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Abstract

Quantum information science takes advantage of the curious properties of quantum mechanics

in order to design protocols for information processing that lie beyond the capability of their

classical counterparts. This review focuses on continuous-variable graph states for regular net-

work structures with an eye on cost as a figure of merit quantifying both the required squeezing

and the number of needed squeezed modes to build up the network. An analytic formula has

been deduced for the experimental resources needed to realize those graph states; it is shown

that scaling of squeezing cost with network size depends directly on its topology. In addition,

the effect of introducing loss is investigated, which further decreases the squeezing cost, and the

performance of the squeezing is strongly dependent on both the structure and surroundings of

the network. These findings can provide important insight into the design and optimization of

quantum networks.
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Thesis Outline

Chapter 1 introduces basic quantum mechanics, focusing on concepts that most distinguish

quantum mechanics from classical mechanics. Specific topics range from qubits, including

quantum gates and operations, to the use of discrete variables in quantum networking, and a

general introduction to continuous variables. Continuous variables are put into perspective with

regard to their advantageous use compared to discrete variables in some quantum information

tasks.

Chapter 2 is dedicated to Gaussian states, which constitute an important ingredient of continuous

variable quantum information. The measurement techniques on Gaussian states treated in the

text include also partial measurements. Then, the text treats coherent states and their relation to

the displaced vacuum state. Finally, a detailed treatment of squeezed vacuum states, single and

two-mode-and their relevance in quantum information processing, as well as the squeezing that

affects resource requirements is performed.

Chapter 3 goes into the details of the realm of continuous variables, concerning mathemati-

cal representation and issues related to operations. Continuous variable quantum information

processing: Covariance matrices for vacuum, coherent, single-mode squeezed, and two-mode

squeezed vacuum states are derived. Gaussian quantum operations are described and effects of

transmittance and noise on continuous variable quantum systems are looked upon.

Chapter 4 expands on Gaussian networks, analyzing different types of network graphs, such

as linear, cycle, wheel, star, complete, and grid graphs. It explores the role of graph states in

quantum networks and provides a resource theory perspective on quantifying squeezing. The

chapter also investigates network generation via squeezing cost and models Gaussian quantum

channels, comparing squeezing in pure loss channels with different network configurations. In

chapter 5, the results of the research are presented and discussed. It includes an analysis of

the squeezing cost across various network types, focusing on nodes and modes. The chapter
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also examines the impact of noise on squeezing cost, providing insights into how noise affects

different network configurations and quantum modes. This section offers a detailed discussion

of the findings and their implications for quantum information processing.
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CHAPTER 1

Introduction to Quantum Information

1.1 Overview of Quantum Mechanics

In the world of quantum mechanics, particles do not behave as might be reasonably expected

from our greater life experiences. Whereas in the classical world, objects have definite positions

and trace out predictable paths, in the quantum world the rules that govern the motion of objects

are few in number but many of them run completely against our intuition.

With superposition, one particle-a single electron, for example be in more than one state at a

single instant. Think about that: a very small particle being in two places at once or spinning

both clockwise and counterclockwise at the same time. This is no mere theoretical fancy but a

real phenomenon illustrated in innumerable experiments. It’s one of the chief features giving

quantum systems their extraordinary power.

Entanglement is another conception of quantum mechanics. In such a situation, two particles

become so intertwined in their fates, that the instant state of one depends on the instant state of

another, no matter how far they are from each other. These two phenomena superposition and

entanglement are not abstract creations but the very pillars on which quantum information sci-

ence has been built. In this field, we avail the aforementioned quantum principles to manipulate

and transit information in manners impossible in the classical world.

1.2 Classical vs Quantum Mechanics

Having established the foundational principles of quantum mechanics, we can now explore how

these principles differentiate quantum information from classical information.

1



CHAPTER 1: INTRODUCTION TO QUANTUM INFORMATION

1.2.1 Classical Mechanics

The bit is a binary unit of information; it is, in fact, the basic unit of information in a classical

setting. The bits can classically take on one of two states: 0 and 1. These bits form the very

basics of all classical information processing systems, which include computers, smartphones,

and communication networks. Classical gates, such as AND, OR, and NOT, manipulate these

bits according to well-defined rules. The outcome of any classical computation is deterministic,

meaning that the same input will always produce the same output.

1.2.2 Quantum Mechanics

Quantum information, in particular, resides in qubits, which, as we have seen, may exist in

superpositions of states. In fact, this ability to be in more than one state at the same time endows

quantum computers with their exponential advantage for some types of computations.

There is also no classical analog to some of the quantum gates acting on qubits. As an example,

the Hadamard gate will transform the basis states |0⟩ and |1⟩ into equal superpositions:

H|0⟩= |0⟩+ |1⟩√
2

, H|1⟩= |0⟩− |1⟩√
2

. (1.2.1)

Consequently, the ability to generate and manage these superpositions and entangled states en-

ables quantum computers to solve specific problems much faster, exponentially so, compared to

classical computers: factoring enormous numbers.

1.3 Qubits: The building blocks of Quantum information

1.3.1 The concept of Qubit

A qubit represents the quantum counterpart of the classical bit but with a great deal more var-

ious behavior: While a classical bit can be 0 or 1, a qubit can exist in a superposition of both

states. [9]. The general state of a qubit is written as:

|ψ⟩= α|0⟩+β |1⟩. (1.3.1)

Here, α and β are complex coefficients that determine the likelihood of the qubit being measured

in either the |0⟩ or |1⟩ state. The power of a qubit comes from the fact that it can represent both

2



CHAPTER 1: INTRODUCTION TO QUANTUM INFORMATION

possibilities simultaneously, unlike a classical bit, which is strictly one or the other.

1.3.2 Quantum gates and operation

Quantum gates are the quantum version of classical logic gates - they operate on qubits. They

are unitary matrices applied to the qubits in order for the states to evolve.

The most basic quantum gate is the so-called Hadamard gate H; it generates a superposition out

of a basis state:

H =
1√
2

1 1

1 −1

 . (1.3.2)

Applying the Hadamard gate to the |0⟩ state creates an equal superposition of |0⟩ and |1⟩:

H|0⟩= |0⟩+ |1⟩√
2

. (1.3.3)

Another of the very useful gates is the Controlled-NOT (CNOT) gate. This gate acts on two

qubits-flipping the second qubit, the target, if and only if the first qubit, the control, is in the

state |1⟩. The preparation of entangled states is central to many of the quantum computing and

communication protocols.

1.4 Discrete variable in quantum Network

It is important to note, as we shall now consider quantum networks more explicitly, that the

role of discrete variables, and in particular, qubits plays an important part. Discrete variables

are usually understood as quantum systems with only a finite number of possible states. Qubits,

which can be in states |0⟩ or |1⟩ (or superpositions thereof), are the most common examples

of discrete variables in quantum computing. In quantum networks, these discrete variables are

used to encode and transmit information between different nodes.

However, while discrete variables are powerful, they are not without limitations. For example,

creating and maintaining entangled states of many qubits can be challenging due to decoherence

and noise, which can degrade the quantum information over time.

Quantum networks are systems that use quantum entanglement to connect qubits over a dis-

tance to be applied for secure information transmission and accomplished distributed quantum

3



CHAPTER 1: INTRODUCTION TO QUANTUM INFORMATION

computation [10]. Qubits, in quantum networks, represent the usual information carriers, and

protocols such as Quantum Key Distribution ensure data security.

While discrete variables have been central to the development of early quantum networks, the

challenges associated with scaling up these networks have led researchers to explore alternative

approaches, such as continuous variables, which offer different advantages in terms of scalabil-

ity and noise resistance.

1.5 Introduction to continuous variable

1.5.1 Discrete vs continuous variable

As we have seen, discrete variables like qubits are the foundation of many quantum information

protocols. However, there are scenarios where discrete variables might not be the most efficient

or practical choice. This is where continuous variables come into play.

Continuous variables are parameters of a quantum system to encode information, such as the

amplitude and phase of electromagnetic fields. [6], unlike qubits, which have distinct states,

continuous variable systems can take on a continuous range of values, offering new possibilities

for quantum information processing.

1.5.2 The concept of continuous variable

Continuous-variable quantum systems encode information in light quadratures corresponding

to the position and momentum of the quantum state. Such variables can take any value on a

continuum, rather than just discrete states as is the case for qubits.

As an example, a quantum harmonic oscillator such as a mode of the electromagnetic field

may be described in terms of the position X and momentum P quadratures [7], where coherent

states and squeezed states represent the most well-known Gaussian states in continuous variable

systems.

1.5.3 Quantum states in Continuous variable

Coherent states, which are often represented as |α⟩, where α is a complex number, are the

closest quantum analogs to classical states of light. They are eigenstates of the annihilation

4



CHAPTER 1: INTRODUCTION TO QUANTUM INFORMATION

operator â, satisfying: Coherent states, usually denoted by |α⟩, where α is a complex number,

are the closest quantum analogs to the classical states of light. They are eigenstates of the

annihilation operatorâ,obeying

â|α⟩= α|α⟩. (1.5.1)

Another important class of states in continuous variable systems is squeezed states. In this state,

the uncertainty of one quadrature (for example, position) is reduced at the expense of increased

uncertainty of the conjugate quadrature (for example, momentum):

∆X∆P ≥ h̄
2
, (1.5.2)

If, in the squeezed state, the uncertainty of the position quadrature X decreases below the level

of the vacuum state, then the uncertainty of the momentum quadrature P will grow correspond-

ingly. Squeezed states play an important role in enhancing measurement precision in quantum

metrology and offer improved performances in quantum communication protocols.

1.6 Why prefer CV over DV

Continuous variables offer several advantages as information carriers over discrete variables:

• Infinite Dimensionality: Continuous variables provide the capability to extend systems

into infinite dimensions, something that discrete variables cannot achieve.

• Unconditional Implementation: Continuous variables can be implemented consistently

without needing specific conditions. While discrete variables might be more efficient in

some scenarios, they lack the assurance of successful implementation every time.

• Error Tolerance: Continuous variables are more robust against errors than discrete vari-

ables, such as qubits. Qubits can be easily flipped from |0⟩ to |1⟩ or vice versa due to

channel defects or environmental noise, which can significantly alter the system. Contin-

uous variables, however, are less susceptible to such errors.

5



CHAPTER 2

Gaussian States

A Gaussian state is defined as any state that can be completely characterized by its mean and

variance, denoted as

ρ̂ = ρ̂(x̄,V ). (2.0.1)

Since their Wigner function is a Gaussian distribution, these states remain Gaussian under Gaus-

sian operations. [23]. Gaussian states in the framework of quantum physics must not break the

uncertainty principle. This comes after:

⟨x̂⟩= Tr(x̂ρ), Vi j =
1
2
⟨{∆x̂i∆x̂ j}⟩ x̂ ∈ {q̂, p̂}. (2.0.2)

such that;

Σ+ iΩ ≥ 0, (2.0.3)

where Ω is given as

Ω =

 0 1

−1 0

 . (2.0.4)

and Σ represents the Covariance matrix which has the following structure;

Σ =

 V (q̂) C(q̂, p̂)

C(q̂, p̂) V (p̂)

 . (2.0.5)

The variance, denoted as V , of the quadrature operators (q̂) and (p̂) in Gaussian states is a real

positive value that is consistently larger than or equal to 1. We extract the uncertainty relation

from the covariance matrix’s diagonal entries.

V (q̂)V (p̂)≥ 1, (2.0.6)

This relation ensures that Gaussian states comply with the uncertainty principle [5]. The covari-

ance C between respective quadratures is crucial in CV QKD. Covariance is a measure of how

6



CHAPTER 2: GAUSSIAN STATES

much two random variables change together. If the covariance between two quadratures is zero,

they are uncorrelated and hence separable. Generally, covariance can be negative and positive

indicating inverse correlation, where an increase in one quadrature results in a decrease in the

other while positive covariance indicates direct correlation, where an increase in one quadrature

increases the other. Entanglement, a necessary feature for quantum communication, requires

non-separability and thus non-zero covariance. In a single-mode Gaussian system, quadratures

are always uncorrelated because they are orthogonal, resulting in zero covariance. This orthogo-

nality means that knowing one quadrature gives no information about its conjugate. Correlations

emerge in multi-mode states. For a two-mode state, the probability distribution is highest at zero

and decays exponentially as we move away from the center. The form of a two-mode Gaussian

state can illustrate this concept. In the context of quantum mechanics, Gaussian states must

adhere to the uncertainty principle, which follows from the covariance relations. In a two-mode

system, the covariance term C(q̂1, q̂2) not necessarily zero. This non-zero covariance indicates

a correlation between mode-1 and mode-2, such that any change in (q̂) affects the distribution

of (p̂).

2.1 Measuring Gaussian States

In quantum communication, continuous variable (CV) systems utilize the quadrature of light

(position and momentum) to encode and transmit information. This method leverages the bene-

fits of existing telecommunication technologies, making it highly practical for real-world appli-

cations. Key components in CV quantum communication include single photon detectors and

homodyne detectors. Detecting a single photon directly is challenging due to the extremely low

signal strength. An indirect method in which when a photon strikes a photocathode, it ejects an

electron. This electron is then amplified through a series of dynodes. Each dynode multiplies the

incoming electrons, exponentially increasing the signal strength. This method gives protection

against multi-photon signals. The downside of this detector is that the photocathode may not

eject an electron every time, even when it does the electron may not always land on the dynode.

This heavily affects the efficiency of a single photon detector. The amplified signal is then mea-

sured as an electrical current using standard electronic devices. However, homodyne detection

is a technique that mixes the incoming quantum signal with a classical signal (local oscillator)

to measure the quadrature of light. The setup includes A classical signal whose phase can be

adjusted to choose the quadrature to be measured (position or momentum). By controlling the

7
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Figure 2.1: A single photon is converted into an electrical signal, which is then amplified through mul-

tiple dynodes until the resulting current is strong enough to be measured using standard

electrical devices.

[11]

phase, specific quadratures are amplified, making them easier to measure. homodyne detection

amplifies the quantum signal, making it detectable with simple photodetectors. To understand

the mathematics of this process, we first introduce coherent states of light. The annihilation

operator is given as

â =
1
2
(q̂+ ip̂), (2.1.1)

and the classical field operator is given as

αLO = q+ ip = |αLO|eiθ , (2.1.2)

LO represents the local operator. Let â and αLO each enter a balanced beam splitter, represented

by

BS =
1√
2

1 1

1 −1

 , (2.1.3)

The action of a beamsplitter on the quantum field b̂ and the classical field βLO is represented as

follows:

BS

 b̂

βLO

=

 1√
2
(b̂+βLO)

1√
2
(b̂−βLO)

=

b̂1

b̂2

 . (2.1.4)

Here, b̂1 and b̂2 are the annihilation operators corresponding to the two output ports of the

beamsplitter. The photon-number operators for each output can be expressed as:

m̂1 = b̂†
1b̂1 =

1
2
(b̂† +β

∗
LO)(b̂+βLO) =

1
2
(b̂†b̂+β

∗
LOβLO +βLOb̂† +β

∗
LOb̂), (2.1.5)

m̂2 = b̂†
2b̂2 =

1
2
(b̂† −β

∗
LO)(b̂−βLO) =

1
2
(b̂†b̂+β

∗
LOβLO −βLOb̂† −β

∗
LOb̂), (2.1.6)

8
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Subtracting the two gives the photon-number difference operator:

m̂ = m̂1 − m̂2 = βLOb̂† +β
∗
LOb̂ (2.1.7)

Substituting Eqn. 2.1.1 in Eqn. 2.1.7 we get

m̂ = |βLO|(b̂†eiφ + b̂e−iφ ) = |βLO|
1
2
([x̂− iŷ]eiφ +[x̂+ ip̂]e−iφ ), (2.1.8)

= |βLO|
1
2
(x̂[eiφ + e−iφ ]+ ip̂[−eiφ + e−iφ ]), (2.1.9)

Since eiφ + e−iφ = 2cosφ and eiφ − e−iφ =−2isinφ , we get:

m̂ = |βLO|(x̂cosφ + p̂sinφ). (2.1.10)

The phase difference between the incoming signal and the classical signal is denoted by φ . It is

equivalent to the local oscillator’s phase in the context of homodyne detectors. We can improve

the quadrature we plan to measure by changing this phase.. For instance, setting φ = 0 allows

us to measure position, while φ = π/2 enables us to measure momentum. Notably, the number-

difference operator, being proportional to the photodetector current, indicates that a current is

detected only when we amplify the correct quadrature.

Another detection method, known as heterodyne detection or dual-homodyne detection, in-

volves splitting the incoming signal into two equal parts using a balanced beamsplitter. One

part is then sent to a homodyne detector with φ = 0, while the other part goes to a homodyne

detector with φ = π/2.

Heterodyne detection offers the advantage of measuring both quadratures simultaneously. This

capability is valuable for estimating channel parameters as it reduces Eve’s information [30,

20]. However, this method introduces additional noise due to signal amplitude reduction from

splitting. Considering that measuring signals inherently have a noise level of 1 SNU (Standard

Noise Units) due to the uncertainty principle, measuring both quadratures leads to twice the

intrinsic noise.

2.1.1 Partial Measurements

In Gaussian quantum information processing, we work with the covariance matrix. A partial

measurement on this covariance matrix influences the entire system as described below.

9
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Partial Homodyne Transformation:

V = A−C (Πq,pBΠq,p)
−1CT . (2.1.11)

Partial Heterodyne Transformation:

V = A−C (B+ I)−1CT . (2.1.12)

Given that:

V =

An×n Cn×2

C2×n B2×2

 , Πq =

1 0

0 0

 , Πp =

0 0

0 1

 , I =

1 0

0 1

 . (2.1.13)

Here, V represents the covariance matrix that undergoes a partial transformation. The projective

matrix Π depends on the choice of quadrature measured, and I is the identity matrix. The term

(Πq,pBΠq,p)
−1 is not a standard inverse but rather a pseudoinverse, specifically known as the

Moore-Penrose inverse [14].

The dimension of B is always 2×2. This is because each partial measurement is performed on

one mode, which consists of the variances of q, p, and their covariance. It is important to note

that if a protocol involves multiple partial measurements, they should be executed sequentially,

as one partial measurement can impact the result of another. When a partial measurement is

performed on this system, the transformation affects the entire covariance matrix V . The di-

mension constraint on B ensures that each mode is accurately represented by its variances and

covariances. Sequential execution of multiple partial measurements ensures that the results are

not skewed by the interdependencies of the measurements.

2.2 Coherent State

When the position (∆X) and momentum (∆P) uncertainties are multiplied and the result is ∆X =

∆P = 1
2 , the coherent state of the harmonic oscillator is defined as a unique quantum state that

preserves minimum uncertainty. This highlights the significance of coherent states in quantum

optics and quantum physics. The eigenstate of the annihilation operator a, a basic operator in

the quantum harmonic oscillator, is defined mathematically as the coherent state |α⟩ [18]. This

means that applying the annihilation operator to a coherent state results in the same state scaled

by the eigenvalue α:

a|α⟩= α|α⟩. (2.2.1)

10
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Figure 2.2: Homodyne detection

Figure 2.3: Hetrodyne detection

Figure 2.4: Partial measurement using Homodyne and Heterodyne detection

[19]

Similar results are obtained by treating the conjugate of the coherent state as the adjoint (cre-

ation) operator a†.

⟨α|a† = α⟨α|. (2.2.2)

The amplitude of the coherent state is represented by the parameter α , which may be a complex

value. The number (Fock) states |n⟩ can be used to expand the coherent state |α⟩ as follows.s:

|α⟩= e−|α|2/2
∞

∑
n=0

αn
√

n!
|n⟩, (2.2.3)

where |n⟩ = (a†)n
√

n!
|0⟩ is the n-th number state and |0⟩ is the vacuum state. Several important

properties of coherent states are explained below: The average number of photons in a coherent

state |α⟩ is given by the expectation value:

⟨α|a†a|α⟩= |α|2. (2.2.4)

This indicates that the number of photons follow a Poisson distribution. The probability p(n) of

finding exactly n photons in the coherent state is:

p(n) = |⟨n|α⟩|2 = ⟨n⟩ne−⟨n⟩

n!
, (2.2.5)

where ⟨n⟩ = |α|2. Coherent states are also known as minimum uncertainty states because they

11
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Figure 2.5: Phase space representation of Gaussian modulated coherent state |α j⟩ with a variance of 1

shot noise unit and a non-zero mean value [25]

satisfy the equality in the Heisenberg uncertainty principle:

∆X∆P =
h̄
2
. (2.2.6)

This indicates that location and momentum errors are as narrow as permitted by quantum me-

chanics. The quantum harmonic oscillator’s Hilbert space is entirely composed of coherent

states. This consistency can be stated as follows:

∫
|α⟩⟨α|d2

α = 1, (2.2.7)

where d2α denotes integration over the complex plane of the parameter α .

2.3 Displaced Vacuum state and Coherent State

The relationship between a coherent state |α⟩ and the displacement operator D(α) can be ex-

pressed as

|α⟩= D(α)|0⟩. (2.3.1)

. The displacement operator D(α) is defined as

D(α) = e−
|α|2

2 eαa†
e−α∗a, (2.3.2)

where a† and a are the creation and annihilation operators, respectively. This operator acts

on the vacuum state |0⟩, resulting in the coherent state |α⟩. Essentially, the coherent state

12
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is a displaced vacuum state, where the displacement is determined by the complex parameter

α . This relationship highlights the role of the displacement operator in generating coherent

states from the vacuum state, providing a fundamental link between the two states in quantum

mechanics [25].

2.4 Squeezed Vacuum State

In squeezed states, electromagnetic fields have less noise than in the vacuum state. In other

words, light in a such state has less noise, than when no light at all is present. Squeezed states

can be conceptualized by using a harmonic oscillator for an analogy.

According to quantum physics, the electromagnetic field’s lowest energy is represented by the

vacuum state. But because of the Heisenberg uncertainty principle, there is always some quan-

tum noise in every mode. Squeezed states, on the other hand, are specially prepared states

where this noise is redistributed. In these states, the noise or uncertainty in one quadrature of

the field, such as position or momentum for a harmonic oscillator, is reduced below the level of

the vacuum state. The noise in the conjugate variable increases to keep the overall uncertainty

consistent with the uncertainty principle.

2.4.1 Single mode Squeezed Vacuum State

A system with two quadratures, position, and momentum, has wave functions for a squeezing

factor R as follows: In the position basis:

ψR(X) =

√
R

π1/2 e−
(RX)2

2 , (2.4.1)

On the momentum basis:

ψR(P) =

√
1

Rπ1/2 e−
(P/R)2

2 , (2.4.2)

The variances of the canonical observables are given by:

⟨(∆X)2⟩= 1
2R2 , (2.4.3)

⟨(∆P)2⟩= R2

2
, (2.4.4)

There are two scenarios for squeezing: if R > 1, the variance in position is less than that of

the vacuum state, resulting in a position-squeezed state [2]. Conversely, if R < 1, the state

13
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Figure 2.6: Wigner functions for various single-oscillator states: (a) Vacuum state, (b) Coherent state,

(c, d) Position and momentum squeezed vacuum states, (e, f) Position and momentum com-

pressed coherent states with real amplitude.

[1]

becomes momentum-squeezed due to the reduced variance in momentum. According to the

Heisenberg uncertainty principle, two quadratures that are not orthogonal cannot be measured

simultaneously. The relationship between their variances is given by:

⟨(∆X)2⟩⟨(∆P)2⟩= 1
4
. (2.4.5)

The squeezing function can be effectively analyzed through the Wigner function, which is the

quantum equivalent of a phase space probability density. The Wigner function provides a com-

plete representation of the quantum state, capturing both position and momentum distributions.

2.4.2 Two modes Squeezed vacuum State

In both theoretical and experimental contexts, a Two-Mode Squeezed Vacuum State (TMSVS)

shares similarities with a Single-Mode Squeezed Vacuum State (SMSVS), yet they exhibit dis-

tinct characteristics. A TMSVS, also known as a twin-beam state, describes a condition where

two mechanical and electromagnetic oscillators are phase-synchronized [1]. The wave functions

of TMSVS in the position is,

ψR(Xa,Xb) =
1√
π

e−
R2(Xa−Xb)

2

4 e−
(Xa+Xb)

2

4R2 , (2.4.6)
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and in the momentum basis is

ψR(Pa,Pb) =
1√
π

e−
R2(Pa+Pb)

2

4 e−
(Pa−Pb)

2

4R2 , (2.4.7)

The variances of the quadratures are:

⟨(∆Xa)
2⟩= ⟨(∆Xb)

2⟩= ⟨(∆Pa)
2⟩= ⟨(∆Pb)

2⟩= 1+R4

4R2 . (2.4.8)

For R = 1, the state is a vacuum state, while for R ̸= 1, squeezing occurs. As R increases, the

uncertainty in the quadratures also increases.

Figure 2.7: Wave functions of two-mode position and momentum squeezed states: (a) Uncorrelated vac-

uum state in both position and momentum bases, (b) Two-mode squeezed state exceeding the

standard quantum limit, characterized by correlated position observables and anti-correlated

momentum observables.

[1]

2.5 Contribution of squeezing in Quantum Information

Many fields of quantum information greatly benefit from the work of squeezers. A significant

source of entanglement in many quantum information processing systems is the squeezed states,

specifically the two-mode squeezed vacuum state. Then, such states are required for quantum

teleportation, entanglement swapping, and key distribution mechanisms.

Squeezed states have been studied and applied to the deepening of understanding with regards

to the key process of generating entangled photon pairs, including polarization-entangled pho-
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tons, known as parametric down-conversion. These are fundamental resources for quantum

communication and quantum cryptography.

Squeezed states are fundamental CV quantum operators that will extend the range and efficiency

of quantum communication. Two-mode squeezing combined with techniques like quantum tele-

portation can extend the distances in quantum communications by many orders of magnitude.
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Introduction to Continuous Variable in

Quantum Information

Contemporary research in quantum information is progressing along two primary streams: one

focuses on information processing using discrete variables (qubits), and the other utilizes con-

tinuous variable (CV) Gaussian states. A coherent state or a compressed vacuum state can both

be Gaussian states.

Gaussian states are easily generated in continuous variable systems with common optical tech-

nologies like lasers. Moreover, optical components such as homodyne detectors, beam splitters,

and amplifiers can be used to readily modify these states. Researchers have started adjusting the

momentum and position CV states of mechanical oscillators in the last several years. [17].

In CV systems, the two quadratures of the amplitude of a mode of an electromagnetic field serve

as the canonical variables. These quadratures function as the position (x̂) and momentum ( p̂)

operators [3], defined as follows:

x̂ =

√
h̄

2ω
(â+ â†), (3.0.1)

p̂ =−i

√
h̄ω

2
(â− â†), (3.0.2)

.
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3.1 Covariance Matrices of Different Gaussian States

A covariance matrix is a square matrix that summarizes the covariance between the pair of ele-

ments of a random vector. The variances of the individual elements correspond to the diagonal

entries of this matrix, which actually denotes the self-covariance. In the theory of probability

and statistics, the variances of random points in two-dimensional space cannot be represented

by one number but instead by a 2×2 matrix to fully describe the situation.

Variance pertains to the change in a single random variable, while covariance represents the

combined change in two random variables. In a quantum mechanical setting, the covariance

matrix provides an exact characterization of the two-point correlations. Below are the covari-

ance matrices for some important states.

3.1.1 Vacuum State

The density matrix for the vacuum state is given by:

ρ = |0⟩⟨0|. (3.1.1)

The elements of the covariance matrix are defined as:

γi j = Tr
[

ρ
1
2
(
∆X̂i∆X̂ j +∆X̂ j∆X̂i

)]
, (3.1.2)

To find the first element of the covariance matrix, we have:

γ11 = Tr
[

ρ
1
2
(
∆X̂1∆X̂1 +∆X̂1∆X̂1

)]
, (3.1.3)

Simplifying, we get:

γ11 = Tr
[
ρ
(
∆X̂2

1
)]
, (3.1.4)

Using the definition of ∆X̂1, we expand:

γ11 = Tr
[
ρ
(
X̂2

1 −2X̂1⟨X̂1⟩+ ⟨X̂1⟩2)] , (3.1.5)

Assuming a zero mean value, ⟨X̂1⟩= 0, this reduces to:

γ11 = Tr
[
ρ
(
â2 +2â†â+1+ â†2)] , (3.1.6)

Substituting 3.1.1 and evaluating, we find:

γ11 = 1, (3.1.7)
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Following the same procedure, we obtain:

γ22 = 1, γ21 = 0, γ12 = 0 (3.1.8)

Thus, the covariance matrix for the vacuum state is finally:

γ =

1 0

0 1

 . (3.1.9)

3.1.2 Coherent State

Below are some useful properties that will help us to formulate the covariance matrix of coherent

states [4].

D†(α)aD(α) = a+α (3.1.10)

,

D†(α)a†D(α) = a† +α
†, (3.1.11)

D†(α)D(α) = 1 =⇒ D†(α) = D−1(α), (3.1.12)

⟨α|a|α⟩= α, (3.1.13)

⟨α|a†|α⟩= α
†, (3.1.14)

X̂ X̂ = a2 +1+2a†a+a†2, (3.1.15)

X̂ P̂ = a2 −a†2, (3.1.16)

P̂X̂ = a2 −a†2, (3.1.17)

P̂P̂ = a2 −2aa† +1−a†2, (3.1.18)

The quadrature operators X̂ and P̂ are defined as:
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X̂ =
a+a†
√

2
, (3.1.19)

P̂ =
a−a†

i
√

2
, (3.1.20)

A 2×2 covariance matrix is given by:

γ =

γ11 γ12

γ21 γ22

 . (3.1.21)

Now, calculating each element of the above matrix:

γ11 = Tr(|α⟩⟨α|X̂ X̂), (3.1.22)

Now, writing our coherent state |α⟩ as the displaced vacuum state D(α)|0⟩, we get:

γ11 = Tr(D(α)|0⟩⟨0|D†(α)X̂ X̂), (3.1.23)

Now, manipulating the cyclic property of trace and using the values of X̂ X̂ :

γ11 = Tr(⟨0|D†(a2 +1+2a†a+a†2)D|0⟩), (3.1.24)

Now, using the properties given one by one and simplifying:

γ11 = 1, (3.1.25)

Similarly, we calculate the rest of the elements of our gamma matrix:

γ12 = Tr(|α⟩⟨α|X̂ P̂) = 0, (3.1.26)

γ21 = Tr(|α⟩⟨α|P̂X̂) = 0, (3.1.27)

γ22 = Tr(|α⟩⟨α|P̂P̂) = 1, (3.1.28)

Plugging these values into our gamma matrix, we get:
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γ =

1 0

0 1

 . (3.1.29)

We see that the covariance matrix for the coherent state is an identity matrix.

3.1.3 Single Mode Squeezed Vacuum State

A squeezed state is given by:

|α,ζ ⟩= D(α)S(ζ )|0⟩. (3.1.30)

where D(α) is the displacement operator and S(ζ ) is the squeezing operator. Here, ζ is the

squeezing parameter and is given as ζ = re2iφ .

Below are some useful properties associated with the squeezing parameter that will help us in

calculating the required covariance matrix:

S†(ζ )S(ζ ) = 1 =⇒ S†(ζ ) = S−1(ζ ), (3.1.31)

S†(ζ )aS(ζ ) = acoshr−a†e2iφ sinhr, (3.1.32)

S†(ζ )a†S(ζ ) = a† coshr−ae2iφ sinhr, (3.1.33)

Now, using the above-mentioned properties, we shall calculate the γ matrix of the squeezed

state:

γ =

γ11 γ12

γ21 γ22

 . (3.1.34)

The element γ11 is given by:

γ11 = Tr
(
|α,ζ ⟩⟨α,ζ |X̂ X̂

)
, (3.1.35)

Using the cyclic property of trace and substituting the values of X̂ X̂ , we get:
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γ11 = Tr
(
⟨0|D†(α)S†(ζ )

(
â2 +1+2â†â+ â†2)D(α)S(ζ )|0⟩

)
, (3.1.36)

By using the properties mentioned and solving further, we get:

γ11 = e−2r, (3.1.37)

Similarly,

γ12 = Tr
(
|α,ζ ⟩⟨α,ζ |X̂ P̂

)
= 0, (3.1.38)

γ21 = Tr
(
|α,ζ ⟩⟨α,ζ |P̂X̂

)
= 0, (3.1.39)

γ22 = Tr
(
|α,ζ ⟩⟨α,ζ |P̂P̂

)
= e2r, (3.1.40)

Plugging in these values into the γ matrix, we get:

γ =

e−2r 0

0 e2r

 (3.1.41)

3.1.4 Two mode Squeezed Vacuum State

A two-mode squeezed vacuum state (TMSVS) is represented simply as:

The simplest form of a two-mode squeezed vacuum state is given by:

|ψ⟩= S(ζ )|0,0⟩. (3.1.42)

Where S(ζ ) is the squeezing operator defined as:

S(ζ ) = exp(ζ (a1a2 −a†
1a†

2)), (3.1.43)

In the photon number basis, the squeezing operator can be expressed as:

S(ζ ) =
√

1−λ

∞

∑
n=0

√
1−λ

2
|0,0⟩, (3.1.44)

The density matrix of the two-mode squeezed vacuum state is given by:

ρ = |ψ⟩⟨ψ|= S(ζ )|0,0⟩⟨0,0|S†(ζ ), (3.1.45)
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The covariance matrix of the TMSVS is a 4x4 matrix denoted as:

γ =


γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44

 , (3.1.46)

Where:

γ11 = Tr(ρX1X1), (3.1.47)

Using the identities:

X1 =
a1 +a†

1√
2

, X2 =
a2 +a†

2√
2

, (3.1.48)

P1 =
a1 −a†

1√
2

, P2 =
a2 −a†

2√
2

, (3.1.49)

The equation for γ11 becomes:

γ11 =
1
2

Tr(ρ(a2
1 +a1a†

1 +a†
1a1 +a†2

1 )), (3.1.50)

using the expressions from Eqn 3.1.45 we have:

γ11 =
1
2
⟨0,0|S†(ζ ∗)(a2

1 +a1a†
1 +a†

1a1 +(a†
1)

2)S(ζ )|0,0⟩. (3.1.51)

By solving, we get:

⟨0,0|S†(ζ ∗)a2
1S(ζ )|0,0⟩= coshr sinhr, (3.1.52)

⟨0,0|S†(ζ ∗)(a†
1)

2S(ζ )|0,0⟩= coshr sinhr, (3.1.53)

⟨0,0|S†(ζ ∗)a1a†
1S(ζ )|0,0⟩= 0, (3.1.54)

⟨0,0|S†(ζ ∗)a†
1a1S(ζ )|0,0⟩= 0, (3.1.55)
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Therefore, we have:

γ11 = coshr sinhr+ coshr sinhr, (3.1.56)

γ11 = sinh2r, (3.1.57)

Similarly solving for other entities, the final form of the covariance matrix of TMSVS is:

γ =


sinh(2r) 0 cosh2(r)−1 0

0 sinh(2r) 0 1− cosh2(r)

cosh2(r)−1 0 sinh(2r) 0

0 1− cosh2(r) 0 sinh(2r)

 , (3.1.58)

The covariance matrix in terms of variance V of the quadrature operators in ket-notation is given

by:

|ψ⟩=
(

2
V +1

) 1
2 ∞

∑
k=0

(
V −1
V +1

) k
2

|k,k⟩, (3.1.59)

The covariance matrix of this state in terms of variance is given by:

∑ =


V 0

√
V 2 −1 0

0 V 0 −
√

V 2 −1
√

V 2 −1 0 V 0

0 −
√

V 2 −1 0 V

 , (3.1.60)

∑ =

 V1
√

V 2 −1σz
√

V 2 −1σz V1

 . (3.1.61)

Where σz =

1 0

0 −1

.

3.2 Gaussian Quantum Operations

Symplectic operators are Gaussian unitary operators or functions that obey the following prop-

erty:

SΩS† = Ω (3.2.1)
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Here, S denotes a symplectic matrix or operator [15]. In a Hilbert space, unitary transformations

are those that are symplectic, such that:

x → Sx (3.2.2)

Σ = SΣST , (3.2.3)

The most important symplectic operator used in this context is the beam splitter. Its matrix form,

in terms of the channel transmission T , is given by:

BS =

 √
T1

√
T 2 −11

√
T 2 −11 −

√
T1

 , (3.2.4)

Thus far, we have formulated important channels that can be utilized in a quantum communica-

tion setup. In the next chapter, we develop a setup based on above resources

3.3 Transmittance and Noise

In the Alice-Bob communication channel, the overall noise can be represented as the summation

of various contributing factors:

E =
1−T

T
+

Edet

T
+ εA, (3.3.1)

The first term, 1−T
T , denotes the loss generated in the vacuum condition, often referred to as

channel losses. The second term, Edet
T , represents the imperfections of the homodyne detection

process. The third term, εA, accounts for excess noise originating from Alice’s input rather than

from detector imperfections or channel losses.

The noise due to the homodyne detector can be expressed as:

Edet =
1+ vel

η
−1, (3.3.2)

Alternatively:

Edet =
1−ηdet

ηdet
+

vel

ηdet
, (3.3.3)

Where:

25



CHAPTER 3: INTRODUCTION TO CONTINUOUS VARIABLE IN QUANTUM INFORMATION

• η is the detection efficiency.

• vel is the electronic noise of the detector.

The total quadrature variance VB measured by Bob can be given by:

VB = Tchηdet(V +E), (3.3.4)

This can be further expanded to:

VB = Tchηdet

(
V +

1−Tch

Tch
+ζA +

1−ηdet

Tchηdet
+

vel

Tchηdet

)
, (3.3.5)

Simplifying this, we get:

VB = T (V −1)+1+T ζA + vel, (3.3.6)

Assuming vel = ζdet (as we treat it as an excess noise), the equation becomes:

T ζA + vel = T ζA +ζdet = T
(

ζA +
ζdet

T

)
= T ζtot,A, (3.3.7)

Given that the excess noise is defined with respect to the measurement location, we have:

ζ = ζtot,B = ζtot,A, (3.3.8)

Thus, VB simplifies to:

VB = T (V −1)+1+ζ , (3.3.9)

VB = TVmod +1+ζ , (3.3.10)

In practical systems, the transmission T is defined as:

T = Tchηcoupηdet, (3.3.11)

And the total excess noise ζ includes various noise sources such as:
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ζ = ζmod +ζRaman +ζquant +ζphase +ζdet +ζRIN + . . . , (3.3.12)

The overall noise in the Alice-Bob channel is a combination of channel losses, detection im-

perfections, and excess noise from various sources. The variance measured by Bob includes

contributions from the channel, detection efficiency, and various noise factors. The effective

transmission factor and the cumulative noise from multiple sources define the actual perfor-

mance of the communication channel.
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Generalized approach to Gaussian

Network

4.1 Gaussian Quantum states

The process of creating continuous variables in many optical setups have revealed the com-

plex process of multimode-entangled states. It is through reconfigurable Gaussian interactions,

imprinted cluster states, and entanglement correlations that these states naturally arise [16, 22].

The quadrature q̂ j and p̂ j are canonical conjugate variables for the j-th optical mode, comparable

to position and momentum in quantum mechanics. They satisfy the commutation relation,

[q̂ j, p̂k] = iδ j,k. (4.1.1)

This fundamental relation ensures that q̂ j and p̂ j are indivisibly linked, reflecting the Heisenberg

uncertainty principle. ’â†’and ’â’ are the operators related to quadrature.

The quadratures relate to the creation â† and annihilation â operators of the quantum harmonic

oscillator, which describes the light mode [27]. The relations are given by:

â† =
1√
2
(q̂− ip̂), (4.1.2)

â =
1√
2
(q̂+ ip̂). (4.1.3)

Here, the vacuum quadratures variance is normalized to 1
2 . The first two moments of the quadra-

ture can fully describe the Gaussian states:

r̄ = Tr[ρ r̂], (4.1.4)
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This is the quadrature vector’s mean value, r̂, where ρ is the Gaussian state’s density matrix.

The covariance matrix of the quadratures

σ = Tr[ρ{(r̂− r̄),(r̂− r̄)T}], (4.1.5)

provides information on the spread and correlations between them. Quadratic Hamiltonian char-

acterizes parametric processes :

ĤI = r̂Hr̂T , (4.1.6)

This Hamiltonian describes the interaction and evolution of the system in terms of the quadrature

vector r̂.

The dynamics of the quadratures are governed by the symplectic transformation

SH = eΩHt , (4.1.7)

where Ω is the symplectic matrix and H is the Hamiltonian matrix.

The initial quadratures r̂0 evolve to the final quadratures r̂′ as:

r̂′ = SH r̂0, (4.1.8)

The matrix Ω is part of the symplectic structure that preserves the commutation relations during

the system’s evolution. The exact form of Ω is crucial in defining how the quadratures transform

under the Hamiltonian dynamics. The commutation relation is given by:

[r̂, r̂T ] = iΩ = i

 0 1

−1 0

 . (4.1.9)

By applying a unitary operation produced by a quadratic Hamiltonian H to the vacuum state,

one can obtain any pure Gaussian state [27]. Thus, the vacuum covariance matrix σ0 =
1
2 can

be transformed into the most generic version of the covariance matrix for a pure Gaussian state

by using the symplectic transformation SH . This leads to:

σ = SHσ0ST
H =

1
2

SHST
H , (4.1.10)

The Bloch-Messiah decomposition can be used to express the symplectic transformation as a

product of orthogonal and diagonal matrices using singular value decomposition: SH = O∆O0.

Substitute SH = O∆O0 into the equation:
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σ =
1
2
(O∆O0)(O∆O0)

T , (4.1.11)

Note that for any matrices A, B, and C:

(ABC)T =CT BT AT , (4.1.12)

Therefore:

(O∆O0)
T = OT

0 ∆
T OT , (4.1.13)

Since ∆ is a diagonal matrix, ∆T = ∆, so:

(O∆O0)
T = OT

0 ∆OT , (4.1.14)

Combine the expressions:

σ =
1
2
(O∆O0)(OT

0 ∆OT ), (4.1.15)

Since O0 is an orthogonal matrix, OT
0 O0 = I:

σ =
1
2

O∆(O0OT
0 )∆OT , (4.1.16)

therefore:

σ =
1
2

O∆I∆OT =
1
2

O∆
2OT . (4.1.17)

We can understand this as a rotation of basis, followed by a squeezing in the diagonal basis,

and finally a rotation. The basis in which the covariance matrix is diagonal and the different

components are independently squeezed is called the supermode basis. The squeezing param-

eters in (∆) come from the eigenvalues of the Hamiltonian ĤI , while the orthogonal matrix O

is a passive linear optical transformation or an active change of measurement basis. We do not

care about the orthogonal matrix O0 anymore in the product SHST
H , thus it can be safely ignored,

hence:
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σ =
1
2

SHST
H =

1
2

O∆
2OT (4.1.18)

In the case of a single-mode field, the squeezing operation, a Gaussian transformation, decreases

the variance of p̂ by a factor of 10−s/10, where s in dB is the squeezing factor. The squeezing

operation is given using this local symplectic matrix:

Ssq(s) =

10s/20 0

0 10−s/20

 (4.1.19)

For multiple modes, the ∆ matrix is expressed as:

∆ = diag
(

10s1/20,10s2/20, . . . ,10sN/20,10−s1/20,10−s2/20, . . . ,10−sN/20
)

(4.1.20)

This framework can be exploited for the visualization and manipulation of Gaussian quantum

states which are easily accessible in state-of-the-art photonics laboratories. Whereas, at this

stage, the number of modes and their interconnections are limited, intensive efforts are underway

to extend these systems.

4.2 Gaussian Networks

A Gaussian network is such a quantum network in which quantum states of nodes or modes

are Gaussian states, and operations among these are Gaussian operations. The Gaussian states,

including coherent states and squeezed states, are represented as Gaussian functions in the phase

space and are completely defined by their mean vector and covariance matrix. In quantum

networks, let’s explore various topologies (linear, ring, star, wheel, fully connected, and grid).

When considering these topologies in the context of Gaussian networks, the nodes represent

Gaussian states, and the edges represent Gaussian operations. The squeezing cost, which is a

measure of the resources needed to maintain entanglement or quantum correlations across the

network, plays a critical role.

4.2.1 Linear Graph

In a linear topology, nodes are arranged in a straight line, with each node connected to its

immediate neighbor, resulting in n vertices and n − 1 connections. This simple structure is

characterized by sequential connectivity, making it straightforward to analyze and implement.

31



CHAPTER 4: GENERALIZED APPROACH TO GAUSSIAN NETWORK

Figure 4.1: Linear Graph

4.2.2 Cycle Graph

The cycle topology extends the linear topology by connecting the last node back to the first,

forming a closed loop. It consists of n nodes and n connections, with each node connected to

exactly two adjacent nodes, creating a circular structure that enhances redundancy.

Figure 4.2: Cycle Graph

4.2.3 Wheel Graph

The wheel topology is a combination of the star and ring topologies. It includes N nodes, with

one central node connected to all peripheral nodes, and the peripheral nodes forming a ring.

This results in 2n−1 edges, providing both centralized and distributed connectivity.

32



CHAPTER 4: GENERALIZED APPROACH TO GAUSSIAN NETWORK

Figure 4.3: Wheel Graph

4.2.4 Star Graph

In a star topology, a single central node is directly connected to every other node in the net-

work, whereas the peripheral nodes do not interconnect. This topology has N nodes (1 central

node and N − 1peripheral nodes) and N − 1 edges, making the central node a critical hub for

communication.

Figure 4.4: Star Graph

4.2.5 Complete Graph

A fully connected topology is the most interconnected structure, where every node is directly

connected to every other node. With Nnodes and n(n−1)
2 edges, this topology ensures maximum

connectivity, though it can be complex and resource-intensive.

4.2.6 Grid Graph

In a grid topology, nodes are arranged in a grid pattern, such as a m×n grid, where each node

is typically connected to its four adjacent neighbors (except for edge and corner nodes). This
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Figure 4.5: Compelete Graph

structure consists of nodes and 2mn−m−n edges, creating a regular, structured network ideal

for certain types of applications.

Figure 4.6: Grid Graph

4.3 Exploring the Graph states in Quantum Networks

A graph G(V,E) can be used to mathematically indicate a network, where V is the number of

vertices or nodes, and E is the set of edges connecting these vertices. A symmetric adjacency

matrix A = AT naturally results if we label the nodes in a particular order. This matrix’s entry

A jk at position ( j,k) indicates the weight of the edge that connects node j to node k; if there is

no such edge, the weight is zero.

For most purposes, an adjacency matrix is all there is to be said about a graph, but for our ap-

plication, node squeezing and angle are relevant parameters too. We now discuss the quantum

networks adopted here: graph states or cluster states. These networks can be prepared by entan-

gling multiple squeezed light modes via Controlled-Z gates. A Gaussian operation known as a

controlled-Z gate correlates the q̂ and p̂ quadratures of the modes it works upon with strength g.

In symplectic operations, the matrix is
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SCZ(g) =


1 0 0 0

0 1 0 0

0 g 1 0

g 0 0 1

 . (4.3.1)

The edges in the graph corresponding to a graph state [8, 12, 29] correspond to squeezed

modes or CZ-gates applied between nodes, and their weight is determined by the parameter g.

Assuming that all nodes are compressed in the p̂ quadrature by a factor s and that all edges have

a correlation strength g, we will now simplify the various degrees of freedom in our networks.

A vacuum state that is compressed into several modes, denoted as σs, is categorized by its

squeezing factor s. The degree of noise reduction in one quadrature, p̂ for example, at the

expense of increased noise in the conjugate one, q̂, is determined by the squeezing factor s.

The variance matrix σs of a squeezed vacuum state is generally diagonal and reads:

σs =

RIN 0

0 R−1IN

 , (4.3.2)

where R = 10s/10 and IN is the N ×N identity matrix. The symplectic matrix S for the CZ-gate

network is:

S =

1 0

A 1

 , (4.3.3)

Applying the transformation:

σ = SσsST =

1 0

A 1

RIN 0

0 R−1IN

1 AT

0 1

 , (4.3.4)

When an adjacency matrix A describing a CZ-gate network is applied to a multimode squeezed

vacuum state σs with squeezing factor s, it gives a Gaussian network whose covariance matrix

σ [32] is defined as:

σ =

σqq σqp

σpq σpp

=

 R RAT

RA RA2 +R−1

 , (4.3.5)

The blocks σqq and σpp represent the intraquadrature correlations of q and p of different nodes,
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respectively. The blocks σqp and σpq, on the other hand, represent the inter-quadrature correla-

tions between q and p.

Note that the theoretical CZ-gate operations, which define network edges, are seldom practically

implemented due to their complexity. Generally, a method of building the graph state from

several squeezed modes and linear optical transformations is shown along with a simplification

of the graph state’s covariance matrix.

It can be demonstrated that an initial uniform squeezing adds only a constant factor to the end

squeezing cost, thus we take a vacuum state in an initial set of N modes that are un-squeezed,

s = 0. Also, assuming that the adjacency matrix A is symmetric A = AT , and the coupling

strength for each edge of the graph g is 1, the final covariance matrix for N-modes is:

σ =
1
2

1 A

A 1+A2

 . (4.3.6)

where the vacuum state normalized variance equal to 1/2.

4.4 Quantifying Squeezing: A Resource Theory Perspective

The fundamental building blocks of continuous variable quantum information are Gaussian

bosonic states, which have significant uses in quantum optics. These states serve as essential

building blocks for numerous cutting-edge quantum technologies, such as multi-party quan-

tum communication, measurement-based quantum computation, quantum simulations [26], and

quantum metrology [13, 24]. In the discussion of the correlations between Gaussian states, the

first moments (mean values) are less important. Although first moments are relevant for any

realistic quantum computation or communication protocol, their computation is usually done in

classical post-processing, and they do not enter the evolution of the second moments. Thus, we

can focus on the covariance matrix to fully describe these quantum states. The covariance ma-

trix is a key descriptor of Gaussian states. It captures the quadrature operators’ second moments

(variances and covariances). Squeezing is essential for creating Gaussian entangled states. The

resource theory aims to provide a systematic way to quantify the resources required for cre-

ating and manipulating Gaussian states, which are essential for various quantum information

protocols. Resources typically refer to specific properties or quantities that are necessary for

performing quantum tasks. For Gaussian states, squeezing is a primary resource [28]. These are

linear transformations that preserve the symplectic structure of phase space.They are essential
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to the modulation of Gaussian states and provide a quantitative indicator of how much squeez-

ing is occurring within a state. This measure is essential because squeezing directly impacts

the state’s utility in quantum information tasks. The "squeezing cost" refers to a measure of the

resources required to produce a quantum state with a certain amount of squeezing. In [21], a

specific approach to measuring squeezing is discussed, where an operational squeezing measure

for any symplectic transformation T is defined by:

M : R2N×2N → R, M(T ) = 20
N

∑
j=1

log10

√
µ
+
j (T ), (4.4.1)

Here, µ
+
j (T ) denotes the largest singular values of T , and the factor of 20 ensures the result is

in decibels (dB). From Eqn. 4.4.1, a squeezing measure for covariance matrices can be defined

as:

S : R2N×2N → R, S(σ) =
N

∑
j=1

10log10 µ
+
j (2σ). (4.4.2)

where µ
+
j (2σ) represents the largest singular values of 2σ . Multiplying the covariance matrix

by 2 ensures that the vacuum state has zero cost. The latter definition can be generalized to

arbitrary quantum states but is most simple for pure Gaussian states and applies, in general, to

any number of modes.

4.5 Network Generation via Squeezing cost

4.5.1 squeezing cost vs Node

The Covariance matrix σ for the general Network which we discussed with detail in Sec 4.3 is

given as:

σ =
1
2

1 A

A 1+A2

 , (4.5.1)

where A is the Adjacency matrix with (Ai,A j) = 0 for non-adjacent nodes and (Ai,A j) = 1 for

adjacent nodes. Measuring the largest singular values of the covariance matrix σ and substitut-

ing these values in the Eqn 4.4.2 to find the squeezing cost of a given network.
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4.5.2 Squeezing cost vs Mode

We want to analyze each mode independently, so we make some transformations in the Covari-

ance matrix σ to treat each mode separately. Since A is symmetric, it is always diagonalizable.

We can find an orthogonal matrix U such that:

UAUT = Λ = diag(λi), (4.5.2)

where λi are the real eigenvalues of A. Consequently, we have UA2UT = (UAUT )2 = Λ2.

Consider the orthogonal matrix P defined as:

P =
1√
2

U U

U −U

 , (4.5.3)

It is easy to verify that PPT = I, confirming that P is indeed orthogonal.

Applying P to Σ, we get:

σ
′ = PσPT =

1
2

I +Λ+Λ2/2 −Λ2/2

−Λ2/2 I −Λ+Λ2/2

 , (4.5.4)

Here, σ ′ is a block matrix of the form where the entries are diagonal matrices. Using this, we

can perform a permutation on the rows and columns of σ ′ yielding:

Q =
N⊕

i=1

Ni, (4.5.5)

Each block Ni is given by:

Ni =
1
2

1+λi +λ 2
i /2 −λ 2

i /2

−λ 2
i /2 1−λi +λ 2

i /2

 . (4.5.6)

That is, each block Ni represents a single-mode covariance matrix of some pure, unentangled

Gaussian state.. Each block Ni can be independently diagonalized. Notably, the determinant of

Ni is:

det(Ni) =
1
4
, (4.5.7)
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The eigenvalues of Ni are:

ηi =
1
2

1+
λ 2

i

2
±

√(
1+

λ 2
i

2

)2

−1

 . (4.5.8)

These eigenvalues represent the squeezed and anti-squeezed quadratures of the Gaussian states.

The block diagonal form reveals the individual covariance matrices Ni for each mode. These

matrices contain information about the squeezing parameters of the Gaussian states. The block

diagonal form indicates that the states are unentangled in the new basis. This is crucial for under-

standing the individual properties of each mode without interference from other modes. After

calculating the eigenvalues of each block substitute them in the Eqn 4.4.2 to get the squeezing

cost against each mode.

4.6 Modeling Gaussian Quantum Channel

We need to model the channel through which our states travel, ensuring that the channel main-

tains the Gaussian nature of our states. Two Gaussian channels are pure-loss/bosonic-loss chan-

nels and thermal loss channels. Pure-loss channels are simpler to model as they do not consider

thermal noise. By adding a beam splitter loss to the signal data, they can be modeled. This is

done by mixing the incoming signal with a vacuum input, delineating our model for bosonic

loss states (Figure 2.6). Let us implement this model on N mode Gaussian graph state

σ
′ = B̂(τc)σ̂ B̂T (τc). (4.6.1)

The beam splitter transformation for a pure-loss channel is represented by the matrix B̂(τc). For

an N-mode system, this matrix can be written as:

B̂(τc) =


I 0 0

0
√

τcI
√

1− τcI

0 −
√

1− τcI
√

τcI

 , (4.6.2)

where τc is the transmission coefficient (representing the fraction of the signal that is trans-

mitted), I is the N ×N identity matrix, and 0 is the N ×N zero matrix. Its transpose is given

as
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B̂T (τc) =


I 0 0

0
√

τcI −
√

1− τcI

0
√

1− τcI
√

τcI

 , (4.6.3)

4.6.1 Squeezing in Pure Loss Channels vs. Nodes

The covariance matrix σ of this Gaussian graph state [31] was given by:

σ =
1
2

1 A

A 1+A2

 , (4.6.4)

After mixing input signals with a vacuum input, the transformed covariance matrix is given as

σ =
1
2


1 A 0

A 1+A2 0

0 0 1

 , (4.6.5)

Now applying the Eqn 4.6.1 we get

σ
′ =

1
2


I

√
τcA

√
1− τcA

√
τcA τc(I +A2)+(1− τc)I

√
τc(1− τc)(A2 − I)

√
1− τcA

√
τc(1− τc)(A2 −1) (1− τc)(I +A2)+(τc)I

 . (4.6.6)

4.6.2 Squeezing in Pure Loss Channels vs. Modes

The covariance matrix for each mode Ni is expressed as:

Ni =
1
2

1+λi +
λ 2

i
2 −λ 2

i
2

−λ 2
i
2 1−λi +

λ 2
i
2

 , (4.6.7)

In this basis, each block Ni corresponds to a single-mode covariance matrix of a pure, unentan-

gled Gaussian state, where {λi}N
i=1 is the set of real eigenvalues of A.

After combining the input signals with a vacuum input, the updated Ni [31] is given by:

Ni =
1
2


1+λi +

λ 2
i
2 −λ 2

i
2 0

−λ 2
i
2 1−λi +

λ 2
i
2 0

0 0 1

 . (4.6.8)

then applying the Eqn 4.6.1 we get the loss in squeezing cost.
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Results and Discussion

5.1 Squeezing cost of different networks

In quantum networks, the squeezing cost is a critical metric that quantifies the amount of quan-

tum resource (squeezed light) required to maintain entanglement or quantum correlations across

the network. The squeezing cost can be analyzed by examining its distribution across different

modes and nodes within the network.

Modes refer to the distinct quantum states or channels through which information is transmit-

ted in the network. Each mode represents a potential pathway for quantum correlations to be

established and maintained between nodes.

Nodes represent the points or vertices in the network, typically corresponding to physical loca-

tions where quantum states are prepared, manipulated, or measured.

When analyzing the squeezing cost:

5.1.1 Squeezing cost of Nodes

When we shift our focus to nodes, the x-axis now represents the different nodes in the network.

Each point along the x-axis corresponds to a specific node, allowing us to analyze the squeezing

cost required to maintain quantum correlations at that particular node. As we move from one

node to another, the graph shows how the resource requirements change across the network.

The y-axis remains the squeezing cost, but now it reflects the quantum resources required at each

node. A higher position on the y-axis indicates that a particular node demands more squeezing

to maintain the necessary quantum correlations. This part of the analysis helps to identify nodes
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that might be more resource-intensive due to their connectivity or role in the network.

Cycle

Every node in a cycle graph is connected to exactly two other nodes, creating a complete loop

as a sort of network structure. This indicates that each node is a link in a circular chain, with

N nodes being equal to the number of edges, or connections, in the chain. The squeezing

cost of a network grows linearly with the number of nodes in the network. For a cycle graph,

the squeezing cost rises with the number of nodes since additional connections (edges) require

the maintenance of quantum resources. As the cycle grows, more squeezing is required to pre-

serve quantum entanglement and coherence across the entire network, making the network more

resource-intensive as it scales up. This increase reflects the need for more quantum resources to

manage the larger, more complex structure of the ring graph.

Figure 5.1: Cycle graph with 10 nodes

and 10 edges

Figure 5.2: Graph plot for cycle graph with

100 nodes in the horizontal direc-

tion and squeezing cost in the ver-

tical direction.

Grid

In a square grid, nodes are arranged in a 2D square lattice. For example, a 4×4 grid has 16 nodes,

and each node (except those on the edges) is connected to four neighbors. A square grid with

N nodes (where N =m×m) would have 2m(m−1) edges. In a square grid topology, the squeez-

ing cost starts low due to the short paths and minimal noise accumulation in small grids. How-

ever, as the number of nodes increases, the squeezing cost grows rapidly due to the longer paths.
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Figure 5.3: A square 3× 3 grid with 12

nodes and 9 edges

Figure 5.4: Graph plot for grid graph for 100

Nodes against squeezing cost

Linear Graph

In a linear graph, the nodes are arranged in a straight line. Each node (except for the two

endpoints) is connected to exactly two neighboring nodes. The endpoints are connected to

only one other node. For N nodes in a linear graph, there are N − 1 edges, where each edge

represents a direct connection between two neighboring nodes. In a linear graph, each additional

node introduces one more edge that needs squeezing. Therefore, the squeezing cost increases

proportionally with the number of nodesN. This linear growth occurs because there’s a direct

relationship between the number of nodes and the number of edges as each new node adds

exactly one new edge that needs squeezing.

Figure 5.5: Linear graph with 10 nodes

and 9 edges

Figure 5.6: Graph plot of linear graph of

squeezing cost vs 100 nodes,

nodes on the x-direction and

squeezing cost on the y-direction
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Star

In a star graph, there is a central hub node that is connected to all other peripheral nodes, which

do not connect to each other. If there are N nodes in the star graph, there are N − 1 edges,

with each edge connecting one of the peripheral nodes to the central hub. In a star graph, all

quantum resources are concentrated at the central hub, which manages all the entanglement

and communication with the peripheral nodes. Because the peripheral nodes are only directly

connected to the central hub, adding more nodes does not require maintaining additional direct

connections between the peripheral nodes themselves. This centralized structure makes the

squeezing cost increase more slowly than in a cycle graph, where every node must maintain

connections with two neighbors.

Figure 5.7: Star graph with 10 nodes and

9 edges.

Figure 5.8: Graph plot for squeezing cost

against 100 nodes for star graph

Wheel

A wheel graph is a combination of a ring graph and a star graph. It consists of a central hub

node that is connected to all other nodes, and those peripheral nodes are also connected in a ring.

For N nodes, the wheel graph has N −1 peripheral nodes forming the ring, and one central hub

connected to all N −1 peripheral nodes. The squeezing cost for a wheel graph grows similarly

to that of a ring graph because the wheel graph includes both a ring structure and a central

hub. The ring structure, which requires maintaining connections among all peripheral nodes,

dominates the squeezing cost, leading to a growth pattern similar to a ring graph. Although the

wheel graph has a central hub like a star graph, the additional complexity of maintaining the

ring connections causes the squeezing cost to increase more rapidly, aligning it more closely
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with the behavior of a ring graph rather than a star graph.

Figure 5.9: Wheel graph with 10 nodes

and 18 edges.

Figure 5.10: Graph plot for squeezing cost

against 100 nodes for wheel

graph

Complete Graph

In a fully connected graph, every node is connected to every other node. This results in a very

dense network with a large number of edges N(N−1)
2 . The squeezing cost for the fully connected

graph grows linearly with the number of nodes N. This means that as we add more nodes to the

network, the squeezing cost increases directly to the number of nodes.

Figure 5.11: Complete Graph with 10

nodes.

Figure 5.12: Graph plot for squeezing cost

against 100 nodes for complete

graph
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All topoligies

The complete graph is most efficient for large networks due to the balanced distribution of

squeezing resources but grows linearly with N. It offers redundancy and multiple pathways,

minimizing individual node squeezing costs.

The cycle graph has linear growth in squeezing cost but with fewer edges than the complete

graph, making it less resource-intensive but still requiring significant squeezing as N increases.

The star graph provides the most efficient squeezing cost for small to moderate networks due

to its centralized structure. However, it becomes less efficient as the central hub becomes over-

loaded with more nodes.

The grid topology starts with low squeezing cost but experiences rapid growth as the network

expands due to the complexity of managing correlations in a 2D lattice.

The wheel graph balances between a cycle and a central hub. It is more efficient than a grid but

still experiences rapid cost increases as the number of nodes grows.

The path graph has a simple structure with linear growth in squeezing cost. It is less efficient

due to the lack of redundancy and longer paths.

In summary, the squeezing cost depends on the network’s connectivity, dimensionality, and

the distribution of resources. Topologies like the complete graph are more efficient for large

networks due to their redundancy, while star graphs offer efficiency for smaller networks. Grids

and wheels, while providing good connectivity, can experience rapid increases in squeezing cost

as they scale.

Figure 5.13: Trend of squeezing cost vs 100 nodes of different networks in which red, yellow, green,

bold green, blue and purple represent the complete graph, star, path, wheel, cycle, and grid

respectively.
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5.1.2 Squeezing cost of Modes

The squeezing spectrum of different regular network structures particularly focuses on how the

spectrum varies across various topologies when the number of N is fixed at 100. The "full

squeezing spectrum" refers to the range of squeezing values (eigenvalues) associated with the

modes of a network. These values are determined from the adjacency matrix of the network’s

graph, which encodes the connections between nodes. The x-axis of the graph represents the

different modes in the network. Each mode corresponds to a specific quantum channel or state

that is being analyzed. As we move along the x-axis, we consider the squeezing cost associated

with each mode.

The y-axis shows the squeezing cost associated with each mode. Higher values on the y-axis

indicate that a particular mode requires more quantum resources to maintain the desired level of

entanglement or correlation.

Complete Graph

The presence of a single large eigenvalue in the squeezing spectrum indicates that one mode

dominates the squeezing resources in the system. The other N − 1 modes, associated with the

smaller, equal eigenvalues, experience squeezing, but the amount of squeezing applied to these

modes is much less significant than the dominant mode. As the number of nodes N in the

graph increases, the eigenvalue of the dominant mode also grows, indicating that a larger share

of the squeezing resources is concentrated in this single mode. Meanwhile, the other modes

have constant eigenvalues, regardless of the network’s size. This consistency suggests that the

squeezing applied to these modes doesn’t change as the network expands. These modes reflect

more balanced combinations of the quadratures across the network, where each node contributes

similarly.
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Figure 5.14: Squeezing spectrum of complete graph for 100 modes across squeezing cost in which

modes in the horizontal direction and squeezing cost in the vertical direction

Linear Graph

In a line graph, the squeezing cost starts relatively high at the first mode due to boundary effects

but decreases as move along the graph because the interior modes benefit from more balanced

connections. By the time it reaches the hundredth mode pair, the system has evolved in such a

way that the last mode requires no additional squeezing, resulting in a squeezing cost of zero.

Figure 5.15: Squeezing spectrum of complete graph for 100 modes across squeezing cost in which

modes on the x-axis and squeezing cost on the y-axis

Star Graph

In most network topologies, squeezing is distributed across all modes, with each mode receiving

some level of squeezing to manage quantum noise. However, in a star network, the situation is

different. Here, the squeezing is concentrated in just two modes: the central node and one of the

peripheral nodes. This results in equal amounts of squeezing applied specifically to these two
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modes. The peripheral nodes, lacking direct connections to each other, do not receive individual

squeezing but are effectively included in the uniform squeezing applied to the central and one

peripheral node. This unique distribution reflects the star network’s structure, where the central

node and its immediate connection are prioritized for squeezing, leading to a uniform squeezing

effect in these initial modes.

Figure 5.16: Squeezing spectrum of star graph for 100 modes across squeezing cost in which modes in

the x-direction and squeezing cost in the y-direction

Wheel Graph

In a wheel graph, the squeezing is influenced by both the central hub and the rim nodes. The

central hub plays a crucial role in the network, as it connects directly to all other nodes, influenc-

ing the overall squeezing distribution. In a wheel graph, the central hub node typically receives

a substantial amount of squeezing due to its central role and connectivity to all other nodes.

The rim nodes, arranged in a cycle and connected to the hub, experience a different squeezing

distribution. The squeezing cost in the wheel graph is influenced by the combined effects of the

central hub and the cyclic arrangement of the rim nodes, leading to a unique pattern of squeez-

ing across the network.
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Figure 5.17: Squeezing spectrum of wheel graph for 100 modes across squeezing cost in which modes

on the x-axis and squeezing cost on the y-axis

Grid Graph

In a grid graph, the squeezing cost starts higher due to the complex interconnections and noise

management requirements across the network. As the number of modes increases, the squeez-

ing cost decreases because the noise is distributed more evenly in a larger grid. By the time the

number of modes reaches 100, the squeezing cost approaches a lower value, reflecting the effi-

cient management of quantum noise in the expanded grid network. This pattern demonstrates

how larger grid graphs can achieve more balanced and efficient squeezing as they scale.

Figure 5.18: Squeezing spectra of grid graph for 100 modes across squeezing cost in which modes on

the x-axis and squeezing cost on the y-axis

Cycle Graph

In a ring graph, the periodic boundary conditions imply that the first and last nodes are con-

nected, creating a loop. This introduces small deviations in the squeezing spectrum compared

to the linear graph, where the boundary effects are more pronounced because there are no di-
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rect connections between the end nodes. As N increases, these deviations diminish because the

influence of the boundary effects (in the linear graph) becomes less significant compared to the

overall symmetry and connectivity of the large network. Essentially, with a large number of

nodes, the difference between the boundary and interior nodes becomes less noticeable, and the

squeezing spectra of the two types of graphs converge.

Figure 5.19: Graph plot for cycle graph for 100 modes across squeezing cost in which modes are hori-

zontally and squeezing cost is vertically represented

All topoligies

Among the various network topologies, the complete graph exhibits the highest squeezing cost

at the first mode, while all subsequent modes have significantly lower and equal squeezing costs.

Both the path and cycle graphs share a similar squeezing spectrum, with a small variation; the

squeezing cost starts at around 8 for the first mode and gradually decreases to zero by the last

mode. In contrast, the star graph shows a high and equal squeezing cost for the first two modes,

slightly below 20, with all other modes having a squeezing cost of zero. The wheel graph

also begins with a high squeezing cost of around 20 for the first two modes, but the remaining

modes follow a pattern similar to the cycle and path graphs. Lastly, the grid graph starts with

a squeezing cost of approximately 12 at the first mode, which continuously decreases as the

modes increase, eventually approaching a lower value by the 100th mode. Each topology thus

reflects distinct squeezing cost behaviors, influenced by its unique structural characteristics.
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Figure 5.20: Trend of squeezing cost vs 100 modes of different networks in which red, yellow, green,

bold green, blue, and purple represent the complete graph, star, path, wheel, cycle, and grid

respectively

5.2 Squeesing cost with noise

The squeezing cost in a quantum network represents the resources required to maintain entangle-

ment and quantum correlations across the network. When we introduce a beam splitter or noise,

we effectively alter the transmission or interaction of quantum states between nodes. This can

reduce the overall squeezing cost because the network may no longer need to maintain a high

level of quantum correlation, thus requiring fewer resources.Hence,The reduction in squeezing

cost reflects a decrease in the quantum resources needed.

5.2.1 For Nodes

Complete Graph

Every node is connected to every other node, creating a highly redundant network with many

pathways for quantum information. When noise is added, it slightly disrupts the quantum cor-

relations between some of these connections. However, due to the large number of redundant

pathways, the network can still maintain its functionality without needing to use as much squeez-

ing. The reduction from 453 to 452 reflects that the network is slightly less demanding in terms

of resources when not all correlations need to be perfectly maintained. The overall structure

remains robus, but with a marginally lower resource cost.
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Figure 5.21: Graph plot for comparison of pure and lossy complete graph for 100 nodes in which red

line shows pure network and yellow line shows lossy network.

Linear Graph

Nodes are connected in a straight line. In a path graph, quantum correlations must be maintained

sequentially along the line. Introducing noise allows for a slight relaxation in these correlations,

particularly between distant nodes, which reduces the squeezing resources needed. The decrease

in squeezing cost represents the network’s ability to handle a small amount of noise without

significantly impacting its overall functionality.

Figure 5.22: Graph plot for comparison of pure and lossy linea graph for 100 nodes in which red line

shows pure network and yellow line shows lossy network
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Cycle Graph

Each node is connected to two neighbors, forming a closed loop. Adding noise here slightly

weakens the quantum correlations along the loop. Since the cycle graph has fewer connections

than a complete graph, the impact of noise might be more pronounced, but the linear structure

still allows the network to maintain its correlations with slightly reduced squeezing. The cost

reduction from 506 to 505 shows that the network can tolerate a small amount of noise, leading

to a minor decrease in the required resources.

Figure 5.23: Graph plot for comparison of pure and lossy cycle graph for 100 nodes in which red line

shows pure network and yellow line shows lossy network

Star Graph

All peripheral nodes are connected to a single central hub node. The central hub is crucial

for maintaining correlations with all other nodes. Introducing noise might reduce the strictness

of the correlations that need to be preserved, particularly between the hub and the peripheral

nodes. This can ease the overall demand on squeezing resources because the hub doesn’t need

to maintain as perfect correlations with every node. The small reduction in squeezing cost

indicates that the central hub can manage slightly less demanding correlations without losing

network functionality.
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Figure 5.24: Graph plot for comparison of pure and lossy star graph for 100 nodes in which red line

shows pure network and yellow line shows lossy network

Wheel Graph

A cycle graph with an additional central hub connected to all other nodes. Similar to the star and

cycle graphs, noise reduces the strictness of the correlations required, both around the cycle and

with the central hub. This mixed topology benefits from the central hub’s ability to distribute

quantum correlations, and noise slightly reduces the squeezing needed to maintain these corre-

lations, especially in the cycle part of the wheel. The reduction in squeezing cost reflects this

decrease in resource demand.

Figure 5.25: Graph plot for comparison of pure and lossy wheel graph for 100 nodes in which red line

shows pure network and yellow line shows lossy network

Grid Graph

Nodes are arranged in a 2D lattice, where each node is typically connected to four neighbors.

In a grid, maintaining quantum correlations over a larger number of nodes and edges becomes

increasingly complex. Noise introduces some flexibility in these correlations, meaning the net-

55



CHAPTER 5: RESULTS AND DISCUSSION

work doesn’t need to preserve as tight control over every edge, especially as the grid grows.

The reduction in squeezing cost reflects that the grid can operate effectively with slightly lower

resources as noise decreases the necessity for stringent correlations across all edges.

Figure 5.26: Graph plot for comparison of pure and lossy grid graph for 100 nodes in which red line

shows pure network and yellow line shows lossy network

The decrease in squeezing cost when applying noise or a beam splitter can be interpreted as

the network requiring slightly fewer quantum resources to maintain its functionality. This slight

reduction happens because the noise decreases the level of quantum correlations that need to be

preserved, allowing the network to operate with a slightly lower squeezing requirement. The

effect is small, but it demonstrates how the network’s resilience to noise can lead to a marginal

reduction in resource demands across different topologies.

5.2.2 For Modes

When noise or a beam splitter is introduced into a quantum network, the squeezing cost de-

creases across all topologies. This reduction in squeezing cost can be explained by how noise

and beam splitters affect the distribution and requirement of squeezing resources across the

network’s modes.

Complete Graph

In a complete graph, the dominant mode initially requires a significant amount of squeezing,

with the other modes requiring much less. When noise or a beam splitter is added, the overall

squeezing demand is reduced because the noise effectively introduces decoherence, which di-

minishes the quantum correlations between modes. As a result, the system’s need for squeezing
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to maintain those correlations decreases, leading to a lower squeezing cost across all modes,

particularly in the dominant mode as shown in the figure

Figure 5.27: Graph plot for comparison of pure and lossy complete graph for 100 modes in which red

line shows pure network and yellow line shows lossy network

Linear Graph

In a line graph, as shown in the figure, the squeezing cost is highest at the boundary modes

and decreases along the interior modes. Introducing noise or a beam splitter smooths out the

variations in squeezing requirements because the noise disrupts the sharp differences in mode

correlations caused by boundary effects. This disruption reduces the overall squeezing cost,

especially for the boundary modes, leading to a more uniform and lower squeezing requirement

along the entire graph

Figure 5.28: Graph plot for comparison of pure and lossy line graph for 100 modes in which red line

shows pure network and yellow line shows lossy network.
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Star Graph

In a star network, squeezing is concentrated in the central node and one peripheral node. When

noise or a beam splitter is introduced, the central node’s strong squeezing demand is reduced be-

cause the noise disperses the quantum correlations that create the need for concentrated squeez-

ing as shown in the figure. This results in a decrease in the squeezing cost for the central and

peripheral nodes, with the overall squeezing requirement across the network becoming more

balanced and lower.

Figure 5.29: Squeezing Spectrum for comparison of pure and lossy star graph for 100 nodes in which

red line shows pure network and yellow line shows lossy network

Cycle Graph

In the cycle graph shown in the figure below, the squeezing spectrum is affected by the loop

structure, with some deviations compared to a line graph. When noise or a beam splitter is

added, the squeezing cost decreases similarly to the line graph, but the reduction is more uni-

form due to the periodic boundary conditions. The noise disrupts the mode correlations evenly

throughout the ring, leading to a lower squeezing cost across all modes. This effect results in

a squeezing spectrum that becomes smoother and more uniform, further diminishing the differ-

ences between the cycle and line graphs.

Wheel Graph

In a wheel graph shown in the figure, the central hub and rim nodes each have distinct squeez-

ing costs. Adding noise or a beam splitter reduces the squeezing demand on the central hub

by disrupting the strong correlations between the hub and the rim nodes. As these correlations
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Figure 5.30: squeezing spectra for comparison of pure and lossy cycle graph for 100 nodes in which red

line shows pure network and yellow line shows lossy network.

weaken, less squeezing is needed, leading to a decrease in the squeezing cost for both the hub

and the rim nodes. This results in a more uniform and lower squeezing distribution across the

wheel graph.

Figure 5.31: Graph plot for comparison of pure and lossy wheel graph for 100 nodes in which red line

shows pure network and yellow line shows lossy network

Grid Graph

In a grid graph, the squeezing cost is initially high due to the complexity of the interconnections,

but it decreases as the grid expands. Introducing noise or a beam splitter further reduces the

squeezing requirement by spreading the noise across the network’s interconnections as shown

in figure. This reduction in squeezing cost occurs because the noise weakens the quantum
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correlations that initially required high squeezing, leading to a more even and lower squeezing

demand across the grid.

Figure 5.32: Graph plot for comparison of pure and lossy grid graph for 100 nodes in which red line

shows pure network and yellow line shows lossy network.

Overall, the introduction of noise or a beam splitter reduces the squeezing cost in all network

topologies by diminishing the quantum correlations that originally required high squeezing.

This leads to a more uniform distribution of squeezing resources, with a generally lower squeez-

ing cost across all modes, regardless of the network’s structure. Each topology, however, experi-

ences this reduction in squeezing cost in a way that reflects its unique structural characteristics,

with some topologies (like the complete graph and star network) showing more pronounced

decreases in specific modes.
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Conclusion

We have explored the complex field of quantum information in this thesis, concentrating on

continuous variables (CVs) and how they are used in quantum networks. We started by going

over the fundamentals of quantum physics and comparing it with classical mechanics in order

to highlight the special concepts of quantum systems like superposition and entanglement. This

basic knowledge prepared the ground for an in-depth analysis of discrete variables (DVs) and

qubits, defining them as the fundamental components of quantum information and emphasizing

their role in quantum computation and communication.

The transition to continuous variables was then addressed, clarifying their advantages over dis-

crete variables in certain quantum network contexts. We explored the conceptual framework

of continuous variables and their associated quantum states, demonstrating their superiority in

scenarios involving continuous measurement and high-dimensional encoding. This discussion

was complemented by a thorough analysis of Gaussian states, including coherent states, dis-

placed vacuum states, and squeezed vacuum states. The role of squeezing as a valuable resource

was particularly emphasized, showing how it enhances measurement precision and information

transfer within quantum networks.

Our investigation extended to the study of various quantum network topologies, such as linear,

cycle, wheel, star, complete, and grid graphs. By quantifying the squeezing costs associated

with these different network configurations, we uncovered how varying topologies impact the

efficiency and resource requirements of quantum networks. Notably, our analysis of the effect

of noise—through mechanisms such as beam splitters or varying transmissivity—revealed that

noise can slightly reduce the squeezing cost in quantum networks. This insight is crucial for the

practical design of quantum networks that can function effectively under realistic conditions.
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Overall, this work significantly advances the understanding of continuous variables and their

application in quantum networks. In summary, this thesis lays a solid foundation for the utiliza-

tion of continuous variables in quantum networks and opens avenues for further advancements

in the field.

.
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