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This research aligns with the following SDGs set by the United Nations: 

The research addresses the critical need for resilient agricultural 

practices. It helps in identifying vulnerable regions by utilizing 

multiple drought indices and provide developing strategies to ensure 

sustainable food production, ultimately contributing to food security in 

drought-prone areas.  

By examining the impacts of drought on water resources essential for 

agriculture. Analysing soil moisture and water availability through 

advanced indices, the research contributes to better water management 

practices, ensuring efficient use of water in agriculture, and preventing 

water scarcity in affected regions.  

Future climate projections and the use of machine learning model, will 

provide awareness about how climate change will exacerbate drought 

conditions, its severity and frequency in Pakistan, educating about 

climate adaptation and mitigation strategies to reduce the impact of 

extreme weather events on agriculture. 

The research aligns with SDG 15 by focusing on the impact of drought 

on land degradation and agricultural sustainability. A comprehensive 

assessment of drought’s effects on ecosystems by integrating various 

drought indices. It offers strategies for land conservation and 

combating desertification.  

This research offers valuable contributions towards achieving these Sustainable Development 

Goals by improving drought monitoring and prediction, promoting resilient agricultural 

practices, sustainable water management, and effective climate adaptation strategies to 

mitigate the impacts on vulnerable ecosystems and communities.   
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ABSTRACT 

Climate change impacts global ecosystems, agriculture, health of individuals, and water 

availability. The most severe effect of climate change is drought, which is becoming severe 

and intense. Drought and associated risk management are typically tracked using a variety of 

drought indices. The key components in determining drought are temperature, precipitation, 

and other hydro-meteorological factors. Four agriculture drought indices – VCI, TCI, SPEI, 

and SMADI, were computed and analysed over 12 years (2010-2021) using Earth Engine. The 

possible future changes in the intensity and spatial distribution of agricultural droughts were 

analysed based on the MME mean of thirteen GCMs of CMIP6 in two different warming 

scenarios (SSP 2-4.5 and SSP 5-8.5) using the Random Forest algorithm to improve the 

prediction accuracy. A Drought Composite Map was generated by an innovative method using 

AHP established MCDM approach. Each index was given AHP-derived weightage with a 

consistency ratio of 3.10% and a consistency index of 2.79. The study also integrates multiple 

satellite products, including CHIRPS and IMERG rainfall, MODIS, and ERA-5 temperature 

datasets, used for the quantification for the period 2010-2021 across different agro-climatic 

zones. The results showed significant spatial and temporal variability in drought severity, with 

arid and semi-arid regions being the most vulnerable. Quetta, Kalat, and Panjgur are the most 

affected areas under current conditions; under future scenario (SSP 2-4.5), Badin, along with 

Kalat is severely affected by drought, and under SSP 5-8.5, and all these regions are under 

extreme drought conditions in 2100. Effective drought management requires simple, 

applicable models that consider multiple factors and can accurately forecast agricultural 

droughts despite meteorological outliers.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

1.1.1 Droughts 

Climate change hugely affects worldwide ecosystems, agriculture, human well-being 

and water supplies (European Climate Risk Assessment, 2024). The most severe effect of 

climate change is droughts, which have become frequent and intense, impacting water 

resources and crop yields globally (Trenberth et al., 2014). A long duration of insufficient 

precipitation causing water scarcity is known as drought. The most susceptible regions to 

drought are arid, semi-arid, dry sub-humid, often referred to as “dry lands” based on the United 

Nations Convention to Combat Desertification (UNCCD) (Convention | UNCCD). 

1.1.2 Droughts situation in Pakistan 

Droughts have a vast effect on world economies, societies and ecosystems. In Asia, 

specifically in South and Southeast Asia, droughts are intense because of rising temperatures 

and unpredicted rainfalls (European Climate Risk Assessment, 2024). It is essential to 

understand the drought situation in Pakistan because it affects our agriculture sector, economy, 

and water reserves. Pakistan is a country with diverse agro-climate zones, ranging from arid 

deserts to fertile lands; its GDP is majorly based on agriculture, which calls for immediate 

actions to reduce the consequences of droughts and mitigate their effects (Zaman et al., 2023). 

The analysis of climate change and its impacts on vegetation and hydrology indicates the need 

for adaptive measures to cope with the threat of drought (Ishaq et al., 2024). Therefore, 

thorough studies are important for devising effective strategies and management practices for 

sustainable agricultural development in Pakistan.  

1.1.3 Types of droughts and their impact 

Droughts are categorized into four main categories: hydrological, agricultural, 

socioeconomic, and meteorological. Understanding the various types is crucial to effectively 

manage and mitigate their impacts effectively. Meteorological drought occurs when there is 

severely low precipitation over a long time in a particular region, which lowers surface water 

levels and soil moisture (Torabinezhad et al., 2023). Hydrological drought is the amounts of 

water in lakes, reservoirs, and aquifers drop below average levels, influencing water 
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availability for human consumption, agriculture, and industrial use (Essa et al., 2023). 

Insufficient amount of soil moisture to sustain agricultural growth, resulting in reduced crop 

productivity and risk of famine is known as Agricultural drought (Baral et al., 2023). 

Socioeconomic drought is defined by the consequences of water scarcity on human activities 

and the economy, including both direct effects on agriculture and water supply as well as 

broader impacts on food prices, employment, and economic stability (Rashid, 2023). 

Droughts cause significant threats to the environment as they cause water shortage, 

biodiversity loss, soil degradation, and elevated risks of wildfires (Vicente-Serrano et al., 

2020). These environmental impacts, combined with social and financial influence, cause 

significant economic losses in agriculture, leading to food insecurity and inflation, thus 

displacing populations, causing health issues and provoking conflicts over water resources 

(Ghamghami & Irannejad, 2019). Affective drought monitoring and assessment is crucial to 

reduce these impacts, involving monitoring indicators such as hydrological levels, soil 

hydration, and water reservoir levels ("Droughts: Things to Know | U.S. Geological Survey," 

June 8, 2018). 

1.2 Problem Statement 

1.2.1 Drought impact 

Droughts have far-reaching impacts on the environment, economy, and society. 

Environmentally, they lead to water scarcity, biodiversity loss, soil degradation, and increased 

risks of wildfires (López-Moreno et al., 2013). Socially, they can displace populations, cause 

health issues due to poor water quality, and trigger conflicts over water resources. 

Economically, droughts are responsible for significant losses in agriculture and, therefore 

impact food security through hikes in commodity prices (Edwards et al., 2019). Drought has a 

significant influence on developing countries' economies, which rely largely on agricultural 

products (Brown et al., 2011). Furthermore, climate change and harsh weather conditions 

might exacerbate the drought and general socioeconomic factors (IPCC, 2013).  Affective 

drought management is important to mitigate these impacts. It involves monitoring indicators 

such as rainfall, soil moisture content, and water storage levels to predict and manage drought 

conditions effectively (Wilhite, 2006). 
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1.3 Tools to combat drought 

Efficient irrigation, rainwater harvesting, and recharge of groundwater are a few ways 

to combat drought. Hence, water management techniques may improve water conservation 

(Mahan & Lascano, 2016). Drought-resistant crop varieties should be introduced to ensure that 

agriculture thrives under water-scarce conditions (Shengxue et al., 2023). Soil management 

practices, including mulching, no-tillage farming, and composting, all improve soil’s capacity 

to conserve moisture and reduce water losses (Pengfei et al., 2023). A check on policy and 

governance also plays a vital role in water-use regulations, encouraging sustainable water-use 

practices and strengthening community awareness through outreach activities (Pengfei et al., 

2023). Technological innovations, such as desalination, water recycling, and cloud seeding, 

can be alternative ways to access water (O'Brien, 2015). 

1.3.1 GIS & RS approach 

Geographic Information Systems (GIS) and Remote Sensing (RS) are significant tools 

for evaluating and monitoring droughts. They provide different operations on a larger scale for 

monitoring, examining, and visualizing over time and space. Landsat, MODIS, and Sentinel 

are a few of the satellites that provide real-time data on surface water bodies, soil moisture 

content, and vegetation cover (TOPÇU & GÜVEL, 2021). Drought severity is evaluated using 

the Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation Index 

(SPI) (Wei et al., 2021). We can access the precipitation patterns over time by using SPI and 

the Palmer Drought Severity Index (PDSI) (Bakke et al., 2023). The Stream flow Drought 

Index (SDI) and the Surface Water Supply Index (SWSI) are used to calculate hydrological 

droughts by analysing stream flow and reservoir capacity (Kartal & Nones, 2024). Analysing 

vegetation state and impact of temperature on crop productivity, indices like Vegetation 

Condition Index (VCI), Vegetation Health Index (VHI), and the Temperature Condition Index 

(TCI) are used (Tsiros et al., 2004). A comprehensive assessment of drought severity can be 

achieved by incorporating a variety of indices that encompass meteorological, hydrological, 

and agricultural standpoints, each offering valuable insights through the analysis of remote 

sensing data and certain environmental factors.  
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1.3.2 Google Earth Engine 

Google Earth Engine (GEE) is a cloud-based platform that allows for the analysis and 

visualization of a massive amount of environmental data from all around the world. It helps in 

the study of changes on Earth, such as deforestation, climate change, and urbanization, by 

combining large amounts of satellite images and other geospatial data with powerful 

computation tools. It allows scientists, researchers and developers to run complex analyses 

quickly, make interactive maps, and retrieve results in multiple formats (Gorelick et al., 2017). 

GEE plays an important role in drought monitoring by allowing large-scale analysis of satellite 

data such as MODIS and Sentinel (Gorelick et al., 2017). For example, MODIS data in GEE 

was utilized to calculate indices including NDVI and the Enhanced Vegetation Index (EVI), 

which are crucial for identifying the vegetation conditions and drought regions (Son et al., 

2014). Agricultural droughts are computed in GEE by integrating Landsat data such as soil 

moisture and crop cover, thus allowing for monitoring changes in land surface conditions (Ejaz 

et al., 2023). Recent advancements in GEE, such as its integration with machine learning, have 

improved its accuracy of drought prediction (Elnashar et al., 2020). It has become such a 

powerful tool that improves our ability to comprehend, predict, and mitigate the effects of 

drought on ecosystems and societies. 

1.4 Future Projections under SSP 2-4.5 & SSP 5-8.5 using Random Forest 

Drought is a climate change-related phenomenon. Present and future knowledge about 

climate change at the local, regional, and global levels is important for devising national and 

international strategies to mitigate natural disasters such as droughts (Miao et al., 2011). 

Predicting the future spread of droughts until 2100 is a significant challenge for scientists and 

policymakers related to climate change (Cook et al., 2020). However, the current situation 

depends on advanced climate models such as those provided by the Coupled Model 

Intercomparison Project Phase 6 (CMIP6). This model, which incorporates different emissions 

of greenhouse gases, changes in land use, and socio-economic pathways, is crucial in 

projecting future climate conditions. It indicates an increase in the frequency and severity of 

droughts globally, with significant variations among regions (Cook et al., 2020; Eyring et al., 

2016). General Circulation Models (GCMs) have become a crucial tool for researching climate 

change processes (IPCC, 2013). GCMs can accurately simulate current climate change and 
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predict future climate changes based on various scenarios by different radiative forcing. The 

CMIP, established by the World Climate Research Program (WCRP), offers simulated data 

derived from a range of climate models. The project’s significance lies in its ability to facilitate 

the establishment of a Multi-Model Ensemble (MME) mean, which allows for comparisons to 

be made (Hongmei et al., 2011). 

Future drought conditions are predicted using machine learning (ML) approaches, which are 

renowned data-driven techniques like the Random Forest (RF) method (Pradhan et al., 2019). 

ML models have recently achieved notable progress in several industries, including data 

reconstruction, hydrological modelling, climate change research, and other areas (Bennett & 

Nijssen, 2021). The most used ML models are Multiple Linear Regression (MLR), Support 

Vector Machine (SVM) Long Short-Term Memory (LSTM), and RS. RF models can handle 

large datasets and capture intricate relationships between different climatic and environmental 

parameters, thus improving prediction accuracy (Omar & Kawamukai, 2020). It constructs an 

ensemble of decision trees based on previous trends in drought, soil moisture level, 

precipitation, and temperature. It gives a very close estimation of future droughts (Zarei et al., 

2023). For instance, one can use RF to improve regional-scale drought predictions obtained 

from the CMIP6 projections by considering local climatic variations (Shah et al., 2017). 

Future predictions of droughts under CMIP6 Shared Socio-economic Pathways (SSPs) 2-4.5 

and 5-8.5 indicate significant fluctuations in drought’s frequency and intensity (An, Park, Jung, 

& Jang, 2022). Drought occurrences increase moderately under the SSP 2-4.5, a stabilizing 

scenario that projects moderate greenhouse gas emissions and socio-economic changes (An et 

al., 2022; Su et al., 2021). Droughts are frequent and severe under SSP 5-8.5, marked by high 

emissions and rapid economic growth. Studies performed using RF models have shown that 

the Mediterranean, the southern United States, and areas of Australia are especially vulnerable 

in these circumstances (Bachmair et al., 1947). 

In Pakistan, there is an increased likelihood for more prolonged drought, especially in 

particularly in semi-arid and arid areas, as they get more water-stressed, according to CMIP6 

projections from (Adnan et al., 2022). Under both SSPs 2-4.5 and 5-8.5, Pakistan is projected 

to encounter a rise in the occurrence of droughts that will lead to significant damage to 
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agriculture, water resources, and socio-economic stability which calls for immediate and 

robust climate change adaptation measures (Ishaq et al., 2024; Zaman et al., 2023). Under these 

circumstances, it becomes necessary that strong climate adaptation and mitigation be put in 

place to address the upcoming risks associated with increased drought conditions.  

1.5 Composite Drought Analysis using AHP 

The Analytical Hierarchy Process (AHP) is a reliable technique for evaluating and 

ranking the many effects of droughts. This approach combines a number of indicators, 

including rainfall level, soil moisture levels, and agricultural productivity, to provide a detailed 

assessment of the impact of drought and its possible impacts (Saaty, 2004). By using AHP, 

researchers are able to systematically weigh and synthesize the various factors in a way that 

extends more accurate and informed decision-making (Palchaudhuri & Biswas, 2016). Various 

research has employed Multiple-Criteria Decision Making (MCDM) to determine drought 

conditions (Liu et al., 2019; Mokarram et al., 2021). Several studies have generated drought 

sustainability maps, which include studies of (Al-Faifi et al., 2019; Jianing et al., 2015; Pandey 

et al., 2023; Taherdoost & Madanchian, 2023). 

In this hierarchical structure, the technique can include expert judgement and local knowledge, 

which is very reliable and relevant to the study of Saaty (2004). Composite drought analysis 

through Multi-Criteria Evaluation (MCE) technique within AHP will add much strength to the 

development of effective strategies for drought mitigation and adaptation, which is important 

for managing water resources and ensuring agricultural sustainability in the climate change 

conditions (Bhushan & Rai, 2004). 

1.6 Research gap and way forward 

Multiple studies have been undertaken on the performance of different drought indices 

in Pakistan. However, a few gaps remain in the current state of research. One such important 

gap is that indices need to be more validated and calibrated in a variety across a variety of the 

country's agro-climatic situations. Furthermore, there is a lack of established protocols that 

define which indices to select with regard to certain characteristics of drought and their effects 

on agriculture (Adnan Ullah et al., 2017). There is a need for an adequate understanding of 

drought propagation, meaning its Spatiotemporal trend and intensification, as a key ingredient 
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in comprehensive drought management (Pulwarty et al., 2014). Future work should focus on 

improving both the temporal and spatial resolution of these structures and bringing advanced 

remote sensing technologies together with in-situ observations closer to the ground (Ahmad et 

al., 2004). In addition, a comparison of the calculated drought indices of Pakistan with those 

from other regions having the same climatic conditions will be carried out.  

In this study, we aim to compare several satellite products and gauge observations to determine 

their accuracy. This will help us select the most accurate climate products for further 

incorporation in drought studies. Furthermore, we will compare several prominent drought 

indices, including the Soil Moisture Agricultural Drought Index (SMADI), Crop Water Stress 

Index (CWSI), Standardized Precipitation and Evapotranspiration Index (SPEI), TCI, and VCI.  

1.6.1. Performance comparison of multiple drought indices around the world 

Pakistan, with diverse climatic conditions from arid to sub-humid climates, require 

effective drought monitoring and analysis. Drought conditions in various agro-climatic zones 

are being analysed globally using multiple drought indices, including SMADI, SPEI, VCI, and 

TCI. This research will compare the performance of several indices among countries, 

examining the similarities between the weather patterns in Pakistan and their possible 

usefulness in improving the ability to withstand droughts and sustain agriculture in the area. 

For instance, in a study done by Sánchez et al (2016), SMADI is effectively utilized to assess 

drought in semi-arid areas of southeastern Spain, which encounters irregular precipitation 

patterns. This index was able to perform reasonably in the Duero Basin during irregular 

climatic conditions, like high temperature and low precipitation, which resembles those found 

in some areas of Pakistan, such as Balochistan, due to its integration of several parameters that 

are important for managing agriculture. This is further validated by Dunne and Kuleshov 

(2023), in their study on the Murray-Darling Basin in Australia, which has variable 

precipitation, recurring droughts, and temperature fluctuations throughout the year. These 

factors result in extreme drought conditions, similar to those in parts of Pakistan, which are 

solely dependent on seasonal precipitation, especially monsoon. VCI is utilized in Brazil to 

evaluate the vegetation health of  the Amazon rainforest (Vilanova et al., 2020). Amazon 

rainforest is characterized by a tropical climate, where VCI was applied as part of the VHI to 

evaluate the vegetation health. (Rawat et al., 2012) studied 10 out of 15 agro-climatic zones of 
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India, identifying that VCI is effective for monitoring vegetation health in geographically non-

homogenous areas. VCI is effective in varying climates, which signifies its utility in 

agricultural drought monitoring. In the Midwestern area of the United States, a prolonged and 

severe drought occurred from 2011 to 2013, which affected agriculture severely. This was 

studied by Zhang et al. (2017) in which they performed TCI. The study area comes under 

temperate and arid zones where TCI was able to highlight the regions with high temperatures 

that intensify droughts (Domínguez-Castro et al., 2019). The paper discusses the region of 

Spain with has significant variability in climatic conditions, having hot, dry summers and mild, 

wet winters. SPEI was used to measure drought which effectively captures the severity and 

duration of droughts that correlate with agricultural impacts. 

By calculating these indices concurrently, we can achieve a nuanced understanding of drought 

dynamics in Pakistan. Each index measures drought differently, so relying on a single index 

may not fully represent this complex phenomenon. The multi-index approach, however, 

significantly enhances the accuracy of drought assessment and aids in identifying the most 

suitable index for specific climatic conditions. This approach, along with composite analysis, 

which combines multiple indices into a single framework, will present an improved and 

holistic view of drought conditions. This study is essential for identifying drought-prone 

regions and projecting future precipitation and temperature changes throughout Pakistan's 

agro-climatic regions. Using an MME mean from CMIP6, we will analyse future drought 

characteristics, including duration, frequency, and intensity changes under SSP 2-4.5 and SSP 

5-9.5 scenarios. 
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1.7 Objectives 

This study aimed to: 

1. To examine the accuracy of precipitation and temperature data of different satellite-

based products over Pakistan. 

2. To estimate multiple agricultural drought indices, i.e. SMADI, SPEI, VCI and TCI, 

under current and future scenarios using CMIP6 GCMs (SSP 2-4.5 & SSP 5-8.5). 

3. Assessment of Agricultural drought based on Composite Drought Analysis using AHP 

under current scenarios and future scenarios using CMIP6 GCMs (SSP 2-4.5 & SSP 5-

8.5). 
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides a comprehensive overview of existing knowledge and scholarly 

work done on the subject of the current research, which includes theories, models, and relevant 

empirical studies to highlight gaps in existing knowledge and set the context for the current 

research. Agricultural drought is a severe threat to food security, water availability, and overall 

agricultural productivity, especially in regions like Pakistan, where diverse climatic conditions 

highlight its impacts. A variety of indices must be calculated to determine the level of drought 

in agriculture in this regard. This work has been carried out using different drought indices in 

order to evaluate agricultural drought fully in a changing climate environment in Pakistan. This 

research is tailored to improve the level of precision of drought monitoring. A review of the 

existing literature was undertaken on several articles based on studies of the effects of climate 

change on agricultural droughts in Pakistan. A summary of various papers related to multi-

index agriculture drought assessment is presented below.  

In a study by Shahabfar and Eitzinger (2011), they evaluated the performance of Palmer 

Drought Index (PDI) and Modified Palmer Drought Index (MDPI) using MODIS data over 10 

agro-climatic zones in Iran, from 2000 to 2005 and compared them with EVI and VCI and 

further correlated with five water balance parameters for winter wheat. The results showed that 

PDI and MDPI had significant correlations with water balance parameters and performed 

better than EVI and VCI for drought stress detection, especially at sensitive growth stages of 

winter wheat. These findings suggest that PDI and MDPI are best tools, to assess drought in 

the semi-arid and arid regions. Ghaleb et al. (2015) monitored the condition of drought by 

calculating VCI and TCI based on VHI in Lebanon from 1982 to 2014 using Landsat imagery. 

The results indicated severe to moderate drought occurrences in the northern part of Lebanon, 

while mild drought in the valley of Bekaa and the Tyr region on 2014, which shows the good 

ability of VHI for regional drought assessment.  

Baig et al. (2020) measured meteorological and agricultural droughts in the Chitral Kabul 

River Basin (CKRB) over the period 2000 to 2018 using indices like Precipitation Condition 

Index (PCI), Soil Moisture Condition Index (SMCI), and VCI. The results showed 2000 and 

2004 as the hardest years of drought and high vulnerability of basins in the northwest due to 

low monsoonal rainfall. A decreasing drought trend from 2000 to 2018, projected to continue 
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until 2030. The study emphasizes the interdependence of meteorological and agricultural 

droughts and suggests that integrating various datasets could enhance drought monitoring and 

management. The only drawback is the limited number of weather stations which hinders in 

the data validation, indicating a need for more observation stations to improve drought 

assessment.  

Shahzaman et al. (2021) conducted a study on the monitoring of agricultural drought in South 

Asian countries. The study specifically examined remote sensing indices including 

Evaporation Stress Index (ESI), VHI, EVI, and Standardized Anomaly Index (SAI). These 

indices were compares to evaluate drought development patterns from 2002 to 2019. It was 

shown that the ESI exhibits more sensitivity to immediate moisture deficiencies compared to 

vegetation-based indices. The findings indicated that ESI in the most precise indicator for 

identifying locations that are impacted by drought. This conclusion is supported by the strong 

link seen between the ESI and anomalies in crop yield, particularly in wheat, rice, and maize, 

in Pakistan, India, Bangladesh, and Afghanistan. 

Wolteji et al. (2022) assessed agricultural drought in the Rift Valley Region of Ethiopia by 

using multiple drought indices from 2015 to 2019. The NDVI is a metric that monitor the 

health of vegetation. It demonstrates that higher NDVI values imply healthy plants, while 

lower values suggest stress from a lack of moisture. The VCI and TCI were also used, with 

VCI being particularly effective for monitoring agricultural drought, whereas TCI provides 

valuable information on the effects of temperature on vegetation. The VHI, which integrates 

the TCI and VCI, has detected severe and extreme drought conditions in many regions and 

years, particularly in 2015 and 2016. The study indicated that there was higher occurrence of 

severe droughts in the low-lying regions, particularly in the eastern parts of the Rift Valley. 

The combination of these indices offered a thorough evaluation of drought patterns, 

highlighting their usefulness in monitoring agricultural drought and emphasising the 

significance of including several indices for precise drought assessment. 

Pan et al. (2023) analysed the reliability of several drought indices for agriculture in China 

during 2000 to 2019 to determine which one works best in both wet and dry conditions. The 

Drought Severity Index (DSI), Soil Moisture Anomaly (SMA), VCI, SPI, and SPI were 



   

 

12 
 

computed and compared for this purpose. The results indicated that DSI from Global Land 

Data Assimilation System (GLDAS) is most accurate under all climatic regions. They key 

findings are that Northern arid and semi-arid areas, The Northeast China Plain, and the Huang-

Huai-Hai Plain suffered from frequent moderate to severe droughts. There was an overall 

reduction in the occurrence of droughts over the Northern arid zones and a significant increase 

risk on Yunnan-Guizhou Plateau from 2002, which stresses the importance of reliable remote 

sensing based datasets for effective monitoring and future planning measures towards 

sustainable agricultural practices.  

Khalil et al. (2023) assessed drought impacts on environmental flow (EF) in twenty-seven 

Indus Basin’s catchments from 1980 to 2018 using SPEI and Principal Component Analysis 

(PCA).  The results indicated significant alterations, especially in the Lower Indus Basin (LIB). 

Drought’s frequency and intensity increased in extreme low flow (ELF) and low flow (LF). 

Moderate droughts affected ELF and LF in the Upper and Middle Indus Basin at shorter 

timescales. This study highlights the importance of sustainable water management to mitigate 

drought effects on EFs. 

Al Shoumik et al. (2023) highlighted the intricate dynamics between meteorological and 

agricultural droughts in drought-prone regions of Bangladesh. Various indices, such as SPI, 

Palmer Drought Severity Index (PDSI), and SPEI, have been widely used to evaluate 

meteorological drought. Similarly, agricultural drought has been assessed using indices like 

NDVI, VCI, TCI, and VHI. The results indicated that rainfall during pre-monsoon increased 

in the northwest Bangladesh. SPI and SPEI shows increasing while PDSI shows decreasing 

trend. The results offer a complex interplay between meteorological and agricultural droughts, 

especially in regions with extensive irrigation practices.  

Bilal et al. (2023) investigated the Spatio-temporal trend of drought in three most arid zones 

of Balochistan, Pakistan using SPI, agricultural SPI (aSPI), and SPEI. DrinC software and 

SPEI calculator was used to measure these indices over temporal scales of 3, 6, 9, and 12 

months. NOAA precipitation data from 1992 to 2021 was analysed. The results showed severe 

and extreme drought years, hitting areas of Dalbandin, Quetta, Sibbi, Kalat, Khuzdar, and 
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Zhob. The comparison between indices reveals that SPI was the best performing index, with 

high suitability in capturing drought occurrence.  

Sánchez et al. (2016) elaborated a new index called the SMADI, which uses data from Soil 

Moisture and Ocean Salinity (SMOS) mission. This index was validated in Spain and 

demonstrated that it has a greater strength to integrate soil moisture data seamlessly, thus 

identifying agricultural drought conditions. The results confirms that SMADI is a reliable 

indicator of drought and much advanced as compared to traditional vegetation indices owing 

to the improvement in the accuracy of assessing drought through direct soil moisture 

measurements. 

Shahzada et al. (2016) investigated the precipitation and drought climatology in South Central 

Asia by using data from Pakistan between 1951 and 2010. They applied indices and statistical 

calculations to reveal six sub-regions and further analyse trends in precipitation. Results 

showed two major drought events i.e., 1971 and 2000-2002 and a severe drought in 1952. The 

region A5 (northeast South-Central Asia) was found to be the most drought prone. The monthly 

trends indicate that precipitation has increased in September and June in the regions A3 (central 

Asian region) and A5, whereas the mean values present a decreasing tendency in January and 

August for the region A4 (north-eastern parts of India). Decadal analysis showed a decreasing 

trend in the region A4 and increasing trends in Pakistan and region A5, highlighting the need 

for improved water management and agricultural planning. 

In another study by Shahzada et al. (2016) , they analysed shifting agro-climatic zones and 

drought vulnerability in Pakistan through precipitation and temperature trend analysis, over 

the period from 1951 to 2014. The results indicated that maximum temperatures in severely 

arid and humid regions have increased significantly, as has yearly precipitation in arid regions. 

The semi-arid zone is highly vulnerable to drought, with the most severe events recorded in 

1952, 1969, 2000, and 2002. The findings also showed that 87% of Pakistan is severely or 

semi-arid, posing challenges for crop water requirements due to rising temperatures. 

Understanding these patterns is essential for sustainable agriculture and water management in 

the face of climate variability.  
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Chattopadhyay et al. (2020) developed a Combined Drought Index (CDI) by integrating 

meteorological, land-based, and remote sensing data to improve drought prediction and 

monitoring. The CDI was successfully tested from 2014 to 2016 in five Indian states during 

the monsoon season. It accurately measured the severity of drought and its impacts on crop 

productivity. The data showed consistency with other indices like the SPI, NOAA drought 

index, indicating its potential for practical application in drought early warning and 

management systems. 

Yangyang et al. (2022), they used ML for drought assessment in Shandong Province, China 

with multi-source remote sensing data. This research evaluated the efficiency of three ML 

techniques, which are Bias-Corrected Random Forest (BRF), Extreme Gradient Boosting 

(XGBoost), and Support Vector Machines (SVM) in SPEI estimation. Spatial distribution of 

SPEI BRF is the most effective and is the best data to estimate spatial structure. The results 

demonstrated that BRF can monitor drought accurately, even in regions without observational 

data to support ground truth of drought assessment. ML models, particularly BRF model can 

enhance the quality and spatial resolution of drought monitoring using information from 

optical sensors.  

Abd El-Hamid and Alshehri (2023) analysed drought vulnerability in El-Dammam city using 

Landsat satellite data from 2014 to 2022. They aimed to simulate and predict drought using 

PDI, Normalized Difference Drought Index (NDDI), evaluating SVM and Partial Least Square 

(PLS) techniques. Results indicated that NDDI and PDI are inversely correlated with NDVI 

and the Normalized Difference Water Index (NDWI), and positively correlated with 

Normalized Difference Snow Index (NDSI) and Stress Index (SI). PCA revealed that PC-1, 

PC-2, and PC-3 accounted for 98% of the data. PLS and SVM models were effective in drought 

predictions with R2 values of 0.95 and 0.98, respectively. Severe drought was predicted in the 

Southern areas. The study concluded that NDVI, NDSI, SI, and NDWI are effective drought 

indices and machine learning techniques like PLS and CVM are reliable for drought prediction.  

Tladi et al. (2022), who assessed the effectiveness of reanalysis rainfall data for drought 

monitoring over Upper Olifants sub-basin in South Africa. To evaluate National Centres for 

Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) and European 
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Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 rainfall estimates, we 

compared them against observed data using Mean Error (ME), Nash-Sutcliffe Efficiency index 

(NSE), and percentage of bias (PBIAS). The results showed that the data of ERA5 is better 

correlated with observed data (R2 = 0.78) then CFSR (R2 = 0.57). The SPI analysis further 

supports ERA5’s superiority in detecting major droughts, making it a preferable choice for 

meteorological drought monitoring and predictive modelling. Also, it performs better in non-

winter months not only because of finer spatiotemporal resolution but also higher reliability 

regarding major droughts.  

Ejaz et al. (2023) showcased the potential of GEE platform in several hydro-meteorological 

studies like drought evaluation. Numerous studies have proven the efficiency of this cloud-

based solution in satellite data processing by deriving RS retrieved Drought Indices (RSDIs) 

using MODIS, Landsat, and Sentinel datasets. The RSDIs such as VCI, TCI, and VHI are 

compared with SPEI which is a meteorological drought index. Pearson correlation coefficient 

(CC) was determined for the SPEI and RSDIs. The results showed that VHI and SPEI have 

greater correlations with drought indices and are appropriate for evaluating drought in the data-

scarce hyper-arid regions. For instance, Pham-Duc et al. (2023) utilized GEE to analyse 

drought in Vietnam using Landsat derived indices, while Benzougagh et al. (2022) used GEE 

data to monitor drought in Morocco, highlighting the utility of these indices for regional 

drought evaluation. These methodologies address significant data scarcity issues in arid 

regions, such as the Al-Lith watershed in Saudi Arabia, where traditional gauge data is 

insufficient. By incorporating satellite-derived indices and GEE, these studies will enhance the 

spatial and temporal environmental studies to help device strategies for drought mitigation.  

Khan et al. (2021) created a global drought monitoring dashboard using GEE. The main 

objective was to compute and visualize drought indices including TCI, VCI, SMCI, and PCI. 

The methodology involved processing satellite data to generate these indices and evaluate 

drought conditions across various regions and time periods. Significant drought events were 

identified, including severe drought in Australia in 2002, extreme drought in Northeast Brazil 

in 2013, and notable drought in Thailand in 2019. The study concluded that the interactive 

dashboard effectively captures and visualizes drought conditions, providing valuable insights 

for drought management and planning. 
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An integrated analysis for the prediction and assessment of landslide susceptibility was 

presented by Nath et al. (2021) using AHP, logistic regression, random forest models in 

Darjeeling-Sikkim Himalaya. The primary objective was to prepare precise landslide 

susceptibility maps with a combination of multiple thematic layers in GIS platform. AHP was 

employed to determine weights of landslide-causing factors and a comparison matrix was 

formed. The RFs model achieved highest prediction accuracy, with an accuracy of 0.871. The 

logistic regression and AHP models had accuracies of 0.803 and 0.774, respectively.  

Tang et al. (2021) examined the projected changes in extreme precipitation in the INCSC 

(Democratic Nationalist Republic of South China and Indochina Peninsula), using an MME 

mean of 26 CMIP6 models. This research focuses on evaluating how the projections of four 

extreme precipitation indices differ between two MME mean estimates obtained from rank-

based weighting and simple multi-model averaging under SSPs. The results indicated that both 

schemes provide similar projections. 

Most of the research reviewed can be improved upon with different methodologies when 

focusing on extreme weather scenarios. A single index for monitoring drought often results in 

incomplete results; also, choosing climate products with higher accuracy can get us the most 

reliable results. The reviewed studies underscore the importance of using multiple drought 

indices for monitoring agricultural droughts. By comparing various indices and integrating 

them into a composite, along with high-accuracy climate products data, these methodologies 

can be enhanced. Additionally, advanced tools like GEE and ML techniques can improve 

drought assessments. Moreover, the CMIP6 model is currently the most precise source of 

climate change data, and this will be used in the research instead of CMIP5 or any other 

previous climate model data, which has now become obsolete. Moreover, the study will span 

a longer time, and future projections will be given up to the year 2100, which will be beneficial 

for future studies. 
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CHAPTER 3: MATERIALS AND METHODS 

This Chapter explains the methodology used to achieve the study’s objectives. 

Therefore, it covers the theoretical framework, data collection procedure, and analysis 

techniques. 

3.1 Study Area 

Pakistan is situated in South Asia, with latitudes ranging from 24° to 37° N and 

longitudes ranging from 60° to 77°. It is bordered by the Arabian Sea to the south, China to the 

north, Afghanistan and Iran to the west, and India to the east (Tariq et al., 2021). It is the 33rd 

largest country in the globe and has a total area of approximately 881,913 square kilometers 

(Hussain et al., 2023). 

The Pakistan Bureau of Statistics reports that land utilization in Pakistan is varied. The 

agricultural sector uses 47% of the total area, 24% as rangelands, and 19% is classified as 

forest land, leaving behind 6% as urban areas that contemplate urbanization (Pakistan Bureau 

of Statistics). 

Pakistan’s topography encompasses a wide variety of landscapes, from the mountainous 

regions of the Himalayas and Karakoram ranges in the north to the plains and bountiful lands 

along the Indus River in the south, is a key factor in understanding the country’s agriculture. 

These geographic variations greatly impact the local climate and agricultural practices (Syed 

et al., 2022).  

Pakistan’s climate changes significantly from arid to semi-arid, along with considerable 

changes in the temperature and precipitation, which are affected by the monsoon, western 

disturbances, and varied topography (Syed et al., 2022). 

Rainfall varies significantly, both spatially and temporally, with the monsoon season, which 

spans from July to September. The average annual rainfall of Pakistan is about 494 mm, with 

considerable regional variations (Ahmad et al., 2023). The distribution of rainfall throughout 

different provinces is as follows: Punjab receives moderate to heavy rainfall during the 

monsoon, between 400-700 mm annually (Abbas et al., 2021). Lower rainfall patterns in Sindh, 

between 100-200 mm annually during monsoon (Saddique et al., 2022). Khyber Pakhtunkhwa 
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receives much rain, benefitting from monsoon and winter rainfall, with annual averages 

between 500-1000 mm (Ullah et al., 2018). Balochistan, following the same trend as Sindh, is 

the driest region and receives 50-200 mm annually (Ahmad et al., 2023). The Indus River and 

its tributaries are the major source of water, which is important for agriculture. Groundwater 

also contributes to these sources, especially in places with limited surface water (Ahmad et al., 

2023). Temperature changes are also noticeable, ranging from the cold northern highlands to 

the hot southern plains, with an average annual temperature of 13°C to 25°C (Zahid & Rasul, 

2012). 

Pakistan’s economy is mainly dependent on Agriculture, which contributes up to 20% of the 

GDP, and employs up to 42% of the workers. The major crops include wheat, rice, cotton, and 

sugarcane (Raza et al., 2012). 

The rate of urbanization in Pakistan is 36.4 %, and it has a population of more than 220 million 

people. This rapid urbanization results in the destruction of infrastructure, pollution, and 

increased resource demands (Farooq et al., 2024). This situation leads to stress on natural 

resources such as water, leads to land degradation, and exacerbates socio-economic disparities. 

These problems are made worse due to inadequate urban planning and urban growth (Mangi 

et al., 2018). All this situation is leading to droughts, which are more likely to happen in 

Balochistan, Sindh and parts of Southern Punjab, characterized by arid and semi-arid climates, 

irregular rainfall, and high temperatures (Mangi et al., 2018). 

Pakistan is selected as a study area because of its contrasted geomorphologic features and 

climatic divisions from the very wet Himalayan region including permanent snow–glacial 

region to the very dry regions. The study was focused on drought indices, which were assessed 

using climatic data (temperature and precipitation) collected over 12 years (2010-2021) across 

Pakistan. Pakistan was divided into eight agro climatic zones which are extremely arid, arid, 

dry semi-arid, wet semi-arid, dry sub-humid, wet sub-humid, humid and very humid. It helps 

to determine the different features of a region. The classification is useful for providing 

valuable insight to formulate strategies related to crop growth, hence benefitting our country’s 

agriculture. The map of the study area is given in Figure 1. 
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Figure 1: Study Area Map 
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3.2 General Methodological Design 

The general methodological design of the research is as follows: In this study, eight 

climatic zones were delineated based on De Martonne’s aridity index, using daily temperature 

and precipitation data from 24 weather stations across Pakistan. Climate data products 

(CHIRPS, IMERG, MODIS and ERA-5) were sourced from GEE and validated against gauge 

data. The datasets considered in this study are discussed in detail in the following sections. To 

evaluate the performance of these satellite-derived products, several statistical indices were 

calculated, including coefficient of correlation (CC), BIAS, relative BIAS (rBIAS), Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and coefficient of Slope (β1). Following 

this, four agricultural drought indices were computed, including the VCI, TCI, SPEI, and 

SMADI for drought monitoring. The processing of drought indices was carried out on GEE 

with Java Scripting, which allows us to retrieve satellite imagery as well as RS-derived 

products and process them in the cloud. A Spatiotemporal variability analysis was performed 

for each index, and the indices were compared with gauge precipitation and temperature data 

to assess the impact of these hydrological parameters over time. Subsequently, future drought 

predictions for each index were generated using a Random Forest Regressor. Historical index 

data from 2010 to 2021 and future climate projections from the CMIP6 dataset under two 

scenarios (SSP 2-4.5 & SSP 5-8.5) from 2022 to 2100 were used. The results of these 

predictions were used to create composite drought maps, integrating various indices. Weights 

were assigned to each index using AHP and pairwise comparison, enabling a comprehensive 

evaluation of the contribution of each index to the overall drought conditions. The results of 

the study are given in the form of maps, tables, and charts that are processed using ArcGIS 

10.8.2 and Microsoft Excel. Figure 2 shows the overall methodology of this research work. 
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Figure 2: Methodology Flowchart 
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3.3 Data Collection 

3.3.1 Gauge Data 

There are very few gauge-based datasets kept by various organizations in Pakistan. The 

daily temperature and precipitation data from Jan 2010 to Dec 2021 were acquired from the 

Pakistan Meteorological Department (PMD). PMD has three types of observatories: Pilot-

based, aerometric, and meteorological observatories (Pakistan Meteorological Department). 

After thorough evaluations, the daily precipitation and temperature data of 24 stations across 

Pakistan were considered and used to calculate drought for this study. The locations of gauging 

stations are shown in Table 1. 

Table 1: Inventory of Climate Stations 

Sr. 

No 

Gauge Elevation 

(meters) 

Latitude Longitude Average 

Precipitation 

(mm) 

Average 

Temperature 

(°C) 

1 Skardu 2,500 35.3247 75.551 2370.0 68897.5 

2 Bahawalpur 110.00 29.3544 71.6911 2497.4 113031.1 

3 Faisalabad 185.6 31.4504 73.135 5523.6 107746.3 

4 Islamabad 535.84 33.6937 73.0649 15288.6 104922.7 

5 Jhelum 287.19 32.9425 73.7257 9488.1 100269.9 

6 KhanPur 88.41 28.6332 70.6574 3207.0 111822.6 

7 Lahore 214.00 31.5204 74.3587 8451.0 105573.4 

8 Multan 121.95 30.1575 71.5249 3495.4 101232.4 

9 Astore 2,546 35.357 74.8624 4735.7 73321.3 

10 Barkhan 1,100 29.8995 69.5246 4821.0 104389.5 
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11 Badin 159 24.6459 68.8467 3028.9 113298.1 

12 Dir 1420 35.1977 71.8749 15392.1 91402.4 

13 Sargodha 155 32.074 72.6861 6835.0 76964.9 

14 Sibi 30 29.5532 67.8808 3059.7 119935.6 

15 Jacobabad 59 28.2823 68.4472 4000.1 112247.7 

16 Rohri 186 27.6687 68.8943 1577.7 93023.7 

17 Panjgur 980 26.9706 64.0887 900.8 103435.1 

18 Balakot 974 34.5482 73.3532 16411.3 88112.2 

19 Quetta 1,680 30.1798 66.975 2533.9 79881.0 

20 Kalat 1989.75 29.0523 66.5879 1991.0 62662.9 

21 Peshawar 331 34.0151 71.5249 5943.8 77922.8 

22 Mianwali 215 32.5839 71.537 5317.8 88404.7 

23 Kohat 489 33.5889 71.4429 7345.5 80431.7 

24 Gilgit 1,500 35.9202 74.308 1891.4 89358.1 

Reference: (Pakistan Meteorological Department) 

3.3.2 Satellite Data / Climate Products 

The TRMM (Tropical Rainfall Measuring Mission) satellite was jointly launched by 

NASA (National Aeronautics and Space Administration) and JAXA (Japan Aerospace 

Exploration Energy) in 1997. The TRMM was the earliest mission to focus on the generation 

and analysis of data related to precipitation and evapotranspiration, which measures and 

monitors drought conditions and water availability (Huffman & Bolvin, 2013). Several SPEs 

have become operational to monitor precipitation from space on a regular grid with near-global 

coverage as a result of this mission (Huffman & Bolvin, 2013). These SPEs have been 
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successful in monitoring regional drought conditions and conducting long-term hydrological 

surveys (Allafta et al., 2021; Bayissa et al., 2017). 

The satellite precipitation daily data of Climate Hazards Group Infrared Precipitation with 

Station Data (CHIPRS) and The Integrated Multi-satellite Retrievals for Global 

Precipitation Measurement (GPM) (IMERG) version 6 were used in this work. Two well-

known temperature datasets, which are (MODIS) and the Fifth Generation ECMWF 

atmospheric reanalysis of the global climate (ERA-5), were employed in this study. These 

datasets, downloaded from reputable sources, were then aggregated to annual values. The 

extraction of data was carried out using GEE, a trusted method in the field of climate research.  

3.3.3 CHIRPS 

Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS) is a quasi-

global precipitation time series data set covering 43 years developed for monitoring seasonal 

drought and global hydrological changes (Funk et al., 2015). These datasets contain global 

daily, ten days, and monthly precipitation data from 1981 to the present, having spatial 

resolutions of 0.05°, less bias and an extended record (Xinmeng et al., 2023). CHIRPS has 

been assessed against ground observations and is extensively used for climate, hydrological, 

and water resources studies, as well as for drought monitoring (Funk et al., 2015). The details 

of the dataset used in this study are given in Table 2. 

3.3.4 IMERG-version 6 

The Integrated Multi-satellite Retrievals for GPM IMERG version 6 techniques are 

quasi-real-time products that have been present from 2006 till the present and are used to 

compute precipitation levels throughout a major area of the Earth's surface using data from the 

GPM satellite constellation (Huffman et al., 2020). Version 6, when compared with previous 

versions, has been improved and modified to perform better in data processing, algorithms and 

validations (Huffman et al., 2020). With the addition of GPM Microwave Imager (GMI) and 

Dual-frequency Precipitation Radar (DPR), this version has improved detection accuracy 

effectively (Skofronick-Jackson et al., 2017). The spatial resolution is 0°, and temporal 

resolutions are available in many options such as 30 minutes, 3 hours, one day, 7 days and 1 

month, making it suitable for evaluating precipitation patterns throughout the day (Yu et al., 
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2021). We used a temporal resolution of 1 day, as detailed in Table 2. This technology is 

beneficial in areas with few typical precipitation monitoring tools (Jiang & Bauer-Gottwein, 

2019). 

3.3.5 MODIS 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a medium-

resolution imaging spectrometer aboard NASA’s Terra and Aqua satellites. It plays a pivotal 

role in the U.S. Earth Observing System (EOS) program. It is used for monitoring global 

biological and physical operations as well as agricultural drought assessment (Muhammad & 

Thapa, 2021). It detects electromagnetic energy in a broad spectral range to study the Earth’s 

environmental, meteorological and hydrological conditions (Jing & Sun, 2017). With its wide 

spectral range from visible to thermal infrared wavelengths, MODIS offers detailed insights 

into land surface conditions relevant to drought monitoring, precise delineation of vegetation 

health and soil moisture content changes, which all help to identify drought-prone areas and 

assess crop stress levels. It has high spatial resolutions (250 meters to 1 kilometer) and 

temporal resolutions of every 1 to 2 days (Wang et al., 2020). MODIS offers different products 

based on critical indicators like land surface temperature (LST), vegetation indices (e.g., 

NDVI), evapotranspiration rates, and surface reflectance (Fagua & Ramsey, 2019; Huete et al., 

2011). These products have been available from about 2000 till the present day (Khan & Gilani, 

2021). The datasets details used in this study are presented in Table 2. 

3.3.6 ERA-5 

ERA-5, developed by ECMWF, a fifth generation, offers a comprehensive global 

atmospheric reanalysis from 1950 to near-real-time (Hersbach, Bell, Berrisford, Hirahara, et 

al., 2020). Assimilating diverse observational data, it provides high-resolution atmospheric 

fields with a spatial resolution of about 31 kilometers and a temporal resolution of one hour 

(Tan et al., 2023). It is widely used in weather forecasting, climate research, and environmental 

monitoring (Peng et al., 2023). ERA-5 facilitates understanding of past climate trends and 

prediction of future scenarios. Its accessibility to the public fosters collaboration and 

innovation in atmospheric and climate sciences worldwide (McNicholl et al., 2022). The 

dataset details utilized in this study are outlined in Table 2. 
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3.3.7 FLDAS-Soil Moisture 

FLDAS stands for Famine Early Warning Systems Network Land Data Assimilation 

System. It is a customized version of NASA’s Land Information System (LIS) used for 

assessing the environment, food security, data flow, monitoring, and prediction in developing 

countries with limited data (Khorrami et al., 2023; McNally et al., 2017). It contains global 

monthly soil moisture data in different depths from 1982 till date, along with information on 

elevation, vegetation cover, and albedo (Khorrami et al., 2023).  

In this study, we employed a unique approach, using the monthly soil moisture datasets for the 

period 2010 to 2021 from FLDAS, GIOVANNI, which have a 0.1° spatial resolution and a 

depth of 40-100 cm underground. This dataset was combined with VCI and MTCI indices to 

generate the SMADI, a novel combination that allowed us to gain new insights. The specifics 

of the soil moisture data are summarized in Table 2. 

3.3.8 Future Prediction Data-CMIP 6 

General Circulation Models (GCMs) are important for accessing long-term climate 

change situations (Verma et al., 2023). A large number of GCMS are covered by the Climate 

Model Intercomparison Project (CMIP), which is designed to understand climate change more 

effectively (Ali et al., 2023). Previously, CMIP5 has been widely used to examine drought 

phenomena. However, CMIP6 is the newest of climate projections based on various socio-

economic assumptions and has better parameterization that efficiently models climate 

projections (Eyring et al., 2016). CMIP6 have multiple strengths with additional improved 

models, higher spatial resolutions, fewer biases and better representations of climate 

phenomena (Iqbal et al., 2021). The new set of emissions from the CMIP6 for future emission 

scenarios called Shared Socio-economic Pathways (SSP), is a combination of Representative 

Concentration Pathway (RCP) and other pathways of socioeconomic development (O'Neill et 

al., 2016). These SSPs show different possible futures for greenhouse gas emissions and land 

use change based on data from integrated assessment models with SSP1-2.6, SSP2-4.5, SSP4-

6.0, and SSP5-8.5 known as sustainable, moderate, severe, and extreme scenarios respectively 

(Eyring et al., 2016). 
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CMIP6 future observations (2022-2100) of precipitation and maximum and minimum 

temperature of SSP 2-4.5 (Moderate scenario) and SSP 5-8.5 (extreme scenario) were used to 

estimate agricultural droughts based on five different indices (i.e., VCI, TCI, SPEI, CWSI, and 

SMADI). These climate variables were obtained from multiple GCMs at daily time scales. 

Because the outcomes of these GCMs vary widely within the scenarios, the Multi-Model 

Ensemble (MME) mean was applied. These models are ACCESS-CM2, CMCC-ESM2, 

CNRM-ESM2-1, EC-Earth3-CC, EC-Earth3-Veg-LR, INM-CM4-8, INM-CM5-0, MIROC6, 

MIROC-ES2L, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, and NorESM2-MM. The selection 

of these models is based on the availability of future projections. The details of the GCMS of 

CMIP6 used in this study are given in Table 3. 

The climatic variables at different spatial resolutions were initially re-gridded to a 1km 

resolution. The MME of 13 different GCMs were used instead of using an individual GCM, 

which benefits in terms of more reliable estimates, eliminating model uncertainties and 

variances, and decrease in spatial error and variability (Shrestha et al., 2020; Weigel et al., 

2008). All models were averaged using the Equal Weight (EW) method of the MME which 

involves averaging the values for each model (Sun et al., 2024). For the Bias correction of the 

projected CMIP6 data, the variance scaling method was employed, which is used to adjust the 

statistics such as mean, variance, and standard deviation, of the climate model to better match 

the observed statistics for a certain period (Supharatid et al., 2022). Afterwards, the power 

transformation technique is used to correct the skewness and other non-normal characteristics 

of model data distributions. It makes the data more symmetrical and closer to the normal 

distribution (Eyring et al., 1937). 

This way, the prediction obtained from this dataset is considered as a fair interpretation of all 

the GCMs, leading to more reliable and accurate climate projections. The datasets used in this 

study are summarized in Table 2. 
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Table 2: Datasets Used 

Datasets Description Temporal 

Resolution 

Spatial 

Resolution 

Time 

Period 

Source 

CHIRPS 

Climate Hazards Group 

Infrared Precipitation 

with Station Data 

Precipitation Daily 0.05mm 2010-

2021 

GEE 

IMERG 

Integrated Multi-Satellite 

Retrievals for GPM - 

Early 

Precipitation Daily 0.1mm 

 

2010-

2021 

GEOVANNI-

Earth NASA 

MODIS 

Moderate-resolution 

Imaging 

Spectroradiometer 

Temperature Daily 250m 

 

2010-

2021 

GEE 

ERA-5 

Fifth Generation 

ECMWF Atmospheric 

Reanalysis of the Global 

Climate 

Temperature Daily 0.1°×0.1° 

 

2010-

2021 

GEE 

FLDAS 

Famine Early Warning 

Systems Network Land 

Data Assimilation System 

Soil 

Moisture 

Monthly 0.1°×0.1° 

 

2010-

2021 

GEOVANNI-

Earth NASA 

CMIP6  

Coupled Model 

Intercomparison Project 

Precipitation 

& 

Temperature 

Daily 1km 2022-

2100 

Earth System 

Grid System-

ESGS 
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Table 3: CMIP6 Models Used 

Model Developed by Resolution (lat * lon) 

ACCESS-CM2 CSIRO and BOM, Australia 1.875° × 1.25° 

CMCC-ESM2 CMCC, Italy 0.75° × 0.75° 

CNRM-ESM2-1 CNRM, France 1.4° × 1.4° 

EC-Earth3-CC EC-Earth Consortium 0.7° × 0.7° 

EC-Earth3-Veg-LR EC-Earth Consortium 0.7° × 0.7° 

INM-CM4-8 Institute of Numerical Mathematics, Russia 1.5° × 2° 

INM-CM5-0 Institute of Numerical Mathematics, Russia 1.5° × 2° 

MIROC6 JAMSTEC, AORI, NIES, and R-CCS, Japan 1.4° × 1.4° 

MIROC-ES2L JAMSTEC, AORI, NIES, and R-CCS, Japan 2.8° × 2.8° 

MPI-ESM1-2-LR Max Planck Institute for Meteorology, 

Germany 

1.875° × 1.875° 

MRI-ESM2-0 Meteorological Research Institute, Japan 1.125° × 1.125° 

NESM3 Nanjing University of Information Science & 

Technology, China 

1.875° × 1.875° 

NorESM2-MM Norwegian Climate Centre, Norway 1.25° × 0.9375° 
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3.4 Data Pre-processing 

Climate classification organizes areas with single or multiple climatic parameters to 

determine the affinities in the area (Griffiths, 1976). Classification is different for different 

areas across the globe based on various techniques by climatologists. Agroecological zones 

are areas with similar environmental properties that are suitable for cultivation. These zones 

are developed based on the ecological requirements of the particular crops, climatology, 

hydrology, plant productivity and soil characteristics (Haider & Adnan, 2014). To compute 

drought indices efficiently, it is important to identify areas with similar climates. A climate 

territory can be defined by its characteristics, such as temperature, rainfall, humidity, 

radiation, wind, etc. (Funk et al., 2015). 

The present study is conducted in Pakistan. It was divided into major climatic zones, mainly 

Arid, semi-arid, sub-humid and humid. The classification into zones showed that largest area 

is extremely arid i.e. 36.84 %, while 22.39% is arid. 10.48% is dry semi-arid, 9.66% is wet 

semi-arid, 12.35% is dry sub-humid, 3.70% is wet sub-humid, 3.33% is humid, and only 1.25% 

is very humid. After the spatial distribution of weather stations across the country, Inverse 

Distance Weighting (IDW) Interpolation was employed to predict values at unknown locations, 

resulting in interpolated values that created a continuous spatial representation of climate 

across the study area. De Martonne aridity index (E, 1926) presented in Equation 1 below was 

then used to classify the climate: 

𝑰 =  
𝑷

(𝑻+𝟏𝟎)
           Equation 1 

Where P and T are the mean annual rainfall (millimeters) and the mean annual temperature 

(degree Celsius), respectively (Rahimi et al., 2013; Taheri Qazvini & Carrion, 2023). 

3.5 Statistical Analysis  

A comprehensive calculation of evaluation measures, including Coefficient Correlation 

(r), Root Mean Square Error (RMSE), Bias, Relative Bias (r-Bias), R-squared (r2), Mean 

Absolute Error (MAE), and Slope of Coefficient (B1) was used to examine and verify the 

accuracy and efficiency of rainfall products. These statistical indices examine the precision of 

satellite precipitation products.  
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Coefficient Correlation (r):  

R measures the strength and direction of a linear relationship between two variables, 

such as observed values (Asuero et al., 2006). The value of r ranges from -1 to +1. A value of 

+1 shows a perfect positive relation, whereas a value of -1 shows a perfect negative relation. 

A 0 value means no correlation (Ratner & marketing, 2009).  

𝒓 =
∑𝒊=𝟏 

𝑵 (𝑿𝒔𝒊−�̅�𝒔)(𝒀𝒐𝒊−�̅�𝒐)

√∑𝒊=𝟏 
𝑵 (𝑿𝒔𝒊−�̅�𝒔)𝟐√∑𝒊=𝟏 

𝑵 (𝒀𝒐𝒊−�̅�𝒐)𝟐
       Equation 2 

Coefficient of determination (r2): 

It tells us how well the satellite data matches the observed data. The value of r2 ranges 

from 0 to 1, with 0 stating unsatisfactory results and 1 showing very good results (Belayneh et 

al., 2020). 

𝒓𝟐 = 𝟏 −  
∑𝒊=𝟏 

𝑵 (𝒀𝒐𝒊−�̂�𝒐𝒊)
𝟐

∑𝒊=𝟏 
𝑵 (𝒀𝒐𝒊−�̂̅�𝒐)

𝟐                   Equation 3 

Mean Absolute Error (MAE): 

It quantifies the mean magnitude of the error by measuring the difference between the 

satellite and observed data. Its values range from 0 to infinity, with lower values predicting 

that the satellite product values are more closer to observed data values, suggesting a better fit 

of the model (Ghajarnia et al., 2015; Sadiq et al., 2018). 

𝑴𝑨𝑬 =
𝟏

𝑵
∑ |𝑿𝒔𝒊 − 𝒀𝒐𝒊|

𝑵
𝒊=𝟏                 Equation 4 

Root Mean Square Error (RMSE): 

RMSE assigns more weight to larger errors compared than MAE and measures the 

mean magnitude of the error. RMSE values function the same way as MAE values, indicating 

that higher values have greater variation between satellite and observed data (Belayneh et al., 

2020). 
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𝑹𝑴𝑺𝑬 = √∑
(𝑿𝒔𝒊− 𝒀𝒐𝒊)𝟐

𝑵
𝑵
𝒊=𝟏           Equation 5 

Bias: 

It is the difference between observed and satellite data. It is either positive, indicating 

overestimation, or negative, indicating underestimation (Belayneh et al., 2020; Quan & Bansal, 

2021).  

𝑩𝒊𝒂𝒔 =  
𝟏

𝑵
∑ (𝑿𝒔𝒊 −  𝒀𝒐𝒊)

𝑵
𝒊=𝟏                   Equation 6 

Relative Bias (R-Bias): 

It is the systematic bias of the satellite and observed data and behaves the same as bias 

(Quan & Bansal, 2021). The positive bias overestimates and the negative bias underestimates 

the observed data, and zero bias indicates a perfect agreement between the model and the 

observations. 

𝒓𝑩𝒊𝒂𝒔 =  
∑𝒊=𝟏 

𝑵 (𝑿𝒔𝒊− 𝒀𝒐𝒊)

∑𝒊=𝟏 
𝑵 𝒀𝒐𝒊

 × 𝟏𝟎𝟎                 Equation 7 

Coefficient of Slope (β): 

The slope of the regression line is directly linked to the r and is defined by the 

quantitative measurement of the vertical change for every unit of horizontal change. This slope 

of regression is also known as the fitted line. It indicates whether the dependent variable 

increases or decreases as r increases. When the value of r is negative, the β is negative and, 

when the correlation is positive, the β is positive (Sahoo et al., 2020). The coefficient of slope 

can be determined from a linear regression Equation 8. 

𝒀𝒐𝒊 =  𝜷 . 𝑿𝒔𝒊 +  𝜶          Equation 8 

Where, the formula for β as shown in Equation 9 is: 

𝜷 =
∑𝒊=𝟏 

𝑵 (𝑿𝒔𝒊−�̅�𝒔)(𝒀𝒐𝒊−�̅�𝒐)

∑𝒊=𝟏 
𝑵 (𝑿𝒔𝒊−�̅�𝒔)𝟐                     Equation 9 
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Where,  

Xsi = Satellite data for the ith daily event. 

Yoi = Observed data for the ith daily event. 

N = Total number of observations. 

�̅�𝒔= Mean of satellite data. 

�̅�𝒐 = Mean of observed data. 

𝜶 = intercept. 

|𝑿𝒔𝒊 − 𝒀𝒐𝒊| = Absolute error for each prediction. 

3.6 Agricultural Drought Assessment 

3.6.1 Vegetation Condition Index (VCI) 

The Vegetation Condition Index (VCI) is a key indicator used in monitoring vegetation 

health, particularly in the context of drought assessment. It quantifies the relative greenness of 

vegetation compared to its typical condition, offering insights into plant stress levels (Kogan, 

1997). VCI is typically derived from remote sensing data, such as satellite imagery, and is 

calculated based on metrics like NDVI (Khan & Gilani, 2021). By analyzing temporal changes 

in vegetation greenness, VCI provides valuable information on the onset, severity, and duration 

of drought impacts on ecosystems(Jiao et al., 2016). This index is widely utilized in agricultural 

monitoring, environmental management, and early warning systems, aiding decision-makers 

in mitigating the effects of droughts on food security, biodiversity, and ecosystem services 

(Jiao et al., 2016). 

VCI was computed using the values of NDVI from MOD13A2.006 product with 1km spatial 

resolution as shown in Equation 10 (Jiao et al., 2016; Karimi et al., 2022) 

𝑽𝑪𝑰 =
𝑵𝑫𝑽𝑰− 𝑵𝑫𝑽𝑰𝒎𝒊𝒏

𝑵𝑫𝑽𝑰𝒎𝒂𝒙 − 𝑵𝑫𝑽𝑰𝒎𝒊𝒏
 × 𝟏𝟎𝟎      Equation 10 
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Where, NDVI is the current value of the pixel, NDVImin and NDVImax is the minimum and 

maximum values of the NDVI time series. The value ranges from 0 to 100 with lower values 

for extremely unfavorable conditions to higher values being good conditions. 

3.6.2 Temperature Condition Index (TCI) 

The Temperature Condition Index (TCI) is pivotal in agricultural drought monitoring 

and evaluating temperature anomalies' impact on vegetation health (Li et al., 2024). It provides 

insights into stress levels experienced by crops and natural vegetation, enhancing 

understanding of thermal conditions affecting agricultural areas (Zeng et al., 2022). Land 

surface temperatures affect the vegetation cover and underground water tables. Therefore, after 

VCI, this index suggested as free of cloud contamination and air moisture. Integrated with 

metrics like NDVI, TCI offers a holistic view of vegetation conditions amidst changing 

temperature patterns (Tsiros et al., 2004). Its inclusion in drought monitoring frameworks 

improves early warning systems' accuracy, enabling timely interventions to mitigate 

agricultural losses and ensure food security (Cunha et al., 2019). TCI plays a vital role in 

safeguarding agricultural productivity by providing actionable information for drought 

management and adaptation strategies (Li et al., 2024). 

TCI was computed using Land Surface Temperature data from MOD11A1 product with 1km 

spatial resolution as shown in Equation 11 (Kogan, 1997). 

𝑻𝑪𝑰 =
𝑳𝑺𝑻− 𝑳𝑺𝑻𝒎𝒊𝒏

𝑳𝑺𝑻𝒎𝒂𝒙 − 𝑳𝑺𝑻𝒎𝒊𝒏
 × 𝟏𝟎𝟎                  Equation 11 

Where, LST is the current value, LSTmin and LSTmax are the minimum and maximum values of 

LST for the time period of the study respectively (Alamdarloo et al., 2018). 

3.6.3 Standardized Precipitation-Evapotranspiration Index (SPEI) 

The Standardized Precipitation-Evapotranspiration Index (SPEI) is a comprehensive 

drought assessment tool that integrates precipitation and evapotranspiration data (Beguería et 

al., 2014; Shukla & Wood, 2008). Unlike other indices, SPEI incorporates temperature effects, 

making it adaptable to diverse climates (Vicente-Serrano et al., 2010). It standardizes 

precipitation and evapotranspiration over a specified timeframe, revealing deviations from 

historical patterns and indicating drought severity (Beguería et al., 2014). This index, widely 
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employed in drought monitoring and water resource management, offers insights into drought 

intensity, duration, and spatial extent. SPEI's versatility and accuracy make it invaluable for 

decision-making and adaptation strategies in regions vulnerable to water scarcity and climate 

variability (Danandeh Mehr & Vaheddoost, 2020). SPEI is a variant of the Standard 

Precipitation Index, which contains information on evapotranspiration as well and is therefore 

used to determine the major impact of temperature rise on water need (Danandeh Mehr & 

Vaheddoost, 2020). To calculate SPEI, we use the water balance equation which is given in 

Equation 12: 

𝑫 = 𝑷 − 𝑷𝑬𝑻                    Equation 12 

Where, D is the difference between precipitation and Potential Evapotranspiration. 

3.6.4 Soil Moisture Agricultural Drought Index (SMADI) 

The Soil Moisture Agricultural Drought Index (SMADI) stands as a crucial tool for 

accurately assessing agricultural drought by focusing on soil moisture dynamics (Mercedes et 

al., 2021). By precisely measuring the moisture content in the root zone, SMADI provides 

essential insights into the immediate availability of water for crops, directly influencing their 

growth and productivity (Sánchez et al., 2016). Effective utilization of SMADI enables timely 

interventions such as irrigation scheduling, crop selection, and drought-resistant farming 

practices, empowering farmers and policymakers to proactively manage drought impacts and 

enhance agricultural resilience in the face of changing climate patterns (Zhao et al., 2022).  

The index depends on the remote sensing data sources and is computed using the soil moisture 

(SM), LST and Vegetation Index (VI) (Sánchez et al., 2016). The connection of LST and VI 

with soil moisture makes it necessary to consider it for the calculation of SMADI (Yang et al., 

2024). First, we normalize the NDVI, LST and SM to achieve VCI, MTCI Equation 13, and 

SMCI Equation 14. Then, SMADI is calculated using Equation 15 which focuses on the 

inverse relationship between the LST and NDVI (Salvia et al., 2020; Sánchez et al., 2016). 

𝑴𝑻𝑪𝑰 =  
𝑳𝑺𝑻− 𝑳𝑺𝑻𝒎𝒊𝒏

𝑳𝑺𝑻𝒎𝒂𝒙 − 𝑳𝑺𝑻𝒎𝒊𝒏
 × 𝟏𝟎𝟎                  Equation 13 

𝑺𝑴𝑪𝑰 =  
𝑺𝑴𝒎𝒂𝒙− 𝑺𝑴

𝑺𝑴𝒎𝒂𝒙− 𝑺𝑴𝒎𝒊𝒏
 × 𝟏𝟎𝟎                Equation 14 
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𝑺𝑴𝑨𝑫𝑰 = 𝑺𝑴𝑪𝑰 
𝑴𝑻𝑪𝑰

𝑽𝑪𝑰
                    Equation 15 

Where, LSTmin, LSTmax, SMmin and SMmax represent the minimum and maximum values of LST 

and SM for the study period. 

Drought severity classification range for each index is given in Table 4.  

Table 4: Drought Severity Classification Index 

Class VCI TCI SPEI SMADI 

Extreme Drought 0 to 10 0 to 10 ≤ -2.0 > 4 

Severe Drought 11 to 20 11 to 20 -1.5 to -1.9 3 to 4 

Moderate Drought 21 to 30 21 to 30 -1 to -1.4 2 to 2.99 

Mild Drought 31 to 50 31 to 50 -0.5 to -0.9 1 to 1.99 

Normal 51 to 70 51 to 70 -0.1 to -0.4 0.5 to 1 

Excellent Vegetation 71 to 100 71 to 100 ≥ 0.0 0 to 0.49 

Reference: (Zhao et al., 2022) 

3.7 Spatio-temporal Trend Analysis 

Precipitation, temperature, soil moisture, and other hydrological parameters are 

important for drought identification (Shahzada et al., 2018). The impact of temperature and 

precipitation on drought indices is also known as temperature and precipitation variability or 

correlation. The long-term monthly average of precipitation, temperature, and drought indices 

(TCI, VCI, SPEI, and SMADI) from 2010 to 2021 was used to compute the spatiotemporal 

trend.  

3.8 Future Drought Predictions 

Future drought predictions aid in preventive resource management and agricultural 

planning, which makes people more ready and helps deal with mitigating economic and 

environmental consequences (Mishra & Singh, 2010). They enable prompt decision-making 
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to minimise negative consequences and ensure sustainability (Weltzin et al., 2003). Future 

predictions can be done using statistical analysis such as time series and trend extrapolation, 

which involves historical climate data to identify patterns and, based on these patterns, predict 

future trends and conditions. However, with Machine Learning (ML) and Artificial Intelligence 

(AI), these predictions are enhanced and improved by analysing complex climate data patterns 

and timeliness of forecasts. 

Machine learning (ML) includes a wide number of methods that include making prediction 

models and looking for trends in them. Its purpose is to model human perception to recognize 

patterns (Greener et al., 2022). It is the most accurate method in RS for solving complex 

problems including sorting out large datasets, making them most suitable for satellite image 

analysis (Belgiu et al., 2016; Han et al., 2019). Random Forest (RF), Convolutional Neural 

Network (CNN), Artificial Neural Network (ANN) Boosted Regression Tree (BRT), and 

Multivariable Linear Regression (MLR) are some of the types of ML used in remote sensing 

(Han et al., 2019). RF is the most accurate method compared to other ML algorithms, and it is 

better at dealing with missing data and huge datasets (Choi et al., 2023). 

3.8.1 Random Forest Regressor 

Random forest is a machine learning algorithm that is widely used for two major 

purposes, i.e., regression and classification. RFR is a collective tree-type classifier that uses 

different decision trees combined to improve classification accuracy (Belgiu et al., 2016; 

Prasad et al., 2006). The principle of RF is to build multiple decision trees during training by 

choosing a subset of explanatory variables and averaging their predictions for effective 

regression performance (Belgiu et al., 2016). Two important variables for generating the model 

are the dependent variable, also known as the number of trees desired (k), and the independent 

variable, known as the number of prediction variables (m) (Breiman, 2001; Rodriguez-Galiano 

et al., 2012).  

In this study, we used the RF algorithm to generate a number of decision trees. For the 

regression, the algorithm takes the average of all the predictions from each tree to produce the 

final result. In the data preparation, historical data from 2010 to 2021 of the indices calculated 

were given to the model. Also CMIP6 future data of temperature (minimum and maximum) 
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and precipitation from 2022 to 2100 was used. All of these datasets were included in the 

training samples, precipitation and temperature serving as input features, which were then 

aggregated to produce yearly average outputs. The decision trees used the input features and 

split them into subsets guided by the target data values. This method makes predictions and 

analyses more accurate, even when the data is complicated and changes over time (Breiman, 

2001). RFR is given in the Equation 16. 

𝑹𝑭 𝒎𝒐𝒅𝒆𝒍𝒕𝒓𝒂𝒊𝒏𝒆𝒅 = 𝒇𝒊𝒕(𝑹𝑭 𝒎𝒐𝒅𝒆𝒍, 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒀𝒕𝒓𝒂𝒊𝒏)              Equation 16 

Where, fit represents the training process, Xtrain and Ytrain are the training data features and the 

target values, respectively.  

The advantages of RF include handling large datasets with high accuracy, which makes it 

suitable for image analysis, reduces over-fitting, and handles missing values and outliers 

(Soyoung & Kim, 2019) . 

Future predictions for each index were done using historical index data and CMIP6 future data 

under two scenarios, i.e. SSP 2-4.5 and SSP 5-8.5. However, the future projections of VCI 

were generated solely from historical VCI values; some key differences occur, such as 

prediction accuracy and uncertainty levels. The RFR uses only calculated historical VCI values 

to project future VCI, which assumes that past patterns and trends will continue into the future 

and, thus, does not take into account any potential impacts of future climate change. In terms 

of climate change sensitivity, the future predictions of VCI are just hypothetical because they 

are based on stationary climate, which can underestimate or overestimate future drought 

conditions. Regarding uncertainty, VCI’s uncertainty arises from historical data’s variability 

and trends and does not consider additional extreme conditions in the future climate. Other 

indices such as TCI, SPEI, and SMADI were predicted using CMIP6 data, which takes into 

account the future climate variability and trends and, therefore, responses to shifts in climate 

change, giving us more accurate and reliable results. Predicted results will help us analyze the 

differences in drought indices patterns and calculations and reveal significant strengths and 

limitations of each index.  
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3.9 Multi-Criteria Evaluation (MCE) 

MCE is a method of decision-making that assesses numerous criteria that conflict with 

each other in order to evaluate various options or alternatives. This is particularly valuable in 

complex scenarios where a decision must consider multiple elements simultaneously, such as 

environmental, economic, and social impact (Malczewski, 2006). MCE facilitates the 

integration of both qualitative and quantitative data, which results in a thorough examination 

of the various criteria (Mendoza et al., 2000). This method is widely used in fields such as 

urban planning, resource management, and environmental studies as well.  

AHP is a specific technique within MCE that helps complex decision problems into a hierarchy 

of criteria and sub-criteria. It is widely used in various applications, including project 

prioritization, risk assessment, and resource collection (Kumari et al., 2023). 

3.9.1. Analytical Hierarchy Process (AHP) 

The Analytical Hierarchy Process (AHP) multi-criteria approach was employed in this 

study to compare the factors as per their relative importance over one another and to ascertain 

priorities. It is the most widely used approach presented by Saaty in 1990 (Pandey & 

Srivastava, 2019). It works on the principle of setting evaluation criteria and offers multiple 

options to choose the best among them. Sometimes, the best-chosen option yields only 

optimized results when all criteria and parameters are taken into account. Therefore, in such 

cases, AHP proves to be a versatile and effective tool for conducting pairwise analysis with 

criteria and rankings (Chakraborty et al., 2019). The method involves three major steps, which 

include calculating the weightage scale, quantifying optional scoring sources and determining 

ranking options for values (Rahman & Saha, 2008). The parameters involved are VCI, TCI, 

SPEI, and SMADI. A pairwise comparison matrix was performed to calculate the weightage 

factor of each parameter.  

The pairwise comparison matric (PWCM) rates the factors based on their relationship with 

other factors and the extent of impact they have on drought severity. For this, a scale of values 

ranging from 1 to 9, developed by (Saaty, 1977) is used. The highest and the lowest ratings, 

i.e. 9 and 1, respectively, show how much a certain factor is dominating over other factors and 

vice versa. Based on previous studies as a reference, expert opinion and subject-specific 
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experience are also taken into consideration when deciding the criteria for the factors involved. 

Moreover, VCI was given the least weight as its future projections are hypothetical based solely 

on historical VCI values and do not consider any future climate aspect. 

Consistency Ratio (CR) is defined as a singular numeric index used to assess the consistency 

of PWCM. If CR is equal to or less than 0.10, the consistency result is acceptable (Saaty, 1977). 

CR is calculated using Equation 17. 

𝑪𝑹 =
𝑪𝑰

𝑹𝑰
                   Equation 17 

Where, CI is the consistency index and RI is the random inconsistency index. 

To calculate CI, we use Equation 18: 

𝑪𝑰 =
𝝀𝒎𝒂𝒙−𝟏

𝒏−𝟏
                  Equation 18 

Where, 𝜆𝑚𝑎𝑥 is the principal eigenvalue and n is the total number of criteria. 

The RI values proposed by (Saaty, 1977) were used by (Jiao et al., 2019; Kalambukattu et al., 

2018; Zagade & Umrikar, 2021) in their research studies. The pairwise comparison matrix 

were designed based on AHP scale given in Table 5 and the final criteria weight based on 

MCDM AHP method is given in Table 6. 
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Table 5: AHP Derived Pairwise Comparison Matrix And Standardization Results. 

 VCI SPEI SMADI TCI 

VCI 1 0.33 0.33 0.25 

SPEI 3 1 0.5 2 

SMADI 3 2 1 3 

TCI 4 0.5 0.33 1 

Average 0.09 0.27 0.44 0.20 

Principal Eigenvalue = 4.22, random inconsistency index (RI) = 0.9 , 

number of comparisons = 6 

Consistency Index (CI) = 2.79, Consistency Ratio (CR) = 3.10% 

 

Table 6: Final Main Criteria Weight Based On Multi-Criteria Decision Making AHP Method 

Sr. No Criteria/Category Priority Rank 

1 VCI 8.9% 4 

2 SPEI 27.4% 2 

3 SMADI 43.8% 1 

4 TCI 19.9% 3 
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3.10 Software and Tools Used 

For this study, several key software programs were used to analyse drought indices 

which include ArcMap 10.8.2, Google Earth Engine, and Microsoft Excel.  

ArcMap 10.8.2 

ArcMap 10.8.2 was used in this study. It is a product of Esri’s ArcGIS desktop suite 

and is a powerful GIS program for mapping, spatial analysis, and data visualization. It is 

beneficial in environmental studies, urban planning, resource management, and disaster 

response. We used the ArcMap Spatial Analyst toolbox to study and visualize drought-related 

data, integrating diverse datasets such as precipitation data, soil moisture data, and vegetation 

indices. 

Google Earth Engine 

Google Earth Engine (GEE) is a cloud-based platform that offers powerful tools for 

processing and analysing geospatial data at scale (Gorelick et al., 2017). It contains multiple 

components that help with geospatial analysis, including elements such as a data catalog, code 

editor, Earth engine library, code repository, visualization tools, and Earth engine apps. The 

tool was used to acquire climate data such as CHIRP, IMERGE-E, MODIS, etc. for the period 

2010 to 2021. We used GEE to compute drought indices such as VCI, TCI, and SPEI, and 

supplementary data for the calculation of SMADI were also acquired from it.  

Microsoft Excel 

Microsoft Excel was used to organize data acquired from multiple sources and 

employed to perform preliminary analysis and statistical calculations. Furthermore, it was used 

to create graphs and charts to represent the data. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Comparison of Gauge Data with Climate Products 

4.1.1 Comparison of Gauge Precipitation with CHIRPS and IMERG Version 6 

 Figure 3 & Figure 4 displays scatter plots that compare monthly averaged precipitation 

data from two satellite-based products (CHIRPS and IMERG) with gauge precipitation data. 

Each graph displays a fitted line and several statistical metrics to illustrate the correlation and 

evaluate the performance of each satellite product.  

Analysis of CHIRPS 

Figure 3 assesses the CHIRPS product. The scatter plot shows the relationship between 

CHIRPS monthly averaged precipitation on the y-axis and PMD monthly averaged 

precipitation on the x-axis (ground truth). The coefficient of determination (R2) indicates the 

amount of variation in the dependent variable (CHIRPS) that is predicted from the independent 

variable (PMD). The graph shows that (R2) is 0.78, which means that observed data can explain 

78% variation in CHIRPS data. R2 may vary from 0 to 1, with values closer to 1 suggesting a 

better fit. The correlation coefficient (CC) measures the strength and direction of the linear 

relationship between the two variables. A value of 0.88 indicates a strong positive linear 

correlation between the two datasets. Bias measures the average difference between CHIRPS 

and PMD values. A Bias of 0.52, indicates that CHIRPS values are slightly higher on average 

as compared to PMD measurements. The values of Bias range from negative to positive, with 

0 indicating no bias. The relative bias (rBias) is the bias normalized by the mean of the 

observed values. A rBias of 1.31 or 31% further confirms this overestimation.  

RMSE measures the standard deviation of the residuals (prediction errors). The RMSE of 

16.34mm shows the standard deviation of the prediction errors, showing the model’s accuracy. 

The RMSE scales from zero to infinity, with lower values indicating greater model 

performance. MAE measures the average of the squares of the errors. An MAE of 11.15mm2 

represents the average squared difference between the observed (PMD) and predicted 

(CHIRPS). The coefficient of regression (β₁) measures the strength and direction of the 

relationship between the independent (PMD) and the dependent (CHIRPS) variable. The β₁ of 
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0.73 indicates that CHIRPS is a reasonably good predictor of actual precipitation as measured 

by PMD gauges. In general, the value of β₁, if closer to 1 or -1, shows a stronger relationship. 

 

Figure 3: Comparison of gauge precipitation and CHIRPS 

Analysis of IMERG 

Figure 4 assesses the IMERG product. The scatter plot shows the relationship between 

IMERG monthly averaged precipitation on the y-axis and PMD monthly averaged 

precipitation on the x-axis (ground truth). The R2 value of 0.72, i.e., 72%, shows the variance 

in the gauge data is covered by the IMERG data, which is slightly lower than the R2 for 

CHIRPS. The CC of 0.85 shows a strong positive correlation, slightly weaker than CHIRPS. 

In this graph, the trend line has a steeper slope β₁ of 1.33. The statistical metrics include a bias 

of -24.01 and a rBias of -60.35, confirming significant underestimation by IMERG compared 
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to PMD. RMSE of 38.70mm shows that IMERG data has a large average error compared to 

PMD data, and an MAE of 26.44mm2 shows significant variation between the datasets.  

Although IMERG shows a good correlation with PMD, as indicated by CC, it shows higher 

errors and significant negative bias. CHIRPS, on the other hand, exhibits better performance 

than IMERG. This is confirmed by high R2 values and lower error metrics (RMSE and MAE). 

The smaller values of bias and rBias for CHIRPS also align closely with the PMD 

measurements. 

 

Figure 4: Comparison of gauge precipitation with IMERG 
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Therefore, CHIRPS provides more accurate and reliable estimates and IMERG. These 

results are also confirmed by several studies done by (Duan et al., 2019; Nashwan et al., 2019), 

which evaluated several precipitation products with rain gauge station data, and their results 

showed that while CHIRPS and IMERG are the most used satellite products for hydrological 

studies, CHIRPS products performed better and gave more similar results with gauge data. 

4.1.2 Comparison of Gauge Temperature with MODIS and ERA-5 

Figure 5 and Figure 6 displays scatter plots that compare monthly averaged 

temperatures from two satellite-based products (MODIS and ERA-5) with gauge temperature 

data. Each graph displays a fitted line and several statistical metrics to evaluate the 

performance of MODIS and ERA-5 in predicting surface temperatures. 

Analysis of MODIS 

Figure 5 assesses the MODIS product. The scatter plot shows the relationship between 

MODIS monthly averaged temperature on the y-axis and PMD monthly averaged temperature 

on the x-axis (ground truth). The graph shows that (R2) is 0.73, meaning that observed data can 

explain 73% variation in MODIS data. A CC value of 0.85 indicates a strong positive linear 

correlation between the two datasets. A bias of 10.29 signifies that MODIS values are higher 

on average than PMD measurements. A rBias of 30.17 further indicates a substantial deviation. 

The RMSE of 2.94°C and an MAE of 2.67°C2 shows a moderate level of agreement. The β₁ of 

60.92 shows a linear relationship with a positive slope. 
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Figure 5: Comparison of gauge temperature with MODIS 

Analysis of ERA-5 

Figure 6 assesses the ERA-5 product. The scatter plot shows the relationship between 

ERA-5 monthly averaged temperature on the y-axis and PMD monthly averaged temperature 

on the x-axis (ground truth). This figure shows a stronger linear relationship than MODIS. The 

statistical measures demonstrate a strong level of agreement, i.e., R2 = 0.95, CC=0.97, 

RMSE=2.12°C, and MAE=1.93°C2. A bias of 16.08 shows that ERA-5 estimates, on average, 

are higher than PMD measurements. The rBias of 47.15 signifies a significant deviation. 

ERA-5 shows a greater association with PMD values than other data, as seen by higher R2 and 

CC values. Although ERA-5 has higher bias and rBias values, still outperforms MODIS in 

estimating surface temperatures. 
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Figure 6: Comparison of gauge temperature with ERA-5 

4.2 Spatio Temporal Variability Analysis 

The spatio-temporal variability analysis of each drought index, and observed 

temperature and precipitation over long-term monthly averages shows how these variables 

change across different regions and time periods. This involves statistical and geospatial 

techniques to identify patterns, trends, and anomalies. Multiple drought indices are used to 

quantify drought conditions, while temperature and precipitation data aid in understanding the 

wider climatic context. This analysis aims to assess how these factors interact, identify drought 

vulnerable areas, and evaluate the impact of climate variability and change on water supply 

and agricultural productivity.  
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The graph for each analysis illustrates the relationship between precipitation (mm), 

temperature (°C), and index over a year taken as long-term monthly averages. The x-axis 

represents the long-term monthly averages, while the y-axis on the left indicates values for 

precipitation and temperature, and the y-axis on the right shows the index. Precipitation reaches 

its maximum in the middle of the year, with values observed in July, which indicates a typical 

seasonal trend. In the seasonal pattern, precipitation increases during specific months, likely 

corresponding to a rainy season. Following the peak, there is a significant decline towards the 

end of the year. Temperature, on the other hand, displays a more consistent and gradual increase 

from January, reaching stability between May and August, implying higher temperatures in the 

summer. Following this trend, temperature gradually declines towards December, indicating a 

shift towards the cooler months. 

4.2.1 Spatio-temporal Variability of VCI 

In Figure 7, the x-axis represents the long-term monthly averages. At the same time, 

the y-axis on the left indicates values for precipitation and temperature, and the y-axis on the 

right shows the VCI. The VCI shows an initial rise from January, peaking around May, 

indicating better vegetation conditions. Following that, there is a slight decline, followed by 

another increase in September, before a steady decrease towards the end of the year. These 

fluctuations are closely associated with changes in precipitation and temperature, suggesting 

that vegetation conditions improve with increased precipitation and moderate temperatures.  

The temporal trend of these parameters shows great interdependence. The peak in precipitation 

values aligns with high VCI values, indicating the importance of water availability for 

vegetation health. On the contrary, the decline in VCI towards the end of the year corresponds 

with a decrease in temperature and precipitation. Overall, the data highlights the variability of 

precipitation and temperature and their direct influence as indicated by the VCI. This is 

important for managing agricultural practices and projecting ecological responses to climate 

change.  
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Figure 7: Spatio-temporal variability of VCI 

4.2.2 Spatio-temporal Variability of TCI 

In Figure 8, the x-axis represents the long-term monthly averages. At the same time, 

the y-axis on the left indicates values for precipitation and temperature, and the y-axis on the 

right shows the TCI. The TCI begins with a moderate value in January, rises to its peak in May, 

and then fluctuates throughout the year with prominent peaks in August and September. The 

index then declines towards December. These fluctuations suggest that while TCI reflects 

overall temperature conditions favorable for vegetation, it also corresponds distinctly to 

precipitation changes.  

The graph shows the relationship between the parameters, where the peak in precipitation 

during the midyear correlates with the highest TCI values, indicating the impact of rainfall on 

temperature conditions beneficial for vegetation. On the contrary, the decline in precipitation 

and temperature towards the end of the year indicates less favourable conditions for vegetation. 

Overall, the seasonal variations in precipitation and temperature significantly influence the 

TCI. This highlights the importance of hydrologic factors in determining vegetation health, 

with TCI acting as a critical indicator of these conditions.  
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Figure 8: Spatio-temporal variability of TCI 

4.2.3 Spatio-temporal Variability of SPEI 

In Figure 9, the x-axis represents the long-term monthly averages. At the same time, 

the y-axis on the left indicates values for precipitation and temperature, and the y-axis on the 

right shows the SPEI values. The SPEI values increase from the beginning of the year, peaking 

around June, and then fluctuate moderately before declining towards the end of the year. SPEI 

values during midyear show improved moisture conditions, probably due to increased 

precipitation and moderate temperatures. On the contrary, the decline in SPEI towards the end 

of the year indicates worsening drought conditions as precipitation decreases and temperature 

drops.  

Overall, the graph illustrates a clear seasonal cycle, with midyear marked by high precipitation 

and temperatures, contributing to favourable moisture conditions (higher SPEI). In the 

subsequent months, the decrease in precipitation and temperature indicates drier conditions 

(lower SPEI). This is important for understanding the local climate patterns and their 

consequences for water resource management, agriculture, and ecosystem sustainability.  

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

T
C

I

A
v
er

a
g

e 
P

re
ci

p
it

a
ti

o
n

 &
 T

em
p

er
a
tu

r
e

Month

Precipitation (mm)

Temperature (°C)

TCI



   

 

52 
 

 

Figure 9: Spatio-temporal variability of SPEI 

4.2.4 Spatio-temporal Variability of SMADI 

In Figure 10, the x-axis represents the long-term monthly averages. At the same time, 

the y-axis on the left indicates values for precipitation and temperature, and the y-axis on the 

right shows the SMADI values. SMADI significantly declines in January, dropping from 7 to 

around 4.5 by February. This is followed by slight fluctuations and a gradual decline until 

April. From May onwards, SMADI rises steadily, peaking again in December at 6.5. This trend 

indicates a cyclic pattern of drought intensity, with lower values during the middle year months 

and higher values towards the beginning and end of the year.  

Overall, the graph shows distinct seasonal patterns for these variables. Precipitation shows 

significant variability with two major peaks, while temperature follows a more consistent 

seasonal pattern of increase and decrease. SMADI displays a cyclic pattern, highlighting 

periods of varying drought intensity throughout the year. This data is essential for 

understanding the climate patterns and their potential impacts on the studied area.  
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Figure 10:  Spatio-temporal variability of SMADI 

4.3 Spatial Distribution and Intensity of Drought Indices 

In this study, we assessed global meteorological, hydrological, and agricultural drought 

from 2010 to 2100 based on four drought indices (VCI, TCI, SPEI, and SMADI), with the 

period of 2010 to 2021 being the historical period and 2022 to 2100 being the future period 

under SSP 2-4.5 and SSP 5-8.5. The CMIP6 SSP 2-4.5 scenario was used in these projections, 

representing a “middle-of-the-road” future in which social, economic, and technological trends 

do not change significantly from historical patterns. This scenario assumes moderate 

mitigation efforts to reduce greenhouse gas emissions. When this scenario is applied to predict 

the indices, it assesses under moderate climate change impact. This intermediate pathway aids 

researchers and policymakers in assessing the resilience and adaptability of ecosystems in 

response to gradual environmental shifts. The CMIP6 SSP 5-8.5 is a high-emission scenario, 

which represents a future of rapid economic growth, overconsumption, and carbon-intensive 

usage. This scenario considers minimal climate policies, leading to substantial global warming. 

It predicts severe impacts, with a huge sea level rise, extreme weather events, reduced water 

availability, and significant risks to ecosystems, agriculture, water supply, food security, human 

health, and infrastructure. When this scenario is applied, the prediction results indicate a 

significant increase in the frequency, distribution, and severity of drought events.  Drought 
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indices calculated on the study area showed spatial distribution and variation of drought 

intensity across different regions. This is visualized through varying maps that help us identify 

major drought-prone regions and the varying degrees of drought severity. These visualizations 

help us identify major drought-prone areas, which help us make strategies for mitigation and 

adaptation to manage and reduce the adverse impacts of droughts.  

4.3.1 Spatial Distribution and Intensity of Vegetation Condition Index (VCI) 

Figure 11 and Figure 12 show the VCI of Pakistan for four different time intervals 

under SSP 2-4.5 and SSP 5-8.5: the present, 2050, 2075, and 2100, respectively. These maps 

visually represent how the vegetation condition is expected to change over time. The green 

points on the maps represent the locations of observed stations used for data collection, and 

the color-coded regions clearly classify drought severity; red implies severe drought, orange 

denotes moderate drought, light green represents near normal drought, and dark green signifies 

normal vegetation. 

The current scenario 

Figure 11 provides a detailed assessment of vegetation health across the country. This 

index ranges from extreme drought conditions to moist and healthy vegetation, considering the 

impact of various climatic factors on vegetation. The map shows a heterogeneous distribution 

of vegetation health throughout Pakistan. In the southwestern part of Balochistan, particularly 

around Quetta, Kalat, and Rohri in Sindh, vegetation is severely affected, and extreme drought 

conditions are present. This is due to prolonged periods of inadequate rainfall and high 

temperatures. The central and south-eastern regions, including Jacobabad and Badin, show 

severe drought conditions, and the vegetation is stressed. In the northern and north-western 

parts of Pakistan, regions such as Peshawar, Islamabad, and adjacent areas show near-normal 

drought conditions. In these areas, vegetation health is relatively stable, considering that the 

climatic conditions are more favourable, having adequate rainfall and temperature. The 

distribution of vegetation health across the map highlights significant regional variations, 

emphasizing the diverse climatic and environmental conditions across Pakistan. 
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Figure 11: Spatial distribution and drought intensity under VCI current scenario 
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Future Projections under SSP 2-4.5 & SSP 5-8.5 

Figure 12 compares VCI predictions under two climate scenarios, SSP 2-4.5 and SSP 

5-8.5, using CMIP6 data for the years 2050, 2075, and 2100. Map (a) 2050 SSP 2-4.5 vs. Map 

(d) SSP 5-8.5: Fig.12a & 12d illustrates projected changes in vegetation health across Pakistan 

under two scenarios. The normal and healthy vegetation regions are the same in both maps, 

primarily in the federal capital. However, these two maps show noticeable differences in the 

extent and severity of drought conditions. In 12a, most of Balochistan and Sindh faced severe 

drought conditions except for a few areas such, as Quetta and Sibbi, which faced extreme 

drought in terms of vegetation. Northern Pakistan, i.e., Gilgit Baltistan, also faces severe 

drought conditions. Moderate drought conditions are seen in central Punjab. In 12d, the severe 

scenario, Quetta and Kalat still experience extreme drought, and the area affected by severe 

drought is reduced compared to Fig.12a. The regions experiencing moderate drought are more 

extensive, including parts of central and southern Punjab.  Map (b) 2075 SSP 2-4.5 vs. Map 

(e) SSP 5-8.5: In Fig.12b, the areas experiencing extreme drought are still prominently visible, 

with key regions being Quetta, Kalat, and Rohri in Balochistan and Gilgit in Gilgit Baltistan. 

Panjgur, Sibbi, and nearby regions, including northern Pakistan, are facing severe drought 

conditions. Regions like Islamabad and Faisalabad are still under near-normal vegetation 

conditions. Fig. 12e under SSP 5-8.5 shows more pronounced extreme and severe drought 

conditions, indicating higher stress levels on vegetation, whereas Fig. 12b under SSP 2-4.5 

shows significant droughts, suggesting a slight improvement in some regions, especially areas 

of moderate and near normal drought conditions. Map (c) 2100 SSP 2-4.5 vs. Map (f) SSP 5-

8.5: In 2100, VCI predictions are less severe in extreme scenarios than in moderate scenarios 

under 2-4.5. In Fig. 12c, a small region around Quetta faces extreme drought conditions, with 

areas such as Kalat and parts of southern Pakistan, including Jacobabad and Rohri, under 

severe drought. Most of Pakistan is under near-normal drought, with Islamabad, Peshawar, 

Kohat, Dir, Lahore, and Badin included in healthy vegetative areas. In the extreme scenario, 

Fig. 12f, the regions experiencing extreme drought have expanded to include Kalat and Quetta. 

The severe drought regions have also spread further and cover additional regions such as Sibbi 

and parts of central and southern Pakistan. The regions of moderate drought conditions remain 

the same but show a slight increase in central areas. Overall, the moist regions in the northern 
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parts of Pakistan are stable, which means they are less affected by the increasing drought stress 

observed in other parts of the country. 
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Figure 12: Spatial distribution and drought intensity under VCI future projections 
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In conclusion, these maps provide a projection of the VCI in Pakistan from the current 

day to 2100, indicating a gradual enhancement in vegetation conditions. The projections imply 

a decrease in areas affected by severe drought and an increase in regions with wet conditions. 

This indicates a potential reduction in drought severity over long-term, although some regions 

will still experience moderate drought conditions.  

Upon comparing the performance of VCI in Pakistan with other countries or regions, it shows 

that while VCI is focused more on evaluating the vegetation health over different areas, such 

as in Amazon rainforest, its use in Pakistan is solely based on agricultural drought monitoring 

in arid and semi-arid climates, as is the case of (Rawat et al., 2012) which also focused on 

monitoring drought in the states of Maharashtra and Karnataka, where monsoon variability 

affects crop production.  

4.3.2 Spatial Distribution and Intensity of Temperature Condition Index (TCI)  

Figure 13 and Figure 14 displays the Temperature Condition Index in Pakistan at four 

different time intervals under SSP 2-4.5 and SSP 5-8.5: the present, 2050, 2075, and 2100. TCI 

is an important measure use to evaluate the impact of temperature-related stress on vegetation, 

indicating varying levels of drought severity. These maps show how temperature conditions 

are expected to change over specific time frames.  

The Current scenario  

In Figure 13, the map shows a wide range of temperature conditions across Pakistan. 

Regions such as Panjgur, Kalat, Sibbi, and Khanpur are currently experiencing extreme 

drought. Quetta, Badin, and several regions in southern Pakistan are facing severe drought 

conditions. The yellow regions, including Lahore and Faisalabad, show moderate drought 
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conditions. The northern regions, specifically Gilgit and Skardu, shows no signs of dryness 

and have no drought.   

 

 

 

Figure 13: Spatial distribution and drought intensity under TCI current scenario 
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Future Projections under SSP 2-4.5 & SSP 5-8.5 

Map (a) 2050 SSP 2-4.5 vs. Map (d) SSP 5-8.5: According to the 2050 projections, as 

shown in Fig. 14a, Kalat, Sibbi, Panjgur and Khanpur continue to face extreme drought 

conditions, while severe drought conditions persist in areas like Barkhan. The same drought 

conditions persist in the Lahore and Multan areas and Peshawar and Sargodha region as in the 

current scenario. The northern regions remain unaffected by drought. In Fig. 14d, southwestern 

regions are experiencing extreme drought under the extreme scenario. Furthermore, there are 

slight differences in the distribution and extent of the drought severity levels. Regions such as 

Jacobabad and Rohri have transitioned from extreme drought to severe drought, indicating an 

improvement over time. Map (b) 2075 SSP 2-4.5 vs. Map (e) SSP 5-8.5: The 2075 forecasts, 

as shown in Fig. 14b indicate a slight increase in the prevalence of extreme drought conditions, 

particularly in regions like Panjgur and Jacobabad, where the impact remains substantial. 

Severe drought conditions have extended slightly and persist in Mianwali, Kohat, and Jhelum. 

Central regions and areas like Peshawar and Sargodha follow the same trend as in previous 

periods. The northern region continues to exhibit no drought conditions. In the second map, 

i.e., Fig. 14e, the TCI data predicts extreme drought conditions in Pakistan.  The map indicates 

that southern western regions, including Quetta, Kalat, Sibbi, and Jacobabad, are experiencing 

extreme drought. Northern Punjab and federal face moderate drought conditions, central 

Punjab faces severe drought conditions, while northern Pakistan remains unaffected. The 

comparison of both these scenarios indicates a temporal change in the temperature conditions, 

which impacts the severity of drought in Pakistan. Under SSP 2-4.5, the map shows 

improvement in terms of drought severity instead of SSP 5-8.5, which suggests a severe and 

widespread drought period.  Map (c) 2100 SSP 2-4.5 vs. Map (f) SSP 5-8.5: According to 

projections, harsh drought conditions are expected to worsen by 2100, as shown in Fig. 14c, 

particularly in Panjgur and Sibbi. Severe drought conditions persist in Quetta and are spreading 

to nearby regions. Other regions, such as the central and northern regions and areas like 

Peshawar, follow the same conditions. Fig. 14f, shows intensified drought conditions. The 

extent of extreme drought has increased significantly, covering large areas in southwestern and 

central Pakistan, with regions like Rohri and Khanpur now included.  The area under moderate 

droughts and near-normal conditions has also decreased, suggesting a worsening drought. The 

moist regions remain the same.  
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Figure 14: Spatial distribution and drought intensity under TCI future projections 
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Overall, these maps predict the TCI in Pakistan from 2010 to 2100. They show that 

drought conditions will become more severe over time, with a noticeable increase in areas 

experiencing extreme and severe drought. This also signifies the increasing pressure on 

agriculture caused by an increase in temperature and calls for urgent need and adaptive 

strategies to reduce the negative effects of climate change on agriculture and natural 

ecosystems. 

Almost all Pakistan faces significant temperature variations, particularly in hot and dry agro-

climatic zones, like Balochistan. TCI effectively detected temperature stress on agriculture and 

yielded the best results in cities like Jacobabad and Sibbi.  

4.3.3 Spatial Distribution and Intensity of Standardized Precipitation Evapotranspiration 

Index (SPEI)  

The map in Figures 15 and 16 visualizes the Standardized Precipitation 

Evapotranspiration Index (SPEI) across Pakistan at four distinct time intervals: the present, 

2050, 2075, and 2100. SPEI is a reliable measure for monitoring drought conditions as it 

combines precipitation and potential evapotranspiration, providing valuable information about 

the climatic water balance. 
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The Current scenario 

The present scenario, Figure 15, displays extreme drought conditions in Panjgur, 

Jacobabad, and Rohri. Moderate drought conditions are visible in Quetta, Khanpur, Sibbi, and 

Kalat. Near Normal drought conditions are shown in regions like Badin, Barkhan and northern 

Pakistan. Northern Punjab and Federal capital are experiencing moist conditions.    

 

Figure 15: Spatial distribution and drought intensity under SPEI current scenario 
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Future Projections under SSP 2-4.5 & SSP 5-8.5 

Map (a) 2050 SSP 2-4.5 vs. Map (d) SSP 5-8.5: Fig. 16a and Fig. 16d illustrate the 

projected drought conditions in Pakistan for the year 2050, based on two scenarios using SPEI. 

Under SSP 2-4.5 in Fig. 16a the majority area is covered by near-normal to normal conditions. 

The northern and eastern parts of Pakistan, including Lahore, Faisalabad, and Gilgit, are 

projected to remain normal with no significant drought. The southern and southwestern regions 

exhibit greater variability, with moderate drought conditions observed in areas such as Quetta 

and Kalat. 

There are severe drought conditions in specific regions near Jacobabad and Rohri, while 

extreme drought is around Panjgur.  The situation appears much more severe under the extreme 

scenario, as shown in map (d). There is a change in extent between near-normal and normal 

conditions. The southern and southwestern regions are further intensified with extreme drought 

conditions spreading further in cities like Jacobabad and Sibbi. Quetta and Kalat are expected 

to undergo moderate to severe drought conditions. Map (b) 2075 SSP 2-4.5 vs. Map (e) SSP 

5-8.5: The given maps depict expected drought conditions for Pakistan in 2075. Fig. 16b 

indicates moderate drought conditions in the southern and southwestern parts of Pakistan, such 

as Panjgur, Kalat, and Quetta, where severe to extreme drought conditions are present. The 

central and northern parts of the country show near-normal to normal conditions. Fig. 16e 

highly exaggerates the projections. Drought severity escalated in the southern and 

southwestern regions, with a wider distribution of severe and extreme drought conditions. Map 

(c) 2100 SSP 2-4.5 vs. Map (f) SSP 5-8.5: Fig. 16c under SSP 2-4.5 shows extreme drought in 

southern Pakistan, specifically near Quetta, Panjgur, and Kalat, while severe drought is seen 

in adjacent areas and further extends into Sibbi and the surrounding territories of Jacobabad. 

Central and southern Pakistan is under a moderate drought, including certain areas of Sindh 

province around Badin. Normal conditions are seen in most of northern and eastern Pakistan. 

Under SSP 5-8.5, in Fig. 16f, extreme drought becomes more extensive than in moderate 

scenario. Severe drought becomes more widespread, encompassing areas like Kalat and Sibbi, 

leading to less coverage by moderate droughts. Normal drought conditions persist in the 

northern regions of Pakistan.  
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Figure 16: Spatial distribution and drought intensity under SPEI future scenario 
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Upon comparing the two scenarios, it becomes clear that the extreme scenario predicts 

a considerably more intense and extreme drought throughout Pakistan by the year 2100. This 

will lead to increased water scarcity and result in vast areas experiencing severe drought 

conditions, posing significant threat to agriculture and water resources. 

SPEI is designed to evaluate drought conditions using both precipitation and 

evapotranspiration, making it effective for areas having high climatic variability, such as 

discussed in the paper by (Domínguez-Castro et al., 2019). Upon comparing with Pakistan, 

SPEI will be a valuable index to measure drought dynamics especially in areas influenced with 

monsoon. On the other hand, its performance is different in the arid southern regions of 

Pakistan where evapotranspiration plays a different role.  

4.3.4 Spatial Distribution of Soil Moisture Agricultural Drought Index (SMADI) 

The provided Figure 17 and Error! Reference source not found. illustrates the Soil 

Moisture Agricultural Drought Index (SMADI) for Pakistan, presenting the current situation 

and future forecasts for the years 2050, 2075, and 2100. SMADI is essential for soil moisture 

deficit assessment, which impacts on agricultural output. It shows how changes in soil moisture 

levels affect drought conditions over time.  

The current scenario 

Currently, areas facing normal drought, as shown in Figure 17, are primarily located in 

southern and central parts of Pakistan. A major portion of the study area is covered with near-

normal drought conditions under this index, which indicates regions with slight deviations 

from average soil moisture levels. Areas experiencing mild droughts are spread across various 

parts, particularly in northwest and central regions. Moderate droughts are recorded in the 

southern and northern regions. The areas with severe drought are concentrated in the 

southwestern regions like Quetta and Kalat. The presence of extreme drought is limited to a 
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few crucial areas that are experiencing substantial deficits in soil moisture.  

 

Figure 17: Spatial distribution and drought intensity under SMADI current scenario 

Future Projections under SSP 2-4.5 & SSP 5-8.5 

Map (a) 2050 SSP 2-4.5 vs. Map (d) SSP 5-8.5: By 2050, as shown in Fig. 18a, the 

projections suggest an improvement in soil moisture conditions. Near-normal drought 

conditions remain significant but are more concentrated in the central and southern regions. 
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Moderate drought regions become more confined. Severe and extreme drought areas decrease 

significantly, showing a favourable trend in soil moisture levels. Under SSP 5-8.5, mild 

drought conditions are seen all across Pakistan, with northern regions, including areas of Gilgit 

Baltistan, experiencing moderate drought.  Map (b) 2075 SSP 2-4.5 vs. Map (e) SSP 5-8.5: In 

2075, as shown in Fig. 18b under moderate scenario, the trend of improvement continues, and 

the areas of moderate drought are slightly increasing. Although drought conditions persists, 

they are less prevalent. The extreme drought region is almost non-existent. As in the case of 

SSP 5-8.5, the overall trend shows moderate drought conditions in northern Pakistan and parts 

of southern Pakistan, including areas such as Panjgur, Quetta, and Sibbi. Map (c) 2100 SSP 2-

4.5 vs. Map (f) SSP 5-8.5: By 2100, as shown in Fig. 18c, the overall condition changes 

drastically, and now the major parts of the country are under moderate drought conditions, with 

severe and extreme conditions visible in Quetta, Astore, and parts of Gilgit. Some scattered 

mild drought condition can be seen in Islamabad, Badin, Dir, Kalat, Peshawar, Sargodha, and 

Faisalabad. In the extreme scenario, as shown in Fig. 18f, Pakistan is under moderate drought 

conditions, with a few areas such as Panjgur, Quetta, Mianwali, Astore, and parts of Gilgit 

facing severe drought conditions. No region is left under normal vegetation. This indicates a 

significant worsening of soil moisture conditions rapidly across Pakistan.  
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Figure 18: Spatial distribution and drought intensity under SMADI future projections 
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Overall, the figure shows an initial improvement in soil moisture conditions by the 

middle of the century, followed by a slight increase in drought severity towards the end of the 

century. These findings highlight the significance of implementing sustainable water 

management methods and adaptive agricultural solutions to reduce the effects of soil moisture 

fluctuations on agricultural productivity in Pakistan. 

Pakistan’s arid and semi-arid regions, such as Balochistan and Sindh, have similar climatic 

conditions to southeastern Spain and the Murray-Darling Basin, as indicated by (Dunne & 

Kuleshov, 2023; Mercedes et al., 2021) in their studies, making SMADI a suitable index for 

monitoring drought in Pakistan. The values of SMADI are very much affected by its 

parameters, as it is expected that higher SMADI showing extreme/severe drought come from 

a combination of very low VCI, high SMCI, and high MTCI. In the semi-arid regions, SMADI 

is more dependent on soil moisture than temperature, which is also stated by (Scaini et al., 

2015). The seasonal pattern is determined by temperature, whereas the soil moisture conditions 

determine the intensity of drought. 

4.4 Drought Composite Map 

A drought composite map was created to provide a thorough overview of drought 

conditions. It integrates multiple drought indices, such as VCI, TCI, SPEI, and SMADI. The 

integration of these indices was based on weighted scores for each criterion. VCI represents 

the health of vegetation and moisture sensitivity, and TCI measures the effects of temperature 

extremes on the plants. To understand the long-term drought trends, SPEI is used, which 

evaluates the drought severity over different time periods by using precipitation and ET data. 

Understanding the effects of drought on agriculture is largely based on SMADI, which focuses 

on anomalies in soil moisture. This DCM provides a multi-dimensional perspective on drought 

by combining these indices, making it easier to evaluate and control the risks associated with 

drought in different geographical areas.  
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Current Drought Composite Map 

Figure  displays a drought composite map of Pakistan, showing different regions 

experiencing drought. The most affected cities are Quetta, Kalat, and Panjgur, especially in 

Pakistan’s southwest, which is under severe to extreme drought. Contrary to that, Peshawar, 

Mianwali, and Lahore, including other northern parts, are under normal vegetation or mild 

drought conditions. Moderate or average conditions persist in the central and northern parts of 

Pakistan.  
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Figure 19: Drought Composite Map current scenario 

Future Drought Composite Maps under CMIP6 SSP 2-4.5 & SSP 5-8.5 

Map (a) 2050 SSP 2-4.5 vs. Map (d) SSP 5-8.5: Figure 20 shows future drought 

projections for 2050 under two SSPs. Under SSP 2-4.5, the Fig. 20a depicts moderate and mild 

drought conditions. Panjgur comes under severe drought conditions, whereas the rest of the 

area across Pakistan exhibits normal vegetation. No noticeable areas experiencing extreme 

drought are shown in this scenario. Under SSP 5-8.5, Fig. 20d shows more widespread and 
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severe drought conditions than moderate scenarios. Panjgur and Rohri are under extreme and 

severe drought conditions, while the rest of the country shows moderate drought conditions. 

The regions surrounding Islamabad, Lahore, and Gilgit are experiencing normal vegetation 

conditions. This comparison shows how the two scenarios differ significantly in severity, with 

the higher scenario indicating a more concerning situation. Map (b) 2075 SSP 2-4.5 vs. Map 

(e) SSP 5-8.5: Fig. 20b and Fig. 20e show predictions for the year 2075 under two SSPs 

representing varying climate change scenarios based on various levels of greenhouse gas 

emissions. A moderate drought situation is depicted in Fig. 20b under SSP 2-4.5. The southern 

region has severe to mild drought conditions, especially in Quetta, Kalat, and Panjgur. The rest 

of the country comes under moderate drought conditions, while the northern region exhibits 

healthy vegetation. SSP 5-8.5 shows a more severe scenario. According to this prediction, there 

is a greater widespread drought throughout Pakistan.  A considerable area of Pakistan, 

particularly in the south and southwest, shows moderate drought, with areas surrounding 

Quetta, Kalat, Sibbi, and Panjgur under extreme and severe drought. The spread of moderate 

drought conditions is more noticeable than SPP 2-4.5. However, the northern region is under 

normal conditions. In comparison, the drought will be more widespread by 2075 under SSP 5-

8.5, but both scenarios imply serious drought conditions in the southern regions. Map (c) 2100 

SSP 2-4.5 vs. Map (f) SSP 5-8.5: The Fig. 20c & Fig. 20f illustrates the future projections for 

the year 2100. Under SSP 2-4.5, severe drought conditions are present in the southwestern 

regions surrounding Kalat, Jacobabad, and Panjgur. Islamabad, Mianwali, Gilgit, and northern 

and central parts of the country are under normal conditions. Under SSP 5-8.5, a significant 

portion is under extreme and severe drought, which includes Quetta, Kalat, Sibbi, and Panjgur. 

This shows that the worst drought conditions are anticipated to occur in these areas while most 

of the area is under moderate drought encompassing northern and central regions like Gilgit, 

Islamabad, and Lahore. , 

Based on the overall pattern, most of Pakistan will be severely stressed by drought, with very 

few areas having normal circumstances. These projections emphasize how critical it is to 

implement policies for both climate mitigation and adaptation to effectively manage the future 

water and agricultural issues brought on by extreme drought. 
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Figure 20: Drought Composite Map future scenario under SSP2-4.5 and SSP 5-8.5 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

Droughts significantly affect the present ecosystem, agricultural produce, human 

survival, and economic uplift. It has the potential to lead to long-term climate change and 

desertification. Hence, it is important to investigate the essence of drought calamities, 

thoroughly analyse their spatial and temporal attributes, and employ scientific approaches to 

avoid and mitigate drought. The investigation into drought severity and intensity remains 

inconclusive since it mainly focuses on a single drought index and rarely examines the 

collective impact of various elements contributing to drought. Effective agricultural drought 

management of agricultural drought is important due to its direct impact on food security. 

Therefore, multiple models have been created to forecast agricultural drought. Despite the high 

quality of a model, inaccuracy might occur in predicting droughts due to meteorological 

outliers (Park et al., 2019). The model for predicting droughts should be simple, practical, and 

useful to establish effective mitigation efforts. 

 5.1 Conclusion 

The comparative analysis of satellite products and gauge-based datasets, including 

CHIRPS, IMERG, MODIS, and ERA-5, provides several key findings in their performances, 

particularly for Pakistan. CHIRPS outperformed IMERG in estimating precipitation, as 

indicated by higher r2 values, reduced RMSE and MAE, and negligible bias. CHIRPS 

combines satellite data with gauge data, allowing it to adjust better and correct its estimates, 

especially in complex terrain regions such as Pakistan. IMERG, on the other hand, tends to 

overestimate or underestimate precipitation in areas where precipitation is highly variable, 

giving less accurate results. In terms of temperature data analysis, ERA-5 had superior 

performance compared to MODIS in the estimation of surface temperatures, showing a greater 

correlation with the observed data. ERA-5 offers a thorough atmospheric reanalysis, including 

land surface and air temperatures at different altitudes. These data are obtained from a diverse 

set of observations that are integrated into a global model. Therefore, ERA-5 can accurately 

represent larger climate patterns and offer uninterrupted and reliable temperature data over 

time (Hersbach, Bell, Berrisford, Dahlgren, et al., 2020). These findings emphasize the 

importance of choosing the most accurate datasets for climate modeling and analysis, 

particularly in areas with meteorological variables such as Pakistan. 
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Unlike previous studies, this research took all of Pakistan as the study area and analysed the 

overall drought severity and intensity spatially and temporally by combining multiple drought 

indices, considering several factors, such as rainfall, temperature, vegetation health, and soil 

moisture. The current and future predictions (using the MME mean of several GCMs of 

CMIP6) of drought indices such as VCI, TCI, SPEI, and SMADI show a comprehensive 

assessment of drought patterns, emphasizing their value in monitoring agricultural drought and 

focusing on the importance of using many indices for accurate drought evaluation. These 

indices combined suggest that Pakistan’s central and southern regions are very susceptible to 

drought, and the situation is projected to worsen by the end of the century under both mild and 

extreme climate scenarios. The projected drought from CMIP6 future precipitation and 

temperature data under moderate and extreme scenarios is a fair representation of all the GCMs 

with low uncertainty and variability.  

AHP can allocate weights to various drought indices according to their significance in drought 

assessment. These weights impact the overall estimate of drought severity by assigning greater 

significance to some indices than others. Combining multiple drought indices using AHP into 

a Drought Composite Map creates a comprehensive tool for evaluating and addressing drought 

hazards. The higher weights of SMADI and SPEI signify the importance of soil moisture and 

evapotranspiration, particularly in agricultural regions. The results clearly state that climate 

change will increase the severity and intensity of agricultural droughts, but it depends on the 

regions and index being used in the study. This research provides critical insight for improving 

and verifying the models for predicting drought conditions. 

It is important to note that the number of criteria and their respective weights can vary 

according to the size, scale, or specific objective of the study. AHP is limited by the fact that 

as the number of criteria increases, the analysis becomes more complex because of the need 

for a greater number of pairwise comparisons. To address this complication, this study only 

considered the most important and influential drought indices for computation and evaluation. 

Despite its limits, utilizing MCE and AHP provides a valuable framework for effectively 

incorporating various criteria into an integrated assessment, improving the comprehension and 

management of drought impacts. 
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5.2 Recommendations 

1. Given the superior performance of CHIRPS and ERA-5, integrating these climate 

datasets with existing gauge data improves the accuracy and reliability of precipitation and 

temperature estimates. The combination of data with RS methods provides promising results. 

Also, with the recent effects of climate change in unpredictable climate conditions such as 

extreme drought or extreme floods, a dynamic monitoring system using high temporal and 

spatial resolutions of climate data will be beneficial for implementing quick measures to reduce 

the severe effects of climate calamities on agriculture. 

2. Though this study utilized various drought indices, including VCI, TCI, SPEI, and SMADI, 

the inclusion of additional indices such as the Palmer Drought Severity Index (PDSI), 

Evaporation Stress Index (ESI) would further enhance the impact assessment of drought.  

3. To understand future climate scenarios more clearly, it is advisable to integrate long-term 

climate models with updated emission scenarios, which will enhance the scope of possible 

results and enhance the evaluation of hazards linked to various pathways of greenhouse gas 

emissions and socio-economic progress.  

4. Future research should prioritise detailed regional and area-specific analyses within Pakistan 

that are particularly susceptible to drought. Such research topics can be the impact of drought 

on specific crops, water resource management in arid regions, or the socio-economic 

consequences for populations relying on agriculture. Such studies will yield practical and 

effective information for specific actions. Furthermore, it could also explore the use of AI-

driven models for analysing large datasets to predict droughts with more precision and 

accuracy. Another aspect of future research is integrating socio-economic factors into drought 

impact assessments that will provide researchers a more complete picture of the possible 

effects of drought on the population. Future investigations could examine the interplay of 

variables such as population growth, land-use changes, and economic policies with climate 

factors to determine their impact on drought vulnerability.  
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