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Abstract

Stable and reliable operations of power systems are based on continuous or frequent monitoring

and control of the systems by collecting and analyzing real-time data and optimizing its

working. Multiple measurement devices are often deployed across various nodes of the

power network to monitor the behavior. This framework of physically monitoring large-scale

power network is significantly time consuming and inefficient in terms of human efforts

and resources. An alternative method involves determining the mathematical model of the

power system, simulating it, and analyzing the system’s behavior to observe the desired

outcomes. These mathematical models associated with large scale power systems involve

differential as well as algebraic equations (DAE) and their simulation can be computationally

cumbersome. Furthermore the dynamics of the system are often nonlinear which further adds

to its complexity. Awremedywto this problemwis model order reduction, where the dynamics

of original system are reduced such that its behaviour remain the same. In this thesis,wwe

consider the problem of modelworder reduction for nonlinear power system models by

constructing a reduced bilinear model from the original large-scale model with approximately

the same behavior as the original model. Two specific approaches, bilinear balanced truncation

(BBT)wand bilinear iterative rationalwKrylov algorithm (BIRKA) has been utilized and

compared. It is observed that the performance of the two approaches is almost comparable and

they offerwtrade-off between accuracy and the size of the reducedworder model. Two examples

of bilinear power networks has been utilized from the literature for their comparison and

analysis. Numerical resultswshow that the reducedworder models from the two approaches

are highly accurate, stable, and significantly faster to simulate as compared to the original
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model. The BIRKA method is more useful than the BBT method in the sense that it canbe

easily extended to very large-scale settings as it involves only matrix-vector multiplications.

offerwtrade-off between accuracy and the size of the reducedworder model. Two examples

of bilinear power networks has been utilized from the literature for their comparison and

analysis. Numerical resultswshow that the reducedworder models from the two approaches

are highly accurate, stable, and significantly faster to simulate as compared to the original

model. The BIRKA method is more useful than the BBT method in the sense that it canwbe

easily extended to large-scale settings as it involves only matrix-vector multiplications.

Keywords: ModelwOrder Reduction( MOR), Bilinear Power Systems,wProjection-based

Techniques.
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Chapter 1

Introduction

This chapter presents a concise introduction to power systems, focusing on their key compo-

nents crucial for distributing and transmitting power. It discusses the challenges of model

order reduction and its practical applications. Furthermore, it outlines the objectives of the

thesis and provides an overview of thesis contents

1.1 Electrical Power Systems

Electric power systems play a crucial role in modern society. They consist of a network

of electrical components designed to generate, transmit, and distribute electrical energy

for various uses. [1]. In general power systems are divided into the following sub-systems:

Generating station, Transmission system, and Distribution systems as shown in Figure 1.1

[2]. The power plant,wtransformer, transmission line,wsubstations, distribution line,wand

distribution transformer arewsix main components ofwpower system. Electricity generation

iswmulti-step process that transforms various raw materials like coal, natural gas, or nuclear

fuel into usable electricity. These primary energy sources are often converted into a more

usable form, mechanical energy, through gas turbines that burn fuel and spin a shaft. The

generator, which uses electromagnetism to convert the mechanical energy into electrical

energy, completes the electricity generation process. Turbines are the prime movers that

1



Chapter 1. Introduction

convert steam energy into mechanical energy. One essential part of a turbine control system

is a turbine governor. Its role is to control the turbine shaft’s rotational speed so that it

stays within a range that is both safe and effective. The transformers adjust the voltage

levels so that the voltage is raised when power transmission is required and the voltage

is dropped for power consumers in order to reduce the transmission losses. This means

that power is efficiently transferred from one area to another by the use of transformers.

With the exceptionwof losses inwthe transformer,wthe power transfer from the secondary is

roughly equivalent towmain power. The portion of the power network that transfers high

voltages from one region to another is known as transmission network. The transmission

lines transmit the energy fromwgenerating stationswto receiving stations after switching

from one or more high voltage substations. Thus the transmission lines connect generating

station to consumer (loaded) station and nearby substations. Similarly the network part

that transfers relatively low voltages from the receiving stations to all the consumers in that

region are called distribution network. They provide power to a few substations, which are

often placed in handy locations close to the load centres. Power is distributed to home,

commercial, and relatively small consumers through the substations.

Figure 1.1: Electric Power System

2



Chapter 1. Introduction

1.2 Mathematical Modeling of Dynamical Systems

Mathematical modelingwand simulations playwmajor role for the analysis, design and op-

timization of power system [3]. These models capture the intricate relationships between

different components of the physical system and act as virtual representations of it. One

special form of modeling in time domain is state space modeling or matrix-vector representa-

tion of systems. State-space modelling provide a relationship between the inputwvariables,

output variables andwinternal state variables of the system. The model include a differential

equation involving state variables and inputs and an algebraic equation of output involving

states and inputs. Thus to compute the output for some specific input, we need the solution

of differential equation to get the state variables and then use them to get the output.

For a given LTI system Σ, the statewspace representationwof the systemwwith p inputs,

q outputs, and n state variables along with its representation is given as:

ẋL(t) = AxL + Bu

yL(t) = CxL +Du

→ Σ =

 A B

C D

 (1.2.1)

A iswthe state matrix with dim[A] = nw×n,B iswthe input matrix of dim[B] = wn×p, C

is thewoutput matrix of dim[C] = q × n. The matrix with dim[D] = q × p. Also, the time

derivative ofwx(t) is denoted by ẋ(t) := d
dt

x(t).

Note that the first equation in (1.2.1) shows that the rate of change of the system state is

dependentwon the system state and the system input. Also, the second equation showswthat

the systemwoutput is dependentwon the systemwstate and the system input as well.

As most of the real-time systems are nonlinear and play a significant role in modeling

several physical, biological, and engineering processes, nonlinear state space representations

are often used for analysis[4]. Nonlinear systems may involve bilinear or quadratic or cubic

or other polynomial nonlinear terms of inputs and states or in some cases their combination.

In general, such nonlinear systems can be represented as:

3



Chapter 1. Introduction

Σnonlinear :


ẋN(t) = f(xN , u)

yN(t) = g(xN , u)
(1.2)

To analyse such nonlinear dynamical systems, we needwto solve the differential equation in

(1.2) for x(t) and utilize the output equation to observe the response of the systemwfor specific

input.wFor some specific nonlinear structures such as bilinear system orwquadratic-bilinear

systems, the nonlinear function f(x, u) andwg(x, u) can be written in matrix-vector forms

as well. Bilinear systems are similar to the linear system but they have additional terms

involving product of state variables and control inputs. A large classwof nonlinearwsystems

can be representedwin bilinear form and their are bilinearization processes that approximate

the original nonlinear system to bilinear system. The dynamic behaviour of nonlinear power

flow can also be represented/approximated by bilinear systems. The focus of this thesis is to

analyse large-scale power systems that can be modelled by bilinear state space systems.

1.3 Model OrderwReduction

Models forwlarge scale systems involve a large set of differential equations and their solution is

often computationally expensive. Model orderwreduction (MOR) is a methodology that aims

to reducewthe order or the number of differential equations so that less number of differential

equations are required for computing a close approximation to the original solution[5]. This

process facilitates efficient simulation and rapid analysis of complex systems. Thus the

simulation of large-scale systems is more feasible especially in real-time applications with the

use of MOR. A series ofwMOR methods were proposedwto reducewthe order of wlarge scale

systems towimprove thewefficiency of calculationwin the fieldwof science andwengineering.

MOR strategically simplifies these complex models into smaller, computationally efficient

”reduced-orderwmodels” (ROMs). These ROMs capture the essential dynamic behavior

of the power system while being significantly faster to analyze. This translates to several

benefits: faster simulations, streamlined control design, and the potential for real-time
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applications. The non-linear system are converted into bilinear system and then we use

projection techniques to get the reduced version of original model. However, a successful

application depends on selecting the appropriate projection subspace and evaluating the

ROM’s accuracy in relation to the original model. In general, projection techniques involve

the following steps[6]:

- Compute basiswmatrices V ∈ Rn×r and W ∈ Rn×r for r dimensionalwsubspaces V and W ,

respectively - Approximate xL(t) by V xLr(t).

- Ensure Petrov-Galerkinwconditions

W T (V xLr(t)− AV xLr(t)−Bu(t)) = 0

ŷL(t) = CV xLr(t) +Du(t)

Thus thewreduced systemwmatrices are given by:

Ar = W TAV,Br = W TB, Cr = CV,Dr = D and W T V = I

and the reducedwsystem becomes

ẋLr(t) = ArxLr(t) + Bru(t)

ŷL(t) = CrxLr(t) +Dru(t)

This shows thatwthe reduced system dependswon the choice of V and W , or equivalently

the sub-spaces V and W . That is, we need to identify a good choice of V and W for which

the reduced system ensures that ỹL(t) ≈ yL(t).

1.4 Problem Statement

As discussed before, a large classwof nonlinear systems can be representedwin bilinear

state space form. Also nonlinear systems can be transformed/approximated in bilinear

5



Chapter 1. Introduction

form. Nonlinear power systems are also modelled as bilinear systems in the literature. The

responsewof the bilinear system is more close to the original nonlinear model as compared to

the linear model. The issue of computational complexity, however, restrict the application

of bilinear systems to medium or small scale systems. Thus the problem is to explore the

concept of model order reductionwfor bilinear systems so that the simulation or control of a

large-scale bilinear system is possible in a computationally efficient way. Mathematically,

our problem is to identify, for a given bilinear system

ẋ(t) = Awx(t) + Nx(t)wu(t) + Bu(t)

y(t) = wCx(t) + Du(t)

a reduced bilinear system

ẋr(t) = Arxr(t) + Nrxr(t)u(t) + Bru(t)

ŷ(t) = Crxr(t) + Dru(t)

such that the response of the two systems is approximately the same. That is, to compute

Ar, Br, Nr, wCr, Dr, for given A, B, N, C and D such that ŷ(t)w ≈ y(t) for a fixed input u(t).

1.5 Motivation

The desire for the details and accurate output results generate large scale complex models that

require huge computational resources for their analysis and design. Model order reduction

isw important tool for the analysis, control and optimization of systems as it reduces the

computational complexity and produces approximately the same response, much faster. Their

use for structured nonlinear systems further extends their applications and importance. As a

system engineer, this project gives a detailed insight of how large scale systems should be

analyzed and designed as well as on the importance of computational time and fast response

in large-scale systems.

6
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1.6 Objectives

The research work’s objectives are as follows:

• To implement and simulate the original bilinear power system’s model and its response

to general inputs, and validate the results from the literature.

• To develop two projection-based non-linear MOR algorithms for efficient and accurate

model reductionwof bilinear power systems.

• Evaluate ROMs performance by comparing their simulation outputs to the original

model to assess accuracy.

1.7 Thesis Overview

The remaining portion of the thesiswis organized as follows: Chapter 2 presents thewliterature

review on model orderwreduction techniqueswfor linear and bilinear systems. Chapter 3

illustrates the practical implementation of model order reduction techniques tailored for

bilinear power system models. In chapter 4, results and discussions are presented. The

conclusion part is discussed in chapter 5.

7



Chapter 2

Literature Review

This chapter focuses on different MOR techniques for linear system and their extension

to bilinear systems. There arewvarious techniques of MOR in thewliterature to reduce

linear systems. Since the reduction techniques for bilinear systems are extension of linear

versions, therefore linear techniques are reviewed first to provide a basis for understanding

the reduction of bilinear systems. For linear system, MOR techniques can be classified

into two categories:wsingular valuewdecomposition (SVD) methods and interpolation based

methods.

2.1 ModelwReduction of LTI Systems

The classical modelwreduction theory was developed for LTI systems. Among the most

popular methods, balanced truncation, and Krylov projection methods have been used

to compute the reducedworder model[7]. The choice of model order reduction technique

depends on many factors such as the desired accuracy, computational resources, system

size, and specific requirements of the problem. In thewfollowing, we briefly discuss the

Balancedwtruncation method for LTI systems, followed by projectionwbased model order

reduction techniques.

8



Chapter 2. Literature Review

2.1.1 BalancedwTruncation

Balanced truncation technique is widely used to reduce the LTI systems. The effectiveness of

balanced truncation for reducing linearwtime-varying systems is analyzed for both discrete

and continuous time domains [8]. It is used to simplify analysis and controller design by using

a lower-order approximation that preserves the dynamics of interest. This method depends

on the ideas of observability and controllability grammians. The ability to use outside inputs

to change the state of the system from any initial condition is known as controllability.

Conversely, observability describes the capacity to reassemble the state of the system from its

outputs. The balanced truncationwmethod decomposes the controllability andwobservability

gramians to compute the transformation matrix T. This approach considers only those states

which have major contribution in determining the systems response.

With reference to the equation (1.1) and (1.2), Assuming the dynamical system is stable, the

associated Lyapunov equations for the gramians are given as [9]:

AP T + PAT + wBBT = 0

AT Q + wQA + CT C = 0
(2.1.1)

where P denotes the system’s controllability gramians and its size is P ∈ Rn×n. Q denotes

observability gramians and its size is Q ∈ Rn×n. In balanced model,both grammians are

equal and diagonal i.e P = wQ = ∑ = wdiag(σi).

Cholesky factorization ofwgramians and SVD can be used to get the transformationwmatrix

T which can transform any system into balanced system, that is T = R−1U
∑−1/2.

Ab =

 A11 A12

A21 A22

 , Bb =

 B1

B2

 , Cb =
(

C1 C2

)

9
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The truncated matrices define the ROM and can be expressed as

Arw = A11, Brw = B1, Crw = C1, Dr = D

An important property of balanced truncation is that it gives an a prior error bound on the

error system in H∞ norm.

σr+1 ≤ ∥G−Gr∥∞ ≤ 2
n∑

i=r+1
σi

where Gr is the reduced model. The square-root (SR) method iswbased onwCholesky

factorization of the Gramians P and Q, computes bases for the left and right eigenspaces of

product PQ of reachability and controlability grammians [10]. These square roots, known as

singular values, highlight the importance of certain states in the system’s dynamics. The

approach achieves balanced truncation by retaining states associated with larger singular

values and eliminating those corresponding to smaller values The square root technique

allows for the robust computationwof the reduced model by computing the bases for the

left andwright eigenspaces of thewproduct PQ. Square root method computes bases for the

left and right eigenspaces of product PQ of reachability and controlability grammians which

enables the robust computation of reduced model. The use of orthogonal transformations

Basis VL and VR , tends to increase numerical stability in algorithms by computing cholesky

factors directly withoutwcomputing P and Q.

Choleskly factorization of grammians:

LrL
T
r : = P

LoL
T
o : = Q.

singular-value-decomposition of LT
o Lr

UΣ1V
T = LT

θ Lr

10
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Σ1 = diag (σ1, · · · , σm)

The columnswof L0U are the respective left eigenvectors associated with weigenvalues

σ2
1, · · · , σ2

m of PQ.

VR.BIG = LrV

 Ik

0

 , VL,BIG = LoU

 Ik

0

 .

EBIG = V T
L,BIGVR,BIG =

[
Ik 0

]
UT LT

OLrV

 Ik

0



=
[

Ik 0
]

diag (σ1, · · · , σm)

 Ik

0

 = diag (σ1, · · · , σk) = Σ̂BAL so that

SL,BiG = L0U

 Σ−1/2
BAL

0

 , SR,BIG = LrV

 Σ̄−1/2
BAL

0

 .

11
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State transformations:

T = SR,BiG

T −1 = SL,BiG

(Ar, Br, Cr, Dr)←
(
T −1AT, T −1B, CT, D

)
A balancedwand stable reduced system that satisfieswthe BT error bound is computed by

the SR technique. In balanced truncation, calculation of balancing Transformation T is

ill-conditioned when PQ’s condition number is high and some modes are unobservable and

uncontrollable.

In the following, a ten-state model is reduced to a four-state model using the SR (square

root) method:

A =



−6 −1 0 0 0 0 0 0 0 0

1 −8 0 0 0 0 0 0 0 0

0 0 −10 3 0 0 0 0 0 0

0 0 1 −8 0 0 0 0 0 0

0 0 0 0 −13 −3 9 0 0 0

0 0 0 0 1 −8 0 0 0 0

0 0 0 0 0 1 −8 0 0 0

0 0 0 0 0 0 0 −14 −9 0

0 0 0 0 0 0 0 1 −8 0

0 0 0 0 0 0 0 0 0 −2



, B =



1 0

0 0

0 1

0 0

1 0

0 0

0 0

0 1

0 0

1× 10−3 1× 10−2



C =

0 1 0 1 0 0 0 0 0 5× 105

0 0 0 0 0 0 −6 1 −2 5× 105

 , D =

0 0

0 0



The Hankel singular values are given below:

12



Chapter 2. Literature Review

σ1 σ2 σ3

2.5001× 102 2.5168× 10−2 5.5789× 10−3

σ4 σ5 σ6

2.4142× 10−3 9.2182× 10−4 1.3086× 10−5

σ7 σ8 σ9 σ10

1.1386× 10−7 6.7051× 10−9 0 0

The balancing of tenth order system using BT is numerically infeasible because system is

uncontrollable and unobservable due to small hankel singular values. Therefore, the square

root method is employed to effectively reduce the system’s complexity.

2.2 MOR Projection Techniques

Most practical methods ofwsolving large-scale linear systems of equations currently involve a

projection process. These projection-based model reduction techniques provide numerous

benefits and are applicable to both linear and nonlinear systems. Interpolatory projection-

based techniques are used for simulation but also in control because the reduced model

iswindependent of the system’s input where input variation is a common practice. Interpola-

tion techniques construct reduced models whose frequency response is approximately equal

to original model at some pre-defined frequencies[11].

Choices for subspaces V & W :

i- Proposition 1

If V = [B, AB, . . . , Ak−1B] and W be anywleft inverse of V , such that W T V = I.

Then the reduced systemwmatches the first K-Markov parameters of the original system

as given bellow:

CAk−1B = CrA
k−1
r Br

13
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Proof. The followingwset of equations leads to the desired results:

CrA
j
rBr = CV W T AjV W T B

= CV W T AjPobB, where Pob = V W T

= CV W T AjB, as B ∈ span{V }, PobB = B

= CPobA
jB

CrA
j
rBr = CAjB as AjB ∈ span{V }, PobA

jB = AjB, j = 1, . . . , K

(2.2.1)

ii- Proposition 2

Interpolation points σi, i = 1, . . . , k, if V = [(σ1In − A)−1B, . . . , (σkIn − A)−1B] and W

is any left inverse of V , such that W T V = wI. Then the transfer function of the reduced

system interpolateswthe transfer function of original system at the points sj.

H(σj) = C(σjIn − A)−1B = Ĉ(σjIk − Â)−1B̂ = Ĥ(σj) j = 1, . . . , k

iii- Proposition 3

Let σ0 ∈ C, V = [(σ0In − A)−1B, (σ0In − A)−2B, . . . , (σ0In − A)−kB] and W be any

left inverse of V , such that W T V = I. Then the transferwfunction of the reduced system

interpolates the transfer functionwof original system at the points σ0 as well as the first

K − 1 derivative at the same point.

dk−1

dsk−1 H(σ)
∣∣∣∣∣
σ=σ0

= dk−1

dsk−1 Ĥ(σ)
∣∣∣∣∣
σ=σ0

iv-Proposition 4

V =
[
A, Ak−1B(σ1In − A)B, (σkIn − A)B(σ0In − A)−1B, . . . , (σ0In − A)−kB

]

14
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Σ matches K-Markov parameters.

CAk−1B = CrA
k−1
r Br

Σ interpolateswthe transfer function ofwΣ at the points sj.

H(σj) = C(σjIn − A)−1B = Cr(σjIk − Ar)−1Br = Hr(σj) j = 1, . . . , k

v-Proposition 5 Given 2k distinct points σ1, σ2, . . . , σ2k, if

V = [(σ1In − A)−1B, . . . , (σkIn − A)−1B]

W = [(σk+1In − A)−1C∗, . . . , (σ2kIn − A)−1C∗]

The transfer function of Σ̂ interpolates the transfer function of Σ at the points σj,

j = 1, . . . , 2k.

2.3 IterativewRationalwKrylov Algorithm

The IterativewRational Krylov Subspace (IRKA) approach is a model reduction methodology

that lowers the dimensionality of a system by combining Krylov subspace methods and

rational approximation. It is especially helpful in bringing down the complexity of large

linear or nonlinear systems. The IRKA is highly beneficial for simulation and control tasks

involving large-dimensional networks[12]. The algorithm generates a Krylov subspace, which

is a wlower-dimensional subspace within the state space of the high-dimensional system.

IRKA revolves around an iterative process, by repeatedly applying the system matrix to a

seed vector, the algorithm spans a Krylov subspace The controllabilitywand observability

properties of thewsystem are then projected onto this subspace. IRKA obtains a lower-

dimensional approximation of the original system by solving a tiny eigenvalue problem
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within this reduced space. Lastly, the technique refines the approximation by updating the

parameter based on the eigenvalues of the original system. IRKA is a well-known method

for generating locally optimal reduced-order H2 -approximations for linearwtime-invariant

(LTI) dynamical systems. IRKA performs a Hermite type interpolation of the initial system

transfer function at each iteration. The transfer function for the linear system given in (1.1),

can be written as:

G(s) = C(sI − A)−1TB (2.2)

By using a stable rational transfer function G, MOR attempts to approximate the transfer

function Gr.

Gr(s) = Cr(sIr − Ar)−1TBr (2.3)

IRKA Algorithm for Linear Systems [13]

Input: A, B, C and r

Output: Ar, Br, Cr

1: Makewinitialwr-fold shift selection:w{σ1, . . . , σr} that iswclosed under conjugation (i.e.,

{σ1, . . . , σr} ≡ {σ̄1, . . . , σ̄r} viewed as sets) and tangential directions b̂1, . . . , b̂r and ĉ1, . . . , ĉr,

also closed under conjugation.

4: WHILE NOTwCONVERGED:

1. Set iter = 1

2. Compute basis ofTspan
(
(σ1I−A)−1 B, . . . , (σrI−A)−1 wB

)
→ V

3. Computewbasis of span
((

σ1wI−AT
)−1

wC, . . . , w
(
σrI−AT

)−1
C

)
→ W

4. Ar = w
(
WT V

)−1
wWT AV

5. ComputeTeigenvaluesλ (Ar) = T (λ1 (Ar) , . . . , λrT (Ar))

6. ComputeT(matching) Tdistance ζ between the sets λ (Ar)Tand −whiteTσ

7. σiT ←− −λi (Ar) , i = 1, T . . . , r

8. Repeat until ζ is sufficiently small

9. Br = w
(
WT V

)−1
WT B; Cr = wVT C 10. The reduced worderTmodel is (Ar, Br, TTCr)

IRKA operates by iteratively refining its approximation of optimal interpolation points.
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The iteration stops when the relative change in the set of shifts between two successive

iterations drops below a specified tolerance threshold.

2.4 MOR forwBilinear Systems

This section presents a concise introduction towbilinear systems, which are characterized by

nonlinear interactions between variables. These systems can be effectively analyzed using

both frequency domain and time domain methods These systems exhibit linearity concerning

the statewand the control individually, but notwjointly. The exploration focuses on MOR

techniques applied specifically to bilinear dynamical systems using projection-based methods.

With mwinputs and p outputs, a MIMO bilinear dynamical system is represented in the

time domain as follows [14]:

ẋ(t) = TAx(t)T +
m∑

i=1
TNix(t)ui(t) + TBu(t) (2.4)

y(t) = TCx(t)

where x(t)Tis n× 1 state vector,Tu(t) is m× 1 inputTvector, ui is ithTcomponent of

u(t), y(t) is p × 1Toutput vector and A, N1, TN2, . . . , TNm, B, and C are actual matrices

ofTappropriate size. Bilinear systems are employed in control theory to model systems

exhibiting both linear and nonlinear behavior. In signal processing, bilinear systems are

commonly used to simulate nonlinear distortion in devices such as amplifiers and filters.

Bilinear systems are utilized in computer graphics for tasks such as interpolating between

points and constructing smooth surfaces.

2.4.1 BalancedwTruncation for Bilinear Systems

Although Balanced Truncation, a popular method of model reduction for linear systems, but

it also finds the application to bilinear systems. Balanced truncation is a favored approach
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for simplifying the complexity of bilinear systems, as it effectively preserves essential system

dynamics while significantly reducing computational demands[15]: Step 1. P and Q. The

controllability and observability Grammian matrices are expressed as follows.

P =
∞∑

i=1

∫
· · ·

∫
P iP

∗
i dt1 . . . dti

and

Q =
∞∑

i=1

∫
· · ·

∫
Q∗

i Qi dt1 . . . dti

The Grammians fulfill the following generalized algebraicwLyapunov equations:

AP + PA⊤ +
m∑

i=1
NiPN⊤

i + BB⊤ = 0

A⊤Q + QA +
m∑

i=1
N⊤

i QNi + C⊤C = 0

Step 2.Using Lr and L0 to represent the lowerwtriangular Cholesky factors of Grammians P

and Q, compute the Cholesky factors of the Grammians.

P = LrLT
r , Q = LoLT

o

Step 3. Determine how to calculate the productwof the Cholesky factors’ singular value

decomposition:

LT
o Lr = UΣVT

Step 4. Create the balanced transition, matrix T

T = LrVΣ−1/2
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Step 5. The balanced system of (2.4) has a state-space wrepresentation that is

ẋbb(t) = Abbxbb(t) +
m∑

i=1
Nbbixbb(t)ui(t) + Bbbu(t)

y(t) = Cbbxbb(t)

where
Abb = T−1AT, Nbbi = T−1NiT

Bbb = T−1B, Cbb = CT

Let’s split the balanced system given in equation (2.5) as follows to get a reduced order

model:

 ẋbb1

ẋbb2

 =

 A11 A12

A21 A22


 xbb1

xbb2



+
m∑

i=1

 N11i N12i

N21i N22i


 xbb

xbb2

 ui +

 B1

B2

 u

y =
[

C1 C2

]  xbb1

xbb2



Σ =

 Σ1 0

0 Σ2


where Σ1 = w diag [σ1, . . . , σr] and Σ2 = diag [σr+1, . . . , σn]. If σr/σr+1 ≫ 1, then the

subsystem represented by the most controllable and observable states can be effectively

decoupled from the rest of the system.

ẋbbr(t) = A11xbbr(t) +
m∑

i=1
N11ixbbrrui(t) + B1u(t)

ŷ(t) = C1xbbrr(t)

These equations outline how the original system matrices are transformed into reduced
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matrices using the transformation matrix. The H2 norm wfor bilinear systems quantifies the

system’s performance by evaluating the energy gain from disturbances, expressed through

the reachability and observability Grammians P and Q.

∥ΣB∥H2
=
√

CPCT =
√

BT QB

where C is output matrix, B is input matrix.

2.4.2 Bilinear Iterative Rational Krylov Algorithm (BIRKA)

This section explores the BIRKA and its application in MOR for bilinear dynamical systems.

BIRKA is designed as a locally optimal algorithm aimed at approximating the behavior of

the original system within a limited region of the state space. BIRKA iteratively constructs

a rational Krylov subspace tailored for bilinear systems. A Krylov subspace is a subspace

within the state space that comprises vectors generated from the initial state vector through

successive applications of the bilinear operator. It is highly advantageous for reducing the

complexity of bilinear dynamical systems while preserving accuracy. The BIRKA algorithm

is based on the interpolatory projection approach, is a very well-known, standard, and

wmathematically acceptable algorithm for bilinear MOR.

ẋr(t) = Arxr(t) + Nrxr(t)u + Bru, ẏr(t) = Crxr(t), xr(0) = 0 (2.8)

where

ẏr(t) ≈ y(t)

If BIRKA converges, it will produce a locally H2 optimal reduced system that satisfieswthe

necessary conditions for H2 optimality. The following section explains the algorithm BIRKA

for constructing the required H2-optimal reduced bilinear system [16].

Algorithm BIRKA
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1: Givenwinput bilinearwdynamical system A, N1, . . . , Nm, B, C.

2: Selectwinitial guess for the reducedwsystem as Ā, N̄11, . . . , N̄m, B̄, C̄.

Also selectwstopping tolerance btol.

3: while relativewchange in eigenvalues of Āw ≥ btol.

a. RAR−1 = Ă, B̆ = B̆T R−T , C̆ = C̆R, N̆k = RT N̆kR−T for k = 1, w . . . , m.

b. vec(V ) = w
(
−Λw ⊗ In − Ir ⊗ A−∑m

k−1
•

N
T

k ⊗Nk

)−1 (
BT ⊗B

)
vec (Im).

c. vec(W ) = w
(
−Λ⊗ In − Irw ⊗ AT −∑m

k−1 Nk ⊗NT
k

)−1 (
CT ⊗ CT

)
vec (Ip).

d. Vr = w orth(V ), Wr = w orth(W ).

e.
Ā = w

(
W T

r Vr

)−1
W T

r AVr, N̄k =
(
W T

r Vr

)−1
W T

r NkVr

B̄ =
(
W T

r Vr

)−1
W T

r B, C̄ = CVr

f.

Ar = wĀ, Nkr = wN̄k, Br = wB̄, Cr = C̄

2.4.3 Research Gap

Existing literature on MOR for k-power bilinear systems highlights a significant gap in

systematic approaches that can effectively balance computational efficiency with accurate

representation of their complex nonlinear interactions. This study proposes the implementa-

tion of two algorithms using projection-based techniques for reducing the model complexity of

k-power bilinear systems. The comparative analysis focuses on evaluating the computational

time required by each algorithm to generate reduced-order models across varying dimensions.

This analysis aims to determine which algorithm offers optimal computational efficiency while

maintaining satisfactory model accuracy. Moreover, the study investigates the trade-offs

between computational time and model fidelity, providing valuable insights for enhancing

computational performance in practical applications.
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Chapter 3

Design and Methodology

This chapter applies MOR techniques to bilinear power system models, demonstrating

their effectiveness through two benchmark examples from literature. It highlights MOR’s

ability to simplify complex models while maintaining essential dynamics, aiming to improve

computational efficiency in representing bilinear power system behaviors.

3.1 Bilinear Representation of Power Systems

This section begins with the comprehensive overview of how power systems can be effectively

modeled using bilinear state space models, drawing upon examples from existing literature

to illustrate the application and utility of this approach in understanding and analyzing the

dynamic behavior of power systems.

3.1.1 Two-areawInterconnected Power System

A two-areawinterconnected, power system is vital for ensuring reliable and efficient electricity

delivery by enabling resource sharing between regions. It consists of two distinct regions,

each with its own independent generating tion and load characteristics. These areas are

then strategically linked via dedicated transmission lines known asTtie-lines as shown in T

22



Chapter 3. Design and Methodology

schematic depiction of power system Tin Figure 3.1 [17]. In addition to enabling the efficient

use of generation resources and offering redundancy which is essential for averting outages

this interconnected structure improves system stability.

Figure 3.1: Two areawinterconnected Power System

The exchange of power between the two areas is controlled by a power management

system. Each area has one hydro plant and one steam plant. All four plants have four control

inputs that is the change in ∆fmT 1, ∆fmH1, ∆fmH2 and ∆fmT 2. Where ∆fmH1 and ∆fmH2

are hydro unit control input variations. ∆fmT 1 and ∆fmT 2 are steam unit control input

variations. The three outputs are frequency variations and tie-line exchange variations that

are represented by ∆f1, ∆f2 and ∆P12 respectively. The two-area interconnection comprises

regions linked by tie lines, enabling electricity transfer between them.

When a power plant exceeds its capacity during peak demand, other connected plants can
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share the extra load. Power systems interconnect to improve efficiency and ensure reliable

supply. Interconnected networks have unique challenges such as load sharing, minimizing

frequency errors, and maintaining reliable power supply compared to stand-alone systems.

Connecting stand-alone power systems involves linking areas via tie-lines, with each area

controlling its own load variations. This system, based on the physical interactions between

various components, will be used to construct mathematical models T of individual elementsT

and the power system as aT whole. The elements to be considered are: The core components

listed are critical for modeling and managing a robust power system. A model for two area

interconnected power networks with one steam andT one hydro unit T is as follows: System

1 Steam Plant

Pulverized coal is introduced into the boiler and combusted in the furnace. The turbine’s

rotor is connected to a generator, which rotates at the same speed as the turbine. The turbine

converts mechanical energy into electrical energy through the generator. After leaving the

turbine, the steam flows into the condenser, where it is condensed back into water. The

condensed water, along with the feed water, is routed to the economizer. In the economizer,

the feed water is preheated before entering the boiler, enhancing the overall efficiency of the

boiler.

A model for steam plant is represented as follows:

∆ω̇T 1 = −rT 1

TST 1
∆ωT 1 −

1
TST 1

∆f1 + 1
TST 1

∆fmT 1

∆Ṗ
(1)
t1 = Kt1

Tt1
∆ωT 1 −

1
Tt1

∆P
(1)
t1

∆Ṗ
(1)
t2 = 1

Tn1
∆P

(1)
t1 −

1
Tn1

∆P
(1)
t2

∆Ṗ
(1)
t3 = 1

Tn1
∆P

(1)
t2 −

1
Tn1

∆P
(1)
t3

∆ωT 1 is the variationwof steam turbine valve opening in the system, ∆Pt1 is the variation

ofwsteam turbine at high pressure output, ∆Pt2 is the variation of steam turbine at in-
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termediate pressure output, and ∆Pt3 is the variation of steam turbine at low pressure

output.

There are also some coefficients being used; for details, check [18]. Similarly, we can write

a representation for the second steam plant.

For System 1 Hydro Plant

A hydroelectric power plant, or hydro plant, generates electricity by harnessing the energy of

moving or falling water. A consistent water source, such as a river or a reservoir, is necessary

for a hydroelectric power plant. A generator is connected to the rotating turbine. As the

turbine spins, it drives the rotor of the generator, which is surrounded by a stationary stator.

The relative motion between the rotor and stator creates an electromagnetic field, which

generates electricity.

A model for hydro plant is represented as follows:

∆ȧH1 =−εT1CV1Tal

T1TSH1
∆P

(1)
t1 −

εT1 (1− CV1) CS1Ta1

T1TSH1
∆P

(1)
t2

− εT1 (1− CV1) (1− CS1) Tal

T1TSH1
∆P

(1)
t3 + 1

TSH1

(
εH1Kw1Tal

T1
− rH1 − r′

1

)
∆aH1

+ 1
TSH1

∆V1 −
εH1Kq1Ta1

T1TSH1
∆q1 + e1Ta1 − T1

T1TSH1
∆f1

+ Ta1

T1TSH1
∆P12 + 1

TSH1
∆fmH1 + Ta1

T1TSH1
∆PLα

∆V̇1 = r′
1

Te1
∆aH1 −

1
Tel

∆V1

∆q̇1 = 1
Tw1

∆a1 −
1

Tq1
∆q1 + 1

Tf1
∆f1

The state-spacew T variableswof the two coupled mixed power systems T are as follows.

x1 = ∆aT1, x2 = ∆Pt1, x3 = ∆Pt2, x4 = ∆Pt3

x5 = ∆aH1, x6 = ∆V1, x7 = ∆q1, x8 = ∆f1

x9 = ∆P12, x10 = ∆f2, x11 = ∆q2, x12 = ∆V2

x13 = ∆aH2, x14 = ∆P
(2)
t3 , x15 = ∆P

(2)
t2 , x16 = ∆P

(2)
t1

x17 = ∆aT2
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The relationship between state space variables is given by literature. The dynamics of x1

and x2 can be written as

ẋ1 = A1x1 + A2x4 + B1u1, ẋ2 = A3x1 + A4x2

Since the statewequations x5, x8, x10 and x13 have non-linearities, this system can be

expressed in the form given by equation (2.1).

The two terms z1 and z2 represent the parameters that capture the bilinear interactions

between the input vector u and state vector x.

z1 = k1x5u1 + k2x8u2, z2 = k3x10u3 + k4x13u4.

3.2 Model Order Reduction ofwk-Power Systems

This research focuses on the application of two reduction techniques, namely Balanced

Truncation and BIRKA reduction, to k-power systems. These methods are utilized to

simplify the dynamic models of k-power systems, aiming to enhance computational efficiency

and facilitate analysis and control tasks[19]. An example of k-power systems from the

literature is discussed to illustrate this approach.

3.2.1 k-Power Bilinear System

The k-powerwsystem is identified as a specific type of bilinear system made up of several

lower-order subsystems. This property highlights its ability to be decomposed or represented

as interconnected subsystems, each potentially exhibiting simpler dynamics. This structural

feature makes the k-power system distinct in the realm of dynamic systems analysis. A

subclass of bilinear systems is characterized by an input-output map that exhibits homogeneity

with respect to the input u(t), where the degree of homogeneity is k. This condition is
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expressed as

y(αu(t)) = wαky(u(t))

A k-power bilinear system adheres to this equation, indicating that its input output behavior

satisfies the homogeneity property. Such systems are also known as zero state responses

of internally bilinear systems and describe configurations where linear subsystems are

interconnected multiplicatively. The minimal bilinear realization of k-power system is given

by[20]:



ẋ1(t)

ẋ2(t)
...

ẋk(t)


=



A1 0 · · · 0

0 A2
. . . ...

... . . . . . . 0

0 · · · 0 Ak





x1(t)

x2(t)
...

xk(t)


+

m∑
i=1



0 0 · · · 0

N1i 0 · · · 0
... . . . . . . ...

0 · · · N(k−1)i 0





x1(t)

x2(t)
...

xk(t)


ui(t)

+



B1

0
...

0


u(t)

where xj ∈ Rnj , wAj ∈ wRnjw×nj , wNji ∈ wRnj+1×nj (j = 1, 2, . . . , k − 1), xk ∈ Rnk , Ak ∈

Rnk×nk .

For simplicity, we assume a zero initial condition. With the above canonical realisation,

K-power systems can be reformulated as coupled systems



ẋ1(t) = A1x1(t) + B1u(t)

ẋ2(t) = A2x2(t) + ∑m
i=1 N1ix1(t)ui(t)

· · ·

ẋk(t) = Akxk(t) + ∑m
i=1 N(k−1)ixk−1(t)ui(t)

y(t) = Ckxk(t)
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This approach ensures that the reduction process preserves coupled structure of the system,

thereby accurately capturing the interdependencies and interactions between subsystem.

3.2.2 k-Power ModelwReduction Algorithm

In thiswsection, the application of Balanced Truncation and BIRKA algorithms to k-power

systems, as discussed in Chapter 2, is explored. Projection-based techniques utilize projection

matrices towconstruct smaller models while preserving the structural characteristics of the

original systems.

Balanced Truncation for k-Power Bilinear System

This section will discuss an algorithm for

A1P11 + P11A
T
1 + B1B

T
1 = 0

AjPjj + PjA
T
j +

m∑
i=1

N(j−1)iP(j−1)(j−1)N
T
(j−1)i = 0

...

AT
k Qkk + QkkAk + CT

k Ck = 0

AT
j Qj + QkAj +

m∑
i=1

NT
jiQ(j+1)(j+1)Nji = 0

while j = k − 1, k − 2, . . . , 2, 1

ii. Compute Choleskywfactors of Pij and Qij : Let Lrj and Loj denotewthe lower triangu-

larwCholesky factors of Pij and Qij, i.e.,

Pij = LrjL
T
rj, Qjj = LojL

T
oj∗

iii. Compute the singular wvalue decomposition

LT
ojLrj = UjΣjV

T
j
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iv. Form the wbalancing transformation wfor the subsystems

Tj = LrjVjΣ−1/2
j

v. Form the wbalancingw transformation

T = diag [T1, T2 . . . , Tk]

vi. Form wthe balanced wstate-space matrices

Abj = T −1
j AjTj, Bbl = T −1

1 B1, Ck = CkTk, j = 1, 2, . . . , k

Nbjl = T −1
j+1NjiTj j = 1, 2, . . . , k − 1 i = 1, 2, . . . , m

To obtain wa wreduced orderw model, balanced matrices canw be partitioned as

Abj =

 Abj11 Abj12

Abj21 Abj22

 , Nbji =

 Nbjil1 Nbji12

Nbji21 Nbji22


Bb1 =

[
BT

b11 BT
b12

]T

, Cbk =
[

, Cbk11 Cbk12

]

Also, let Σj bew partitioned :

Σj =

 Σj1 0

0 Σj2


where Σj1 = diag

[
σjl, . . . , σj]

]
and Σj2 = diag

[
σj(r+1), . . . , σjv

]
. If σjr/σj(r+1) > 1 for

j = 1, 2, . . . , k, then the reduced order model w is given by

ẋbr(t) = Abrxbr(t) +
m∑

i=1
Nbrixbrµi(t) + Bbrµ(t)

ŷ(t) = Cbrxbr(t)
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where

Abr = diag [AbII , Ab211, . . . , AklI ]

Bbr =



B1

0
...

0


, Nbri =



0 0 · · · 0

N1i11 0 . . . 0
... . . . . . . ...

0 · · · N(k−1)i11 0


Cbr =

[
0 0 . . . 0 Cbkl

]

Bilinear Iterative Rational Krylov Algorithm (BIRKA)

Given anTinput bilinear dynamical k-power system A, N1, . . . , TNm, B, C where k is wthe

power of the system[21].

Nm =

 0 0

N(j−1)m 0


for 2-power bilinear system

N1 =

 0 0

N11 0

 , N2 =

 0 0

N12 0


2: Select initial wguess for reducedw system as Ā, N̄1, . . . , N̄m, B̄, Ċ. Also select the

stoppingw tolerance btol.

3. While ( relative changeT in eigenvalues of Ā ≥ btol):

a. RΛR−1 = Ǎ, T B̆ = B̌T R−T , Č = ČR, Ňk = RT ŇkR−T Tfor k = 1, . . . , m.

b. vec(V ) = w
(
−Λ⊗ In − Ir ⊗ A−∑m

k=1 ṄT
k ⊗Nk

)−1 (
B̌T ⊗B

)
w vec (Im).

c. vec(W ) = wTw
(
−Λ⊗ wIn − Ir ⊗ AT −∑m

k=1 Nk ⊗NT
k

)−1 (
ČT ⊗ CT

)
vec T (Ip).

d. Vr = wT orth(V ), wWr = orth(W ).

e.
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Ǎ =
(
W T

r Vr

)−1
TW T

r AVr

Ňk =
(
W T

r Vr

)−1
W T

r NkVr

B̌ =
(
W T

r Vr

)−1
W T

r B

Č = CVr

4. Ar = wĂ, Nkr = N̆k, Br = wB̆, Cr = wC̆.

5.

Nr1 = Nkr(:, 1 : r)

Nr2 = Nkr(:, r + 1 : 2r)

By iteratively improving rational Krylov subspaces, the BIRKA accurately preserves

system dynamics and maximizes computational efficiency when reducing bilinear systems.
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Resultswand Discussion

Thiswchapter details the implementation of MOR for k-power systems using two benchmark

examples from literature. It compares the output responses of theworiginal and reduced

systems, presents absolute error plots, and calculates computational times. The analyses

demonstrate MOR’s effectiveness in power system simulations.

4.1 Example 1: SISOwk-Power Bilinear System

Consider a single-input-single-outputw(SISO) 2-power wbilinear system consisting of two

subsystems as described in [22].

A1 =



−10 2

7 −10 2
. . . . . . . . .

7 −10


, B1 =



1

1
...

1



A2 =



−5 2

2 −5 2
. . . . . . . . .

2 −5


, N11 =



2 1

−1 2 1
. . . . . . . . .

−1 2


, C2 =



0
...

0

1



T
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Chapter 4. Resultswand Discussion

The original system has been reduced to 10 th-order and 2 nd-order model. The 10 th-order

reduced model, acquired through the BT and BIRKA algorithms, demonstrate remarkable

efficacy in encapsulating the original system dynamics. In contrast, the 2nd-order reduced

model, derived using both the BT and BIRKA methodologies, exhibits pronounced deviation

from the original system’s response. This divergence is evident across various aspects of

system behavior, encompassing both transient dynamics and steady-state characteristics.

Despite the computational efficiency offered by low-order models, the inherent simplifications

imposed by the 2nd-order reduction fail to encapsulate the full complexity wof the system

dynamics.

As the order of a system is reduced, it is commonly observed that the associated absolute

error increases, as shown in figure 4.6 and 4.7. The absolute error for 10 th order models at the

high frequencies, error is very low approximately 10−9 and, at low frequencies converges below

10−6. For 2 nd order model, absolute error for 10 th order models at the high frequencies,

error is very low approximately 10−5 and, at low frequencies converges below 10−1.

(a) The output y(t) wbehaviour of system to
step input u

(b) The output y(t) wbehaviour of system to
step input u

Figure 4.1: The simulation wresults of output responses original k-power bilinear system,
2nd order and 4th order reduced model.

Computational Time

In comparative analysis of two model reduction algorithms, a notable difference is observed
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Chapter 4. Resultswand Discussion

(a) Absolute Error of 2nd order ROM (b) Absolute Error of 10th order ROM

Figure 4.2: Absolute error plots of 2nd order and 4th order reduced model.

in their computational times. For the 10th order ROM, algorithm BT demonstrated superior

time efficiency, completing the model reduction task in 0.0393 seconds, whereas algorithm

BIRKA required 0.1716 seconds. The BT algorithm takes approximately 85.33% less time

than the original system and Birka algorithm takes approximately 35.94% less time than

the original system. These findings underscore both algorithms’ enhanced computational

efficiency, with the BT algorithm providing the most substantial time savings.

Sr.no System Type Order Computational
time (s) using BT

Computational
time (s) using
BIRKA

1 Original 200 0.2679 0.2679

2 Reduced 50 0.1027 0.1970

3 Reduced 10 0.0393 0.1716

4 Reduced 6 0.0363 0.0389

5 Reduced 4 0.0335 0.0359

6 Reduced 2 0.0317 0.2036

Table 4.1: Computational Time Comparison: Original system vs. ROMs
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4.2 Example 2: MIMO k-Power Bilinear System

In this wsection, the aforementioned algorithm in chapter 3 will wbe applied to an weleventh-

order 2-power system [23] with two inputs and two outputs. wThis example aims to illustrate

the results and interpretation of the derived wmodel reduction walgorithm. The system can

be represented by two subsystems in series and the bilinear representation with coefficient

matrices A, N1, wN2, B, and C can be utilized.

A =

 A1 0

0 A2

 N1 =

 0 0

N11 0


N2 =

 0 0

N12 0

 B =

 B1

0

 C =
[

0 C2

]

Assuming zero initial conditions, the original wsystem and the reduced-orderwmodels

were simulated with a step input signal for 20 seconds. Utilizing the BT and BIRKA MOR

algorithms, the original model was reduced to second-order and fourth-order models, each

consisting of two subsystems with orders 1 and 2, respectively. Response y1 and y2 are

shown in figure 4.3 for the step input u1 and u2 respectively, for the original 11th order

2-power system, and 2nd order reduced model. The 2nd order ROM obtained via the BIRKA

method closely aligns with the original system, nearly overlapping it, indicating an excellent

approximation that captures both transient and wsteady-state behavior effectively. For

the second-order model obtained via the BT method , the response closely aligns with the

original system during the transient state but diverges in the steady state. The BIRKA

method demonstrates good approximation compared to the BT algorithm.
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Chapter 4. Resultswand Discussion

(a) The output y1(t) wbehaviour of the sys-
temw to step input u1.

(b) The woutput y1(t) behaviour wof the sys-
tem to wstep input u2.

(c) The woutput y2(t) behaviour of the sys-
tem tow step input u1.

(d) The output y2(t)w behaviour of the sys-
tem to wstep input u2.

Figure 4.3: The wsimulation wresults of output responses of 2-power bilinear system and
2nd order reduced model
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Chapter 4. Resultswand Discussion

The fourth-order ROMs obtained via the BIRKA and BT methods in figure 4.4 closely

align with the original system, nearly overlapping it. The reduced models effectively capture

both the transient and steady-state behaviors, demonstrating that the essential dynamics of

the original system are preserved.

(a) The woutput y1(t) behaviour wof the sys-
tem to step winput u1.

(b) The woutput y1(t) behaviour wof the sys-
tem to wstep input u2.

(c) The woutput y2(t) behaviourw of the sys-
tem to step input u1.

(d) The woutput y2(t) behaviour ofw the sys-
tem to step input u2.

Figure 4.4: The simulationw results of output responses of 2-power bilinear system and 2nd
order reduced model

Figure 4.5 shows the absolute errors plotted against time. The absolute error using BT

method stays close to 100 for 2 nd order model throughout the simulation time interval,

T =
[

0 20
]

seconds. Since at the high frequencies, error is very low approximately 10−4

and, at low frequencies converges below 100. The absolute error for BIRKA algorithm

converges to 10−2. The absolute error graph reveals that the BT algorithm, despite its

efficiency, has higher error values, indicating a less accurate representation of the original
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Chapter 4. Resultswand Discussion

system. The BIRKA algorithm shows lower absolute errors, suggesting a more accurate

reduced model.

(a) Absolute Error y1 to u1. (b) Absolute Error y1 to u2.

(c) Absolute Error y2 to u1 (d) Absolute Error y2 to u2

Figure 4.5: The simulation results absolute errors of 2nd order model

When the originalwsystem is reduced to a 4th order model, both the BT and BIRKA

algorithms achieve identical absolute errors, indicating that the reduced models have the same

level of accuracy. This demonstrates that both algorithms are equally effective in preserving

the essential dynamics of the original system. However, the BT algorithm completes the

reduction process significantly faster than the BIRKA algorithm.

Computational Time

Tic toc function was used to measure the computational time. To calculate the computational

time, original and reduced order models were simulated using ode15s solver in MATLAB,

and the time taken in simulation was measured. The Balanced Truncation (BT) algorithm
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(a) Absolute Error y1 to u1. (b) Absolute Error y1 to u2.

(c) Absolute Error y2 to u1 (d) Absolute Error y2 to u2

Figure 4.6: The simulation results absolute errors of 4th order model
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takes approximately 63.23% less time than the BIRKA algorithm for reducing the system

to a 4th order model. Specifically, BT takes 0.0158 seconds compared to BIRKA’s 0.03334

seconds. The BT algorithm takes approximately 55.79% less time than the BIRKA algorithm

for generating the second-order reduced model. The BT algorithm performs better in terms

of computational efficiency, as it completes the reduction process significantly faster than

the BIRKA algorithm.

Sr.no System Type Order Computational
time (s) using BT

Computational
time (s) using
BIRKA

1 Original 11 0.555350 0.555350

2 Reduced 10 0.0177 0.041734

3 Reduced 8 0.0168 0.037642

4 Reduced 6 0.0163 0.035158

5 Reduced 4 0.0158 0.033340

6 Reduced 2 0.0139 0.031430

Table 4.2: Computational Time Comparison: Original system vs. ROMs
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Chapter 5

Conclusion and Future Work

In this research, two structure-preserving dimension reduction algorithms based on projec-

tion techniques for k-power bilinear systems are introduced. These algorithms ensure an

approximate werror bound and maintain BIBO stability wunder specific conditions.

As the system order decreases, the BT algorithm demonstrates faster computational times

but may deviate from the original system’s response. This efficiency makes BT suitable for

applications requiring rapid iterative analyses or real-time simulations.

While BT is efficient, BIRKA shows competitive accuracy, providing overlapping results. The

choice between BT and BIRKA depends on the application’s specific needs. For scenarios

prioritizing computational speed with acceptable accuracy for lower-order models, BT is

robust. Conversely, for applications where precision is critical and longer simulation times

are acceptable, BIRKA is effective.

Future research will involve modeling and simulating an actual physical power system, ap-

plying these model order reduction techniques to achieve similar benefits. This approach

aims to reduce complexity and simulation time, while improving computational efficiency,

manageability, scalability, and applicability in real-time.
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