73.46%, 6.69%,
15.06%, 2.50%, and 2.02% of the dataset, respectively. The images were standardized
to 256x256 pixels from their original size and overrepresented classes were resampled
while underrepresented classes were randomly subsampled. In order to increase the
image count and prevent bias, the authors employed spatial translation in both the
left and right directions, with a one-pixel horizontal shift. In terms of accuracy, the
AlexNet model achieved 73.19%, ResNet-50 achieved 76.41%, while the VGG-16 model
had the highest accuracy of 79.04%.

In a separate study conducted by [19], they segmented anatomical structures like
blood vessels, exudates, and Mas. They used grey level co-occurrence features to
classify diabetic retinopathy (DR) images based on the segmented features. To per-
form this classi�cation task, they employed the SVM classi�er. Garcia et al. (2017)
[20] examined the performance of various CNN models using a dataset accessible on
Kaggle. They applied VGGnet16 and Alexnet to the left and right eyes in separate pic-
tures.The dataset was preprocessed and augmented in order to improve visual contrast.
Their best accuracy was 83.68% when utilising VGG16. Unfortunately, the stages of
diabetic retinopathy were not precisely categorised in their studies. On a separate
note, Quellec et al. (2010) [21] achieved an AUC of 0.927 by employing a standard
KNN algorithm with optimal �lters on two classes. Dupas et al. (2010) [22] designed
a Computer-Aided Detection technique with a KNN classi�er for detecting diabetic
retinopathy with an 83.9% sensitivity and a 72.7% speci�city. Also, [23] suggested an
automated Diabetic Retinopathy detection system based on morphological parameters
and attained 80.21% sensitivity and 70.66% speci�city, respectively. Priyadarshi et
al. [24] proposed an automated methodology based on image processing technology.
Simple measurements such as the characteristics from the pictures are extracted, and
the images are classi�ed using an SVM classi�er based on the training database. In
their study, [25] employed soft margin SVM to classify 149 images into Moderate and
Severe categories taken from the Messidor dataset. The authors extracted features and
properties, including each exudated image's area, perimeter, standard deviation, and
energy throughout the feature extraction procedure. They achieved an accuracy of
90.54%.

The authors [26] used MobileNet and MobileNetV2, as well as other transfer learn-
ing algorithms. They employed MobileNetV2, which is a faster and more e�cient
version of the MobileNetV1 architecture that also provided good performance. They
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achieved 78.1% accuracy with MobileNetV2 and 58.3% accuracy with MobileNetV1. In
their study, Carrera et al. (2017) [27] propose a new computer-assisted diagnosis based
on the digital image processing of retinal images. The main objective of this research
is to automatically classify the grade of non-proliferative diabetic retinopathy of any
retinal image. In order to extract the features, the image processing stage separates
the blood vessels, microaneurysms, hemorrhages, and hard exudates which can be used
by the SVM classi�er to evaluate the grade of each retinal image. A decision tree (DT)
classi�er is also implemented to compare the results of the SVM base classi�er. The
study by Harun et al. (2019) [28] aimed to classify two stages of diabetic retinopathy,
1,151 retinal images were utilized, with a data split of 70:30, where 806 pictures were
utilised for training while 345 pictures were used for testing. The researchers classi�ed
the two classes with an overall accuracy rate of 67.47%, with 66.4% accuracy in identi-
fying DR and 64.48% accuracy in identifying No DR. To accomplish this classi�cation,
a Multi-layer Perceptron (MLP) was used, which was trained by Binary relevance with
50 training epochs and 20 hidden layers. Mohammadian et al. (2017) [29] utilized
the Inception-V3 technique and �ne-tuned the parameters, as well as the Xception
pre-trained models, and achieved promising outcomes. Additionally, to balance the
dataset, they applied strategies for augmentation of data in order to achieve an accu-
racy of 87.12% employing the Inception-v3 algorithm. Pratt et al. (2016) [30] utilized
5,000 images for validation, which were then scaled to 512x512 pixels and subjected
to color normalization and several modi�cations, such includes random shifts and �ips
in both the horizontal and vertical planes, and random rotations between 0 and 90
degrees. For classi�cation, they employed a convolutional neural network and initially
trained it on a subset of the dataset, which was later �ne-tuned on the entire dataset
using Stochastic gradient descent with Nesterov momentum. However, the authors re-
ported limited sensitivity due to the model's inability to di�erentiate speci�c traits in
the mild and moderate classes. They also discovered an image upgradability issue since
over ten percent of the data was not up to UK requirements. Acharya et al. (2009)
[31] developed an automated system for recognising the various stages of DR. Using a
higher-order spectrum technique, features were extracted from the raw data and sup-
plied into SVM for classi�cation. This approach had an 82% accuracy rate. They also
developed a classi�cation method based on the areas of features such as blood vessels,
exudate, haemorrhages, and so on. The SVM classi�er was fed these features, which
were extracted from the raw data., yielding an accuracy of 85.9% and sensitivity of 82%
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Chapter 3

MATERIALS AND METHODS

In this study, we provide a summary of data set that was implemented in our study in
addition to the approach used to include neural networks in the classi�cation task. The
methodology discusses the processes needed to create and train the neural networks,
while the data set selected for this research serves as the fundamental building block
for our investigations.

3.1 Data Acquisition

The �rst and most important thing needed in any machine learning project is a
�dataset�. Datasets are the important part in the learning process. The dataset used
in this project has been sourced from Kaggle hosted by APTOS. It originates from
the Aravind Eye Hospital and comprises a substantial collection of retinal photographs
captured by means of fundus photography (a technique for capturing the interior sur-
face of the eye) under various imaging conditions. The dataset contains images with
di�erent resolutions. For training and testing, we divided the 3662 picture dataset into
an 7:3 ratio. A clinician evaluated each image using a scale from 0 to 4, awarded a
severity score for diabetic retinopathy, as shown in Table 3.1.

DR Grade DR Stage No. of Examples
0 Normal 1805
1 Mild 370
2 Moderate 999
3 Severe 193
4 PDR 295

Table 3.1: Data distribution summarizes how data points are arranged across di�er-
ent categories depending on the severity of the disease within a dataset.
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3.2 Network Architechture for Image Classi�cation

3.2.1 K-Nearest Neighbors (KNN)

Having a diverse sample dataset that includes images depicting various instances of
diabetic retinopathy is crucial. This initial dataset is then used to create subsets for
the purposes of both training and testing. Let

D = (x1, y1), (x2, y2), . . . , (xn, yn) (3.1)

where D denotes the data set of DR images. Each pair (xi,yi) represents an input image
xi, and its corresponding label yi, which can be 0,1,2,3, or 4 and n shows the total
number of data points in the dataset. Let xnew be the feature vector of a new, unlabeled
data point, and y be the predicted class label. The equation can be represented as:

y = f(xnew) (3.2)

where f is the function that predicts the class label or target value based on the feature
vector xnew.

To quantify the dissimilairty or similarity between pairs of feature vectors xi and xj,
choose a distance metric represented as d(xi, xj). In practice Euclidean distance and
Manhattan distance are mostly used for this purpose. Calculate the distance between
xnew and each data point xi in the training dataset D by using this formula

dist(xnew, xi) = d(xnew, xi) for i = 1, 2, . . . , n (3.3)

Select the k nearest neighbors of xnew based on the calculated distances. These are the
k data points in D with the smallest distances to xnew. Mathematical representation
of k-nearest neighbor is presented as

ŷnew = argmaxc∈C

k∑
i=1

I(yi = c) (3.4)

where ŷnew, represents the predicted class label for new data point x, yi is the class
label of the ith neighbor, k is the number of nearest neighbors to consider, and I repre-
sents the indicator function that returns 1 if the condition inside is true and 0 otherwise.

The above equation calculates the predicted class label ŷnew for a new data point
x in kNN classi�cation. It sums up the occurrences of each class label c among the k-
nearest neighbors of x, selecting the class label with the highest count as the predicted
class label.

33



3.2.2 Support Vector Machine (SVM)

A Support Vector Machine (SVM) for multiclass classi�cation, speci�cally utilising the
One-vs-All (OvA) technique, is mathematically described as extending the formulation
of the binary SVM to incorporate multiple classes. A diverse set of sample data,
including photos depicting various diabetic retinopathy cases, must be possessed. After
then, subsets of this main dataset are created for testing and training. Let's denote
our dataset as:

D = (x1, y1), (x2, y2), . . . , (xn, yn) (3.5)

where D denotes the data set of DR images, xi represents the feature vector of the i
th

sample and yi represents its corresponding class label and n shows the total number of
data points in the dataset. Here, yi can take values from a set of K classes: 1,2,...,k.
In the OvA strategy, for each class k, we train a binary SVM where samples from
class k are labeled as positive (+1), and samples from all other classes are labeled as
negative (-1).

Let's denote the decision function of the binary SVM for class k as fk(x). The
prediction for a given input x is the class k for which fk(x) is maximized.
The decision function fk(x) can be represented as:

fk(x) = wk · x+ bk (3.6)

where wk is the weight vector and bk is the bias term for class k. The optimization
problem for training the SVM involves �nding the optimal weight vector wk and bias
term bk for each class k. This can be expressed as follows:

minimize
1

2
∥wk∥2

subject to yi · (wk · xi + bk) ≥ 1 for i = 1, 2, ..., N

where yi represents the label assigned to sample i. It is set to+1 if the sample xi belongs
to class k, and -1 otherwise. The imposed constraints guarantee that all samples are
accurately classi�ed with a minimum margin of at least 1. After all k classes SVMs
have been trained, the class prediction for new input x can be determined by:

argmaxk fk(x) (3.7)

In other words, the predicted class is determined by selecting the class with the highest
decision score out of all the binary classi�ers. By training several binary classi�ers, each
with the goal of di�erentiating one class from the others, this formulation expands the
capabilities of the binary SVM to handle multiclass classi�cation.
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3.2.3 Convolutional Neural Network (CNN)

Having a diverse sample dataset that includes images depicting various instances of
diabetic retinopathy is crucial. This initial dataset is then used to create subsets for
the purposes of both training and testing. Let

F = (x1, y1), (x2, y2), . . . , (xn, yn) (3.8)

where F denotes the dataset of DR images. Each pair (xi, yi) represents an input image
xi, and its corresponding label yi, which can be 0,1,2,3, or 4 and n shows the total
number of images. The output matrix computation is described as follows:

Fi = f

 N∑
i=1

Ii · k +Bj

 (3.9)

First, a kernel matrix K corresponding to each input matrix Ii is convolved. Then,
each member of the resulting matrix is given a bias value Bj, and the sum of all the
convoluted matrices is calculated. One output matrix Fi is generated by applying a
non-linear activation function f to every component of the previous matrix.
The formula for calculating the number of output features no is:

no =
ni + 2p− k

s
+ 1 (3.10)

no displays the number of output features, ni reveals the number of input character-
istics, p shows padding size, s shows stride size and k is the number of convolution
�lter sizes. Analyze the e�ectiveness of the train model using a di�erent testing data
set after training. Let Ftest denote the testing data set, where m is the number of test
images.

Ftest = (xtest1 , ytest1), (xtest2 , ytest2), ..., (xtestm , ytestm) (3.11)

Predict the labels for the test images using the trained model

ŷtesti = F (xtesti) (3.12)

Compare the predicted labels ŷtesti with the true labels ytesti to compute the evaluation
of the model.

The training procedure entails feeding the training images and labels into the model
repeatedly. Any required hyperparameter modi�cations are made once the validation
set performance of the model was assessed for over-�tting.
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Figure 3.1: The architecture of basic CNN structure, and the various layers that
make up the CNN model on the DR image data set

3.2.4 Residual Neural network (ResNet-50)

ResNet-50 is a popular CNN architecture known for its deep residual learning. The
architecture has 50 layers, including residual blocks, convolutional layers, batch normal-
ization techniques, and Recti�ed Linear Unit (ReLU) activation functions. Notably,
in order to improve computational performance and make training deeper networks
easier, ResNet-50 incorporates a bottleneck design into its residual blocks. To get the
expected result ŷ, propagate an input image xi through the ResNet-50 model. For each
layer in the ResNet-50 architecture, compute the activation value ai as follows: For a
convolutional layer,

ai = Convolve(xi,Wi) + bi (3.13)

whereWi represents weights of the layer and bi represents bias term. For each activation
in a given channel apply batch normalisation, BN indicates the same normalisation.

BNb,c,x,y = γc ∗
Ib,c,x,y − µc√

σ2
c + ϵ

+ βc (3.14)

In this case, BN subtracts the mean activation µc from all input channel c activations,
where β is the sum of all channel c activations for every attribute b in the whole mini-
batch and for all spatial x, y positions. Then, following a similar strategy, BN divides
the centered activation by the standard deviation σc (plus ϵ for numerical stability).
Testing is conducted using running mean and variance averages, followed by an a�ne
transformation channel-wise that is parametrized by γc and βc, which are discovered
during training.
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Apply the ReLU activation function to introduce non-linearity and enhance feature
representation.

f(x) =

{
x, x > 0

0, otherwise
= max(0, xi) (3.15)

For each residual block, compute the output by passing the activation value ai across
a sequence of convolutional layers and adding the input to the output, creating a skip
connection. Apply global average pooling lastly to get a compact representation of the
characteristics.

GAP =
1

Xk

 ∑
x∈XK

xpk

 pk (3.16)

When a parameter is p > 0. The pooled feature map's contrast is increased and the
image's salient features are brought into sharper focus when this exponent is set to p
> 1. The expected probability distribution over the class labels can be obtained by
running the pooled features through a fully connected layer with softmax activation.

pi =
ezi∑J
j e

zj
(3.17)

where the softmax input is zi and the number of categories is j. A probability distri-
bution with a range of (0,1) and a sum of 1 can be created from the output value of
a multi-classi�cation using the softmax function pi. Then, the distance between the
actual and desired output may be calculated using the cross-entropy loss function of
Softmax, and the formula is described as:

L =
J∑
j

yJpi (3.18)

where the real tag is represented by yj. The loss function for the classi�cation issue
represents the discrepancy between expected and actual outcomes. Finding a set of
optimal solutions in the parameter space to reduce L can be thought of as the network's
training process as a parameter optimization process.
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Layer Filter Size Resolution Activation Function
Input - 224x224x3 -
Conv1 7x7 112x112x64 Relu

MaxPool 3x3 56x56x64 -
Conv2 1x1 56x56x64 Relu
Conv2 3x3 56x56x64 Relu
Conv2 1x1 56x56x64 Relu
Residual - 56x56x64
Conv3 1x1 28x28x128 Relu
Conv3 3x3 28x28x128 Relu
Conv3 1x1 28x28x512 Relu
Residual - 28x28x512
Conv4 1x1 14x14x256 Relu
Conv4 3x3 14x14x256 Relu
Conv4 3x3 14x14x1024 Relu
Residual - 14x14x1024
Conv5 1x1 7x7x512 Relu
Conv5 3x3 7x7x512 Relu
Conv5 1x1 7x7x2048 Relu
AvgPool - 1x1x2048 -

FC - 1x1x1000 Softmax

Table 3.2: ResNet-50 consists of convolutional layers and residual blocks organized
into four levels. Each level includes convolutional layers with diverse �lter sizes,
along with max-pooling and average-pooling operations for feature extraction and
spatial reduction.

Figure 3.2: Visual architecture of ResNet-50 includes convolutional layers,followed by
four levels of residual blocks.

38



3.3 Evaluation Metrics for Classi�cation

Measurement approaches are employed to evaluate the e�ectiveness and performance
of categorization models by comparing predicted class labels with actual class labels.
The particular requirements of the classi�cation problem and the intended trade-o�s
between various performance indicators determine which assessment metrics should be
used. With the aid of the confusion matrix, a machine-learning concept that provides
information on actual and anticipated classi�cations generated by a classi�cation sys-
tem, we may provide a variety of frequently used assessment metrics for classi�cation.

3.3.1 Confusion Matrix

In a confusion matrix, the classes that an item truly belongs to and the class that
serves as the anticipated class are both used as indexes. Events that were improperly
predicted are known as false positives (FP), events that were correctly anticipated as
true negatives (TN), and events that were incorrectly projected as false negatives (FN).
The following table shows the numbers with corresponding labels.

Actual Values
Positive Negative

Predicted Values Positive TP (True Positive) FP (False Positive)
Negative FN (False Negative) TN (True Negative)

Total TP + FN FP + TN

3.3.2 Accuracy

One measure used to assess a classi�cation model's overall e�ectiveness is accuracy.
It calculates the percentage of accurate forecasts�both true positives and true nega-
tives�among all the forecasts made. The de�nition of accuracy is:

Accuracy = TP+TN
TP+TN+FP+FN

To put it another way, accuracy is the proportion of the model's predictions that came
true, taking into account both positive and negative examples.

3.3.3 Sensitivity

Sensitivity is a statistic used to assess a classi�cation model's e�ectiveness, especially
in binary classi�cation issues. It is often known as recall or the true positive rate. It
quanti�es the percentage of real positive examples that the model accurately recognises.
A de�nition of sensitivity is:
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Accuracy = TP
TP+FP

To put it another way, sensitivity indicates how well the model detects positive cases.
When you want to make sure that the model captures as many positive instances as
feasible, and the cost of missing positive examples (false negatives) is large, this is a
crucial measure.

3.3.4 Speci�city

A metric used to assess a classi�cation model's e�ectiveness, especially within the
framework of binary classi�cation, is speci�city, often referred to as the true negative
rate. It quanti�es the proportion of actual negative cases that the model accurately
detects. The de�nition of speci�city is:

Accuracy = TN
TN+FP

In simple terms, speci�city indicates the model's capability to detect negative situa-
tions. This is an important step to ensure the model accurately detects negative cases
when there is a signi�cant cost associated with false positives.

3.3.5 F1-Score

The F1-Score is a metric that's used to evaluate how well a classi�cation model per-
forms, especially when dealing with binary classi�cation jobs. It provides a single
statistic that balances recall and precision: the harmonic mean of these two measure-
ments. When there is an unequal class distribution or when the costs of false positives
and false negatives �uctuate, the F1-Score can be helpful in balancing the trade-o�
between precision and recall. The de�nition of an F1-Score is:

F1-Score = 2 ∗ (Precision∗Recall)
Precision+Recall

where recall is the percentage of real positive cases that the model correctly identi�es,
and precision is the percentage of true positive forecasts among all positive predictions.
The F1-Score is a numerical value ranging from 0 to 1, used to compare recall and
precision merits, allowing for a more balanced approach.

3.3.6 Precision

A statistic called precision is used to assess a classi�cation model's accuracy, especially
when it comes to binary classi�cation. Out of all the model's positive predictions, it
determines the proportion of true forecasts. The de�nition of precision is:
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Precision = TP
TP+FP

In other words, accuracy shows the percentage of objects that are actually categorised
as positive. This is an important statistic to ensure that the positive predictions are
as precise as feasible and that the cost of false positives is as high as possible.

3.3.7 Error Rate

One way to measure a model or system's correctness is to look at its error rate. It
shows the percentage of mistakes made relative to all predictions or operations. The
error rate is computed as follows in the context of statistics and machine learning:

Error Rate = FP+FN
TP+TN+FP+FN

While a larger error rate denotes more frequent errors and worse performance, a lower
error rate shows that the model is more accurate. Though it can be applied to many
situations where accuracy and performance are evaluated, error rate is frequently em-
ployed in classi�cation tasks.
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Chapter 4

RESULTS AND DISCUSSION

In this section, we delve into an analysis of the metrics incorporated into this tool,
examining their characteristics and aligning them with classi�cation properties and al-
gorithmic requirements. Drawing conclusions from this exploration guides the selection
of optimal metrics tailored to speci�c image data and classi�cation tasks. We evaluated
several machine learning and deep learning techniques, such as K-Nearest Neighbours,
Support Vector Machine, and ResNet-50, an architecture speci�cally designed for Con-
volutional Neural Networks (CNNs). These models were applied to the task of diabetic
retinopathy detection using an image dataset. Throughout our experiments, all models
underwent training on the designated training set and subsequent testing on an inde-
pendent testing set. Our investigation primarily centered on prevalent neural network
paradigm ResNet-50, showcasing the robust performance on this speci�c image dataset
while demonstrating the generalizability across diverse domains. The ability of these
models to extrapolate observed patterns from training data to unobserved images is
pivotal in their pro�ciency to convert colored images to grayscale. This adaptability
empowers the network to e�ectively represent intensity information inherent in RGB
images through grayscale outputs.

The preprocessing pipeline applied to the dataset played a crucial role in enhanc-
ing the model's robustness and ability to generalize for detecting diabetic retinopathy.
To improve the model's robustness and accurate diagnosis of diabetic retinopathy, the
dataset has to be preprocessed, especially to address uneven data distribution. The
model's ability to identify di�erent severity levels of diabetic retinopathy was signi�-
cantly improved by the preprocessing procedures used, as shown in Table 4.1. These
included RGB channel standardization of the image size to 224x224 pixels and the ap-
plication of various augmentations such as �ips, rotations, and contrast modi�cations.
Additionally, e�orts were made to balance the dataset by employing techniques to ad-
dress the inherent imbalance among di�erent severity levels of diabetic retinopathy.
With this approach, the model was exposed to di�erent image orientations, lighting
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conditions, and spatial transformations in an e�ort to diversify the dataset and miti-
gate the impact of class imbalance. As such, during training, the model showed better
generalization and was resilient to over�tting tendencies. These preprocessing tech-
niques, combined with measures to handle data imbalance, were e�ective in enabling
the correct classi�cation of diabetic retinopathy severity levels, as demonstrated by a
comprehensive set of evaluation metrics, which included Accuracy, Sensitivity, Speci-
�city, F1-score, Error Rate, Mathew's Correlation.

Parameter Description
Batch size 32
Image Size 224x224x3
Shift Scale Rotation Rotate limit to 20
Augmentations Horizontal �ip, Random

rotate 90 degrees, random
brightness and contrast

Evaluation Metrics Accuracy, Sensitivity,
speci�city, F1-score, error
rate, Mathew's correlation

Table 4.1: Overview of Image Preprocessing and Performance Metrics

To identify diabetic retinopathy, we used a multimodal strategy that included binary
and multiclass classi�cation methods. Our approach, which made use of machine learn-
ing classi�ers, employed two di�erent strategies to deal with the task's complexity.
First, to determine whether diabetic retinopathy was present in retinal pictures, we
used binary classi�cation models to separate aberrant from normal images. Subse-
quently, we utilised multiclass classi�cation techniques to further classify the disease's
severity levels, enabling a more sophisticated comprehension of its evolution. Our goal
was to improve the diagnostic framework's accuracy and robustness by merging these
two methods, which .should help with diabetic retinopathy screening and management.
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The performance of a K-Nearest Neighbors (KNN) model across three di�erent
values of K (K=25, K=30, and K=35) for binary classi�cation tasks. Across all sce-
narios, the model demonstrates consistent and robust performance, with high accuracy,
precision, recall, and F1 score. Speci�city and sensitivity remain stable as well. The
error rate and Matthews correlation coe�cient also show consistent values. Although
slight variations are observed in the confusion matrices, the overall pattern indicates
the model's reliability in classifying instances within the dataset. Further analysis and
experimentation may be needed to optimize the model for speci�c applications, but
these results underscore the e�ectiveness of KNN in this context.

Metrics k=25 k=30 k=35
Validation Set Accuracy 0.8788 0.8807 0.8807

Overall Accuracy 0.88 0.88 0.88
Precision 0.95 0.95 0.95
Recall 0.81 0.81 0.81

F1-Score 0.87 0.88 0.88
Speci�city 0.95 0.95 0.95
Sensitivity 0.81 0.81 0.81
Error rate 0.12 0.12 0.12

Mathew's Correlation 0.77 0.77 0.77

Table 4.2: Comparison of Performance Metrics for Di�erent KNN Con�gurations for
binary classi�cations
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(a) K=25 (b) K=30

(c) K=35

Figure 4.1: The confusion matrix shows correct and incorrect classi�cations made by
the classi�er, where diagonal elements represents right predictions and non-diagonal
elements denotes misclassi�cations.

The SVM model, applied to a binary classi�cation task, provide valuable insights
into its performance across di�erent kernel functions. For the linear kernel, the model's
accuracy of 0.92 indicates that it can classify occurrences accurately. Precision and re-
call metrics are also notably high, with values of 0.96 and 0.88, respectively. A balanced
indicator of recall and precision, the F1 score, is calculated at 0.92. Speci�city and
sensitivity, which are essential for binary classi�cation, are robust at 0.96 and 0.88, re-
spectively. The low error rate of 0.08 suggests minimal misclassi�cations. Furthermore,
the MCC, capturing the relationship between the projected and observed classi�cations,
is computed at 0.84. The confusion matrix provides additional insight into the model's
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performance, with 507 true negatives, 23 false positives, 68 false negatives, and 500
true positives.

For the polynomial kernel, the SVM model achieves an accuracy of 0.89. Precision
remains high at 0.97, demonstrating the model's capacity to accurately determine pos-
itive instances. However, recall slightly decreases to 0.81, resulting in an F1 score of
0.88. Speci�city and sensitivity remain balanced at 0.97 and 0.81, respectively. The
error rate is calculated at 0.11, indicating a moderate level of misclassi�cations. The
Matthews correlation coe�cient is computed at 0.79, indicating a strong correlation
between observed and predicted classi�cations. The confusion matrix highlights 516
true negatives, 14 false positives, 107 false negatives, and 461 true positives.

Similarly, for the radial basis function (RBF) kernel, the SVM model achieves an
accuracy of 0.88. Precision remains high at 0.98, while recall decreases to 0.79, result-
ing in an F1 score of 0.88. Speci�city and sensitivity are balanced at 0.98 and 0.79,
respectively. The error rate is calculated at 0.12, indicating a relatively higher rate of
misclassi�cations compared to the linear kernel. The Matthews correlation coe�cient
remains strong at 0.78. The confusion matrix illustrates 521 true negatives, 9 false
positives, 119 false negatives, and 449 true positives.

The sigmoid kernel, on the other hand, performs worse, with an accuracy of 0.46.
Signi�cantly lower precision, recall, and F1 score values suggest di�culties correctly
classifying cases. The sensitivity is signi�cantly lower at 0.18 than the speci�city, which
is 0.76. There is insu�cient agreement between the observed and predicted classi�ca-
tions, as indicated by the high error rate of 0.54 and the negative Matthews Correlation
value of -0.07. The sigmoid kernel's shortcomings for this binary classi�cation task are
further highlighted by the confusion matrix, which shows signi�cant misclassi�cations
across classes.

The linear kernel outperforms the other SVM kernels that have been studied, achiev-
ing the highest accuracy and a well-balanced precision-recall trade-o�. Conversely, the
polynomial and RBF kernels exhibit competitive performance, each with unique ben-
e�ts and drawbacks.
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Performance Metrics
SVM Kernels

Linear Poly RBF Sigmoid
Accuracy 0.92 0.89 0.88 0.46
Precision 0.96 0.97 0.98 0.45
Recall 0.88 0.81 0.79 0.18
F1-score 0.92 0.88 0.88 0.26
Speci�city 0.96 0.97 0.98 0.76
Sensitivity 0.88 0.81 0.79 0.18
Error Rate 0.08 0.11 0.12 0.54
Matthew's Correlation 0.84 0.79 0.78 -0.07

Table 4.3: SVM Model having binary classi�ation Performance Metrics for Di�erent
Kernels
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(a) Linear Kernel (b) Polynomial Kernel

(c) RBF Kernel (c) Sigmoid Kernel

Figure 4.2: The confusion matrix shows correct and incorrect classi�cations made by
the classi�er, where diagonal elements represents right predictions and non-diagonal
elements denotes misclassi�cations.

The ResNet-50 model for binary classi�cation demonstrate exceptional performance
across various evaluation metrics. The model achieves an impressive accuracy of 0.98,
demonstrating its capacity for accurate instance classi�cation within the dataset. Pre-
cision and recall metrics also exhibit outstanding values, with precision at 0.99 and
recall at 0.98. A harmonic mean of recall and precision, the F1 score, attains a high
value of 0.99, re�ecting the model's balanced performance in accurately recognizing
both positive and negative examples. Speci�city and sensitivity, crucial for binary
classi�cation tasks, demonstrate robust values of 0.98 each, indicating the model's ca-
pability to accurately identify actual negatives and actual positives, respectively. The
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low error rate of 0.02 highlights the model's minimal misclassi�cation rate, further
emphasizing its reliability in making accurate predictions. Additionally, the Matthews
correlation coe�cient, computed at an impressive 0.97, demonstrates a good level of
concordance between the model's predictions and the actual classi�cations. The confu-
sion matrix, which includes 522 true negatives, 8 false positives, 9 false negatives, and
559 true positives, provides a thorough overview of the model's performance. Overall,
these outcomes highlight the e�ectiveness of the ResNet-50 model in binary classi�ca-
tion tasks, with high accuracy, precision, recall, and F1 score, showcasing its potential
for real-world applications where accurate classi�cation is paramount.

Figure 4.3: The confusion matrix shows correct and incorrect classi�cations made by
the classi�er, where diagonal elements represents right predictions and non-diagonal
elements denotes misclassi�cations.

The K-Nearest Neighbors (KNN) model undergoes evaluation through three dis-
tinct con�gurations. In Figure 4.4, The confusion matrices for the predicted classes are
displayed, with the x-axis denotes the predicted labels and the y-axis denotes the true
labels of the classes. These matrices are used to evaluate the performance of classi�-
cation models on a given test dataset. From the confusion matrix, various metrics like
accuracy and precision can be calculated to assess the model. The real and predicted
labels span from 0 to 4 classes.
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(a) K=25 (b) K=30

(c) K=35

Figure 4.4: The confusion matrix shows correct and incorrect classi�cations made by
the classi�er, where diagonal elements represents right predictions and non-diagonal
elements denotes misclassi�cations.

In the �rst con�guration, a validation set accuracy of 0.692 is achieved alongside
an overall accuracy of 0.69. Precision stands at 0.71, recall at 0.69, and an F1 score
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of 0.65. Speci�city is high at 0.909, while sensitivity is lower at 0.433. The error rate
calculates to 0.31, alongside a Matthews Correlation Coe�cient of 0.52. The confusion
matrix indicates variable performance across classes with varying misclassi�cations.
Similarly, the second con�guration produces a validation set accuracy of 0.700, mirror-
ing the �rst closely. The accuracy remains at 0.70, with precision at 0.66 while recall
maintains at 0.70. The F1 score shows a slight improvement at 0.66. Speci�city and
sensitivity values show comparable patterns to the �rst con�guration, with speci�city
at 0.911 and sensitivity at 0.436. The error rate remains stable at 0.30, correlating
again with the Matthews Correlation Coe�cient of 0.54. The confusion matrix reveals
a similar pattern of misclassi�cations to the previous con�guration. The third con�gu-
ration demonstrates a validation set accuracy of 0.701, in line with the other trials. The
accuracy holds steady at 0.70, with precision at 0.61 and recall at 0.70. The F1 score
remains consistent at 0.65. Speci�city and sensitivity values closely resemble those of
the prior con�gurations, indicating robustness in these metrics, with speci�city at 0.912
and sensitivity at 0.431. The error rate remains at 0.30, in line with the Matthews
Correlation Coe�cient of 0.54. The confusion matrix reveals a consistent pattern of
misclassi�cations across the classes, similar to previous evaluations.

The KNN model exhibits consistency in its performance metrics, such as accuracy,
precision, recall, and F1 score, even with slight di�erences across various parameter
values. The model's inconsistent performance in class predictions, as illustrated by the
confusion matrices, points to the necessity of more research to increase the precision of
classi�cation for particular classes. Table 4.4 below provides a thorough comparison of
the confusion matrices and performance indicators for each of the three con�gurations.

Metrics k=25 k=30 k=35
Validation Set Accuracy 0.692 0.700 0.701

Accuracy 0.69 0.70 0.70
Precision 0.71 0.66 0.61
Recall 0.69 0.70 0.70

F1-Score 0.65 0.66 0.65
Speci�city 0.909 0.911 0.912
Sensitivity 0.433 0.436 0.431
Error rate 0.31 0.30 0.30

Mathew's Correlation 0.52 0.54 0.54

Table 4.4: Comparison of Performance Metrics having multi-class classi�cation for
Di�erent KNN Con�gurations

Di�erent kernels are used to execute the Support Vector Machine model, producing
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a range of performance measures. When applying the Support Vector Machine (SVM)
model to a multiclass classi�cation task, its performance varies depending on the ker-
nel function. The model obtains an accuracy of 0.71 for the linear kernel, and its F1
score, precision, and recall are 0.68, 0.71, and 0.69, respectively. With robust values
of 0.919 and 0.469 for speci�city and sensitivity, respectively, the model can reliably
distinguish between positive and negative examples. With a Matthews Correlation of
0.55, the computed error rate is 0.29. The confusion matrix illustrates the range of
misclassi�cations that occur in various classes, showing the model's strong and weak
points.

When switching to the 'poly' kernel, the SVM model obtains an accuracy of 0.70,
with values for precision, recall, and F1 score of 0.63, 0.70, and 0.65, respectively. At
0.908 and 0.413, respectively, speci�city and sensitivity are comparable to the linear
kernel. The error rate stays at 0.30, which is consistent with a 0.52 Matthews Corre-
lation Coe�cient. The misclassi�cation pattern in the confusion matrix is comparable
to the linear kernel con�guration.

Using the 'rbf' kernel, the SVM model also attains an accuracy of 0.70. The F1
score, recall, and precision values are consistent with polynomial kernel at 0.63, 0.70,
and 0.66 respectively. The values for speci�city and sensitivity, which are 0.910 and
0.444, respectively, indicate minor di�erences. Consistent with the 0.53 Matthews Cor-
relation Coe�cient, the error rate stays at 0.30. The confusion matrix shows a pattern
of misclassi�cations that is similar to the linear and polynomial kernel con�gurations
in terms of consistency across classes.

The sigmoid kernel, on the other hand, performs worse, with an accuracy of 0.42.
The values of F1 score, recall, and precision are signi�cantly lower at 0.34, 0.42, and
0.30, respectively. The sensitivity is much lower at 0.190 than the speci�city, which is
0.793. With a negative Matthews Correlation Coe�cient of -0.04, the error rate is high
at 0.58. The sigmoid kernel's confusion matrix reveals signi�cant misclassi�cations
across classes.

In the SVM model for multiclass classi�cation, the linear kernel exhibits almost
higher accuracy and Matthews Correlation than the other investigated kernel functions.
However, all three kernels o�er competitive performance when the proper parameters
are adjusted, suggesting that SVM is a good choice for workloads involving multiclass
classi�cation.
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(a) Linear Kernel (b) Polynomial Kernel

(c) RBF Kernel (d) Sigmoid Kernel

Figure 4.5: Confusion matrix shows correct and incorrect classi�cations made by the
classi�er, where diagonal elements represents right predictions and non-diagonal ele-
ments denotes misclassi�cations.
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Performance Metrics
SVM Kernels

Linear Poly RBF Sigmoid
Accuracy 0.71 0.70 0.70 0.42
Precision 0.68 0.63 0.63 0.30
Recall 0.71 0.70 0.70 0.42
F1-score 0.69 0.65 0.66 0.34
Speci�city 0.919 0.908 0.910 0.793
Sensitivity 0.469 0.413 0.444 0.190
Error Rate 0.29 0.30 0.30 0.58
Matthew's Correlation 0.55 0.52 0.53 -0.04

Table 4.5: SVM Model having multi-class classi�cation Performance Metrics for Dif-
ferent Kernels

The performance evaluation of the ResNet-50 model in multiclass classi�cation
reveals signi�cant insights into its e�ectiveness. With an overall accuracy of 0.82, the
model demonstrates a balanced performance across classes, as re�ected in consistent
precision, recall, and F1 score metrics, each at 0.82. Speci�city is notably high at 0.953,
indicating the model's pro�ciency in identifying negative instances, while sensitivity
stands at 0.626, showcasing its ability to identify positive instances. The error rate of
0.18 suggests relatively few misclassi�cations. Furthermore, the Matthews Correlation
coe�cient, computed at 0.73, indicates a strong correlation between observed and
predicted classi�cations. A thorough breakdown is provided by the confusion matrix
of the model's performance across di�erent classes, illustrating both its strengths in
accurate classi�cation and areas where improvements may be needed.
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Figure 4.6: The confusion matrix shows correct and incorrect classi�cations made by
the classi�er, where diagonal elements represents right predictions and non-diagonal
elements denotes misclassi�cations.
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Chapter 5

CONCLUSION

To sum up, this research examined the performance of KNN, SVM, and ResNet-50
in binary and multiclass classi�cation tasks, revealing notable di�erences among the
models. ResNet-50 consistently outperformed KNN and SVM across various evaluation
metrics due to its deep design, which enables it to extract complex features from im-
ages, making it highly e�ective for both binary and multiclass classi�cation. However,
each model presents trade-o�s, such as computational complexity and generalization
capability. Despite ResNet-50's impressive results, including a 79% accuracy compared
to 70% for KNN and 72% for SVM, future research should address scalability issues
and explore hybrid approaches to leverage the strengths of di�erent algorithms. This
study provides valuable insights into the comparative performance of machine learning
and deep learning models in image classi�cation, particularly in distinguishing between
Normal, Mild, Moderate, Severe, and Proliferative DR phases, and paves the way for
advancements in medical imaging, object recognition, and other domains requiring ac-
curate classi�cation.
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