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Abstract 

Currently, climate change, floods, and other extreme weather events are becoming 

increasingly common, resulting in significant impacts on society. Predicting streamflow 

is essential for effective hydrology and water resource management. Accurate and timely 

predictions of streamflow help in water allocation, flood forecasting, and reservoir 

management. Forecasting streamflow in cold regions presents challenges due to the 

significant annual and the seasonal changes in the natural processes occurring within 

catchments. The research aims to contribute to the understanding of stream flow 

dynamics in scarcely gauged catchments and to offer significant perspectives regarding 

water resource management in the study area. The purpose of this study is to evaluate the 

application of ANN and Snowmelt run off model for streamflow prediction over scarcely 

gauge catchments like Astore river, Hunza and Gilgit river. For this purpose, Climatic 

variable data, including precipitation, temperature and Observed Streamflow data are 

obtained from reputable sources like Meteorological-Department and Water & Power 

Development Authority in Pakistan. Snow covers data from MODIS imageries and DEM 

from USGS earth explorer. Three different ANNs models are implemented, The Keras 

Sequential Feedforward Single Layer Perceptron (SLP) Model, The Keras Sequential 

Feedforward with Backpropagation Model Multi-Layer-Perceptron and Radial-Basis-

Function Models are used. In results Multi-Layer Perceptron (MLP) model performed 

effectively and yielded the best results R^2 98% and NSE 99% during the validation and 

testing phases as compared to others. The findings of this research indicate the 

effectiveness of artificial neural network models in capturing the complex relationships 

between climatic variables, snow cover/glacier dynamics, and stream flow variability, 
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achieving high predictive accuracy across different temporal scales and spatial locations 

within the study area as compared to Snowmelt runoff model. 
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CHAPTER 1 

INTROUDCTION 

1.1 Introduction 

The increasing frequency of climate change-induced anomalies, including floods 

and erratic precipitation patterns, poses significant challenges to water resource 

management in mountainous regions such as the Hunza and Astore Valley of Gilgit 

Baltistan in Pakistan. Streamflow prediction plays a crucial role in mitigating the adverse 

impacts of these hydrological hazards by facilitating informed decision-making in water 

allocation, flood forecasting, reservoir management, and ecological preservation. 

However, accurate streamflow prediction in data-scarce mountainous catchments 

presents a formidable challenge due to the complex hydrological processes and limited 

availability of observational data. Addressing these challenges requires the development 

and application of advanced modeling techniques capable of capturing the intricate 

interactions between meteorological, glaciological, and hydrological processes. In recent 

years, ANN (Artificial Neural Network) has become an effective resource for streamflow 

prediction, leveraging the computational capabilities compelled by the framework and 

functioning of neural networks that are biological. The versatility of these models lies in 

their ability to learn complex patterns and relationships from data, handle nonlinearity, 

and generalize well to unseen conditions. Previous studies, such as those carried out by 

(Zheng and Mahmood, 2018 and Abid et al.,2014), have established the effectiveness of 

ANN models in forecasting runoff from various catchment areas, including the Waikato 

River in New Zealand and water reservoir discharge in Pakistan. By incorporating 
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climatic variables, snow cover/glacier dynamics, and observed streamflow data, ANN 

models offer a promising approach for streamflow prediction in scarcely gauged 

mountainous catchments. However, while ANN models provide valuable insights into 

streamflow dynamics, they are not without limitations. Data scarcity, non-stationarity of 

hydrological processes, and uncertainties in model calibration pose significant challenges 

to their application in mountainous regions. Furthermore, the reliance on empirical 

relationships may limit the interpretability and transferability of ANN models, 

particularly in ungauged catchments and future climate scenarios. Addressing these 

challenges requires a holistic approach that integrates data-driven modeling techniques 

with physical models, like the Snow Melt Runoff (SRM), to enhance reliability and 

robustness of streamflow predictions. By leveraging a diverse range of input datasets, 

including climatic variables, snow cover/glacier dynamics, and observed streamflow data, 

this research aims to enhance the accuracy and consistency of streamflow predictions in 

data-scarce mountainous catchments. By conducting thorough model calibration, 

validation, and comparative analysis, this study aims to highlight the strengths and 

weaknesses of various modeling approaches, offering valuable insights for water resource 

management and strategies to adapt to climate change in the region. 

The Indus Basin, a significant river basin in Asia, supplies over 70% of water to the 

Pakistan’s dry and low-lying areas (Mukho et al., 2015). Anchored in the Hindukush-

Karakoram and Himalaya (HKH) mountain ranges, the Indus River's sustenance chiefly 

relies on snow and glacial melt water (Adnan et al., 2017). The Indus River's water 

supply holds multifaceted importance, serving as a critical resource for irrigation, 

electricity generation, and a significant source of clean water for downstream populations 
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(Immerzeel et al., 2009). The designation of the Hindukush-Karakoram-Himalaya (HKH) 

region as the "water tower of Asia" underscores its pivotal role, as warming trends in this 

area raise serious environmental concerns and garner substantial scientific attention. The 

far-reaching impacts of global climate change have deleterious effects on snow and 

glaciers within Pakistan's HKH domain, which contributes more than half to the total run-

off of the Indus River basin (Ashraf et al., 2012). The evolving flow patterns, influenced 

by climate change and other factors, have the potential to intensify tensions between 

provinces. Downstream areas, particularly the Sindh province, face the dual challenges of 

reduced water availability during dry seasons and heightened flood risks in wet seasons. 

Over the past three decades, the HKH region has experienced an increase in temp of 

1.5°C, twice the (0.7 ºC) observed in further areas of the country (Rasul, 2012). In an era 

marked by mounting populations, the repercussions of global warming, and the 

detrimental impact of pollution on water quality, the significance of Earth's most precious 

resource, water, is consistently escalating. This intensifying importance stems from the 

expanding demands across residential, industrial, and agricultural sectors acknowledge 

these trends (Yeleliere et al., 2018). The principal origin of freshwater rests in 

precipitation, manifested through rainfall or snowfall. Notably, mountains experience 

substantial levels of both rain and snow, rendering them the primary well-spring of fresh 

water. 

The pivotal role of snow-covered regions lies in the phenomenon of snow-induced 

runoff, catalyzed by snowmelt, which predominantly initiates during the spring season 

coinciding with amplified requirements for water (Krishna et al., 2011). Over one-sixth 

of the global population relies the water sourced originating by snowmelt for their water 
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supply. The prevailing and foremost challenge confronting the world today is the 

phenomenon of climate change and its intertwined aspect of global warming. The 

repercussions of this environmental transformation on water supplies are notably diverse 

and often unpredictable. As we progress toward the conclusion of the current century, 

substantial alterations in climate patterns are anticipated due to the persistent escalation 

of greenhouse gas emissions. The trajectory of climate change is an unequivocal 

certainty, driven by the escalating global mean temperatures and the profound alterations 

inflicted upon the atmosphere's chemical composition by human activities. The elevated 

mountainous terrain has borne a substantial brunt of the repercussions of global climate 

change in the recent decades. Notably, snow, glaciers, and permafrost exhibit heightened 

vulnerability to shifts in climatic factors due to their closeness to melting thresholds. 

Indeed, one of the most conspicuous outcomes of rising temperatures is the 

transformation in the presence of ice and its cascading effects on the physical dynamics 

of elevated mountain systems (Haberli, 1990).  

Snowmelt and glacier-melt derived water sources are indispensable for over one-sixth of 

the global populace's water provisioning. The prevailing paramount challenge 

confronting the world pertains to the events of global climate change. This environmental 

upheaval's repercussions on water supplies, specifically, exhibit a marked propensity for 

diversity and unpredictability. The trajectory towards the century's conclusion portends 

substantial climate alterations, attributed to the relentless surge in greenhouse gas 

emissions. The inevitable continuity of climate evolution is a foregone conclusion, 

substantiated by the ascending global mean temperatures, propelled by profound 

alterations in the atmospheric chemical composition induced by human activities. Over 
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recent decades, the elevated mountainous milieu has borne a pronounced impact of global 

climate change. Notably, the transformative effects of shifts in air conditions hold 

resonance for snow, glaciers, and permafrost due to their proximity to critical melting 

thresholds. In essence, one of the most perceptible outcomes of escalating temperatures 

could manifest as alterations in ice occurrences and their cascading ramifications for the 

upward trajectory of temperatures, coupled with shifts in precipitation patterns, amplifies 

the hydrological cycle, leading to increased stream flow volume and its temporal 

distribution across the year. This phenomenon, however, gives rise to notable water stress 

(Houghton et al., 2021). Kundzewicz et al., (2007) depicted the discharge within glacier-

fed rivers is anticipated to experience an initial upsurge, followed by a decline over the 

ensuing decades due to the gradual diminution of ice storage. This underscores the 

pivotal role of temperature fluctuations in governing the allocation of precipitation. 

Precipitation, whether in the form of snow, rain, glacier melting, or a combination 

thereof, significantly contributes to freshwater reserves. The reduction in glacier coverage 

across mountainous regions has become pronounced due to ongoing global warming 

trends. A recent investigation by the United States Geological Survey, utilizing historical 

glacier data and imagery from NASA's TERRA satellite's ASTER instrument, indicates 

noteworthy reduction in the size of mountain glaciers within areas such as the Andes, the 

Himalayas, the Alps, and the Pyrenees during the last ten years (Wessels et al., 2002). 

These findings align with the widespread conclusions drawn from various glacier studies 

conducted globally, all of which highlight the rapid pace of glacial retreat in recent times. 

Meier (1997) conducted a comprehensive study that encompassed more than 200 glaciers 

and found a global retreat in glaciated area ranging from 6,000 and 8,000 km² between 
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1960’s and 1990’s. Hoelzle (2001) from the organization which monitors the Glaciers of 

the World (WGMS) noted that observations spanning the past century unmistakably 

demonstrate a global-scale reduction in mountain glaciers. Their findings indicate that 

this trend reached its zenith in the early 20th century, followed by a resurgence in glacier 

growth around 1950. However, during the 1980s, the pace of glacier retreat escalated 

once again, exceeding the scope of pre-industrial variability. The IPCC's Second 

Assessment Report (1996), based on comprehensive scientific research, forecasted that 

approximately 25% of the total mass of mountain glaciers worldwide might vanish by 

2050, and as much as 50% by the year 2100 (Rees and Collins, 2004). IPCC's (2007) 

report further highlighted that in certain moist tropical areas and high latitudes, annual 

average river discharge and water availability might witness a rise of 10–40% by the mid-

century, while in select dry regions and mid-latitudes, they could decline by 10–30%. 

Presently, over 16% of the global population live in these areas that depend on meltwater 

from major mountain ranges for sustenance; nevertheless, projections indicate a decline 

in water reservoirs stocked in glaciers and snow cover throughout the 21st century. 

Situated between 24° and 38° N and 61° and 78° E, Pakistan stands as one of the many 

developing nations in the region. The country heavily relies on snow and ice melts in its 

mountainous areas to fill a huge portion of its freshwater supplies. However, the 

susceptibility of this water source to climate variations introduces various potential 

impacts. Pakistan's vulnerability is heightened due to its substantial reliance on 

uninterrupted river flow for sustained water access and power generation. The Indus 

River, originating in northern Pakistan and terminating at the Arabian Sea in the south, 

forms a pivotal component of this system (Hayat et al., 2019). Given Pakistan's diverse 
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climatic conditions, the ramifications of climate change could be particularly pronounced. 

The complex interaction between melting snow and glacier runoff within the Indus Basin 

bears great significance for the agricultural-based economy of the country (Archer et al., 

2010). 

1.2 Objectives 

 These are the following objectives of the study are: 

 Application of ANN models for accuracy assessment to predict streamflow 

using multiple data limitation scenarios over complex hydrology catchments 

(i.e. scarcely gauged and high-altitude snow and glacier covered). 

 Comparison of ANN models with physical based hydrological models (i.e. 

Snowmelt Runoff Model) under data limitation scenarios. 
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CHAPTER 2 

LITERATURE REVIEW 

The methods for predicting river flow in frigid areas were established in early 

1970s, when advancements in calculating technology enabled the calculations of large 

data sets through digital techniques (WMO, 1975; Singh, 2018). The field of hydrology 

has witnessed a surge in research focusing on stream flow prediction methods, driven by 

the growing urgency to address water resource management challenges exacerbated by 

climate change. Various approaches, including empirical, physical & data models, have 

been employed to forecast stream flow accurately. Among these, ANN models have 

garnered significant attention for their capacity to handle complex nonlinear relationships 

inherent in hydrological data. 

The progress in technology today enables researchers to create insightful simulations of 

the interrelated hydrological processes that play a role in river flow within the water 

cycle. The progress in technology facilitates effective implementations of flood analysis, 

assessment and the evaluation of climate change effects on water resources (Cunderlik 

and Burn, 2003; Velázquez et al., 2013; Kouchak et al., 2015).  

The administration of water resources is facing an escalating burden as a consequence of 

the rising population and the diverse demands for water across various sectors, including 

agriculture, industry, domestic use, recreation, and environmental needs. Furthermore, 

climate change serves as a significant challenge for river flow forecasting and 

hydrological modeling, as rising temperature correlates with alterations in precipitation 

patterns, snow dynamics, and soil in-filtration processes. These changes impact both the 

https://cdnsciencepub.com/doi/10.1139/er-2021-0043#core-ref35
https://cdnsciencepub.com/doi/10.1139/er-2021-0043#core-ref35
https://cdnsciencepub.com/doi/10.1139/er-2021-0043#core-ref126
https://cdnsciencepub.com/doi/10.1139/er-2021-0043#core-ref2
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volume and seasonal distribution of the stream-flow in colder regions (Aygun et al., 

2020). 

A study done by Zaghlou et al., (2022) on simulating river discharge in frigid and 

unmonitored areas. The Study review of different methods of the modelling river flow in 

ungauged basins to overcome this restriction, "Predictions in Ungauged Basins" initiative 

provides various studies focused on enhancing forecasting accuracy. This includes the 

use of regression, calibration, interpolation techniques. Process models have significantly 

improved by integrating remote sensors for data to reproduce and analyze complex 

processes. Moreover, the empirical models that rely on observed data for graphical 

solutions rather than mathematical formulations are increasingly being enhanced by 

advancements in machine learning, leading to remarkable forecasting accuracy. Snow 

cover data from remote-sensing maps (MODIS) can be utilized to calculate snowmelt in 

hilly regions. The study conducted by Hayat et al., (2019) emphasis is on predicting 

streamflow in the Astore and Hunza basins located in the Hindukush Karakoram 

Himalayan region through the application of the Snowmelt Runoff Model (SRM) Climate 

forecasts derived from both global and regional modeling approaches (Representative 

Concentration Pathways; RCP 2.6, 4.5, and 8.5) were integrated to SRM for assessing 

effects on water resources. Tthe successful application of this approach indicates that the 

SRM could be effectively used to simulate annual stream flow trends in mountainous 

watersheds characterized by snowmelt dominance. It is very important to recognize that 

model uncertainty tends to increase significantly with longer forecasting horizons. 

Renaud and Robert (2022) focused on stream-flow forecasting, specifically for one to 

seven days ahead by using an ANN model into northeastern U.S. watersheds. They 

https://cdnsciencepub.com/doi/10.1139/er-2021-0043#core-ref11
https://cdnsciencepub.com/doi/10.1139/er-2021-0043#core-ref11
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employed a basic modeling framework, generating training and validation data with 

deterministic distributed model spanning 16 summers (2000-2015). To evaluate how 

different input variables affect forecasting accuracy, the study analyzed the ANN model's 

performance with various combinations of input data. The input datasets included the 

deep-soil moisture, the surface-soil-moisture and the streamflow from the previous day, 

and a combination of surface soil moisture and antecedent observed stream flow. The 

findings indicated that the most effective combination for enhancing forecast accuracy 

involved using soil moisture content alongside observed stream flow for both watersheds. 

Dolling and Eduardo (2002) worked on using artificial neural networks to predict 

monthly streamflow in mountainous watersheds. The process involves selecting input 

variables and the variables for training and testing the neural model. Applying artificial 

neural networks to streamflow prediction entails making decisions on four main aspects: 

choosing the most relevant variables for explaining runoff, designing optimal network 

architecture, selecting the best learning strategy, and choosing the system that most 

accurately reflects the stream flow patterns. It is crucial to create a systematic procedure 

to develop a network that captures the majority of predictable patterns in the data and can 

accurately represent different scenarios not included in the training data. The 

methodology first involves selecting the most relevant variables which are input & 

output, as well as choosing the learning, testing, and validation datasets for analysis. 

Proper collection and analysis of relevant information is essential in order to obtain 

accurate and representative data for the modeling process. This initial step is crucial, as 

the entire process relies on the quality of the data (Linsley et al., 1988). The second step 

involves selecting the output variables. Model 1 has only one output variable, while 
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Model 2 uses seven output variables at seven different months from July to January. The 

next step is selecting the input variables that affect the streamflow order. Following this, 

the data sets are divided into three groups wet, normal and dry on the quantity of water in 

the stream during specific time periods. The model uses 40% of the data for learning and 

validation, and 20% for testing. The next step involves selecting the model, which 

includes defining the architecture, training process, validation, and determining the 

optimal model. The Cascade-Correlation algorithm, introduced by Fahlman and Lebiere 

(1990), suggested for determining the quantity of neurons in the hidden layer (Zell et al., 

1995). The training, validation, and testing sets remain consistent across the five different 

model types mentioned earlier. Subsequently, the weights needed to achieve the desired 

output from the ANN models Determinations are made through a process of learning that 

utilizes the input variables. The optimal set of weights minimizes objective which means 

square error. Following this, model validation occurs, during which the weights are fine-

tuned to reduce the Root- Mean-squar-Error. This methodology effectively produced a 

model for the stream flows prediction in Argentina, using climatological data from the 

Pachon meteorological station at an altitude of 1900 meters. The San Juan River basin is 

situated in a mountainous area of the Andes, where precipitation primarily falls as snow. 

The network was primed with arbitrary values between ±1, and the convergence of the 

propagation was analyzed, testing various rates for learning and coefficients. The final 

values were 0.9 and 0.7. Results were presented in tables and graphs, concluding that the 

neural network models demonstrated superior performance in predicting monthly spring 

and summer streamflow compared to alternative methods. This proposed approach offers 
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significant advantages for management of water resources for irrigation and hydroelectric 

power generation. 

Abid et al., (2014) measure the water discharge at Hemren Reservoir as a case study for 

utilizing artificial neural networks to manage and forecast water reservoir discharge. The 

prediction of various hydrological phenomena is crucial for effective water resource 

management. From an engineering perspective, accurately forecasting components of 

natural reservoirs, such as inflow, is essential for multiple applications. The resulting 

techniques vary greatly depend on the purposes and the characteristic’s and also on data 

the best methods is to overcomes the uncertainty to predict the Hemren reservoir inflow 

was used the Artificial neural networks approach has adopted. The datasets used include 

monthly discharge and precipitation data, specifically focusing on the intensity of rainfall 

in the intermediate catchment area between the Hemren and Derbendi Khan dams. 

Various network configurations were tested for employing a comprehensive dataset 

spanning 24 years (1980-2004), for training and testing purposes. The model featured 

three input layers, with 40 neurons distributed across two layers which are hidden and the 

output layer. The correctness of model was assessed by using Mean-Square-Error (MSE) 

and the correlation coefficient. The network was successfully trained, achieving 

convergence at an MSE of 0.027 through the early stopping method. The training and 

testing phases yielded (0.97, 0.77) coefficient correlations indicating a high level of 

accuracy for the prediction technique. 

Zheng and Mahmood (2014) conducted research on implementing an ANN structure to 

predict overflow in Waikato-Catchment area in the New-Zealand. The effective use of 

the ANN technique, similar to other modeling methods, depends on the careful selection 
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of input variables. This River is the very longest in New-Zealand's North Island, 

stretching approximately 425 km and featuring eight dams and nine hydroelectric 

stations, making it economically significant for the country (Abbas & Saad 2014). 

The study utilized daily rainfall and runoff data spanning 10 years, starting from May 24, 

2002. The arithmetic mean method was applied to determine average values, with data 

sourced from the Whangamarino Control Structure, which covers a large portion of the 

catchment area. The MATLAB neural network tool was employed for the runoff 

prediction model. A feedforward neural network (FFNN) was used, incorporating the 

backpropagation algorithm, which is widely utilized in hydrological applications 

(Adamowski et al. 2012). 

In this study, the choice of transfer function for the ANN was critical. The hyperbolic 

tangent purpose is to select hidden-layer neurons, transforming inputs from negative to 

positive infinity into outputs ranging from -1 to 1. Linear function was employed, 

producing outputs within a negative to positive infinity range. 

The process of neural network based on initial weights and stopping criteria, this is 

categorized into three distinct subsets: training, testing and validation. Training 

subcategory was used to calculate and update the biases and the weights, while validation 

subcategory helped stop training when the squared error reached its minimum. The 

testing subset evaluated the network's performance. The backpropagation algorithm 

adjusted weights and biases to minimize error, with the Levenberg-Marquardt Algorithm 

(LMA) chosen for training. 
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A graph was created to illustrate the flow duration curve, categorizing flows from high to 

low discharge. The research employed the correlation coefficient (R²), root mean square 

error (RMSE), and Nash-Sutcliffe Efficiency (NSE) as metrics to evaluate the 

performance of the model. Two techniques for selecting input vectors were applied: the 

sequential and pruned time series along with a non-sequential time series approach. 

Ultimately, this model using non sequential technique and retrieve the highest R2 while 

minimizing error. 

A pivotal contribution to the validation of snowmelt runoff simulations was achieved 

through an examination of the Beas River basin, situated at the Pandoh Dam in India 

(Duan et al. 2019 and Prasad & Roy, 2005). In this endeavor, the basin's topography was 

meticulously subdivided into 12 elevation zones, each with a maximum elevation of 500 

meters. Utilizing input parameters extracted from diverse sources such as satellite data, 

hydro-logical data, meteorological data and the existing maps, measured and estimated 

runoffs displayed compelling consistency, affirming the efficacy of the model. 

Additionally, the application of SRM extended to the Astore River, a component of 

northern Pakistan's Upper Indus Basin, as investigated by Butt & Bilal (2011). This study 

further exemplified SRM's versatility and viability in simulating snowmelt runoff 

dynamics within distinct geographical contexts. To validate the effectiveness of a 

synergistic application involving the Snowmelt Runoff Model and data obtained through 

remote sensing for modeling the daily variations in streamflow within catchments 

characterized by significant snow presence, a comprehensive examination was 

undertaken in North-East Region of the Iran (Ha et al. 2021; Firouzi et al., 2016). 
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Within the extensive body of literature, a multitude of studies have undertaken an 

assessment of the efficacy of the SRM in gauging streamlining simulations across diverse 

basins worldwide (Azmat et al. 2015). An exemplary instance involves the selection of 

SRM to model and predict daily discharge for multiple basins within the Spanish 

Pyrenees (Gómez-Landesa & Rango, 2002). In this endeavor, the snow cover image is 

derived through a linear pairing of channels 1 and 2 in NOAA. SRM is used to generate 

real-time forecasts with area snow cover as a key input. The results from these analyses 

based on SRM significantly contributed to enhancing water resource management 

practices for hydropower companies operating in the Spanish Pyrenees. Similarly, the 

applicability of SRM was extended to Nepal’s hilly river basins, where it showcased its 

potential in water resources planning & management (Nayak et al. 2007; Dhami et al., 

2018).  
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CHAPTER 3  

STUDY AREA 

This area comprises of three River basins, the Astore, Gilgit and Hunza River, which are 

part of the mighty (UIB) Upper Indus Basin. The Sub-Indus basins serve as the unique 

hydrological characteristics and significant relevance to water resource management in 

the country.  

Figure 3.1 Study Area map of Astore, Gilgit and Hunza Rivers 
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These regions are characterized by their high altitude, rugged terrain, and intricate 

network of rivers originating from snowmelt and glacier-fed sources.   The Hunza River, 

originating from the Khunjerab Glacier and Gilgit River originating the journey begins at 

Shandur Lake and continues until it merges with the Indus River in proximity to the 

towns of Juglot and Bunji and the Astore river originates on the western slopes of Burzil 

Pass. The Gilgit River basin, which has a large drainage area is situated in Pakistan's 

Gilgit-Baltistan region, on the eastern side of the Hindukush Range. This valley extends 

southeast before draining into the enormous Indus River. At the Alam Bridge 

hydrometric station, the river's discharge is constantly observed. Geographically, the 

basin is located between 35.80°N and 36.91°N latitudes and between 72.53°E and 

74.70°E longitudes. From towering peaks that soar as high as 7,730 meters to low-lying 

plateaus that are 1,250 meters above sea level, the elevation within the basin varies 

widely (Ali, 2017). The basin's topography comprises diverse features, with a substantial 

portion of about 982 km² located at elevations exceeding 5,000 meters. A significant 

proportion of the basin, approximately 8%, is covered by glaciers, making up 

approximately 4% of the entire Upper Indus Basin's cryosphere extent. This icy domain 

is characterized by approximately 944 km2 of clean glacier area and an additional 146 

km2 covered by debris.  These rivers play pivotal roles in sustaining the local ecosystems 

and supporting agricultural livelihoods. These rivers traverse through valleys renowned 

for their scenic beauty and cultural heritage, attracting both tourists and researchers 

interested in the region's hydrological dynamics. 
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Figure 3.2 Geographical location of Astore River Basin in Upper Indus River Basin. 

These are significant water tributaries situated in Upper-Indus-River basin in Northern 

Pakistan. The length of the Gilgit River is 240 km and Astore river is 220 km and Hunza 

River is 190 km. The Hunza River catchment, covering a substantial drainage area is 

situated in high-altitude central Karakoram region of Pakistan. Its geographical 

boundaries extend from 36.05°N latitude to 37.08°N latitude and 74.04° E longitude to 

75.77°E longitude, encompassing a breathtaking landscape. The mean catchment 

elevation is 4,631 meters, accentuating its high-altitude characteristics. The elevation 

within the basin exhibits a remarkable range, spanning from 1,432 meters above sea level 

to towering peaks reaching as high as 7,849 meters. Within the basin, a vast portion of 

about 4,152 km2 is covered by glaciers, signifying the significant cryosphere influence in 

the region. These glaciers serve as vital reservoirs of freshwater, supplying water to the 

river and contributing to the region's overall hydrology. The Hunza River basin has 
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around 1,384 glaciers. It encompasses a glacier area of 3,673.04 km2 and a debris covered 

area of 479.56 km2 (Ali, 2017). 

 

Figure 3.3 Geographical location of Hunza and Gilgit River Basins. 

The hydrology of these regions is heavily influenced by seasonal variations in 

precipitation, snowmelt, and glacier dynamics, making stream flow prediction a 

challenging yet imperative task. With climate change projections indicating alterations in 

precipitation patterns and glacier retreat, understanding the hydrological processes 

governing these regions is crucial for adapting to future water resource scenarios. 

Additionally, the scarcity of hydrological data in these remote and mountainous regions 

presents a significant challenge for traditional modeling approaches, necessitating the 

utilization of innovative techniques, for example ANN models for stream flow forecast 

(Alqurashi, M. 2021). This seasonal fluctuation in SCA has significant implications for 
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snowmelt runoff, which, in turn, influences the river's flow and water availability 

downstream. It is contributed by two primary weather systems: westerly disturbances and 

the summer monsoon. The region receives rainfall and snowfall from westerly 

disturbances during the winter months. In contrast, the summer monsoon brings 

moisture-laden winds that lead to heavy rainfall in the basin, replenishing its water 

resources and supporting the ecological balance. The Gilgit River basin is home to an 

impressive number of glaciers and glacier lakes, adding to the basin's hydrological 

complexity. A total of 585 glaciers and 605 glacier lakes are scattered throughout the 

landscape. Among these glacier lakes, eight are identified as potentially dangerous due to 

GLOFs, which can present serious risks to downstream communities and infrastructure 

(Amjad, 2023). Understanding the undercurrents of glacier, lake, and their interactions 

considering the weather and hydrology is of paramount importance. As climate change 

continues to exert its influence on this sensitive region, accurate knowledge of the basin's 

cryosphere processes, and water resources is essential for sustainable water management, 

disaster risk reduction, and informed decision-making for the well-being of the 

communities that rely on the Gilgit River basin's resources. The upper Indus Basins hold 

strategic importance in Pakistan's water resource management landscape, serving as vital 

sources of freshwater for irrigation, hydropower generation, and domestic consumption. 

The viability of these water resources is vital for the socio-economic development of 

local communities and resilience of region to impact of weather change. However, 

susceptibility of these regions to hydrological risks including flooding and landslides 

underscores the need for accurate stream flow prediction models to inform early warning 

systems and disaster preparedness measures. 
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Despite the ecological and socio-economic significance of these regions, their 

hydrological dynamics remain relatively understudied, particularly in the context of 

stream flow prediction using advanced modeling techniques. This research aims to 

address this knowledge gap by concentrating on the application of ANN models for 

stream flow prediction, aiming to unravel the complex interactions between climate 

variability, glacier dynamics, and stream flow regimes in these scarcely gauged 

catchments. Through an in-depth analysis of the study area's hydrological processes and 

the development of robust prediction models, this research endeavors to provide valuable 

insights for sustainable water resource management and strategies for adopting to climate 

change in the Hunza and Astore Valleys of Pakistan. 

3.2 Data Collection and Preprocessing 

Collecting high-quality data is essential for the success of any hydrological modeling 

endeavor, particularly in scarcely gauged catchments such as the Hunza, Gilgit and 

Astore Valley regions of Pakistan. Daily streamflow data was required to be used as an 

input in model for calibration and further validation purposes. This data was collected 

from the Water & Power Development Authority's (WAPDA) project of surface water 

hydrology. This research draws upon a diverse range of data sources to capture the 

complex hydrological processes driving stream flow dynamics in these mountainous 

regions. Climatic variable data, including precipitation, temperature, and humidity, are 

obtained from reputable sources such as the Pakistan Meteorological Department (PMD) 

and the Water & Power Development Authority (WAPDA). Digital Elevation Model 

(DEM) is used which is downloaded from USGS Earth Explorer. 
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Figure 3.4 Digital Elevation Model (DEM) 

These datasets provide valuable insights into the seasonal variations in meteorological 

conditions, which play a significant role in influencing stream flow through precipitation-

runoff mechanisms. 
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Figure 3.5 DEM showing area elevation zones. 

In addition to climatic data, snow cover and glacier dynamics are crucial factors affecting 

stream flow in high-altitude regions like these regions. MODIS snow cover imagery is 

utilized to extract information on snow cover extent and glacier mass balance, offering 

insights into the contributions of snowmelt and glacier runoff to stream flow regimes. 

The integration of remote sensing data into the modeling framework enhances the spatial 

representation of snowmelt and glacier dynamics, contributing to more accurate stream 

flow predictions in data-scarce environments. Observed streamflow data, obtained from 

monitoring stations operated by WAPDA, serve as the ground truth for model calibration 

and validation. These datasets provide invaluable information on the temporal variability 

of the stream flow in the study area, allowing for assessment of model performance and 
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refinement of prediction algorithms. However, ensuring the quality and consistency of 

observed streamflow data is paramount, requiring rigorous quality control and 

preprocessing procedures to identify and mitigate potential errors or inconsistencies. 

Preprocessing techniques such as data cleaning, outlier detection, and temporal 

aggregation are employed to improve reliability and accuracy of the input datasets. 

Missing data are interpolated using appropriate methods, while outliers are identified and 

either corrected or removed from the dataset to prevent them from adversely affecting 

model training and evaluation. Temporal aggregation is utilized to harmonize the 

temporal resolution of the input variables, facilitating the integration of disparate datasets 

into a cohesive modeling framework. Overall, the data collection and preprocessing 

phase of this thesis represents a critical step for ensuring the integrity and quality of input 

datasets used for stream flow prediction modeling in these regions. By leveraging a 

combination of climatic, remote sensing, and observed hydrological data, this research 

aims to develop robust prediction models capable of capturing the complex interactions 

between meteorological, glaciological, and hydrological processes driving stream flow 

dynamics in these scarcely gauged catchments. 
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CHAPTER 4  

METHODOLOGY 

The methodology employed in this research encompasses the development, 

training, and evaluation of ANN models and physical based hydrological model (SRM) 

for stream flow prediction in the Hunza, Gilgit and Astore rivers of Pakistan. Figure 4.1 

indicates the overall methodology framework of this research work. 

Figure 4.1 Methodology Flowchart 
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4.1 ANNs Architectures  

The first step in the methodology involves the design of ANN model architecture, 

including specification of input variables, concealed layers, and the output layer. The 

selection of in-put variables is informed by domain knowledge and previous research 

findings, with climatic variables like temperature, precipitation and inflow, as well as 

snow cover and glacier dynamics, identified as key predictors of variability of the stream-

flow in study area.   

 

Figure 4.2 Architecture of ANNs 

The number and size of hidden layers are determined through experimentation, with the 

goal of striking a balance between model complexity and generalization capacity. Once 

the ANN model architecture is defined, the next phase of the methodology entails data 
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preprocessing and model training. Preprocessing techniques, including data cleaning, 

outlier detection, and temporal aggregation, are applied to ensure the quality and 

consistency of the input datasets. The ANN model is then trained using a portion of the 

available data, with optimization algorithms such as the Adam optimizer utilized to adjust 

model parameters and minimize prediction errors. Training data is divided into training, 

testing and validation to assess model performance and prevent overfitting. Finally, the 

methodology includes a comparative analysis of ANN models with other stream flow 

prediction methods, such as the Snow Melt Runoff (SRM) model. By comparing the 

function of ANN models with alternative approaches, the study purposes are to evaluate 

efficiency and the reliability of ANN models in capturing the complex hydrological 

processes driving stream flow in scarcely gauged mountainous catchments. Overall, the 

methodology provides a systematic framework for developing and evaluating ANN 

models for stream flow prediction, offering valuable insights into the hydrological 

dynamics of these regions. These are the following ANN models that are used in this 

research. 

4.1.1 Keras sequential feedforward model, Single Layer Perceptron (SLP) Model 

It is among the earliest neural networks to be introduced by Frank Rosenblatt in 1958. It 

is known as ANN. The basic purpose of is to compute the logical gates such as AND, OR 

and NOR which have binary input and output.    

Perceptron functionalities are discussed below:  

 

 It takes input from input layer.  

 Weight and sum it up.   

 Transmit this sum to non-linear function for producing output.  
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Figure 4.3 Architecture of Single Layer Perceptron (SLP) ANN Model 

4.1.2 The Keras Sequential Feedforward with Backpropagation Model Multi-

Layer Perceptron (MLP) 

Once the input data is fed into the model it generates some results this process is called 

Feedforward and when these results is compared with the original values or target values 

this process is called Feedforward with back propagation model. The difference between 

the single-layer Perceptron model is that it has multiple number of layers the model has 

more chances to learn.  The activation function that is used is RELU rectified linear unit 

is used that is best to use to determine the nonlinearity in the data. The optimizer used is 

ADAM. An ANN called an MLP is consist of multiple layers of neurons, which are the 

fundamental building blocks of computation. Figure 4.4 explains the architecture of 

multi-layer perceptron model of artificial Neural networks. 
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Figure 4.4 Architecture of Multi-Layer Perceptron (MLP) ANN Model 

4.1.3 Radial Basis Function Network (RBF) Model 

The third model of ANN is RBF network model. It Capture non-linear relationship and 

improve the ANN's predictive performance for time series data. For function 

approximation problems. It is different from other networks in 3-layer architecture, fast 

learning speed and universal approximation. In this Research Article we will discuss the 

architecture, working and use of as non-linear classifier of the Redial Basis Functions 

Neural Network. It has special functions, and the class consists of 3 layers input, hidden 

and output layer.  It is different from other neural architectures, which has multiple layers 

and applying the non-linear activation functionalities. The first layer receives input and 

transmits it to the hidden layer for computation.  This layer is different and the most 

powerful layer from the network. The last layer is used for prediction tasks such as 
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regression and classification. Figure 4.5 displays the architecture of Radial Basis 

Function model of artificial Neural networks. 

 

Figure 4.5 Architecture of Radial Basis Function Network (RBF) Model 

 

4.1.4 Activation Function Rectified Linear Unit (ReLU): 

It is extensively utilized in deep learning because of its straightforwardness and 

efficiency. When the input is positive it gets outputs otherwise result zero. It has zero 

gradient for negative inputs and does not differentiate at zero, It demonstrates effective 

performance in practical applications and assists in alleviating the vanishing gradient 

issue. Activation functions are essential for allowing multilayer perception (MLPs) to 

address intricate challenges effectively. It provides non-linearity that allows the network 

to adjust weights after occurring errors. In the absence of activation functions, the 

network would lack the capability to represent the complex relationships present within 
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the data. The graphical representation of Rectified Linear Unit model is showing in 

Figure 4.6. 

Figure 4.6 activation function ReLU. 

4.2 Lose Function 

Model performance is assessed across different temporal scales and spatial locations 

within the study area to capture the variability in stream flow dynamics. Sensitivity 

analysis is conducted to recognize the most significant variables and assess the robustness 

of the ANN models under different environmental conditions. The following lose 

function evaluates the performance of ANN: 

Coefficient of determination (R²), Nash Sutcliffe Efficiency (NSE) 
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R2 is a measure which represents degree to which the independent variables explain the 

variability observed in dependent variables. The range is from 0 to1, when 1 it indicates 

will give a perfect model of data. The range of Nash-Sutcliffe efficiency from -∞ to 1 

with 1 correspond give a match between model and the original values. 

                     R2 = 1− Unexplained Variation ÷ Explained variation  

4.2 Hydro Modelling 

There are several appealing aspects to the idea of using regional hydrologic models to 

evaluate the effects of climatic change. First, there is no shortage of models that have 

been tested under various climatic and physiographic conditions, as well as models that 

are designed for use at different spatial scales and with different dominant process 

representations. This enables flexibility in determining and selecting the most suitable 

method to evaluate any region. Second, hydrologic models can be modified to fit the 

properties of the data that are currently available. The study purpose, model, and data 

accessibility have been the main determinants in choosing a model for a given case study 

among other variables. (Xu et al., 1999). 

All models do, in fact, have applications in various fields. However, the simpler models, 

which have a smaller range of applications, can deliver adequate results at a significantly 

lower cost, provided that the objective function is appropriate. The more complex 

models, which have a wider range of applications, may be expected to deliver adequate 

results. Simple and physically based distributed-parameter models can be classified 

according to their intended uses as well as their degree of sophistication, which can range 
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from low to high. The equivalent of selecting a suitable model is deciding when simple 

models can be used and when complex models must be used. (Xu et al., 1999). 

4.2.1 Snowmelt Runoff Model (SRM) 

To simulate and predict daily streamflow in mountain basins where snowmelt is a 

significant runoff factor, the Snowmelt-Runoff Model (SRM) was created. Most recently, 

it has been used to assess how a changing climate will affect seasonal snow cover and 

runoff. (Martinec, 1975) created SRM in little European basins. SRM has been used in 

ever-larger basins as a result of the development of satellite-based remote sensing of 

snow cover. (Martinec et al 1983). 

Over the past decades, hydrologists have been actively exploring viable methods to 

model snowmelt and its influence on runoff (Pokhrel et al. 2014). As a result, two 

primary approaches, namely the energy-balance method and the degree-day method, have 

been introduced. (Zhang et al., 2014; Rashid et al. 2023). The energy-balance approach 

emerges as a highly comprehensive technique, offering a holistic means to model and 

evaluate surface flow through the intricate energy exchange among snow, soil, and air. 

Nonetheless, its extensive data requirements pose a limitation, making its application 

unfeasible in basins with inadequate data availability (Abudu et al. 2016). Degree-day 

base models are more practical than energy-balance models, especially in basins with 

little available data (Tahir et al. 2011). The most important factor in this process, 

according to some researchers' studies, is temperature. Models using the degree-day 

approach are well known for being straightforward and have been successfully used in 

several studies (Xu 1999; Xie et al. 2013; Nourani et al 2021). 
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Snowmelt runoff model (SRM) is a degree-day-based model, designed to simulate the 

impact of snowmelt, where it is a significant proportion of the water supply on watershed 

daily runoff (Martinec, 1975). 

4.2.2 Structure of Model 

By adding estimations of snowmelt and rainfall runoff, which are then combined with 

recession flow, the Snow melt Runoff Model (SRM) computes the catchment's daily 

runoff data, the model is described by following Equation. 

 

In this equation  

Q = Discharge per day measured in [m3s-1]  

C = Cs and Cr are runoff coefficients for snow and rain respectively  

a = degree-day factor [cm oC-1 d-1]  

T = number of degree days [°Cd]  

S = the ratio of the total area that is covered in snow  

P = the precipitation that results in runoff [cm]  

A = Total area of catchments [km2]  

K = recession coefficient 
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CHAPTER 5  

RESULTS AND DISCUSSION 

The section dedicated to consequences and discussion in this thesis a 

comprehensive analysis of the ANN models and physical based hydrological Snowmelt-

Runoff-Model (SRM) for the stream-flow prediction in Hunza, Astore and Gilgit Valley 

regions of sub Indus basin of Pakistan. Drawing upon a diverse range of input datasets, 

including climatic variables, snow cover/glacier dynamics, and observed streamflow data, 

the ANN models are evaluated across different temporal scales and spatial locations to 

assess their effectiveness in capturing the complex hydrological processes driving stream 

flow variability. The first target is Astore river, Astore river has three metrological 

stations are the Rama station, Ratu station and Burzil station and have one-gauge station. 

The input data are split into seasonally (winter, monsoon and pre-monsoon) and annually 

(daily data).  

5.1   Inflow prediction results at Astore River: 

Stream flow prediction results are generated on Astore river and Table 1 presents the 

model result on Astore river. 

Table 5.1 Station 1 Results of Astore river 

  With Single Input Stations 

Models Annual Winter Monsoon Pre-monsoon 

Station 1 R
2
 NS R

2
 NS R

2
 NS R

2
 NS 

SLP 0.77 0.77 0.33 0.33 0.14 0.14 0.65 0.65 
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MLP 0.78 0.78 0.9 0.9 0.96 0.96 0.67 0.67 

RBF 0.45 0.45 0.3 0.3 0.38 0.38 0.52 0.52 

Table 5.1 provides the results of three different models (SLP, MLP, and RBF) used to 

analyse data at Station 1 along the Astore River across four distinct time periods: Annual, 

Winter, Monsoon, and Pre-monsoon. For each model, two performance metrics are 

presented: R² (coefficient of determination) and NS (Nash-Sutcliffe efficiency). 

Table 5. 2 Station 2 Results of Astore river 

Models Annual Winter Monsoon Pre-monsoon 

Station 2 R
2
 NS R

2
 NS R

2
 NS R

2
 NS 

SLP 0.52 0.52 0.83 0.81 0.42 0.42 0.59 0.59 

MLP 0.57 0.57 0.83 0.81 0.81 0.81 0.6 0.6 

RBF 0.45 0.45 0.29 0.29 0.33 0.33 0.73 0.73 

 

Table 5.2 provides the results of three different models (SLP, MLP, and RBF) used to 

analyze data at Station 2 along the Astore River across four distinct time periods: Annual, 

Winter, Monsoon, and Pre-monsoon. For each model, two performance metrics are 

presented: R² and NS. 

Table 5.3 Station 3 Results of Astore river 

Models Annual Winter Monsoon Pre-monsoon 

Station 3 R
2
 NS R

2
 NS R

2
 NS R

2
 NS 

SLP 0.57 0.57 0.17 0.17 0.32 0.32 0.65 0.65 

MLP 0.58 0.58 0.31 0.31 0.51 0.51 0.67 0.67 
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RBF 0.4 0.4 0.45 0.45 0.22 0.22 0.52 0.52 

Table 5.3 provides the results of three different models (SLP, MLP, and RBF) used to 

analyze data at Station 3 along the Astore River across four distinct time periods: Annual, 

Winter, Monsoon, and Pre-monsoon. For each model, two performance metrics are 

presented: R² and NS. This table highlights the varying degrees of model performance 

depending on the time of year, with MLP showing the most consistent and robust results 

overall. 

5.1.1 By Ensemble two stations data together 

To enhance the model productivity and to improve the model accuracy apply the 

ensemble technique, ensemble is a technique is using multiple number of models together 

to improve the model accuracy and lower the error in place of using single model alone. 

Table 4 presents the prediction results by ensemble two stations data and their multiple 

models together. 

Table 5.4 Prediction results of Astore river 

Ensemble Two Stations Models Together 

Models R
2
 NSE 

SLP 0.79 0.79 

MLP 0.99 0.98 

RBF 0.49 0.49 
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Table 5.4 presents the prediction results for the Astore River using an ensemble model 

that combines data from two stations. The performance of three different models SLP, 

MLP, and RBF is evaluated using two key performance metrics: R² and NSE. 

5.1.2 By Ensemble all stations models together 

Getting these results by ensembling all  three models results that run sepretly on 

seasonall and anuualy data of each station. The results shows that the multi layer 

Perseptron model give good results. Having R² value that is 0.99 and NSE value is 0.98. 

Table 5 presents the prediction results by ensemble all Astore river stations data and their 

multiple models togather. 

Table 5.5 Prediction results of Astore river 

Ensemble All Stations Together 

 Models R
2
 NSE 

SLP 0.79 0.79 

MLP 0.99 0.98 

RBF 0.59 0.59 

Table 5.5 presents the prediction results for the Astore River using an ensemble model 

that combines data from all stations. The performance of three different models SLP, 

MLP, and RBF is evaluated using two key performance metrics: R² and NSE. This table 

highlights the varying degrees of model performance depending on the time of year, with 

MLP showing the most consistent and robust results overall. 
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5.1.3 Graphical Representation of Results 

For graphical representation the scatter plot are used , the scatter plot shows the actual 

valuse on X-axis and the anticipated values on the Y-axis. A line represents the perfact 

estimate,  the estimated values matche the orginal values. These scatter plots are ploted 

on Astore river prediction results on all three stations,that are Rama, Ratu and Burzil 

stations. 

 

Figure 5.1 Scatter Plot on Observed and Predicted Inflow in Astore River. 

Figure 5.1 presents the scatter plot on observed and predicted inflow in deferent stations 

of Astore river. The green line shows the actual inflow and red lines shows the predicted 

inflow. The plot suggests good agreement between actual and predicted values, as most 

points fall near the diagonal line, though some deviations may be present for larger 

inflow values. 



 

40 

 

Figure 5.2 Scatter plot on Astore river all stations data 

Figure 5.2 presents the scatter plot on observed and predicted inflow in Astore river. The 

green line shows the actual inflow and red lines shows the predicted inflow. The plot 

suggests good agreement between actual and predicted values, as most points fall near the 

diagonal line, though some deviations may be present for larger inflow values. 

5.1.4 Hydrographs 

5.1.4.1 Hydrograph on Burzil station Inflow data 

Hydrographs are generated on the actual and predicted inflow data of all Astore river 

stations. A Hydrograph is a graphical representation of the flow rate or discharge over 
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time at a specific point in the river. It’s a way of displaying water level information over 

time. Figures 5.3,5.4,5.5 and figure 5.6 shows the Hydrograph on Burzil station ,Ratu 

station, Rama station and all stations ensemble results showing inflow data over time 

predicted vs Actual inflow. 

 

Figure 5.3 Hydrograph on Burzil station predicted vs Actual inflow 

 

Figure 5.4 Hydrograph on Ratu station predicted vs Actual inflow 
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Figure 5.5 Hydrograph on Rama station predicted vs Actual inflow 

 

Figure 5.6 Hydrograph on Astore river predicted vs Actual inflow 

5.2  Inflow Prediction on Gilgit River 

Over the Gilgit River basin, these are the results generated by applying ANN models on 

annual and seasonal data.    



 

43 

Table 5.6 presents the ANN models results on Gilgit river discharge. The highest 

efficiency of MLP model ws observed with R2 and NS coefficient values of 0.77 and 

0.79, on annual basis. Similarly, the efficiency of MPL model found much better during 

different seasons.  

Table 5.6 Prediction results of Gilgit River basin 

 Annual Winter Monsoon Pre-monsoon 

Models R
2
 NS R

2
 NS R

2
 NS R

2
 NS 

SLP 0.69 0.53 0.55 0.55 0.45 0.45 0.65 0.65 

MLP 0.77 0.79 0.81 0.81 0.96 0.96 0.67 0.67 

RBF 0.45 0.45 0.63 0.3 0.38 0.38 0.52 0.52 

  Table 5.6 presents the performance metrics for three models (SLP, MLP, and RBF) in 

predicting river discharge across different seasons for the Gilgit River Basin. The metrics 

used are R² (coefficient of determination) and NS (Nash-Sutcliffe Efficiency), with 

higher values indicating better performance. 

5.2.1 By Ensemble all models together  

The Table 5.7 depicts the efficiency of MPL model based on ensemble and shows highest 

efficiency with R2 and NS coefficient values of 0.99. 

Table 5.7 Prediction results of Gilgit river 

Model R
2
 NS 

MLP 0.99 0.99 
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5.2.2 Scatter Plot on Observed and Predicted Inflow of Gilgit River  

For graphical representation the scatter plot are used , the scatter plot presents the actual 

valuse on the X-axis and predicted values on the Y-axis. There is a line which illustrate 

the perfact prediction where the predicted values are exactly matches the actual value. 

 

Figure 5.7 Scatter plot on Gilgit river predicted vs Actual inflow 

Figure 5.7 present the scatter plot on observed and predicted inflow in Gilgit river. The 

green line shows the actual inflow and red lines shows the predicted inflow. The plot 

suggests good agreement between actual and predicted values, as most points fall near the 

diagonal line, though some deviations may be present for larger inflow values. 

5.2.3 Hydrograph on Gilgit River Discharge 
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Figure 5.8 Hydrograph on Gilgit river Predicted Vs Actual inflow 

Figure 5.8 present the Hydrograph on Gilgit river that represent the Predicted and Actual 

Inflow of different time series. The x-axis represents Time and y-axis represents Inflow. 

Hydrographs are generated on the actual and predicted inflow data of Gilgit river. 

5.3 Inflow prediction Results of Hunza River 

5.3.1 Inflow Prediction of Khunjerab Station 

Table 5.8 and 5.9 present the prediction performance of three models (SLP, MLP, and 

RBF) for river discharge using data from a single input station on the Khunjerab River 

and Ziarat river. Performance metrics include R² and NS, where higher values indicate 

better predictive accuracy. The MLP model is the most effective for predicting river 

discharge. 
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Table 5.8 Khunjerab river prediction results 

 With Single Input Stations 

Models Annual Winter Monsoon Pre-monsoon 

Station 1 R
2
 NS R

2
 NS R

2
 NS R

2
 NS 

SLP 0.67 0.67 0.63 0.63 0.74 0.74 0.65 0.65 

MLP 0.78 0.78 0.91 0.91 0.92 0.92 0.67 0.67 

RBF 0.45 0.45 0.53 0.53 0.38 0.38 0.82 0.72 

5.3.2 Inflow Prediction of Ziarat Station 

Table 5.9 Ziarat river prediction results 

Models Annual Winter Monsoon Pre-monsoon 

Station 2 R
2
 NS R

2
 NS R

2
 NS R

2
 NS 

SLP 0.62 0.62 0.83 0.81 0.52 0.52 0.69 0.69 

MLP 0.57 0.57 0.83 0.81 0.8 0.8 0.6 0.6 

RBF 0.55 0.55 0.49 0.49 0.33 0.33 0.63 0.63 

  

5.3.3 Inflow Prediction of Naltar Station 

Table 5.10 summarizes the prediction performance of three models (SLP, MLP, and 

RBF) for the Naltar River at Station 3, evaluated over different time periods: Annual, 

Winter, Monsoon, and Pre-Monsoon. 
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Table 5.11 present the ensemble prediction results for three models (SLP, MLP, and 

RBF) when all stations are analysed together. R² Measures how well the model explains 

the variance in observed data. A value closer to 1 indicates better performance. The MLP 

model is the most effective for ensemble predictions across all stations, with exceptional 

accuracy and predictive skill. 

Table 5.10 Naltar river prediction results 

Models Annual Winter Monsoon Pre-monsoon 

Station 3 
R

2
 NS R

2
 NS R

2
 NS R

2
 NS 

SLP 0.57 0.57 0.57 0.57 0.32 0.32 0.65 0.65 

MLP 0.58 0.58 0.51 0.51 0.7 0.7 0.67 0.67 

RBF 0.5 0.49 0.45 0.45 0.32 0.32 0.62 0.62 

 Table 5.11 Ensemble results 

All Stations Together 

Models R
2
 NSE 

SLP 0.79 0.79 

MLP 0.99 0.98 

RBF 0.49 0.49 

5.3.4 Scatter Plot on Hunza River Discharge 
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Figure 5.9 shows the graphical representation of ANN results on Hunza River discharge 

through scatter plot. The green colour shows the predicted inflow and red shows actual 

inflow of different time series. 

 

Figure 5.9 Scatter Plot on Hunza River showing actual and predicted inflow 

5.3.5 Hydrograph of Hunza River Discharge 

Figure 5.10 present the Hydrograph on Hunza River that represent the Predicted and 

Actual Inflow of different time series. The x-axis represents Time and y-axis represents 

Inflow. Hydrographs are generated on the actual and predicted inflow data of Hunza 

River. The green colour shows the observed inflow and red shows predicted inflow of 

different time series. 
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Figure 5.10  Hydrograph on Hunza River showing actual and predicted inflow 

5.4 Snow Melt Runoff model 

To simulate and predict daily streamflow in mountain basins where snowmelt plays a 

crucial role in runoff factor, the Snowmelt-Runoff Model (SRM) was created. The 

application of the Snow Melt Runoff (SRM) model represents a significant component of 

this thesis, aimed at exploring alternative approaches for stream flow prediction in the 

Hunza, Gilgit and Astore Valley regions of Pakistan. Furthermore, the ANN models 

outperform traditional hydrological models in capturing nonlinear relationships between 

input variables and stream flow, demonstrating their suitability for stream flow prediction 

in data-scarce mountainous catchments. Comparative analysis with alternative modeling 

approaches, such as the Snow Melt Runoff (SRM) model, further confirms the superiority 

of ANN models in capturing the complex interactions between meteorological, 

glaciological, and hydrological processes. Most recently, it has been used to assess how a 

changing climate will affect seasonal snow cover and runoff. (Martinec, 1975) created 

SRM in little European basins. SRM has been used in ever-larger basins as a result of the 
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development of satellite-based remote sensing of snow cover. (Martinec et al., 1983) 

Over the past decades, hydrologists have been actively exploring viable methods to 

model snowmelt and its influence on runoff. As a result, two primary approaches, namely 

the energy balance method and the degree day method, have been introduced. Zhang et 

al., (2014) depicted the energy balance approach emerges as a highly comprehensive 

technique, offering a holistic means to model and evaluate surface flow through the 

intricate energy exchange among snow, soil, and air. Nonetheless, its extensive data 

requirements pose a limitation, making its application unfeasible in basins with 

inadequate data availability (Abudu et al., 2016). Degree day base models are more 

practical than energy-balance models, especially in basins with little available data. The 

most important factor in this process, according to some researchers' studies, is 

temperature. Models using the degree-day approach are well known for being 

straightforward and have been successfully used in several studies (Nourani et al., 2021). 

The Snowmelt Runoff Model (SRM) is a degree-day-based model designed to simulate 

the effects of snowmelt on daily runoff in watersheds where snowmelt constitutes a 

significant portion of the water supply (Martinec, 1975). The SRM model, rooted in the 

physical principles governing snowmelt and runoff processes, offers a complementary 

perspective to the data driven approach of ANN models. By simulating the accumulation 

and melting of snowpack, as well as the subsequent release of meltwater into streams and 

rivers, the SRM model provides insights into the contributions of snowmelt to stream 

flow dynamics, particularly during the spring and summer months when snowmelt is 

prevalent. 

5.4.1 Structure of the SRM model 
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By adding estimations of snowmelt and rainfall runoff, which are then combined with 

recession flow, the Snowmelt Runoff Model (SRM) computes the catchment's daily 

runoff data, the model is described by following Equation. 

𝑄𝑛+1 = [𝐶𝑠𝑛𝑎𝑛 (𝑇𝑛+ Δ𝑇𝑛) 𝑆𝑛+ 𝐶𝑟𝑛𝑃𝑛]×𝐴 ×10486,400(1− 𝑘𝑛+1)+𝑄𝑛𝐾𝑛+1 

In this equation  

Q = Discharge per day measured in [m3s-1]  

C = Cs and Cr are runoff coefficients for snow and rain respectively  

a = degree-day factor [cm oC-1 d-1]  

T = number of degree days [°Cd]  

S = the ratio of the total area that is covered in snow  

P = the precipitation that results in runoff [cm]  

A = Total area of catchments [km2]  

K = recession coefficient 

5.4.2 Analysis of Runoff Simulation 

The resulting graphs show a positive correlation between simulated and observed stream 

flows. Its reliability as a tool for modeling and getting hydrological dynamics is 

strengthened by the model's ability to replicate observed runoff patterns, particularly the 

stated peak discharges during summer. Although acknowledged, the slight variations in 

runoff volumes do not diminish the model's overall effectiveness in capturing the essence 

of the produced runoff and its variation with the seasons. The snowmelt runoff model's 

output graphs provide a thorough representation of the model's effectiveness in modeling 
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runoff during the calibration stage between 2000 and 2004. The comparison of measured 

and computed runoff provides an understanding of model's precision and the ability to 

correctly represent real-world hydrological processes in addition to serving as a visual 

validation of the model's effectiveness. The model performs satisfactorily across both 

calibration years, with only a slight discrepancy between the estimated and measured 

runoff volumes.  Although the minor disparities in the levels of runoff may cause some 

concern, it's important to place these variations in context of the larger hydrological 

complexities.  

5.4.2.1 Hunza River calibration results (2000-2004) 

The snowmelt runoff model's output graphs provide a thorough representation of the 

model's effectiveness in modeling runoff at Hunza River during the calibration stage 

between 2000 and 2004. The comparison of measured and computed runoff provides an 

understanding of the model's precision and ability to correctly represent real-world 

hydrological process in addition to serving as a visual validation of the model's 

effectiveness. Figure 5.11 shows simulated inflow vs observed inflow during the 2000 to 

2004 years’ data. 
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Figure 5.11 Hunza River calibration results 

5.4.2.2 Hunza River validation results (2008-2012) 

The snowmelt runoff model's output graphs provide a thorough representation of the 

model's effectiveness in modeling runoff at Hunza River during the validation stage 

between 2008 and 2012. Figure 5.12 shows simulated inflow vs observed inflow during 

the 2008 to 2012 years’ data. 

 

Figure 5.12 Hunza River Validation results 
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5.4.2.3 Model accuracy assessment 

Table 5.12 presents a promising correlation between model predictions and empirical 

data. The calibration proficiency of the model is demonstrated by the relatively small 

volume differences during calibration and the close agreement between observed and 

simulated runoff values. The model performs satisfactorily in predicting runoff volumes 

across the various datasets. 

Table 5.1 model accuracy parameters 

Assessment Parameters Calibration (2000-2007) Validation (2008-2012) 

R2 0.78 0.88 

NSE 0.83 0.81 

DV% 33% 0.31% 

5.4.2.4 Gilgit river calibration results (2000-2007) 

The snowmelt runoff model's output graphs provide a thorough representation of the 

model's effectiveness in modeling runoff at Gilgit river during the calibration stage 

between 2000 and 2007. The comparison of measured and computed runoff provides an 

understanding of the model's precision and ability to accurately represent real-world 

hydrological process  in addition to serving as a visual calibration of the model's 

effectiveness. Figure 5.13 shows simulated inflow vs observed inflow during the 2000 to 

2007 years’ data. 
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Figure 5.13 Gilgit river calibration results 

5.4.2.5 Gilgit River validation results (2008-2012) 

The small volume differences between computed and measured runoff 33% and 14% for 

calibration, and 0.31% and 0.12% for validation. show a promising correlation between 

model predictions and empirical data. The calibration proficiency of the model is 

demonstrated by the relatively small volume differences during calibration and the strong 

correlation between the observed and simulated runoff values. The model performs 

satisfactorily in predicting runoff volumes across the various datasets, even though 

slightly larger deviations are observed during validation. They nevertheless remain within 

reasonable bounds. Figure 5.14 shows simulated inflow vs observed inflow during the 

2008 to 2012 years’ data. 
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Figure 5.14 Gilgit river validation results 

5.4.2.6 Model accuracy assessment 

Table 5.13 presents a promising correlation between model predictions and empirical 

data. The calibration proficiency of the model is demonstrated by the relatively small 

volume differences during calibration and the strong correlation between the observed 

and simulated runoff values. The model performs satisfactorily in predicting runoff 

volumes across the various datasets. 

Table 5.2  model accuracy Parameters 

Assessment Parameters Calibration (2000-2007) Validation (2008-2012) 

R2 0.7814 0.89 

NSE 0.7398 0.85 

DV% 14% 0.12% 
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CHAPTER 6  

CONCLUSION AND RECOMMENDATIONS 

In conclusion, this thesis has undertaken a comprehensive investigation by using 

ANN into the stream flow prediction and Snow Melt Runoff (SRM) in Hunza, Gilgit and 

other Regions of Pakistan. Through an extensive review of literature, data collection, 

methodology development, and model application, this research has made significant 

contributions to our comprehension of hydrological dynamics in mountainous catchments 

with limited data availability. The research findings demonstrate the efficacy of ANN 

models in capturing the complex relationships between climatic variables, snow 

cover/glacier dynamics, and stream flow variability, achieving high predictive accuracy 

across different temporal scales and spatial locations within the study area. Apply some 

pre-processing techniques to clean the data and remove the out lairs in the data also 

handling some missing values in the data sets. Available climatic data and inflow data 

from different gauge stations are split into two ways like annual daily data and seasonal 

data. In seasonal data there is monsoon data pre-monsoon and winter data. Using both 

models one by one the data is partitioned into 80% in training the model and 20% in 

testing and making predictions on the 20% testing data. Then apply three models of 

ANNs. The first model is single layer perceptron model and second one is kerras 

sequential multi-layer perceptron model. The third model that is used is the Radial base 

function model. The consequences display multi-layer perceptron model which excites 

the best as giving the higher R2 and NSE values. To improve the model performance, 

apply the ensemble technique, in which they used multiples models together in place of 

using one model alone. Moreover, the application of the SRM model has provided 
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complementary insights into the contributions of snowmelt to stream flow dynamics, 

enhancing our understanding of seasonal variability and hydrological response 

mechanisms in high-altitude regions. The SRM model runs on study areas to predict the 

streamflow. The comparative analysis between ANN and SRM models has highlight the 

benefits and drawbacks of each technique, highlighting the importance of integrating 

data-driven and physically based modeling techniques for robust stream flow prediction 

in mountainous catchments and results shows that the ANNs models perform the best 

with data scarce limitation. By leveraging innovative modeling approaches and 

integrating diverse datasets, this research has advanced our knowledge of hydrological 

processes and provided valuable insights for the management of water resources in the 

context of climate change adaptation strategies in the study areas. However, this study 

has also encountered several challenges and limitations, including data scarcity, complex 

terrain, uncertainties in climate change projections, and model uncertainties. To 

overcome these obstacles, researchers, decision-makers, and local communities must 

work together to improve data collection, improve model representation, and develop 

adaptive management strategies. Furthermore, ethical considerations and stakeholder 

engagement are essential for ensuring the relevance, applicability, and ethical integrity of 

research findings in addressing water resource challenges in the study area. 

In light of these findings, future research endeavors should focus on addressing the 

identified challenges, refining modeling techniques, and integrating interdisciplinary 

approaches to enhance our understanding of hydrological processes in mountainous 

catchments. By fostering collaboration and knowledge exchange, we can endeavor to 

manage water resource management and build climate resilience in the Hunza, Gilgit and 
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Astore Valley regions and beyond. Ultimately, this thesis contributes to the broader goal 

of advancing scientific knowledge and informing evidence-based decision-making to 

address water resource challenges in mountainous regions amidst a changing climate. 
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