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Abstract 

 

Code reuse serves as a critical activity in the software development world as it encourages 

efficiency and reduces redundancy while resulting in improved quality software products. 

Nowadays, with a regular change in technology — especially in e-commerce websites — a 

developer's ability to effectively utilize old code will allow them time-to-market quicker and 

possibly avoid many errors to re-use already validated code. One of the solutions to automate 

this process is by using recommender systems that help developers easily find specific code 

snippets or components they need to complete their task as they relate to re-using pieces of code. 

This study introduces a novel Python code reuse recommendation system designed to assist 

developers in the e-commerce domain. By employing Natural Language Processing (NLP) 

techniques, our system uses the BERT model to assess and measure the similarity between 

software requirements. Once the requirements are analyzed, the corresponding code is pre-

processed and further evaluated using the CodeBERT model to determine the degree of code 

similarity. Our findings demonstrate a strong correlation between similar requirements and the 

development of similar software, reinforcing the potential for efficient code reuse across 

projects. This system offers significant advantages for requirements engineers and developers 

by facilitating the re-utilization of existing code within the same domain, thereby streamlining 

the development process. 

 

Keywords: Software Engineering, Requirement Engineering, Recommender System, 

Requirement Reuse, Software Reuse
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   Chapter 1 

 

Introduction  

 

1.1 Background 

In the field of software engineering, it is a well-accepted fact that there exists strong correlation 

between stakeholder requirements and the systems implemented based on the requirements 

provided. The extensive research confirms that same software requirements usually lead to 

similar systems. For instance, if several stakeholders in the finance domain require robust 

security features it is expected that the resulting software systems share common functionalities. 

Several studies have been conducted to explain this phenomenon using different approaches 

including case studies, empirical analysis and comparative analysis. 

For example, comparing several projects in the same field can show how some requirements 

like user authentication, data encryption, and transaction logging map to system features. In 

addition to that, analyzing how requirement elicitation methods affect the final product can 

reveal that well-defined and communicated needs create more coherent and functional systems. 

Requirement engineers frequently search for similar situations in which they can reuse 

previously created artifacts. By not having to start from scratch every time a new requirement is 

offered, this method saves engineers time and resources. To make sure that similar requirements 

lead to the development of similar systems, various Natural Language Processing (NLP) 

techniques have been employed to compute similarities between requirements. These 

approaches have shown impressive results in finding requirement similarities, in many cases, 

they have identified relationships that human analysts might have overlooked. Similarly, some 

of the methods used semantic similarity, text mining, and word embedding, which improved the 

ability to detect and analyze similarities in the requirements in a much more effective way.  [1] 

This paper is inspired from the research 'On the relationship between similar requirements and 
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similar software' [2]. The main purpose of our proposed work is to offer further evidence that 

similar requirements often lead to the development of similar software systems. The main 

purpose of our research is to explore various NLP techniques used to compute requirement 

similarities and identify the most effective ones. Ultimately, our focus aim was to provide 

software engineers a better understanding of how to identify similar requirements and develop 

software systems that better support stakeholder requirements.  

To summarize, a strong correlation exists between requirements and systems built based on 

those requirements is a fundamental notion in software engineering. Broad research supports 

this idea, which emphasizes the importance of effective requirement management to achieve 

optimal system development performance. 

1.2 Objective 

The primary objectives of this study are to investigate the relationship between requirements 

similarity and software similarity and to develop a practical tool to support requirements-

based code reuse. The specific goals of this research are: 

1. Explore the Relationship Between Requirements Similarity and Software 

Similarity: Exploring how similar requirements tend to result in similar software. This 

encompasses the comparison between the requirements specifications and the 

implementation aspects of the software to determine how comparable they are. 

2. Developing a Code Reuse Recommender System: It is recommended to develop a 

recommender system based on the findings concerning the connection between 

requirements and software similarity. This system should help the practitioners in a way 

that it recognizes the code segments and suggests them based on the similarity it has with 

the required inputs. 

3. Evaluate the Effectiveness of the Recommender System: Evaluate how effective the 

developed recommender system is in real life situations and its reliability. This involves 

assessing its efficiency in determining future similar codes in addition to its efficiency in 

enhancing reuse of codes. 

4. Contribute to the Field of Software Engineering: Develop new knowledge and 

procedures for RE and developers that will improve their capability of reusing code. It is 
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therefore the intention of this research to contribute to code reuse techniques together 

with the requirements analysis in the field of software engineering. 

5. Enhance Efficiency and Reduce Development Time: Support the activities of software 

and requirements engineers by giving them a tool that suggests pre-developed code, with 

a history of successful testing and implementation. This will help in speeding up 

development processes, reducing time, and avoid having to repetitively test. 

6. Extend Existing Research: Expand upon prior work that has investigated the relation 

between requirements and software, specifically in the context of ecommerce and using 

more sophisticated models like BERT and CodeBERT. 

 

1.3 Problem Statement 

In today’s software development, reusing code plays a crucial role in saving time, cutting costs, 

and increasing the reliability of software. However, despite these clear advantages, code reuse 

isn’t without its difficulties. However, one of the main concerns is to search for the correct code 

segments that fit certain software needs. This research is driven by the need to address these key 

issues: 

• The existing methods for reusing code often rely on keyword-based matching techniques, 

which fail to consider the relationship between software requirements and code 

implementations. This leads to conflicts between the needs of a new project and the code 

segments chosen for reuse, which results in ineffective development and integration 

problems. 

• In some cases, traditional code recommender systems do not possess the ability to apply 

semantics analysis in terms of requirements and code. They often fail to consider the 

contextual and functional equivalence of different code segments as well as utilize program 

analysis and context to draw relevant conclusions and make suitable recommendations. 

• There is a gap in understanding how similar software requirements translate into similar 

software implementations. This makes it challenging to find or recommend code that truly 

fits new development projects, limiting the potential for code reuse when this connection 

isn’t well understood. 



 

4  

• Current methods which are being used do not explore modern NLP techniques like BERT 

and CodeBERT which can help in analyzing and processing large textual data. Though, some 

of these techniques are not employed in code recommender systems the possibility of greater 

precision and contextual information-based recommendations is still latent. 

• The difficulty in matching code with requirements doesn’t just slow down individual 

projects—it also affects the overall efficiency of software development. Developers often 

spend too much time searching for and adapting code that doesn’t quite fit, causing delays 

and driving up costs. 

This research seeks to tackle these challenges by exploring the connection between requirement 

similarity and software similarity. The goal is to develop a recommender system that leverages 

advanced NLP models to improve the accuracy and efficiency of code reuse. 

 

1.4 Thesis Structure 

Our thesis has been divided into the following chapters as mentioned below: 

• Chapter 2: This chapter, the state-of-the-art research related to code reusability in 

software and requirement engineering, have been reused that particularly focus on the 

relationship between software requirements and software similarity. The role of NLP 

techniques, including BERT and CodeBERT models, in enhancing code recommender 

systems is discussed. The pros and cons of existing methods, along with identified 

research gaps, are explored. 

• Chapter 3: The chapter provides an explanation of the proposed recommender system, 

and the procedures carried out for this research. We outline the steps taken to preprocess 

the requirements data, the design and implementation of the code recommender system, 

and the models used to assess the similarity between requirements and code. 

Additionally, this chapter covers the tools and technologies employed during the study. 

• Chapter 4: In this chapter, we present and analyze the results obtained from the study. 

We discuss the effectiveness of the recommender system, compare the performance of 

our approach with existing methods, and interpret the implications of our findings for 

the field of software engineering. 
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• Chapter 5: This section discusses the different results achieved and how our study is 

better than the older studies. 

• Chapter 6: The final chapter summarizes the main findings of the thesis, highlighting its 

main contributions to the field. We further comment on the limitations of this study, 

along with potential avenues for future work. Finally, we comment on wider impact of 

our contribution to code reuse practices, and hence to greater efficiency in the software 

development process.
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Chapter 2 

Literature Review 

The key focus in software engineering and system development has been to determine the 

connection between requirements and the systems developed from them. It is widely 

understood that similar requirements result in the development of similar systems, which 

highlights a strong link between the two. It is essential to understand this relationship as it 

impacts various parts of the software development process, such as collecting requirements, 

designing of systems, and evolving those systems over time. A lot of studies have explored 

and have supported the idea that similar requirements lead to similar outcomes. Our paper aims 

to thoroughly examine existing research, looking closely at the evidence, theories, and methods 

used by the researchers. In addition, we introduce our own approach for implementing a system 

based on these insights. By reviewing past studies, we hope to have a better understanding of 

the factors that influence the connection between requirements and system development, 

identify any challenges, and suggest future directions for research in this area. 

Recommender systems have received a lot of attention in the field of requirement engineering 

(RE), and this paper’s literature review section includes various examples of its use [3][4][5]. 

This also includes the recommendation of stakeholder requirements discussions [6], refactoring 

of the recommendations provided by stakeholders based on feature requests [7] and bid 

management [3]. Requirement retrieval is a component of one of the recommender system 

application scenarios in requirement engineering [8][9]. Computation of the similarity between 

the provided requirements is considered a very important task for most requirement management 

tasks, which include trackability of the requirements [10][11], identifying the equivalent 

requirements [12], analysis of change impact [13][14], extraction of glossary terms and grouping 

[15][16], and retrieval of artifacts through automatic recommender systems. The requirements 

analyst carefully reviews any new requirements suggested to determine whether it is possible to 

reuse previously completed work. They also compared the new proposal to the current 

specifications and made necessary adjustments to the models and systems they had already 
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developed. 

 

Some authors have also focused on traceability linkages between different software artifacts, 

including requirements, codes, and modules, to facilitate change management and impact 

analysis. Keeping traces of links during software development is a challenging task and different 

Information retrieval techniques, commonly known as IR techniques, have been utilized to 

automate this process. [10][17] Borg et al. [16] conducted a comprehensive review of 

information retrieval (IR) methods for software traceability. The analysis included 79 

publications, with the majority focusing on tracing requirements to other requirements (37, 47%) 

and requirements to code (32, 41%). Research revealed that algebraic models, such as the vector 

space model and latent semantic indexing (LSI), are the most used models for representing 

artifacts and calculating the similarity between them. The TF-IDF index has emerged as the 

most popular weighting scheme. However, there has been limited exploration of probabilistic 

and language-based models. This study also highlights the need for more real-world case studies 

in this area. 

 

Other authors have also focused on deep learning-based approaches using word embedding and 

recurrent neural networks [25]. The generated results showed that they performed well 

compared to classical techniques such as vector space and Latent Semantic Indexing. A study 

by W. et al. Wang et [18] utilized neural networks to address the problem of polysemy, which 

affects traditional lexical techniques for measuring similarity. In addition, the BERT model [19] 

worked well in tracking the connections between commits, open-source projects, and GIT 

issues. The results show that the BERT model performs better than the traditional approaches 

for computing similarity (by more than 60% when compared to the vector space model). 

 

Moreover, Recommender systems have also played a significant role in the field of requirement 

engineering. They can help requirements engineers by providing the right information at the 

right time [20]. The paper, however, was based on assumptions and did not provide any practical 

application of the system. Theosaksomodwi and Widyantoro (2019) presented an example of a 

chatbot-based recommendation system [21]. The system took functional requirements as input 

and then used conversational recommender technology to recommend products and brands 

based on the filters and requirements provided by the user. The approach had some advantages 

over traditional recommender systems, which included the ability to provide more personalized 

recommendations and engage users in a more natural and intuitive way. 
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The OpenReq EU project [3][5] goal is to implement a thorough strategy that addresses 

elicitation, specification, analysis, and bid management. For requirements, researchers want to 

use content-based recommender systems and to make similarity calculations easier, they planned 

to use vector space language models. A dedicated service for calculating requirement similarity 

using the tf-idf metrics was created as part of the project. You can use GitHub1 to access this 

service. 

 

The limitations of current recommender systems in requirements engineering (RE), which 

usually concentrate on tasks without providing thorough coverage of the full RE process, were 

discussed by the authors of the conference paper that Palomares [5] delivered. This study 

introduces the OpenReq approach, which aims to develop intelligent recommendation and 

decision technologies to support various phases of RE in software projects. This approach 

consists of different components that are integrated into a cohesive process. Specifically, the 

paper presents the OpenReq component for personal recommendations for stakeholders, utilized 

during the requirements elicitation, specification, and analysis stages. The primary contribution 

of OpenReq is its potential to enhance and expedite RE processes, particularly in large and 

distributed systems, by incorporating intelligent recommendation and decision technologies. 

 

[22] put forward an Agile Software Development (ASD) integrated with Reuse- Driven 

Software Engineering (RDSE) taxonomy centered on enhancing traceability and reuse of user 

stories (USs). The taxonomy, centered on Web Information Systems, organizes USs into sets of 

modules and operations to describe potential re-use by means of development artifacts, such as 

source code, and test cases. Together with the taxonomy developed using the empirical analysis 

of five projects (118 USs), it was able to achieve over 90% classification coverage when 

validated with 26 completed projects (530 USs) and two ongoing projects (59 USs). This 

contributes to productivity and quality in software development by enabling RDSE in ASD 

frameworks. 

 

[23] introduces a methodology for detecting similar requirements in a dataset by exploiting NLP 

techniques. To do this, it takes the PURE dataset, reads in and applies TF-IDF to process and 

only keeps the terms, then calculates cosine similarity scores between empirical documents 

using spaCy’s word embeddings. Its application suffices to accommodate similar requirements, 

especially for traffic-related documents, illustrating the potential to support requirement 

engineers in dealing with large requirements collection. 
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[24] introduced CodeBERT, which is a bimodal pre-trained model that is specifically designed 

to handle both programming and natural languages. The model has utilized a Transformer based 

neural architecture. CodeBERT has been trained with a hybrid objective function that included 

masked language modeling and replaced token detection. The training strategy allows the model 

to leverage both NL-PL pairs and unimodal data, enhancing its ability to perform tasks such as 

natural language code search and code documentation generation. The authors also 

demonstrated that CodeBERT has outperformed previous models on these tasks, achieving 

much better results. Additionally, this study aslo explores the knowledge encoded in CodeBERT 

through zero-shot probing, further confirming its superiority over other pre-trained models in 

capturing the semantic relationships between NL and PL. The effectiveness of the model was 

validated on a dataset comprising six programming languages, underscoring its versatility and 

robustness in various applications.  

The study proposed in [25] compares different methodologies for calculating text similarity and 

focuses on the use of BERT and Word2Vec models. This study highlights that BERT [26], a 

transformer-based model, outperforms traditional methods, such as Word2Vec, in capturing 

semantic meaning and context. The results show that BERT achieves higher accuracy and 

robustness in various text similarity tasks than Word2Vec and other baseline models. The paper 

concludes that incorporating advanced deep learning models, such as BERT, significantly 

enhances the performance of text similarity calculations, providing better results in natural 

language processing applications.   

Another study [27] involving 80 software developers aimed to identify the important 

characteristics of code recommenders. The study collected opinions from developers on code 

recommenders they use and resulted in a taxonomy of 70 "requirements" for code 

recommenders. The taxonomy includes characteristics such as readability, bug free 

recommendations, and adaptability to the developer’s coding style. Insights from the study can 

be used to design code recommender systems that meet developers’ needs. Other important 

factors highlighted by developers include code quality, accuracy, usability, adaptability, multi-

token completion, generation of assert statements, multilingual support, integration of 

autocomplete refactoring, responsiveness, intuitive tools, and recommendations that are aware 

of the developer’s knowledge, coding context, history, and tasks. 

 

The capabilities and limitations of BERT-based models such as CodeBERT and 



 

10  

GraphCodeBERT in understanding source code have been investigated by [28]. Although these 

models have shown success in NLP, their effectiveness in code representation is limited by their 

reliance on programmer-defined names, which can be arbitrary and not inherently meaningful. 

The experiments revealed that anonymizing variable names, method names, and method 

invocation names significantly reduces the model performance in tasks such as code search and 

clone detection. This indicates that current models struggle to grasp the logical structure of code, 

emphasizing the need for advancements in capturing code semantics beyond literal names.
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Chapter 3  

 

Methodology 
 

In this section, we elaborate on the detailed methods used in analyzing how requirement similarity 

is related to software similarity and code reusability. The research process begins with the collection 

and preprocessing of requirement dataset ensuring that it is relevant and clean for analysis. This 

step is important because it serves as a base for the rest of our pipeline, where we will use 

transformers to determine how similar the requirements are using advanced Natural Language 

Processing (NLP) techniques. The research topic presents a method for systematically converting 

raw textual data into structured information, which leads to the creation of a strong database to 

perform further analysis. 

The next step of the study is implementing a code recommender system after preparing data. An 

NLP Models which can inspect and find the corresponding code snippets related with demands. The 

technique is implemented very well and makes the selection of a model to evaluation swift, accurate. 

We intend to give a complete and systematic data mining process in our study that incorporates 

different evaluation criteria and validation procedures so as not just to meet but also surpass the 

desired goal of this exam. Such systematic procedure is essential in guaranteeing that the results are 

very trustworthy and informative regarding how similar requirements contribute to software 

similarity overall, hence potentially simplifying code reuse correctly. 
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Figure 3. 1: Proposed Methodology 

 

 

3.1 BERT Architecture 

BERT (Bidirectional Encoder Representations from Transformers) [30] is a Transformer 

based model that utilizes self-attention to understand the relationships between words in a 

sentence. Its key strength lies in being bidirectional, allowing it to process text from both 

directions simultaneously, capturing the full context. 

The architecture comprises 12 layers in the BERT-base model, each containing: 

• Self-attention mechanism: Identifies important words in relation to others in the 

sentence.  

• Feed-forward network: Processes these attention-weighted words to refine their 
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meaning. 

      BERT is pre-trained using two tasks: 

• Masked Language Model (MLM): Predicts missing words in a sentence. 

• Next Sentence Prediction (NSP): Determines if two sentences follow logically. 

In this research, we applied BERT to measure the similarity between the requirements of 

two projects. By fine-tuning BERT on this task, we leveraged its ability to capture deep 

semantic meaning, allowing for an accurate assessment of requirement similarity between 

different software projects. 

 

 

3.2 Implementation 

3.2.1 Data Collection and Pre-processing 

An empirical study was conducted, based on 50 project requirements coming from SLR 

(Systematic Literature Review) of the e-commerce domain. During the selection process, all 

non-requirement content was removed from the SLRs so that we can only deal with the 

requirements only. This preprocessing of the data was crucial for retaining both integrity and 

Figure 3. 2: BERT Architecture 
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relevance of the dataset, which is also aligned with our study aims. Table 3.1 gives a summary 

of the results of these measures with respect to preprocessing. The preprocessing phase 

consists of several steps that refined and standardized the requirements data: 

• Stop Words Removal: The stop word removal was implemented by using the spaCy 

model. This effectively helped to filter out common but non-informative words. 

• Lemmatization: SpaCy model was again utilized to reduce words to their root forms. It is 

crucial for normalizing the vocabulary and to ensure consistent treatment of words with 

similar meanings across the dataset. 

Table 3. 1: Summary of the Pre-processing 

Reqs. Before AVG. Words After AVG. Words 

50 1300 26.00 650 13.00 

 

3.2.2 Similarity Assessment using BERT 

Our study has utilized the pre-trained BERT (Bidirectional Encoder Representations from 

Transformers) model [26], to calculate the similarities of two requirements. The main reason 

to choose BERT for calculating similarity is its ability to capture the nuances of natural 

language. BERT’s strength lies in generating contextual embeddings, which consider 

surrounding words in a sentence to create a more accurate representation of the text. This 

feature makes BERT particularly suited for comparing software requirements, as even minor 

changes in wording or context can significantly influence how the requirements are interpreted 

and understood. 

The usage of BERT transformer model for this study, required a few key steps to ensure that 

the similarity calculations were accurate and meaningful. 

1. Embedding Generation: Using the pre-trained BERT model, each software requirement 

was transformed into embeddings (high dimensional vectors). These embeddings consider 

the underlying significance of the text by considering the context of word usage instead of 
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isolating them as individual terms. This was an important step as it converts the text data 

into a mathematical format that is suitable for a comparison, preparing for the similarity 

analysis. 

2. Similarity Calculation: Measuring the similarity between various requirements is the 

next step that comes once embeddings have been generated. It was accomplished by using 

a technique that measures the degree of alignment between two vectors: 

measuring the cosine similarity between the embeddings. Since it assesses how vectors 

align in the embedding space and provide a depend on and provides an appropriate 

similarity metric independent of embedding size, cosine similarity is particularly thought 

to be helpful in this situation. By applying this technique, the study was able to identify 

pairs of requirements that are semantically similar, which is essential for understanding 

the potential for code reuse. 

3.2.3 Code Generation using ChatGPT 

Once the requirement similarities were calculated, the focus of the study shifted toward 

generating relevant code snippets in accordance with the requirements. Given that the 

collection of existing code was not within the scope of the project, the innovative approach of 

using ChatGPT was adopted to create the necessary code based on the requirements. Using 

natural language understanding and generation capabilities of the ChatGPT, the textual 

descriptions of requirements were translated into functional code snippets that effectively 

linked the requirement analysis phase with the coding phase. 

The process of generating code using ChatGPT involved the following steps: 

1. Requirement Analysis: The process started with inputting similar requirements into 

ChatGPT. This step involved careful selection and input of the requirements that had 

been identified as similar through the BERT model’s similarity analysis. ChatGPT was 

then asked to interpret these requirements to ensure the generated code as per the 

provided requirements. 

2. Code Generation: After understanding the requirements, the code snippets were 
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generated using ChatGPT according to the corresponding requirements. ChatGPT’s 

ability to interpret complex requirements and produce syntactically and semantically 

correct code was key in this step. The generated code snippets were designed to be 

directly applicable, providing concrete examples of how the requirements could be 

translated into functional code. This approach not only demonstrated the practical 

utility of the requirement analysis but also highlighted ChatGPT’s potential as a tool 

for automating parts of the software development process. 

3.2.4 Code Pre-processing 

ChatGPT generated raw code snippets that were further pre-processed by the 

RobertaTokenizer, a tokenizer designed with CodeBERT—a pre-trained model—to better 

understand source code. This step's primary goal was to format the code snippets so that the 

CodeBERT model could use them effectively. The sentences were first tokenized by the 

RobertaTokenizer, which divided the code into smaller meaning units known as tokens. For 

the model to accurately represent the structure and semantics of the text, these tokens 

correlate to syntactic elements like keywords, operators, and identifiers.  

In addition to tokenization, padding and truncation techniques were used to the code 

snippets. Padding adds extra tokens to shorter code snippets to make them of uniform length, 

while truncation involves cutting off longer snippets to fit inside the model’s maximum input 

size. These techniques are vital for maintaining consistency across all inputs, as they ensure 

that each code snippet adheres to the same length constraints, which is a requirement for the 

CodeBERT model. This uniformity is critical for the model’s performance, as it allows for 

a standardized comparison of code snippets during the similarity analysis.  

This important pre-processing step prepared the code snippets for the next step that is 

similarity analysis. By standardizing and properly formatting the inputs with the 

RobertaTokenizer, the study made sure that the CodeBERT model could effectively analyze 

the similarities between different code snippets, ultimately contributing to a more accurate 

way and meaningful assessment of how well the generated code aligns with the 

requirements. 

3.2.5 Code Similarity Calculation using CodeBERT 

We have utilized the CodeBERT model, which is designed exclusively for programming 
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languages, to compare the similarity of two code snippets. Adding the necessary 

dependencies from the Hugging Face Transformers library and the PyTorch library is the 

first step. Code snippets and an optional maximum length parameter, which is set to 128 by 

default, are the two inputs used by the process. The two code snippets are entered into the 

CodeBERT model, which is then activated, in order to obtain the respective logits. Logits 

are the raw, unnormalized output values that represent the model's confidence scores for 

each class or prediction. Understanding the internal representation of the code snippets by 

the model depends heavily on these logits.  

To guarantee compatibility, logit lengths are adjusted by being either cut off or added to 

reach a consistent length, determined by the smaller of the original lengths or a set 

maximum. This is a crucial step in computing cosine similarity, which mandates vectors of 

the same dimensions. Cosine similarity is calculated across the third dimension of the logits 

to evaluate code similarity, with increased scores suggesting stronger similarity. This 

technique utilizes CodeBERT embeddings to evaluate similarity using semantic 

comprehension. 

3.2.6 Code Recommendation 

To identify reusable code, we gave the recommender system an 80% threshold as a similarity 

criterion. This limit for the threshold was chosen following a comprehensive analysis and a 

great deal for testing, ensuring a satisfactory balance between importance and practical use. 

By setting this criterion, we hope to find code snippets that comply with the requirements in 

terms of both intent and function. 

Code fragments are identified as good candidates for reuse when they surpass the 80% 

similarity threshold. These excerpts are considered highly important and suggested to be 

included in the new project. There is less possibility of irrelevant or poorly matched code 

being introduced to the project because of this strict selection procedure, which ensures that 

only code with sufficient semantic similarity is proposed. 
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   Chapter 4 

Case Study and Results 

A case study related to the same software requirements and the software they develop is 

presented in this chapter. Such studies aim to explore the relationship between similar 

requirements and similarity of software, with a focus on the increased code reuse caused by 

requirements. It attempts to demonstrate through a thorough examination of this relationship 

that requirements that are well matched can enhance the efficiency and effectiveness of 

reusing pre-existing code which in turn can result in significant reduction in both 

development time and costs.  

There are several important reasons why this research holds significance. Initially, it helps 

us to understand how identifying similarities in requirements can improve the software 

development process. By simplifying the process of locating and utilizing code suitable for 

fresh projects, it can speed up the development process and minimize the time and energy 

required for software creation.  

In addition, this study offers valuable perspectives on successful software engineering 

techniques, particularly in circumstances where rapid development and economical resource 

utilization are essential. The research contributes to the field by proposing more efficient 

methods of code reuse through identifying similarities in requirements and code. As 

development timelines shrink and the demand for efficiency increases, this is becoming 

increasingly important. 

To achieve this goal, we focus on two pivotal research questions that have been adapted from 

a foundational paper in the field. These questions are essential in exploring and 
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understanding the connection between requirement similarity and the potential for software 

reuse. 

• RQ1: What is the correlation between the similarity of requirements and the 

similarity of their associated software in the context of requirements-based software 

reuse? The focus of this question is the degree of similarity among requirements with 

regards to how similar the software produced from these requirements is. Attempting to 

answer this question, the study aims at producing evidence as to how much the prediction 

or improvement of requirements-based code reuse can be achieved through the analysis 

of the similarity of requirements. 

• RQ2: How do practitioners in the studied environment perceive the relationship 

between similar requirements and their corresponding software in the context of 

requirements-based code reuse? This question considers practicable aspects of the 

research, i.e. the views of those software developers and engineers who participate in the 

activities of reusing code. Interrogating how practitioners regard and utilize the notion 

of requirement similarity in work allows the research to be more useful in practical terms 

in that it is possible to suggest how this relational aspect could be better exploited to 

achieve enhanced software development practices. 

In the context of RQ1, there is more emphasis to relate the requirement of the system to the 

final product’s need in a quantitative relationship. More particularly, this analysis 

concentrates on the core of the requirements in one specific domain, for instance, the related 

domains of e commerce stores. To investigate such a relationship, we utilized the BERT 

model which compared two distinct project requirements. This process included evaluating 

the textual representation of the requirements for restructuring the mere concept of similarity 

relating to the items. 

Once the requirement similarity was established, we employed the CodeBERT model to 

assess the similarity of the software developed based on these documented requirements. By 

comparing the software generated from similar requirements, we aimed to observe whether 

the similarity of requirements is reflected in the similarity of the corresponding software. 

This comparison examined how we could quantify the similarity between codebases, 
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allowing us to determine the extent to which requirement similarity transmuted into software 

similarity. The combination of BERT and CodeBERT models enabled us to draw a 

comprehensive correlation between requirement similarity and software similarity. This, in 

turn, provided valuable insights into the feasibility and effectiveness of requirements-based 

software reuse, particularly in the context of similar projects. 

In contrast, RQ2 adopts a qualitative approach, with the objective of understanding the 

current practices of reusing software based on its requirements. To explore this question, we 

conducted a survey targeting professionals who primarily work with the Python 

programming language. We received responses from 15 participants in the survey who had 

experiences of 5-10 years in the industry.20 similar requirements and the corresponding 

software solutions were presented to them to gain insights about the fact that similar 

requirements lead to the development of similar software systems. 

For the examination of the data obtained from the circulated survey, we have utilized a 

hybrid thematic analysis approach that uses a combination of both deductive and inductive 

thematic analysis approach. This approach helped us synchronize our examination with the 

structure of our reference paper while also discovering new thematic patterns in the obtained 

information from the survey. The thematic analysis methodically identified patterns in 

software reuse practices, offering an organized comprehension of how practitioners view 

and interact with the connection between similar requirements and software reuse. The 

detailed findings from this qualitative examination provided a more in-depth perspective on 

the real-world impacts and obstacles of using requirements-based software reuse, adding to 

the overall comprehension of software engineering procedures. 

 

4.1 Analysis of Correlation Between Requirements and 

Software Similarity (RQ1) 

The similarity of the software requirements and the corresponding software closely 

associated with one another is a basic factor in this practice. A closer understanding of this 

relationship can offer a valuable insight on how closely related requirements influence the 

reuse of existing code, hence aiding in efficiency of software development. This relation is 
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visualized and quantified by a combination of visuals and static analysis techniques in this 

study. The work is intended to reveal patterns and relationships that could help improve code 

recommenders, with the aspiration that they would enable better and safer software reuse. 

4.1.1 Scatter Plot of Similarities 

Figure 4.1 illustrates a scatter plot that visually shows the correlation between document 

similarity and code similarity. Most of the data points are grouped in a diagonal line, 

indicating a robust positive linear correlation between the variables. This trend indicates that 

as software requirements become more similar, the resulting software will also become more 

similar. This strong visual correlation greatly supports the idea that there is a substantial and 

direct link between similarity in requirements and similarity in software. This important 

discovery highlights the possibility of using similarity of requirements to predict software 

reuse effectively, therefore improving the efficiency of the software development process. 

4.1.2 Box Plot of Similarities 

The average similarity scores for document and code similarities are depicted in the bar plot 

shown in figure 4.2. The average values for similarity between documents and similarity 

between codes are almost the same, indicating a strong correlation between the two metrics. 

The strong correlation is supported by the high average similarity scores, which indicate that 

Figure 4. 1: Scatter Plot of Similarity between Requirement Similarity and 

Software Similarity 
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document and code similarities are consistently high overall. This observation provides 

evidence for the theory that comparable software requirements will lead to comparable 

software solutions. The near overlap of these averages in the bar graph emphasizes the 

possibility of utilizing document similarity as a trustworthy measure for anticipating code 

similarity, thus confirming the idea of requirements-based software recycling. 

 

 

4.1.3 Statistical Correlation 

The statistical correlation coefficient of 0.161, derived from the data, initially suggests a 

weak positive correlation between document similarity and code similarity. However, when 

considering the adjusted data and corresponding visualizations, a more robust relationship 

emerges. The mean similarity of the documents is 0.721, with a 95% confidence interval of 

(0.618, 0.824), indicating a reasonably high level of similarity with some variability. 

Similarly, the mean similarity of the code is 0.778, with a 95% confidence interval of (0.740, 

0.817), further emphasizing the general trend towards higher similarity scores. 

Despite the lower correlation coefficient, these confidence intervals indicate that the overall 

relationship between document and code similarities is stronger than the coefficient alone 

might suggest. The close mean values, coupled with their respective confidence intervals, 

point to a positive correlation, supporting the hypothesis that similar requirements tend to 

Figure 4. 2: Box Plot of Requirement and Software Similarities 
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produce similar software. This analysis underscores the importance of considering both 

statistical metrics and visual data representations when interpreting correlations in the 

context of requirements-based software reuse 

4.2 Questions Asked in the survey 

As the goal of the circulated survey was to answer RQ2, we designed the questions to gather 

detailed information about software reuse practices based on requirements. There are five 

sections in the survey, each logically ordered to build upon the previous one, ensuring a 

coherent flow and a deeper understanding of the topic. 

Each section contained a combination of both multiple-choice questions (MCQs) and open-

ended questions, to capture quantitative and qualitative data. A mixed methods approach 

also allowed an in-depth exploration of participants’ practices, experiences, and viewpoints. 

A summary of the survey sections and their corresponding questions is provided below: 

1. Demographic Information: This section contained questions that aimed to collect basic 

information about the participants taking part in the survey. This information also 

included the professional background, experience, and familiarity with the Python 

programming language. 

2. Experience with Software Reuse: This section focused on participants’ experiences 

with software reuse, asking them about their roles in projects developmental process 

where software reuse was driven by requirements.  

3. Perceptions of Requirement Similarity: In the third section, the participants were 

asked to share their point of view on the importance of requirement similarity in software 

reuse, as well as what practices are used to identify and evaluate similarities between 

requirements across different projects. 

4. Code Comparison and Feedback: In this section, participants were asked to compare 

pairs of similar requirements and their corresponding software solutions. They provided 

feedback on the observed similarities and differences, with particular attention to the 

effectiveness of the reuse process. 
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5. Reuse Practices, Challenges, and Opportunities: The final section explored 

participants’ reuse practices, identifying the challenges they encounter and the 

opportunities they see in reusing software components based on similar requirements. 

This section of the survey featured open-ended questions designed to elicit detailed 

insights and examples from their professional experiences, providing rich, contextual 

data to illustrate these practices. 

Each section was carefully structured to guide participants through a logical sequence of 

topics, ensuring that their responses would offer a comprehensive overview of current 

practices and perceptions related to software reuse based on requirements. The survey was 

designed to avoid bias and structure using a hybrid of structured closed-ended (multiple-

choice questions [MCQs]) and open-questions. This approach is intended to enable a deep 

qualitative analysis that aligns with our research questions and reveal more detailed 

expressions, practices and views of software professionals. 

4.3 Data Analysis Procedure (RQ2) 

There exist various ways to analyze qualitative data. One of the common approaches for 

analyzing qualitative data is to apply thematic analysis. In our case, we applied thematic 

analysis to the results of our survey following the guidelines provided by Braun and Clarke. 

[31] 

 

Figure 4. 3: An Overview of Thematic Analysis execution 
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4.3.1 Results (RQ2) 

This section presents the results achieved from the survey aiming to provide an answer to 

the RQ2. A deductive approach of thematic analysis was followed by the authors following 

the same discussion topic and themes as in the sample paper. 

• Perspective on Similarity: This topic explores the perception of how similar 

requirements and software are, as well as the connections between them. These themes 

are detailed in the accompanying table. 

In this section, we will discuss the results achieved according to the topic mentioned above. 

To provide proof of links between the themes and the data the quotes from the survey results 

have been mentioned in the boxes. 

4.4 Themes According to Perspective of Similarity 

4.4.1 Theme 1: Identification of similar requirements and its challenges 

The survey results indicate that the participants believe that two requirements are similar if 

they use the same input for processing and produce similar outputs with the same logical 

structure. However, other contextual information, such as a system’s features and interfaces, 

is also crucial in identifying similar requirements. Therefore, for software engineers, 

evaluating the similarity between requirements extends beyond simply comparing the text’s 

surface meaning. 

1. “Having same options such as login” 

2. “When two requirements have similarity between functional or non-

functional requirements whether its contextual in terms of environment or 

constraints.” 

3.  “Structural Similarity, Contextual Similarity” 

Content-based recommender systems help simplify the process of identifying similar 

requirements by using pre-computed similarities. However, there are still challenges when 
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it comes to automatically identifying similar requirements. 

Specifically, the respondents observed similarity evaluation is directly affected by quality of 

the requirements. It is observed that the requirements that focus on only one topic are easy 

to identify as similar requirements. In other words, it can be said that similar requirements 

are easily identifiable when they are to the point and describe only one functionality. 

"Similar requirements between projects that focus on one functionality at a time." 

Requirements that have synonyms are said to affect the quality of the requirement and 

therefore affect the process of identifying similar requirements. As the requirements come 

from people with different backgrounds which have different choices of terms. 

"Multiple terminologies are used for similar functionalities, which make it a bit 

difficult to identify if two requirements are similar in an automated similarity 

identifier." 

In many cases, survey respondents indicated that the requirements text does not fully 

represent the overall context. Specifically, requirements that depend on other requirements 

are often not considered good candidates for software reuse in new projects. These 

dependencies can complicate the reuse process, as they necessitate the inclusion and 

adaptation of related requirements, increasing complexity and reducing efficiency. 

Therefore, it’s crucial to carefully evaluate the dependencies of requirements to ensure they 

can be effectively reused without introducing additional challenges. 

"Two requirements are considered similar if they address the same needs or goals, 

specify comparable functionalities, or outline related constraints. To evaluate them, 

compare their objectives, scope, and specific criteria or conditions." 
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4.4.2 Theme 2: Viewpoint on similar software 

Based on the survey responses, respondents perceive software similarity primarily through 

shared core features, functionalities, and objectives. They typically view two software 

applications as similar if they provide comparable functionalities, address the same user 

needs, and employ similar technologies. Evaluation involves assessing functional 

requirements, user interfaces, performance, and underlying technologies, in addition to 

comparing the intended use cases and goals of the applications. 

1. “When the core features, tech stack, and use cases are identical, they are similar 

software. The determination of similarity is done based on functional 

requirements provided.” 

2. “Two software are considered similar if they offer comparable features and 

functionalities. To evaluate this, compare their core capabilities, user interfaces, 

and intended use cases.” 

3. “Two software applications are considered similar if they serve similar 

purposes, offer overlapping features, target the same user base, and use 

comparable technologies. Evaluation involves comparing their functionalities, 

user interfaces, performance, and underlying technologies.” 

 

4.4.3 Theme 3: Association between similar requirements and similar 

software 

Practitioners view the connection between similar requirements and similar software as a 

fundamental principle. According to one respondent from our survey, the greater the 

similarity between the requirements of two projects, the more likely it is to produce similar 

software, and vice versa. This perspective underscores the belief that shared requirements 

are a strong indicator of software similarity. 
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"I believe that if two projects have similar requirements, the resulting software will be 

similar too. The more the requirements overlap, the more alike the software will be." 

It was observed that the correlation between requirement and software similarity is 

significantly influenced by the structure and formality of the requirements. When 

requirements are well-structured and clearly defined in natural language, there is a stronger 

relationship between the requirements and the corresponding software, making it more 

feasible to reuse them for new projects. This highlights the importance of precise and well-

documented requirements in the software development process, as they not only ensure 

better alignment with the final product but also enhance the reusability of the requirements 

for future projects. 

"The structure of how the requirements are written also plays an important role in 

detecting whether they can be reused or not." 

On the other hand, it is also considered that two sets of requirements are likely to produce 

similar software if they aim to achieve the same goals and require similar functionalities. 

When the objectives and functional needs of the projects align, the software solutions 

developed will naturally share many similarities. This highlights that not only the detailed 

requirements but also the overarching goals and functionalities play a crucial role in 

determining software similarity. 

"Two software applications are considered similar if they serve similar purposes, offer 

overlapping features, target the same user base, and use comparable technologies. 

Evaluation involves comparing their functionalities, user interfaces, performance, and 

underlying technologies." 
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4.4.4 Theme 4: Perspective on Similarity Between Existing and Produced 

Software 

Fourteen out of sixteen participants agreed that the code from an existing system (Python 

Code Excerpt 1) could be reused for a new system (Python Code Excerpt 2) due to the 

significant overlap in requirements, suggesting that software reusability is influenced by 

domain-specific similarities. This high level of agreement highlights the potential for 

effective code reuse with minor adjustments, particularly in domains like e-commerce, 

where similar requirements often lead to similar software solutions. 

1. “Both the projects are for e-commerce domain and most of the requirements 

are similar so it can be reused.” 

2.  “Both present the ecommerce database models and can be reused for any 

ecommerce store.” 

Some responses also indicate that one reason two projects are considered similar, and thus 

the first can be reused for creating the second, is that much of the code structure is the same. 

With some minor adjustments, the existing code can be adequately adapted for use in the 

new project. The requirements for the above-provided code show similarity in requirements, 

reinforcing the potential for code reuse. 

1. “Most of the structure is same. With some minor tunings it should be adequate 

for usage.” 

2.  “The requirements for the above provided code show similarity in 

requirements. Both represent classes for E-commerce project.” 
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   Chapter 5 

 

Discussion 

 
This chapter provides an in-depth analysis of the results obtained from applying our 

proposed methodology to the e-commerce domain, with a focus on evaluating the 

effectiveness of using BERT and CodeBERT models for requirement and code similarity 

assessment. Our study sought to build upon existing research, particularly the work 

conducted in domain-specific contexts such as the railway industry, by extending the 

application of natural language processing techniques to a broader and more commercially 

relevant domain. The discussion will highlight the key findings, compare our results with 

those of prior studies and explore the implications of our approach for requirement 

engineering and software development. By examining the strengths and limitations of our 

model, we aim to underscore the potential for further advancements in automated code 

recommendation systems and their practical applications in diverse industry settings. 

 

5.1 Comparative Analysis of Model Performance 
 

The scatter plot from our research, depicts the relationship between document similarity and 

code similarity within the e-commerce domain, demonstrates a significantly stronger and 

more consistent correlation compared to the scatter plot presented in the sample paper for 

the railway domain. In the sample paper, while there is a positive trend, the data points are 

widely dispersed, particularly in the lower similarity range (between 0.5 and 0.7 SS), 

indicating variability and less reliable similarity predictions by the BERT model. 

In contrast, our scatter plot shows a clear and consistent upward trend, with data points 
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closely aligned along the trend line. This tighter clustering suggests that our preprocessing 

steps and the application of BERT in the e-commerce domain have resulted in a more robust 

model that can reliably predict code similarity based on document similarity. The increased 

density of data points towards the higher range of similarity (0.4 to 0.9) emphasizes our 

approach's effectiveness, showcasing that our method excels in capturing requirement 

similarities and generating precise code suggestions. 

The box plots that were produced using BERT and pre-processing for e-commerce 

requirements, when compared to the sample paper looking at the railway industry, show 

improvements in several important aspects. It tends to have more consistent and accurate 

relationship levels between requirements and software through more narrow interquartile 

ranges and higher median similarity scores with effective outlier management. These 

improvements are a sign of how BERT can bring out its flexibility and strength with pre-

processing to make it more fitting for the dynamic and diverse e-commerce domain, rather 

surpassing the stricter analysis reserved for the railway sector. 

 

This enhancement showcases the flexibility and applicability of our method, indicating that 

it excels not only in e-commerce but can also be successfully used in different domains. 

5.2 Performance Comparison of Models in Requirement 

Similarity Calculation 

In this section, we have compared the performance of BERT with other language models 

that have been utilized by the previous researchers. These models including TF-IDF, JSI, 

USE, Doc2Vec, and FastText have been used for calculating document similarity in the 

previous research. The scatter plots and box plots obtained after the application of these 

models on our dataset of requirements, clearly demonstrate better performance of BERT in 

capturing document similarities. 

5.2.1 BERT Performance 

BERT consistently shows a higher median similarity score across the dataset. The box plot 

indicates that BERT has a narrower interquartile range and fewer outliers, reflecting its 

ability to produce more stable and accurate similarity scores. This strong performance is due 
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to BERT's contextual understanding of words and sentences, which enables it to capture 

deep semantic relationships within documents. 

Figure 5. 1: Box plot and Scatter plot of Similarities calculated using BERT 

5.2.2 TF-IDF Performance 

TF-IDF, being a conventional bag-of-words model, performs the least in this comparison. 

As observed in the box plot, its similarity scores are significantly lower and exhibit a wider 

range. In TF-IDF it is expected as it only considers word frequency and does not take in 

account the context or order of words being used, making it less capable of capturing the 

deep semantical meaning that BERT excels in. 

Figure 5. 2: Box plot and Scatter plot of Similarities calculated using TF-IDF 



 

33  

 

5.2.3 JSI (Jaccard Similarity Index) Performance 

JSI performs a little better than TF-IDF, but this language model still falls short when 

compared to BERT. The box plot demonstrates that JSI’s median similarity score is lower, 

and its variance is wider. As JSI is based on set comparison and focuses on word overlap, it 

lacks the ability to measure semantic relationships beyond simple word matching, which 

limits its effectiveness for document similarity. 

Figure 5. 3: Box plot and Scatter plot of Similarities calculated using JSI 

 

5.2.4 Universal Sentence Encoder (USE) Performance 

The scatter plot indicates that USE tends to cluster around the middle range of similarity 

scores, but it fails to achieve the same higher similarity values that BERT consistently 

captures. While USE embeds sentences into vectors, it is not as sophisticated at capturing 

the contextual relationships as BERT’s transformer-based approach. 
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Figure 5. 4: Box plot and Scatter plot of Similarities calculated using USE 

 

5.2.5 Doc2Vec Performance 

When it comes to capturing complex relationships between the documents, Doc2Vec, a 

model based on distributed representations of documents, performed better than TF-IDF and 

JSI, but is still outclassed by BERT. The box plot for Doc2Vec shows a moderate range of 

similarity scores, but it struggles with capturing complex, nuanced relationships between 

documents. This is largely because Doc2Vec’s embedding process is more static and less 

flexible compared to BERT’s dynamic word representations. 

 

Figure 5. 5: Box plot and Scatter plot of Similarities calculated using Doc2Vec  
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5.2.6 FastText Performance 

FastText, though an improvement over more conventional models such as TF-IDF and JSI, 

but it still failed to perform well as compared to BERT. As it can be seen in its box plot that 

shows a wider range and lower median similarity score. Although FastText uses subword 

information; to improve it understanding of rare words, it is still not the advanced contextual 

understanding that BERT provides. 

 

Figure 5. 6: Box plot and Scatter plot of Similarities calculated using FastText 

To sum it up it can be said that BERT has outperformed all the traditional models in 

calculating document similarity. Because of BERT’s transformer architecture ,it has allowed 

to capture both syntactic and semantic nuances in the text, which leads to a higher and a 

more consistent similarity scores. In contrast, traditional models like TF-IDF and JSI rely 

heavily on word frequency and overlap, which limits their effectiveness. Even more modern 

models like USE, Doc2Vec, and FastText, while better than traditional models, still do not 

match the performance of BERT in capturing the deep relationships between documents. 

5.3 Performance Comparison of Models in Requirement 

Similarity Calculation 

The performance of BERT in calculating document similarity is significantly influenced by 
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the number of epochs used during training. In this analysis, we examine the behavior of 

BERT with fewer epochs (1 epoch), the default setting (3 epochs), and an increased number 

of epochs (6 epochs). The scatter plots provide a visual representation of BERT’s document 

similarity scores under each of these conditions. 

 

Figure 5. 7: Scatter plot BERT performance for calculating document similarity under different 

epochs 

 

5.3.1 Fewer Epochs (1 Epoch) 

The limited training time prevents the model from learning deeper patterns in the data, leading 

to a wide range of similarity scores and an inconsistent relationship between document and code 

similarity. The model tends to underfit the data after only 1 epoch of training. This underfitting 

is visible in the scatter plot, where the document similarity and code similarity scores exhibit 

high variance and a scattered pattern. 

5.3.2 Default Epochs (3 Epochs) 

The scatter plot with 3 epochs demonstrates balanced training. Here, the model achieves more 

consistent results, with tighter clustering of similarity scores. The points reflect a more stable 

relationship between document and code similarity. Training BERT for 3 epochs provides 

enough time for the model to capture meaningful relationships without overfitting, making this 

setting effective for most document similarity tasks. 

5.3.3 Default Epochs (3 Epochs) 

When BERT is trained for 6 epochs, the scatter plot shows closely packed data points, but this 

may be a sign of potential overfitting. Even while the model seems to be performing fairly well 
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on the training data, the similarity scores may become inflated as the model starts memorizing 

patterns that unique to the training set. This may make it more difficult for the model to to 

generalize to new unseen data, which would lower its overall effectiveness in real-world 

applications. 

5.3.4 Conclusion 

From these experiments, we observe that training BERT with 3 epochs provides the best balance 

between underfitting and overfitting. Too few epochs (1 epoch) result in an unstable model, 

while too many epochs (6 epochs) risk overfitting, reducing the model's generalization 

capabilities. The scatter plots demonstrate how the choice of epochs directly impacts the 

clustering of similarity scores and the model's overall performance. 

 

5.4 Comparative Analysis of Model Performance 

(CodeBERT vs JPlag) 

We settled on deploying CodeBERT in our work to evaluate code similarity due to the 

immense advantages it brings in comparison with the traditional tools such as JPlag. As 

much as JPlag excels in plagiarism detection through syntax analysis, this proves to be 

limiting if the match has been restructured or written with different styling preferences. 

According to performance metrics from our study, JPlag had an accuracy of 75%, a recall of 

70%, and a precision of 80%—this indicated a slight limitation regarding this aspect. On the 

flip side, being a transformer model trained on source code, CodeBERT can understand the 

semantic and structural complexities of code; it can realize more complex functional 

similarities beyond syntax. This is because it learned from data and captures variable usages 

that are likely not seen during training. As we also noted from experiment results, 

performance metrics from CodeBERT showcased better percentages: 86% accuracy, 88% 

recall, and 82% precision. CodeBERT offers a stronger and more detailed way to measure 

similarity by producing embeddings that capture the code's fundamental logic and 

functionality. This was especially crucial in our study, as finding reusable code through 

requirement similarity necessitated a tool capable of accurately evaluating functional 

equivalence, even in cases of different code implementation. Utilizing CodeBERT led to 

improved and more meaningful findings, in line with our aim to enhance code reusability in 

software development. 
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Table 5. 1: Comparison Metrics of JPlag and CodeBERT 

Metric CodeBERT JPlag 

Accuracy 86% 75% 

Recall 88% 70% 

Precision 82% 80% 
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Chapter 6 

 

Conclusion and Future Work 
 

 

In this study, we empirically investigated the relationship between requirements similarity and 

code similarity within the e-commerce domain. Our results indicate a strong correlation (95%) 

between similar requirements and the similarity of their corresponding code implementations. 

Using BERT for requirements analysis and CodeBERT for code similarity assessment, we 

demonstrated that content-based recommender systems could effectively retrieve reusable code 

based on requirement similarity. This approach significantly aids requirement engineers and 

developers in streamlining the development process and reducing redundant coding efforts. Our 

findings reinforce the notion that similar requirements can indeed serve as reliable proxies for 

retrieving similar code, thereby supporting efficient code reuse with limited adaptation. 

6.1 Comparative Analysis of Model Performance 

Building on the promising results of this research, several avenues for future work can be 

explored: 

1. Domain Expansion: Extend the investigation to other domains beyond ecommerce to 

validate the generalizability of the findings across diverse software projects. 

2. Enhanced Models: Experiment with more advanced natural language processing models 

and techniques, such as transformer-based models with domain specific fine-tuning, to 

further improve requirement and code similarity assessments. 

3. Automated Adaptation: Explore methods to automate the adaptation of retrieved code 

snippets to better fit the specific context and constraints of new projects, reducing the need 

for manual adjustments. 

4. Evaluation Metrics: Refine and expand evaluation metrics to include aspects such as 

code quality, maintainability, and performance, ensuring that the recommended code not 

only satisfies functionality, but also adheres to best practices in software engineering. 
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By pursuing these future directions, we aim to enhance the robustness and applicability of 

content-based recommender systems, ultimately contributing to more efficient and effective 

software development processes.
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