

Python Code Re-use Recommendation Based on Software

Requirements Using Natural Language Processing

By:

 Hareem Farooqi

(Registration No: MSSE-00000400724)

Supervisor:

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

 September 27, 2024

Python Code Re-use Recommendation Based on Software

Requirements Using Natural Language Processing

By:

 Hareem Farooqi

(Registration No: MSSE-00000400724)

A thesis submitted to the National University of Sciences and Technology,

Islamabad

 in partial fulfillment of the requirements for the degree of

 Master of Sciences in Software Engineering

Supervisor:

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD,

 September 27, 2024

i

Dedicated to my parents whose

tremendous continuous support and

endless prayers led me to this

accomplishment.

ii

Acknowledgement

In the name of Allah, the most beneficent and the most merciful. I would like to express my

sincere gratitude to my supervisor, Dr. Wasi Haider Butt, for their invaluable guidance and

support throughout this thesis. Their insights and encouragement were crucial in completing

this work.

I am also thankful to my thesis GEC members, Dr. Farooq-e-Azam and Dr Arslan Shaukat,

for their constructive feedback and helpful suggestions.

A special thanks to my colleagues and friends in the Software Department for their support

during this journey. Finally, I am deeply grateful to my family for their unwavering love and

encouragement, which has been my constant source of motivation. Friends who make studies

challenging and hard time full of excitement

iii

Abstract

Code reuse serves as a critical activity in the software development world as it encourages

efficiency and reduces redundancy while resulting in improved quality software products.

Nowadays, with a regular change in technology — especially in e-commerce websites — a

developer's ability to effectively utilize old code will allow them time-to-market quicker and

possibly avoid many errors to re-use already validated code. One of the solutions to automate

this process is by using recommender systems that help developers easily find specific code

snippets or components they need to complete their task as they relate to re-using pieces of code.

This study introduces a novel Python code reuse recommendation system designed to assist

developers in the e-commerce domain. By employing Natural Language Processing (NLP)

techniques, our system uses the BERT model to assess and measure the similarity between

software requirements. Once the requirements are analyzed, the corresponding code is pre-

processed and further evaluated using the CodeBERT model to determine the degree of code

similarity. Our findings demonstrate a strong correlation between similar requirements and the

development of similar software, reinforcing the potential for efficient code reuse across

projects. This system offers significant advantages for requirements engineers and developers

by facilitating the re-utilization of existing code within the same domain, thereby streamlining

the development process.

Keywords: Software Engineering, Requirement Engineering, Recommender System,

Requirement Reuse, Software Reuse

iv

Contents

Dedicated to my parents whose ... i

Acknowledgement.. ii

Abstract ... iii

Contents ... iv

List of Figures .. vii

List of Tables ... viii

LIST OF ABBREVIATIONS .. ix

Introduction ... 1

1.1 Background ... 1

1.2 Objective ... 2

1.3 Problem Statement .. 3

1.4 Thesis Structure .. 4

Literature Review .. 6

Methodology ... 11

3.1 BERT Architecture ... 12

3.2 Implementation ... 13

3.2.1 Data Collection and Pre-processing ... 13

3.2.2 Similarity Assessment using BERT ... 14

v

3.2.3 Code Generation using ChatGPT ... 15

3.2.4 Code Pre-processing ... 16

3.2.5 Code Similarity Calculation using CodeBERT .. 16

3.2.6 Code Recommendation .. 17

Case Study and Results ... 18

4.1 Analysis of Correlation Between Requirements and Software Similarity (RQ1) 20

4.1.1 Scatter Plot of Similarities ... 21

4.1.2 Box Plot of Similarities .. 21

4.1.3 Statistical Correlation ... 22

4.2 Questions Asked in the survey ... 23

4.3 Data Analysis Procedure (RQ2) ... 24

4.3.1 Results (RQ2) ... 25

4.4 Themes According to Perspective of Similarity ... 25

4.4.1 Theme 1: Identification of similar requirements and its challenges 25

4.4.2 Theme 2: Viewpoint on similar software ... 27

4.4.3 Theme 3: Association between similar requirements and similar software ... 27

4.4.4 Theme 4: Perspective on Similarity Between Existing and Produced Software

 .. 29

Discussion ... 30

5.1 Comparative Analysis of Model Performance ... 30

5.2 Performance Comparison of Models in Requirement Similarity Calculation 31

5.2.1 BERT Performance .. 31

5.2.2 TF-IDF Performance .. 32

5.2.3 JSI (Jaccard Similarity Index) Performance .. 33

vi

5.2.4 Universal Sentence Encoder (USE) Performance .. 33

5.2.5 Doc2Vec Performance ... 34

5.2.6 FastText Performance .. 35

5.3 Performance Comparison of Models in Requirement Similarity Calculation 35

5.3.1 Fewer Epochs (1 Epoch) .. 36

5.3.2 Default Epochs (3 Epochs) ... 36

5.3.3 Default Epochs (3 Epochs) ... 36

5.3.4 Conclusion.. 37

5.4 Comparative Analysis of Model Performance (CodeBERT vs JPlag) 37

Conclusion and Future Work ... 39

6.1 Comparative Analysis of Model Performance ... 39

REFERENCES

vii

List of Figures

Figure 3. 1: Proposed Methodology.. 12

Figure 3. 2: BERT Architecture .. 13

Figure 4. 1: Scatter Plot of Similarity between Requirement Similarity and Software Similarity . 21

Figure 4. 2: Box Plot of Requirement and Software Similarities ... 22

Figure 4. 3: An Overview of Thematic Analysis execution ... 24

Figure 5. 1: Box plot and Scatter plot of Similarities calculated using BERT 32

Figure 5. 2: Box plot and Scatter plot of Similarities calculated using TF-IDF 32

Figure 5. 3: Box plot and Scatter plot of Similarities calculated using JSI 33

Figure 5. 4: Box plot and Scatter plot of Similarities calculated using USE 34

Figure 5. 5: Box plot and Scatter plot of Similarities calculated using Doc2Vec 34

Figure 5. 6: Box plot and Scatter plot of Similarities calculated using FastText 35

Figure 5. 7: BERT performance for calculating document similarity under different epochs 36

viii

List of Tables

Table 3. 1: Summary of the Pre-processing .. 14

Table 5. 1: Comparison Metrics of JPlag and CodeBERT ... 38

ix

LIST OF ABBREVIATIONS

RE Requirement Engineering

SE Software Engineering

BERT Bidirectional Encoder Representation from Transformer

NLP Natural Language Processing

US User Stories

ML Machine Learning

AI Artificial Intelligence

JSON Java Script Object Notation

API Application Programming Interface

1

 Chapter 1

Introduction

1.1 Background

In the field of software engineering, it is a well-accepted fact that there exists strong correlation

between stakeholder requirements and the systems implemented based on the requirements

provided. The extensive research confirms that same software requirements usually lead to

similar systems. For instance, if several stakeholders in the finance domain require robust

security features it is expected that the resulting software systems share common functionalities.

Several studies have been conducted to explain this phenomenon using different approaches

including case studies, empirical analysis and comparative analysis.

For example, comparing several projects in the same field can show how some requirements

like user authentication, data encryption, and transaction logging map to system features. In

addition to that, analyzing how requirement elicitation methods affect the final product can

reveal that well-defined and communicated needs create more coherent and functional systems.

Requirement engineers frequently search for similar situations in which they can reuse

previously created artifacts. By not having to start from scratch every time a new requirement is

offered, this method saves engineers time and resources. To make sure that similar requirements

lead to the development of similar systems, various Natural Language Processing (NLP)

techniques have been employed to compute similarities between requirements. These

approaches have shown impressive results in finding requirement similarities, in many cases,

they have identified relationships that human analysts might have overlooked. Similarly, some

of the methods used semantic similarity, text mining, and word embedding, which improved the

ability to detect and analyze similarities in the requirements in a much more effective way. [1]

This paper is inspired from the research 'On the relationship between similar requirements and

2

similar software' [2]. The main purpose of our proposed work is to offer further evidence that

similar requirements often lead to the development of similar software systems. The main

purpose of our research is to explore various NLP techniques used to compute requirement

similarities and identify the most effective ones. Ultimately, our focus aim was to provide

software engineers a better understanding of how to identify similar requirements and develop

software systems that better support stakeholder requirements.

To summarize, a strong correlation exists between requirements and systems built based on

those requirements is a fundamental notion in software engineering. Broad research supports

this idea, which emphasizes the importance of effective requirement management to achieve

optimal system development performance.

1.2 Objective

The primary objectives of this study are to investigate the relationship between requirements

similarity and software similarity and to develop a practical tool to support requirements-

based code reuse. The specific goals of this research are:

1. Explore the Relationship Between Requirements Similarity and Software

Similarity: Exploring how similar requirements tend to result in similar software. This

encompasses the comparison between the requirements specifications and the

implementation aspects of the software to determine how comparable they are.

2. Developing a Code Reuse Recommender System: It is recommended to develop a

recommender system based on the findings concerning the connection between

requirements and software similarity. This system should help the practitioners in a way

that it recognizes the code segments and suggests them based on the similarity it has with

the required inputs.

3. Evaluate the Effectiveness of the Recommender System: Evaluate how effective the

developed recommender system is in real life situations and its reliability. This involves

assessing its efficiency in determining future similar codes in addition to its efficiency in

enhancing reuse of codes.

4. Contribute to the Field of Software Engineering: Develop new knowledge and

procedures for RE and developers that will improve their capability of reusing code. It is

3

therefore the intention of this research to contribute to code reuse techniques together

with the requirements analysis in the field of software engineering.

5. Enhance Efficiency and Reduce Development Time: Support the activities of software

and requirements engineers by giving them a tool that suggests pre-developed code, with

a history of successful testing and implementation. This will help in speeding up

development processes, reducing time, and avoid having to repetitively test.

6. Extend Existing Research: Expand upon prior work that has investigated the relation

between requirements and software, specifically in the context of ecommerce and using

more sophisticated models like BERT and CodeBERT.

1.3 Problem Statement

In today’s software development, reusing code plays a crucial role in saving time, cutting costs,

and increasing the reliability of software. However, despite these clear advantages, code reuse

isn’t without its difficulties. However, one of the main concerns is to search for the correct code

segments that fit certain software needs. This research is driven by the need to address these key

issues:

• The existing methods for reusing code often rely on keyword-based matching techniques,

which fail to consider the relationship between software requirements and code

implementations. This leads to conflicts between the needs of a new project and the code

segments chosen for reuse, which results in ineffective development and integration

problems.

• In some cases, traditional code recommender systems do not possess the ability to apply

semantics analysis in terms of requirements and code. They often fail to consider the

contextual and functional equivalence of different code segments as well as utilize program

analysis and context to draw relevant conclusions and make suitable recommendations.

• There is a gap in understanding how similar software requirements translate into similar

software implementations. This makes it challenging to find or recommend code that truly

fits new development projects, limiting the potential for code reuse when this connection

isn’t well understood.

4

• Current methods which are being used do not explore modern NLP techniques like BERT

and CodeBERT which can help in analyzing and processing large textual data. Though, some

of these techniques are not employed in code recommender systems the possibility of greater

precision and contextual information-based recommendations is still latent.

• The difficulty in matching code with requirements doesn’t just slow down individual

projects—it also affects the overall efficiency of software development. Developers often

spend too much time searching for and adapting code that doesn’t quite fit, causing delays

and driving up costs.

This research seeks to tackle these challenges by exploring the connection between requirement

similarity and software similarity. The goal is to develop a recommender system that leverages

advanced NLP models to improve the accuracy and efficiency of code reuse.

1.4 Thesis Structure

Our thesis has been divided into the following chapters as mentioned below:

• Chapter 2: This chapter, the state-of-the-art research related to code reusability in

software and requirement engineering, have been reused that particularly focus on the

relationship between software requirements and software similarity. The role of NLP

techniques, including BERT and CodeBERT models, in enhancing code recommender

systems is discussed. The pros and cons of existing methods, along with identified

research gaps, are explored.

• Chapter 3: The chapter provides an explanation of the proposed recommender system,

and the procedures carried out for this research. We outline the steps taken to preprocess

the requirements data, the design and implementation of the code recommender system,

and the models used to assess the similarity between requirements and code.

Additionally, this chapter covers the tools and technologies employed during the study.

• Chapter 4: In this chapter, we present and analyze the results obtained from the study.

We discuss the effectiveness of the recommender system, compare the performance of

our approach with existing methods, and interpret the implications of our findings for

the field of software engineering.

5

• Chapter 5: This section discusses the different results achieved and how our study is

better than the older studies.

• Chapter 6: The final chapter summarizes the main findings of the thesis, highlighting its

main contributions to the field. We further comment on the limitations of this study,

along with potential avenues for future work. Finally, we comment on wider impact of

our contribution to code reuse practices, and hence to greater efficiency in the software

development process.

6

Chapter 2

Literature Review

The key focus in software engineering and system development has been to determine the

connection between requirements and the systems developed from them. It is widely

understood that similar requirements result in the development of similar systems, which

highlights a strong link between the two. It is essential to understand this relationship as it

impacts various parts of the software development process, such as collecting requirements,

designing of systems, and evolving those systems over time. A lot of studies have explored

and have supported the idea that similar requirements lead to similar outcomes. Our paper aims

to thoroughly examine existing research, looking closely at the evidence, theories, and methods

used by the researchers. In addition, we introduce our own approach for implementing a system

based on these insights. By reviewing past studies, we hope to have a better understanding of

the factors that influence the connection between requirements and system development,

identify any challenges, and suggest future directions for research in this area.

Recommender systems have received a lot of attention in the field of requirement engineering

(RE), and this paper’s literature review section includes various examples of its use [3][4][5].

This also includes the recommendation of stakeholder requirements discussions [6], refactoring

of the recommendations provided by stakeholders based on feature requests [7] and bid

management [3]. Requirement retrieval is a component of one of the recommender system

application scenarios in requirement engineering [8][9]. Computation of the similarity between

the provided requirements is considered a very important task for most requirement management

tasks, which include trackability of the requirements [10][11], identifying the equivalent

requirements [12], analysis of change impact [13][14], extraction of glossary terms and grouping

[15][16], and retrieval of artifacts through automatic recommender systems. The requirements

analyst carefully reviews any new requirements suggested to determine whether it is possible to

reuse previously completed work. They also compared the new proposal to the current

specifications and made necessary adjustments to the models and systems they had already

7

developed.

Some authors have also focused on traceability linkages between different software artifacts,

including requirements, codes, and modules, to facilitate change management and impact

analysis. Keeping traces of links during software development is a challenging task and different

Information retrieval techniques, commonly known as IR techniques, have been utilized to

automate this process. [10][17] Borg et al. [16] conducted a comprehensive review of

information retrieval (IR) methods for software traceability. The analysis included 79

publications, with the majority focusing on tracing requirements to other requirements (37, 47%)

and requirements to code (32, 41%). Research revealed that algebraic models, such as the vector

space model and latent semantic indexing (LSI), are the most used models for representing

artifacts and calculating the similarity between them. The TF-IDF index has emerged as the

most popular weighting scheme. However, there has been limited exploration of probabilistic

and language-based models. This study also highlights the need for more real-world case studies

in this area.

Other authors have also focused on deep learning-based approaches using word embedding and

recurrent neural networks [25]. The generated results showed that they performed well

compared to classical techniques such as vector space and Latent Semantic Indexing. A study

by W. et al. Wang et [18] utilized neural networks to address the problem of polysemy, which

affects traditional lexical techniques for measuring similarity. In addition, the BERT model [19]

worked well in tracking the connections between commits, open-source projects, and GIT

issues. The results show that the BERT model performs better than the traditional approaches

for computing similarity (by more than 60% when compared to the vector space model).

Moreover, Recommender systems have also played a significant role in the field of requirement

engineering. They can help requirements engineers by providing the right information at the

right time [20]. The paper, however, was based on assumptions and did not provide any practical

application of the system. Theosaksomodwi and Widyantoro (2019) presented an example of a

chatbot-based recommendation system [21]. The system took functional requirements as input

and then used conversational recommender technology to recommend products and brands

based on the filters and requirements provided by the user. The approach had some advantages

over traditional recommender systems, which included the ability to provide more personalized

recommendations and engage users in a more natural and intuitive way.

8

The OpenReq EU project [3][5] goal is to implement a thorough strategy that addresses

elicitation, specification, analysis, and bid management. For requirements, researchers want to

use content-based recommender systems and to make similarity calculations easier, they planned

to use vector space language models. A dedicated service for calculating requirement similarity

using the tf-idf metrics was created as part of the project. You can use GitHub1 to access this

service.

The limitations of current recommender systems in requirements engineering (RE), which

usually concentrate on tasks without providing thorough coverage of the full RE process, were

discussed by the authors of the conference paper that Palomares [5] delivered. This study

introduces the OpenReq approach, which aims to develop intelligent recommendation and

decision technologies to support various phases of RE in software projects. This approach

consists of different components that are integrated into a cohesive process. Specifically, the

paper presents the OpenReq component for personal recommendations for stakeholders, utilized

during the requirements elicitation, specification, and analysis stages. The primary contribution

of OpenReq is its potential to enhance and expedite RE processes, particularly in large and

distributed systems, by incorporating intelligent recommendation and decision technologies.

[22] put forward an Agile Software Development (ASD) integrated with Reuse- Driven

Software Engineering (RDSE) taxonomy centered on enhancing traceability and reuse of user

stories (USs). The taxonomy, centered on Web Information Systems, organizes USs into sets of

modules and operations to describe potential re-use by means of development artifacts, such as

source code, and test cases. Together with the taxonomy developed using the empirical analysis

of five projects (118 USs), it was able to achieve over 90% classification coverage when

validated with 26 completed projects (530 USs) and two ongoing projects (59 USs). This

contributes to productivity and quality in software development by enabling RDSE in ASD

frameworks.

[23] introduces a methodology for detecting similar requirements in a dataset by exploiting NLP

techniques. To do this, it takes the PURE dataset, reads in and applies TF-IDF to process and

only keeps the terms, then calculates cosine similarity scores between empirical documents

using spaCy’s word embeddings. Its application suffices to accommodate similar requirements,

especially for traffic-related documents, illustrating the potential to support requirement

engineers in dealing with large requirements collection.

9

[24] introduced CodeBERT, which is a bimodal pre-trained model that is specifically designed

to handle both programming and natural languages. The model has utilized a Transformer based

neural architecture. CodeBERT has been trained with a hybrid objective function that included

masked language modeling and replaced token detection. The training strategy allows the model

to leverage both NL-PL pairs and unimodal data, enhancing its ability to perform tasks such as

natural language code search and code documentation generation. The authors also

demonstrated that CodeBERT has outperformed previous models on these tasks, achieving

much better results. Additionally, this study aslo explores the knowledge encoded in CodeBERT

through zero-shot probing, further confirming its superiority over other pre-trained models in

capturing the semantic relationships between NL and PL. The effectiveness of the model was

validated on a dataset comprising six programming languages, underscoring its versatility and

robustness in various applications.

The study proposed in [25] compares different methodologies for calculating text similarity and

focuses on the use of BERT and Word2Vec models. This study highlights that BERT [26], a

transformer-based model, outperforms traditional methods, such as Word2Vec, in capturing

semantic meaning and context. The results show that BERT achieves higher accuracy and

robustness in various text similarity tasks than Word2Vec and other baseline models. The paper

concludes that incorporating advanced deep learning models, such as BERT, significantly

enhances the performance of text similarity calculations, providing better results in natural

language processing applications.

Another study [27] involving 80 software developers aimed to identify the important

characteristics of code recommenders. The study collected opinions from developers on code

recommenders they use and resulted in a taxonomy of 70 "requirements" for code

recommenders. The taxonomy includes characteristics such as readability, bug free

recommendations, and adaptability to the developer’s coding style. Insights from the study can

be used to design code recommender systems that meet developers’ needs. Other important

factors highlighted by developers include code quality, accuracy, usability, adaptability, multi-

token completion, generation of assert statements, multilingual support, integration of

autocomplete refactoring, responsiveness, intuitive tools, and recommendations that are aware

of the developer’s knowledge, coding context, history, and tasks.

The capabilities and limitations of BERT-based models such as CodeBERT and

10

GraphCodeBERT in understanding source code have been investigated by [28]. Although these

models have shown success in NLP, their effectiveness in code representation is limited by their

reliance on programmer-defined names, which can be arbitrary and not inherently meaningful.

The experiments revealed that anonymizing variable names, method names, and method

invocation names significantly reduces the model performance in tasks such as code search and

clone detection. This indicates that current models struggle to grasp the logical structure of code,

emphasizing the need for advancements in capturing code semantics beyond literal names.

11

Chapter 3

Methodology

In this section, we elaborate on the detailed methods used in analyzing how requirement similarity

is related to software similarity and code reusability. The research process begins with the collection

and preprocessing of requirement dataset ensuring that it is relevant and clean for analysis. This

step is important because it serves as a base for the rest of our pipeline, where we will use

transformers to determine how similar the requirements are using advanced Natural Language

Processing (NLP) techniques. The research topic presents a method for systematically converting

raw textual data into structured information, which leads to the creation of a strong database to

perform further analysis.

The next step of the study is implementing a code recommender system after preparing data. An

NLP Models which can inspect and find the corresponding code snippets related with demands. The

technique is implemented very well and makes the selection of a model to evaluation swift, accurate.

We intend to give a complete and systematic data mining process in our study that incorporates

different evaluation criteria and validation procedures so as not just to meet but also surpass the

desired goal of this exam. Such systematic procedure is essential in guaranteeing that the results are

very trustworthy and informative regarding how similar requirements contribute to software

similarity overall, hence potentially simplifying code reuse correctly.

12

Figure 3. 1: Proposed Methodology

3.1 BERT Architecture

BERT (Bidirectional Encoder Representations from Transformers) [30] is a Transformer

based model that utilizes self-attention to understand the relationships between words in a

sentence. Its key strength lies in being bidirectional, allowing it to process text from both

directions simultaneously, capturing the full context.

The architecture comprises 12 layers in the BERT-base model, each containing:

• Self-attention mechanism: Identifies important words in relation to others in the

sentence.

• Feed-forward network: Processes these attention-weighted words to refine their

13

meaning.

 BERT is pre-trained using two tasks:

• Masked Language Model (MLM): Predicts missing words in a sentence.

• Next Sentence Prediction (NSP): Determines if two sentences follow logically.

In this research, we applied BERT to measure the similarity between the requirements of

two projects. By fine-tuning BERT on this task, we leveraged its ability to capture deep

semantic meaning, allowing for an accurate assessment of requirement similarity between

different software projects.

3.2 Implementation

3.2.1 Data Collection and Pre-processing

An empirical study was conducted, based on 50 project requirements coming from SLR

(Systematic Literature Review) of the e-commerce domain. During the selection process, all

non-requirement content was removed from the SLRs so that we can only deal with the

requirements only. This preprocessing of the data was crucial for retaining both integrity and

Figure 3. 2: BERT Architecture

14

relevance of the dataset, which is also aligned with our study aims. Table 3.1 gives a summary

of the results of these measures with respect to preprocessing. The preprocessing phase

consists of several steps that refined and standardized the requirements data:

• Stop Words Removal: The stop word removal was implemented by using the spaCy

model. This effectively helped to filter out common but non-informative words.

• Lemmatization: SpaCy model was again utilized to reduce words to their root forms. It is

crucial for normalizing the vocabulary and to ensure consistent treatment of words with

similar meanings across the dataset.

Table 3. 1: Summary of the Pre-processing

Reqs. Before AVG. Words After AVG. Words

50 1300 26.00 650 13.00

3.2.2 Similarity Assessment using BERT

Our study has utilized the pre-trained BERT (Bidirectional Encoder Representations from

Transformers) model [26], to calculate the similarities of two requirements. The main reason

to choose BERT for calculating similarity is its ability to capture the nuances of natural

language. BERT’s strength lies in generating contextual embeddings, which consider

surrounding words in a sentence to create a more accurate representation of the text. This

feature makes BERT particularly suited for comparing software requirements, as even minor

changes in wording or context can significantly influence how the requirements are interpreted

and understood.

The usage of BERT transformer model for this study, required a few key steps to ensure that

the similarity calculations were accurate and meaningful.

1. Embedding Generation: Using the pre-trained BERT model, each software requirement

was transformed into embeddings (high dimensional vectors). These embeddings consider

the underlying significance of the text by considering the context of word usage instead of

15

isolating them as individual terms. This was an important step as it converts the text data

into a mathematical format that is suitable for a comparison, preparing for the similarity

analysis.

2. Similarity Calculation: Measuring the similarity between various requirements is the

next step that comes once embeddings have been generated. It was accomplished by using

a technique that measures the degree of alignment between two vectors:

measuring the cosine similarity between the embeddings. Since it assesses how vectors

align in the embedding space and provide a depend on and provides an appropriate

similarity metric independent of embedding size, cosine similarity is particularly thought

to be helpful in this situation. By applying this technique, the study was able to identify

pairs of requirements that are semantically similar, which is essential for understanding

the potential for code reuse.

3.2.3 Code Generation using ChatGPT

Once the requirement similarities were calculated, the focus of the study shifted toward

generating relevant code snippets in accordance with the requirements. Given that the

collection of existing code was not within the scope of the project, the innovative approach of

using ChatGPT was adopted to create the necessary code based on the requirements. Using

natural language understanding and generation capabilities of the ChatGPT, the textual

descriptions of requirements were translated into functional code snippets that effectively

linked the requirement analysis phase with the coding phase.

The process of generating code using ChatGPT involved the following steps:

1. Requirement Analysis: The process started with inputting similar requirements into

ChatGPT. This step involved careful selection and input of the requirements that had

been identified as similar through the BERT model’s similarity analysis. ChatGPT was

then asked to interpret these requirements to ensure the generated code as per the

provided requirements.

2. Code Generation: After understanding the requirements, the code snippets were

16

generated using ChatGPT according to the corresponding requirements. ChatGPT’s

ability to interpret complex requirements and produce syntactically and semantically

correct code was key in this step. The generated code snippets were designed to be

directly applicable, providing concrete examples of how the requirements could be

translated into functional code. This approach not only demonstrated the practical

utility of the requirement analysis but also highlighted ChatGPT’s potential as a tool

for automating parts of the software development process.

3.2.4 Code Pre-processing

ChatGPT generated raw code snippets that were further pre-processed by the

RobertaTokenizer, a tokenizer designed with CodeBERT—a pre-trained model—to better

understand source code. This step's primary goal was to format the code snippets so that the

CodeBERT model could use them effectively. The sentences were first tokenized by the

RobertaTokenizer, which divided the code into smaller meaning units known as tokens. For

the model to accurately represent the structure and semantics of the text, these tokens

correlate to syntactic elements like keywords, operators, and identifiers.

In addition to tokenization, padding and truncation techniques were used to the code

snippets. Padding adds extra tokens to shorter code snippets to make them of uniform length,

while truncation involves cutting off longer snippets to fit inside the model’s maximum input

size. These techniques are vital for maintaining consistency across all inputs, as they ensure

that each code snippet adheres to the same length constraints, which is a requirement for the

CodeBERT model. This uniformity is critical for the model’s performance, as it allows for

a standardized comparison of code snippets during the similarity analysis.

This important pre-processing step prepared the code snippets for the next step that is

similarity analysis. By standardizing and properly formatting the inputs with the

RobertaTokenizer, the study made sure that the CodeBERT model could effectively analyze

the similarities between different code snippets, ultimately contributing to a more accurate

way and meaningful assessment of how well the generated code aligns with the

requirements.

3.2.5 Code Similarity Calculation using CodeBERT

We have utilized the CodeBERT model, which is designed exclusively for programming

17

languages, to compare the similarity of two code snippets. Adding the necessary

dependencies from the Hugging Face Transformers library and the PyTorch library is the

first step. Code snippets and an optional maximum length parameter, which is set to 128 by

default, are the two inputs used by the process. The two code snippets are entered into the

CodeBERT model, which is then activated, in order to obtain the respective logits. Logits

are the raw, unnormalized output values that represent the model's confidence scores for

each class or prediction. Understanding the internal representation of the code snippets by

the model depends heavily on these logits.

To guarantee compatibility, logit lengths are adjusted by being either cut off or added to

reach a consistent length, determined by the smaller of the original lengths or a set

maximum. This is a crucial step in computing cosine similarity, which mandates vectors of

the same dimensions. Cosine similarity is calculated across the third dimension of the logits

to evaluate code similarity, with increased scores suggesting stronger similarity. This

technique utilizes CodeBERT embeddings to evaluate similarity using semantic

comprehension.

3.2.6 Code Recommendation

To identify reusable code, we gave the recommender system an 80% threshold as a similarity

criterion. This limit for the threshold was chosen following a comprehensive analysis and a

great deal for testing, ensuring a satisfactory balance between importance and practical use.

By setting this criterion, we hope to find code snippets that comply with the requirements in

terms of both intent and function.

Code fragments are identified as good candidates for reuse when they surpass the 80%

similarity threshold. These excerpts are considered highly important and suggested to be

included in the new project. There is less possibility of irrelevant or poorly matched code

being introduced to the project because of this strict selection procedure, which ensures that

only code with sufficient semantic similarity is proposed.

18

 Chapter 4

Case Study and Results

A case study related to the same software requirements and the software they develop is

presented in this chapter. Such studies aim to explore the relationship between similar

requirements and similarity of software, with a focus on the increased code reuse caused by

requirements. It attempts to demonstrate through a thorough examination of this relationship

that requirements that are well matched can enhance the efficiency and effectiveness of

reusing pre-existing code which in turn can result in significant reduction in both

development time and costs.

There are several important reasons why this research holds significance. Initially, it helps

us to understand how identifying similarities in requirements can improve the software

development process. By simplifying the process of locating and utilizing code suitable for

fresh projects, it can speed up the development process and minimize the time and energy

required for software creation.

In addition, this study offers valuable perspectives on successful software engineering

techniques, particularly in circumstances where rapid development and economical resource

utilization are essential. The research contributes to the field by proposing more efficient

methods of code reuse through identifying similarities in requirements and code. As

development timelines shrink and the demand for efficiency increases, this is becoming

increasingly important.

To achieve this goal, we focus on two pivotal research questions that have been adapted from

a foundational paper in the field. These questions are essential in exploring and

19

understanding the connection between requirement similarity and the potential for software

reuse.

• RQ1: What is the correlation between the similarity of requirements and the

similarity of their associated software in the context of requirements-based software

reuse? The focus of this question is the degree of similarity among requirements with

regards to how similar the software produced from these requirements is. Attempting to

answer this question, the study aims at producing evidence as to how much the prediction

or improvement of requirements-based code reuse can be achieved through the analysis

of the similarity of requirements.

• RQ2: How do practitioners in the studied environment perceive the relationship

between similar requirements and their corresponding software in the context of

requirements-based code reuse? This question considers practicable aspects of the

research, i.e. the views of those software developers and engineers who participate in the

activities of reusing code. Interrogating how practitioners regard and utilize the notion

of requirement similarity in work allows the research to be more useful in practical terms

in that it is possible to suggest how this relational aspect could be better exploited to

achieve enhanced software development practices.

In the context of RQ1, there is more emphasis to relate the requirement of the system to the

final product’s need in a quantitative relationship. More particularly, this analysis

concentrates on the core of the requirements in one specific domain, for instance, the related

domains of e commerce stores. To investigate such a relationship, we utilized the BERT

model which compared two distinct project requirements. This process included evaluating

the textual representation of the requirements for restructuring the mere concept of similarity

relating to the items.

Once the requirement similarity was established, we employed the CodeBERT model to

assess the similarity of the software developed based on these documented requirements. By

comparing the software generated from similar requirements, we aimed to observe whether

the similarity of requirements is reflected in the similarity of the corresponding software.

This comparison examined how we could quantify the similarity between codebases,

20

allowing us to determine the extent to which requirement similarity transmuted into software

similarity. The combination of BERT and CodeBERT models enabled us to draw a

comprehensive correlation between requirement similarity and software similarity. This, in

turn, provided valuable insights into the feasibility and effectiveness of requirements-based

software reuse, particularly in the context of similar projects.

In contrast, RQ2 adopts a qualitative approach, with the objective of understanding the

current practices of reusing software based on its requirements. To explore this question, we

conducted a survey targeting professionals who primarily work with the Python

programming language. We received responses from 15 participants in the survey who had

experiences of 5-10 years in the industry.20 similar requirements and the corresponding

software solutions were presented to them to gain insights about the fact that similar

requirements lead to the development of similar software systems.

For the examination of the data obtained from the circulated survey, we have utilized a

hybrid thematic analysis approach that uses a combination of both deductive and inductive

thematic analysis approach. This approach helped us synchronize our examination with the

structure of our reference paper while also discovering new thematic patterns in the obtained

information from the survey. The thematic analysis methodically identified patterns in

software reuse practices, offering an organized comprehension of how practitioners view

and interact with the connection between similar requirements and software reuse. The

detailed findings from this qualitative examination provided a more in-depth perspective on

the real-world impacts and obstacles of using requirements-based software reuse, adding to

the overall comprehension of software engineering procedures.

4.1 Analysis of Correlation Between Requirements and

Software Similarity (RQ1)

The similarity of the software requirements and the corresponding software closely

associated with one another is a basic factor in this practice. A closer understanding of this

relationship can offer a valuable insight on how closely related requirements influence the

reuse of existing code, hence aiding in efficiency of software development. This relation is

21

visualized and quantified by a combination of visuals and static analysis techniques in this

study. The work is intended to reveal patterns and relationships that could help improve code

recommenders, with the aspiration that they would enable better and safer software reuse.

4.1.1 Scatter Plot of Similarities

Figure 4.1 illustrates a scatter plot that visually shows the correlation between document

similarity and code similarity. Most of the data points are grouped in a diagonal line,

indicating a robust positive linear correlation between the variables. This trend indicates that

as software requirements become more similar, the resulting software will also become more

similar. This strong visual correlation greatly supports the idea that there is a substantial and

direct link between similarity in requirements and similarity in software. This important

discovery highlights the possibility of using similarity of requirements to predict software

reuse effectively, therefore improving the efficiency of the software development process.

4.1.2 Box Plot of Similarities

The average similarity scores for document and code similarities are depicted in the bar plot

shown in figure 4.2. The average values for similarity between documents and similarity

between codes are almost the same, indicating a strong correlation between the two metrics.

The strong correlation is supported by the high average similarity scores, which indicate that

Figure 4. 1: Scatter Plot of Similarity between Requirement Similarity and

Software Similarity

22

document and code similarities are consistently high overall. This observation provides

evidence for the theory that comparable software requirements will lead to comparable

software solutions. The near overlap of these averages in the bar graph emphasizes the

possibility of utilizing document similarity as a trustworthy measure for anticipating code

similarity, thus confirming the idea of requirements-based software recycling.

4.1.3 Statistical Correlation

The statistical correlation coefficient of 0.161, derived from the data, initially suggests a

weak positive correlation between document similarity and code similarity. However, when

considering the adjusted data and corresponding visualizations, a more robust relationship

emerges. The mean similarity of the documents is 0.721, with a 95% confidence interval of

(0.618, 0.824), indicating a reasonably high level of similarity with some variability.

Similarly, the mean similarity of the code is 0.778, with a 95% confidence interval of (0.740,

0.817), further emphasizing the general trend towards higher similarity scores.

Despite the lower correlation coefficient, these confidence intervals indicate that the overall

relationship between document and code similarities is stronger than the coefficient alone

might suggest. The close mean values, coupled with their respective confidence intervals,

point to a positive correlation, supporting the hypothesis that similar requirements tend to

Figure 4. 2: Box Plot of Requirement and Software Similarities

23

produce similar software. This analysis underscores the importance of considering both

statistical metrics and visual data representations when interpreting correlations in the

context of requirements-based software reuse

4.2 Questions Asked in the survey

As the goal of the circulated survey was to answer RQ2, we designed the questions to gather

detailed information about software reuse practices based on requirements. There are five

sections in the survey, each logically ordered to build upon the previous one, ensuring a

coherent flow and a deeper understanding of the topic.

Each section contained a combination of both multiple-choice questions (MCQs) and open-

ended questions, to capture quantitative and qualitative data. A mixed methods approach

also allowed an in-depth exploration of participants’ practices, experiences, and viewpoints.

A summary of the survey sections and their corresponding questions is provided below:

1. Demographic Information: This section contained questions that aimed to collect basic

information about the participants taking part in the survey. This information also

included the professional background, experience, and familiarity with the Python

programming language.

2. Experience with Software Reuse: This section focused on participants’ experiences

with software reuse, asking them about their roles in projects developmental process

where software reuse was driven by requirements.

3. Perceptions of Requirement Similarity: In the third section, the participants were

asked to share their point of view on the importance of requirement similarity in software

reuse, as well as what practices are used to identify and evaluate similarities between

requirements across different projects.

4. Code Comparison and Feedback: In this section, participants were asked to compare

pairs of similar requirements and their corresponding software solutions. They provided

feedback on the observed similarities and differences, with particular attention to the

effectiveness of the reuse process.

24

5. Reuse Practices, Challenges, and Opportunities: The final section explored

participants’ reuse practices, identifying the challenges they encounter and the

opportunities they see in reusing software components based on similar requirements.

This section of the survey featured open-ended questions designed to elicit detailed

insights and examples from their professional experiences, providing rich, contextual

data to illustrate these practices.

Each section was carefully structured to guide participants through a logical sequence of

topics, ensuring that their responses would offer a comprehensive overview of current

practices and perceptions related to software reuse based on requirements. The survey was

designed to avoid bias and structure using a hybrid of structured closed-ended (multiple-

choice questions [MCQs]) and open-questions. This approach is intended to enable a deep

qualitative analysis that aligns with our research questions and reveal more detailed

expressions, practices and views of software professionals.

4.3 Data Analysis Procedure (RQ2)

There exist various ways to analyze qualitative data. One of the common approaches for

analyzing qualitative data is to apply thematic analysis. In our case, we applied thematic

analysis to the results of our survey following the guidelines provided by Braun and Clarke.

[31]

Figure 4. 3: An Overview of Thematic Analysis execution

25

4.3.1 Results (RQ2)

This section presents the results achieved from the survey aiming to provide an answer to

the RQ2. A deductive approach of thematic analysis was followed by the authors following

the same discussion topic and themes as in the sample paper.

• Perspective on Similarity: This topic explores the perception of how similar

requirements and software are, as well as the connections between them. These themes

are detailed in the accompanying table.

In this section, we will discuss the results achieved according to the topic mentioned above.

To provide proof of links between the themes and the data the quotes from the survey results

have been mentioned in the boxes.

4.4 Themes According to Perspective of Similarity

4.4.1 Theme 1: Identification of similar requirements and its challenges

The survey results indicate that the participants believe that two requirements are similar if

they use the same input for processing and produce similar outputs with the same logical

structure. However, other contextual information, such as a system’s features and interfaces,

is also crucial in identifying similar requirements. Therefore, for software engineers,

evaluating the similarity between requirements extends beyond simply comparing the text’s

surface meaning.

1. “Having same options such as login”

2. “When two requirements have similarity between functional or non-

functional requirements whether its contextual in terms of environment or

constraints.”

3. “Structural Similarity, Contextual Similarity”

Content-based recommender systems help simplify the process of identifying similar

requirements by using pre-computed similarities. However, there are still challenges when

26

it comes to automatically identifying similar requirements.

Specifically, the respondents observed similarity evaluation is directly affected by quality of

the requirements. It is observed that the requirements that focus on only one topic are easy

to identify as similar requirements. In other words, it can be said that similar requirements

are easily identifiable when they are to the point and describe only one functionality.

"Similar requirements between projects that focus on one functionality at a time."

Requirements that have synonyms are said to affect the quality of the requirement and

therefore affect the process of identifying similar requirements. As the requirements come

from people with different backgrounds which have different choices of terms.

"Multiple terminologies are used for similar functionalities, which make it a bit

difficult to identify if two requirements are similar in an automated similarity

identifier."

In many cases, survey respondents indicated that the requirements text does not fully

represent the overall context. Specifically, requirements that depend on other requirements

are often not considered good candidates for software reuse in new projects. These

dependencies can complicate the reuse process, as they necessitate the inclusion and

adaptation of related requirements, increasing complexity and reducing efficiency.

Therefore, it’s crucial to carefully evaluate the dependencies of requirements to ensure they

can be effectively reused without introducing additional challenges.

"Two requirements are considered similar if they address the same needs or goals,

specify comparable functionalities, or outline related constraints. To evaluate them,

compare their objectives, scope, and specific criteria or conditions."

27

4.4.2 Theme 2: Viewpoint on similar software

Based on the survey responses, respondents perceive software similarity primarily through

shared core features, functionalities, and objectives. They typically view two software

applications as similar if they provide comparable functionalities, address the same user

needs, and employ similar technologies. Evaluation involves assessing functional

requirements, user interfaces, performance, and underlying technologies, in addition to

comparing the intended use cases and goals of the applications.

1. “When the core features, tech stack, and use cases are identical, they are similar

software. The determination of similarity is done based on functional

requirements provided.”

2. “Two software are considered similar if they offer comparable features and

functionalities. To evaluate this, compare their core capabilities, user interfaces,

and intended use cases.”

3. “Two software applications are considered similar if they serve similar

purposes, offer overlapping features, target the same user base, and use

comparable technologies. Evaluation involves comparing their functionalities,

user interfaces, performance, and underlying technologies.”

4.4.3 Theme 3: Association between similar requirements and similar

software

Practitioners view the connection between similar requirements and similar software as a

fundamental principle. According to one respondent from our survey, the greater the

similarity between the requirements of two projects, the more likely it is to produce similar

software, and vice versa. This perspective underscores the belief that shared requirements

are a strong indicator of software similarity.

28

"I believe that if two projects have similar requirements, the resulting software will be

similar too. The more the requirements overlap, the more alike the software will be."

It was observed that the correlation between requirement and software similarity is

significantly influenced by the structure and formality of the requirements. When

requirements are well-structured and clearly defined in natural language, there is a stronger

relationship between the requirements and the corresponding software, making it more

feasible to reuse them for new projects. This highlights the importance of precise and well-

documented requirements in the software development process, as they not only ensure

better alignment with the final product but also enhance the reusability of the requirements

for future projects.

"The structure of how the requirements are written also plays an important role in

detecting whether they can be reused or not."

On the other hand, it is also considered that two sets of requirements are likely to produce

similar software if they aim to achieve the same goals and require similar functionalities.

When the objectives and functional needs of the projects align, the software solutions

developed will naturally share many similarities. This highlights that not only the detailed

requirements but also the overarching goals and functionalities play a crucial role in

determining software similarity.

"Two software applications are considered similar if they serve similar purposes, offer

overlapping features, target the same user base, and use comparable technologies.

Evaluation involves comparing their functionalities, user interfaces, performance, and

underlying technologies."

29

4.4.4 Theme 4: Perspective on Similarity Between Existing and Produced

Software

Fourteen out of sixteen participants agreed that the code from an existing system (Python

Code Excerpt 1) could be reused for a new system (Python Code Excerpt 2) due to the

significant overlap in requirements, suggesting that software reusability is influenced by

domain-specific similarities. This high level of agreement highlights the potential for

effective code reuse with minor adjustments, particularly in domains like e-commerce,

where similar requirements often lead to similar software solutions.

1. “Both the projects are for e-commerce domain and most of the requirements

are similar so it can be reused.”

2. “Both present the ecommerce database models and can be reused for any

ecommerce store.”

Some responses also indicate that one reason two projects are considered similar, and thus

the first can be reused for creating the second, is that much of the code structure is the same.

With some minor adjustments, the existing code can be adequately adapted for use in the

new project. The requirements for the above-provided code show similarity in requirements,

reinforcing the potential for code reuse.

1. “Most of the structure is same. With some minor tunings it should be adequate

for usage.”

2. “The requirements for the above provided code show similarity in

requirements. Both represent classes for E-commerce project.”

30

 Chapter 5

Discussion

This chapter provides an in-depth analysis of the results obtained from applying our

proposed methodology to the e-commerce domain, with a focus on evaluating the

effectiveness of using BERT and CodeBERT models for requirement and code similarity

assessment. Our study sought to build upon existing research, particularly the work

conducted in domain-specific contexts such as the railway industry, by extending the

application of natural language processing techniques to a broader and more commercially

relevant domain. The discussion will highlight the key findings, compare our results with

those of prior studies and explore the implications of our approach for requirement

engineering and software development. By examining the strengths and limitations of our

model, we aim to underscore the potential for further advancements in automated code

recommendation systems and their practical applications in diverse industry settings.

5.1 Comparative Analysis of Model Performance

The scatter plot from our research, depicts the relationship between document similarity and

code similarity within the e-commerce domain, demonstrates a significantly stronger and

more consistent correlation compared to the scatter plot presented in the sample paper for

the railway domain. In the sample paper, while there is a positive trend, the data points are

widely dispersed, particularly in the lower similarity range (between 0.5 and 0.7 SS),

indicating variability and less reliable similarity predictions by the BERT model.

In contrast, our scatter plot shows a clear and consistent upward trend, with data points

31

closely aligned along the trend line. This tighter clustering suggests that our preprocessing

steps and the application of BERT in the e-commerce domain have resulted in a more robust

model that can reliably predict code similarity based on document similarity. The increased

density of data points towards the higher range of similarity (0.4 to 0.9) emphasizes our

approach's effectiveness, showcasing that our method excels in capturing requirement

similarities and generating precise code suggestions.

The box plots that were produced using BERT and pre-processing for e-commerce

requirements, when compared to the sample paper looking at the railway industry, show

improvements in several important aspects. It tends to have more consistent and accurate

relationship levels between requirements and software through more narrow interquartile

ranges and higher median similarity scores with effective outlier management. These

improvements are a sign of how BERT can bring out its flexibility and strength with pre-

processing to make it more fitting for the dynamic and diverse e-commerce domain, rather

surpassing the stricter analysis reserved for the railway sector.

This enhancement showcases the flexibility and applicability of our method, indicating that

it excels not only in e-commerce but can also be successfully used in different domains.

5.2 Performance Comparison of Models in Requirement

Similarity Calculation

In this section, we have compared the performance of BERT with other language models

that have been utilized by the previous researchers. These models including TF-IDF, JSI,

USE, Doc2Vec, and FastText have been used for calculating document similarity in the

previous research. The scatter plots and box plots obtained after the application of these

models on our dataset of requirements, clearly demonstrate better performance of BERT in

capturing document similarities.

5.2.1 BERT Performance

BERT consistently shows a higher median similarity score across the dataset. The box plot

indicates that BERT has a narrower interquartile range and fewer outliers, reflecting its

ability to produce more stable and accurate similarity scores. This strong performance is due

32

to BERT's contextual understanding of words and sentences, which enables it to capture

deep semantic relationships within documents.

Figure 5. 1: Box plot and Scatter plot of Similarities calculated using BERT

5.2.2 TF-IDF Performance

TF-IDF, being a conventional bag-of-words model, performs the least in this comparison.

As observed in the box plot, its similarity scores are significantly lower and exhibit a wider

range. In TF-IDF it is expected as it only considers word frequency and does not take in

account the context or order of words being used, making it less capable of capturing the

deep semantical meaning that BERT excels in.

Figure 5. 2: Box plot and Scatter plot of Similarities calculated using TF-IDF

33

5.2.3 JSI (Jaccard Similarity Index) Performance

JSI performs a little better than TF-IDF, but this language model still falls short when

compared to BERT. The box plot demonstrates that JSI’s median similarity score is lower,

and its variance is wider. As JSI is based on set comparison and focuses on word overlap, it

lacks the ability to measure semantic relationships beyond simple word matching, which

limits its effectiveness for document similarity.

Figure 5. 3: Box plot and Scatter plot of Similarities calculated using JSI

5.2.4 Universal Sentence Encoder (USE) Performance

The scatter plot indicates that USE tends to cluster around the middle range of similarity

scores, but it fails to achieve the same higher similarity values that BERT consistently

captures. While USE embeds sentences into vectors, it is not as sophisticated at capturing

the contextual relationships as BERT’s transformer-based approach.

34

Figure 5. 4: Box plot and Scatter plot of Similarities calculated using USE

5.2.5 Doc2Vec Performance

When it comes to capturing complex relationships between the documents, Doc2Vec, a

model based on distributed representations of documents, performed better than TF-IDF and

JSI, but is still outclassed by BERT. The box plot for Doc2Vec shows a moderate range of

similarity scores, but it struggles with capturing complex, nuanced relationships between

documents. This is largely because Doc2Vec’s embedding process is more static and less

flexible compared to BERT’s dynamic word representations.

Figure 5. 5: Box plot and Scatter plot of Similarities calculated using Doc2Vec

35

5.2.6 FastText Performance

FastText, though an improvement over more conventional models such as TF-IDF and JSI,

but it still failed to perform well as compared to BERT. As it can be seen in its box plot that

shows a wider range and lower median similarity score. Although FastText uses subword

information; to improve it understanding of rare words, it is still not the advanced contextual

understanding that BERT provides.

Figure 5. 6: Box plot and Scatter plot of Similarities calculated using FastText

To sum it up it can be said that BERT has outperformed all the traditional models in

calculating document similarity. Because of BERT’s transformer architecture ,it has allowed

to capture both syntactic and semantic nuances in the text, which leads to a higher and a

more consistent similarity scores. In contrast, traditional models like TF-IDF and JSI rely

heavily on word frequency and overlap, which limits their effectiveness. Even more modern

models like USE, Doc2Vec, and FastText, while better than traditional models, still do not

match the performance of BERT in capturing the deep relationships between documents.

5.3 Performance Comparison of Models in Requirement

Similarity Calculation

The performance of BERT in calculating document similarity is significantly influenced by

36

the number of epochs used during training. In this analysis, we examine the behavior of

BERT with fewer epochs (1 epoch), the default setting (3 epochs), and an increased number

of epochs (6 epochs). The scatter plots provide a visual representation of BERT’s document

similarity scores under each of these conditions.

Figure 5. 7: Scatter plot BERT performance for calculating document similarity under different

epochs

5.3.1 Fewer Epochs (1 Epoch)

The limited training time prevents the model from learning deeper patterns in the data, leading

to a wide range of similarity scores and an inconsistent relationship between document and code

similarity. The model tends to underfit the data after only 1 epoch of training. This underfitting

is visible in the scatter plot, where the document similarity and code similarity scores exhibit

high variance and a scattered pattern.

5.3.2 Default Epochs (3 Epochs)

The scatter plot with 3 epochs demonstrates balanced training. Here, the model achieves more

consistent results, with tighter clustering of similarity scores. The points reflect a more stable

relationship between document and code similarity. Training BERT for 3 epochs provides

enough time for the model to capture meaningful relationships without overfitting, making this

setting effective for most document similarity tasks.

5.3.3 Default Epochs (3 Epochs)

When BERT is trained for 6 epochs, the scatter plot shows closely packed data points, but this

may be a sign of potential overfitting. Even while the model seems to be performing fairly well

37

on the training data, the similarity scores may become inflated as the model starts memorizing

patterns that unique to the training set. This may make it more difficult for the model to to

generalize to new unseen data, which would lower its overall effectiveness in real-world

applications.

5.3.4 Conclusion

From these experiments, we observe that training BERT with 3 epochs provides the best balance

between underfitting and overfitting. Too few epochs (1 epoch) result in an unstable model,

while too many epochs (6 epochs) risk overfitting, reducing the model's generalization

capabilities. The scatter plots demonstrate how the choice of epochs directly impacts the

clustering of similarity scores and the model's overall performance.

5.4 Comparative Analysis of Model Performance

(CodeBERT vs JPlag)

We settled on deploying CodeBERT in our work to evaluate code similarity due to the

immense advantages it brings in comparison with the traditional tools such as JPlag. As

much as JPlag excels in plagiarism detection through syntax analysis, this proves to be

limiting if the match has been restructured or written with different styling preferences.

According to performance metrics from our study, JPlag had an accuracy of 75%, a recall of

70%, and a precision of 80%—this indicated a slight limitation regarding this aspect. On the

flip side, being a transformer model trained on source code, CodeBERT can understand the

semantic and structural complexities of code; it can realize more complex functional

similarities beyond syntax. This is because it learned from data and captures variable usages

that are likely not seen during training. As we also noted from experiment results,

performance metrics from CodeBERT showcased better percentages: 86% accuracy, 88%

recall, and 82% precision. CodeBERT offers a stronger and more detailed way to measure

similarity by producing embeddings that capture the code's fundamental logic and

functionality. This was especially crucial in our study, as finding reusable code through

requirement similarity necessitated a tool capable of accurately evaluating functional

equivalence, even in cases of different code implementation. Utilizing CodeBERT led to

improved and more meaningful findings, in line with our aim to enhance code reusability in

software development.

38

Table 5. 1: Comparison Metrics of JPlag and CodeBERT

Metric CodeBERT JPlag

Accuracy 86% 75%

Recall 88% 70%

Precision 82% 80%

39

Chapter 6

Conclusion and Future Work

In this study, we empirically investigated the relationship between requirements similarity and

code similarity within the e-commerce domain. Our results indicate a strong correlation (95%)

between similar requirements and the similarity of their corresponding code implementations.

Using BERT for requirements analysis and CodeBERT for code similarity assessment, we

demonstrated that content-based recommender systems could effectively retrieve reusable code

based on requirement similarity. This approach significantly aids requirement engineers and

developers in streamlining the development process and reducing redundant coding efforts. Our

findings reinforce the notion that similar requirements can indeed serve as reliable proxies for

retrieving similar code, thereby supporting efficient code reuse with limited adaptation.

6.1 Comparative Analysis of Model Performance

Building on the promising results of this research, several avenues for future work can be

explored:

1. Domain Expansion: Extend the investigation to other domains beyond ecommerce to

validate the generalizability of the findings across diverse software projects.

2. Enhanced Models: Experiment with more advanced natural language processing models

and techniques, such as transformer-based models with domain specific fine-tuning, to

further improve requirement and code similarity assessments.

3. Automated Adaptation: Explore methods to automate the adaptation of retrieved code

snippets to better fit the specific context and constraints of new projects, reducing the need

for manual adjustments.

4. Evaluation Metrics: Refine and expand evaluation metrics to include aspects such as

code quality, maintainability, and performance, ensuring that the recommended code not

only satisfies functionality, but also adheres to best practices in software engineering.

40

By pursuing these future directions, we aim to enhance the robustness and applicability of

content-based recommender systems, ultimately contributing to more efficient and effective

software development processes.

References

[1] Abbas, M. et al. (2023) ‘On the relationship between similar requirements and similar

software: A case study in the railway domain’, Requirements Engineering, 28(1), pp.

23–47. Available at: https://doi.org/10.1007/s00766-021-00370-4.

[2] Alexander Felfernig, M.A.M.S.S.R.C.P.A.F.X.F. (2017) ‘OpenReq: Recommender

Systems in Requirements Engineering’, in International Conference on Knowledge

Technologies and Data-Driven Business Workshop.

[3] Arora, C. et al. (2017) ‘Automated Extraction and Clustering of Requirements

Glossary Terms’, IEEE Transactions on Software Engineering, 43(10), pp.918–945.

Available at: https://doi.org/10.1109/TSE.2016.2635134.

[4] N., C.-H. C., C.-H. J., M. B. Hariri, ‘Recommendation Systems in Requirements

Discovery’, in Recommendation Systems in Software Engineering, 2014, pp. 455–476.

[5] C., F. X., F. D. Palomares, ‘Personal Recommendations in Requirements Engineering: The

OpenReq Approach’, in In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds) Requirements

Engineering: Foundation for Software Quality. REFSQ, Springer, Cham., 2018.

[6] C. Castro-Herrera, J. Cleland-Huang, and B. Mobasher, ‘Enhancing stakeholder

profiles to improve recommendations in online requirements elicitation’, in

Proceedings of the IEEE International Conference on Requirements Engineering, 2009,

pp. 37–46. doi: 10.1109/RE.2009.20

[7] A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z. Niu, ‘Automated recommendation of

software refactorings based on feature requests’, in Proceedings of the IEEE

International Conference on Requirements Engineering, IEEE Computer Society, Sep.

2019, pp. 187–198. doi: 10.1109/RE.2019.00029.

[8] J. Natt och Dag, B. Regnell, V. Gervasi, and S. Brinkkemper, ‘A LinguisticEngineering

Approach to Large-Scale Requirements Management’.

[9] M. Irshad, K. Petersen, and S. Poulding, ‘A systematic literature review of software

requirements reuse approaches’, Jan. 01, 2018, Elsevier B.V. doi:

10.1016/j.infsof.2017.09.009.

[10] O. C. Z. G. J. H. H. P. M. A. Z. Jane Cleland-Huang, ‘Software traceability: trends and

future directions’, in FOSE 2014: Future of Software Engineering Proceedings, 2014,

pp. 55–69.

https://doi.org/10.1007/s00766-021-00370-4
https://doi.org/10.1109/TSE.2016.2635134

[11] P. R. & A. A. Markus Borg, ‘Recovering from a decade: a systematic mapping of

information retrieval approaches to software traceability’, Empir Softw Eng, vol. 19,

pp. 1565–1616, 2014.

[12] D. Falessi, G. Cantone, and G. Canfora, ‘Empirical principles and an industrial case

study in retrieving equivalent requirements via natural language processing

techniques’, IEEE Transactions on Software Engineering, vol. 39, no. 1, pp. 18–44,

2013, doi: 10.1109/TSE.2011.122.

[13] M. S. A. G. F. Z. Chetan Arora, ‘Change impact analysis for Natural Language

requirements: An NLP approach’, in IEEE 23rd International Requirements

Engineering Conference (RE), 2015.

[14] Markus Borg; Krzysztof Wnuk; Björn Regnell; Per Runeson, ‘Supporting Change

Impact Analysis Using a Recommendation System: An Industrial Case Study in a

Safety-Critical Context’, IEEE Transactions on Software Engineering, vol. 43, pp.

675–700, 2017.

[15] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, ‘Automated Extraction and

Clustering of Requirements Glossary Terms’, IEEE Transactions on Software

Engineering, vol. 43, no. 10, pp. 918–945, Oct. 2017, doi: 10.1109/TSE.2016.2635134.

[16] A. Shatnawi, A. D. Seriai, and H. Sahraoui, ‘Recovering software product line

architecture of a family of object-oriented product variants’, Journal of Systems and

Software, vol. 131, pp. 325–346, Sep. 2017, doi: 10.1016/J.JSS.2016.07.039.

[17] B. Wang, R. Peng, Y. Li, H. Lai, and Z. Wang, ‘Requirements traceability technologies

and technology transfer decision support: A systematic review’, Journal of Systems

and Software, vol. 146, pp. 59–79, Dec. 2018, doi: 10.1016/J.JSS.2018.09.001.

[18] W. Wang, N. Niu, H. Liu, and Z. Niu, ‘Enhancing automated requirements traceability

by resolving polysemy’, in Proceedings - 2018 IEEE 26th International Requirements

Engineering Conference, RE 2018, Institute of Electrical and Electronics Engineers

Inc., Oct. 2018, pp. 40–51. doi: 10.1109/RE.2018.00-53.

[19] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, ‘Traceability Transformed:

Generating more Accurate Links with Pre-Trained BERT Models’, Feb. 2021,

[Online]. Available: http://arxiv.org/abs/2102.04411

http://arxiv.org/abs/2102.04411

[20] C.-H. C. C.-H. J. M. B. Hariri N, Recommendation Systems in Requirements

Discovery. 2014.

[21] D. Theosaksomodwi and H. Widyantoro, ‘Conversational Recommender System

Chatbot Based on Functional Requirement’, 2019.

[22] E. Dilorenzo et al., ‘Enabling the Reuse of Software Development Assets through a

Taxonomy for User Stories’, IEEE Access, vol. 8, pp. 107285–107300, 2020, doi:

10.1109/ACCESS.2020.2996951.

[23] S. Reddivari and J. Wolbert, ‘Calculating Requirements Similarity Using Word

Embeddings’, in Proceedings - 2022 IEEE 46th Annual Computers, Software, and

Applications Conference, COMPSAC 2022, Institute of Electrical and Electronics

Engineers Inc., 2022, pp. 438–439. doi: 10.1109/COMPSAC54236.2022.00079.

[24] Z. Feng et al., ‘CodeBERT: A Pre-Trained Model for Programming and Natural

Languages’, Feb. 2020, [Online]. Available: http://arxiv.org/abs/2002.08155

[25] Wei Yuan; Yaoxu Lei; Xin Guo, ‘Research on text similarity calculation based on

BERT and Word2Vec’, 2022.

[26] Sudharsan Ravichandiran, Getting Started with Google BERT: Build and train state-

of-the-art natural language processing models using BERT. Packt Publishing, 2021.

[27] M. Ciniselli, L. Pascarella, E. Aghajani, S. Scalabrino, R. Oliveto, and G. Bavota,

‘Source Code Recommender Systems: The Practitioners’ Perspective’, Feb. 2023,

[Online]. Available: http://arxiv.org/abs/2302.04098

[28] L. Zhang, C. Cao, Z.Wang, and P. Liu, ‘Which Features are Learned by CodeBert: An

Empirical Study of the BERT-based Source Code Representation Learning’, Jan. 2023,

[Online]. Available: http://arxiv.org/abs/2301.08427

[29] Y. Peng, J. Zhang, Y. Huang, and J. Tang, ‘Research on Quality Evaluation of

Requirement Analysis Specification Based on Text Similarity Calculation’, in

Proceedings - 2021 International Conference on Information Science, Parallel and

Distributed Systems, ISPDS 2021, Institute of Electrical and Electronics Engineers

Inc., 2021, pp. 60–63. doi: 10.1109/ISPDS54097.2021.00018.

http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2302.04098
http://arxiv.org/abs/2301.08427

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding’, Oct. 2018, [Online].

Available: http://arxiv.org/abs/1810.04805

[31] Breen, R. L. (2006). A Practical Guide to Focus-Group Research. Journal of

Geography in Higher Education, 30(3), 463–475.

https://doi.org/10.1080/03098260600927575

http://arxiv.org/abs/1810.04805

