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ABSTRACT 

The depletion of conventional fuels and the urgent need for clean and sustainable energy 

sources have driven research into H2 production through catalytic methane decomposition. 

This study aimed to use novel machine learning (ML) approaches to enhance and predict H2 

yield using Artificial Neural Network (ANN), Ensembled Tree (ET), Gaussian Process 

Regression (GPR), Regression Tree (RT), and Support Vector Machine (SVM). A two-step 

approach involving feature selection and hyperparameter optimization was employed to 

enhance the models' performance for H2 yield. The coefficient of correlation (R
2
) and Root 

Mean Square Error (RMSE) were used to evaluate model performance. ET performed 

excellent with R
2
 of 0.929 (training) and 0.933 (testing) however GPR exhibited exceptional 

performance, achieving a perfect training R
2
 of 1.00 and low RMSE 0.00026. Furthermore, 

partial dependence plots (PDPs) were utilized to assess the impact of catalyst properties and 

reaction conditions on H2 yield. Temperature impacts H2 directly, while time shows an 

inverse relationship. Various catalysts and catalysts structure exhibited distinct behaviors, and 

the Average surface area demonstrated a direct linear relationship with H2 yield. These 

findings contribute to the understanding of catalytic methane decomposition and provide 

insights for optimizing H2 production processes using ML models. Given the depletion of 

conventional fuels, H2 has emerged as a crucial alternative energy source due to its clean and 

sustainable nature. The ability to accurately predict H2 yield using ML models opens new 

avenues for advancing H2 production technologies and meeting the growing global energy 

demand while mitigating environmental concerns. 

Keywords: Catalytic methane decomposition, Machine learning, H2 yield 
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CHAPTER 01:  INTRODUCTION 

1.1   Background and Context 

The process of generating hydrogen from catalytic methane decomposition (CDM) is a 

significant area of research because of its potential to provide a sustainable and clean energy 

source. This method involves the decomposition of methane (CH4) into carbon (C) and 

hydrogen (H2) using a catalyst, which is a key step in the decarbonization of fossil fuels and 

the production of hydrogen for various applications, including fuel cells and synthetic 

fuels. The catalytic decomposition of methane is a thermochemical reaction that can be 

represented by the following equation:  

CH4 → C + 2H2    (1.1) 

This process releases a significant amount of energy, making it an attractive method for 

hydrogen production. The reaction’s enthalpy change ((\Delta H^\circ)) is approximately 

+74.8 kJ/mol, indicating the exothermic nature of the reaction. Various catalysts have been 

explored for CDM, including iron-based catalysts, which have shown promising results in 

terms of efficiency and selectivity. For instance, iron-containing catalysts have been used for 

methane decomposition, demonstrating the accumulation of filamentous carbon, which can 

be beneficial for the production of nanostructured carbon materials. In addition, catalysts 

such as Ni/SiO2 and Fe/SiO2 have been studied for their role in producing hydrogen and 

filamentous carbon via methane decomposition. The development of high-temperature 

catalysts, such as carbon capacious Ni-Cu-Al2O3 catalysts, has also been investigated for 

their performance in methane decomposition. These catalysts have shown potential for high-

temperature applications, which is crucial for the efficient production of hydrogen. The use of 

molten salt-promoted Ni–Fe/Al2O3 catalysts has been explored for methane decomposition, 

highlighting the potential of such catalysts in enhancing the efficiency of process. 

Furthermore, ceria-modified iron catalysts have been studied for their role in methane 

decomposition, demonstrating the effectiveness of such catalysts in producing hydrogen and 

nanostructured carbon. In summary, the catalytic decomposition of methane is a promising 

method for hydrogen production, and various catalysts are being explored to optimize the 

process. The development of efficient and selective catalysts is crucial for the 
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commercialization of this technology, which could play a significant role in the transition 

toward cleaner and more sustainable energy sources. 

1.2   Research Objective and Question 

Objective: The primary objective of this research is to develop a machine learning 

model capable of accurately predicting hydrogen yield in catalytic methane decomposition 

(CDM) processes. 

Research Questions:  

 Can machine learning techniques effectively capture the complex relationships among 

catalyst properties, process conditions, and hydrogen yield in CDM? 

 What are the most influential factors affecting hydrogen yield in catalytic methane 

decomposition? 

 How can machine learning models be optimized to provide reliable predictions of 

hydrogen yield in CDM under various operating conditions? 

 How do different types of catalysts and process parameters affect the performance of 

machine learning models for predicting hydrogen yield in CDM? 

1.3   Significance and Motivation 

The significance of this research lies in its potential to enhance the efficiency and 

sustainability of hydrogen production through catalytic methane decomposition. By 

employing machine learning techniques, we provide a predictive tool that can optimize CDM 

processes, leading to increased hydrogen yield and reduced energy consumption. Such 

advancements are crucial for the widespread adoption of hydrogen as a clean energy source, 

contributing to global efforts for decarbonization and environmental sustainability. 

1.4   Scope and Limitations 

Scope: 

 This research will focus on developing machine learning models specifically tailored 

for predicting hydrogen yield in catalytic methane decomposition. 

 Various catalyst types and process parameters will be considered to assess their 

impact on the model performance. 
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 This study will involve both experimental data and computational simulations to train 

and validate the machine learning models. 

Limitations: 

 The accuracy of machine learning predictions may be determined by the availability 

and quality of data and the complexity of the underlying chemical reactions. 

 The models developed in this study may have limited generalizability outside the 

specific conditions and catalysts considered. 

 External factors such as reactor design and catalyst degradation over time may not be 

fully accounted for in the predictive models. 

1.5   Organization of Thesis 

The remainder of this thesis is organized as follows: 

 Chapter 2 provides an in-depth review of the relevant literature on catalytic methane 

decomposition (CDM) 

 Chapter 3 outlines the theoretical framework, encompassing the fundamental 

principles of CDM, machine learning techniques for predicting hydrogen yield, and 

optimization methods for enhancing CDM efficiency. 

 Chapter 4 presents the results and discussions, detailing the effect of parameters in 

CDM, such as catalyst properties and process conditions. This chapter also covers 

data collection, model development using ML algorithms, integration of optimization 

techniques, and validation procedures for predicting hydrogen yield in CDM. 
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CHAPTER 02:  LITERATURE REVIEW 

H2 is considered the energy of the future due to its clean burning properties and high calorific 

value. H2 is the lightest element and approximately accounts for 74% of the composition of 

the universe, making it the most abundant element. H2 production methods include water 

dissociation, fossil fuel conversion, and biological means. H2 can be produced directly via 

Water dissociation, but this method is energy intensive. Industrially, gasification and 

reforming are commonly used to produce a gas called syngas, which is a mixture of H2 and 

carbon monoxide and can be utilized to produce valuable chemical products. Natural gas 

steam reforming is a preferred method but poses an environmental concern because of its 

release of large amounts of carbon dioxide. Conventional fuel-based H2 production results in 

the emission of large amounts of CO2 [1]. Commercial H2 production currently relies on 

processes such as Steam Reforming of Methane. However, Carbon Dioxide (CO2) emissions 

from Steam Reforming of Methane, even with CO2 capture, are found to be higher compared 

to Catalytic Methane Decomposition. Catalytic Methane Decomposition has lower CO2 

emissions and produces valuable by-product carbon, making it economically competitive 

with SRM. Catalytic Methane Decomposition has an advantage over electrolysis water 

splitting as it can utilize already present natural gas services unlike electrolysis which relies 

on the availability of renewable energy and cost. Limited availability of renewable electricity 

restricts the widespread use of electrolysis [2].  

CH4 → C + 2H2                        △H
o
298 = 74.8 kJ/mol   (2.1) 

The reaction of catalytic methane decomposition above is considered an attractive alternative 

for producing clean H2 and valuable carbon material. It is favored for its simple process flow 

and high efficiency. A significant advantage is that this reaction does not generate carbon 

dioxide, making it environmentally appealing, particularly considering global warming 

concerns caused by excessive carbon dioxide emissions. The resulting products, solid carbon, 

and usable H2 can be easily separated.  The obtained solid carbon can be utilized as a raw 

material in various applications, including plastic production and the metallurgical industry 

[3, 4]. The reaction is preferred to be carried out at temperatures higher than 1073 K because 

it facilitates high conversion of methane which is further used for various applications. In 

some cases, an H
2
 stream with nearly hundred percent concentration is required, necessitating 

even higher temperatures, around 1273 K. However, one of the key problems of the catalytic 
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methane decomposition process at high temperatures is catalyst deactivation induced by the 

accumulation of carbon and sintering. This is because the reaction requires high temperatures 

greater than 873 K. To address these issues, researchers created and tested a variety of 

supported metal-based catalysts, with the goal of overcoming catalytic deactivation and 

improving overall process performance [5].  

One significant challenge in catalytic methane decomposition is understanding the reaction 

kinetics, specifically the rate of hydrogen (H2) and Carbon (C) production. This challenge 

arises from the diverse chemical compositions of different catalysts, which can affect the 

reaction kinetics. Understanding and characterizing these kinetics is crucial for optimizing the 

process and selecting the most efficient catalysts [6]. To address the challenge of 

understanding the kinetics of catalytic methane decomposition, an artificial intelligence 

modeling approach can be employed. This method allows for a better understanding of the 

process parameters. Irregular and complex interactions between input and output parameters 

are common in real-world systems. By gaining a deeper understanding of these non-linear 

relationships, it becomes possible to optimize process operations, establish theoretical 

frameworks, automate processes, and facilitate upscaling. The utilization of artificial 

intelligence modeling provides a valuable tool for overcoming this challenge and enhancing 

the efficiency of catalytic methane decomposition [7]. Artificial intelligence modeling has 

been extensively used in various catalytic processes. Examples include Sulfur removal [7], 

steam reforming of methanol, steam reforming of glycerol [8, 9], Biomass air gasification 

[10], shift reaction of water and gas [11], and waste palm oil steam gasification [12].  In their 

study, Nasr et al. [13] utilized artificial neural networks (ANNs) in a back-propagation 

configuration to develop a predictive model for bio hydrogen production. They found a 

significant correlation between the experimental and predicted bio hydrogen production 

results. This suggests that the ANN approach effectively predicts and models bio hydrogen 

production in their study. Ayodele et al. [14] utilized ANNs have been used to forecast the 

conversion of CH4, CO2, and the syngas ratio in methane dry reforming reactions using Co 

catalysts supported by Sm2O3 and CeO2. This application of ANN allows for accurate 

predictions of these key parameters, aiding in the optimization and understanding of the 

methane dry reforming process using these specific catalysts. 

This study evaluates the performance of different machine learning (ML) models namely 

Artificial Neural Network (ANN), Ensemble Tree (ET), Gaussian Process Regression (GPR), 
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Regression Tree (RT), and Support Vector Machine (SVM) in predicting H2 yield (%) from 

catalytic methane decomposition. It introduces Genetic Algorithms (GAs) for model 

optimization, leveraging natural evolution principles for improved ML model performance. 

By combining ML models, GA based hyper parameters tuning and feature selection, the 

study aims to enhance H2 yield prediction accuracy. The analysis highlights the superior 

predictive capabilities of certain ML models, with ET exhibiting excellent performance and 

GPR showing exceptional results, achieving a perfect training R
2
 of 1.00 and low RMSE 

0.00026. Additionally, the study employs partial dependence plots (PDPs) to understand the 

impact of catalyst properties and reaction conditions on H2 yield. Key findings include the 

direct influence of temperature on H2 yield and an inverse relationship with time. Moreover, 

different catalysts and catalyst structures display distinct behaviors, while the average surface 

area demonstrates a direct linear relationship with H2 yield. 
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CHAPTER 03:  OVERVIEW ML MODELS AND 

OPTIMIZATION FRAMEWORK 

3.1   Machine Learning Models 

This section provides a broad review of all the ML models developed for this thesis. 

3.1.1  Artificial Neural Network 

An Artificial Neural Network (ANN) is a machine learning model which takes its 

inspiration from the working of the human brain. It consists of interconnected artificial 

neurons organized in layers. ANNs are used for tasks like classification and regression. 

Neurons receive inputs, apply transformations, and pass outputs to the next layer. 

Connections between neurons have weights determining signal strength. ANNs have input, 

hidden, and output layers. Hidden layers extract features from data. During training, an ANN 

adjusts connection weights using optimization algorithms like backpropagation. It minimizes 

the difference between predicted and desired outputs over iterations. Trained ANNs make 

predictions or classifications on new data. Input passes through layers, and the network 

applies learned weights to produce an output. ANN success depends on learning from 

training data to generalize for accurate predictions on unseen data [15]. The application of 

ANNs extends to predicting outcomes based on input parameters, specifically in H2 yield 

prediction. During this process, input data related to the catalytic process traverses through 

the layers of the ANN. The hidden layers, skilled in feature extraction, identify patterns and 

relationships among the input parameters temperature, time, catalyst, CS, Nickel (%), BET, 

and structural features. Applying the learned weights, the network generates an output 

representing the predicted H2 yield (%). Figure 1 shows the schematic of ANN 



8 

 

Figure 3.1: Structure of ANN 

3.1.2  Ensemble Trees 

Ensemble Trees (ET), or decision tree ensembles, enhance machine learning 

predictions by combining multiple trees. Each tree is trained on a subset of data and random 

features, promoting diverse learning. During prediction, the ensemble aggregates individual 

tree outputs, using majority voting for classification and averaging for regression. ET 

operates on the "wisdom of the crowd" principle, compensating for individual weaknesses 

and biases, resulting in a more accurate and robust model. Valuable in classification, 

regression, and anomaly detection, ET's ability to capture complex relationships makes it a 

widely employed tool, significantly improving predictive accuracy in various machine 

learning applications [16]. ET discerns intricate patterns and relationships within the input 

parameters including temperature, time, catalyst, CS, Nickel (%), and BET. Each decision 

tree, trained on a subset of data and random features, contributes to the collective prediction. 

By combining diverse insights from individual trees, the ensemble compensates for biases 

and weaknesses, producing a comprehensive output that represents the predicted H2 yield (%) 

with improved accuracy. 
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Figure 3.2: Bagging in ET 

3.1.3  Gaussian Process Regression 

Gaussian process regression (GPR) is a statistical machine learning technique that can 

be used to describe and predict continuous variables. It represents the association between 

input and output variables as a distribution function, without assuming a specific underlying 

distribution. It defines a mean function and a covariance function to represent the expected 

value and similarity between input points, respectively. During training, the mean and 

covariance function parameters are estimated from observed data using maximum likelihood. 

The estimated parameters allow making predictions for new input points by calculating the 

conditional distribution of the target variable. This distribution provides a predicted mean 

value and uncertainty estimate. GPR is flexible, accommodating complex relationships in 

data and providing uncertainty estimates. However, it can be computationally expensive for 

large datasets due to inverting covariance matrices. Approximation techniques can be used to 

address scalability issues [15]. GPR models the relationship between input parameters 

(temperature, time, catalyst, CS, Nickel %, BET, structural features) and H2 yield (%), 

providing predictions along with uncertainty estimates. GPR's probabilistic nature allows it to 

adapt to data variations, offering valuable insights into both predictions and their associated 

confidence levels. 
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Figure 3.3: Workflow of GPR 

3.1.4  Regression Tree  

A regression tree (RT) is a machine learning algorithm used to predict continuous 

numerical values. It divides the input space into regions and assigns a constant value to each 

region as the prediction. The tree is constructed by repeatedly dividing the dataset based on 

the input features which allows the minimization of variance of objective variable within 

each subset. The tree starts from the root node which comprises of the entire dataset, the 

algorithm then selects the best feature and split point to create branches and nodes. This 

process is repeated until a condition, such as attaining a maximum tree depth or a minimum 

number of samples per leaf, or a stopping criterion is reached. To make predictions, new 

instances traverse the tree based on their feature values, with the predicted value being the 

constant associated with the leaf node. RT can capture complex relationships but are prone to 

overfitting. Techniques like pruning, regularization, or ensemble methods can address 

overfitting [17]. RT for H2 prediction will use input parameters (temperature, time, catalyst, 

CS, Nickel %, BET, and structure) to recursively split data into subsets, capturing complex 

dependencies for accurate H2 yield (%) forecasts. 
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Figure 3.4: Workflow of RT 

3.1.5  Support Vector Machine 

Support Vector Machines (SVMs) are strong supervised machine learning algorithms 

which can be used for both classification and regression problems. SVM seeks the best 

hyperplane or decision boundary for separating data points of distinct classes or 

approximating a regression function. SVMs accomplish this by utilizing kernel functions to 

map the data into a higher-dimensional feature space. The procedure maximizes the margin 

between the hyperplane and the nearest data points of distinct classes, with the support 

vectors determining the decision boundary. SVMs are capable of handling non-linearly 

separable data and are resistant to overfitting. They necessitates careful hyperparameter 

adjustment, but they provide flexibility and effectiveness in a variety of applications [18]. 

SVM for H2 prediction utilize input parameters (temperature, time, catalyst, CS, Nickel %, 

BET) to find a hyperplane that maximally separates data points, optimizing the margin 

between classes and facilitating accurate H2 yield (%) predictions based on the input features. 
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Figure 3.5: Schematic of SVM 

3.2   Genetic Algorithm Optimization 

Genetic Algorithm (GA) draws inspiration from nature's selection process to address 

problem-solving effectively. Its objective is to assist a population in adapting to dynamic 

environmental changes. Each individual within the population possesses distinct 

characteristics, necessitating the refinement of beneficial traits while eliminating redundant 

and detrimental qualities. GA operates as an evolutionary algorithm, incorporating 

evolutionary programming and strategies. The initiation of the process involves the creation 

of a population through random generation. [19].  The operators are crucial in the GA, which 

are explained below.  

Numerous studies have employed Genetic Algorithms (GAs) to assess solutions for intricate 

problems characterized by inconsistent, non-uniform decision variables, and other 

complexities. In the course of searches, GA organizes potential solutions into data structures 

resembling chromosomes, forming a community of these genetic entities. A crucial aspect 

involves utilizing a fitness function that assigns a scalar reward or incentive to each solution. 

With a well-designed plan and evaluation function, GA can anticipate honest responses.  The 

process begins by generating an initial solution consisting of a predetermined set of threads or 

chromosomes, representing the population size. Subsequently, each option in the initial 

population undergoes analysis using a payout function, wherein superior responses receive 

higher rewards, while the remaining options receive comparatively lesser rewards. The 
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subsequent generation is formed using GA operators, including crossover and mutation. This 

iterative process continues until an optimal solution (or solutions) is identified, the specified 

number of iterations or populations is reached, or the discrepancy among solutions falls 

below a predefined limit. Figure 6 illustrates the schematics of the GA process. [20-22]. The 

aspects of GA are described briefly below: 

1. Representation in a genetic algorithm involves depicting individuals in a 

population through chromosomes. The chosen representation scheme dictates the problem 

structure and determines the applicable genetic operators. Gene sequences are formed using 

specific alphabets, such as binary numbers (0 and 1) or value numbers. Research indicates 

that chromosomes encoded with real values result in more efficient GAs and improved 

solutions.[23]. 

 

Figure 3.6: Workflow of GA 
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2. In GA, generations are formed by selecting individuals from the previous 

generation, where selection is based on each entity's likelihood of being chosen for 

reproduction in the next generation, determined by their fitness value. Selection methods 

include roulette wheel selection, scale techniques, competitions, elitist systems, and rating 

scales. Common to these approaches is assigning individuals a chance of selection, 

accomplished through a roulette wheel, logarithmic ranking, or geometrical priority. 

3. Genetic operators play a crucial role in manipulating populations across 

generations to achieve optimal outcomes. Preserving adaptive traits from prior generations is 

essential. The selection operator focuses on choosing parents with high fitness values for 

offspring reproduction, ensuring that chromosomes with superior fitness contribute to the 

next generation. Another key operator is crossover, which combines parent features during 

reproduction, creating offspring with traits inherited from both parents. The mutation 

operator prevents critical data loss by randomly altering one or more individuals in a group, 

promoting genetic diversity. Additionally, a binary coded gene is generated by reversing the 

gene sequence from 0 to 1. 

4. To initiate the GA process for finding the optimum solution, an initial population 

is required. This population can be created by generating random responses within the 

specified upper and lower bounds of variables. Alternatively, the starting population can be 

seeded with established best approaches, enhancing the overall quality. The remaining 

population can then be randomly generated. 

5. Once a specific termination met the criteria of termination than the GA operations 

are terminated. The requirement of termination can be any or a mix of the following: (1) The 

number of generations approaches a predefined maximum value. (2) The population adapts 

on a unique solution. (3) The difference between solutions becomes less than a specified 

criterion. (4) The ideal solution does not grow over a certain no. of generations. (5) The 

evaluation values meet an acceptable level [22-24]. 

 Commencing with the creation of a randomized population set. 

 Evaluating features through the utilization of a fitness function. 

 In instances where the objective function's criteria were unmet, a new population 

batch was generated by refreshing the Genetic Algorithm (GA). GA operators were 

instrumental in this population generation process, as outlined in Table 1, specifying 

the parameters used for optimizing ML models in this study. 

 This iterative process persists until the attainment of the most optimal fitting function.             
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Table 3.1: Parameters of Genetic Algorithm 

GA 

Parameters 

Generation Crossover 

Probability 

Crossover Elite 

Count 

Size 

Population 

Type 

Population 

Mutation Probability 

of 

Mutation 

Values 100 0.8 Scattered 3.95 50 Bitstring Uniform 0.1 
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CHAPTER 04:  RESULTS AND DISCUSSIONS 

4.1   Methodology 

4.1.1  Data Collection 

In this section, experimental data were extracted from relevant published papers, 

including the catalytic methane decomposition into H2. A total of 943 data points from 64 

relevant published papers were collected comprehensively on features that significantly 

influence H2 yield (%). Major features, namely temperature, time (min), catalyst, catalyst 

structure (CS), and average surface area (BET), were considered as input parameters. H2 

yield (%) was designated as the objective function of the catalytic methane decomposition 

process. 

4.1.2  Data Distribution 

Boxplots are used to describe the distribution of data. Boxplots show the mean, 

median, quartile, minimum, and maximum values of the data. Figure 4.1 exhibits the box 

plots and violin plots of the input and output parameters. In Figure 4.1 the rectangular box 

shows where the 50% of the data lies, the horizontal line present inside the box represents the 

median value of the data, the vertical line extended from the rectangular box shows the range 

of the data except the outliers, the outliers are represented as separate data points beyond the 

vertical line. Violin plots encompassing the box plots display the distribution, central 

tendency, and variability of data of input and output parameters. They provide a 

comprehensive visualization of continuous data, facilitating comparisons across parameters. 

For the data set of catalytic methane decomposition, temperature ranges from 500
o
C to 

850
o
C, time ranges from 0 to 1130 min, nickel data ranges from 0 to 77%, Catalyst and CS 

are categorical variables where Catalysts type ranges from 1 to 27, and structure ranges from 

1 to 8. Each numerical value within these ranges represents a distinct category for the 

respective variable. The specific names corresponding to each category are provided in 

supplementary files. BET ranges from 10.6 to 738.8, and output parameter H2 yield (%) 

ranges from 0 to 96% with mean of 42.9138 further distribution of data can be found in table 

4.1. 
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Table 4.1: Data Distribution of Data 

 Temp (
o
C) Time (min) Nickel 

(%) 

Average Surface 

Area (m
2
/g) 

H2% 

Mean 650.901379 193.612937 35.662778 161.748144 42.913874 

Std 74.285227 168.357356 19.608449 134.970620 21.572582 

Min 500.000000 0.000000 0.000000 10.600000 0.000000 

25% 600.000000 68.500000 20.000000 42.100000 27.694268 

50% 650.000000 153.000000 40.000000 147.700000 40.000000 

75% 700.000000 281.500000 50.000000 225.000000 59.000000 

Max 850.000000 1130.000000 77.000000 738.000000 96.000000 
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Figure 4.1: Box Plots of Input and output parameters. 

4.1.3  Performance Evaluation Criteria 

To check the accuracy and performance of ML models some statistical parameters are 

used. In this study coefficient of correlation (R
2
) and Root Mean Square Error (RMSE) were 
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used to evaluate the accuracy of ML models. The equation for both parameters is given 

below. 

    
[    

  (      ‾ )  (      ‾ )]
 

    
  (      ‾ )

 
     

  (      ‾ )
        

     √
 

 
    

  (         )
 
     (4.2) 

Where,  ‾  = observed output mean,      =observed output,  ‾  = predicted output mean,      

=Predicted output, n =total data points. 

 

4.1.4  Pearson Correlation 

Pearson correlation quantifies the relationship of input variables to output variables. 

In this section correlation of Temperature, time, catalyst, CS and BET was analyzed with H2 

yield (%). Input parameters with values closer to 1 have a strong relationship with H2 yield 

(%) and parameters with correlation value closer to 0 have weak relationship with H2 yield 

(%). The positive and negative signs merely describe the direction of correlation of input 

variables with H2 yield (%). According to figure 4.2, structure and BET show positive 

correlation to H2 yield (%) with contribution of 8.9% and 27% respectively. Temp (
o
C), Time 

(min), Nickel, Catalysts contribute 1.4%, 37%, 8.9% and 13% to H2 yield (%) but with 

negative association. 

 



20 

 

Figure 4.2: Correlation heat map 

4.1.5  Data Pre-processing 

After analyzing the data distribution, data preprocessing techniques were applied to 

prepare the data for machine learning models. Several steps were taken to ensure data quality 

and enhance model performance. Firstly, missing values were handled by either imputing 

them with appropriate measures like mean or median, or by removing the corresponding 

instances. This ensured that the data used for training was complete and reliable. Next, 

outliers were identified and treated to prevent them from disproportionately influencing the 

model. Feature scaling techniques like standardization or normalization were employed to 

bring features to a similar scale, avoiding biases in model training. Feature selection was 

employed via Genetic Algorithm to reduce the number of features and eliminate redundant 

information. These preprocessing steps were crucial in preparing the data, improving its 

quality, and ensuring that the machine learning models can effectively learn from it. 

4.2   GA for feature selection 

Feature selection is a crucial step in ML model development where input features are 

selected to create an effective model. It helps avoid overfitting and excessive computational 

complexity by including only relevant features. However, selecting features based solely on 

importance can be insufficient. Feature selection improves data quality by reducing 
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dimensionality and algorithm speed, eliminating unnecessary and redundant features [25]. 

Forward and backward selection are two typical ways to feature selection. Forward selection 

gradually introduces factors that reduce error, whereas backward selection begins with all 

variables and eliminates those that have no effect on error. The filter, wrapper, and hybrid 

approaches are three commonly used feature selection techniques. Preprocessing processes 

are used in filter algorithms to pick features based on correlation with the output. Wrapper 

approaches analyze subsets of features using a specified classification algorithm. Wrapper 

approaches yield better results than filter methods in general, but they demand more 

computer resources [26]. 

Feature selection using GAs aims to find the most relevant features that significantly 

contribute to a machine learning model's predictive performance. GAs efficiently explores a 

large search space by emulating the process of natural selection. Different feature subsets are 

represented as a population, and their evaluation is based on a fitness criterion. This criterion 

can be classification accuracy, regression error, or a specific performance metric. The fitness 

function quantifies the model's performance with the selected features. GAs evolves the 

population by selecting the fittest feature subsets for reproduction and applying genetic 

operators like crossover and mutation. This process explores various feature combinations 

and converges towards subsets that yield optimal performance [27]. Table 4.2 shows the GA 

based selected features of all the ML models. SVM and ANN show maximum performance 

when all the features are selected. GA based ET, GPR, RT have discarded features which 

increase the complexity and accuracy of the model. 

Table 4.2: GA based feature selection 

Model Type Features Selected for GA 

ET 

  

 GPR 

  

 

Temp, time, Ni, CS, BET  

  

Temp, time, Ni, catalyst, CS, 

BET 
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 RT 

  

 SVM 

  

 ANN 

Temp, time, Ni, BET  

  

Temp, time, Ni, CS, BET  

 

 Temp, time, Ni, CS, BET 

 

4.3   GA based tuning of hyperparameters 

Hyperparameter tuning is a vital step in machine learning to optimize model 

performance. Hyperparameters, set by the user before training, impact various aspects of the 

learning process and greatly affect model outcomes. The key reasons for hyperparameter 

tuning are Model performance, generalization, Model complexity, speed, efficiency and 

model interpretability [28]. By using GA for hyperparameter tuning, it becomes possible to 

explore a wide range of hyperparameter combinations efficiently. GA can handle both 

continuous and discrete hyperparameters, as well as interactions between them. They offer 

the advantage of global search and can discover non-intuitive combinations that may improve 

model performance. The hyperparameters optimized via GA for ET are number of cycles, 

learning rate, and methods, for GPR optimized parameters were Basic function, Kernel 

function and sigma, for RT optimized parameters were minimum leaf size and surrogate, for 

SVM optimized parameters were Box Constraint, Kernel Scale, Epsilon and Kernel Function. 

Table 4.3 shows all the names, ranges and optimized values of the tuned hyperparameters for 

ML models via GA.  

Table 4.3: GA based hyperparameters optimization 

ML 

Methods 

Parameters Parameters 

(Range) 

Optimized Values 

for GA 

  Number of 

learning cycles 

 [10-500] 141.7757 
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ET Learning rate  [0.001-1] 0.1044 

Methods  [LSBoost, Bag] Bag 

 

GPR 

Basic Function [Constant, Zero, 

Linear]  

None 

Kernel Function  [Squared 

exponential, 

Ardexponential] 

Ardexponential 

Sigma [0.001-219.517] 134.9696 

 

 

RT 

Minimum Leaf 

Size 

[1-377] 1 

Surrogate [on, off] on 

 

 

 

SVM 

Box Constraint  [0.001-1000] 965.1073 

Kernel Scale  [0.001-1000] 0.8642 

Epsilon  [0.002463-2446.25] 1.8058 

Kernel Function  [Polynomial, 

gaussian, linear, 

cubic]  

gaussian 

 

4.4   Prediction Performance of ML models 

The prediction of H2 yield (%) from catalytic methane decomposition was carried out 

using various machine learning models, including ANN, ET, GPR, RT, and SVM. To 

improve the performance and accuracy of these models, a two-step approach was followed. 

GA was employed for feature selection, discarding irrelevant features and optimizing the 

values of hyperparameters. This ensured that the models focused on the most informative 
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input features and had the best parameter settings. After the feature selection and 

hyperparameter tuning, the ML models were trained using 80% of the available data, and the 

remaining 20% was used for testing. The performance of the models was evaluated using the 

R
2
 and RMSE. Table 4.4 demonstrates the satisfactory performance of all models. ET model 

achieved a training and testing R2 of 0.929 and 0.933, respectively, with RMSE values of 

0.000515 and 0.00025. GPR exhibited excellent performance with training R2 of 1.00 and 

RMSE of 0.00026, and testing R2 of 0.996 and RMSE of 0.63. RT showed satisfactory 

results with training R2 of 0.93 and RMSE of 0.012, and testing R2 of 0.84 and RMSE of 

0.0047. SVM model showed a strong linear relationship between predicted and actual H2 

yield (%), with high training and testing R
2
 of 0.993 and 0.992 respectively. However, the 

SVM model also had relatively high RMSE values of 12.37 and 9.287 for training and testing 

respectively, indicating significant deviations between predicted and actual values. This 

discrepancy between high R2 and high RMSE in SVM can be attributed to the nature of the 

problem and the distribution of the data. ANN attained an R
2
 of 0.95. Interestingly, ANN and 

SVM demonstrated better results when trained with all input features, while the other models 

discarded some features to reduce complexity and enhance performance. This can be 

attributed to the complexity and non-linear relationships present in the data. By including all 

features, ANN and SVM were able to capture the intricate relationships between the input 

variables and the H2 yield (%), leading to improved performance.  

Table 4.4: Comparison of ML models 

Model Train 

R
2
 (GA) 

Train 

RMSE (GA) 

Test 

R
2
 (GA) 

Test 

RMSE (GA) 

ET 0.929 0.000515 0.933 0.00025 

GPR 1.00 0.00026 0.996 0.063 

RT 0.93 0.012 0.84 0.0047 

SVM 0.993 12.37 0.992 9.287 
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Figure 4.3 shows the difference between actual H2 yield (%) and predicted H2 yield (%). The 

actual data is depicted by a solid line in the figures, while the predicted values from the 

proposed machine learning models are represented by red dotted circles surrounding the solid 

line. 
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Figure 4.3: A) RT training a) RT testing, B) ET training b) ET testing, C) GPR Training c) GPR 

testing, D) SVM training d) SVM testing. 

4.5   Effect Of Input variables on H2 yield (%) 

The effect of input variables on output variable H2 yield (%) is determined by partial 

dependence plots (PDPs). PDPs are used to interpret the underlying relationship and 

importance of parameters on the output. The effect of selected features of the best performing 

model (GPR) are determined. In thermo-catalytic decomposition of methane, the temperature 

plays a crucial role in influencing the H2 yield (%). Figure 4.4A shows a characteristic trend 

as the temperature is elevated, the H2 yield (%) increases, reaching its peak around 650°C. 

This phenomenon can be attributed to the enhanced kinetics of methane decomposition at 

higher temperatures, promoting the dissociation of methane into H2 and carbonaceous 

species. The decline in H2 yield (%) after 650
o
C can be attributed to the sintering of active 

sites, and elevation after 750
o
C is owed to the shift of thermos-catalytic methane 

decomposition to thermal methane decomposition.  

Figure 4.4B shows the GPR-based results underscore the temporal evolution of H2 yield (%) 

in thermo-catalytic methane decomposition, providing a data-driven understanding of the 

complex interplay of factors influencing the reaction over time. It is a well-established 

concept in methane decomposition that during the early stages of the reaction, the catalytic 

sites on the surface of the catalyst material are highly active, facilitating the efficient 

dissociation of methane into H2 and carbonaceous species. However, as the reaction 

progresses, these active sites may become gradually deactivated or fouled by the 
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accumulation of carbonaceous deposits, inhibiting their catalytic efficacy. The gradual 

decline in catalytic activity over time is often associated with the adsorption of carbon species 

on the catalyst surface, leading to reduced accessibility of reactive sites and hindering the 

methane conversion to H2. 

Figure 4.4C shows the GPR-based results depicting the effect of Nickel concentration over 

H2 production. The literature shows that the concentration of nickel in catalytic systems for 

methane decomposition plays a pivotal role in influencing the H2 yield (%), and its impact 

follows a distinctive pattern. The augmentation in H2 yield (%), with an escalating nickel 

concentration can be attributed to the pivotal role that nickel plays as an active site in the 

methane decomposition process. As nickel concentration rises, the availability of catalytically 

active sites increases, promoting the efficient dissociation of methane into H2 and 

carbonaceous intermediates. This heightened catalytic activity contributes to a corresponding 

increase in H2 yield (%), showcasing the positive correlation between nickel concentration 

and the efficiency of H2 production. However, as the nickel concentration continues to rise 

beyond an optimal point, a diminishing trend in H2 yield (%) becomes apparent. This 

phenomenon is generally linked to the development of free Nickel inside catalyst causing 

catalyst deactivation by the formation of coke or carbonaceous deposits on the catalyst 

surface. 

Figure 4.4D depicts the relationship between surface area and H2 yield (%). The results 

indicate a discernible relationship between catalyst surface area and the production of H2, 

revealing a notable trend. It can be postulated that initially, as the catalyst surface area is 

augmented, there is a corresponding increase in H2 yield (%). The catalyst surface area serves 

as the interface where methane molecules interact with active sites, facilitating their 

dissociation into H2 and carbonaceous intermediates. Up to a surface area of 400 m²/g, the 

heightened availability of active sites contributes to an enhanced catalytic activity, leading to 

an increased H2 yield (%). However, beyond the critical threshold of 400 m²/g, a plateau in 

H2 yield (%) is observed despite further increases in surface area. Several factors may 

contribute to this observed phenomenon. At higher surface areas, the catalytic sites may 

become saturated, limiting the additional benefit gained from increased surface exposure. 

Additionally, factors such as mass transport limitations or changes in the catalyst structure 

may become more prominent, counteracting the positive effects of increased surface area on 

catalytic activity. In Figure 4E, the plot illustrates the H2 yield of various catalysts. The plot 
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reveals that different catalysts exhibit varying H2 yields due to differences in catalyst 

material. The highest H2 concentration was achieved by NiFe/Al2O3. In the plot, only the 

peaks and valleys of this catalyst are labeled. Figure 4.4F illustrates the impact of catalyst 

structure on H2 yield, featuring eight different structures mentioned in Table 2 of the 

supplementary files. The plot demonstrates slight variations in H2 yield across these 

structures, with the highest H2 yield achieved by the mesoporous structure. 
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Figure 4.4: 2D Partial Dependence plots of H2 yield (%) 

Figures 4.5 (A-C) show 3D plots generated by GPR and clarify the combine effects of 

various parameters over H2 production by methane decomposition. Figure 4.5A shows a trend 

between on stream time, temperature, and H2 yield (%). The trend depicts overall on-stream 

activity of catalyst, and the results show catalytic activity of above 80% H2 yield for 500 

minutes at an operating temperature of 700
o
C. The observed on-stream stability under 

varying temperatures is crucial for the practical application of the catalytic process. It informs 

the design and optimization of the operating conditions to achieve the desired balance 

between high activity and stability. Additionally, it contributes to the overall efficiency and 

reliability of the catalytic system in industrial settings. The indication that on-stream stability 

decreases when the temperature is either increased or decreased implies a sensitivity of the 

catalyst to variations in thermal conditions. The reduction in stability at higher temperatures 

could be due to factors such as catalyst deactivation, the formation of undesirable by-

products, or changes in the catalyst's selectivity under elevated thermal conditions. Similarly, 

if on-stream stability decreases when the temperature is decreased from 700°C, it implies that 

the reduction in stability could be attributed to issues such as sluggish kinetics or a shift in the 

predominant reaction pathways that affect the overall H2 yield (%). 

Figure 4.5 (b) depicts an interplay between time, average surface area, and H2 yield (%). The 

trend reveals a compelling scenario of a catalyst exhibiting robust stability for a duration of 

400 minutes, particularly at high surface areas of above 300 m
2
/g. This observation indicates 

the catalyst's resistance to deactivation mechanisms, such as carbon deposition or sintering, 

over an extended timeframe. The high surface area signifies a wealth of active sites available 

for the adsorption and decomposition of methane molecules, leading to enhanced H2 
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production efficiency. The trend further elaborates the controlling factor of time in methane 

decomposition. At any given surface area, the H2 yield (%) ultimately drops with the 

progression of time. Such insights are crucial for optimizing reaction conditions and catalyst 

design, paving the way for the development of more effective and durable catalysts in the 

realm of industrial H2 production. Figure 4.5 (c) shows a 3D plot integrating time, H2 yield 

(%), and different catalyst ranging from 55% Ni/2 MgO·Al2O3 to Ni/TiO2(50%)Al2O3 the 

rest of the catalysts can be found in supplementary files. The plot reveals variations in H2 

concentration among different catalysts, yet they all follow the same trend, highlighting a 

notable phenomenon where a catalyst demonstrates commendable stability over longer 

durations. The observed stability suggests that the catalysts effectively mitigate deactivation 

mechanisms during the catalytic process. Scientifically, this underscores the catalyst 

material's role in sustaining active sites, minimizing catalyst degradation, and ensuring 

prolonged efficiency in converting methane to H2. The insights gleaned from the 3D plot are 

crucial for catalyst design and process optimization, guiding the development of robust 

catalyst-support systems for enhanced and sustainable H2 production from methane 

decomposition. 

A 

 

B 

 

C 
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Figure 4.5: Partial dependence plots for Hydrogen Yield (%) 

 

 

4.6  Graphical User Interface (GUI) 

In this section, the GPR-GA methodology was employed to construct a Graphical 

User Interface (GUI) for forecasting H2 yield (%) in catalytic methane decomposition. The 

developed GUI is visually presented in Figure 4.6.   Within Figure 4.6, users have the 

capability to input specific parameters, including temperature (°C), time (min), and Nickel 

(%), and average surface area (m²/g). Additionally, users can choose catalyst type from a 

dropdown menu. Once all input values are provided, users can initiate the prediction process 

by clicking the "Predict" button.  The interface enables a streamlined prediction of hydrogen 

yield (%), utilizing the GPR-GA model. To enhance user experience, a "Clear" button has 

been incorporated, allowing users to reset all input values to zero with a single click. This 

user-friendly design facilitates efficient and intuitive interaction with the developed GUI, 

enhancing the usability of the predictive model for catalytic methane decomposition. 
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Figure 4.6: Graphical User Interface (GUI) for Hydrogen Yield (%) Prediction 

 

 

4.7  Experimental Validation 

Table 4.5 presents a comparative analysis of actual experimental hydrogen yields and 

those predicted through Gaussian Process Regression with Genetic Algorithm (GPR-GA) for 

three distinct scenarios. In the first instance (Sr No 1), the experimental yield was measured 

at 59%, closely aligned with the GPR-GA predicted yield of 59.03%. Similarly, in the second 

case (Sr No 2), the experimental yield reached 86%, with the GPR-GA model accurately 

forecasting a yield of 86.02%. The third scenario (Sr No 3) involved an experimental yield of 

90%, remarkably consistent with the GPR-GA predicted yield of 90.01%. The close 

agreement between the experimental and predicted values across these instances 

demonstrates the efficacy of the GPR-GA methodology in accurately forecasting hydrogen 

yields in catalytic methane decomposition. 
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Table 4.5: Performance Table of Graphical User Interface for Hydrogen Yield Prediction 

Sr No Experimental Yield GPR Predicted 

Yield 

Reference 

1 59 59.03 [29] 

2 86 86.02 [30] 

3 90 90.01 [31] 

 

In a previous study [31], experiments were conducted using exLDH catalysts with 

different nickel compositions (Ni65, Ni15, Ni40) in a fixed bed reactor to assess the catalyst's 

performance in hydrogen production through methane decomposition. A comprehensive 

analysis was performed, comparing the effects of temperature and time. Here, we will 

compare the results of our study with the experimental study. 

Regarding the impact of temperature as shown in figure 4.7, our machine learning results 

demonstrated that hydrogen concentration tends to increase at lower temperatures. However, 

as the temperature rises, there is a gradual decline in H2 concentration, followed by a 

subsequent gradual increase. This trend aligns with the findings from the experimental study. 

Further insights into the reasons behind this observed variation in hydrogen concentration 

concerning temperature are provided in Section 4.5 of our study. 

A 
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B 

 

Figure 4.7: Comparison of the influence of temperature on A) ML study and B) experimental study. 

Figure 4.8 illustrates a comparison of the time parameter between the M) approach employed 

in this study and the experimental study [31]. The observed trend in both cases indicates that 

with an increase in time, there is a decrease in the concentration of H2. This phenomenon is 

attributed to the limited availability of active sites over time in the catalytic process. 

 

A 
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B 

 

Figure 4.8: Comparison of the influence of temperature on A) ML study and B) experimental study. 

The comparison of the most significant input parameters, temperature, and time, along with 

the use of a GUI for predicting H2 yield, highlights the potential of machine learning in 

optimizing and predicting H2 yield and associated parameters to achieve desired results. 
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CHAPTER 05:  CONCLUSIONS AND FUTURE DIRECTIONS 

5.1   Conclusions 

In conclusion, this study aimed to predict the H2 yield (%) from catalytic methane 

decomposition using various machine learning (ML) models. A two-step approach was 

followed, incorporating feature selection and hyperparameter tuning through GA 

optimization. The performance of the ML models was evaluated using the R2 and RMSE. 

The results demonstrated satisfactory performance across all models. The ET model achieved 

high R2 values of 0.929 (training) and 0.933 (testing), with low RMSE values. GPR exhibited 

excellent performance, achieving a perfect training R2 of 1.00 and low RMSE of 0.00026, 

while also performing well in testing with R2 and RMSE of 0.996 and 0.063 respectively. RT 

showed satisfactory results, and SVM demonstrated a strong linear relationship, although 

with higher RMSE values. ANN achieved a high R2, indicating its effectiveness in predicting 

H2 yield (%). PDPs were utilized to analyze the effect of input variables on H2 yield (%). 

Temperature showed a positive effect, aligning with previous literature. Time had an inverse 

relationship with H2 yield (%), while Various catalysts exhibited distinct behaviors. The BET 

surface area demonstrated a direct linear relationship with H2 yield (%). These visualizations 

provided valuable insights into the behavior and predictive capabilities of the ML models. 

Additionally, a user-friendly graphical user interface (GUI) was created based on the GPR-

GA model, enabling users to make precise predictions regarding the H2 yield (%). Overall, 

this study successfully predicted H2 yield (%) using ML models and identified the influential 

factors affecting H2 production. The findings contribute to the understanding of catalytic 

methane decomposition and offer insights for process optimization in H2 production. The 

capability to precisely forecast H2 yield (%) through ML models not only represents a 

significant leap forward in H2 production technologies but also contributes to sustainability 

goals. By leveraging ML, we can enhance efficiency and optimize processes, thereby 

promoting cleaner production methods. This advancement holds the potential to address the 

escalating global energy demand while concurrently addressing environmental concerns and 

fostering sustainable practices in H2 production. 
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5.2   Future Directions 

 Integration of Advanced Machine Learning Techniques: Explore the potential of deep 

learning architectures, such as neural networks and convolutional neural networks, to 

improve the accuracy and robustness of hydrogen yield predictions in catalytic 

methane decomposition. Investigate the application of reinforcement learning 

algorithms for dynamic optimization of CDM processes. 

 Incorporation of Multi-scale Modeling: Develop multi-scale modeling approaches that 

combine macroscopic kinetic models with atomistic-level simulations to capture the 

complex interactions between catalyst structures, reaction kinetics, and fluid 

dynamics in CDM. This integration could provide a more comprehensive 

understanding of CDM mechanisms and facilitate the design of highly efficient 

catalysts. 

 Experimental Validation and Data Acquisition: Conduct experimental studies to 

validate the predictions of machine learning models under real-world operating 

conditions. Additionally, focus on expanding the dataset with diverse catalyst 

compositions, process parameters, and reactor configurations to enhance the model's 

predictive capabilities and generalizability. 

 Optimization of Catalyst Design: Utilize machine learning-based optimization 

algorithms, such as genetic algorithms and Bayesian optimization, to systematically 

explore the vast design space of catalyst materials and identify novel compositions 

with superior performance in catalytic methane decomposition. Incorporate 

mechanistic insights from computational modeling to guide the search for optimal 

catalyst formulations. 

 Scale-Up and Techno-Economic Analysis: Scale up the optimized CDM processes 

from laboratory-scale experiments to industrial production levels. Perform techno-

economic analyses to assess the feasibility and economic viability of implementing 

CDM-based hydrogen production technologies on a commercial scale. Consider 

factors such as capital and operating costs, energy efficiency, and environmental 

impact to guide investment decisions and technology deployment strategies. 

 Exploration of Co-catalyst Systems: Investigate the synergistic effects of 

incorporating multiple catalyst components or co-catalysts in CDM systems to 

enhance hydrogen production rates, selectivity, and catalyst stability. Explore 

innovative approaches, such as hybrid catalysts and composite materials, to leverage 
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the complementary properties of different catalytic species and maximize overall 

process performance. 

 Cross-disciplinary Collaboration and Knowledge Transfer: Foster collaboration 

between researchers from diverse disciplines, including chemistry, chemical 

engineering, materials science, and data science, to leverage their expertise and 

accelerate progress in CDM research. Facilitate knowledge transfer and exchange of 

best practices through interdisciplinary workshops, conferences, and collaborative 

research projects to address complex challenges in sustainable hydrogen production. 
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