
The Common
Lisp Condition
System

Beyond Exception Handling with
Control Flow Mechanisms
—
Michał “phoe” Herda

The Common Lisp
Condition System

Beyond Exception Handling
with Control Flow Mechanisms

Michał “phoe” Herda

The Common Lisp Condition System: Beyond Exception Handling with Control Flow
Mechanisms

ISBN-13 (pbk): 978-1-4842-6133-0			 ISBN-13 (electronic): 978-1-4842-6134-7
https://doi.org/10.1007/978-1-4842-6134-7

Copyright © 2020 by Michał “phoe” Herda

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Ricardo Gomez on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484261330. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Michał “phoe” Herda
Krakow, Poland

https://doi.org/10.1007/978-1-4842-6134-7

iii

About the Author�� ix

About the Technical Reviewers�� xi

Introduction�� xiii

Preface���xvii

Table of Contents

Chapter 1: �Basic concepts��� 1

1.1 ��Dynamic variables�� 1

1.1.1 ��Dynamic variables in C�� 1

1.1.2 ��Dynamic variables in Common Lisp�� 8

1.1.3 ��Alternatives in other languages��� 13

1.2 ��Non-local transfers of control�� 14

1.2.1 ��TAGBODY and GO��� 16

1.2.2 ��BLOCK and RETURN-FROM/RETURN��� 18

1.2.3 ��CATCH and THROW�� 20

1.3 ��Lexical closures��� 21

Chapter 2: �Introducing the condition system��� 25

2.1 ��A simple system of hooks�� 25

2.1.1 ��Hook #1: Launching Counter-Strike��� 27

2.1.2 ��Hook #2: Only call Counter-Strike players��� 33

2.1.3 ��Hook #3: Only call parents… maybe��� 34

2.1.4 ��Hook #4: Holiday wishes��� 35

2.1.5 ��Accumulating hooks�� 36

2.1.6 ��Hook #5: Calling Tom’s girlfriend again��� 37

2.1.7 ��Multiple types of hooks��� 39

2.1.8 ��Summary: The hook subsystem�� 42

iv

2.2 ��A simple system of condition handlers�� 43

2.2.1 ��Exception handling�� 50

2.2.2 ��Protection against transfers of control�� 58

2.2.3 ��Clustering�� 60

2.2.4 ��Summary: The handler subsystem�� 62

2.3 ��A simple system of choices��� 62

2.3.1 ��Kate and Mark��� 63

2.3.2 ��Choice #1: Escape��� 64

2.3.3 ��Choice #2: Excuses�� 72

2.3.4 ��Summary: the choice subsystem�� 74

2.4 ��A simple system of restarts��� 75

2.4.1 ��Interactive restarts�� 84

2.5 ��A simple system of actually restarting restarts��� 87

2.5.1 ��Restarts that perform a non-local exit�� 87

2.5.2 ��From RESTART-BIND to RESTART-CASE��� 90

2.5.3 ��Simple restarts�� 93

2.5.4 ��Standard restarts and restart-invoking functions��� 94

2.5.5 ��Defining custom restart-invoking functions�� 95

2.6 ��Reporting conditions and restarts�� 97

2.6.1 ��Printing vs. reporting��� 97

2.6.2 ��Custom condition reports�� 98

2.6.3 ��Custom restart reports�� 101

2.7 ��Warnings�� 104

2.7.1 ��Different ways of warning��� 105

2.7.2 ��Muffling warnings��� 106

2.8 ��Assertions�� 107

2.8.1 ��Simple assertions via ASSERT��� 107

2.8.2 ��Type checking via CHECK-TYPE��� 109

2.8.3 ��Case assertions��� 110

2.8.4 ��Correctable case assertions�� 110

2.8.5 ��Arguments for continuable errors�� 111

Table of Contents

v

2.9 ��A simple debugger��� 112

2.9.1 ��Reporting the condition in the debugger��� 113

2.9.2 ��Reporting the condition type in the debugger��� 114

2.9.3 ��Reporting the restarts in the debugger��� 115

2.9.4 ��Choosing the restarts in the debugger�� 116

2.9.5 ��Installing a custom debugger�� 118

2.9.6 ��Recursive debugger�� 120

2.9.7 ��Adding a REPL to the debugger��� 124

2.9.8 ��Backtraces��� 127

2.9.9 ��Associating conditions with restarts��� 128

Chapter 3: �Implementing the Common Lisp condition system������������������������������ 135

3.1 ��Package definition��� 136

3.2 ��Conditions�� 138

3.2.1 ��Base class for conditions�� 138

3.2.2 ��Defining new condition types�� 140

3.3 ��Coercing data to conditions��� 146

3.4 ��Restart basics�� 148

3.4.1 ��Restart class�� 148

3.4.2 ��Restart visibility and computing restarts��� 150

3.4.3 ��Invoking restarts�� 153

3.5 ��Binding restarts��� 155

3.6 ��Restart cases��� 158

3.6.1 ��First iteration: basics��� 158

3.6.2 ��Second iteration: Forms instead of a function��� 163

3.6.3 ��Third iteration: Managing the keyword differences��� 167

3.6.4 ��Fourth iteration: Associating conditions with restarts��� 169

3.6.5 ��Implementing simple restarts��� 174

3.7 ��System-defined restarts�� 175

3.8 ��Assertions�� 177

3.8.1 ��Case failures�� 177

3.8.2 ��Case utilities�� 178

Table of Contents

vi

3.8.3 ��Non-correctable case assertions��� 180

3.8.4 ��Correctable case assertions�� 182

3.8.5 ��General assertions��� 186

3.9 ��Signaling�� 190

3.10 ��Handlers��� 195

3.10.1 ��Binding handlers��� 195

3.10.2 ��Handler cases�� 196

3.10.3 ��Testing assertions�� 202

3.11 ��A featureful debugger�� 203

3.11.1 ��Debugger commands�� 203

3.11.2 ��Evaluating Lisp forms�� 205

3.11.3 ��Reporting and returning conditions��� 206

3.11.4 ��Listing and invoking restarts��� 208

3.11.5 ��Debugger help and REPL��� 211

3.11.6 ��Debugger interface�� 216

3.12 ��Finishing touches��� 217

3.12.1 ��Integration��� 217

3.12.2 ��Additional work�� 218

Chapter 4: �Wrapping up��� 221

4.1 ��The purpose of the condition system��� 222

4.2 ��Binding vs. casing�� 223

4.3 ��Separation of concerns�� 224

4.4 ��Algebraic effects�� 225

4.5 ��Downsides of the condition system��� 226

4.5.1 ��Separation from CLOS��� 226

4.5.2 ��Dynamic extent of restart objects��� 227

4.5.3 ��Speed�� 228

4.5.4 ��Optimization settings��� 228

4.5.5 ��Introspection�� 228

4.5.6 ��Concrete condition types��� 229

Table of Contents

vii

4.5.7 ��Warning conditions and #’WARN��� 230

4.5.8 ��Implementing custom SIGNAL-like operators��� 230

4.5.9 ��Lack of functional interfaces to handlers and restarts��� 230

4.5.10 ��Smaller issues��� 231

4.5.11 ��Summary: Downsides of the Common Lisp condition system���������������������������������� 232

4.6 ��Condition system in practice�� 233

4.6.1 ��Unit test library: Collecting results�� 233

4.6.2 ��Web framework: Sending results over the network�� 234

4.6.3 ��GUI applications: Interactive querying��� 235

4.6.4 ��Generating data: Python-like generators��� 235

Chapter 5: �Appendixes��� 237

5.1 ��Appendix A: Implementation of dynamic variables in C��� 237

5.2 ��Appendix B: Additional utilities for working with Common Lisp conditions������������������������� 242

5.2.1 ��CALL-WITH-HANDLER and CALL-WITH-RESTART�� 242

5.2.2 ��HANDLER-BIND* and HANDLER-CASE*�� 246

5.2.3 ��HANDLER-BIND-CASE�� 249

5.3 ��Appendix C: Lisp macros 101��� �252

5.3.1 ��Basics of macro writing��� 253

5.3.2 ��Backquote��� 254

5.3.3 ��Symbol capture��� 255

5.3.4 ��Order of evaluation�� 258

5.3.5 ��Multiple evaluation�� 259

5.3.6 ��When not to write macros��� 260

5.3.7 ��Reference�� 260

5.4 ��Appendix D: Condition system reference��� 260

5.4.1 ��Restarts and related functions�� 260

5.4.2 ��Condition-restart association�� 264

5.4.3 ��Restart macros�� 265

5.4.4 ��Standard restarts��� 268

5.4.5 ��Defining and instantiating conditions�� 270

Table of Contents

viii

5.4.6 ��Assertions�� 274

5.4.7 ��Condition signaling�� 278

5.4.8 ��Handler macros��� 281

5.4.9 ��Condition types�� 283

5.4.10 ��Debugger invocation��� 290

��Index�� 293

Table of Contents

ix

About the Author

Michał “phoe” Herda is a professional programmer who

has contributed to multiple parts of the Common Lisp

ecosystem: CL implementations, existing and widely used

CL utilities, documentation, and some of the new library

ideas that he slowly pushes forward and works on. This book

is his first literary work — an attempt to create the tutorial on

the condition system which had been missing even all these

years after ANSI Common Lisp was standardized.

xi

About the Technical Reviewers

Adlai Chandrasekhar is busy detangling the moral implications of having suffered the

cruelly unusual punishment of performing quality control procedures on rocket

targeting electronics that did not offer a condition system, despite the operators having

studied Common Lisp before enlistment. 

Dave Cooper is CTO at Genworks International and enjoys spending his time

maintaining, extending, and supporting the Genworks GDL Knowledge-Based

Engineering System and the Gendl Project which comprises its open source core (all

based on Common Lisp language). 

John Cowan’s friends describe him as knowing at least something about almost

everything, his enemies as knowing far too much about far too much. 

Vsevolod Domkin, a.k.a. vseloved, is a Lisp aficionado and professional Common Lisp

developer for more than 10 years, who is also a writer (author of the book Programming

Algorithms) and occasional teacher of the courses on system programming, algorithms,

and natural language processing. 

Michael Fiano is a Common Lisp developer with 12 years of experience, who has made

many contributions to the Common Lisp ecosystem, including pngload, and various

game development software such as Virality Engine. 

Marco Heisig is a passionate Lisp hacker, free software advocate, and researcher in the

fields of high-performance computing, numerical mathematics, and compiler

technology. 

Jerome Onwunalu is a researcher in the fields of mathematical optimization and fluid

flow modeling and is currently using Common Lisp for the development of a large-scale

integrated software application. 

Georgiy Tugai is a professional compiler developer who, having reviewed this book, now

bemoans even more often the lack of a proper condition system, or object system for that

matter, in the more mainstream languages he uses at work.

xiii

Introduction

This book is intended to be a tutorial for the Common Lisp condition system, teaching

its functioning and presenting a range of example uses. It is aimed at beginning

and intermediate Lisp programmers, as well as intermediate programmers of other

programming languages. This book provides detailed information specifically about

the CL condition system and its control flow mechanisms, so it is envisioned as a

supplement to already existing material for studying Common Lisp (CL) as a language.

The book also contains a description of an example ANSI-conforming implementation

of the condition system.

�What is a condition system? Introduction by Kent
M. Pitman
There have been many attempts to declare the Lisp family of languages dead, and yet it

continues on in many forms. There are many explanations for this, but an obvious one

is that it still contains ideas and features that aren’t fully appreciated outside the Lisp

community, and so it continues as both a refuge and an idea factory.

Gradually, other languages see the light and these important features migrate to

other languages. For example, the Lisp community used to be unusual for standing

steadfastly by automatic memory management and garbage collection when many said

it couldn’t be trusted to be efficient or responsive. In the modern world, however, many

languages now presume that automatic memory management is normal and natural, as

if this had never been a controversy. So times change.

But proper condition handling is something which other languages still have not

figured out that they need. Java’s try/catch and Python’s try/except have indeed shown

that these languages appreciate the importance of representing exceptional situations as

objects. However, in adopting these concepts, they have left out restarts—a key piece of

the puzzle.

xiv

When you raise an exception in Python, or throw one in Java, you are still just

performing an immediate and blind transfer of control to the innermost available

handler. This leaves out the rich experience that Common Lisp offers to perform actual

reasoning about where to return to.

The Common Lisp condition system disconnects the ability to return to a particular

place in the program from the necessity to do so and adds the ability to “look before you

leap.” In other languages, if you create a possible place to return to, that is what will get

used. There is no ability to say “If a certain kind of error happens, this might be a good

place to return to, but I don’t have a strong opinion ahead of time on whether or not it

definitely will be the right place.”

The Common Lisp condition system distinguishes among three different activities:

describing a problem, describing a possible solution, and selecting the right solution

for a given problem. In other languages, describing a possible solution is the same as

selecting that solution, so the set of things you can describe is necessarily less expansive.

This matters, because in other languages such as Python or Java, by the time your

program first notices a problem, it already will have “recovered” from it. The “except” or

“catch” part of your “try” statement will have received control. There will have been no

intervening time. To invoke the error handling process is to transfer control. By the time

any further application code is running, a stack unwind already will have happened.

The dynamic context of the problem will be gone, and with it, any potential intervening

options to resume operation at other points on the stack between the raising of the

condition and the handling of an error. Any such opportunities to resume operation will

have lost their chance to exist.

“Well, too bad,” these languages would say. “If they wanted a chance, they could

have handled the error.” But the thing is a lot of the business of signaling and handling

conditions is about the fact that you only have partial knowledge. The more uncertain

information you are forced to supply, the more your system will make bad decisions.

For best results, you want to be able to defer decisions until all information is available.

Simple-minded exception systems are great if you know exactly how you want to

handle things ahead of time. But if you don’t know, then what are you to do? Common

Lisp provides much better mechanisms for navigating this uncertain space than other

languages do.

So in Common Lisp you can say “I got an argument of the wrong type. Moreover, I

know what I would do with an argument of the right type, I just don’t happen to have one

or know how to make one.” Or you can say “Not only do I know what to do if I’m given

Introduction

xv

an argument of the right type (even at runtime), but I even know how to store such a

value so they won’t hit this error over and over again.” In other languages, if the program

doesn’t know this correctly typed value, even if you (the user) do know it at runtime,

you’re simply stuck.

In Common Lisp, you can specify the restart mechanism separately from the

mechanism of choosing among possible restarts. Having this ability means that an outer

part of the program can make the choice, or the choice can fall through to a human user

to make. Of course, the human user might get tired of answering, but in such a case, they

can wrap the program with advice that will save them from the need to answer. This is a

much more flexible division of responsibility than other languages offer.

�Daydreaming
As programmers, let us daydream for a moment about an ideal system for handling

special situations in our code.

Some of us already know the exception handling systems of popular programming

languages, such as C++ or Java. When an exception is thrown, it “bubbles up,” immediately

travelling to the caller of the offending code, or the caller’s caller, and so on. Not only is the

state of the program destroyed during the process of attempting to find a handler for that

exception, but also, if no handler is available, the program will be in no state to continue,

since all of its stack will have been unwound (lost). The program will crash with no means

of recovering, only in certain scenarios leaving a core dump in its wake.

We could do better than that.

Let us imagine a system where stack unwinding is a choice, not a diktat—a system

where, when an exceptional situation is detected, the stack is wound further instead of

being immediately unwound. Such a system, at the time of signaling an error, would

inspect the program state for all handlers that are applicable to that situation. It would

then execute them and let them choose either to repair the program state or to execute

some code. Finally, it would transfer control to a known place in the program, and

continue execution from there.

Such a system could even use that mechanism for situations which are not

traditional errors, but which would nonetheless benefit from being treated in such a way.

A program could, at some point during its execution, announce that a given condition

has just happened, as well as listing the callbacks suitable for that particular situation.

Introduction

xvi

These callbacks might have been declared completely outside the given piece of

code. They might have been passed into it dynamically, also from outside, as applicable

to the wider context in which the given code is run. The program could then call all of

these callbacks in succession. Or, it could perform additional logic to check if a callback

applies to a given situation, and only then call it. Or, it could attempt to call a

particular class of callbacks first, before resorting to a less preferable method of recovery.

Our imagined system would also be closer to perfect if an error situation, once

it ran out of means of being handled, would not crash the program. Instead, an

internal debugger would pop up and allow the programmer to inspect the full state

of the program when the error happened, offering them some predefined means of

handling the error. It could also allow them to issue arbitrary commands for inspecting,

recovering, or even modifying the program’s state.

Ideally, we could express such a system in the self-same programming language for

which we design it. Even more ideally, we could construct such a system from scratch

in that programming language and seamlessly integrate it into the rest of that language,

ensuring that its operation will be able to fit well with any particular domain for which a

program is meant to work.

The good thing about such a daydream is that you can experience it even outside the

world of your daydreams.

This reality is called the Common Lisp condition system. It is the main focus of this

book.

Introduction

xvii

Preface

The Common Lisp condition system has its early roots in PL/I, a programming language

designed by IBM in the 1960s. It was promptly adopted in Multics, an operating

system from the same time period, as its main programming language. PL/I had an

initial condition mechanism whose traits were, among others: separation of condition

signaling from condition handling (in detail: separation of handler invocation from stack

unwinding), the ability to resume an erring computation, the ability to associate a block

of data with a signaled condition, and the provision of default handlers for otherwise

unhandled conditions. These four ideas ended up inspiring extensions made in the

MIT dialect of Lisp Machine Lisp; from there, they have given rise to the contemporary

Common Lisp facilities of, respectively, handlers, restarts, condition types, and the

debugger.

The first book to describe Common Lisp as a dialect was Common Lisp the Language,

First Edition (also called “CLtL1”), by Guy L. Steele, Scott E. Fahlman, Richard P. Gabriel,

David A. Moon, and Daniel L. Weinreb. From there, the standardization work continued,

and took two slightly differing branches: one of them came from private work of Guy

L. Steele, who described the ongoing standardization work by the X3J13 committee in

the book Common Lisp the Language, Second Edition (also called “CLtL2”). The other

branch, and the final version of the language, was defined in the ANSI document ANSI

INCITS 226-1994 and standardized in 1994, giving birth to ANSI Common Lisp as we

know it nowadays. (Modern Common Lisp implementations that purport to conform to

the ANSI specification also include many CLtL2-only features as language extensions.)

With such a background, the Common Lisp condition system is organized differently

than the exception handling mechanisms in other programming languages, such as C++,

Java, or Python. Despite being built of ordinary control mechanisms that are also present

in other languages, the Common Lisp condition system includes concepts which are

glaringly missing from those others. It is as if the exception systems in other languages

are in a rush to exit the context of the error immediately and transfer control to a point

higher on the call stack, where less contextual information and fewer control options are

available.

https://hanshuebner.github.io/lmman/errors.xml

xviii

This difference often creates misunderstanding and confusion about how the CL

condition system functions and what are its possible and actual use cases. Knowledge

about the internal functionality and utility of all aspects of the condition system is not

widely spread. This lack of knowledge, too often, dissuades CL programmers from

utilizing the condition system, even in situations where using it would provide clear

overall benefit.

The hope of improving this situation is the raison d’être of the book whose

introduction you are reading right now. The Common Lisp Condition System is one

more attempt to explain the functionality and utility of Common Lisp conditions,

handlers, and restarts, using an approach that is different from former work on the

topic. We gratefully acknowledge the many previous authors who have, over the years,

used various approaches to explain the Common Lisp condition system to novice and

intermediate CL programmers. An incomplete list includes Kent M. Pitman, Peter Seibel,

Chaitanya Gupta, Justin Grant, Timmy Jose, Jacek Złydach, and Robin Schroer as well as

the collaborative effort behind the Lisp Cookbook; nonetheless, this book takes a fresh

and novel approach which we feel is needed and wanted and which will bring a new

level of understanding and appreciation to both old-timers and newcomers alike.

Instead of describing the condition system from an outside perspective, we

implement the basics of the handler and restart subsystems piecewise from scratch.

We take this approach to demonstrate how such subsystems can be bootstrapped

from certain key basic language features including dynamic variables and a few simple

data structures. We then rewrite these examples to use standard CL functionality to

draw parallels between our implementation and the CL-provided tools. In addition,

we elaborate on all aspects of the condition system which are defined by the standard,

including the lesser-used and not commonly understood ones. At the end, we also

propose a few portable extensions to the condition system which augment the tools

defined by the ANSI CL standard.

TCLCS is intended to be read in order. Some topics are simplified or given very

brief treatment in the earlier chapters, only to be defined, detailed, and expanded upon

later in the book. Therefore, it would be unwise to attempt to use this entire book as

a reference for the condition system and CL control flow operators. Happily, we have

provided such a reference, replete with examples, as an appendix.

In addition, TCLCS is meant to present the basic flow of working with CL as an

interactive programming language. We frequently test expressions in the read-eval-print

loop (REPL) before defining them as concrete functions. Conversely, we sometimes test

Preface

http://jacek.zlydach.pl/blog/2019-07-24-algebraic-effects-you-can-touch-this.html
http://jacek.zlydach.pl/blog/2019-07-24-algebraic-effects-you-can-touch-this.html
https://sulami.github.io/posts/common-lisp-restarts/
https://lispcookbook.github.io/cl-cookbook/error_handling.html

xix

concrete functions in the REPL immediately after defining them as well. We also make use

of Common Lisp’s ability to redefine functions at runtime in order to define function “stubs”

that help us test our programs.

The code shown in the first part of this book is published as a Git repository. The

code in the second part is adapted from the Portable Condition System repository.

The code listings contained in this book are rendered in black-and-white; if the reader

prefers syntax highlighting/colorizing, then the code available at the aforementioned

links can be viewed and edited in a preferred tool such as Gnu Emacs which performs

such highlighting automatically.

TCLCS assumes that you know the basics of the C programming language and

some basics of Common Lisp. If you’re familiar with neither of these languages, but do

know some fundamentals of computer programming, you may still be able to glean the

meanings of most of the operations from the text. In case of questions, feel free to throw

them at the author via email.

The book is divided into two parts. The first part will construct the basic components

of the condition system from scratch, starting from the concept of dynamic variables that

makes the condition system possible and then going through the handler and restart

subsystems, assertion operators, and other details of a condition system. We will use a

storytelling approach in the book to describe the scenarios in which a condition system

may prove useful and then write our code.

The second part of the book will use the concepts from the first part to implement an

ANSI-compliant condition system from scratch. Reading the first part of the book is not

strictly necessary to understand the second; however, the concepts established in the first

part should prove useful for someone who has not worked with a condition system before.

�Hall of Fame
The Common Lisp Condition System is a work of the Common Lisp community. Without

many people who contributed changes, reviews, ideas, and former work, this book

would never have come into existence or enjoyed such level of polishing and review.

Thanks to Lonjil, John Cowan, Michael Reis, Aleksandr Treyger, Elias Mårtenson,

Adam Piekarczyk, Nisar Ahmad, Robert Strandh, Daniel Kochmański, Michael Fiano,

cage, Bike, Nicolas Hafner, Hayley Patton, Grue, Gnuxie, Tom Peoples, Marco Heisig,

Georgiy Tugai, Selwyn Simsek, Shubhamkar Ayare, Philipp Marek, Vsevolod Dyomkin,

vindarel, François-René Rideau, Jerome Onwunalu, sarna, Travis Sunderland, Jacek

Preface

https://github.com/phoe/tclcs-code
https://github.com/phoe/portable-condition-system

xx

Podkański, Dave Cooper, orbifx, Kent M. Pitman, Peter von Etter, Florian Margaine, and

Paul F. Dietz for various remarks, suggestions, reviews, and fixes to the text of this book

and to the code of trivial-custom-debugger and the Portable Condition System.

Thanks to Kent M. Pitman, Peter Seibel, Paul Graham, David Lamkins, Robin

Schroer, Chaitanya Gupta, Justin Grant, Timmy Jose, and Jacek Złydach as well as the

Lisp Cookbook contributors for their collective work on evolving, defining, teaching, and

writing about the Common Lisp condition system.

Thanks to Vsevolod Dyomkin, Daniel Kochmański, and Georgiy Tugai for providing

input about practical examples of using the condition system beyond exception handling.

Thanks to Marco Heisig, Michael Raskin, and Gilbert Baumann for their help with

the example implementation of dynamic variables in the C programming language.

Thanks to David A. Moon, Kent M. Pitman, and Bernard S. Greenberg for

providing information about the history of the Common Lisp condition system and its

predecessors.

Thanks to Alexander Artemenko, Paul M. Rodriguez, ein Strauch, and Chris Bøg for

financial support on Patreon and GitHub Sponsors. (If you like what I write, feel free to

tip me there yourself.)

Thanks to Nina Palińska for all kinds of personal support during the process of

working on the text.

Thanks to you—the reader—for deciding to take a peek at the contents of this book.

Preface

https://github.com/sponsors/phoe/
https://github.com/sponsors/phoe/

1
© Michał “phoe” Herda 2020
M. “phoe” Herda, The Common Lisp Condition System, https://doi.org/10.1007/978-1-4842-6134-7_1

CHAPTER 1

Basic concepts
Before diving into the depths of the Common Lisp condition system, we will first

introduce three programming concepts that collectively form the foundation of

the condition system: dynamic variables, performing non-local transfers of control,

and lexical closures. Understanding these lower-level techniques is important to

understanding the functioning of the CL condition system as a higher-level mechanism;

therefore, readers who are already proficient with these techniques may consider

skipping the relevant sections and continue from the next chapter of the book.

Other programming languages tend to implement some of these concepts in various

ways. For completeness, however, this book explains each of these concepts from the

very beginning, since utilizing all three of them in combination to form a complete

condition system is unique to CL as a language.

1.1  �Dynamic variables
We will begin with the very feature of CL that makes the handler and restart subsystems

possible and in fact easy to implement: dynamic variables. Instead of defining the term

“dynamic variable” directly, we will try to convey its meaning through examples instead

and only provide the definitions afterward.

1.1.1  �Dynamic variables in C
Let’s start with an example in C—the lingua franca of our profession, in a way.

int x = 5;

int foo() {

 return x;

}

foo(); // -> 5

https://doi.org/10.1007/978-1-4842-6134-7_1#DOI

2

In the preceding example, we have a global variable named x, with the function foo

returning the value of that variable. The result of calling foo() will be the integer 5.

int x = 5;

int bar() {

 return x;

}

int foo() {

 return bar();

}

foo(); // -> 5

In the preceding example, we have a global variable named x, with the function

bar returning the value of that variable and the function foo calling the function bar.

Compared to the previous example, we have added a level of indirection. But the result is

still the same: calling foo() still gives us 5.

int x = 5;

int bar() {

 return x;

}

int foo() {

 int x = 42;

 return bar();

}

foo(); // -> 5

bar(); // -> 5

The preceding example adds one more change: a new variable binding for x is

introduced in the body of foo, with a value of 42. That variable is lexically scoped, though,

meaning that it is only effective within the body of the block in which it is declared.

The variable x is not used within the block of function foo; the definition int x = 42; is

effectively unused.

Chapter 1 Basic concepts

3

dynamic_var(int, dynamic_x, 5);

int bar() {

 return dynamic_x;

}

int foo() {

 dynamic_bind(int, dynamic_x, 42) {

 return bar();

 }

}

bar(); // -> 5

foo(); // -> 42

bar(); // -> 5

The preceding example adds one more twist: our global variable is now defined via

dynamic_var. This means that the scope of this variable is no longer lexical, but dynamic;

the scope of the variable is not affected by curly braces (or a lack thereof), but by the

runtime environment in which that variable is accessed.

This modification is enough to cause foo() to return 42, even though calling bar()

alone still returns 5!

(The operators dynamic_var and dynamic_bind are not a part of the C standard; in fact, C

has no intrinsic notion at all of dynamic variables. We describe a means of adding these

operators to the C language in an appendix to this book.)

At runtime, each new binding of a dynamic variable creates a new environment, in

which the name of that variable (in this case, dynamic_x) is bound to a value (in this case,

5 for the global binding and 42 for the binding in foo()). These environments are always

accessed in order, from the last defined one to the first defined one; looking up the value

of a dynamic variable consists of going through the environments until we find the first

environment (i.e., the most recent one chronologically) that has the binding for that

dynamic variable. The value of that binding is then accessed.

(One can notice that x, in this example, has been renamed to dynamic_x. Such a

distinction in naming is important. Dynamic variables have different semantics from

standard variables and should therefore be visually distinguished from normal, lexically

scoped variables.)

Chapter 1 Basic concepts

4

If one knows the stack data structure, then one can think of the set of environments

as a stack. Variable bindings are pushed onto this stack such that the most recent one is

on top. If the system later has need to search that stack for a given variable binding, then

it looks from top to bottom (i.e., starting with the most recent) for the first instance of

that variable binding. Therefore, in a program without any dynamic variables, the stack

of environments is empty:

 (nothing here)

-------------b-o-t-t-o-m--------------

(It therefore would result in an error to attempt to access a dynamic variable named

dynamic_x; it is unbound, meaning there is no value whatsoever associated with it!)

But, if we wanted to illustrate the top-level environment from the earlier example

with dynamic_x, it would look like this:

 | dynamic_x: 5 |

-------------b-o-t-t-o-m--------------

There is only one (global) dynamic environment that contains the binding of the

variable dynamic_x. If we called the function bar(), which returns the dynamic value of

dynamic_x, then the system would access that environment, and it would return 5.

The situation changes, however, if we call foo(), because of the dynamic_bind(int,

dynamic_x, 42) binding found there. dynamic_x has been declared dynamic at the top level,

which “infects” all future binding of that variable; it means that it becomes a dynamic

variable, and its value therefore becomes stored on the environment stack when foo() is

called. The situation inside foo(), after rebinding the dynamic variable but before calling

bar(), looks like this:

 | dynamic_x: 42 |

 | dynamic_x: 5 |

-------------b-o-t-t-o-m--------------

When bar() gets called, it returns the value of dynamic_x. The system looks it up in the

environment stack, starting from the top. The first environment that contains a binding

for dynamic_x is the one with the value 42, which bar() then returns to foo() and which foo()

then returns to the original caller.

Chapter 1 Basic concepts

5

This stack-like lookup mechanism means that, with this simple change in

declaration, calling bar() still gives us 5, but calling foo() gives us 42 instead of 5!

It also means, indirectly, that dynamic variables give us a way to affect the

environment of functions that we execute dynamically. “Dynamically,” in this sense,

means “depending on where a given function was run from.” If we run it from the top level

or from a main() function that itself has no dynamic bindings, then only the global dynamic

bindings shall be in effect; if it gets called from another scope in the code, then it will be

called with whatever dynamic bindings this particular scope may have defined on top of all

the dynamic bindings that have been defined in previous dynamic environments.

The difference between lexical variables and dynamic variables can be summarized

in one more way: a lexical variable cannot be seen outside its textual scope, while a

dynamic variable cannot be seen outside its runtime scope. When a dynamic scope

ends, the environment defined in it is discarded: after runtime control leaves foo(), the

dynamic environment defined in foo() is removed from the environment stack, leaving

us in a situation similar to the previous one:

 | dynamic_x: 5 |

-------------b-o-t-t-o-m--------------

This dynamic scoping means that if we were to try to call bar() again immediately

after calling foo(), then the dynamic environment created inside foo() would not

affect the subsequent execution of bar(). When foo() finishes, it cleans up the dynamic

environment that it created, and therefore bar() sees, and can access, only the global

environment which is remaining.

This operating principle means that the dynamic environment is preserved even

in situations with more deeply nested function calls. If we have a function foo that calls

bar that calls baz that calls quux, and we define a dynamic_var(int, dynamic_x, 42) at the top

of foo()’s body, and then we try to access dynamic_x inside quux, then the access is going

to work. Of course, bar and baz can introduce their own dynamic_binds of dynamic_x that

are then going to affect the value that quux will find; all that is necessary for a dynamic

variable access to work always is at least one binding for that particular variable, which—

in our example implementation in C—is guaranteed to exist.

Nothing prevents us from using multiple dynamic variables either. For simplicity, we

will use an environment model in which a single environment frame always holds only

one variable-value binding. Let us assume that we have three variables, dynamic_x (which

Chapter 1 Basic concepts

6

is later rebound), dynamic_y, and dynamic_z. At one point in execution of the program, the

environment stack is going to look like the following:

 | dynamic_z: [2.0, 1.0, 3.0] |

 | dynamic_x: 1238765 |

 | dynamic_y: "Hello" |

 | dynamic_x: 42 |

------------------b-o-t-t-o-m--------------------

Accessing a dynamic char* dynamic_y will return "Hello", accessing a dynamic int

dynamic_x will return 1238765 (it was rebound once, and the previous value of 42 is ignored),

and accessing a dynamic float dynamic_z[3] will return the vector [2.0, 1.0, 3.0]. Note that

I mentioned “accessing,” which means not just getting the values but setting them too.

It is possible, for example, to execute the following body of code that sets the values of

these variables:

{

 dynamic_x = 2000;

 dynamic_y = "World";

 dynamic_z[1] = 123.456;

}

The resulting environment is going to look like this:

 | dynamic_z: [2.0, 123.456, 3.0] |

 | dynamic_x: 2000 |

 | dynamic_y: "World" |

 | dynamic_x: 42 |

----------------b-o-t-t-o-m--------------------

It is noteworthy that the last environment, containing the original binding for

dynamic_x, was not affected by the operation of setting. When the system tried to set the

Chapter 1 Basic concepts

7

value of dynamic_x, it searched for the first environment where dynamic_x was bound from

top to bottom and modified that environment only.

One consequence of this principle is that only the most recent binding for

each dynamic variable is visible to running code; running code cannot access any

environments or bindings defined previously. This approach is useful in case we expect

that some code might modify the value of a dynamic variable; for instance, if we want

to protect the current value of dynamic_x from modification, then we can define a new

binding in the form of dynamic_bind(int, dynamic_x, dynamic_x)—a binding which is then

going to be affected by any subsequent dynamic_x = ... setters.

To sum up, there are three parts of syntax related to dynamic variables:

•	 Defining a variable to be dynamic

•	 Creating new dynamic bindings

•	 Accessing (reading and/or writing) the most recent dynamic binding

The only sad thing about dynamic variables in C is that the preceding code that

uses dynamic_var and dynamic_bind variables will not compile by default. As mentioned

earlier, that code is invalid, due to C having no notion of dynamic variables whatsoever.

Therefore, even though these code examples (hopefully!) illustrate the concept of

dynamic variables, they will not work out of the box with any known C compiler on

planet Earth. However, such notion can be added to C by means of programming the C

preprocessor, using the technique that we will describe now.

1.1.1.1  �Implementing dynamic variables in C

All fibbing aside though, it is in fact possible to implement dynamic variables in C and

other languages that do not have them in their standard. The technique involves the

following steps: save the original value of a variable in a temporary stack-allocated

variable, set the variable with the new value, execute user code, and then restore the

variable with its original value.

This technique is sometimes used in practice to implement dynamic variables

(e.g., in Emacs C code), and it replaces the explicit, separate stack of environments with

an implicit stack, embedded within the temporary variables that are allocated by the

program.

Chapter 1 Basic concepts

8

Example:

int x = 5;

int bar() {

 return x;

}

int foo() {

 int temp_x = x; // Save the original value of X

 x = 42; // Set the new value to X

 int ret = bar(); // Execute user code and save its return value

 x = temp_x; // Restore the original value of X

 return ret; // Return the user code's return value

}

foo(); // -> 42

bar(); // -> 5

We are binding the dynamic variable by means of creating new lexical variables

and temporarily storing the old dynamic values there. The original lexical variable gets

overwritten with a new value and then restored when control is leaving that runtime

scope.

This approach is messy and prone to errors due to the amount of assignments

required; it is, however, possible to hide them by writing macros for the C preprocessor.

The reader can consult an appendix to this book for an example implementation of

dynamic_var and dynamic_bind that uses a variant of the preceding technique.

1.1.2  �Dynamic variables in Common Lisp
In contrast to C, certain languages, notably Common Lisp, do have built-in support for

dynamic variables. We will be restricting our discussion to Common Lisp (CL) for the

rest of the book. CL is an ANSI-standardized dialect of the Lisp programming language

that supports various programming paradigms, including procedural, functional,

object-oriented, and declarative paradigms. CL has dynamic scoping as part of its ANSI

standard, and it should be possible to execute all of the examples here in any standard-

conforming CL implementation. This happy fact frees us from the need to depend on

any particular CL implementation or compiler.

Chapter 1 Basic concepts

9

Let us begin with a simple example showing how Lisp variables work in general.

Contrary to C, it is possible in Lisp to define a function that has access to lexical variables

which themselves are defined outside that function definition, substantially reducing the

need for global variables in a program (at least non-dynamic ones).

(let ((x 5))

 (defun foo ()

 x))

(foo) ; -> 5

In the preceding example, we have a lexical variable named x, with the function foo

returning the value of that variable. Exactly as in the related C example, the result of

calling foo will be 5.

(let ((x 5))

 (defun bar ()

 x)

 (defun foo ()

 (bar)))

(foo) ; -> 5

After adding a level of indirection to accessing the variable, this example still behaves

the same way as in C.

(let ((x 5))

 (defun bar ()

 x)

 (defun foo ()

 (let ((x 42))

 (bar)))

 (defun quux ()

 (let ((x 42))

 x)))

(foo) ; -> 5

(quux) ; -> 42

If we experiment with introducing new lexically scoped variables in Lisp, the

result will still be consistent with what C produces: calling (foo) gives us 5 (the variable

definition (let ((x 42)) ...) inside the body of foo going effectively unused), and calling

(quux) gives us the shadowing value 42.

Chapter 1 Basic concepts

10

(defvar *x* 5)

(defun bar ()

 x)

(defun foo ()

 (let ((*x* 42))

 (bar)))

(foo) ; -> 42

(bar) ; -> 5

The preceding example changes two things. First, the name of our variable is now

modified from x to *x*—the “earmuff notation” which in CL is the conventional notation

for dynamic variables. Second, the variable we define is now global, as specified via

defvar.

(It is possible to neglect the earmuff notation and do things like (defvar x 5),

since the earmuffs themselves are just a part of the symbol’s name and their use is

not mandated by any official standard. Earmuffs were introduced as a convention for

separating global dynamic variables clearly from other symbols, since unintentionally

rebinding a dynamic variable might—and most often will—affect code that executes

deeper in the stack in unexpected, undesired ways.)

The environment stack works in the same way as in the C example: calling (bar) gives

us the original, top-level value 5, but calling (foo) will give us the rebound value 42.

In Common Lisp, it is additionally possible to refer to a dynamic variable locally,

instead of using a variable that is globally special. If we were to do that, then the

following would be an incorrect way of doing that:

;;; (defvar *y* 5) ; commented out, not evaluated

(defun bar ()

 y) ; this will not work

(defun foo ()

 (let ((*y* 42))

 (declare (special *y*))

 (bar)))

Inside foo, we locally declare the variable *y* to be special, which is Common Lisp’s

notation for declaring that *y* denotes a dynamic variable in this context. However, we

have not done the same in the body of bar.

Chapter 1 Basic concepts

11

Because of that omission, the compiler is free to treat *y* inside the body of bar as an

undefined variable and to produce a warning:

; in: DEFUN BAR

; (BLOCK BAR *Y*)

;

; caught WARNING:

; undefined variable: COMMON-LISP-USER::*Y*

(Note that we no longer use the symbol *x* as the variable name, since the previous

example proclaimed it to name a global dynamic variable. If we wanted to “undo” that fact

and be able to proclaim *x* as dynamic locally, we would need to (unintern '*x*) in order to

remove the symbol *x*, along with that global proclamation, from the package in which we

are currently operating. Removing the symbol will not affect the Lisp system negatively; it

will be re-created the next time we use it, as soon as the reader subsystem reads it.)

The correct version is:

;;; (defvar *y* 5) ; commented out, not evaluated

(defun bar ()

 (declare (special *y*))

 y)

(defun foo ()

 (let ((*y* 42))

 (declare (special *y*))

 (bar)))

(foo) ; -> 42

Similarly, calling (bar) directly (e.g., from the top level) is an error, since the variable

y does not have a global dynamic binding.

An environment stack with multiple dynamic variables (named *x*, *y*, and *z* in

Lisp) may look like the following:

 | *z*: #(2.0 1.0 3.0) |

 | *x*: 1238765 |

 | *y*: "Hello" |

 | *x*: 42 |

-----------------b-o-t-t-o-m--------------------

Chapter 1 Basic concepts

12

We may set the values of the three by using setf, the universal Common Lisp

assignment operator:

(locally (declare (special *x* *y* *z*))

 (setf *x* 2000)

 (setf *y* "World")

 (setf (aref *z* 1) 123.456))

and thereby produce the following environment:

 | *z*: #(2.0 123.456 3.0) |

 | *x*: 2000 |

 | *y*: "World" |

 | *x*: 42 |

----------------b-o-t-t-o-m----------------------

To summarize, the actual syntax for working with dynamic variables is threefold. We

need a means of:

•	 Declaring that a symbol denotes a dynamic variable

•	 Creating new dynamic bindings between a symbol and a value

•	 Setting the topmost visible binding

In Common Lisp, the first is achieved via declare special (if we want to work with

a variable proclaimed locally dynamic) or via defvar (which proclaims the variable to

be globally special); the second is achieved via let, among other operators; the third is

achievable with Common Lisp’s general setting mechanism, named setf which can set

the value of any place designator.

While defvar will not change the value of a variable if it’s already set, the alternative

defparameter will indeed change the value if it’s already set. For clarity, we will stick with

defvar in this tutorial; a curious reader may consult the related chapter in Practical

Common Lisp for more details.

Chapter 1 Basic concepts

13

1.1.3  �Alternatives in other languages
1.1.3.1  �Scheme

Instead of dynamic variables, Scheme uses a first-class object called a parameter,

which can be held in a global or local variable or in a data structure. Parameter objects

are created and initialized with the make-parameter procedure. The global dynamic

environment is updated to associate the parameter object to the value passed to make-

parameter.

A parameter object behaves like a procedure which accepts zero or one argument. If

called with zero arguments, it returns the value; if called with one argument, the value is

mutated. (Some Schemes do not support the one-argument case.)

The parametrize has the same syntax as let, except where let takes a local variable,

parameterize takes an expression whose value is a parameter object. Each specified

parameter object is bound to the associated value for the dynamic extent of the

parameterize form. As in let, the order of evaluation is unspecified, and the new bindings

are only visible in the body of the parameterize special form.

If all parameters are assigned permanently to global variables, parameter objects

are equal in power to dynamic variables. However, related parameters can be stored in

a list or vector and passed around before being individually parameterized, which is not

possible with dynamic variables.

1.1.3.2  �Design patterns

The fact that CL has dynamic variables trivializes certain constructions that are

decidedly non-trivial in other programming languages and therefore require design

patterns to achieve the same goal.

In other programming languages, such as Java, C#, C++, or Rust, modifying an

object’s behavior is often done through an interface. An interface object defines a set

of functions that must be implemented by another object called the implementation

object of the interface. An interface is simply a layer of behavioral abstraction, and

implementations of such an interface (objects or classes fulfilling the interface

requirements) are behavioral specializations. These abstract objects (interfaces in Java

and C#, abstract classes in C++, and traits in Rust) often follow the dependency injection

pattern, which is frequently used in that family of programming languages.

Chapter 1 Basic concepts

14

Some languages, most prominently Java, make heavy use of a design pattern known

as context and dependency injection. It is a pattern in which some dependencies of

an object are provided from outside, as opposed to being hard-coded internally; the

information regarding which dependencies to provide to which objects may additionally

depend upon a context object, which must also be provided from outside.

Still other programming languages, mostly the ones oriented toward functional

programming, use a concept known as the environment monad (also known as the

reader monad), an object which holds a shared environment as a part of its internal

state, allowing subsequent computations to read that state and return new instances of

the monad which contain new values of the environment.

In Common Lisp, it is not necessary to instantiate or refer to any separate context

object nor enclose the environment in an object, because contextual information

is available by means of dynamic variables, which can be accessed and rebound as

appropriate. New means of passing contextual information can be provided by defining

new dynamic variables, and utilizing this new information channel does not require

creating or altering any existing abstractions. While this mechanism could be considered

to be a form of dependency injection, it does not require support from a language

framework of any sort (such as Java EE’s CDI); rather, it is built into the standard

language.

1.2  �Non-local transfers of control
The mechanism of dynamic binding is used to dynamically provide different pieces

of data at different points within the program execution. That “data” may also include

references to pieces of code that one can execute; this capability is one of the needed

components for building a working condition system. A further necessity is that these

additional pieces of code must be able to alter the control flow of a running program.

The control flow of the program is understood as an order in which the individual

instructions within a program are executed. In many programming languages which

permit linear or structured programming paradigms, that order is linear.

One way to express the linear-flow programming style in CL is with the progn

operator, which evaluates its subforms in order, returning the values returned by the

last subform. (It is common to encounter a so-called implicit progn in the bodies of

many other CL operators as well, meaning that the subforms within such a body will be

Chapter 1 Basic concepts

15

evaluated as if they were wrapped in a progn.) For example, evaluating the following form

will print five lines to the standard output and then return the value 42:

CL-USER> (progn

 (format t ";; Foo~%")

 (format t ";; Bar~%")

 (format t ";; Baz~%")

 (format t ";; Quux~%")

 (format t ";; Frob~%")

 42)

;; Foo

;; Bar

;; Baz

;; Quux

;; Frob

42

This linear-flow programming paradigm may be customized by separating some

code forms into logical blocks. These blocks, depending on the programming language,

may be named routines subroutines, procedures, methods, or functions. (In Common

Lisp, we use the term “function”; the term “method” is reserved for the object-oriented

facilities of Lisp, which we will introduce later in the book.) In a structured programming

paradigm, a standard flow of control may be understood as a tree data structure, where

the standard control flow uses inorder tree traversal.

CL-USER> (defun print-some-stuff ()

 (format t ";; Bar~%")

 (format t ";; Baz~%")

 (format t ";; Quux~%"))

PRINT-SOME-STUFF

CL-USER> (progn

 (format t ";; Foo~%")

 (print-some-stuff)

 (format t ";; Frob~%")

 42)

;; Foo

;; Bar

;; Baz

;; Quux

;; Frob

42

Chapter 1 Basic concepts

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

16

In such a context, a non-local transfer of control (or non-local exit) is an instance

where the execution flow of the program no longer follows this standard tree traversal.

The execution departs from standard flow and picks up again at a different, well-

established point of the program. This may cause some operations within the program

to be reordered, skipped, and/or repeated; as an additional effect of such a jump, a part

of the program’s execution state may also be undone before the actual transfer of control

happens.

1.2.1  �TAGBODY and GO
Perhaps the most (in)famous idea of implementing a non-local exit is the go-to

instruction, which is meant to cause the control flow to jump immediately to another

point in the program. Its infamy comes from the fact that the control flow of code that

uses go-to instructions is typically hard to visualize, compute, and understand; go-to is,

nonetheless, still the most prevalent means of transferring control in the world. Every

modern processor utilizes the hardware equivalent of a go-to, called a jump instruction,

possibly thousands or millions of times every second. It can be said that this construct is

the foundation upon which all other means of transferring control may—and, in many

people’s opinions, should—be built.

CL provides the possibility to use the go-to style of transferring control by means

of a pair of special operators, named tagbody and go. The tagbody operator establishes a

lexical scope similar to the one defined by progn, in which execution progresses linearly.

However, it also makes it possible to specify go tags: special locations in the code to

which it is possible to transfer control by using the go special operator.

By using tagbody and go, it’s possible, for example, to skip some operations within a

block of code.

CL-USER> (tagbody

 (format t ";; Foo~%")

 (go :there)

 (format t ";; Bar~%")

 (format t ";; Baz~%")

 (format t ";; Quux~%")

 :there

 (format t ";; Frob~%"))

;; Foo

;; Frob

NIL

Chapter 1 Basic concepts

17

Using these operators, it is also possible to translate a certain famous BASIC program

(perhaps the most famous one, even!) into Lisp.

10 PRINT "HELLO WORLD!";

20 GOTO 10;

RUN;

CL-USER> (tagbody

 10 (format t ";; Hello, world!~%")

 20 (go 10))

;; Hello, world!

;; Hello, world!

;; Hello, world!

;; Hello, world!

;; Hello, world!

;; Hello, world!

;; Hello, world!

;; Hello, world!

;; ...

The transfers of control with go may be conditional—it is possible to specify whether

or not the jump will occur, based on whether or not a certain expression is true or false.

A practical example is using tagbody with go to achieve iteration, in which we evaluate

a body of code in a loop while assigning new values to some iteration variables, only

finishing when some expression no longer holds true:

CL-USER> (let ((x 0))

 (tagbody

 :loop

 (unless (< x 5) (go :exit))

 (setf x (+ x 1))

 (format t ";; ~A~%" x)

 (go :loop)

 :exit))

;; 1

;; 2

;; 3

;; 4

;; 5

NIL

Chapter 1 Basic concepts

18

(The above format call uses the value of the argument passed to it, x, to populate

the ~A format directive in the format control string ";; ~A~%". The resultant string will end

up having the ~A replaced with that value, printed in an aesthetic way. The directive ~%

prints a newline into the string. The reader should be advised that this book will use

more advanced format control strings throughout the rest of the text; hence if they are

unfamiliar with format, they may at some point want to skim the chapter “A Few FORMAT

Recipes” of Practical Common Lisp by Peter Seibel.)

The preceding example is equivalent to a higher-level loop form—(loop for x from 1 to

5 do (format t ";; ~A~%" x)). In fact, the loop macro usually expands into code which uses

tagbody and go internally in order to perform actual, low-level iteration. (For clarity, we use the

explicit (setf x (+ x 1)) instead of the more idiomatic equivalents (setf x (1+ x)) or (incf x).)

1.2.2  �BLOCK and RETURN-FROM/RETURN
The operators tagbody and go offer an environment where it is possible to perform arbitrary

linear-flow programming and communicate with the outside world via side effects.

However, in some cases, a different means of transferring control is desirable, in which we

may want a particular value to be returned from a given block of code immediately. This

form of transfer of control is especially common within nested iteration forms, in which

we might want to “break out” of a given loop, stopping its further iteration. The CL special

operators implementing this control-passing style are named block and return-from.

The operator block establishes a block, which is a body of code from which one can

return a value. These blocks are named, which makes it possible to distinguish multiple

nested blocks at compilation time and to be able to choose from which block to return a

value.

CL-USER> (block foo

 (+ 100

 (block bar

 (return-from foo 42))))

42

CL-USER> (block foo

 (+ 100

 (block bar

 (return-from bar 42))))

142

Chapter 1 Basic concepts

http://www.gigamonkeys.com/book/a-few-format-recipes.html
http://www.gigamonkeys.com/book/a-few-format-recipes.html

19

All defined functions automatically establish blocks named after themselves, which

allows the programmer to return-from them.

CL-USER> (defun foo (x)

 (when (= 24 x)

 (return-from foo 42))

 :try-again)

FOO

CL-USER> (foo 0)

:TRY-AGAIN

CL-USER> (foo 24)

42

return is shorthand for return-from nil; certain CL operators, especially the ones

related to iteration, automatically establish nil-named blocks, enabling the programmer

to use the return operator inside them.

CL-USER> (block nil

 (tagbody

 :loop

 (return 42)

 (go :loop)))

42

Using a return-from (or a shorthand return), it is therefore possible, for example, to

escape an ongoing loop, even an otherwise infinite one. Since tagbody normally returns

nil, in practice tagbody is often combined with a block from which one may return-from in

order effectively to return a non-nil value from the tagbody. We may use this technique

to perform iterations that do not contain side effects and instead communicate with the

outside world purely via the returned value.

CL-USER> (block :return

 (let ((result '())

 (x 0))

 (tagbody

 :loop

 (unless (< x 5) (go :exit))

 (setf x (+ x 1))

 (push x result)

 (go :loop)

Chapter 1 Basic concepts

20

 :exit

 (return-from :return

 (nreverse result)))))

(1 2 3 4 5)

(The preceding style of programming, in which the imperative parts are well-

contained behind interfaces free of any side effects, is sometimes called “mostly

functional” style and can be observed often in typical Lisp code.)

1.2.3  �CATCH and THROW
The operators tagbody and block allow establishing the means of transferring control

within lexical scope, which is useful for code written as a single block of code, but it

makes it non-trivial to transfer control between function boundaries. (We will elaborate

on the aforementioned non-triviality in the next subchapter.) In addition, it is very hard

to dynamically (meaning, in dynamic scope, or at runtime) specify points of transferring

control or to dynamically specify where we want to transfer control to. Common Lisp

has a solution to these two problems in form of special operators catch and throw. They

are different from the throw/catch operators commonly found in languages such as C++

or Java, since they are not directly related to any kind of exceptions, errors, or even the

condition system in general.

In Lisp, throw and catch are analogous to go and tagbody or return-from and block—

the operators that allow non-local transfers of control within lexical scope. The first

difference from that analogy is that catch and throw work in dynamic scope, not in lexical

one. By using them, it is therefore possible to break the function boundary that was hard

to cross via the previous control flow operators.

CL-USER> (defun foo ()

 (throw :somewhere 42))

FOO

CL-USER> (defun bar ()

 (catch :somewhere

 (foo)))

BAR

CL-USER> (bar)

42

Chapter 1 Basic concepts

21

Second, the catch tags are evaluated, which means that it is possible to pass them as

arguments.

CL-USER> (defun foo (catch-tag)

 (throw catch-tag 42))

FOO

CL-USER> (defun bar ()

 (catch :somewhere

 (foo :somewhere)))

BAR

CL-USER> (bar)

42

To sum up the differences, they are threefold:

•	 throw and catch work in dynamic scope, not in lexical one.

•	 The tags used by catch and throw are evaluated.

•	 throw requires two arguments: the catch tag and a value that is then

returned from the catch form, whereas the value argument to return-

from and return is optional and defaults to nil.

1.3  �Lexical closures
The third and final building block of our condition system consists of lexical closures. A

closure is a function which accesses some state that is bound outside its body. Such state

might be a lexical variable, a function, or some other elements of the lexical environment

existing at the point of creating such a function; it is said that such a function closes over

that data.

A typical simple pattern using a closure is a “let over lambda”: an anonymous function

which closes over a variable. In the following example, we bind a new lexical variable

named x which is then closed over by a lambda. The resulting closure becomes the value

of the global variable *counter*.

CL-USER> (defvar *counter*

 (let ((x 0))

 (lambda () (incf x) x)))

COUNTER

Chapter 1 Basic concepts

22

This closure can then be called in the same manner as any other function. When it is

called, its lambda function modifies and returns the value of x over which it has closed.

CL-USER> (funcall *counter*)

1

CL-USER> (funcall *counter*)

2

CL-USER> (funcall *counter*)

3

From this behavior, we can induce that this lambda function has access to a certain

implicit state. Where the lexical variable x has otherwise gone out of scope, we can still

access that variable via calling the closure which itself still has access to it—and indeed,

we cannot access the variable in any other portable way.

Variables are not the only category of data that can be closed over. A function can

also close over another lexically defined function:

CL-USER> (defvar *answer*

 (flet ((foo () 42))

 (lambda () (funcall #'foo))))

ANSWER

CL-USER> (funcall *answer*)

42

And, perhaps surprisingly, it can even close over a tagbody tag or a block name:

CL-USER> (defun call-a-function (function)

 (funcall function))

CALL-A-FUNCTION

CL-USER> (block foo

 (call-a-function (lambda () (return-from foo 42))))

42

CL-USER> (tagbody

 (call-a-function (lambda () (go :true)))

 :false

 (print :true)

 (go :exit)

 :true

Chapter 1 Basic concepts

23

 (print :true)

 (go :exit)

 :exit)

:TRUE

NIL

We construct functions that close over the block name and the tagbody tag and

then pass these functions as arguments to the function call-a-function. By using this

technique, we are giving ourselves the power to perform transfers of control over

boundaries of lexical scope. While any go and return-from operators must be used

within the lexical scope of their respective matching tagbody and block operators, any

closure which closes over a tagbody tag or a block name may nonetheless be passed

as an argument to other functions, crossing said boundary. This technique shows

up extensively in most implementations of the condition system, including the one

implemented by us in the last part of the book.

It is not easy to perform the equivalent of this in other programming languages. To

emulate this technique in a programming language which does not support calling go or

return-from from outside its immediate lexical scope, the programmer would need, for

example, to set up unique exception classes within the outer scope, to which to throw

the exception. The outer scope would also need to catch the exception and return the

value associated with that exception explicitly and rethrow it if required.

(Due to the dynamic nature of catch and throw, it is not required to close over catch

tags in order to be able to throw to them. The tags are evaluated in both catch and throw,

which makes it possible to pass those tags as arguments to functions which establish

new catch bindings and which utilize throw.)

Chapter 1 Basic concepts

25
© Michał “phoe” Herda 2020
M. “phoe” Herda, The Common Lisp Condition System, https://doi.org/10.1007/978-1-4842-6134-7_2

CHAPTER 2

Introducing the
condition system
In the previous chapter, we described three programming concepts which we will now

start to utilize to describe and build the components of our condition system. We will

apply these concepts to a simple code example that we will extend over time, some of

which we’ll tell in the form of the story of characters named Tom, Kate, and Mark.

Let’s meet Tom.

2.1  �A simple system of hooks
Once upon a time, there was a sociable young lad named Tom. Tom liked to meet his

friends, classmates, sometimes his family, and healthcare providers in person, but one

fine spring season, there was a nasty worldwide pathogen going around and folks were

keeping physical distance from each other. So Tom chose to do his socializing and health

consultations by telephone and via the online computer game Counter-Strike. Let’s visit

Tom during this time.

Here we are with Tom. Tom tends to call various people often and for various

purposes. He tends to do various things before calling them, such as launching the

Counter-Strike game on his computer when calling some of his schoolmates who also

play that game, flipping a coin before calling his parents to see if he should actually

call them, maybe calling his girlfriend two times in a row, and so on. He does not

always want to perform all of these everyday tasks, though; sometimes, for example,

on holidays, he wants to call all of them (except his ex-girlfriend) and wish them happy

holidays.

https://doi.org/10.1007/978-1-4842-6134-7_2#DOI

26

From a programming point of view, we could express this problem in the following

way. We have a group of people that we could express as a list of objects. Let’s describe

each person as a set of Lisp keywords that describe the relationship of a given person to

Tom.

(defvar *phonebook*

 '((:mom :parent)

 (:dad :parent)

 (:alice :classmate :csgo :homework)

 (:bob :classmate :homework)

 (:catherine :classmate :ex)

 (:dorothy :classmate :girlfriend :csgo)

 (:eric :classmate :homework)

 (:dentist)))

(For brevity, we will refer to Counter-Strike: Global Offensive in our code as csgo.)

Let us assume that each time Tom wants to make calls, he goes through the whole

phonebook. Programmatically, we could express this procedure as:

(defun call-person (person)

 (format t ";; Calling ~A.~%" (first person)))

(defun call-people ()

 (dolist (person *phonebook*)

 (call-person person)))

An example execution of that function looks like the following:

CL-USER> (call-people)

;; Calling MOM.

;; Calling DAD.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

Plainly, this method of calling everyone works. However, we also want to account for

situations in which he wants to do something else before calling certain people. What

kind of “something”? That depends on Tom’s current situation, and we are unable to

Chapter 2 Introducing the condition system

27

define each situation ahead of time clearly enough to encode all the possibilities into the

call-people function itself. We’d like to give that responsibility to the caller of call-people.

To empower the caller to add this extra information when it invokes call-people, we can

use a technique called hooking.

2.1.1  �Hook #1: Launching Counter-Strike
Let us use an example where we recall that Tom is a Counter-Strike player. Just in case

someone else wants to have a quick match, he wants to launch Counter-Strike before

calling any :csgo people. In code, it could be expressed as a hook function that will be

executed for each person that Tom is about to call. That function will check whether the

person is a Counter-Strike player or not and will execute some code based on the result

of that check.

This approach needs us to define a variable that tells us whether or not Tom has

already launched Counter-Strike. Once Tom is about to call a CSGO player, he will

launch Counter-Strike, and that variable will be set to true.

(defvar *csgo-launched-p* nil)

This approach will work well, but only once: we also need some means of turning

Counter-Strike back off. In our model, Counter-Strike will always be turned off in the

beginning, so we will set *csgo-launched-p* to nil in the beginning of the function

call-people.

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (call-person person)))

Now we can focus on the hook itself. For example, such a hook could be represented

in code as:

(lambda (person)

 (when (member :csgo person)

 (unless *csgo-launched-p*

 (format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf *csgo-launched-p* t))))

Chapter 2 Introducing the condition system

https://en.wikipedia.org/wiki/Hooking

28

We would like the call site of the function (call-people) to remain unchanged; the

function must still be called with zero arguments. Therefore, we need to pass the data

about the currently present hooks into that function through other means—in our case,

we will do it via a dynamic variable.

Let us define the special variable *hooks* with a default value of an empty list,

representing the default case of no special situations.

(defvar *hooks* '())

We will use *hooks* in the following way: if we bind the hook we have created earlier

to the value of *hooks* around the call of (call-people), it means that we want to launch

Counter-Strike before calling any people who play Counter-Strike.

(let ((*hooks*

 (list

 (lambda (person)

 (when (member :csgo person)

 (unless *csgo-launched-p*

 (format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf *csgo-launched-p* t)))))))

 (call-people))

Obviously, calling it like that has no effect at the moment, since call-people does

not yet refer to the value of *hooks* in any way. Let us change that and re-implement the

function to take our *hooks* into account:

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (dolist (hook *hooks*)

 (funcall hook person))

 (call-person person)))

Let us now go ahead try to evaluate the previous form:

CL-USER> (let ((*hooks*

 (list

 (lambda (person)

 (when (member :csgo person)

 (unless *csgo-launched-p*

Chapter 2 Introducing the condition system

29

 �(format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf *csgo-launched-p* t)))))))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

We can see that before we called the first person marked with :csgo, we had launched

Counter-Strike—exactly the behavior we wanted. Doing it with a lambda expression can

become unwieldy, however; the body of each function is present in each invocation of

(call-people). In order to avoid verbosity, we can define the function with a name and

then use that name to refer to the function in the list of hooks.

(defun ensure-csgo-launched (person)

 (when (member :csgo person)

 (unless *csgo-launched-p*

 (format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf *csgo-launched-p* t))))

CL-USER> (let ((*hooks* (list #'ensure-csgo-launched)))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

Chapter 2 Introducing the condition system

30

2.1.1.1  �Equivalent examples

One may note at this point that the preceding example could be achieved without

using dynamic variables. One way to do so would be to write all of the preceding code

in fully local lexical style by using closures. In the following example, the local function

ensure-csgo-launched closes over the local lexical variable csgo-launched-p and

call-people over phonebook.

(let ((csgo-launched-p nil)

 (phonebook '((:mom :parent)

 (:dad :parent)

 (:alice :classmate :csgo :homework)

 (:bob :classmate :homework)

 (:catherine :classmate :ex)

 (:dorothy :classmate :girlfriend :csgo)

 (:eric :classmate :homework)

 (:dentist))))

 (labels ((ensure-csgo-launched (person)

 (when (member :csgo person)

 (unless csgo-launched-p

 �(format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf csgo-launched-p t))))

 (call-person (person)

 (format t ";; Calling ~A.~%" (first person)))

 (call-people (hooks)

 (setf csgo-launched-p nil)

 (dolist (person phonebook)

 (dolist (hook hooks)

 (funcall hook person))

 (call-person person))))

 (call-people (list #'ensure-csgo-launched))))

One issue with the preceding code is that the functions are only available locally;

they are gone once they go out of scope. A solution for that is to define global functions

with defun instead of using labels to define local ones:

(let ((csgo-launched-p nil)

 (phonebook '((:mom :parent)

 (:dad :parent)

 (:alice :classmate :csgo :homework)

 (:bob :classmate :homework)

Chapter 2 Introducing the condition system

31

 (:catherine :classmate :ex)

 (:dorothy :classmate :girlfriend :csgo)

 (:eric :classmate :homework)

 (:dentist))))

 (defun ensure-csgo-launched (person)

 (when (member :csgo person)

 (unless csgo-launched-p

 (format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf csgo-launched-p t))))

 (defun call-person (person)

 (format t ";; Calling ~A.~%" (first person)))

 (defun call-people (hooks)

 (setf csgo-launched-p nil)

 (dolist (person phonebook)

 (dolist (hook hooks)

 (funcall hook person))

 (call-person person))))

(call-people (list #'ensure-csgo-launched))

One more issue with such code is that it is tightly coupled and therefore hard to

extend. The phonebook is a local lexical variable, which means that it is impossible to access

it from outside its scope—for example, we cannot add another function which accesses

the phonebook without adding it to, and reevaluating, the whole preceding form.

We may mitigate this issue using one more technique: while we will define a global

dynamic variable, we will not access or rebind it anywhere in our code, treating it as a

global and ignoring its dynamic nature. We will instead pass data explicitly via function

arguments.

(defvar *csgo-launched-p* nil)

(defvar *phonebook*

 '((:mom :parent)

 (:dad :parent)

 (:alice :classmate :csgo :homework)

 (:bob :classmate :homework)

 (:catherine :classmate :ex)

 (:dorothy :classmate :girlfriend :csgo)

 (:eric :classmate :homework)

 (:dentist)))

Chapter 2 Introducing the condition system

32

(defun ensure-csgo-launched (person csgo-launched-p)

 (when (member :csgo person)

 (unless csgo-launched-p

 (format t ";; Launching Counter Strike for ~A.~%" (first person))

 t)))

(defun call-person (person)

 (format t ";; Calling ~A.~%" (first person)))

(defun call-people (hooks phonebook csgo-launched-p)

 (setf csgo-launched-p nil)

 (dolist (person phonebook)

 (dolist (hook hooks)

 (setf csgo-launched-p (funcall hook person csgo-launched-p)))

 (call-person person)))

(call-people (list #'ensure-csgo-launched) *phonebook* *csgo-launched-p*)

This approach works, but it has greatly complicated our code and made it

burdensome to maintain. First of all, our functions now need to accept new arguments

that are explicitly passed to them. In addition, our code is still highly coupled: our

hooks are now called with the csgo-launched-p variable passed in by call-people, and

that same variable in call-people is set by the return value of the hook function. This

new interdependence, in turn, means that our hook system has become effectively

impossible to extend—adding a new hook that depends on some external state requires

us to modify the function that calls the hooks, which defeats the whole purpose of having

hooks in the first place.

In this programming style, what we previously could achieve via adding a new

dynamic variable now requires modifying multiple functions and their lambda lists in

order to pass the new parameters around, exactly the problem that dynamic variables

are meant to solve. Dynamic variables provide one more channel for providing state to

code that executes within some dynamic context.

In summary, everything that can be done using dynamic variables can also in

principle be done with either creating closures or adding yet another function argument;

whether it is worth it to solve it that way is left as a question for the reader.

Chapter 2 Introducing the condition system

33

2.1.2  �Hook #2: Only call Counter-Strike players
In the next example, in addition to launching Counter-Strike before calling the first

CSGO-playing person, we would like only to call Counter-Strike-playing people and not

call any other ones. We will need some logic that will prevent a person from being called,

in other words, logic that will prevent execution of the (call-person person) form inside

the body of call-people. We will also want the prevention to occur only on a per-person

basis; we do not want to cease calling people altogether if we happen to encounter one

person that we do not want to call.

First of all, we will modify the function call-people once more, this time to add logic

that prevents a person from being called. We will use a pair of operators named throw and

catch for capturing that logic. Our next modification of the function call-people will look

like this:

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (catch :do-not-call

 (dolist (hook *hooks*)

 (funcall hook person))

 (call-person person))))

We have additionally wrapped the forms within the dolist (person *phonebook*) in a

catch form, with the catch tag being the symbol :do-not-call. Every throw form that throws

a value to the catch tag :do-not-call within the dynamic scope of this block will transfer

control to the end of that block. In our example, it means that if the hook called by (funcall

hook person) throws anything to the catch tag :do-not-call, then execution of any remaining

hooks stops, and the (call-person person) form is not executed.

This modification allows us to add a second hook. For people who are not playing

Counter-Strike, we would like to avoid making any call at all.

(defun skip-non-csgo-people (person)

 (unless (member :csgo person)

 (format t ";; Nope, not calling ~A.~%" (first person))

 (throw :do-not-call nil)))

CL-USER> (let ((*hooks* (list #'ensure-csgo-launched

 #'skip-non-csgo-people)))

 (call-people))

Chapter 2 Introducing the condition system

34

;; Nope, not calling MOM.

;; Nope, not calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Nope, not calling BOB.

;; Nope, not calling CATHERINE.

;; Calling DOROTHY.

;; Nope, not calling ERIC.

;; Nope, not calling DENTIST.

NIL

If the second hook throws anything at the :do-not-call catch tag, it prevents

the person from being called. The first hook on the list still takes care of launching

Counter-Strike for the first player that we call.

The preceding code provides us with one more means of controlling the execution of

the program. We can now choose to unwind the stack and transfer control (and data) to

any point of the dynamic scope of our program that has a matching catch tag, putting us

on mostly even terms with the ability to throw exception objects exhibited by some other

languages, such as C++ and Java.

2.1.3  �Hook #3: Only call parents… maybe
Let us go for a third example: Tom wants to call only his parents, and he only maybe wants

to call them. That is, for each of them, he flips a coin and only calls them if he gets heads.

(defun maybe-call-parent (person)

 (when (member :parent person)

 (when (zerop (random 2))

 (format t ";; Nah, not calling ~A this time.~%" (first person))

 (throw :do-not-call nil))))

(defun skip-non-parents (person)

 (unless (member :parent person)

 (throw :do-not-call nil)))

(In order to reduce output verbosity, we decide not to print any information from

within the body of skip-non-parents. From now on, we will only produce output that states

whether we have called a given parent or not.)

Chapter 2 Introducing the condition system

35

CL-USER> (let ((*hooks* (list #'maybe-call-parent

 #'skip-non-parents)))

 (call-people))

;; Nah, not calling MOM this time.

;; Calling DAD.

NIL

;;;;;;;;;;; Or...

;; Calling MOM.

;; Calling DAD.

NIL

;;;;;;;;;;; Or...

;;

In the preceding example, the output is randomized; it is possible to call both

parents, or either, or neither, based on the output of the random call that is embedded in

the body of maybe-call-parent.

2.1.4  �Hook #4: Holiday wishes
In another situation, perhaps Tom wants to call everyone (excluding his ex) and wish

them happy holidays.

(defun skip-ex (person)

 (when (member :ex person)

 (throw :do-not-call nil)))

(defun wish-happy-holidays (person)

 (format t ";; Gonna wish ~A happy holidays!~%" (first person)))

CL-USER> (let ((*hooks* (list #'skip-ex

 #'wish-happy-holidays)))

 (call-people))

;; Gonna wish MOM happy holidays!

;; Calling MOM.

;; Gonna wish DAD happy holidays!

;; Calling DAD.

;; Gonna wish ALICE happy holidays!

;; Calling ALICE.

;; Gonna wish BOB happy holidays!

;; Calling BOB.

Chapter 2 Introducing the condition system

36

;; Gonna wish DOROTHY happy holidays!

;; Calling DOROTHY.

;; Gonna wish ERIC happy holidays!

;; Calling ERIC.

;; Gonna wish DENTIST happy holidays!

;; Calling DENTIST.

NIL

In the second hook in the preceding form, there are no conditional checks, meaning

that we want to use this hook for all persons that we call.

A somewhat trained eye may then notice that we have an unconditional hook that

should execute for every person, and yet it is not executed for Catherine—Tom’s ex. The

function (call-people) walks the list of hooks in order, which is an important property,

because the first hook throws at the :do-not-call catch tag, which transfers control out of the

dolist that walks the hook list, preventing the second hook function from being executed. If

we were to reverse the order of the two hooks, we would not get the intended behavior.

2.1.5  �Accumulating hooks
One important matter is the accumulation of hook functions. In more elaborate code, we

might want to have multiple layers of bindings that add more and more hook functions

onto the list, but do not override any previously established hooks. In practice, this result

can be achieved by appending new hooks on top of the previously established ones. For

example, this previous form:

(let ((*hooks* (list #'skip-ex

 #'wish-happy-holidays)))

 (call-people))

could be rewritten in the following way, if we first decided that we want Tom to wish

everyone happy holidays and only then remembered that he should not call his ex and

added that on top of the previous hooks:

CL-USER> (let ((*hooks* (list #'wish-happy-holidays)))

 (let ((*hooks* (append (list #'skip-ex) *hooks*)))

 (call-people)))

;; Gonna wish MOM happy holidays!

;; Calling MOM.

;; Gonna wish DAD happy holidays!

;; Calling DAD.

Chapter 2 Introducing the condition system

37

;; Gonna wish ALICE happy holidays!

;; Calling ALICE.

;; Gonna wish BOB happy holidays!

;; Calling BOB.

;; Gonna wish DOROTHY happy holidays!

;; Calling DOROTHY.

;; Gonna wish ERIC happy holidays!

;; Calling ERIC.

;; Gonna wish DENTIST happy holidays!

;; Calling DENTIST.

NIL

(This approach ensures that the hook function skip-ex will be called before

wish-happy-holidays, since the resulting list prepends skip-ex before the previous hooks: if

we were to swap the order of arguments to the append call, we could change this behavior

as required.)

2.1.6  �Hook #5: Calling Tom’s girlfriend again
Let us suppose that we are okay with the current behavior and would like to add one

more thing: after calling Tom’s girlfriend, he would like to call her again, since one time is

not enough for them. As simple as such a situation sounds, it is currently unrepresentable

in our code; the list of hooks that we have created is executed inside (call-people) before

calling each person, whereas we require a method to execute hooks after calling each.

Let us therefore modify our code to take that into account. Instead of using a singular

variable *hooks*, let us use twin variables *before-hooks* and *after-hooks*.

(defvar *before-hooks* '())

(defvar *after-hooks* '())

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (catch :do-not-call

 (dolist (hook *before-hooks*)

 (funcall hook person))

 (call-person person)

 (dolist (hook *after-hooks*)

 (funcall hook person)))))

Chapter 2 Introducing the condition system

38

This approach will allow us to execute code after a given person is called:

(defun call-girlfriend-again (person)

 (when (member :girlfriend person)

 (format t ";; Gonna call ~A again.~%" (first person))

 (call-person person)))

CL-USER> (let ((*after-hooks* (list #'call-girlfriend-again)))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Gonna call DOROTHY again.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

It will also let us compose before- and after-hooks:

CL-USER> (let ((*before-hooks* (list #'ensure-csgo-launched))

 (*after-hooks* (list #'call-girlfriend-again)))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Gonna call DOROTHY again.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

Chapter 2 Introducing the condition system

39

2.1.7  �Multiple types of hooks
One issue that is evident with the preceding approaches is that defining a new point of

hooking requires us to define a new variable. So far, we have defined *before-hooks* and

after-hooks. The multiple-variable approach will become clumsy when we, for example,

complicate the logic inside call-person and allow hooks to be called during the call. Such

an approach will require us to handle multiple variables, which quickly may become

unwieldy.

We will propose a somewhat different mechanism, which re-introduces the singular

variable *hooks* for storing all hooks that we create. This mechanism will require us to

have some way of discriminating the individual groups of hooks that, in our previous

approach, would belong to different variables. To achieve that, we will arrange for each

value in *hooks* to be a list of two values: the first will be a symbol that denotes the kind of

hook, and the second will be the hook function itself (same as up till now).

This arrangement will allow us to invoke hooks based on their kind. For instance, if

we have some hooks of kind before-call and some others of kind after-call, we would like

the form (call-hooks 'before-call) to call only the former ones and not the latter ones.

We can remove the old *before-hooks* and *after-hooks* variables, define the new

hooks variable, and implement the function call-hooks that iterates over the list of all

hooks and calls only the ones of the kind relevant to us.

(makunbound '*before-hooks*)

(makunbound '*after-hooks*)

(defvar *hooks* '())

(defun call-hooks (kind &rest arguments)

 (dolist (hook *hooks*)

 (destructuring-bind (hook-kind hook-function) hook

 (when (eq kind hook-kind)

 (apply hook-function arguments)))))

(In the preceding example, destructuring-bind performs destructuring on the hook

variable. It verifies that the content of each hook is a two-element list and then binds the

variable hook-kind to that list’s first element and hook-function to its second. You could

think of it as a macro for limited pattern matching in CL that can work with basic list

structures.)

Chapter 2 Introducing the condition system

40

Now we can redefine call-people to take this new function into account.

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (catch :do-not-call

 (call-hooks 'before-call person)

 (call-person person)

 (call-hooks 'after-call person))))

We now need to adjust the way in which our dynamic environment is created

around (call-people). For brevity, we will use backquote notation to build our list this

time. (A brief tutorial on this notation is available in our appendix covering the basics of

macro writing.)

CL-USER> (let ((*hooks* `((before-call ,#'ensure-csgo-launched)

 (after-call ,#'call-girlfriend-again))))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Gonna call DOROTHY again.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

This approach allows us to define multiple hooks on a single variable. Let us, at

once, skip calling Tom’s ex, ensure that Counter-Strike is launched, wish everyone happy

holidays, and ensure that we call Tom’s girlfriend again.

CL-USER> (let ((*hooks* `((before-call ,#'skip-ex)

 (before-call ,#'ensure-csgo-launched)

 (before-call ,#'wish-happy-holidays)

 (after-call ,#'call-girlfriend-again))))

 (call-people))

Chapter 2 Introducing the condition system

41

;; Gonna wish MOM happy holidays!

;; Calling MOM.

;; Gonna wish DAD happy holidays!

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Gonna wish ALICE happy holidays!

;; Calling ALICE.

;; Gonna wish BOB happy holidays!

;; Calling BOB.

;; Gonna wish DOROTHY happy holidays!

;; Calling DOROTHY.

;; Gonna call DOROTHY again.

;; Calling DOROTHY.

;; Gonna wish ERIC happy holidays!

;; Calling ERIC.

;; Gonna wish DENTIST happy holidays!

;; Calling DENTIST.

NIL

Note, however, that the backquote notation in the preceding two examples is not

strictly necessary. The style of notation which we use uses the #' reader macro, which

returns function objects that are suitable for passing to funcall or apply. However, it is

also possible to pass symbols to funcall and apply whenever they name a global function.

In our case, we do have named global functions, so we can use symbols and quote the

whole expression instead; it will still work. The first symbol in each sublist of *hooks* will

then denote the hook type and the second the function that we want to call.

CL-USER> (let ((*hooks* '((before-call skip-ex)

 (before-call ensure-csgo-launched)

 (before-call wish-happy-holidays)

 (after-call call-girlfriend-again))))

 (call-people))

;; Gonna wish MOM happy holidays!

;; Calling MOM.

;; Gonna wish DAD happy holidays!

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Gonna wish ALICE happy holidays!

;; Calling ALICE.

Chapter 2 Introducing the condition system

42

;; Gonna wish BOB happy holidays!

;; Calling BOB.

;; Gonna wish DOROTHY happy holidays!

;; Calling DOROTHY.

;; Gonna call DOROTHY again.

;; Calling DOROTHY.

;; Gonna wish ERIC happy holidays!

;; Calling ERIC.

;; Gonna wish DENTIST happy holidays!

;; Calling DENTIST.

NIL

If we want to expand this example further, we can define new hook sites inside the

body of (call-people). For instance, we could define hooks that are meant to be run

before we start calling anyone (such hooks may, e.g., inspect the list of people that we

are about to call) and after we finish calling altogether (such hooks may, e.g., inspect

the list of people that have actually been called). Perhaps we might want to stop calling

altogether at some point: if, for example, Tom’s mother tells him that he needs to show

up in the living room this instant, then he should cease all further calling (even if she

had been the first person he was to call!) and go straight to the living room instead to

receive his fate. Implementing such functionality can require us to bind additional kinds

of hooks in the body of (call-people) to collect the people that we have actually called or

to insert additional catch forms in different places to short-circuit the algorithm further.

Such additional complication is left as an exercise for the reader.

2.1.8  �Summary: The hook subsystem
To summarize, starting with dynamic variables and simple code, we have implemented a

system of hooks, which are places that allow the user to extend the behavior of an existing

system with their own code at predefined points. All of the particular hooks are called in

the inverse order to that in which they were bound; the “newest” ones are called first, the

“oldest” ones last.

In fact, there exists another system of dynamically scoped hooks, into which we can

readily translate the preceding example. And that system happens to be a part of the

ANSI CL standard. Let’s go ahead and explore that standard system in the next section.

Chapter 2 Introducing the condition system

43

2.2  �A simple system of condition handlers
As we said in the earlier section, the Lisp condition system has the same basis as the

system we created in the section previous to it: a dynamically scoped hook system. It

is a more elaborate system than the one we constructed there, but the principles of its

functioning boil down essentially to the same thing. To demonstrate this similarity, this

chapter will re-implement all of the examples we have shown so far, but via the condition

system instead of our homegrown code.

The Common Lisp HyperSpec states:

A situation is the evaluation of an expression in a specific context. A condition is
an object that represents a specific situation that has been detected. (...) Signaling
is the process by which a condition can alter the flow of control in a program by
raising the condition which can then be handled.

In this context, a situation is not really a technical term: it conveys its usual meaning

of a state of affairs or a set of circumstances. We may, however, re-word the preceding

statement in order to bring it into the context of our former work with hooks. Handlers

contain the actual code for hooks. The action of invoking the hooks is called signaling.

Conditions are the objects that may trigger some of the hooks when they are signaled,

allowing handlers to access arbitrary data that is a part of the given condition that was

signaled.

Let us start from the same initial codebase, where we start off calling everyone on the

list and where we already have the code required for checking whether Counter-Strike

was launched.

(defvar *phonebook*

 '((:mom :parent)

 (:dad :parent)

 (:alice :classmate :csgo :homework)

 (:bob :classmate :homework)

 (:catherine :classmate :ex)

 (:dorothy :classmate :girlfriend :csgo)

 (:eric :classmate :homework)

 (:dentist)))

Chapter 2 Introducing the condition system

http://clhs.lisp.se/Body/09_a.htm

44

(defun call-person (person)

 (format t ";; Calling ~A.~%" (first person)))

(defvar *csgo-launched-p* nil)

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (call-person person)))

Calling this code produces the expected result:

CL-USER> (call-people)

;; Calling MOM.

;; Calling DAD.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

Previously, our hook system called each hook with the person that was about to be

called. In the Common Lisp condition system, there is one more layer of indirection:

condition types. In order to run our hooks using the condition system, we need to

create an instance of a condition, equip it with arbitrary data that we want to pass to the

handlers, and call the function signal on that condition.

(There is an analogy between condition types and hook kinds which we have

constructed earlier. Instead of creating hook kinds, which are symbols, we define new

condition types, which denote Lisp types. Operations on Lisp types are more complex,

since Lisp types are an implementation of mathematical sets; therefore, operating

on those allows for more complexity, compared to matching symbols by equality. An

example of this extended capability will be demonstrated later in the book, just like the

case of dealing with multiple condition types.)

For now, we want to define one condition type: for the situation where we are about

to call someone.

(define-condition before-call ()

 ((%person :reader person :initarg :person)))

Chapter 2 Introducing the condition system

45

This creates a condition type named before-call. We will want to pass the person that

we are about to call to the code, so we create a single slot on that condition type. The

internal name of that slot is %person—the percent sign is a notational convention which

indicates that the symbol is internal and should not be depended on by client code.

(In addition, it allows us to later export the person symbol naming the reader function

without, at the same time, exporting the %person symbol naming the slot itself. If the

two were one and the same symbol, it would have been unable to separate these two

concerns.)

We can read the value of that slot via the reader function named person, and we can

set the initial value of that slot by using the initialization argument :person, like this:

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (signal 'before-call :person person)

 (call-person person)))

This modification ensures that a before-call condition is going to be signaled before

calling each person from Tom’s phonebook.

Now that we have that additional layer of indirection, we need to slightly modify our

hook function. Each hook function that will be called will accept a single argument that

is the condition object; in order to fetch the person from it, we will need to call the person

function on the condition object.

(lambda (condition)

 (let ((person (person condition)))

 (when (member :csgo person)

 (unless *csgo-launched-p*

 (format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf *csgo-launched-p* t)))))

The only remaining issue is to associate this function with the signaled condition.

We can use the standard Lisp macro handler-bind to achieve that. The act of associating a

given condition type with its associated function is called binding a handler.

(Technically speaking, a Common Lisp condition handler is a pair of two elements:

a condition type that the handler should wait for and the actual code that gets executed.

In contrast to our homegrown hook system described in the previous chapter, not all

handlers are executed in turn; only handlers that successfully match the condition’s type

are run for a given condition object.)

Chapter 2 Introducing the condition system

46

CL-USER> (handler-bind

 ((before-call

 (lambda (condition)

 (let ((person (person condition)))

 (when (member :csgo person)

 (unless *csgo-launched-p*

 �(format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf *csgo-launched-p* t)))))))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

In order to avoid verbosity, again, we can define that hook function with a name:

(defun ensure-csgo-launched (condition)

 (let ((person (person condition)))

 (when (member :csgo person)

 (unless *csgo-launched-p*

 (format t ";; Launching Counter Strike for ~A.~%" (first person))

 (setf *csgo-launched-p* t)))))

CL-USER> (handler-bind ((before-call #'ensure-csgo-launched))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

Chapter 2 Introducing the condition system

47

Our next modification was short-circuiting and not calling some people; we need to

modify (call-people) for that.

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

 (catch :do-not-call

 (signal 'before-call :person person)

 (call-person person))))

Now, let’s define the handler for skipping people and attempt skipping them:

(defun skip-non-csgo-people (condition)

 (let ((person (person condition)))

 (unless (member :csgo person)

 (format t ";; Nope, not calling ~A.~%" (first person))

 (throw :do-not-call nil))))

CL-USER> (handler-bind ((before-call #'ensure-csgo-launched)

 (before-call #'skip-non-csgo-people))

 (call-people))

;; Nope, not calling MOM.

;; Nope, not calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Nope, not calling BOB.

;; Nope, not calling CATHERINE.

;; Calling DOROTHY.

;; Nope, not calling ERIC.

;; Nope, not calling DENTIST.

NIL

The syntax for handler-bind requires us to specify the condition type for each handler,

which is why we duplicate the condition type before-call. For every condition of type

before-call that is signaled, ensure-csgo-launched will be called first, and skip-non-csgo-

people will be called second.

Next comes the example of calling parents only, and only calling them sometimes:

(defun maybe-call-parent (condition)

 (let ((person (person condition)))

 (when (member :parent person)

 (when (= 0 (random 2))

Chapter 2 Introducing the condition system

48

 (format t ";; Nah, not calling ~A this time.~%" (first person))

 (throw :do-not-call nil)))))

(defun skip-non-parents (condition)

 (let ((person (person condition)))

 (unless (member :parent person)

 (throw :do-not-call nil))))

CL-USER> (handler-bind ((before-call #'maybe-call-parent)

 (before-call #'skip-non-parents))

 (call-people))

;; Nah, not calling MOM this time.

;; Calling DAD.

NIL

;;;;;;;;;;; Or...

;; Calling MOM.

;; Calling DAD.

NIL

;;;;;;;;;;; Or...

;;

Wishing happy holidays to everyone who is not Tom’s ex?

(defun skip-ex (condition)

 (let ((person (person condition)))

 (when (member :ex person)

 (throw :do-not-call nil))))

(defun wish-happy-holidays (condition)

 (let ((person (person condition)))

 (format t ";; Gonna wish ~A happy holidays!~%" (first person))))

CL-USER> (handler-bind ((before-call #'skip-ex)

 (before-call #'wish-happy-holidays))

 (call-people))

;; Gonna wish MOM happy holidays!

;; Calling MOM.

;; Gonna wish DAD happy holidays!

;; Calling DAD.

;; Gonna wish ALICE happy holidays!

;; Calling ALICE.

Chapter 2 Introducing the condition system

49

;; Gonna wish BOB happy holidays!

;; Calling BOB.

;; Gonna wish DOROTHY happy holidays!

;; Calling DOROTHY.

;; Gonna wish ERIC happy holidays!

;; Calling ERIC.

;; Gonna wish DENTIST happy holidays!

;; Calling DENTIST.

NIL

Adding different handlers at different moments?

CL-USER> (handler-bind ((before-call #'wish-happy-holidays))

 (handler-bind ((before-call #'skip-ex))

 (call-people)))

;; Gonna wish MOM happy holidays!

;; Calling MOM.

;; Gonna wish DAD happy holidays!

;; Calling DAD.

;; Gonna wish ALICE happy holidays!

;; Calling ALICE.

;; Gonna wish BOB happy holidays!

;; Calling BOB.

;; Gonna wish DOROTHY happy holidays!

;; Calling DOROTHY.

;; Gonna wish ERIC happy holidays!

;; Calling ERIC.

;; Gonna wish DENTIST happy holidays!

;; Calling DENTIST.

NIL

(The preceding form differs from the hook-based implementation in one detail: the

handler mechanism has one property called clustering that the hook system does not

have. We will elaborate on that later in the book.)

Doing different things before calling people and different things after calling people?

(define-condition after-call ()

 ((%person :reader person :initarg :person)))

(defun call-people ()

 (setf *csgo-launched-p* nil)

 (dolist (person *phonebook*)

Chapter 2 Introducing the condition system

50

 (catch :do-not-call

 (signal 'before-call :person person)

 (call-person person)

 (signal 'after-call :person person))))

(defun call-girlfriend-again (condition)

 (let ((person (person condition)))

 (when (member :girlfriend person)

 (format t ";; Gonna call ~A again.~%" (first person))

 (call-person person))))

CL-USER> (handler-bind ((before-call #'ensure-csgo-launched)

 (after-call #'call-girlfriend-again))

 (call-people))

;; Calling MOM.

;; Calling DAD.

;; Launching Counter Strike for ALICE.

;; Calling ALICE.

;; Calling BOB.

;; Calling CATHERINE.

;; Calling DOROTHY.

;; Gonna call DOROTHY again.

;; Calling DOROTHY.

;; Calling ERIC.

;; Calling DENTIST.

NIL

So we can see that the hook system defined in the previous chapter maps perfectly

into the Lisp condition system, to the extent for which we have used it so far. Further

extending the function call-people is analogous to extending it in our hook system, except

instead of iterating through the different hook variables, we signal distinct condition

types.

2.2.1  �Exception handling
So far, we have implemented the situation where Tom is in full control of what is

going on; he is the caller, and other people are the callees. But, other people have the

possibility to call us as well; let us try to program that situation.

Chapter 2 Introducing the condition system

51

Let us assume that every person on Tom’s phonebook is able to call him; they can

make Tom’s phone ring. Generally, he will want to answer phone calls from everyone—

except from his ex. We do not want to think what happens if Tom answers a call from

her—we must simply assume that this is an erroneous situation from which Tom cannot

recover.

2.2.1.1  �First iteration: No handling

Programmatically, we could describe the naïve, always answering code in the

following way:

(defun receive-phone-call (person)

 (format t ";; Answering a call from ~A.~%" (first person))

 (when (member :ex person)

 (format t ";; About to commit a grave mistake...~%")

 (we do not want to be here)))

We purposefully do not define the (we do not want to be here) form, leaving it as it is

to denote the unwanted and undefined behavior that we never want to have happen. If

control ever were to reach that form, then Tom’s program would have failed him, and

that would have been due to a mistake on the programmer’s side; therefore, we need to

ensure that this form will never be reached under any circumstances.

To achieve this assurance, we can use a similar method to the one employed in

the previous chapter. Using throw and catch, we have performed a non-local transfer of

control; in other words, we have escaped from a part of code inside call-people before it

led to an erroneous situation.

The Common Lisp condition system has accounted for such a situation. There is a

subtype of all conditions named serious-condition which is signaled in such situations.

Contrary to the usual, non-serious conditions, serious conditions in CL are defined so

that they must be handled in some way.

So far, we have not discussed condition subtypes. This is a part of the Common Lisp

condition system that is more powerful than the hook kinds which we implemented

earlier. While hook kinds only provide lookup by means of symbol equality (e.g., calling

all hooks with kind before-call will only invoke hooks whose kind is equal to the symbol

before-call), the Common Lisp condition system allows for a hierarchy of condition

types, in which one condition type is allowed to subtype one or more other condition

types.

Chapter 2 Introducing the condition system

52

These condition types can then be utilized to trigger handlers with distinct condition

types; for instance, a handler for the system-defined condition type error is going to be

triggered whenever an error of any kind is signaled, no matter if it is, for example, an

undefined-function error, a program-error, a plain error, or any other condition type which

itself is a subtype of error. Further, we may define a handler on serious-condition, which is

going to handle all errors as well—since the condition type error is a subtype of serious-

condition.

The inheritance model of Common Lisp condition types allows a condition type to

be a subtype of more than one condition; for instance, it is common to define custom

error types which are themselves subtypes both of error and of a different condition type

that is specific to a certain class of problems in which we find ourselves.

This means that the inheritance model of conditions (which is, actually, the

inheritance model of Common Lisp Object System in general) solves the diamond problem

that occurs with multiple inheritance. (Since the diamond problem is a non-trivial issue,

details about it or multiple inheritance in general are out of scope of this book.)

2.2.1.2  �Second iteration: Signaling a condition

We could extend the preceding example to illustrate the workings of inheritance in

condition types:

(define-condition grave-mistake (error)

 ((%reason :reader reason :initarg :reason)))

(defun receive-phone-call (person)

 (format t ";; Answering a call from ~A.~%" (first person))

 (when (member :ex person)

 (format t ";; About to commit a grave mistake...~%")

 (signal 'grave-mistake :reason :about-to-call-your-ex)

 (we do not want to be here)))

We have defined the condition grave-mistake to be an error. This means, among other

things, that handlers that expect an error will now be notified when a grave-mistake is

signaled within their scope, and their code will be run. This enables us to write two code

examples that safely defuse the situation: one that binds a handler to all error conditions

and another, more specialized, which binds a handler to grave-mistake conditions only.

Specializing in this way allows the programmer to query the condition objects for

properties that only grave-mistakes have, for instance, the reason that each grave-mistake

condition has.

Chapter 2 Introducing the condition system

53

(defun defuse-error (condition)

 (declare (ignore condition))

 (format t ";; Nope nope nope, not answering!~%")

 (throw :do-not-answer nil))

(defun defuse-grave-mistake (condition)

 (let ((reason (reason condition)))

 (format t ";; Nope nope nope, not answering - reason was, ~A!~%" reason))

 (throw :do-not-answer nil))

CL-USER> (handler-bind ((error #'defuse-error))

 (dolist (person *phonebook*)

 (catch :do-not-answer

 (receive-phone-call person))))

;; Answering a call from MOM.

;; Answering a call from DAD.

;; Answering a call from ALICE.

;; Answering a call from BOB.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

;; Nope nope nope, not answering!

;; Answering a call from DOROTHY.

;; Answering a call from ERIC.

;; Answering a call from DENTIST.

NIL

CL-USER> (handler-bind ((grave-mistake #'defuse-grave-mistake))

 (dolist (person *phonebook*)

 (catch :do-not-answer

 (receive-phone-call person))))

;; Answering a call from MOM.

;; Answering a call from DAD.

;; Answering a call from ALICE.

;; Answering a call from BOB.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

;; Nope nope nope, not answering - reason was, ABOUT-TO-CALL-YOUR-EX!

;; Answering a call from DOROTHY.

;; Answering a call from ERIC.

;; Answering a call from DENTIST.

NIL

Chapter 2 Introducing the condition system

54

So far, so good. However, handling these kinds of errors is left solely to the handlers,

and so the receive-phone-call function is itself dangerous. Let us imagine what happens

if Tom ever forgets to handle that condition and simply answers calls from everyone, in

turn, from his phonebook.

CL-USER> (dolist (person *phonebook*)

 (catch :do-not-answer

 (receive-phone-call person)))

;; Answering a call from MOM.

;; Answering a call from DAD.

;; Answering a call from ALICE.

;; Answering a call from BOB.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

;;

;;

;;

;; Phone call answered.

;;

;;

;;

;; Grave mistake successfully committed.

;;

;;

;;

;; ...so, what do we do now?

We have passed control to a form that should not have executed under any

circumstances. We had an erroneous situation in our program, and we have nonetheless

allowed the program to proceed. At this point, the behavior of the program is undefined,

and so are the results of it. We no longer know what is the state of Tom or what the call

has been like. We may never know it. Or we may, after which we would wish we never got

to know it.

2.2.1.3  �Third iteration: Entering the debugger

This is why signal is not powerful enough to handle erroneous situations. There is

a function that is more powerful than that, though—powerful enough to invoke the

ultimate means of saving us from the problem. That function is named error, and using it

in place of signal is enough to prevent the ultimate from happening.

Chapter 2 Introducing the condition system

55

(defun receive-phone-call (person)

 (format t ";; Answering a call from ~A.~%" (first person))

 (when (member :ex person)

 (format t ";; About to commit a grave mistake...~%")

 (error 'grave-mistake :reason :about-to-call-your-ex)

 (we will never get here)))

The function error works by first signaling the condition in question. This allows the

external handlers to function just like they would with standard signal: they can intercept

the control flow and route it out on their own terms. However, if no handlers decide to

transfer control outside and therefore signal returns, error then calls the ultimate means of

saving Tom from making regrettable life choices: it calls invoke-debugger with the condition

object as its argument.

The function invoke-debugger, and the Lisp debugger, will be described in later

chapters. For now, all we need to know about it is that it is the equivalent of a turtle

falling on its back and wiggling its limbs hopelessly in the air; the program has

exhausted all chances of handling an error gracefully and, therefore, has no choice

but to handle it disgracefully. It is a point of no return; code that follows immediately

after an invoke-debugger call (and, therefore, immediately after an error call) cannot be

reached by the program.

The debugger is an interactive condition handler; it is called to prevent crashing the

system by giving the programmer an interface to handle conditions manually. Once it is

invoked, execution of the program is effectively paused, and Lisp requires programmer

attention in order to resume the program. This means that there is no way to return

programmatically from the debugger whatsoever.

It is not a pleasant situation to be in by any means, but at least it is a defined

one—for all imaginable cases, we would rather want Tom to think “now I need to call a

Lisp technician to fix that program for me” than think “why in the heavens have I even

answered this call from her”.

(It is possible to disable the interactive debugger in most Lisp implementations. In

such case, the Lisp system will simply crash and leave a backtrace and other information

to be analyzed during post-mortem debugging. Such situations or debugging techniques

are not considered in this book.)

For now, let us consider the debugger as a place of controlled programmer failure.

We can assume that the debugger will prevent us from doing unwise things, such as

adding 42 to "42" or having Tom answer a call from someone he should not answer a call

Chapter 2 Introducing the condition system

56

from. Nonetheless, it is a programmer failure—and so we will discuss one more tool that

helps us defend against errors in places where we expect them to happen.

Let’s once more look at the previous, safe way of calling receive-phone-call, in which

we simplify the previously passed defuse-grave-mistake to its very minimum.

(handler-bind ((grave-mistake (lambda (condition)

 (declare (ignore condition))

 (throw :do-not-answer nil))))

 (dolist (person *phonebook*)

 (catch :do-not-answer

 (receive-phone-call person))))

The routing of control is as follows. The function receive-phone-call is called on every

member of the *phonebook*. However, it is possible that receive-phone-call may signal an

error; if this happens, we want immediately to stop whatever was going on in receive-

phone-call and return to the catch form. That form is inside the dolist call, which means

that walking the phonebook will continue; if the catch form had encompassed all of

dolist, then signaling an error would instead stop iterating through the phonebook.

This is a frequently encountered idiom in programming: attempt to do something,

and if doing that something would result in an error, recover and do something else

instead. That pattern is called exception handling or try-catch from the most famous

keywords that implement this behavior in many programming languages.

In Lisp, the macro that implements this idiom is named handler-case. In our example,

it will have the following syntax:

(dolist (person *phonebook*)

 (handler-case (receive-phone-call person)

 (grave-mistake (condition)

 (format t ";; Nope, not this time: ~A~%" (reason condition)))))

If, in the preceding example, (receive-phone-call person) returns normally, then—like

in handler-bind—no handlers whatsoever are invoked. If, however, an error is signaled

and a matching handler-case handler is found, then the condition object becomes

bound to the variable condition in the matching handler, and control continues inside

that handler. The body of said handler is executed, and it computes the return value for

handler-case.

(Detail: in Lisp, handler-case returns a value, as opposed to the try/catch of C-like

languages. If the main form returns normally, then its return value is returned from the

handler-case; otherwise, the value returned by the handler that handled the signaled

Chapter 2 Introducing the condition system

57

condition is returned from the handler-case. There is one exception to this rule, which

requires the special :no-error handler to be defined; if this is present, then its return

value is returned in case of no error, and the return value of the main form ends up being

ignored.)

We can execute this code snippet and see that it performs as intended:

CL-USER> (dolist (person *phonebook*)

 (handler-case (receive-phone-call person)

 (grave-mistake () (format t ";; Nope, not this time.~%"))))

;; Answering a call from MOM.

;; Answering a call from DAD.

;; Answering a call from ALICE.

;; Answering a call from BOB.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

;; Nope, not this time.

;; Answering a call from DOROTHY.

;; Answering a call from ERIC.

;; Answering a call from DENTIST.

NIL

In other words, handler-case is a shorter way of performing a non-local transfer

of control, as compared to handler-bind—but it is also somewhat less powerful. While

handler-bind allows one to execute hook functions at the site where a condition is signaled

before continuing standard function execution, handler-case always performs a non-local

transfer of control outside the expression that was executing, which unconditionally

short-circuits the original control flow.

In other words, handler-case always unwinds the stack, whereas handler-bind does not

necessarily unwind the stack, as it leaves the choice of whether and how to do that to

each individual handler.

In yet other words, if handler-bind is a way to execute hooks in Lisp, then handler-

case is a way to execute exception handling. It is possible to implement handler-case via

handler-bind (we have done a simple version of that in the earlier chapter!), but not the

other way around.

Finally, if we would like to make our code very dirty (e.g., when we are writing quick,

temporary hacks that will only last to the end of the current cosmic manifestation), we

can use one more operator that is equivalent to creating a handler-case handler on all

errors: ignore-errors. It does what its name says: in case an error is signaled, control is

Chapter 2 Introducing the condition system

58

unconditionally transferred outside of the form that is being executed, and no other

actions are performed.

CL-USER> (dolist (person *phonebook*)

 (ignore-errors (receive-phone-call person)))

;; Answering a call from MOM.

;; Answering a call from DAD.

;; Answering a call from ALICE.

;; Answering a call from BOB.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

;; Answering a call from DOROTHY.

;; Answering a call from ERIC.

;; Answering a call from DENTIST.

NIL

(Technically speaking, ignore-errors is equivalent to a handler-case with a single handler

for error which returns two values: nil and the error object that was being signaled.)

2.2.2  �Protection against transfers of control
We could complicate the preceding scenario in one more way. Let us assume that Tom

has a very broken phone that locks up every time the call finishes. It doesn’t matter

whether the call was answered and lasted for an hour (for instance, if Tom’s girlfriend

was calling), whether it was immediately rejected (for instance, if Tom’s mother was

calling), or even if Tom pretended he did not hear his phone whatsoever (for instance, if

Tom’s ex was calling): after each of these situations, he needs to pry the battery out of his

phone, put it back inside, and start it anew.

Technically speaking, this programming idiom is an extension of the try/catch

pattern—usually, it is named finally, giving the pattern the final name of

try/catch/finally. The code marked as finally executes unconditionally after the try/catch

part, no matter whether the code block in try has returned normally or whether control

was transferred out by means of handling an exception.

As mentioned earlier in the book, there are several ways of transferring control in CL:

tagbody/go, block/return-from/return, and catch/throw. The form unwind-protect “protects”

against all of these means of transferring control outside of the protected form (including

the situation when control leaves the form normally) and forces the cleanup forms to be

executed right after control leaves the protected form, before any other code is run.

Chapter 2 Introducing the condition system

59

We could therefore say that unwind-protect is Lisp’s way of implementing the finally

part of that idiom. And so, we may utilize that form to implement Tom needing to restart

the phone each single time.

Let us work on this example:

CL-USER> (dolist (person *phonebook*)

 (catch :do-not-answer

 (handler-case (receive-phone-call person)

 (grave-mistake (e) (defuse-grave-mistake e)))))

;; Answering a call from MOM.

;; Answering a call from DAD.

;; Answering a call from ALICE.

;; Answering a call from BOB.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

;; Nope nope nope, not answering - reason was, ABOUT-TO-CALL-YOUR-EX!

;; Answering a call from DOROTHY.

;; Answering a call from ERIC.

;; Answering a call from DENTIST.

NIL

(In the preceding example, we use handler-case, but handler-bind would work as well.

The function defuse-grave-mistake performs a non-local exit by throwing at the :do-not-

answer catch tag; therefore, it does not matter whether it is called directly, as via handler-

bind, or with one more indirection, as via handler-case.)

It is possible to perform a non-local exit by means of throwing anything to

the :do-not-answer catch tag. This means that the following code (with a reduced

phonebook for clarity) will not work correctly in case of an error:

CL-USER> (dolist (person '((:bob :classmate :homework)

 (:catherine :classmate :ex)

 (:dorothy :classmate :girlfriend :csgo)))

 (catch :do-not-answer

 (handler-case (receive-phone-call person)

 (grave-mistake (e) (defuse-grave-mistake e)))

 (format t ";; Restarting phone.~%")))

;; Answering a call from BOB.

;; Restarting phone.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

Chapter 2 Introducing the condition system

60

;; Nope nope nope, not answering - reason was, ABOUT-TO-CALL-YOUR-EX!

;; Answering a call from DOROTHY.

;; Restarting phone.

NIL

We can see that Tom restarted his phone after Bob and Dorothy called him, but we

do not see the same happening for Catherine. This is fixable by adding unwind-protect:

CL-USER> (dolist (person '((:bob :classmate :homework)

 (:catherine :classmate :ex)

 (:dorothy :classmate :girlfriend :csgo)))

 (catch :do-not-answer

 (unwind-protect

 (handler-case (receive-phone-call person)

 (grave-mistake (e) (defuse-grave-mistake e)))

 (format t ";; Restarting phone.~%"))))

;; Answering a call from BOB.

;; Restarting phone.

;; Answering a call from CATHERINE.

;; About to commit a grave mistake...

;; Nope nope nope, not answering - reason was, ABOUT-TO-CALL-YOUR-EX!

;; Restarting phone.

;; Answering a call from DOROTHY.

;; Restarting phone.

NIL

To summarize, using handler-bind with an unconditional transfer of control, we have

constructed handler-case: a means of handling errors by transferring control outside of

the erroring forms. In addition, we have introduced unwind-protect, a means of running

cleanup code that is executed even if control leaves a form in an unnatural way.

2.2.3  �Clustering
One property of handlers which we have not yet touched is clustering. In short, clustering

handlers together means that a handler does not “see” any handlers bound in the same

handler-bind form—meaning that it cannot cause itself or its “neighbors” to become

invoked.

Chapter 2 Introducing the condition system

61

Let us use a short synthetic example to illustrate. We establish one “outer” handler

in one handler-bind form, and then we establish three “inner” handlers inside it, with the

second “inner” handler re-signaling the condition that it gets. Finally, as the final form,

we signal a single condition. (The same rule applies for handler-case.)

CL-USER> (handler-bind ((condition (lambda (condition)

 (declare (ignore condition))

 (format t ";; Outer handler~%"))))

 (handler-bind ((condition (lambda (condition)

 (declare (ignore condition))

 (format t ";; Inner handler A~%")))

 (condition (lambda (condition)

 (format t ";; Inner handler B~%")

 (signal condition)))

 (condition (lambda (condition)

 (declare (ignore condition))

 (format t ";; Inner handler C~%"))))

 (signal 'condition)))

;; Inner handler A

;; Inner handler B

;; Outer handler

;; Inner handler C

;; Outer handler

The result is as follows: first, inner handler A is invoked. Second, inner handler B is

invoked, and it re-signals that condition. However, due to clustering rules, all of the inner

handlers become “invisible” to the signal call within the inner handler B; this is why only

the outer handler is invoked. Next, the inner handler C is invoked, and then, finally, the

outer handler is invoked for the second time. (The second invocation of the outer handler

came from the innermost signal call, whereas the first invocation came from the signal

call embedded in the inner handler B.)

An important corollary of this fact is that a handler may never call its own self when

using standard handler-based mechanisms.

Such a rule, even though it is not fully intuitive, allows for better structuring of

distinct layers of handlers. We can rely on all handlers within a single cluster not getting

in each other’s (and their own) way if they decide to (re-)signal a condition.

Chapter 2 Introducing the condition system

62

2.2.4  �Summary: The handler subsystem
This concludes the part of this book about the handler subsystem of the Common Lisp

condition system. In the earlier sections, we have constructed the basic system of hooks,

which turned out to be very similar to the system of condition handlers which we have in

the latter sections of this chapter.

In the next section of the book, we will focus on constructing another subsystem of

CL, which has a different operating principle.

2.3  �A simple system of choices
Let us leave Tom for a moment and focus on another person in the story: Catherine.

Catherine, or Kate, had a boyfriend named Tom. That is no longer the case, though,

and she has moved on with her life. She has met a marvelous young programmer named

Mark, whom she meets in her house when her parents are away, in order to indulge in

intense Lisp study sessions.

There is a problem, however. Kate’s parents are a pair of hardcore COBOL mainframe

programmers of the old generation, who strongly despise dynamic programming and

would promptly garbage-collect Mark, sweeping him into the trash bin, the moment

they saw him in their household. Then, they would proceed to scold Kate ruthlessly

about her life and professional choices as a growing mainframe programmer.

Kate therefore needs to be particularly cautious about her first steps with Mark in

the world of interactive programming. If her parents unexpectedly return home while

she is in the middle of analyzing a Lisp program with Mark, she needs that fact to go

undiscovered, no matter the costs. Since there are many ways in which her mother and

father may notice her relationship with Mark, she needs a versatile and adaptive strategy

of covering it up. The most important requirement for that new strategy is that Kate

needs to be able to choose a single option from the various ones she has at any given

moment arbitrarily, rather than utilizing them all in order.

Because of this last constraint, the previous mechanisms of hooks or handlers are

not suited for this kind of use case. Let us construct a mechanism that allows us to

inspect the list of available choices we have at any given moment and arbitrarily select

the ones that we deem to be the most proper.

Chapter 2 Introducing the condition system

63

2.3.1  �Kate and Mark
First, we need to set the scene. There is a house in which Kate lives. This house has two

doors: front door and back door, each of which may be locked or unlocked. Kate’s room

is on the first floor (meaning that escaping through windows is not a healthy option) and

in every scene it initially contains Mark.

We can represent this state as a set of dynamic variables which we will then rebind

around calls to our main function.

(defvar *mark-safe-p* nil)

(defvar *front-door-locked-p* t)

(defvar *back-door-locked-p* t)

We shall also define the main function that will illustrate a situation in which Kate’s

parents come home. The value of *mark-safe-p* should be true by the time we have

finished covering Mark up, which is visible in the following body of code:

(defun parents-come-back ()

 (format t ";; Uh oh - Kate's parents are back!~%")

 (try-to-hide-mark)

 (if *mark-safe-p*

 (format t ";; Whew... We're safe! For now.~%")

 (we do not want to be here)))

Once again, we do not define the (we do not want to be here form); in the event control

reaches this form, we kindly declare that the behavior is undefined, both for Mark and

for Kate. To keep our code modular, the functionality for recovering from that situation

should stay within the try-to-hide-mark function and within the dynamic scope in which

parents-come-back is called.

Therefore, we need to split our implementation between the dynamic scope of

parents-come-back and the body of try-to-hide-mark. The former will contain the cover-up

choices available for Kate and Mark at any given moment and the latter the actual logic

for selecting the proper choice and utilizing it.

Chapter 2 Introducing the condition system

64

2.3.2  �Choice #1: Escape
In order to implement our system of choices, we will first need to model an individual

choice as well as means of interacting with it. First, we will need some means of referring

to any given choice, perhaps by a name that could be a Lisp symbol. Second, we will

need to be able to execute arbitrary code associated with such a choice, in order actually

to affect the state of our code and be able to cover up for Kate and Mark. Third, we will

need means of checking whether a given option is applicable to a given moment; there

is no worse situation than, for example, Mark trying to escape through a window only to

find that Kate’s father is standing next to it, giving Mark a surprised stare.

2.3.2.1  �The CHOICE structure

Each individual choice will have three components: a name, by which we will refer to

that choice; an effect function, which will be executed whenever that choice is chosen;

and a test function, which will be called to check if a given choice is applicable to the

current situation.

While we could model our choice as a list that contains these three elements, we

should instead define a proper choice structure that we will later use for code clarity. For

that, we will use a Common Lisp facility named defstruct. This tutorial will not go into

depth about how to use defstruct; all that matters for us is that evaluating the following

form will define the function make-choice for creating new choice objects, as well as

functions choice-name, choice-effect-function, and choice-test-function for accessing the

values from a choice object.

(defstruct choice

 (name (error "Must provide :NAME."))

 (effect-function (error "Must provide :EFFECT-FUNCTION."))

 (test-function (constantly t)))

In the preceding defstruct form, the (error "...") subforms mean that assigning a name

and effect-function to a newly created choice is mandatory; it is a default initial form that,

upon evaluation, will signal an error. The (constantly t) subform returns a function which,

in turn, always returns true. Therefore, passing this as the default initial form for test-

function means that the test function will always return true, and the choice will always be

visible. We choose this as a default since we decide that choices, by default, should always

be visible—that is, until and unless a programmer decides otherwise.

Chapter 2 Introducing the condition system

65

2.3.2.2  �Escaping through the front door

The above means that we can now create choice objects that represent means of

covering up Kate and Mark’s Lisp studies. Let us define one means of escaping for the

time being: escaping through the front door. Its effect should be setting *mark-safe-p* to

a true value, and it should only be available when *front-door-locked-p* is false, as Mark

cannot escape through a locked door.

Let us define a pair of helper functions that will perform these actions along with

printing debug information for us.

(defun perform-escape-through-front-door ()

 (format t ";; Escaping through the front door.~%")

 (setf *mark-safe-p* t))

(defun escape-through-front-door-p ()

 (format t ";; The front door is~:[not~;~] locked.~%" *front-door-locked-p*)

 (not *front-door-locked-p*))

This allows us to create a choice object and interact with it in the following manner:

CL-USER> (defvar *our-first-choice*

 (make-choice

 :name 'escape-through-front-door

 :effect-function #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p))

OUR-FIRST-CHOICE

CL-USER> *our-first-choice*

#S(CHOICE

 :NAME ESCAPE-THROUGH-FRONT-DOOR

 :EFFECT-FUNCTION #<FUNCTION PERFORM-ESCAPE-THROUGH-FRONT-DOOR>

 :TEST-FUNCTION #<FUNCTION ESCAPE-THROUGH-FRONT-DOOR-P>)

CL-USER> (choice-name *our-first-choice*)

ESCAPE-THROUGH-FRONT-DOOR

CL-USER> (choice-effect-function *our-first-choice*)

#<FUNCTION PERFORM-ESCAPE-THROUGH-FRONT-DOOR>

CL-USER> (choice-test-function *our-first-choice*)

#<FUNCTION ESCAPE-THROUGH-FRONT-DOOR-P>

Chapter 2 Introducing the condition system

66

2.3.2.3  �Escaping through the back door

Since Kate’s house is symmetrical and we operate the front and back door in the same

manner, we can define a pair of helper functions for handling the back door as well.

(defun perform-escape-through-back-door ()

 (format t ";; Escaping through the back door.~%")

 (setf *mark-safe-p* t))

(defun escape-through-back-door-p ()

 �(format t ";; The back door is~:[not~;~] locked.~%" *back-door-locked-p*)

 (not *back-door-locked-p*))

This means that we can now also create a choice for escaping through the back door

via the following form:

(make-choice

 :name 'escape-through-back-door

 :effect-function #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p)

2.3.2.4  �Computing and invoking choices

Now that we have created the logical structures defining our choices, we may use them

in future code. Let us first define a variable listing all available choices and give it an

empty initial value.

(defvar *choices* '())

The global value of this dynamic variable should always stay empty; we will instead

provide new choices by dynamically rebinding that value, meaning that our choices will

only be available in some dynamically scoped parts of our program.

This means that only one thing prevents us from executing parents-come-back: we have

not yet implemented the function try-to-hide-mark that is called therein. We can do it

now.

(defun try-to-hide-mark ()

 (let ((choices (loop for choice in *choices*

 when (funcall (choice-test-function choice))

 collect choice)))

Chapter 2 Introducing the condition system

67

 (if choices

 (let ((choice (first choices)))

 (format t ";; Performing ~A.~%" (choice-name choice))

 (funcall (choice-effect-function choice)))

 (format t ";; Kate cannot hide Mark!~%"))))

The algorithm has the following path. First of all, all the choices from *choices* are

scanned to determine whether they apply to a given situation. If yes, such a choice is

collected for later processing. Once we have the list of applicable choices, we ensure that it is

not empty; once that is done, we perform our logic for choosing and invoking the choices.

For the time being, we simply choose the first choice object that we find. This logic

will, however, become more elaborate later in the chapter.

The loop form in the preceding function is somewhat large. We can factor it into a

separate function for clarity.

(defun compute-choices ()

 (loop for choice in *choices*

 when (funcall (choice-test-function choice))

 collect choice))

(defun try-to-hide-mark ()

 (let ((choices (compute-choices)))

 (if choices

 (let ((choice (first choices)))

 (format t ";; Performing ~A.~%" (choice-name choice))

 (funcall (choice-effect-function choice)))

 (format t ";; Kate cannot hide Mark!~%"))))

Now that we have implemented the function try-to-hide-mark, we can construct an

example form that represents a situation in which Kate’s parents come back and we

would like to have the option of escaping through the front or back door.

(let ((*choices*

 (list (make-choice

 :name 'escape-through-front-door

 :effect-function #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

 (make-choice

 :name 'escape-through-back-door

 :effect-function #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p))))

Chapter 2 Introducing the condition system

68

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil)

 (*back-door-locked-p* nil))

 (parents-come-back)))

That form is rather unwieldy to type. We can notice that, for the most part, the code

consists of a part that is somewhat static: a list of all choices that we offer for successfully

covering up Mark’s presence in Kate’s home.

We can factor this out into a separate function which establishes the proper dynamic

environment and then calls a thunk function in that environment.

(defun call-with-home-choices (thunk)

 (let ((*choices*

 (list (make-choice

 :name 'escape-through-front-door

 :effect-function #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

 (make-choice

 :name 'escape-through-back-door

 :effect-function #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p))))

 (funcall thunk)))

(In Lisp, this behavior is usually achieved by writing a macro, rather than a function;

it could be called with-home-choices and accept code that we would want to run in the

dynamic scope of that form. For simplicity, we use a function instead to achieve the

same result, especially since this situation permits it; it is not easily possible to substitute

all macro invocations with function calls.)

The preceding code allows us to shorten our form to the following:

(call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil)

 (*back-door-locked-p* nil))

 (parents-come-back))))

Chapter 2 Introducing the condition system

https://en.wikipedia.org/wiki/Thunk

69

2.3.2.5  �The results

We can now attempt to execute this last form and see how it behaves.

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil)

 (*back-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; The front door is not locked.

;; The back door is not locked.

;; Performing ESCAPE-THROUGH-FRONT-DOOR.

;; Escaping through the front door.

;; Whew... We're safe! For now.

NIL

If only the front door is unlocked, not much changes:

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; The front door is not locked.

;; The back door is locked.

;; Performing ESCAPE-THROUGH-FRONT-DOOR.

;; Escaping through the front door.

;; Whew... We're safe! For now.

NIL

If only the back door is unlocked, then Mark still has a way of escaping:

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*back-door-locked-p* nil))

 (parents-come-back))))

Chapter 2 Introducing the condition system

70

;; Uh oh - Kate's parents are back!

;; The front door is locked.

;; The back door is not locked.

;; Performing ESCAPE-THROUGH-BACK-DOOR.

;; Escaping through the back door.

;; Whew... We're safe! For now.

NIL

If both doors are locked, well, that is a situation which we do not want to evaluate in

practice. We can, however, evaluate try-to-hide-mark instead of parents-come-back in such

an environment—we can assume that Kate tries to hide Mark as a practice exercise for

later.

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil))

 (try-to-hide-mark))))

;; The front door is locked.

;; The back door is locked.

;; Kate cannot hide Mark!

NIL

2.3.2.6  �Same-named choices

The preceding mechanism is based on the assumption that all means of escape are

equally desirable and moreover that they do not require any data passed to them from

the call site. We are doing it this way since both the choices we have established have

functions that accept zero arguments; we can call their effect functions without passing

any data to them.

Additionally, both of the choices we have created perform essentially the same thing:

they allow Mark to escape without confronting Kate’s parents, even if through different

means. We shall establish a convention of naming choices that perform the same action

with the same symbol. This way, client code could check for presence of any choice

named escape—without needing to know the exact details of the escape route.

Chapter 2 Introducing the condition system

71

Let us rewrite our code to take this naming convention into account:

(defun call-with-home-choices (thunk)

 (let ((*choices*

 (list (make-choice

 :name 'escape

 :effect-function #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

 (make-choice

 :name 'escape

 :effect-function #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p))))

 (funcall thunk)))

Inside call-with-home-choices, we only need to change the names of both choices to

escape. Now that we know all desired choices are named identically as escape, we can

also change the implementation of try-to-hide-mark to be more precise—instead of

calling the first available choice, we can try to find a choice named escape. For this search

mechanism, we introduce a new function, find-choice, and a convenience function

invoke-choice that will call the effect function of the choice with a given name while

passing arguments to it.

(defun find-choice (name)

 (loop for choice in *choices*

 when (and (funcall (choice-test-function choice))

 (eq name (choice-name choice)))

 return choice))

(defun invoke-choice (name &rest arguments)

 (let ((choice (find-choice name)))

 (apply (choice-effect-function choice) arguments)))

(defun try-to-hide-mark ()

 (if (find-choice 'escape)

 (invoke-choice 'escape)

 (format t ";; Kate cannot hide Mark!~%")))

Chapter 2 Introducing the condition system

72

We can check that our code still works, albeit slightly differently:

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; The front door is not locked.

;; Escaping through the front door.

;; Whew... We're safe! For now.

NIL

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*back-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; The front door is locked.

;; The back door is not locked.

;; Escaping through the back door.

;; Whew... We're safe! For now.

NIL

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil))

 (try-to-hide-mark))))

;; The front door is locked.

;; The back door is locked.

;; Kate cannot hide Mark!

NIL

2.3.3  �Choice #2: Excuses
We have unified escape-related choices under a single name, escape. We will now extend

our means of Mark’s survival with another tactic: allowing him to talk his way out of the

difficult situation in which he found himself.

Chapter 2 Introducing the condition system

73

(defvar *excuses*

 '("Kate did not divide her program into sections properly!"

 "I was borrowing Kate's books on mainframe programming!"

 "I had COBOL-related homework and hoped Kate could help me!"))

(defun perform-excuse (excuse)

 (format t ";; Mark makes an excuse before leaving:~%;; \"~A\"~%" excuse)

 (setf *mark-safe-p* t))

We assume that Mark, when he says one of the preceding excuses, should be able

to calm down Kate’s parents’ suspicion and successfully sneak out of their household.

Confronting Kate’s parents is nonetheless an option of last resort: if possible, they should

not even be aware that Mark visited their daughter. Our logic must take this into account

and first try to attempt an escape.

(defun try-to-hide-mark ()

 (cond ((find-choice 'escape)

 (invoke-choice 'escape))

 (t (format t ";; Kate cannot hide Mark!~%")

 (when (find-choice 'excuse)

 (let ((excuse-text (elt *excuses* (random (length *excuses*)))))

 (invoke-choice 'excuse excuse-text))))))

The preceding code will work, but we have not actually established an excuse choice

yet. To do so, we need to modify call-with-home-choices:

(defun call-with-home-choices (thunk)

 (let ((*choices*

 (list (make-choice

 :name 'excuse

 :effect-function #'perform-excuse)

 (make-choice

 :name 'escape

 :effect-function #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

 (make-choice

 :name 'escape

 :effect-function #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p))))

 (funcall thunk)))

Chapter 2 Introducing the condition system

74

(As mentioned before, we want the excuse choice always to be available; therefore, we

do not provide it with a :test-function.)

With this modification in place, we can check whether Kate’s and Mark’s love for Lisp

and each other can survive in the inevitable scenario where the doors are locked and

Mark needs to confront Kate’s mother and father:

CL-USER> (call-with-home-choices

 (lambda ()

 (let ((*mark-safe-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; The front door is locked.

;; The back door is locked.

;; Kate cannot hide Mark!

;; Mark makes an excuse before leaving:

;; "Kate did not divide her program into sections properly!"

;; Whew... We're safe! For now.

NIL

Looks like Mark is safe… for now.

We are allowed to complicate this example further, both by defining more choices

inside the body of call-with-home-choices and by extending the choice-invoking logic

inside try-to-hide-mark. Perhaps there should be an option of jumping out the window of

Kate’s room, if there is a conveniently placed haystack just beneath it and if Mark feels

like performing a leap of faith; maybe there could be a laundry pile in Kate’s room that

Mark could hide in… unless that particular day is laundry day, and Kate’s mother comes

in to pick the clothes up for washing. Just as in the example with hooks, this means that

only these two functions need to be adjusted: one to offer actual choice objects to code

executed inside its dynamic scope and the other to compute the available choices and

decide which of them should be used and under what conditions. Such enhancement is

left as an exercise for the reader.

2.3.4  �Summary: the choice subsystem
To summarize, we have created a system that internally functions in a similar way to the

hook system that we implemented earlier, given that it works based on a single dynamic

variable and a list of choice objects bound to it. Invoking a given choice has exactly the

Chapter 2 Introducing the condition system

75

same main effect as calling a hook—executing arbitrary code that was provided to us

earlier in the dynamic scope.

However, the functioning of this new system is distinct from that of the hook system.

In the system of hooks, client code merely calls all hooks that were provided to it; in the

system of choices, client code is given much more latitude as to which choices it wants

to interact with, both because of the choice objects having names and because of them

not always being applicable to a given dynamic situation of the program (as per the test

function).

In addition to the preceding data, there is one aspect of the choice system which we

have not used in the preceding example. A choice is allowed merely to perform some

computation and—contrary to hooks—return a value, which is then returned from the

place where the choice was invoked. This difference, in addition to the ones described

earlier, makes choices a more sophisticated and therefore more versatile toolset than

hooks—better suited for situations where client code needs to compute recovery

strategies more complex than “let’s hope that one of the hooks gets us out of there, and if

not, invoke the debugger.”

As we have seen so far, choices, just like hooks, are not required to transfer control

outside of the normal program control flow. If a choice does not perform a non-local exit

and instead returns, the invoke-choice call site returns immediately without performing

any other actions.

Therefore, choices express a different mechanism of control than hooks do. With

hooks, a given situation which has occurred in code may cause one or more externally

specified bodies of code to be executed in an order defined by the dynamic scope. With

choices, the bodies of code are still provided dynamically, but it is the invoking code that

chooses which of these code bodies, under what circumstances, and in which order are

utilized in order to work with a given situation.

2.4  �A simple system of restarts
Truth be told, in the previous chapter, we have done a lot of work that was not strictly

necessary for production code. This is because, through constructing the choice system

from its smallest parts, we have constructed a simple version of a system that already

exists in standard CL—a system of restarts.

Chapter 2 Introducing the condition system

76

A restart in CL is defined by things similar to the choice objects defined by us: a name

(usually), a function utilized for invoking its effects (called a restart function in CL), and a

test function that checks whether a given restart should be visible, given the current state

of the program. (There are other qualities to restarts that I omit here for clarity; we will talk

about them later when we discuss the CL debugger.)

To show this system of restarts, we may rewrite the earlier examples while using said

restarts. The initial “setting the stage” code will be the same:

(defvar *mark-safe-p* nil)

(defvar *front-door-locked-p* t)

(defvar *back-door-locked-p* t)

We do not need to create the restart structure manually, since Common Lisp already

has created it for us in the form of the restart system class. We are not meant to create

instances of that class explicitly, though—Common Lisp provides us with a macro

named restart-bind which creates them for us. (The reason for this is that restart objects

in Common Lisp have dynamic extent; this means that accessing them is only legal

within the dynamic scope in which they were created.)

We want to establish a restart named escape-through-front-door, which prints a debug

message and unconditionally sets *mark-safe-p* to true. In addition, it must only be

visible if the front door is unlocked. Here’s an example syntax for such a restart:

(restart-bind ((escape-through-front-door

 (lambda ()

 (format t ";; Escaping through the front door.~%")

 (setf *mark-safe-p* t))

 :test-function

 (lambda (condition)

 (declare (ignore condition))

 (not *front-door-locked-p*))))

 ...)

(The test function for a restart must accept one argument, since, in some

circumstances, the CL restart system passes a condition object to that function. The

purpose of this object will be covered in a later part of this book; for now, the function

ignores the argument passed to it.)

For code clarity, let us once again define the helper functions for our restart for

escaping through the front door—this time, skipping some verbosity in the test function:

Chapter 2 Introducing the condition system

77

(defun perform-escape-through-front-door ()

 (format t ";; Escaping through the front door.~%")

 (setf *mark-safe-p* t))

(defun escape-through-front-door-p (condition)

 (declare (ignore condition))

 (not *front-door-locked-p*))

This allows us to shorten our code to the following:

(restart-bind ((escape-through-front-door

 #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p))

 ...)

We may now compute the restarts available within the dynamic scope of that form.

We will print their names to ensure that the restart we have created is on top of that list.

For this computation, we will utilize the predefined compute-restarts function, offered to

us by CL. It behaves in the same way as compute-choices did for choices from the previous

example, offering us a list of restart objects that we can query for their names using the

restart-name function.

CL-USER> (restart-bind ((escape-through-front-door

 #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p))

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil))

 (let* ((restarts (compute-restarts))

 (names (mapcar #'restart-name restarts)))

 (format t "~{;; ~A~%~}" names))))

;; ESCAPE-THROUGH-FRONT-DOOR

;; RETRY

;; ABORT

;; ABORT

NIL

The escape-through-front-door restart is available on that list as the first restart, but

we also have several restarts that had been established earlier by the particular Lisp

implementation in which we happen to be programming. (Since they are established by

the system, the list may look different in another Lisp image.) These restarts are not of

any relevance to us and are used by the Lisp system as the ultimate means of recovering

Chapter 2 Introducing the condition system

78

from errors. We will therefore perform a bit of additional work to filter the system-

provided restarts out from the restarts that we establish ourselves.

(defvar *toplevel-restarts* '())

(defun compute-relevant-restarts (&optional condition)

 (set-difference (compute-restarts condition) *toplevel-restarts*))

(The reason for the existence of that &optional condition argument will be explained

later in the book.)

We can bind the variable *toplevel-restarts* to compute the restarts available before

entering our dynamic scope and then use our new function compute-relevant-restarts to

filter these out from the list.

CL-USER> (let ((*toplevel-restarts* (compute-restarts)))

 (restart-bind ((escape-through-front-door

 #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p))

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil))

 (let* ((restarts (compute-relevant-restarts))

 (names (mapcar #'restart-name restarts)))

 (format t "~{;; ~A~%~}" names)))))

;; ESCAPE-THROUGH-FRONT-DOOR

NIL

By sticking with the compute-relevant-restarts function instead of the

system-given compute-restarts, we’ll be safely limiting the restarts to the ones we have

created ourselves. We can similarly expand our code with a restart available for escaping

through the back door:

(defun perform-escape-through-back-door ()

 (format t ";; Escaping through the back door.~%")

 (setf *mark-safe-p* t))

(defun escape-through-back-door-p (condition)

 (declare (ignore condition))

 (not *back-door-locked-p*))

CL-USER> (let ((*toplevel-restarts* (compute-restarts)))

 (restart-bind ((escape-through-front-door

 #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

Chapter 2 Introducing the condition system

79

 (escape-through-back-door

 #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p))

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil)

 (*back-door-locked-p* nil))

 (let* ((restarts (compute-relevant-restarts))

 (names (mapcar #'restart-name restarts)))

 (format t "~{;; ~A~%~}" names)))))

;; ESCAPE-THROUGH-BACK-DOOR

;; ESCAPE-THROUGH-FRONT-DOOR

NIL

Our code is now starting to become unwieldy. To nip this in the bud, we can separate

it into three logical where we declare the state of the world and the third where we utilize

the available restarts in some way (so far, to print their names). This separation will

achieve greater code clarity and isolate the different concerns of our program.

Let us separate the first part from the rest. We will factor it out into a function

call-with-home-restarts that, just like call-with-home-choices from the earlier section,

will establish the new restarts for us; in addition, however, it will also set the *toplevel-

restarts* variable for filtering out the restarts not relevant for us.

(defun call-with-home-restarts (thunk)

 (let ((*toplevel-restarts* (compute-restarts)))

 (restart-bind ((escape-through-front-door

 #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

 (escape-through-back-door

 #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p))

 (funcall thunk))))

We can verify that our code, when called by call-with-home-restarts, behaves in the

expected manner. If we call it with both doors unlocked, we have both restarts available:

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil)

 (*back-door-locked-p* nil))

Chapter 2 Introducing the condition system

80

 (let* ((restarts (compute-relevant-restarts))

 (names (mapcar #'restart-name restarts)))

 (format t "~{;; ~A~%~}" names)))))

;; ESCAPE-THROUGH-BACK-DOOR

;; ESCAPE-THROUGH-FRONT-DOOR

NIL

On the other hand, if both doors are locked, we have no way to let Mark escape:

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil))

 (let* ((restarts (compute-relevant-restarts))

 (names (mapcar #'restart-name restarts)))

 (format t "~{;; ~A~%~}" names)))))

NIL

This brings our restart-based implementation on par with the choice-based one

that we created ourselves. We will use the same main function as we did in the earlier

chapter:

(defun parents-come-back ()

 (format t ";; Uh oh - Kate's parents are back!~%")

 (try-to-hide-mark)

 (if *mark-safe-p*

 (format t ";; Whew... We're safe! For now.~%")

 (we do not want to be here)))

The try-to-hide-mark function will also be very similar to the one we created for

choices. Other than performing a s/choice/restart/g inside it and substituting compute-

restarts with compute-relevant-restarts, we are allowed to use the system-defined function

invoke-restart on it from the very start:

(defun try-to-hide-mark ()

 (let ((restarts (compute-relevant-restarts)))

 (if restarts

 (let ((restart (first restarts)))

 (format t ";; Performing ~A.~%" (restart-name restart))

 (invoke-restart restart))

 (format t ";; Kate cannot hide Mark!~%"))))

Chapter 2 Introducing the condition system

81

This means that we can execute parents-come-back in the dynamic environment

created by call-with-home-restarts in various states of the doors’ openness:

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; Performing ESCAPE-THROUGH-FRONT-DOOR.

;; Escaping through the front door.

;; Whew... We're safe! For now.

NIL

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*back-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; Performing ESCAPE-THROUGH-BACK-DOOR.

;; Escaping through the back door.

;; Whew... We're safe! For now.

NIL

How about the situation in which no doors are open? (Note that, again, for Kate’s and

Mark’s well-being, we demonstrate this in a safe environment—we do not call parents-

come-back, but only try-to-hide-mark.)

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil))

 (try-to-hide-mark))))

;; Kate cannot hide Mark!

NIL

Chapter 2 Introducing the condition system

82

Similarly, we can refactor the preceding code to allow the use of a single escape restart

name for the different escape methods that we have. We will also modify try-to-hide-

mark to use the system-provided find-restart function, analogous to find-choice which we

defined earlier ourselves.

(defun call-with-home-restarts (thunk)

 (let ((*toplevel-restarts* (compute-restarts)))

 (restart-bind ((escape #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p)

 (escape #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p))

 (funcall thunk))))

(defun try-to-hide-mark ()

 (cond ((find-restart 'escape)

 (invoke-restart 'escape))

 (t (format t ";; Kate cannot hide Mark!~%"))))

And these are the examples of the preceding code in use:

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*front-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; Escaping through the front door.

;; Whew... We're safe! For now.

NIL

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil)

 (*back-door-locked-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; Escaping through the back door.

;; Whew... We're safe! For now.

NIL

Chapter 2 Introducing the condition system

83

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil))

 (try-to-hide-mark))))

;; Kate cannot hide Mark!

NIL

This also allows us easily to bind a restart with a different name and a different

implementation: our excuse restart from earlier.

(defvar *excuses*

 '("Kate did not divide her program into sections properly!"

 "I was borrowing Kate's books on mainframe programming!"

 "I had COBOL-related homework and hoped Kate could help me!"))

(defun perform-excuse (excuse)

 (format t ";; Mark makes an excuse before leaving:~%;; \"~A\"~%" excuse)

 (setf *mark-safe-p* t))

We will modify try-to-hide-mark and call-with-home-restarts in the same way we have

modified the choice-based implementation. (The latter function, obviously, will need a

slightly different syntax provided by the restart-bind macro.)

(defun try-to-hide-mark ()

 (cond ((find-restart 'escape)

 (invoke-restart 'escape))

 (t

 (format t ";; Kate cannot hide Mark!~%")

 (when (find-restart 'excuse)

 (let ((excuse-text (elt *excuses* (random (length *excuses*)))))

 (invoke-restart 'excuse excuse-text))))))

(defun call-with-home-restarts (thunk)

 (let ((*toplevel-restarts* (compute-restarts)))

 (restart-bind ((escape #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p)

 (escape #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

 (excuse #'perform-excuse))

 (funcall thunk))))

Chapter 2 Introducing the condition system

84

(One difference from the choice system: in restart-bind, restarts are established in

order from the last one to the first one; this means that the excuse restart will be the on

top of the list returned by compute-relevant-restarts, even though here in the code it is on

the bottom.)

Is Mark safe in a restart-based situation where no escape is possible? Let us find out!

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; Kate cannot hide Mark!

;; Mark makes an excuse before leaving:

;; "I was borrowing Kate's books on mainframe programming!"

;; Whew... We're safe! For now.

NIL

Again, we can see that the system of choices that we have created maps perfectly

into the restart system. (Almost as if the author did that on purpose!…) Of course, this

apparent perfect mapping exists only to the extent to which we have used the restart

system so far; while the preceding exercises display the internal structure and workings

of the restart system, they do not represent the canonical way of using restarts. The next

section will elaborate on that.

2.4.1  �Interactive restarts
There is one more function provided by standard CL that we have not implemented in

the choice system from the previous chapter; we will instead discuss it now. It is most

commonly used from within the debugger, since it is used interactively to prompt the

user for arguments which are then used to call a given restart. However, user code is also

allowed to call this function on its own.

That function is named invoke-restart-interactively, and it does not accept any

arguments other than the restart designator for the restart that it is meant to invoke. The

restart arguments are instead retrieved by calling one aspect of the restart system that we

have not touched—the restart’s “interactive function”.

Let us imagine a situation in which we may supply Mark with new excuses

interactively. Only if the excuse we supply is empty, will Mark resort to one of the

classical ones which we have stored in the value of *excuses*. This requires us to change

Chapter 2 Introducing the condition system

85

the function try-to-hide-mark so it calls invoke-restart-interactively instead of a non-

interactive invoke-restart.

(defun try-to-hide-mark ()

 (cond ((find-restart 'escape)

 (invoke-restart 'escape))

 (t

 (format t ";; Kate cannot hide Mark!~%")

 (when (find-restart 'excuse)

 (invoke-restart-interactively 'excuse)))))

This function will compile without complaints; however, attempting to execute it

will not work. The default interactive function for all restarts returns an empty list of

arguments, whereas our excuse restart needs exactly one argument to be passed to it. This

means that we need to define an interactive function for our excuse restart, which we then

pass to the created excuse restart. We can do this by modifying call-with-home-restarts.

(defun provide-excuse ()

 (format t ";; Mark is thinking of an excuse...~%")

 (let ((excuse-text (read-line)))

 (list (if (string/= "" excuse-text)

 excuse-text

 (elt *excuses* (random (length *excuses*)))))))

Calling this function and passing it some text causes this text to be returned,

wrapped in a list. (The outer list is required, since invoke-restart-interactively is expected

to return a list of arguments.)

CL-USER> (provide-excuse)

;; Mark is thinking of an excuse...

I was discussing the distinct aspects of mainframe repair! ; text input by the user

("I was discussing the distinct aspects of mainframe repair!")

If we instead provide no input (an empty line), this function instead picks a random

predefined excuse.

CL-USER> (provide-excuse)

;; Mark is thinking of an excuse...

 ; empty line provided

("I was borrowing Kate's books on mainframe programming!")

Chapter 2 Introducing the condition system

86

Now that the provide-excuse function works as intended, we can add it to the excuse

restart

(defun call-with-home-restarts (thunk)

 (let ((*toplevel-restarts* (compute-restarts)))

 (restart-bind ((escape #'perform-escape-through-back-door

 :test-function #'escape-through-back-door-p)

 (escape #'perform-escape-through-front-door

 :test-function #'escape-through-front-door-p)

 (excuse #'perform-excuse

 :interactive-function #'provide-excuse))

 (funcall thunk))))

and try running our code!

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; Kate cannot hide Mark!

;; Mark is thinking of an excuse...

I was working on getting a mainframe installed in Kate's room! ; text input by the user

;; Mark makes an excuse before leaving:

;; "I was working on getting a mainframe installed in Kate's room!"

;; Whew... We're safe! For now.

NIL

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*mark-safe-p* nil))

 (parents-come-back))))

;; Uh oh - Kate's parents are back!

;; Kate cannot hide Mark!

;; Mark is thinking of an excuse...

 ; empty line provided

;; Mark makes an excuse before leaving:

;; "Kate did not divide her program into sections properly!"

;; Whew... We're safe! For now.

NIL

Chapter 2 Introducing the condition system

87

Of course, the interactive function for a given restart may call read-line multiple times

in order to get more than one textual argument. It may also call other query functions,

such as read for reading Lisp data, or parse-integer to try and parse a user-input string

into an integer usable by Lisp. In more creative cases, the invoke-restart-interactively

function may also, for example, invoke GUI toolkits to prompt the user for data input or

for selecting some of the options available to them by using mouse.

2.5  �A simple system of actually restarting restarts
While a restart is not strictly required to “restart” any abstract process in the code, the

usual way to use restarts is exactly this: “rolling back” the code to some previously

established good point, with an optional step of performing some recovery action earlier.

Just as handler-case is much, much more commonly used in practice than handler-

bind, the macro restart-case is more frequently used than restart-bind. This is not to say

that restart-bind is never used—there are sometimes practical uses for it—just that the

macro restart-case (which, like handler-case, always performs a non-local transfer of

control) is the more commonly used part of the restart facility, compared to restart-bind.

This turns out to be because restarts which do not perform non-local transfers of

control do not integrate well with one other CL facility: the debugger. As mentioned

earlier, there is no programmatic way of leaving the debugger; and even with a

programmer interacting with the debugger, the only way of escaping it is to perform a

non-local transfer of control outside the debugger. If a restart function returns normally,

then such a normal return is not enough to leave a debugger, even if that function

performs some side effects which otherwise modify the state of the program.

We will describe the debugger itself in a later part of this book; for now, we will focus

on the two macros which establish restarts that always perform a non-local exit: restart-

case and with-simple-restart.

2.5.1  �Restarts that perform a non-local exit
First, we need to describe the means by which a restart established by handler-bind is

capable of transferring control outside of a form executed within it.

Instead of using catch and throw, as we did with handlers, we will utilize a different

pair of operators: block and return-from. This pair of operators is lexical in scope and

therefore less footgun-shaped than catch and throw.

Chapter 2 Introducing the condition system

88

We will begin by creating a named block. A block, in CL, is a form that gives special

meaning to return-from forms that execute within its lexical scope; it becomes possible

to short-circuit the execution of code inside the block in order to return from it (and,

optionally, return a value). (If a block is not named (or rather, named nil), then return

can be used in place of return-from. return is a shorthand for return-from nil.)

Therefore, the following code will work correctly and will return without printing

anything:

CL-USER> (block restart

 (restart-bind ((abort (lambda () (return-from restart))))

 (invoke-restart 'abort)

 (format t ";; We do not want to be here.~%")))

NIL

However, let us suppose that we want to perform some action in addition to a

simple non-local exit; let us say that, after transferring control outside of the affected

form, we want to print a different debug message. For this extra action, we may use

one more lexical mechanism of control flow: tagbody and go. Just like the dreaded goto

of other programming languages, the lexically scoped tagbody and go allow control to be

transferred out from arbitrary places in the code and into one of the tagbody tags stored

in the body of tagbody.

The following example illustrates this:

CL-USER> (block restart

 (tagbody

 (restart-bind ((abort (lambda () (go :abort))))

 (invoke-restart 'abort)

 (format t ";; We do not want to be here.~%"))

 :abort

 (format t ";; Whew. That was close.~%")

 (return-from restart)))

;; Whew. That was close.

NIL

It is possible to extend this example into multiple restarts. This requires the list of

restarts bound in restart-bind to be appropriately extended with new restart forms and

the body of tagbody to be similarly expanded with new tags and the bodies that execute

associated restart cases.

Chapter 2 Introducing the condition system

89

However, a keen eye may notice that this example assumes that the lambda list of a

given restart is always empty, that is, that the abort restart defined earlier does not accept

any arguments. For example, if our abort restart accepted a single argument, reason for the

abort, the preceding mechanism would not be able to handle that properly.

We may begin fixing this issue by wrapping the restart case in a function that

accepts such a single argument. Once that is done, we may route the arguments that are

actually passed to the bound restart by means of a local variable whose value will be the

arguments with which the restart function was called. Once that is done, we will call the

restart case with these arguments:

CL-USER> (block restart

 (let (restart-arguments)

 (tagbody

 (restart-bind ((abort (lambda (&rest arguments)

 (setf restart-arguments arguments)

 (go :abort))))

 (invoke-restart 'abort :about-to-error)

 (format t ";; We do not want to be here.~%"))

 :abort

 (return-from restart

 (apply (lambda (reason) (format t ";; Whew: ~A.~%" reason))

 restart-arguments)))))

;; Whew: ABOUT-TO-ERROR.

NIL

This implementation outlines the difference between a restart function and a restart

case. In restart-bind, all code is allowed to run within the restart function, because there is

no requirement to leave the dynamic scope of restart-bind before executing our code. For

restart-case, however, the stack must first be unwound in order to, among other things,

disestablish the original restart that we bind via handler-bind and to execute any cleanup

forms established by unwind-protect in the dynamic scope. Therefore, the only effective

responsibility of the restart function inside restart-case is to pass the arguments it was

called with outside and transfer control to code that calls the restart case.

Chapter 2 Introducing the condition system

90

2.5.2  �From RESTART-BIND to RESTART-CASE
We can see that the code from the last example is complex and therefore unwieldy to

write on one’s own. This is why the standard macro restart-case implements that idiom.

First, a non-local transfer of control is made; second, the restart forms are executed;

third, the value returned by the restart forms is returned from the outermost block

created by the restart-case.

The restart-case code equivalent to the preceding form looks like this:

CL-USER> (restart-case (progn (invoke-restart 'abort :about-to-error)

 (format t ";; We do not want to be here.~%"))

 (abort (reason) (format t ";; Whew: was ~A.~%" reason)))

;; Whew: was ABOUT-TO-ERROR.

NIL

We can see that it is much shorter than the earlier one. It also fulfills our requirement

of first disestablishing the dynamic scope and only then calling the code contained in

the restart case:

CL-USER> (restart-case

 (unwind-protect

 (progn (invoke-restart 'abort :about-to-error)

 (format t ";; We do not want to be here.~%"))

 (format t ";; Leaving the dynamic scope.~%"))

 (abort (reason)

 (format t ";; Whew: was ~A.~%" reason)))

;; Leaving the dynamic scope.

;; Whew: was ABOUT-TO-ERROR.

NIL

Let us apply this knowledge to rework the earlier example of Kate and Mark trying to

cover up for themselves. Because the restarts established by restart-case always transfer

control outside of the restarting forms, we need to modify parents-come-back in order to

move the established restarts inside its body. That, in turn, will require us to modify call-

with-home-restarts, where the restarts will actually be established.

(defun parents-come-back ()

 (format t ";; Uh oh - Kate's parents are back!~%")

 (call-with-home-restarts

 (lambda ()

Chapter 2 Introducing the condition system

91

 (try-to-hide-mark)

 (we do not want to be here)))

 (format t ";; Whew... We're safe! For now.~%"))

The preceding function now forces call-with-home-restarts to accept a single lambda

that will be called. The function try-to-hide-mark is now forced to transfer control outside

of the lambda, in order to prevent the (we do not want to be here) form from being

evaluated and wreaking havoc upon the professional lives of Mark and Kate.

This also means that the variable which we have used previously, *mark-safe-p*, is

now unnecessary. If we want our code to be clean, we can remove the global variable

definition from our code and remove now dangling references to it from the bodies of all

the functions that used it: perform-escape-through-front-door, perform-escape-through-back-

door, and perform-excuse.

(makunbound '*mark-safe-p*)

(defun perform-escape-through-front-door ()

 (format t ";; Escaping through the front door.~%"))

(defun perform-escape-through-back-door ()

 (format t ";; Escaping through the back door.~%"))

(defun perform-excuse (excuse)

 (format t ";; Mark makes an excuse before leaving:~%;; \"~A\"~%" excuse))

Let us now appropriately modify call-with-home-restarts to utilize restart-case instead

of restart-bind.

(defun call-with-home-restarts (thunk)

 (let ((*toplevel-restarts* (compute-restarts)))

 (restart-case (funcall thunk)

 (escape () :test escape-through-back-door-p

 (perform-escape-through-back-door))

 (escape () :test escape-through-front-door-p

 (perform-escape-through-front-door))

 (excuse (reason) :interactive provide-excuse

 (perform-excuse reason)))))

(A keen eye can notice that the test/interactive functions are now provided using

a different protocol. Where handler-bind had keywords :test-function and :interactive-

function, handler-case has :test and :interactive; in addition, we now pass function

Chapter 2 Introducing the condition system

92

names—without the #' reader macro—instead of passing function objects. This

inconsistency is an unfortunate result of CL syntax being the product of certain

compromises to achieve backward compatibility with earlier Lisp dialects.)

This modification is enough to trigger the new behavior: what is noteworthy is that

we do not have to perform any modifications to the body of try-to-hide-mark. If either

door is unlocked, Mark is able to escape that way:

CL-USER> (let ((*front-door-locked-p* nil))

 (parents-come-back))

;; Uh oh - Kate's parents are back!

;; Escaping through the front door.

;; Whew... We're safe! For now.

NIL

CL-USER> (let ((*back-door-locked-p* nil))

 (parents-come-back))

;; Uh oh - Kate's parents are back!

;; Escaping through the back door.

;; Whew... We're safe! For now.

NIL

In case Mark needs to make an excuse:

CL-USER> (parents-come-back)

;; Uh oh - Kate's parents are back!

;; Kate cannot hide Mark!

;; Mark is thinking of an excuse...

I was checking if floor is even in all the rooms! ; text input by the user

;; Mark makes an excuse before leaving:

;; "I was checking if floor is even in all the rooms!"

;; Whew... We're safe! For now.

NIL

We can see that our restart-binding code is now fully contained within the body of

parents-come-back, and the only modifications to the dynamic environment around it are

forms that state which doors are unlocked. This has effectively simplified the control flow

of our functions: when a suitable restart is visible, invoking it inside try-to-hide-mark now

causes an unconditional transfer control back to call-with-home-restarts where a proper

restart case is executed.

Chapter 2 Introducing the condition system

93

Whether such simplification is beneficial for us depends on our exact use case: in

some cases, we may want a more intricate flow of possible actions where restart-bind

may be of more use, but in other situations—especially when we get to deal with the Lisp

debugger—we might prefer the more “get me out of here” style of restart-case.

2.5.3  �Simple restarts
There is one more operator that simplifies the syntax of restart-case even further. It

allows the binding of a single restart only, and if that restart is invoked, it returns two

values: nil as the primary value and t as the secondary one.

The name of that macro is with-simple-restart, and its syntax is even simpler than that

of restart-case.

CL-USER> (with-simple-restart (escape "Wake up from the bad dream.")

 (parents-come-back))

;; Uh oh - Kate's parents are back!

NIL

T

Inside the macro, we define the name of that restart, but also a format control, and

optional format arguments. (Why—we will explain in the next sections.) The forms

executed within the scope of with-simple-restart will have this new restart bound. In the

preceding case, the escape restart that we bind immediately transfers control outside of

parents-come-back without printing anything else to the screen, returning values nil and t.

(These return values are meaningful if the forms within with-simple-restart are

supposed to return a non-nil primary value and either return nil as the secondary

value or not to return a secondary value at all. This means that it is possible to check

the secondary value to determine whether the particular call has been restarted with

the restart bound by with-simple-restart; if that is the case, the code that invoked a with-

simple-restart-wrapped form may use that information for recovery.)

We can therefore see the parallel between ignore-errors and with-simple-restart. Both

of them establish a dynamic binding: ignore-errors binds a condition handler, with-

simple-restart—a restart. Both of these, when the object from that binding is invoked,

immediately transfer control outside of their form, returning nil as the first value and

a meaningful non-nil secondary value: a condition object for ignore-errors and t for

Chapter 2 Introducing the condition system

94

with-simple-restart. (It is impossible to return a restart object as a secondary value, since

restart objects always have dynamic extent; to repeat the definition, it is not valid to

return them outside the dynamic scope in which they were bound.)

2.5.4  �Standard restarts and restart-invoking functions
Before we explain the unusual syntax of with-simple-restart, let us take a small detour to

talk about the standard restarts which portable Common Lisp programs may expect to

use. There are five such restarts: abort, continue, use-value, store-value, and muffle-warning,

and these are always meant to perform non-local transfers of control.

The first restart, abort, should always be bound by the Lisp system. Its role is to

terminate the current computation and transfer control to a known location in the

program where it may be possible to specify another command for the Lisp system. In

case of interactive usage, such as communicating with Lisp via the read-eval-print loop,

the abort restart should make it possible to input another command into the REPL; in

case of programmatic or batch usage, such a restart is allowed to terminate the Lisp

system altogether and return control to the operating system.

The restart continue is meant to allow the computation to proceed. It is up to the

restart function of an individual continue restart to define what “proceeding” means in

its particular context; it might mean simply continuing the standard control flow from

some defined point in the program, but it might also mean interactively querying the

programmer for some data before execution is continued.

The restarts use-value and store-value are usually bound when some block of code

decides that a piece of Lisp data that was passed to it may be, for whatever reason,

unfit for processing; for instance, they may be bound by a Lisp function that accepts

only strings, in order to protect against a case when someone passes it, for example, an

integer. Invoking such a restart then means that the original datum (meaning a single

piece of data) that the function was invoked with is discarded, and another datum is

supplied in its stead to continue program execution. The difference between the two is

that use-value only utilizes the value once and then discards it, whereas store-value also

stores the value in some proper place of the Lisp system, so it will also be used again

in the future. (The precise place where the datum is stored in the second case is, again,

defined by the piece of code that binds the store-value restart.)

Chapter 2 Introducing the condition system

95

The restart muffle-warning is established by the warn function; they will both be

discussed in detail in the next section.

The programmer is free to bind these standard restarts on their own. This allows the

programmer to implement these restarts in their own way that makes sense for a given

program; as long as they are bound to the standard symbols listed earlier, the standard

restart-invoking functions will be able to find these restarts and invoke them.

2.5.5  �Defining custom restart-invoking functions
Each of the aforementioned restarts has an associated standard function which invokes

that restart. The functions abort, continue, and muffle-warning each invoke the same-

named restart without requiring any arguments, whereas use-value and store-value must

be given one mandatory argument. (For completeness, all of these functions accept

an optional argument, which must be a condition object. The reason for that will be

explained in later chapters, since it is the same reason that compute-restarts and find-

restart also accept condition objects as optional arguments.)

In addition, the functions abort and muffle-warning are unique, as they explicitly

expect their respective restarts to be bound. Otherwise, they signal a control-error.

Invoking continue, use-value, and store-value is safe, however; these functions do nothing

if they cannot find a restart named after them.

It is actually a Lisp idiom to define functions named after individual restarts. These

functions invoke their same-named restarts with any arguments they might need.

Let us utilize that knowledge to refactor further the one function that was

untouched by our earlier transition from handler-bind to handler-case: try-to-hide-mark. Its

implementation looked like this:

(defun try-to-hide-mark ()

 (cond ((find-restart 'escape)

 (invoke-restart 'escape))

 (t

 (format t ";; Kate cannot hide Mark!~%")

 (when (find-restart 'excuse)

 (invoke-restart-interactively 'excuse)))))

We can see that there is a pair of restarts which are invokable within its body. We

shall define a pair of restart-invoking functions for restarts escape and excuse. The former

is a non-interactive restart; for the latter, we will specify an option of invoking that restart

Chapter 2 Introducing the condition system

96

interactively. If an excuse is provided, it will be used to invoke the restart function;

otherwise, the user will be queried for the excuse.

(defun escape (&optional condition)

 (let ((restart (find-restart 'escape condition)))

 (when restart (invoke-restart restart))))

(defun excuse (&optional excuse-text condition)

 (if excuse-text

 (invoke-restart 'excuse excuse-text)

 (invoke-restart-interactively 'excuse)))

(These functions accept the optional condition argument and pass it over

to find-restart; again, explanation of this phenomenon will become available later in the

book.)

We can see that these two functions follow the logic of our program. The restart

escape is not always available, for example, when both doors are locked; therefore, it

makes sense for its restart-invoking function first to check whether such a restart is

available. The restart-invoking function for excuse, though, assumes that it is always

possible for Mark to make an excuse; it therefore assumes that an excuse restart is always

bound.

Now that these functions are available, we can rewrite try-to-hide-mark to use them.

(defun try-to-hide-mark ()

 (escape)

 (format t ";; Kate cannot hide Mark!~%")

 (excuse))

We see that the control flow logic of try-to-hide-mark has disappeared altogether,

having been offloaded onto the restart system. A keen eye may notice that our restarts

have been established via restart-case; therefore, we can depend on the fact that they will

always perform a non-local transfer of control. That is why simply calling (escape) will

either unwind the stack to the matching escape handler or simply return if no such restart

is available. Once that happens, debug information is printed, and (excuse) is called to

ultimately save Mark and Kate from the doom of becoming mainframe programmers for

the rest of their lives.

We have not utilized the optional excuse-text argument to the function excuse in the

given scenario; however, it is worthwhile to keep that option inside the function body,

since it may be utilized in other situations. For instance, Kate may notice that a particular

Chapter 2 Introducing the condition system

97

set of excuses—for example, talking about C++—works particularly well on her father. To

model that behavior, the only required modification will be changing try-to-hide-mark to

call the excuse function explicitly with a suitable, C++-mentioning excuse text.

This mechanism is a part of a whole other part of the condition system which we

have not yet touched: reporting condition objects and restarts. We will do that now.

2.6  �Reporting conditions and restarts
One thing that we have not explained in the previous chapter is the fact that

with-simple-restart requires us to pass a format control string and allows us to pass in

optional format arguments. This ties in with the fact that, so far, we have been discussing

conditions and restarts in a non-interactive context. The conditions we have signaled

and the restarts we have invoked were all handled programmatically. Even in such a fully

automated environment, though, it might be worthwhile to have observability into what

is happening inside the program.

One common use of condition handlers is to insert logging into programs which

is triggered by signaled conditions. In addition, such logging might be a part of the

functioning of restarts; the program logs may want to include information about which

restart is being invoked and in which context.

CL provides functionality that dovetails well with these goals. Both condition objects

and restarts have the ability to be reported—which means the process of extracting

human-readable information about the details of a given condition or restart. This

chapter shall elaborate on the details of programming this process.

2.6.1  �Printing vs. reporting
If we were to attempt to print a condition object or a restart object, it is most likely

that we would get an unreadable object, which is printed by print-unreadable-object.

It would likely look similar to # <CONDITION 012345ABCDEF> or #<RESTART FOO 012345FEDCBA>.

(This behavior is not mandated by the Common Lisp standard, but is nonetheless

exhibited by all Common Lisp implementations the author is aware of.) This syntax is

called “unreadable” since it is impossible to read these objects back into Lisp by using

the standard read function; the Lisp reader signals an error every time it encounters the

character #< at the beginning of the read object.

Chapter 2 Introducing the condition system

98

The way to force a condition or a restart to be reported is by setting the global

variable *print-escape*. This is a system variable which is initially set to true, and that

is what causes the condition and restart objects to be printed in the unreadable way.

Binding it to nil and then printing causes the object’s report function to be invoked

instead, and the data output by that function to the reporting stream then becomes the

report of that condition.

(The variable *print-escape* is implicitly bound by some of the printing functions

and some of the format directives. It is implicitly bound to true by, for example, the

function prin1 and the format directive ~S; it is implicitly bound to false by, for example,

the function princ and the format directive ~A. Functions write, write-string, and write-to-

string and the format directive ~W do not bind that variable themselves; they simply use

its value from the dynamic environment in which they are executed.)

For conditions and restarts with no specified report function, the reported data

is implementation-dependent. Therefore, not only to provide proper content to be

reported but also to ensure overall consistency across all conditions and restarts which

may be reported in our program, it is important to specify the report functions in all

define-condition, restart-bind, and restart-case macros which we write.

This fact also means that the code examples from the earlier chapters are not suited

for situations where the condition or restart objects might have been reported. No such

situation occurred in the preceding examples; however, from now on, our code will

contain proper report functions for all defined conditions and bound restarts.

2.6.2  �Custom condition reports
Condition objects are printed in their unreadable form if the dynamic variable *print-

escape* is bound to t. However, when that same variable is bound to nil, printing a restart

objects causes its report function to be invoked. That report function accepts a pair of

arguments: the condition object itself and the reporting stream that the report should

be written to. This means that the report function is capable of querying the condition

object for all the information that is needed for generating a proper report; it is good

style for condition reporting functions to be self-contained, which means not to depend

on any Lisp data other than the condition object itself.

Let us come back to the earlier example of Tom and his phonebook. We will not

focus on the calling algorithm this time; we will instead spend our time on the condition

objects themselves, in particular: on ensuring that they are reported properly.

Chapter 2 Introducing the condition system

99

The three conditions we have defined in that example are:

(define-condition before-call ()

 ((%person :reader person :initarg :person)))

(define-condition after-call ()

 ((%person :reader person :initarg :person)))

(define-condition grave-mistake (error)

 ((%reason :reader reason :initarg :reason)))

We see that the earlier two are similar, since both of them refer to a person who is

about to be called or whom was just called. We will return to the third one in a moment;

for now, we will utilize the condition inheritance that is possible in CL to refactor the first

two conditions slightly.

(define-condition person-condition ()

 ((%person :reader person :initarg :person)))

(define-condition before-call (person-condition) ())

(define-condition after-call (person-condition) ())

We have extracted the common slot into a single condition type named person-

condition and caused before-call and after-call to inherit from it. This allows us to reduce

code duplication slightly, since the report functions for both before-call and after-call

can now call the function person on the condition object in order to be able to fetch the

person who was, respectively, about to be called or actually called.

Let us write report functions for these two conditions.

(define-condition before-call (person-condition) ()

 (:report (lambda (condition stream)

 (format stream "We are about to call ~A." (person condition)))))

(define-condition after-call (person-condition) ()

 (:report (lambda (condition stream)

 �(format stream "We have just called ~A." (person condition)))))

This ensures that the conditions we have created are reported correctly.

CL-USER> (let ((*print-escape* nil))

 (write-to-string (make-condition 'before-call :person :mom)))

"We are about to call MOM."

Chapter 2 Introducing the condition system

100

CL-USER> (let ((*print-escape* nil))

 (write-to-string (make-condition 'after-call :person :mom)))

"We have just called MOM."

As we come back to the condition grave-mistake, let us focus for a moment on the

:report option. These three means of defining are all valid (even though the first one does

not utilize the reason slot in our condition):

(define-condition grave-mistake (error)

 ((%reason :reader reason :initarg :reason))

 (:report "We are committing a grave mistake."))

(define-condition grave-mistake (error)

 ((%reason :reader reason :initarg :reason))

 (:report (lambda (condition stream)

 (format stream "We are committing a grave mistake: ~A."

 (reason condition)))))

(defun report-grave-mistake (condition stream)

 (format stream "We are committing a grave mistake: ~A."

 (reason condition)))

(define-condition grave-mistake (error)

 ((%reason :reader reason :initarg :reason))

 (:report report-grave-mistake))

In the first case, the report for the given condition is a static string. (Even though the

report does not utilize the reason slot in any way, this slot is still accessible to handlers;

this is why removing it altogether is not a valid move.) The second case passes a lambda

form as the option value, and the third one passes the name of a function.

From these examples, we are able to induce that the :report option has multiple ways

of specifying the actual report contents. The first example shows that it accepts a string,

which then becomes the condition report as is. This string is written to the reporting

stream as if by write-string. The second example shows that it can accept an anonymous

function which can then explicitly output a string to the reporting stream. And in the

third example, the condition supplies :report with the symbol report-grave-mistake—

which is the name of a function bound elsewhere. (The actual function may be bound

globally, as via defun, or locally, as via flet or labels.)

Chapter 2 Introducing the condition system

101

2.6.3  �Custom restart reports
For restarts, the situation is similar to that which we have encountered for conditions.

Restart objects are printed in their unreadable form if the dynamic variable *print-

escape* is bound to t. However, when *print-escape* is bound to nil, printing a restart

object causes its report function to be invoked. However, since restarts are objects of

dynamic extent that are not usually utilized directly, report functions suitable for use in

restarts only accept one argument: the stream to which they are expected to output their

information.

Let us consider a simplified version of the earlier example with Kate and Mark. For

brevity, we will completely ignore the restart functions (which will be empty) and test

functions (which will be defaulted). We will only focus on the parts of code that are

relevant to reporting the restarts in question and completely neuter all logic related to

actually handling the situations Kate and Mark are finding themselves in. (Poor Mark.)

The simplified code from the earlier example is:

(defvar *toplevel-restarts* '())

(defun compute-relevant-restarts (&optional condition)

 (set-difference (compute-restarts condition) *toplevel-restarts*))

(defvar *excuses*

 '("Kate did not divide her program into sections properly!"

 "I was borrowing Kate's books on mainframe programming!"

 "I had COBOL-related homework and hoped Kate could help me!"))

(defun call-with-home-restarts (thunk)

 (let ((*toplevel-restarts* (compute-restarts))

 (excuse (elt *excuses* (random (length *excuses*)))))

 �(flet ((report-excuse (stream) (format stream "Make an excuse, ~S." excuse)))

 (restart-case (funcall thunk)

 (escape ()

 :report "Escape through the back door.")

 (escape ()

 :report (lambda (stream)

 (write-string "Escape through the front door." stream)))

 (excuse ()

 :report report-excuse)))))

Chapter 2 Introducing the condition system

102

The first two forms are still relevant to us, since we only want to concern ourselves

with restarts that we bind ourselves.

The third form is a collection of excuses that Mark is allowed to make; in the

interest of simplicity, once again we will allow Mark to choose only from these three

excuses. In addition, one can see that the excuse is now randomly chosen inside the

body of call-with-home-restarts. One reason for that is to simplify our code, but the

other is the fact that the excuse is now used inside the local function report-excuse.

Instead of starting with a full explanation of the preceding code, we will instead

begin with a more hands-on example.

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*print-escape* nil))

 (format t ";; Available restarts:~%;;~%~{;; ~W~%~}"

 (compute-relevant-restarts)))))

;; Available restarts:

;;

;; Make an excuse, "I had COBOL-related homework and hoped Kate could help me!".

;; Escape through the front door.

;; Escape through the back door.

NIL

The anonymous function we call here first binds the dynamic variable *print-escape*

to nil, causing the report function of the restart objects to be invoked. This is how we are

able to print human-readable reports for each individual restart that is returned from

compute-relevant-restarts.

Let us take a closer look at the restart-case form from earlier.

(...

 (restart-case (funcall thunk)

 (escape ()

 :report "Escape through the back door.")

 (escape ()

 :report (lambda (stream)

 (write-string "Escape through the front door." stream)))

 (excuse ()

 :report report-excuse)))

Chapter 2 Introducing the condition system

103

We can see that the :report option for each restart case accepts three different

kinds of arguments, just like in define-condition. This “do-what-I-mean”-style

richness is not shared by restart-bind, however. The two differences in how

restart-bind treats restart reports are, first, the difference in keyword used for report

functions (restart-case uses :report, whereas restart-bind uses :report-function) and,

second, that restart-bind explicitly requires function objects to be passed as their

arguments. (This means that, contrary to restart-case, it is not possible to pass function

names there; this inconsistency is yet another compromise made by the CL standard

committee.)

If we wanted to replicate the preceding functionality via restart-bind instead of

restart-case (while still ignoring all actual restarting behavior), then we could implement

call-with-home-restarts in the following way:

(defun call-with-home-restarts (thunk)

 (let ((*toplevel-restarts* (compute-restarts))

 (excuse (elt *excuses* (random (length *excuses*)))))

 �(flet ((report-excuse (stream) (format stream "Make an excuse, ~S." excuse)))

 (restart-bind

 ((escape (lambda ())

 :report-function

 (lambda (stream)

 (write-string "Escape through the back door." stream)))

 (escape (lambda ())

 :report-function

 (lambda (stream)

 (write-string "Escape through the front door." stream)))

 (excuse (lambda ())

 :report-function #'report-excuse))

 (funcall thunk)))))

We can evaluate the same form as before to confirm that this behavior is consistent

with the previous example.

CL-USER> (call-with-home-restarts

 (lambda ()

 (let ((*print-escape* nil))

 (format t ";; Available restarts:~%;;~%~{;; ~W~%~}"

 (compute-relevant-restarts)))))

Chapter 2 Introducing the condition system

104

;; Available restarts:

;;

;; Make an excuse, "I was borrowing Kate's books on mainframe programming!".

;; Escape through the front door.

;; Escape through the back door.

NIL

One more notable detail is that the local function report-excuse accesses the excuse

variable from earlier in its scope in order to print its value in the report. Also note that,

every time the excuse restart is established inside call-with-home-restarts, the excuse for

the restart will be chosen randomly from the three available ones; this excuse will be

used both for reporting the restart and for letting Mark use it on Kate’s parents. (Note

also that, if we somehow invoke the same excuse restart multiple times, the excuse given

will remain the same between the distinct invocations.)

Creating closures is the way to work around the fact that report functions for restarts,

unlike those for conditions, accept no user-programmable objects which could be

queried for more information about the report. (Restarts, unlike conditions, cannot be

subclassed or otherwise extended by the user.)

2.7  �Warnings
Now that we know how to report conditions properly, we can describe one more

standard CL operator that makes use of that information. The function warn is one

more means of signaling a condition, in addition to the functions signal and error. If

the signaled condition is not handled, signal simply returns nil and error invokes the

debugger; warn instead reports the condition to the stream that is the value of *error-

output* before returning nil. Additionally, it must be used to signal conditions of type

warning, which is a subtype of condition.

One more fact that we have yet to talk about is that the data accepted by all these

functions—signal, warn, and error—are versatile. Each function may accept either a

condition object itself, a set of arguments suitable for make-condition, or a format string

and arguments that are then used to construct a condition of type simple-warning.

Chapter 2 Introducing the condition system

105

2.7.1  �Different ways of warning
We will draw on the preceding knowledge to demonstrate warn. However, for such

a demonstration, we will need to define a warning condition. Let us derive from our

previous grave-mistake condition, defining a condition that is not an error, but a warning.

(defun report-grave-warning (condition stream)

 (format stream "We are committing a grave warning: ~A."

 (reason condition)))

(define-condition grave-warning (warning)

 ((%reason :reader reason :initarg :reason))

 (:report report-grave-warning))

Now, let’s attempt to warn this condition in two cases: without handling it and while

handling it to return its report instead.

CL-USER> (warn 'grave-warning :reason :about-to-call-your-ex)

;; WARNING: We are committing a grave warning: ABOUT-TO-CALL-YOUR-EX.

NIL

CL-USER> (handler-case (warn 'grave-warning :reason :about-to-call-your-ex)

 (warning (condition)

 (let ((*print-escape* nil))

 (write-to-string condition))))

"We are committing a grave warning: ABOUT-TO-CALL-YOUR-EX."

The same can be achieved if we instead use make-condition explicitly:

CL-USER> (warn (make-condition 'grave-warning :reason :about-to-call-your-ex))

;; WARNING: We are committing a grave warning: ABOUT-TO-CALL-YOUR-EX.

NIL

CL-USER> (handler-case (warn (make-condition 'grave-warning :reason :about-to-call-your-ex))

 (warning (condition)

 (let ((*print-escape* nil))

 (write-to-string condition))))

"We are committing a grave warning: ABOUT-TO-CALL-YOUR-EX."

Finally, if we do not care about signaling a particular warning type (and are therefore

fine with simple-warning that warn will implicitly create for us), we may pass a format

control (with optional format arguments) to warn.

Chapter 2 Introducing the condition system

106

CL-USER> (warn "Example warning with no arguments.")

;; WARNING: Example warning with no arguments.

NIL

CL-USER> (handler-case (warn "Example warning with no arguments.")

 (warning (condition)

 (let ((*print-escape* nil))

 (write-to-string condition))))

"Example warning with no arguments."

NIL

CL-USER> (warn "Example warning with argument ~S." 42)

;; WARNING: Example warning with argument 42.

NIL

CL-USER> (handler-case (warn "Example warning with argument ~S." 42)

 (warning (condition)

 (let ((*print-escape* nil))

 (list (write-to-string condition) (type-of condition)))))

("Example warning with argument 42." SIMPLE-WARNING)

2.7.2  �Muffling warnings
Additionally, there is a particular restart, and its matching restart-invoking function,

which is of particular interest when considering the function warn. The name of that

restart is muffle-warning, and it is established inside warn in a way that makes it visible in

the dynamic scope of the signaled condition. Invoking the muffle-warning restart informs

the Lisp system that the warning has been accounted for in some way and that execution

of the program may continue without any other actions, for example, reporting the

warning to *error-output*. We can observe this behavior on the following example:

CL-USER> (warn "Example warning with argument ~S." 42)

;; WARNING: Example warning with argument 42.

NIL

CL-USER> (handler-bind ((warning #'muffle-warning))

 (warn "Example warning with argument ~S." 42))

NIL

Chapter 2 Introducing the condition system

107

2.8  �Assertions
Now that we have covered the topic of restarts, we can touch one more topic that

utilizes both condition handling and restarts. CL includes certain operators which act

as assertions: unless some condition is met, they signal errors, which—unless they are

handled—force entry into the debugger. Some of these assertions bind restarts around

the error sites, which allows execution to proceed if those restarts are invoked and—in

case of assert and check-type—if some additional conditions are met.

2.8.1  �Simple assertions via ASSERT
The macro assert, in its simplest form, checks whether its test form evaluates to true (i.e.,

non-NIL) or not. If it does, it returns nil; if it doesn’t, it signals an error.

CL-USER> (handler-case (assert (= (+ 2 2) 4)))

NIL

CL-USER> (handler-case (assert (= (+ 2 2) 5))

 (error () :HANDLED))

:HANDLED

However, assert also establishes a continue restart that allows the programmer to retry

the assertion. This ability is most useful in interactive programming environments where

the programmer may, for example, redefine a failing function while still in the debugger

and then invoke the restart. However, it can also be used, for example, to retry some

process in a brute-force manner.

CL-USER> (handler-bind ((error (lambda (condition)

 (declare (ignore condition))

 (format t ";; Retrying...~%")

 (continue))))

 (assert (= (random 10) 0)))

;; Retrying...

;; Retrying...

;; Retrying...

;; Retrying...

;; Retrying... ; the number of retries

;; Retrying... ; will vary randomly

;; Retrying...

Chapter 2 Introducing the condition system

108

;; Retrying...

;; Retrying...

;; Retrying...

NIL

The optional arguments to assert allow the programmer to alter the functionalities of

the restart further: if they pass a non-empty collection of Lisp places to the macro, then

the continue restart will prompt the programmer with the option to populate these places

with new, interactively provided values.

CL-USER> (handler-bind ((error #'continue))

 (let ((x nil))

 (assert x (x))))

;; The old value of X is NIL.

;; Do you want to supply a new value? (y or n) y ; user input here

;; Type a form to be evaluated: t ; user input here

NIL

The further optional arguments consist of a datum and arguments that should be

passed to the error call that reports the error. This means that we can pass a symbol

naming the condition type and initialization arguments for the constructed condition;

we can also provide a format control and format arguments that should be passed along

to the condition reporter.

CL-USER> (handler-case (assert (= (+ 2 2) 5) ()

 'type-error :datum 5 :expected-type '(eql 4))

 (error (condition)

 (let ((*print-escape* nil))

 (format t ";; ~W~%" condition))))

;; The value 5 is not of type (EQL 4).

NIL

CL-USER> (handler-case (assert (= (+ 2 2) 5) ()

 �"The numbers ~D and ~D do not sum up to ~D." 2 2 5)

 (error (condition)

 (let ((*print-escape* nil))

 (format t ";; ~W~%" condition))))

;; The numbers 2 and 2 do not sum up to 5.

NIL

Chapter 2 Introducing the condition system

109

2.8.2  �Type checking via CHECK-TYPE
The macro check-type functions similarly to assert; however, it requires specifying exactly

one place and a type form. A check is then made to see whether the value in that place is

of the provided type; if not, a type-error is signaled.

CL-USER> (let ((x 42))

 (check-type x integer))

NIL

CL-USER> (let ((x "42"))

 (handler-case (check-type x integer)

 (type-error () :oops)))

:OOPS

This macro binds a store-value restart around the error site; invoking that restart

causes the user to be prompted for a new value of that place, after which the type check

is repeated.

It is noteworthy that, while assert binds a continue restart, check-type binds a store-

value restart; this distinction is important. check-type always works on a single place,

whereas assert can work on an arbitrary number of places.

CL-USER> (let ((x "42"))

 (handler-bind ((type-error (lambda (condition)

 (declare (ignore condition))

 (store-value 42))))

 (check-type x integer)

 x))

42

The only optional argument to check-type is a string that describes, in human-

readable form, the type that is to be checked; this argument is used during the

construction of the condition report for the signaled error.

CL-USER> (let ((x 24))

 �(handler-case (check-type x (eql 42) "the ultimate answer to everything")

 (type-error (condition)

 (let ((*print-escape* nil))

 (format t ";; ~W~%" condition)))))

;; The value of X is 24, which is not the ultimate answer to everything.

NIL

Chapter 2 Introducing the condition system

110

2.8.3  �Case assertions
The macros ecase and etypecase are variants of case and typecase. The latter two return nil

when no case matches the provided test key; the former two instead signal a type-error.

CL-USER> (let ((x 24))

 (handler-case (ecase x

 (42 :integer)

 (:forty-two :keyword)

 ("42" :string))

 (type-error (condition)

 (let ((*print-escape* nil))

 (format t ";; ~W" condition)))))

;; 24 fell through ECASE expression. Wanted one of (42 :FORTY-TWO "42").

NIL

ecase ensures that the test key is of type (member key-1 key-2 key-3 ...), where key-n are

all the keys provided to ecase in case forms.

CL-USER> (let ((x nil))

 (handler-case (etypecase x

 (integer :integer)

 (keyword :keyword)

 (string :string))

 (type-error (condition)

 (let ((*print-escape* nil))

 (format t ";; ~W" condition)))))

;; NIL fell through ETYPECASE expression. Wanted one of (INTEGER KEYWORD STRING).

NIL

etypecase ensures that the test key is of type (or type-1 type-2 type-3 ...), where type-n

are all the types provided to etypecase in typecase forms.

2.8.4  �Correctable case assertions
The macros ccase and ctypecase are variants of ecase and etypecase. They function in the same

way as their e* counterparts, except that they also establish a store-value restart around the

type-error that they signal. This means that it is possible to continue program execution

even after the error is signaled by invoking the store-value restart with the proper argument.

The ccase or ctypecase is then retried with the newly stored value.

Chapter 2 Introducing the condition system

111

CL-USER> (let ((x nil))

 (handler-bind ((type-error (lambda (condition)

 (declare (ignore condition))

 (store-value 42))))

 (ctypecase x

 (integer :integer)

 (keyword :keyword)

 (string :string))))

:INTEGER

CL-USER> (let ((x nil))

 (handler-bind ((type-error (lambda (condition)

 (declare (ignore condition))

 (store-value :forty-two))))

 (ccase x

 (42 :integer)

 (:forty-two :keyword)

 ("42" :string))))

:KEYWORD

In Lisp jargon, the behavior of ccase and ctypecase is called signaling a correctable

error. It is implemented by the function cerror, which is, likewise, a variant of error. The

function cerror takes one more required argument: a format control, which is used by the

report function of the established restart.

2.8.5  �Arguments for continuable errors
An interesting feature of cerror is that the optional arguments passed to the function are

used both for constructing the condition object and as format arguments for the passed

format string. Let us analyze the following form:

(cerror "Continue after signaling a SIMPLE-ERROR ~

 with arguments: ~S ~S ~S ~S."

 'simple-error

 :format-control "A simple error signaled with ~A."

 :format-arguments '(42))

Executing this form will cause the system to signal a simple-error; we expect the

report of that condition object to be A simple error signaled with 42.. In addition, we

expect a new restart to be bound around the error site; the restart will have a longer

Chapter 2 Introducing the condition system

112

report form, reading Continue after signaling a SIMPLE-ERROR with arguments: and then

listing all the optional arguments that cerror was called with.

We can verify our assumptions by handling the signaled simple-error and printing

out information about the condition object and the most recently established restart.

This is one of the situations where handler-bind is required over handler-case; if we had

used the latter, we would have managed successfully to inspect the condition object, but

the continue restart bound by cerror would have been disestablished already by the time

control reached the handler case.

CL-USER> (block nil

 (flet ((print-reports (condition)

 (let ((*print-escape* nil))

 �(format t ";; Condition report: ~W~%;; Restart report: ~W~%"

 condition (first (compute-restarts)))

 (return))))

 (handler-bind ((simple-error #'print-reports))

 (cerror "Continue after signaling a SIMPLE-ERROR ~

 with arguments:~%;; ~S ~S ~S ~S"

 'simple-error

 :format-control "A simple error signaled with ~A."

 :format-arguments '(42)))))

;; Condition report: A simple error signaled with 42.

;; Restart report: Continue after signaling a SIMPLE-ERROR with arguments:

;; :FORMAT-CONTROL "A simple error signaled with ~A." :FORMAT-ARGUMENTS (42)

NIL

2.9  �A simple debugger
So far in the book, we have avoided talking in detail about the debugger. Moreover,

we have completely avoided invoking it. However, in the end, there is no escaping the

fact that automated error handling is never going to be good enough to take care of

all erroneous situations. Sometimes, the only recourse that a program may have is to

put itself into the hands of the programmer. The debugger is the utility via which Lisp

achieves that goal.

Chapter 2 Introducing the condition system

113

2.9.1  �Reporting the condition in the debugger
To follow the general spirit of our book, we begin not by describing the Lisp debugger,

but by introducing the system-defined variable *debugger-hook*. This variable’s full

description will come later. For now, let us define a very simple debugger function that

produces some output and then handles all conditions by invoking the abort restart.

(defun debugger (condition hook)

 (declare (ignore hook))

 (let ((*print-escape* nil))

 (format t ";; Aborting: ~W~%" condition))

 (abort condition))

We will, for the time being, ignore the second argument passed to that function. Let us

rebind *debugger-hook* and explicitly call invoke-debugger for the first time in this book:

CL-USER> (let ((*debugger-hook* #'debugger)

 (condition (make-condition 'simple-error

 �:format-control "We are in trouble.")))

 (invoke-debugger condition))

;; Aborting: We are in trouble.

;;

;; ABORT restart invoked; returning to top level.

We can see that the code inside our debugger function was evaluated and that the

abort restart established by the Lisp system was invoked. (The message printed to the

screen by that second part, if any, is implementation-dependent.) This has effectively

brought us back to the read-eval-print loop, allowing us to specify the next command to

be evaluated.

We can simplify the preceding example by using the fact that the function error calls

invoke-debugger internally if the condition signaled by it is not handled.

CL-USER> (let ((*debugger-hook* #'debugger))

 (error "We are in trouble."))

;; Aborting: We are in trouble.

;;

;; ABORT restart invoked; returning to top level.

Chapter 2 Introducing the condition system

114

By performing this exercise, we have demonstrated the functioning of the *debugger-

hook* variable. The function invoke-debugger first checks whether that variable is bound;

if yes, then the debugger hook function is called with the condition passed to invoke-

debugger. If the debugger hook function returns, for any reason, then the system-provided

debugger is ultimately invoked to handle the condition.

One more step done by invoke-debugger is to bind the variable *debugger-hook* to nil.

This is to ensure that, if an unexpected error is signaled inside the debugger hook, the

debugger that is invoked recursively is the debugger provided by the Lisp system; this

allows system-provided recovery from errors in the user-provided debugger. The value of

debugger-hook is passed as the second argument to the debugger hook function, which,

in our case, is the hook variable which we have ignored.

In other words, by defining one function and by binding one variable, we have

defined our own custom Lisp debugger. This debugger is a very primitive one, however;

it provides absolutely no interaction with the programmer and tells them little to nothing

about what exactly happened. It also utilizes only one restart strategy, which is invoking

the abort restart; the programmer has no chance to attempt to utilize a different one.

2.9.2  �Reporting the condition type in the debugger
Let’s breathe a bit more life into our debugger function. First of all, let us print both the

condition report and the condition type before invoking the abort restart:

(defun debugger (condition hook)

 (declare (ignore hook))

 (let ((*print-escape* nil))

 (format t ";;~%;; Debugger entered on ~S:~%" (type-of condition))

 (format t ";; ~W~%" condition))

 (abort condition))

The preceding example adds another piece of information to our program: now we

know the condition type of the signaled condition.

CL-USER> (let ((*debugger-hook* #'debugger))

 (invoke-debugger (make-condition 'simple-error

 �:format-control "We are in trouble.")))

;;

;; Debugger entered on SIMPLE-ERROR:

Chapter 2 Introducing the condition system

115

;; We are in trouble.

;;

;; ABORT restart invoked; returning to top level.

2.9.3  �Reporting the restarts in the debugger
Let us now list the restarts available to the user.

(defun debugger (condition hook)

 (declare (ignore hook))

 (let ((*print-escape* nil))

 (format t ";;~%;; Debugger entered on ~S:~%" (type-of condition))

 (format t ";; ~W~%" condition)

 (let ((restarts (compute-restarts condition)))

 (format t ";;~%;; Available restarts:~%")

 (dolist (restart restarts)

 (format t ";; [~W] ~W~%" (restart-name restart) restart))))

 (abort condition))

This version gives the programmer even more information about the available

restarting options.

CL-USER> (let ((*debugger-hook* #'debugger))

 (invoke-debugger (make-condition 'simple-error

 �:format-control "We are in trouble.")))

;;

;; Debugger entered on SIMPLE-ERROR:

;; We are in trouble.

;;

;; Available restarts:

;; [RETRY] Retry evaluating the form.

;; [ABORT] Return to the top level.

;;

;; ABORT restart invoked; returning to top level.

(The preceding restarts are established by the Lisp system and therefore

implementation-dependent; they are allowed to look different on different

implementations.)

Chapter 2 Introducing the condition system

116

2.9.4  �Choosing the restarts in the debugger
Now that the restart options are listed, we should allow the programmer some simple

way to choose from among them. We will assign numbers to the restarts and define a

function that reads input from the user until it manages to read a valid restart number; at

that point, our debugger will invoke the corresponding restart.

(defun read-valid-restart-number (number-of-restarts)

 (loop (format t ";;~%;; Invoke restart number: ")

 (let* ((line (read-line *query-io*))

 (integer (parse-integer line :junk-allowed t)))

 (when (and integer (< -1 integer number-of-restarts))

 (return integer)))))

(defun debugger (condition hook)

 (let ((*print-escape* nil))

 (format t ";;~%;; Debugger entered on ~S:~%" (type-of condition))

 (format t ";; ~W~%" condition)

 (let ((restarts (compute-restarts condition)))

 (format t ";;~%;; Available restarts:~%")

 (loop for i from 0

 for restart in restarts do

 (format t ";; ~D [~W] ~W~%" i (restart-name restart) restart))

 (let ((chosen-restart (read-valid-restart-number (length restarts)))

 (*debugger-hook* hook))

 (invoke-restart-interactively (nth chosen-restart restarts)))

 (debugger condition hook))))

This setup allows the programmer the most basic amount of interactivity, allowing

them to choose which restart should be invoked. (We also rebind the *debugger-hook*

variable; in case the restart function signals an error, this binding will cause our

debugger function to be invoked recursively instead of escalating to the system-provided

debugger.)

One more change we add in the preceding example is to call the debugger

recursively at the very end of the code. This is required in case a restart returns normally

instead of performing a non-local transfer of control; if a restart returns normally, we

must assume that the condition was not handled and that the programmer should still

remain in the debugger.

Chapter 2 Introducing the condition system

117

CL-USER> (let ((*debugger-hook* #'debugger))

 (invoke-debugger (make-condition 'simple-error

 �:format-control "We are in trouble.")))

;;

;; Debugger entered on SIMPLE-ERROR:

;; We are in trouble.

;;

;; Available restarts:

;; 0 [RETRY] Retry evaluating the form.

;; 1 [ABORT] Return to the top level.

;;

;; Invoke restart number: 0 ; user input here

;;

;; Debugger entered on SIMPLE-ERROR:

;; We are in trouble.

;;

;; Available restarts:

;; 0 [RETRY] Retry evaluating the form.

;; 1 [ABORT] Return to the top level.

;;

;; Invoke restart number: 3 ; user input here

;;

;; Invoke restart number: forty-two ; user input here

;;

;; Invoke restart number: ; empty line provided

;;

;; Invoke restart number: 1 ; user input here

;;

;; ABORT restart invoked; returning to top level.

We can see that this simple input loop is robust enough to survive the programmer

attempting to break it; the only available options which allow the programmer to leave

this debugger are 0 (which immediately casts the programmer back inside, because

evaluating that form again immediately invokes the debugger once more) and 1 (which

aborts evaluation and brings the programmer back to the read-eval-print loop).

Chapter 2 Introducing the condition system

118

2.9.5  �Installing a custom debugger
We have already come far in our debugger journey—and yet, there is a technique

possible in standard CL that will defeat our current approach. Our preceding debugger

depends on the Lisp system calling it when the debugger is invoked by means of the

variable *debugger-hook*. This dependence means that if some code binds this variable

differently—for example, to another debugger function or to nil in order to invoke the

system debugger directly—then we will not be able to handle that error via our custom

debugger function at all.

There is even worse news: there is a standard CL function which does exactly that

kind of binding. The function is named break, and it is utilized to insert temporary

breakpoints into a program for debugging purposes. This function internally binds

debugger-hook to nil just before calling invoke-debugger. This means not only that no

handlers are allowed to fire (because no condition is being signaled), but also that our

custom debugger function has no chance of being executed!

This conundrum means that we need to seek a stronger solution than the *debugger-

hook*. Such a solution, however, is not defined by the ANSI CL standard; it is up to each

CL implementation to define some means of replacing the standard Lisp debugger in a

way that makes it possible to capture break.

To address this issue, the author of this book has created a portability library named

trivial-custom-debugger, available on GitHub at the time of this writing. If the reader is

a Quicklisp user, it should be possible to load this library via (ql:quickload :trivial-

custom-debugger); otherwise, it should be enough to (load "trivial-custom-debugger.lisp")

contained within that repository.

We can then attempt to use the with-debugger macro from that package to tame the

uncivilized beast that is break, by using our custom debugger function which we previously

passed to *debugger-hook*:

CL-USER> (trivial-custom-debugger:with-debugger (#'debugger)

 (break "Breaking with ~D." 42))

;;

;; Debugger entered on SIMPLE-CONDITION:

;; Breaking with 42.

;;

;; Available restarts:

;; 0 [CONTINUE] Return from BREAK.

;; 1 [RETRY] Retry evaluating the form.

Chapter 2 Introducing the condition system

https://github.com/phoe/trivial-custom-debugger
https://quicklisp.org/

119

;; 2 [ABORT] Return to the top level.

;;

;; Invoke restart number: 0 ; user input here

NIL

We can observe that the function break establishes a single continue restart, which is

the conventional way to quit the debugger from inside a breakpoint. (It is not possible

to customize the report of that restart, unless we were to perform the exercise of re-

implementing break from scratch; an example implementation of break, along with the

whole condition system, is available in the last chapters of this book.)

The function break is also useful in one case which we have yet to mention: in some

cases, it can be invoked directly by the function signal (and its derivatives, such as warn,

error, or cerror). Namely, signal is equipped with the capability to enter the debugger

directly for some condition types before they are actually signaled; this allows the

programmer quickly and at once to generate break calls for a whole group of conditions.

This behavior is driven by a standard variable named *break-on-signals*. Its initial

value is nil, which matches no condition types; however, when we set it to an actual

condition type, all signal calls which signal a condition matching that condition type will

first break with that condition instead.

CL-USER> (trivial-custom-debugger:with-debugger (#'debugger)

 (let ((*break-on-signals* 'error))

 (handler-case (signal 'simple-error :format-control "Error: ~D."

 :format-arguments '(42))

 (error (condition)

 (format t ";; Handling a ~W.~%" (type-of condition))))))

;;

;; Debugger entered on SIMPLE-CONDITION:

;; Error: 42.

;; (BREAK was entered because of *BREAK-ON-SIGNALS*.)

;;

;; Available restarts:

;; 0 [CONTINUE] Return from BREAK.

;; 1 [RESET] Set *BREAK-ON-SIGNALS* to NIL and continue.

;; 2 [REASSIGN] Return from BREAK and assign a new value to *BREAK-ON-SIGNALS*.

;; 3 [RETRY] Retry evaluating the form.

;; 4 [ABORT] Return to the top level.

;;

Chapter 2 Introducing the condition system

120

;; Invoke restart number: 0 ; user input here

;; Handling a SIMPLE-ERROR.

NIL

From the preceding example we see that with *break-on-signals* bound, merely

signaling a condition is enough to enter the debugger directly by means of a break. Only

after the continue restart is invoked are the condition handlers for that condition allowed

to execute.

We can also see that our Lisp implementation has gone ahead and established

additional, non-standard restarts around the *break-on-signals*-invoked break call: in this

case, they are named reset and reassign. We will not go in detail into them and instead

leave their presence as an example of permitted implementation-defined behavior.

Implementing them is left as an exercise for the reader.

2.9.6  �Recursive debugger
It might be desirable to equip the debugger function with even more functionalities. For

instance, the current version of our debugger is not particularly well-equipped to deal

with recursive errors, which may happen, for example, when one of the restarts chosen

by the programmer enters the debugger again as a part of the restart function, without

first routing control out of the previous instance of the debugger.

One of the ways our current debugger falls short is that it does not provide the

programmer with any information regarding how many recursive invocations of the

debugger have happened so far. We will implement a solution to this issue by creating

a new dynamic variable that stores the current debugger level. We will then rebind this

variable on every successive debugger invocation.

In addition, our debugger function has grown large, especially with I/O-specific

code. Let us try to decompose that function, abstracting specific parts of it into new

functions.

(defvar *debugger-level* 0)

(defun print-banner (condition)

 (format t ";;~%;; Debugger level ~D entered on ~S:~%"

 debugger-level (type-of condition))

 (format t ";; ~W~%" condition))

Chapter 2 Introducing the condition system

121

(defun print-restarts (restarts)

 (format t ";;~%;; Available restarts:~%")

 (loop for i from 0

 for restart in restarts do

 (format t ";; ~D [~W] ~W~%" i (restart-name restart) restart)))

(defun read-valid-restart-number (number-of-restarts)

 (loop (format t ";;~%;; Invoke restart number: ")

 (let* ((line (read-line *query-io*))

 (integer (parse-integer line :junk-allowed t)))

 (when (and integer (< -1 integer number-of-restarts))

 (return integer)))))

(defun debugger (condition hook)

 (let ((*print-escape* nil)

 (*debugger-level* (1+ *debugger-level*)))

 (print-banner condition)

 (let ((restarts (compute-restarts condition)))

 (print-restarts restarts)

 (let ((chosen-restart (read-valid-restart-number (length restarts)))

 (*debugger-hook* hook))

 (invoke-restart-interactively (nth chosen-restart restarts)))

 (debugger condition hook))))

Now we have indeed factored the code and introduced a new dynamic variable,

debugger-level; we rebind this variable inside debugger and print it inside print-banner.

Let’s try it out with check-type:

CL-USER> (trivial-custom-debugger:with-debugger (#'debugger)

 (let ((x 42))

 (check-type x string)

 x))

;;

;; Debugger level 1 entered on SIMPLE-TYPE-ERROR:

;; The value of X is 42, which is not of type STRING.

;;

;; Available restarts:

;; 0 [STORE-VALUE] Supply a new value for X.

;; 1 [RETRY] Retry evaluating the form.

;; 2 [ABORT] Return to the top level.

;;

Chapter 2 Introducing the condition system

122

;; Invoke restart number: 0 ; user input here

;;

;; Enter a form to be evaluated: ; user input here

(let ((maybe-result "some string"))

 (cerror "Continue." "About to supply ~S." maybe-result)

 maybe-result)

;;

;; Debugger level 2 entered on SIMPLE-ERROR:

;; About to supply "some string".

;;

;; Available restarts:

;; 0 [CONTINUE] Continue.

;; 1 [RETRY] Retry evaluating the form.

;; 2 [ABORT] Return to the top level.

;;

;; Invoke restart number: 0 ; user input here

"some string"

This is already better—the programmer can now see the debugger level inside the

banner printed by the debugger, just above the condition. However, the programmer

still does not have an easy way of routing control from the nested debugger back up to a

shallower level of nesting.

We can fix this issue by wrapping the invoke-restart-interactively form in the

debugger function inside a with-simple-restart form. This form will provide a non-local-

exit-performing abort restart, which will allow the programmer to return to a less deeply

nested level of the debugger.

(defun debugger (condition hook)

 (let ((*print-escape* nil)

 (*debugger-level* (1+ *debugger-level*)))

 (print-banner condition)

 (let ((restarts (compute-restarts condition)))

 (print-restarts restarts)

 (let ((chosen-restart (read-valid-restart-number (length restarts)))

 (*debugger-hook* hook)

 (current-debugger-level *debugger-level*))

Chapter 2 Introducing the condition system

123

 (with-simple-restart

 �(abort "Return to level ~D of the debugger." current-debugger-level)

 (invoke-restart-interactively (nth chosen-restart restarts))))

 (debugger condition hook))))

(The new lexical variable, current-debugger-level, is required in order to remember

the debugger level at the moment of establishing the restart. If we instead were to supply

debugger-level directly as a format argument, it would have been rebound with a new

value by the time this restart were reported.)

We can now verify that the new restart is available and works as intended:

CL-USER> (trivial-custom-debugger:with-debugger (#'debugger)

 (let ((x 42))

 (check-type x string)

 x))

;;

;; Debugger level 1 entered on SIMPLE-TYPE-ERROR:

;; The value of X is 42, which is not of type STRING.

;;

;; Available restarts:

;; 0 [STORE-VALUE] Supply a new value for X.

;; 1 [RETRY] Retry evaluating the form.

;; 2 [ABORT] Return to the top level.

;;

;; Invoke restart number: 0 ; user input here

;;

;; Enter a form to be evaluated: ; user input here

(let ((maybe-result "some string"))

 (cerror "Continue." "About to supply ~S." maybe-result)

 maybe-result)

;;

;; Debugger level 2 entered on SIMPLE-ERROR:

;; About to supply "some string".

;;

;; Available restarts:

;; 0 [CONTINUE] Continue.

;; 1 [ABORT] Return to level 1 of the debugger.

;; 2 [RETRY] Retry evaluating the form.

;; 3 [ABORT] Return to the top level.

;;

Chapter 2 Introducing the condition system

124

;; Invoke restart number: 1 ; user input here

;;

;; Debugger level 1 entered on SIMPLE-TYPE-ERROR:

;; The value of X is 42, which is not of type STRING.

;;

;; Available restarts:

;; 0 [STORE-VALUE] Supply a new value for X.

;; 1 [RETRY] Retry evaluating the form.

;; 2 [ABORT] Return to the top level.

;;

;; Invoke restart number: 2 ; user input here

;;

;; ABORT restart invoked; returning to top level.

We see that the programmer has left the level 2 debugger via the newly established

abort restart, which has once again invoked the level 1 debugger with its condition. This

approach will continue to work in cases with more debugger nesting. For instance, a

programmer from a level 5 debugger will have restarts that make it possible to drop to

any debugger from levels 1 to 4.

2.9.7  �Adding a REPL to the debugger
Another noteworthy idea is to allow the programmer to evaluate arbitrary Lisp code

instead of merely picking a restart. The moment that the programmer has a read-eval-

print loop available inside the debugger is the moment that they not only can compute,

find, and invoke restarts but also can inspect and modify their Lisp environment in order

better to deal with the erroneous situation. For these reasons, debuggers used in real-life

situations typically include such evaluation functionality.

At the same time as adding this extra flexibility, we would still like to retain the

convenience of selecting a restart by simply typing its number. One way to achieve this

convenience is to modify the standard behavior of a Lisp read-eval-print loop slightly, by

introducing one more stage between its read and eval steps. If the programmer enters an

integer, we will attempt to match it against our list of restarts; otherwise, we will evaluate

the read form normally.

This will require us to modify read-valid-restart-number to handle a wider variety of

user input. At this juncture, we note that this function will not be expected just to read a

number anymore: it will be used to query the programmer for general Lisp expressions.

Chapter 2 Introducing the condition system

125

We can still keep the restart-number-checking logic in that function, though, while we

keep evaluating arbitrary Lisp forms until the user inputs a number that matches an

available restart.

(makunbound 'read-valid-restart-number)

(defun read-debug-expression (number-of-restarts)

 (format t ";; Enter a restart number to be invoked~%")

 (format t ";; or an expression to be evaluated.~%")

 (loop (format t "Debug> ")

 (let* ((form (read)))

 (if (and (integerp form) (< -1 form number-of-restarts))

 (return form)

 (print (eval form))))))

(defmacro with-abort-restart (&body body)

 (let ((level (gensym)))

 `(let ((,level *debugger-level*))

 (with-simple-restart (abort "Return to level ~D of the debugger." ,level)

 ,@body))))

(defun debugger (condition hook)

 (let ((*print-escape* nil)

 (*debugger-level* (1+ *debugger-level*)))

 (print-banner condition)

 (let ((restarts (compute-restarts condition)))

 (print-restarts restarts)

 (let* ((*debugger-hook* hook)

 (chosen-restart

 (with-abort-restart (read-debug-expression (length restarts)))))

 (when chosen-restart

 (with-abort-restart

 (invoke-restart-interactively (nth chosen-restart restarts)))))

 (let ((*debugger-level* (1- *debugger-level*)))

 (debugger condition hook)))))

We have additionally introduced a macro named with-abort-restart, which establishes

an abort restart around the function read-debug-expression (which contains our debug

REPL) and around the restart invocation. Both of these places are now allowed to signal

arbitrary errors and therefore invoke the debugger recursively; therefore, we will want a

Chapter 2 Introducing the condition system

126

way to reduce the debugger level from both of these places. Additionally, now that with-

abort-restart is allowed to return nil, we have wrapped the restart invocation within an

additional when to check for cases where we immediately want to drop into the debugger

again instead. We also bind *debugger-level* to its previous value before calling the

debugger again. (In case the syntax of the preceding with-abort-restart macro and other

upcoming macros in this book are not clear to the reader, a short macro writing (and

reading) tutorial is provided as an appendix to this book.)

Now we can utilize this REPL to change the state of the program without leaving the

debugger. This ability, in turn, will allow us, for example, to continue from a simple assert

form, from which we would not previously have been able to continue normally.

CL-USER> (defvar *x* 24)

X

CL-USER> (trivial-custom-debugger:with-debugger (#'debugger)

 (assert (= *x* 42)))

;;

;; Debugger level 1 entered on SIMPLE-ERROR:

;; The assertion (= *X* 42) failed.

;;

;; Available restarts:

;; 0 [CONTINUE] Retry assertion.

;; 1 [RETRY] Retry evaluating the form.

;; 2 [ABORT] Return to the top level.

;;

;; Enter a restart number to be invoked

;; or an expression to be evaluated.

Debug> (setf *x* 42) ; user input here

42

Debug> 0 ; user input here

NIL

CL-USER>

Chapter 2 Introducing the condition system

127

2.9.8  �Backtraces
One more utility frequently provided by a debugger is a backtrace. A backtrace is a

list of all functions that were on the stack at the moment of entering the debugger;

programmers frequently utilize these as debugging aids. A backtrace often contains the

names of functions that were previously called, their arguments, and sometimes the

values of local variables within these functions.

The CL standard does not contain any standardized functions related to accessing

backtraces at any point in program execution; it is therefore up to every implementation

to implement such functionality and optionally to provide it for programmers. The

library Dissect is a portability library, which means that it is similar to trivial-custom-

debugger that we have mentioned earlier; but while trivial-custom-debugger provides the

ability to modify the system debugger portably, Dissect provides a portable means of

retrieving and analyzing detailed stack information such as function names, arguments,

or source locations for individual forms on the backtrace.

If we use Quicklisp, then, after issuing (ql:quickload :dissect), we can begin utilizing

the Dissect functionality. For instance, we can ask Dissect to “present” everything that it

knows about our environment, in the form of a backtrace. A fragment of example output

of (dissect:present t) may look like this:

CL-USER> (dissect:present t)

#<ENVIRONMENT {10059B6B83}>

 [Environment of thread #<THREAD "new-repl-thread" RUNNING {100237A133}>]

Available restarts:

 0: [RETRY] Retry evaluating the form.

 1: [ABORT] Return to the top level.

Backtrace:

 13: (DISSECT:PRESENT T T)

 14: (SI:SIMPLE-EVAL (DISSECT:PRESENT T) #<NULL-LEXENV>)

 15: (EVAL (DISSECT:PRESENT T))

 16: (REPL-EVAL-FROM-STRING "(dissect:present t)")

 ...

Extending our hand-written debugger with a Dissect-provided backtrace (returned

via calling (dissect:with-capped-stack () (dissect:stack))) is left as an exercise for the

reader.

Chapter 2 Introducing the condition system

https://shinmera.github.io/dissect/

128

2.9.9  �Associating conditions with restarts
The interactive REPL within our debugger allows the programmer to execute arbitrary

code: among other consequences, this capability means that the programmer is now

allowed to commit arbitrary programming mistakes—mistakes such as common typos.

CL-USER> (setf *x* 42)

42

CL-USER> (trivial-custom-debugger:with-debugger (#'debugger)

 (check-type *x* string))

;;

;; Debugger level 1 entered on SIMPLE-TYPE-ERROR:

;; The value of *X* is 42, which is not of type STRING.

;;

;; Available restarts:

;; 0 [STORE-VALUE] Supply a new value for *X*.

;; 1 [RETRY] Retry evaluating the form.

;; 2 [ABORT] Return to the top level.

;;

;; Enter a restart number to be invoked

;; or an expression to be evaluated.

Debug> (setg *x* "forty-two") ; user input here

;;

;; Debugger level 2 entered on UNDEFINED-FUNCTION:

;; The function COMMON-LISP-USER::SETG is undefined.

;;

;; Available restarts:

;; 0 [CONTINUE] Retry using SETG.

;; 1 [USE-VALUE] Use specified function

;; 2 [ABORT] Return to level 1 of the debugger.

;; 3 [RETRY] Retry evaluating the form.

;; 4 [ABORT] Return to the top level.

;;

;; Enter a restart number to be invoked

;; or an expression to be evaluated.

Debug>

Chapter 2 Introducing the condition system

129

Even though everything seems normal in the level 2 debugger which was invoked, a

particularly keen eye might notice a unique restart-related behavior. Before continuing

with the next paragraph, the reader may want to pause for a moment and focus on the

list of restarts available in the level 2 debugger and ask themselves: hasn’t something

gone missing in between these two debug levels?

(*jazz music plays*)

That “something” is the store-value restart which was available inside the level 1

debugger and is now not visible anymore since we have entered the level 2 debugger—

even though we are clearly still in the dynamic scope in which that restart was

established, due to the level 1 debugger (in which the store-value restart was visible) still

being active when the level 2 debugger was invoked. At the same time, we can be sure

that the store-value restart has no :test-function specified and therefore should always be

visible regardless of the state of the dynamic environment.

Therefore, we may observe a particular behavior that is related to the condition with

which the debugger is invoked. When we invoked the level 1 debugger with the original

type-error coming from check-type, the store-value restart was indeed accessible. However,

when we entered the debugger one more time, with the undefined-function error coming

from the user attempting to call the undefined function setg, the store-value restart had

disappeared!

This behavior is actually defined in CL. It is the reason why we have been passing

around that optional condition argument in all of our restart-based functions, most

notably, compute-restarts and find-restart. For user convenience, we will add one more

modification to our debugger, making the condition object accessible to us via a newly

created *debugger-condition* dynamic variable:

(defvar *debugger-condition* nil)

(defun debugger (condition hook)

 (let ((*print-escape* nil)

 (*debugger-condition* condition)

 (*debugger-level* (1+ *debugger-level*)))

 (print-banner condition)

 (let ((restarts (compute-restarts condition)))

 (print-restarts restarts)

 (let* ((*debugger-hook* hook)

 (chosen-restart

 (with-abort-restart (read-debug-expression (length restarts)))))

Chapter 2 Introducing the condition system

130

 (when chosen-restart

 (with-abort-restart

 (invoke-restart-interactively (nth chosen-restart restarts)))))

 (let ((*debugger-level* (1- *debugger-level*)))

 (debugger condition hook)))))

This modification will allow us to see the difference that we get when calling compute-

restarts with and without the condition argument passed to it.

CL-USER> (trivial-custom-debugger:with-debugger (#'debugger)

 (check-type *x* string))

;;

;; Debugger level 1 entered on SIMPLE-TYPE-ERROR:

;; The value of *X* is 42, which is not of type STRING.

;;

;; Available restarts:

;; 0 [STORE-VALUE] Supply a new value for *X*.

;; 1 [RETRY] Retry evaluating the form.

;; 2 [ABORT] Return to the top level.

;;

;; Enter a restart number to be invoked

;; or an expression to be evaluated.

Debug> (setg *x* "forty-two") ; user input here

;;

;; Debugger level 2 entered on UNDEFINED-FUNCTION:

;; The function COMMON-LISP-USER::SETG is undefined.

;;

;; Available restarts:

;; 0 [CONTINUE] Retry using SETG.

;; 1 [USE-VALUE] Use specified function

;; 2 [ABORT] Return to level 1 of the debugger.

;; 3 [RETRY] Retry evaluating the form.

;; 4 [ABORT] Return to the top level.

;;

;; Enter a restart number to be invoked

;; or an expression to be evaluated.

Debug> *debugger-condition*

#<UNDEFINED-FUNCTION SETG {100D2AF073}>

Chapter 2 Introducing the condition system

131

Debug> (let ((*print-escape* nil))

 (format t "~&~{;; ~W~%~}" (compute-restarts)))

;; Return to level 2 of the debugger.

;; Retry using SETG.

;; Use specified function

;; Return to level 1 of the debugger.

;; Supply a new value for *X*.

;; Retry evaluating the form.

;; Return to the top level.

NIL

Debug> (let ((*print-escape* nil))

 (format t "~&~{;; ~W~%~}" (compute-restarts *debugger-condition*)))

;; Return to level 2 of the debugger.

;; Retry using SETG.

;; Use specified function

;; Return to level 1 of the debugger.

;; Retry evaluating the form.

;; Return to the top level.

NIL

Let us differentiate these two lists of restarts via set-difference to find restarts which

appear in the first list but don’t in the other:

Debug> (let ((*print-escape* nil))

 (format t "~&~{;; ~W~%~}"

 (set-difference

 (compute-restarts *debugger-condition*)

 (compute-restarts))))

;; Supply a new value for *X*.

NIL

We can see that calling compute-restarts without passing it the undefined-function

condition object has caused one more restart to appear—the missing store-value restart,

with a report “Supply a new value for *X*.”, which was bound by the store-value form which

we originally evaluated. From this observation, we may induce that there must be some

sort of relationship between condition objects and restart objects that is checked by

compute-restarts and find-restart, among other functions. This relationship in CL is named

condition-restart association.

Chapter 2 Introducing the condition system

132

In the preceding example, first we were dealing with a type-error coming from

check-type, but then the object of our focus changed: we started to deal with an undefined-

function coming from our typo while trying to type setf. This is the reason for the

existence of condition-restart association, which works by hiding the restarts which are

not associated with the currently handled condition.

In this particular situation, the store-value restart was associated with the type-error;

when the debugger is invoked on undefined-function, this restart stops being relevant to

the currently handled condition and is therefore hidden from the programmer’s view to

let them see only restarts which are either explicitly associated with the new undefined-

function error or not associated with any condition in particular.

This association is always established by with-simple-restart and, sometimes, by

handler-case. (Detailed explanation: restart-case is required to detect when the form that

it directly invokes is a signal, warn, error, or cerror call or a form which macroexpands into

such a call. In such a case, the condition signaled by that form becomes associated with

all restarts bound by that particular handler-case.)

The programmer is also allowed to associate conditions with restarts manually

when they decide that the association automatically performed by with-simple-restart

and handler-case is not suited to their needs. The operator in question is named with-

condition-restarts. To demonstrate it, we will revive one variable and one function which

we defined in the restart-related chapters.

(defvar *toplevel-restarts* '())

(defun compute-relevant-restarts (&optional condition)

 (set-difference (compute-restarts condition) *toplevel-restarts*))

A synthetic example for the association behavior can be seen here:

CL-USER> (let ((*toplevel-restarts* (compute-restarts))

 (condition-1 (make-instance 'condition))

 (condition-2 (make-instance 'condition)))

 (restart-bind ((restart-1 (lambda ()))

 (restart-2 (lambda ())))

 �(with-condition-restarts condition-1 (list (find-restart 'restart-1))

 �(with-condition-restarts condition-2 (list (find-restart 'restart-2))

 (format t ";; All restarts:~%")

 (format t ";; ~S~%" (mapcar #'restart-name

 (compute-relevant-restarts)))

Chapter 2 Introducing the condition system

133

 (format t ";; Restarts applicable for condition-1:~%")

 (format t ";; ~S~%" (mapcar #'restart-name

 �(compute-relevant-restarts condition-1)))

 (format t ";; Restarts applicable for condition-2:~%")

 (format t ";; ~S~%" (mapcar #'restart-name

 �(compute-relevant-restarts condition-2)))))))

;; All restarts:

;; RESTART-2 RESTART-1

;; Restarts applicable for condition-1:

;; (RESTART-1)

;; Restarts applicable for condition-2:

;; (RESTART-2)

NIL

We first create two distinct condition objects, then bind two distinct restarts, and

then associate the restart objects with the conditions. This association is then reflected

when we list all restarts, or list restarts associated with the first condition, or list those

with the second condition.

(It is noteworthy that, while many other Lisp forms operate on condition types and

restart names as monikers for the actual objects, with-condition-restarts operates on the

actual condition/restart instances themselves. The association does not happen between

condition types or restart names—it happens between individual condition and restart

object instances. This distinction exists because association based on condition types or

restart names would be too general—for example, if we were to make several typos in a

row and end up recursively invoking the debugger with several undefined-function errors

in a row, then with type-based associations they would all end up with the same list of

restarts, which likely is not our intention.)

Chapter 2 Introducing the condition system

135
© Michał “phoe” Herda 2020
M. “phoe” Herda, The Common Lisp Condition System, https://doi.org/10.1007/978-1-4842-6134-7_3

CHAPTER 3

Implementing
the Common Lisp
condition system
(I kind of wish I could title this chapter “A simple Common Lisp condition

system“—unfortunately, the matters that we touch in this chapters are not as simple

anymore as I had first envisioned.)

So far in this book, we have built the handler and restart subsystems of standard CL,

constructing the basics of these from scratch. Equipped with this knowledge, we can

now proceed into the ultimate chapters of this book, in which we describe an example

implementation of a full, standard-compliant condition system for CL.

The condition system defined in this book is adapted from Portable Condition

System (henceforth referred to as PCS), which, in turn, was adapted from the original

condition system written for the first versions of CL by Kent M. Pitman. The “portable”

in its name refers to the fact that it is defined without using the CL-provided versions of

any operators that it defines itself, and therefore its code is suitable for implementing,

for example, condition systems in CL implementations which themselves do not have

a condition system. It also means that it enjoys complete independence from any

native condition system that the host may have—allowing for easier introspection and

debugging.

PCS purports to comply with the ANSI CL standard and, at the time of writing, passes

the applicable tests from the ANSI-TEST test suite related to the condition system and

assertion operators. (If any issues are found and fixed in PCS code, then this book shall

be amended and/or errata shall be published to take that into account.)

For brevity, we will omit the less interesting and more repetitive parts of the full code,

such as package definition and the list of definitions for the standard condition types.

https://doi.org/10.1007/978-1-4842-6134-7_3#DOI
https://github.com/phoe/portable-condition-system
https://github.com/phoe/portable-condition-system
http://www.nhplace.com/kent/CL/Revision-18.lisp
http://www.nhplace.com/kent/CL/Revision-18.lisp
https://gitlab.common-lisp.net/ansi-test/ansi-test

136

Readers interested in these parts of the code may see them in the full repository linked

earlier or fetch and install it themselves, for local inspection and interaction, by issuing

(ql:quickload :portable-condition-system) on a Quicklisp-enabled Lisp REPL.

If the reader would like instead to follow this book, evaluating forms incrementally

as they are listed herein, it will be enough for them to load the file package.lisp from the

aforementioned PCS repository, in order to establish the requisite package structure.

Then, they can do (in-package :portable-condition-system) to make current a suitable

package in which to evaluate our code.

One more issue that will become visible in this part of the book is that we will take

greater care to use proper input/output streams when reading input and communicating

to the user. Previously, all of our format calls were using the t value for the stream,

meaning that they printed to the standard output; likewise for our read calls and standard

input.

That pattern was a big simplification of the CL stream structure which we are now

going to fix: from now on, depending on the particular situation, we will be deliberate

in choosing the stream with which we want to interact. In some cases, we will interact

with *debug-io*, which is a stream meant for interactive debugging; in other cases,

we will print to *error-output*, an output stream meant for logging error and warning

information; in yet other cases, we will interact with *query-io*, which is a stream

responsible for interactively querying the user for data.

Such care is required in order to comply with the ANSI CL standard and to ensure that

our condition system will work with CL implementations which rebind these variables,

for example, routing error streams to a different file/window than standard output or

presenting query windows to the user when input is requested from *query-io*.

3.1  �Package definition
The package for our condition system is allowed to use all CL exported symbols, except

for symbols related to the condition system. To achieve this setup, we need to define

a list of all these condition system–related symbols, shadow them in our package, and

export them to allow other people to use them. The shadowing is needed to ensure that

our package uses its own versions of these symbols rather than importing them from

Chapter 3 Implementing the Common Lisp condition system

137

the host’s common-lisp package; exporting them is needed in order to ensure that the

people using our condition system will be able to use our package’s functionality without

needing to prepend our package name to symbols in the code.

Our package will be named portable-condition-system. Here is the complete list of

all symbols shadowed and exported by it, grouped by their role within the condition

system:

•	 Creating conditions: define-condition, make-condition

•	 Standard condition types and their readers: condition, warning, serious-

condition, error, style-warning, simple-condition, simple-warning, simple-

error, simple-condition-format-control, simple-condition-format-arguments,

storage-condition, type-error, type-error-datum, type-error-expected-type,

simple-type-error, control-error, program-error, cell-error, cell-error-

name, unbound-variable, undefined-function, unbound-slot, unbound-slot-

instance, stream-error, stream-error-stream, end-of-file, parse-error,

reader-error, package-error, package-error-package, arithmetic-error,

arithmetic-error-operands, arithmetic-error-operation, division-by-zero,

floating-point-invalid-operation, floating-point-inexact, floating-point-

overflow, floating-point-underflow, file-error, file-error-pathname, print-

not-readable, print-not-readable-object

•	 Handling conditions: *break-on-signals*, signal, warn, cerror, error,

cerror, handler-case, handler-bind, ignore-errors

•	 Assertions: assert, check-type, etypecase, ctypecase, ecase, ccase

•	 Binding and accessing restarts: restart, restart-name, find-restart,

compute-restarts, invoke-restart, invoke-restart-interactively, with-

condition-restarts, restart-case, restart-bind, with-simple-restart, abort,

continue, muffle-warning, store-value, use-value

•	 Interfacing with the debugger: *debugger-hook*, break, invoke-debugger

In addition, we will prepare a package named common-lisp+portable-condition-system,

which imports and reexports all the symbols from common-lisp except for symbols from

the preceding list, which will be imported and reexported from portable-condition-system.

This package will be useful for people who want to start using PCS in their programs

right away.

Chapter 3 Implementing the Common Lisp condition system

138

(For brevity, this book will also nickname this package pcs; this nickname is not

present in the package definitions present in the repository.)

3.2  �Conditions
In the previous chapters, we used a CL macro named defstruct to define a structure for

our choice objects. This tool was good enough for the job at the time, given that choices

(just like restart objects) are very static in CL: they have a limited, strictly defined set of

functionalities that cannot be extended in any way. Contrary to restarts, however, condition

types can be defined with a wide variety of options: they may exhibit multiple inheritance

by being subtypes of multiple distinct condition types; their slots may have multiple reader,

writer, and/or accessor functions; their slots can be class-allocated or instance-allocated;

they may have a default initialization argument list; and so on and so forth.

All that richness exists because CL condition types defined via define-condition

are very closely related to classes defined by Common Lisp Object System’s defclass.

The only practical difference between define-condition and defclass is the presence of

an additional :report option in define-condition, used to define a report function for

condition objects. This allows define-condition to be implemented elegantly via defclass,

which is exactly the way many CL implementations do it. (As for impractical differences,

the ANSI specification for define-condition contradicts itself on the details of how this

macro should work on matters like slot inheritance; CL implementers generally agree

that define-condition should work like defclass.)

(Teaching the details of classes, defclass, or the Common Lisp Object System in

general is not in scope of this book; the readers who would like to learn more about

these topics can consult Practical Common Lisp by Peter Seibel or Object-Oriented

Programming in Common Lisp: A Programmer's Guide to CLOS by Sonya Keene.)

3.2.1  �Base class for conditions
First of all, let us define the root of our condition tree: the condition class, along with a

pair of methods that describe the printing and reporting mechanism.

(defclass condition () ())

(defmethod print-object ((object condition) stream)

 (format stream "Condition ~S was signaled." (type-of object)))

Chapter 3 Implementing the Common Lisp condition system

139

(defmethod print-object :around ((object condition) stream)

 (if *print-escape*

 (print-unreadable-object (object stream :type t :identity t))

 (call-next-method)))

We define a pair of methods on print-object, which is the generalized object printer

that is invoked every time prin1, print, princ, or format is used to print Lisp objects.

The first method specializes on all objects of class condition which we define in

the defclass form; it means that, whenever print-object is called with an object of class

condition, it is possible that this method will be invoked. Note that it is possible, but not

guaranteed—that uncertainty is because the second method we define, while it also

specializes on the condition class, is in addition an :around method. The consequence of

using an :around method in this context is that it will be called before any method that

is not an :around method and therefore will take precedence over the first method we

define.

This second method defines a “wrapper” over condition reporting. In particular,

we want to ensure that the condition is reported (by means of call-next-method) only

when the special variable *print-escape* is false. If that variable is true, then we want to

print the condition object in an unreadable way—which is implemented by the print-

unreadable-object macro.

We can immediately test this behavior in our REPL:

PCS> (defvar *condition* (make-instance 'condition))

CONDITION

PCS> (let ((*print-escape* t))

 (format nil "~W" *condition*))

"#<CONDITION {100F8112B3}>"

PCS> (let ((*print-escape* nil))

 (format nil "~W" *condition*))

"Condition CONDITION was signaled."

One issue here is the fact that make-instance is not the standard-defined way to create

condition objects—make-condition is. However, since the syntax used in both operators is

identical, we can define our make-condition in terms of make-instance.

(defun make-condition (type &rest args)

 (apply #'make-instance type args))

Chapter 3 Implementing the Common Lisp condition system

140

We may immediately test it:

PCS> (make-condition 'condition)

#<CONDITION {1010744EB3}>

3.2.2  �Defining new condition types
We can now create individual condition objects. The next step is to be able to define new

condition types, which requires us to define a new macro, define-condition. In particular,

if we have the following define-condition form:

(define-condition foo-condition (condition)

 ((foo-slot :reader foo-condition-slot :initarg :slot)))

then we would like it to expand into the equivalent of the following form:

(defclass foo-condition (condition)

 ((foo-slot :reader foo-condition-slot :initarg :slot)))

Based on this case, the expansion seems simple—apparently we need merely to

translate define-condition into defclass. However, there are two special cases that we need

to support inside our macro:

•	 The first is that all condition types must be supertypes of the

condition class. Therefore, if the programmer provides an empty list

of superclasses, then we must ensure that the omission is corrected

before the list is passed along to defclass.

•	 The other special case is that we need to handle the :report option,

which may not be passed directly to defclass. So we need to extract

that option and honor it by generating a print-object method

specializing on the newly created condition class.

Therefore, if we have the following code:

(defun report-foo-condition (condition stream)

 (format stream "A foo happened: ~A"

 (foo-condition-slot condition)))

(define-condition foo-condition ()

 ((foo-slot :reader foo-condition-slot :initarg :slot))

 (:report report-foo-condition))

Chapter 3 Implementing the Common Lisp condition system

141

we may expect the preceding define-condition form to expand into an equivalent of the

following code:

(progn

 (defclass foo-condition (condition)

 ((foo-slot :reader foo-condition-slot :initarg :slot)))

 (defmethod print-object ((condition foo-condition) stream)

 (funcall #'report-foo-condition condition stream))

 'foo-condition)

Note that our macro needed to expand into a progn in order to accommodate more

than one generated form. We can see that the superclass list in defclass now contains

the name of the condition class and that the :report option has been rendered into its

separate print-object method. In addition, we return the name of the condition from the

final form, as dictated by the Common Lisp standard.

For clarity, we will separate our macro into two logical parts. The first will be a

function named define-condition-make-report-method that will be used for generating the

defmethod print-object form.

(defun define-condition-make-report-method (name report-option)

 (let* ((condition (gensym "CONDITION"))

 (stream (gensym "STREAM"))

 (report (second report-option))

 (report-form (if (stringp report)

 `(write-string ,report ,stream)

 `(funcall #',report ,condition ,stream))))

 `(defmethod print-object ((,condition ,name) ,stream)

 ,report-form)))

It is not within this book’s scope to explain the art of writing Lisp macros, backquote

notation, or the use of symbols returned by gensym calls. (Readers interested in pursuing

this fascinating topic can consult On Lisp by Paul Graham and/or Let over Lambda by

Doug Hoyte.) Here, we will essentially treat macros and code-generating functions as

black boxes, only outlining important details of their internal structure and testing them

in the REPL. An appendix to this book describes the most important parts of the new

syntax; the reader may want to skim that appendix before proceeding with this chapter, if

the use of Lisp macros here proves discomforting or distracting.

Chapter 3 Implementing the Common Lisp condition system

142

The function define-condition-make-report-method accepts two arguments:

the name of the condition being defined and the whole :report option passed to

define-condition. Its output is a backquoted defmethod print-object form that defines a

corresponding reporting method on the new condition.

Inside the backquoted structure, we can see that the condition variable

(represented by the unquoted condition variable) is going to be specialized to the

unquoted name, which is the name of the condition class which we define. The body

of the defined method is going to be the value of report-form, which—as we can see

in the variable bindings—will be calculated based on the type of the report variable

which was extracted from the report option. This is consistent with the behavior of

define-condition: if the value passed to :report is a string, then it should be written to

the stream (and so a write-string form is generated). Otherwise, that value denotes a

function, which must be called with the condition and stream passed as its arguments

(embodied by the funcall form).

We can test the preceding function by giving it the same arguments that we passed

into the example (define-condition foo-condition ...) form earlier: the symbol foo and the

report option containing a function name.

PCS> (define-condition-make-report-method

 'foo '(:report report-foo-condition))

(DEFMETHOD PRINT-OBJECT ((#:CONDITION576 FOO) #:STREAM577)

 (FUNCALL #'REPORT-FOO-CONDITION #:CONDITION576 #:STREAM577))

The gensyms in the preceding form denote the variables with which the method

will be called; they are passed as is to the funcall form, which calls the function named

report-foo-condition. If we were to pass a lambda form instead, it would work as well,

since the #' syntax also accepts lambda forms. However, the situation will change if we

decide that foo-condition should have a static report instead:

PCS> (define-condition-make-report-method

 'foo '(:report "A foo happened."))

(DEFMETHOD PRINT-OBJECT ((#:CONDITION578 FOO) #:STREAM579)

 (WRITE-STRING "A foo happened." #:STREAM579))

Here we can see that the funcall form has been replaced with a write-string form,

suitable for reporting static strings passed to the :report option. This works for creating

new methods or redefining old ones; however, define-condition can also be used to

redefine a condition, meaning that the :report option can disappear from the define-

condition form. To account for this eventuality, we must also have an option for removing

Chapter 3 Implementing the Common Lisp condition system

143

the method that we define: that is implemented by our define-condition-remove-report-

method function.

(defun define-condition-remove-report-method (name)

 (let ((method (gensym "CONDITION")))

 `(let ((,method (find-method #'print-object '() '(,name t) nil)))

 (when ,method (remove-method #'print-object ,method)))))

We may test this with the name of our foo-condition to see the generated code:

PCS> (define-condition-remove-report-method 'foo-condition)

(LET ((#:CONDITION617 (FIND-METHOD #'PRINT-OBJECT 'NIL '(FOO-CONDITION T) NIL)))

 (WHEN #:CONDITION617 (REMOVE-METHOD #'PRINT-OBJECT #:CONDITION617)))

We see that we test for presence of a method defined on print-object with

no qualifiers and specialized on foo-condition. If such a method is found, we call remove-

method on it to remove it from the system.

The choice of whether we should generate a defmethod form or a remove-method form

depends on whether the :report option was passed to define-condition.

We will check for presence of that option inside the body of our next function,

expand-define-condition; we will use that function to generate the full expansion of the

define-condition macro.

(defun expand-define-condition (name supertypes direct-slots options)

 (let* ((report-option (find :report options :key #'car))

 (other-options (remove report-option options))

 (supertypes (or supertypes '(condition))))

 `(progn (defclass ,name ,supertypes ,direct-slots ,@other-options)

 ,@(if report-option

 `(,(define-condition-make-report-method name report-option))

 `(,(define-condition-remove-report-method name)))

 ',name)))

(defmacro define-condition (name (&rest supertypes) direct-slots &rest options)

 "Defines or redefines a condition type."

 (expand-define-condition name supertypes direct-slots options))

This function accepts four arguments: the condition name, a list of supertypes of that

condition, a list of direct slots, and a list of options. All four are passed from the macro,

which additionally performs proper structuring of them inside its macro lambda list.

Chapter 3 Implementing the Common Lisp condition system

144

In the first two lines of the body of expand-define-condition, we separate the :report

option, if any, from the list of all other options provided to the macro. The third line

checks whether the supertypes argument is empty and, if so, replaces it with a static list

containing only the condition symbol.

This takes care of the two edge cases we identified for our define-condition

implementation, so now we can proceed to generate the expansion itself. The expansion

contains a defclass form and a conditional for handling the print-object method. If the

report-option was found, we will want it to expand into a defmethod print-object form and,

otherwise, into a remove-method print-object form.

(We have separated the function expand-define-condition from define-condition for

slightly easier testing in the REPL. It is more common to include macro bodies directly

within defmacro forms.)

We can test expand-define-condition in the REPL now, checking for both presence and

absence of the :report option.

PCS> (expand-define-condition

 'foo-condition '()

 '((foo-slot :reader foo-condition-slot :initarg :slot))

 '((:report report-foo-condition)))

(PROGN

 (DEFCLASS FOO-CONDITION (CONDITION)

 ((FOO-SLOT :READER FOO-CONDITION-SLOT :INITARG :SLOT)))

 (DEFMETHOD PRINT-OBJECT ((#:CONDITION624 FOO-CONDITION) #:STREAM625)

 (FUNCALL #'REPORT-FOO-CONDITION #:CONDITION624 #:STREAM625))

 'FOO-CONDITION)

PCS> (expand-define-condition

 'foo-condition '()

 '((foo-slot :reader foo-condition-slot :initarg :slot))

 '())

(PROGN

 (DEFCLASS FOO-CONDITION (CONDITION)

 ((FOO-SLOT :READER FOO-CONDITION-SLOT :INITARG :SLOT)))

 �(LET ((#:CONDITION626 (FIND-METHOD #'PRINT-OBJECT 'NIL '(FOO-CONDITION T) NIL)))

 (WHEN #:CONDITION626 (REMOVE-METHOD #'PRINT-OBJECT #:CONDITION626)))

 'FOO-CONDITION)

Chapter 3 Implementing the Common Lisp condition system

145

Now that we have confirmed the correct workings of our code-generation functions,

we can use macroexpand-1 on sample uses of the macro, to ensure that they will expand as

expected:

PCS> (macroexpand-1

 '(define-condition foo-condition ()

 ((foo-slot :reader foo-condition-slot :initarg :slot))

 (:report report-foo-condition)))

(PROGN

 (DEFCLASS FOO-CONDITION (CONDITION)

 ((FOO-SLOT :READER FOO-CONDITION-SLOT :INITARG :SLOT)))

 (DEFMETHOD PRINT-OBJECT ((#:CONDITION627 FOO-CONDITION) #:STREAM628)

 (FUNCALL #'REPORT-FOO-CONDITION #:CONDITION627 #:STREAM628))

 'FOO-CONDITION)

T

PCS> (macroexpand-1

 '(define-condition foo-condition ()

 ((foo-slot :reader foo-condition-slot :initarg :slot))))

(PROGN

 (DEFCLASS FOO-CONDITION (CONDITION)

 ((FOO-SLOT :READER FOO-CONDITION-SLOT :INITARG :SLOT)))

 �(LET ((#:CONDITION629 (FIND-METHOD #'PRINT-OBJECT 'NIL '(FOO-CONDITION T) NIL)))

 (WHEN #:CONDITION629 (REMOVE-METHOD #'PRINT-OBJECT #:CONDITION629)))

 'FOO-CONDITION)

T

This concludes the implementation of our first macro, define-condition, which defines

new condition types. (When defclass defines a class, it also defines a matching CL type

with the same name as the class.) This operator is enough for us to define the entirety

of the Common Lisp condition type hierarchy, replete with matching condition readers

and report functions.

(For brevity, we omit the actual definition from the book; interested readers can

inspect the file condition-hierarchy.lisp inside the PCS repository. The only parts of this

file that we will include here are two non-standard condition types, which we define for

the convenience of implementing case assertions and restart functions; they shall be

defined in their respective chapters.)

Chapter 3 Implementing the Common Lisp condition system

146

3.3  �Coercing data to conditions
Before we continue implementing the outward visible parts of the condition system,

we will focus on one internal utility that will be used by signal, warn, error, cerror, and—

implicitly—restart-case. The interface to the condition system allows the user to create

condition objects in a multitude of ways: for instance, it is possible to (signal "foo"),

(signal 'condition), (signal (formatter "foo")), or (signal (make-condition 'condition)); all

of these are valid ways of signaling a condition within signal, warn, error, and cerror. To

sum up, the datum argument that is passed to one of these four functions may legally be

a string, a symbol, a function, or a condition object.

That variability in the type of the datum argument makes it useful to have a single

function that can handle parsing the arguments for all four of these cases and return

condition objects that will do their signaling properly. We will create such a function,

named coerce-to-condition, and equip it to deal with all four of these situations, as well

as with a fifth situation—one in which the user has passed a datum that is not of the

aforementioned four types.

To separate these four cases from one another and incidentally to demonstrate a bit

of Lisp syntax, we will create a new generic function—a function that, just like the print-

object function we have seen before, may specialize on its arguments.

(defgeneric coerce-to-condition (datum arguments default-type name))

This function will accept four arguments. Obviously, it needs the datum and

arguments passed to the signaling function that will be used for constructing the

condition object. In case a string is passed as datum, though, the function will need

a default simple condition type to be constructed, which will be passed as the third

argument. The fourth argument is the name of the signaling function that is calling

coerce-to-condition: its purpose is only to be displayed in error messages, if any occur.

Let us start with the seemingly simplest case: passing a condition object to the

signaling function, exemplified by (signal (make-condition 'condition)).

(defmethod coerce-to-condition ((datum condition) arguments default-type name)

 (when arguments

 (cerror "Ignore the additional arguments." 'simple-type-error

 :datum arguments

 :expected-type 'null

 �:format-control "You may not supply additional arguments when giving ~S to ~S."

 :format-arguments (list datum name)))

 datum)

Chapter 3 Implementing the Common Lisp condition system

147

We can see that the datum is returned, but not immediately; first, a check is

made that the argument list is empty (since it is illegal to, e.g., (signal (make-condition

'condition) 42)); if not, a continuable error is signaled.

(defmethod coerce-to-condition ((datum symbol) arguments default-type name)

 (apply #'make-condition datum arguments))

The second case is the actually simplest one: if we receive a condition type and a list

of arguments, we can directly call make-condition with them.

(defmethod coerce-to-condition ((datum string) arguments default-type name)

 �(make-condition default-type :format-control datum :format-arguments arguments))

(defmethod coerce-to-condition ((datum function) arguments default-type name)

 �(make-condition default-type :format-control datum :format-arguments arguments))

The third and fourth cases are identical: if a string or a function is passed as the

datum, then we instantiate a simple condition of default-type, passing the datum and

arguments as the format control and format arguments. (This is possible because format

accepts formatter functions as format controls; the reader may verify this by playing with

forms such as (format t (lambda (stream &rest args) (declare (ignore args)) (write-string

"Test!" stream))).)

(defmethod coerce-to-condition (datum arguments default-type name)

 (error 'simple-type-error :datum datum

 �:expected-type '(or condition symbol function string)

 �:format-control "~S is not coercible to a condition."

 :format-arguments (list datum)))

The fifth and final case is the saddest one; if the datum is not of any recognized type,

coerce-to-condition signals a type error of its own.

A possible issue that we will encounter here is the fact that this method refers to an

undefined function, error. This is a function that we will properly define later, since we

need coerce-to-condition for it to function properly. However, CL allows functions to be

redefined, which means that we can create a stub implementation of error now and use it

for our testing, only to replace it with a proper definition of error later in the code.

(defun error (datum &rest arguments)

 (declare (ignore arguments))

 (format *error-output* ";; Error: ~A~%" datum)

 (throw :error nil))

Chapter 3 Implementing the Common Lisp condition system

148

Our stub implementation requires a catch tag to be present in order to transfer

control, which means that testing our error situations will require wrapping the tested

form with (catch :error ...) until we define error in the proper, standard-compliant way.

This stub will work well for us until that time.

We can now test all five cases of this function in the REPL.

PCS> (coerce-to-condition (make-condition 'condition) '() 'simple-condition 'signal)

#<CONDITION {1003271693}>

PCS> (coerce-to-condition 'condition '() 'simple-condition 'signal)

#<CONDITION {1003272D63}>

PCS> (coerce-to-condition "A condition was signaled." '() 'simple-condition 'signal)

#<SIMPLE-CONDITION {1003273B23}>

PCS> (coerce-to-condition (lambda (stream) (write-string "A condition was signaled." stream))

 '() 'simple-condition 'signal)

#<SIMPLE-CONDITION {100336B663}>

PCS> (catch :error (coerce-to-condition 42 '() 'simple-condition 'signal))

;; Error: SIMPLE-TYPE-ERROR

NIL

3.4  �Restart basics
The next part of the condition system that we are going to touch is the restart subsystem.

This does not strictly follow the order in which we have discussed the condition system

in the book; however, it is necessary to touch it now for bootstrapping reasons. In order

to implement assertions like cerror or check-type, which bind restarts as a part of their

functioning, we need to implement the macros that are used to bind restarts; and to do

that, we need to implement restarts themselves.

3.4.1  �Restart class
Let us start with the restart structure, which is similar to the choice structure we defined

in the earlier chapters. (To repeat, using defstruct in place of defclass is okay, since we

will not allow the user to extend the restart structure.) We will follow it with a pair of

print-object methods, similar in functioning to the methods we defined on the condition

class.

Chapter 3 Implementing the Common Lisp condition system

149

(defstruct restart

 (name (error "NAME required."))

 (function (constantly nil))

 (report-function nil)

 (interactive-function nil)

 (test-function (constantly t))

 (associated-conditions '()))

(defmethod print-object :around ((restart restart) stream)

 (if *print-escape*

 (print-unreadable-object (restart stream :type t :identity t)

 (prin1 (restart-name restart) stream))

 (call-next-method)))

(defmethod print-object ((restart restart) stream)

 (cond ((restart-report-function restart)

 (funcall (restart-report-function restart) stream))

 ((restart-name restart)

 (format stream "Invoke restart ~A." (restart-name restart)))

 (t

 (format stream "Invoke the anonymous restart ~S." restart))))

We can see that the main reporting method for the restart is somewhat larger than

the one for condition. This is because restarts, while not extensible by the user, by default

contain more logic than conditions. A part of this logic is to accommodate the fact that

each restart has a report function that, if present, is used to report the restart. Otherwise,

if the restart has no report function but does have a name, we use that name to report the

restart; and finally, if we have a truly “incognito” restart without a report function or a

name, we also need to account for that in the report.

(A keen eye or a working compiler may also notice that we are using the error

function, which we have not yet properly defined. Do note, however, that even if error

were completely undefined, using such an undefined function is permitted by the CL

standard. This function will work later, after it is compiled, even if it will not work at this

juncture. We are nonetheless still able to create restart objects right now, as long as we

are careful always to provide a :name argument for them.)

(Additionally, the standard specifies that restart objects have dynamic extent,

meaning that accessing them outside the dynamic scope in which they are bound has

undefined consequences. For ease of testing and clarity of code, we will not apply that

trait to our implementation of restarts.)

Chapter 3 Implementing the Common Lisp condition system

150

3.4.2  �Restart visibility and computing restarts
We may now implement a test for restart visibility. First and foremost, a restart should

not be visible if its test function returns nil. If its test function returns true, then we may

begin checking the condition-restart association. For a restart to be visible, either we

must have no condition to test against, or the restart must have no conditions associated

with it, or the condition must be present among the associated conditions. The function

restart-visible-p implements exactly this logic:

(defun restart-visible-p (restart condition)

 (and (funcall (restart-test-function restart) condition)

 (or (null condition)

 (let ((associated-conditions (restart-associated-conditions restart)))

 (or (null associated-conditions)

 (member condition associated-conditions))))))

One implementation detail for the preceding function is that associated-conditions is

a slot within each restart that is modified each time the association is required to change.

The change occurs within macro with-condition-restarts, which we may now implement.

The macro will work as follows: given a condition object and a list of restart objects, it

will push the condition object to each restart’s list of associated conditions, and only then

it will execute the body. We delegate the task of disassociating them to another form that

pops the conditions off the lists; we also ensure that this popping always happens upon

leaving the body’s dynamic scope, by the use of unwind-protect.

(defun expand-with-condition-restarts (condition restarts body)

 (let ((condition-var (gensym "CONDITION"))

 (restarts-var (gensym "RESTARTS"))

 (restart (gensym "RESTART")))

 `(let ((,condition-var ,condition)

 (,restarts-var ,restarts))

 (unwind-protect

 (progn

 (dolist (,restart ,restarts-var)

 (push ,condition-var (restart-associated-conditions ,restart)))

 ,@body)

 (dolist (,restart ,restarts-var)

 (pop (restart-associated-conditions ,restart)))))))

Chapter 3 Implementing the Common Lisp condition system

151

(defmacro with-condition-restarts (condition (&rest restarts) &body body)

 (expand-with-condition-restarts condition restarts body))

This macro will, in effect, transform a form like this:

(with-condition-restarts condition (list restart-1 restart-2 ...)

 ...)

into the equivalent of a form like this:

(let ((restarts (list restart-1 restart-2 ...)))

 (unwind-protect

 (progn (dolist (restart restarts)

 (push condition (restart-associated-conditions restart)))

 ...)

 (dolist (restart restarts)

 (pop (restart-associated-conditions restart)))))

In order to test this macro, we need some means of finding restarts based on their

association with condition objects. This means that we need to implement compute-

restarts and find-restart—and, in order to implement these, we will need a dynamic

variable that shall host our restarts.

(defvar *restart-clusters* '())

(defun compute-restarts (&optional condition)

 (loop for restart in (apply #'append *restart-clusters*)

 when (restart-visible-p restart condition)

 collect restart))

(defun find-restart (name &optional condition)

 (dolist (cluster *restart-clusters*)

 (dolist (restart cluster)

 (when (and (or (eq restart name)

 (eq (restart-name restart) name))

 (restart-visible-p restart condition))

 (return-from find-restart restart)))))

(While *restart-clusters* holds restarts in clusters, restarts do not follow the same

clustering behavior as handlers. The specification is not very clear on this issue, but

within contemporary CL implementations, a restart function is allowed to call any restart

available within the dynamic environment—including its “neighbors” and the restarts

which were defined later in dynamic scope.)

Chapter 3 Implementing the Common Lisp condition system

152

We can see that compute-restarts first appends the list of all restart clusters into a flat

list of restarts and then walks this flat list, collecting into a new list all restarts which

should be visible. find-restarts works slightly differently, as it does not need to collect its

results; it walks each cluster and then checks if each restart inside that cluster is eligible

for being returned from the function.

We may now test these functions by rebinding *restart-clusters* to some meaningful

value manually. What is important for us are their names, test functions, and

associations with conditions.

Our sandbox will have the following contents:

(defvar *abort-restart-2-visible-p* t)

(defvar *test-condition-1* (make-instance 'condition))

(defvar *test-condition-2* (make-instance 'condition))

(defvar *example-clusters*

 (let ((abort-1 (make-restart :name 'abort

 :function (lambda () 'abort-1)))

 (retry (make-restart :name 'retry))

 (fail (make-restart :name 'fail

 :associated-conditions

 (list *test-condition-1*)))

 (abort-2 (make-restart :name 'abort

 :function (lambda () 'abort-2)

 :test-function

 (lambda (condition)

 (declare (ignore condition))

 abort-restart-2-visible-p))))

 (list (list abort-2 retry)

 (list fail)

 (list abort-1))))

Let us first compute all restarts and verify that they are listed in the correct order.

PCS> (let ((*restart-clusters* *example-clusters*))

 (format t "~{;; ~S~%~}" (compute-restarts)))

;; #<RESTART ABORT {1014C89C13}>

;; #<RESTART RETRY {1014C89B53}>

;; #<RESTART FAIL {1014C89BB3}>

;; #<RESTART ABORT {1014C89AF3}>

NIL

Chapter 3 Implementing the Common Lisp condition system

153

Then, we should ensure that binding the *abort-restart-2-visible-p* variable affects

the visibility of one of the abort restarts.

PCS> (let ((*restart-clusters* *example-clusters*)

 (*abort-restart-2-visible-p* nil))

 (format t "~{;; ~S~%~}" (compute-restarts)))

;; #<RESTART RETRY {101759EB53}>

;; #<RESTART FAIL {101759EBE3}>

;; #<RESTART ABORT {101759EAD3}>

NIL

Finally, let us verify that the fail restart stays visible when we look for restarts

associated with *test-condition-1*, but disappears for *test-condition-2*.

PCS> (let ((*restart-clusters* *example-clusters*))

 (format t "~{;; ~S~%~}" (compute-restarts *test-condition-1*)))

;; #<RESTART ABORT {1017184ED3}>

;; #<RESTART RETRY {1017184DE3}>

;; #<RESTART FAIL {1017184E73}>

;; #<RESTART ABORT {1017184D63}>

NIL

PCS> (let ((*restart-clusters* *example-clusters*))

 (format t "~{;; ~S~%~}" (compute-restarts *test-condition-2*)))

;; #<RESTART ABORT {1017184ED3}>

;; #<RESTART RETRY {1017184DE3}>

;; #<RESTART ABORT {1017184D63}>

NIL

3.4.3  �Invoking restarts
Now that we can find restarts, we should also be able to invoke them. Let us implement

invoke-restart and invoke-restart-interactively, starting with the first one.

(defun invoke-restart (restart &rest arguments)

 (typecase restart

 (restart (apply (restart-function restart) arguments))

 (symbol (let ((real-restart (find-restart restart)))

 (unless real-restart (error "Restart ~S is not active." restart))

 (apply #'invoke-restart real-restart arguments)))

 (t (error "Wrong thing passed to INVOKE-RESTART: ~S" restart))))

Chapter 3 Implementing the Common Lisp condition system

154

The preceding code dispatches based on the type of the restart argument passed to

it. If this argument is a restart object, then its restart function is applied to the provided

arguments; if it is a symbol, then it is treated as a restart name, and the first restart with

that name is found and invoked. In case there is no visible restart with that name or

when restart is not a restart designator, calling invoke-restart results in an error.

(defun invoke-restart-interactively (restart)

 (typecase restart

 (restart (let* ((function (restart-interactive-function restart))

 (arguments (if function (funcall function) '())))

 (apply (restart-function restart) arguments)))

 (symbol (let ((real-restart (find-restart restart)))

 (unless real-restart (error "Restart ~S is not active." restart))

 (invoke-restart-interactively real-restart)))

 (t (error "Wrong thing passed to INVOKE-RESTART-INTERACTIVELY: ~S"

 restart))))

The implementation of invoke-restart-interactively is the same in two typecase

branches out of three. The third branch is the most interesting: first, the restart is queried

for its interactive function. If it is present, it is called to retrieve the list of arguments that

will be used to apply the restart function to; otherwise, the argument list is assumed to

be the empty list. The restart function is then called.

We may now test invoking our restarts. First, let us attempt to invoke a restart non-

interactively:

PCS> (let* ((restart (make-restart :name 'add-42

 :function (lambda (x) (+ 42 x))))

 (*restart-clusters* (list (list restart))))

 (invoke-restart 'add-42 4200))

4242

Then, let us add a trivial interactive function to the restart and call invoke-restart-

interactively:

PCS> (let* ((restart (make-restart :name 'add-42

 :function (lambda (x) (+ 42 x))

 :interactive-function (lambda () '(4200))))

 (*restart-clusters* (list (list restart))))

 (invoke-restart-interactively 'add-42))

4242

Chapter 3 Implementing the Common Lisp condition system

155

Let us also try to invoke non-existing restarts:

PCS> (catch :error (invoke-restart 'foo))

;; Error: Restart ~S is not active.

NIL

PCS> (catch :error (invoke-restart-interactively 'foo))

;; Error: Restart ~S is not active.

NIL

3.5  �Binding restarts
By now, we have all the parts required to find and invoke our restart objects, as well as to

create them manually. The CL standard does not, however, provide that last part to the

programmer. Instead, restarts must be established within dynamic scope by means of

restart-binding macros, which we will now implement.

The simplest one of the three is restart-bind, which accepts a list of restart bindings,

creates new restart objects based on them, and attaches a list of newly created restarts to

the overall list of restart clusters. This is exactly what our macro is going to do.

(defun restart-bind-transform-binding (binding)

 (destructuring-bind (name function . arguments) binding

 `(make-restart :name ',name :function ,function ,@arguments)))

(defun expand-restart-bind (bindings body)

 (let ((cluster (mapcar #'restart-bind-transform-binding bindings)))

 `(let ((*restart-clusters* (cons (list ,@cluster) *restart-clusters*)))

 ,@body)))

(defmacro restart-bind (bindings &body body)

 (expand-restart-bind bindings body))

We see that there are two logical parts to our macro. The first part is a function that

accepts a raw binding the way it is listed inside handler-bind and turns it into a make-restart

form that will construct our restart object with the provided data. The second part is the

main body of the macro which calls restart-bind-transform-binding on all bindings passed

to handler-bind and then rebinds *restart-clusters* by adding a new list element—our

new handler cluster—atop them.

Chapter 3 Implementing the Common Lisp condition system

156

Let us perform some basic tests of these functions, starting with the binding

transform.

PCS> (restart-bind-transform-binding

 '(return-42 (lambda () 42)))

(MAKE-RESTART :NAME 'FOO-RESTART

 :FUNCTION (LAMBDA () 42))

PCS> (restart-bind-transform-binding

 '(return-42 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function "Return 42 if an error is being signaled."))

(MAKE-RESTART :NAME 'RETURN-42

 :FUNCTION (LAMBDA () 42)

 :TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION "Return 42 if an error is being signaled.")

Then, the body generator:

PCS> (expand-restart-bind

 '((return-42 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function "Return 42 if an error is being signaled."))

 '((let ((restart (find-restart 'return-42)))

 (when restart (invoke-restart restart)))))

(LET ((*RESTART-CLUSTERS*

 (CONS

 (LIST

 (MAKE-RESTART :NAME 'RETURN-42

 :FUNCTION (LAMBDA () 42)

 �:TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 �:REPORT-FUNCTION "Return 42 if an error is being signaled."))

 RESTART-CLUSTERS)))

 (LET ((RESTART (FIND-RESTART 'RETURN-42)))

 (WHEN RESTART (INVOKE-RESTART RESTART))))

Chapter 3 Implementing the Common Lisp condition system

157

And finally, the macro body (which is, in a way, just a formality; we only effectively

test the macro lambda list, which ensures that the arguments inside the macro are

structured properly):

PCS> (macroexpand-1

 '(restart-bind

 ((return-42 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 �:report-function "Return 42, but only if an error is being signaled."))

 (let ((restart (find-restart 'return-42)))

 (when restart (invoke-restart restart)))))

(LET ((*RESTART-CLUSTERS*

 (CONS

 (LIST

 (MAKE-RESTART :NAME 'RETURN-42

 :FUNCTION (LAMBDA () 42)

 �:TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 �:REPORT-FUNCTION "Return 42 if an error is being signaled."))

 RESTART-CLUSTERS)))

 (LET ((RESTART (FIND-RESTART 'RETURN-42)))

 (WHEN RESTART (INVOKE-RESTART RESTART))))

T

Now that we have verified our expansions, we can test the macro itself:

PCS> (restart-bind

 ((return-42 (lambda () 42)

 �:test-function (lambda (condition) (typep condition 'error))

 �:report-function "Return 42 if an error is being signaled."))

 (let ((restart (find-restart 'return-42)))

 (when restart (invoke-restart restart))))

NIL

PCS> (restart-bind

 ((return-42 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function "Return 42 if an error is being signaled."))

 (let ((restart (find-restart 'return-42 (make-condition 'error))))

 (when restart (invoke-restart restart))))

42

Chapter 3 Implementing the Common Lisp condition system

158

3.6  �Restart cases
A functioning restart-bind is the most important building block for the more commonly

used restart operator, restart-case. It is not the only building block required, however;

due to the keyword differences between restart-bind and restart-case, the need to parse

keyword-value pairs from the body of each restart case, and the requirement to detect

common signaling operators for automatic condition-restart association, restart-case is

the most complex macro in the whole condition system.

Therefore, we will construct the fully conforming macro incrementally. We will start

with a basic version that only performs a non-local transfer of control and then add the

preceding differences one by one.

3.6.1  �First iteration: basics
The non-expanded restart-case accepts its input as an expression to execute (which,

for now, we may pass as is without any transformations) and a list of cases. Each case

needs to be transformed into a pair of subforms: one that will be a restart-bind binding

and another that will form the restart case. The binding is responsible for passing the

arguments passed to the restart binding and transferring control to the restart case,

which, in turn, executes the body forms of the given case.

Therefore, we will need a function to parse a restart case and annotate it with a

unique symbol which will be used to perform the transfer of control. Such a parsed

and annotated case can then be passed to a pair of functions whose purpose will be to

generate proper restart binding and restart case forms ready to be spliced into the macro

body. This strategy, along with the need of a function which will generate the proper

body of restart-case, means that the first iteration of our macro will be achievable by

defining four separate functions.

Let us start with the first one, for parsing a restart case. For simplicity, let us assume

that the cases passed to restart-case have the same form as restart-bind bindings.

(defun restart-case-parse-case (case)

 (destructuring-bind (name function . options) case

 (let ((tag (gensym (format nil "~A-RESTART-CASE" name))))

 (list tag name function options))))

Chapter 3 Implementing the Common Lisp condition system

159

Invoking this function on a restart case gives us a four-element list containing a

unique tag symbol, the restart name, restart function, and a list of options.

(defun report-return-42 (stream)

 (write-string "Return 42 if an error is being signaled." stream))

PCS> (restart-case-parse-case

 '(return-42 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42))

(#:RETURN-42-RESTART-BINDING616 RETURN-42 (LAMBDA () 42)

 (:TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42))

We can use this structure in the pair of functions that will generate the parts of our

macro for us. First, let us make the restart binding:

(defun restart-case-make-restart-binding (parsed-case temp-var)

 (destructuring-bind (tag name function options) parsed-case

 (declare (ignore function))

 (let ((lambda-var (gensym "RESTART-ARGS")))

 `(,name

 (lambda (&rest ,lambda-var) (setf ,temp-var ,lambda-var) (go ,tag))

 ,@options))))

The preceding function requires two arguments: the parsed case from

restart-case-parse-case and the name of the temporary variable that it should set in order

to pass the restart arguments outside of the restart binding. We will see this mechanism

in action when we come to the main body of restart-case; for now, let us assume that the

temporary variable is the symbol named temp-var.

PCS> (let ((case (restart-case-parse-case

 '(return-42 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42))))

 (restart-case-make-restart-binding case 'temp-var))

(RETURN-42

 (LAMBDA (&REST #:RESTART-ARGS622)

 (SETF TEMP-VAR #:RESTART-ARGS622)

 (GO #:RETURN-42-RESTART-BINDING621))

 :TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42)

Chapter 3 Implementing the Common Lisp condition system

160

We can see that this restart-case-make-restart-binding returned, indeed, a restart

binding. It binds a restart named return-42 with a test function and report function that

we have seen before. The restart function accepts a &rest argument, which gathers into a

list all arguments with which that restart was invoked. This list is then set to the temp-var

symbol which we have passed, and a go call then transfers control to the unique tag the

case has been annotated with.

Let us compare this with the function generating the other half of the mechanism.

(defun restart-case-make-restart-case (parsed-case temp-var block-name)

 (destructuring-bind (tag name function options) parsed-case

 (declare (ignore name options))

 `(,tag (return-from ,block-name (apply ,function ,temp-var)))))

This function accepts three arguments in total: the parsed case, the temporary

variable, and a block name from which it should return the results of the restart function.

We can see that the original function passed to the restart binding is ignored inside the

result of restart-case-make-restart-binding; it is instead executed here, after control has

been transferred, applied to the arguments from temp-var—the temporary variable that

has been set by the restart binding.

This function returns a subform that starts with the tag; its purpose is to be spliced

into a tagbody form, where the unique symbol will be recognized as a go tag to which

control may be transferred. Because tagbody returns nil, a valid block that wraps the

tagbody is required in order to transfer return values outside.

We can test this function in order to see the output that will be spliced into tagbody

from our return-42 restart.

PCS> (let ((case (restart-case-parse-case

 '(return-42 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42))))

 (restart-case-make-restart-case case 'temp-var 'block-name))

(#:RETURN-42-HANDLER-BINDING623

 (RETURN-FROM BLOCK-NAME (APPLY (LAMBDA () 42) TEMP-VAR)))

As expected, we can see a unique symbol that will become the go tag and a return-

from form that will return the values from evaluating (apply (lambda () 42) temp-var)

outside a block named block-name.

Chapter 3 Implementing the Common Lisp condition system

161

The preceding knowledge allows us to understand the general structure of the code

into which restart-case will expand. We need to have a temporary variable that will allow

us to transfer restart arguments outside the binding; we need to have a block to return

values from; and we need to have a tagbody that will allow us to transfer control outside

the restart bindings. Using this knowledge, we may now construct the main body of

restart-case.

(defun expand-restart-case (expression cases)

 (let ((block-name (gensym "RESTART-CASE-BLOCK"))

 (temp-var (gensym "RESTART-CASE-VAR"))

 (parsed-cases (mapcar #'restart-case-parse-case cases)))

 (flet ((make-restart-binding (case)

 (restart-case-make-restart-binding case temp-var))

 (make-restart-case (case)

 (restart-case-make-restart-case case temp-var block-name)))

 `(let ((,temp-var nil))

 (declare (ignorable ,temp-var))

 (block ,block-name

 (tagbody

 (restart-bind ,(mapcar #'make-restart-binding parsed-cases)

 (return-from ,block-name ,expression))

 ,@(apply #'append (mapcar #'make-restart-case parsed-cases))))))))

(defmacro restart-case (expression &body cases)

 (expand-restart-case expression cases))

First of all, we define gensyms for the block name and our temporary variable. Next,

we parse all the cases using restart-case-parse-case. Then, we define a pair of local

functions, make-restart-binding and make-restart-case. We do that in order to have one-

argument functions suitable for passing to mapcar later in code. (Technical detail: the

block name and temporary variable name, which are the additional arguments that

restart-case-make-restart-binding and restart-case-make-restart-case accept, are going to be

constant throughout the function call; this is why we may use a technique called partial

application and construct functions that have these constant arguments already “filled

in” and therefore no longer require them to be passed.)

After constructing the local functions, we begin to construct our body. We define

our temporary variable (and make it ignorable, in case restart-case is called without any

restarts and therefore the variable goes unused), and we define our block and tagbody.

Chapter 3 Implementing the Common Lisp condition system

162

Inside, we can see a restart-bind that contains a list of restart bindings returned by mapcar

make-restart-binding and a return-from form that will return the values of our expression

in case none of the freshly bound restarts are invoked. The result of appending all calls

to make-restart-case is also spliced into our tagbody form; this will provide the tags that

are recognized by tagbody, thereby providing a means of transferring control outside of

restart-bind.

Let us test the expander function with the same restart binding with which we worked

earlier, introducing a small modification to the expression which we want to evaluate.

PCS> (expand-restart-case

 '(let ((restart (find-restart 'return-42)))

 (when restart (invoke-restart restart))

 24)

 '((return-42

 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42)))

(LET ((#:RESTART-CASE-VAR631 NIL))

 (DECLARE (IGNORABLE #:RESTART-CASE-VAR631))

 (BLOCK #:RESTART-CASE-BLOCK630

 (TAGBODY

 (RESTART-BIND ((RETURN-42 (LAMBDA (&REST #:RESTART-ARGS633)

 �(SETF #:RESTART-CASE-VAR631 #:RESTART-ARGS633)

 (GO #:RETURN-42-HANDLER-BINDING632))

 :TEST-FUNCTION

 (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42))

 (RETURN-FROM #:RESTART-CASE-BLOCK630

 (LET ((RESTART (FIND-RESTART 'RETURN-42)))

 (WHEN RESTART (INVOKE-RESTART RESTART))

 24)))

 #:RETURN-42-HANDLER-BINDING632

 (RETURN-FROM #:RESTART-CASE-BLOCK630

 (APPLY (LAMBDA () 42) #:RESTART-CASE-VAR631)))))

Here we can see our restart-case expansion in its full glory. We bind a variable, create

a block and a tagbody, bind a restart by means of restart-bind, and begin evaluating our

expression, preparing to return its value from the block which we have declared.

Chapter 3 Implementing the Common Lisp condition system

163

If the restart is invoked, the temporary variable (here named #:restart-case-var631) is

set to the list of restart arguments (in this case, empty!), control is transferred outside the

dynamic scope of restart-bind, and our 42-returning function is applied to the (empty)

list of arguments, yielding 42.

If the restart is not invoked, however, our expression returns 24—and that value

is then immediately returned from the block and, therefore, from the whole of the

expanded handler-case.

Let us confirm that these expansions work as expected:

PCS> (restart-case (let ((restart (find-restart 'return-42)))

 (when restart (invoke-restart restart))

 24)

 (return-42

 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42))

24

PCS> (restart-case (let* ((condition (make-condition 'error))

 (restart (find-restart 'return-42 condition)))

 (when restart (invoke-restart restart))

 24)

 (return-42

 (lambda () 42)

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42))

42

3.6.2  �Second iteration: Forms instead of a function
Our first iteration of restart-case works well. Now we can proceed to work on shaping it

toward compliance with the Common Lisp standard. First, we need to notice that the

forms inside a restart-case are spliced into the case itself; the keyword-value pairs are

placed between the restart case lambda list and the actual body forms. This means that

the restart-case body from the preceding example should instead look like this:

(restart-case (let* ((condition (make-condition 'error))

 (restart (find-restart 'return-42 condition)))

 (when restart (invoke-restart restart))

 24)

Chapter 3 Implementing the Common Lisp condition system

164

 (return-42 ()

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42

 42))

To support this protocol, we must modify our case-parsing function to separate our

case into five distinct parts: the unique tag, restart name, lambda list, keyword-value

pairs, and the body of the restart case. The new structure must then be accounted for in

the parts that generate restart bindings and the proper restart case.

Let us first construct a function that parses the part of the restart case after the

lambda list and returns two values—the keyword-value pairs, if any, and the remaining

body forms:

(defun restart-case-pop-keywords (case)

 (let ((things case)

 (keywords '(:report-function :interactive-function :test-function)))

 (loop for thing = (first things)

 if (member thing keywords)

 collect (pop things) into pairs

 and collect (pop things) into pairs

 else return (list pairs things))))

Our function iterates over the Lisp data inside things. If the form matches one of the

three recognized keywords, the loop collects the keyword and its matching value from the

list. If the next form awaiting processing is not a known keyword, the iteration stops, and

the body and keyword-value pairs are returned.

Let us test this newly modified function on the form of our restart case.

PCS> (restart-case-pop-keywords

 '(:test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42

 42))

((:TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42)

 (42))

We can see that the body, (42), is correctly returned, so are the values for the report

function, interactive function (none), and test function.

Chapter 3 Implementing the Common Lisp condition system

165

We can utilize this function inside our restart-case-parse-case. We will account for

the fact that we now need to pop keyword-value pairs from our case body and return five

values instead of four.

(defun restart-case-parse-case (case)

 (destructuring-bind (name lambda-list . rest) case

 (destructuring-bind (options body) (restart-case-pop-keywords rest)

 (let ((tag (gensym (format nil "~A-RESTART-BINDING" name))))

 (list tag name lambda-list options body)))))

Let us test our function by passing a full restart case to it:

PCS> (restart-case-parse-case

 '(return-42 ()

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42

 42))

(#:RETURN-42-RESTART-BINDING743 RETURN-42 NIL

 (:TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42)

 (42))

We get a tag, restart name, restart lambda list (empty), a list of keywords, and the

body of the case—which is exactly what we wanted. Now, we need to adjust restart-

case-make-restart-binding and restart-case-make-restart-case to use the new five-element

structure—starting with the former.

(defun restart-case-make-restart-binding (parsed-case temp-var)

 (destructuring-bind (tag name lambda-list options body) parsed-case

 (declare (ignore lambda-list body))

 (let ((lambda-var (gensym "RESTART-ARGS")))

 `(,name

 (lambda (&rest ,lambda-var) (setf ,temp-var ,lambda-var) (go ,tag))

 ,@options))))

Chapter 3 Implementing the Common Lisp condition system

166

The only required change here is splitting the old function argument into separate

lambda-list and body arguments; both of them are not used in the binding and therefore

ignored. These two arguments will indeed be used in the case-making

function though:

(defun restart-case-make-restart-case (parsed-case temp-var block-name)

 (destructuring-bind (tag name lambda-list options body) parsed-case

 (declare (ignore name options))

 `(,tag

 �(return-from ,block-name (apply (lambda ,lambda-list ,@body) ,temp-var)))))

Once again, the change here is minor: we have replaced function with an explicit

lambda form which accepts our lambda list and case body.

We may now test both functions with the new form of the restart case:

PCS> (let ((parsed-case (restart-case-parse-case

 '(return-42 ()

 �:test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42

 42))))

 (restart-case-make-restart-binding parsed-case 'temp-var))

(RETURN-42

 (LAMBDA (&REST #:RESTART-ARGS756)

 (SETF TEMP-VAR #:RESTART-ARGS756)

 (GO #:RETURN-42-RESTART-BINDING755))

 :TEST-FUNCTION (LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42)

PCS> (let ((parsed-case (restart-case-parse-case

 '(return-42 ()

 �:test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42

 42))))

 (restart-case-make-restart-case parsed-case 'temp-var 'block-name))

(#:RETURN-42-RESTART-BINDING757

 (RETURN-FROM BLOCK-NAME (APPLY (LAMBDA () 42) TEMP-VAR)))

Chapter 3 Implementing the Common Lisp condition system

167

Both of these functions return what they should (and what they did in the preceding

example!), which means that no modifications to expand-restart-case are required. We

may now test whether the restart-case macro accepts our new syntax:

PCS> (restart-case (let* ((restart (find-restart 'return-42)))

 (when restart (invoke-restart restart))

 24)

 (return-42 ()

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42

 42))

24

PCS> (restart-case (let* ((condition (make-condition 'error))

 (restart (find-restart 'return-42 condition)))

 (when restart (invoke-restart restart))

 24)

 (return-42 ()

 :test-function (lambda (condition) (typep condition 'error))

 :report-function #'report-return-42

 42))

42

3.6.3  �Third iteration: Managing the keyword differences
The third iteration of our restart-case macro will extend the keyword-parsing mechanism

that we created in the second iteration. Not only are the keywords used by restart-case

different from the ones used by restart-bind, but their functioning is distinct as well:

whereas for restart-bind we may pass any function objects, restart-case accepts only

lambda forms or function names (or strings, for its :report option).

We will modify restart-case-pop-keywords to call one more function,

restart-case-transform-subform, on the keyword and value that it finds. In addition, we

must modify the set of keywords that it recognizes.

(defun restart-case-pop-keywords (case)

 (let ((things case)

 (keywords '(:report :interactive :test)))

Chapter 3 Implementing the Common Lisp condition system

168

 (loop for thing = (first things)

 if (member thing keywords)

 append (restart-case-transform-subform (pop things) (pop things))

 into pairs

 else return (list pairs things))))

Now, we need to define restart-case-transform-subform.

(defun restart-case-transform-subform (keyword value)

 (case keyword

 (:report

 (if (stringp value)

 `(:report-function (lambda (stream) (write-string ,value stream)))

 `(:report-function #',value)))

 (:interactive `(:interactive-function #',value))

 (:test `(:test-function #',value))))

The preceding function dispatches on the keyword. If the keyword is :interactive

or :test, a matching :interactive-function or :test-function is returned. The situation is

slightly more complicated in case of :report, since—just like in define-condition—we need

to account for the possibility of a string being passed as the value, around which we must

construct a write-string call.

We may now test restart-case-transform-subform to verify that all four of its branches

are taken into account—and then test restart-case-pop-keywords on our venerable example

return-42 restart.

PCS> (restart-case-transform-subform :report "Test report")

(:REPORT-FUNCTION (LAMBDA (STREAM) (WRITE-STRING "Test report" STREAM)))

PCS> (restart-case-transform-subform :report 'report-return-42)

(:REPORT-FUNCTION #'REPORT-RETURN-42)

PCS> (restart-case-transform-subform :test (lambda (condition) (typep condition 'error)))

(:TEST-FUNCTION #'#<FUNCTION (LAMBDA (CONDITION)) {52E349AB}>)

PCS> (restart-case-transform-subform :interactive (lambda () '(42)))

(:INTERACTIVE-FUNCTION #'#<FUNCTION (LAMBDA ()) {52E34F4B}>)

PCS> (restart-case-pop-keywords

 '(:test (lambda (condition) (typep condition 'error))

 :report report-return-42

 42))

Chapter 3 Implementing the Common Lisp condition system

169

((:TEST-FUNCTION #'(LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42)

 (42))

That is all that’s required. The modification is complete, and our restart-case is now

syntactically compliant with ANSI CL.

PCS> (restart-case (let* ((condition (make-condition 'error))

 (restart (find-restart 'return-42 condition)))

 (when restart (invoke-restart restart))

 24)

 (return-42 ()

 :test (lambda (condition) (typep condition 'error))

 :report report-return-42

 42))

42

PCS> (restart-case (let* ((restart (find-restart 'return-42)))

 (when restart (invoke-restart restart))

 24)

 (return-42 ()

 :test (lambda (condition) (typep condition 'error))

 :report report-return-42

 42))

24

3.6.4  �Fourth iteration: Associating conditions with restarts
Our restart-case already spans six distinct functions. We will need to increase that

number in order to add one final standard feature of restart-case. However, the required

modification will be completely separated from the ones we have done so far: the change

will be related to the expression that is passed to handler-case, which, so far, we have been

splicing into the resulting macroexpansion without any alterations.

That final standard feature is implicit condition-restart association, which we have

already described earlier; it is triggered only when the form passed to restart-case, or the

result of its macroexpansion, is a direct call to signal, warn, error, or cerror. This implies

that restart-case must have the capability to macroexpand the expressions that are

passed to it, detect whether the expression is a call to one of the four aforementioned

functions, and rewrite such a form into one utilizing with-condition-restarts.

Chapter 3 Implementing the Common Lisp condition system

170

This is not a trivial task. Let us start by slightly modifying restart-case and

restart-case-expand to suit our needs:

(defun expand-restart-case (expression cases environment)

 (let ((block-name (gensym "RESTART-CASE-BLOCK"))

 (temp-var (gensym "RESTART-CASE-VAR"))

 (parsed-cases (mapcar #'restart-case-parse-case cases)))

 (flet ((make-restart-binding (case)

 (restart-case-make-restart-binding case temp-var))

 (make-restart-case (case)

 (restart-case-make-restart-case case temp-var block-name)))

 `(let ((,temp-var nil))

 (declare (ignorable ,temp-var))

 (block ,block-name

 (tagbody

 (restart-bind ,(mapcar #'make-restart-binding parsed-cases)

 (return-from ,block-name

 ,(if (restart-case-signaling-form-p expression environment)

 �(restart-case-expand-signaling-form expression environment)

 expression)))

 �,@(apply #'append (mapcar #'make-restart-case parsed-cases))))))))

(defmacro restart-case (expression &body cases &environment environment)

 (expand-restart-case expression cases environment))

We can see that the macro definition has been expanded to include a special

environment object inside its lambda list; this object is not directly passed to it by the

programmer, but is usually provided by the Lisp implementation as part of calling its

macroexpander. While we will not describe environment objects in detail, we will note

their traits which are most relevant to us for the matter at hand. This environment

argument is available only in macros; it holds, among other things, information about

local macro definitions—information which is important for passing into the macroexpand

calls of our new functions. Since these calls must perform macroexpansion of their own,

it is important that they receive this environment argument to be able to expand macros

correctly. That is why restart-case passes the argument to expand-restart-case, which—

in turn—passes it into our yet-undefined functions restart-case-signaling-form-p and

restart-case-expand-signaling-form.

Chapter 3 Implementing the Common Lisp condition system

171

Let us continue by defining the predicate function. This function needs to

macroexpand the form and return true if the form is a list whose first element turns out

to be a standard condition-signaling operator:

(defun restart-case-signaling-form-p (expression env)

 (let ((expansion (macroexpand expression env)))

 (and (consp expansion)

 (member (car expansion) '(signal warn error cerror)))))

Now we can perform quick REPL tests for this predicate, passing nil as the second

argument to signify a null environment.

PCS> (restart-case-signaling-form-p '(+ 2 2) nil)

NIL

PCS> (restart-case-signaling-form-p '(error 2 2) nil)

(ERROR CERROR)

(In the second test, the function returned a non-nil value, which in CL is “as good

as” returning true. CL has generalized booleans, which means that anything that is not

nil counts as a true value, even though the symbol t is designated to be the “canonical”

representation of truth—the standard type boolean, after all, is defined as (member nil t).)

If restart-case-signaling-form-p has returned true, then restart-case must rewrite the

signaling form. Let us briefly analyze the possibilities here; we can see that the functions

signal, warn, and error have the same lambda lists, which means that we are allowed to

group them together. The fourth function, cerror, has one more required argument, and

so we will treat it separately.

Let us start with the first case, in which we will expand a non-cerror form. It will be

our first chance to use the coerce-to-condition helper function which we defined in the

earlier chapters.

(defun restart-case-expand-non-cerror (expansion)

 (destructuring-bind (function-name datum . args) expansion

 (let* ((type (case function-name

 (signal 'simple-condition)

 (warn 'simple-warning)

 (error 'simple-error)))

 (condition (gensym "CONDITION")))

 �(let ((,condition (coerce-to-condition ,datum (list ,@args) ',type ',function-name)))

 (with-condition-restarts ,condition (car *restart-clusters*)

 (,function-name ,condition))))))

Chapter 3 Implementing the Common Lisp condition system

172

We expand into a let form that binds a new variable and instantiates a condition

object via coerce-to-condition, based on the arguments that were passed into the function

and the name of the function. This condition is then associated with all the restarts from

the most recent restart cluster, bound by the restart-case form into which this expression

shall be spliced. Once that association is done, the original function is used to signal the

newly created condition object.

We can test this function in the REPL to verify that it generates the expected output:

PCS> (restart-case-expand-non-cerror '(error "Failure"))

(LET ((#:CONDITION851 (COERCE-TO-CONDITION "Failure" (LIST) 'SIMPLE-ERROR 'ERROR)))

 (WITH-CONDITION-RESTARTS #:CONDITION851 (CAR *RESTART-CLUSTERS*)

 (ERROR #:CONDITION851)))

This one works; now let us dig into the cerror case, which has an optional format

control for the continue restart that it establishes, but—at the same time—does not need

to compute the resulting simple condition type.

(defun restart-case-expand-cerror (expansion)

 (destructuring-bind (function-name format-control datum . args) expansion

 (let* ((type 'simple-error)

 (condition (gensym "CONDITION")))

 �(let ((,condition (coerce-to-condition ,datum (list ,@args) ',type ',function-name)))

 (with-condition-restarts ,condition (car *restart-clusters*)

 (,function-name ,format-control ,condition))))))

We may test that it expands into something we want:

PCS> (restart-case-expand-cerror '(cerror "Continue from failure." "Failure"))

(LET ((#:CONDITION866 (COERCE-TO-CONDITION "Failure" 'NIL 'SIMPLE-ERROR 'CERROR)))

 (WITH-CONDITION-RESTARTS #:CONDITION866 (CAR *RESTART-CLUSTERS*)

 (CERROR "Continue from failure." #:CONDITION866)))

With both branches of our code now available, we may finally define the function

restart-case-expand-signaling-form that decides which branch to take based on the first

element of the macroexpanded expression:

(defun restart-case-expand-signaling-form (expression env)

 (let ((expansion (macroexpand expression env)))

 (case (car expansion)

 ((signal warn error) (restart-case-expand-non-cerror expansion))

 (cerror (restart-case-expand-cerror expansion)))))

Chapter 3 Implementing the Common Lisp condition system

173

And we may go ahead and test it:

PCS> (restart-case-expand-signaling-form '(error "Failure") nil)

(LET ((#:CONDITION868 (COERCE-TO-CONDITION "Failure" (LIST) 'SIMPLE-ERROR 'ERROR)))

 (WITH-CONDITION-RESTARTS #:CONDITION868 (CAR *RESTART-CLUSTERS*)

 (ERROR #:CONDITION868)))

PCS> (restart-case-expand-signaling-form '(cerror "Continue from failure." "Failure") nil)

(LET ((#:CONDITION867 (COERCE-TO-CONDITION "Failure" 'NIL 'SIMPLE-ERROR 'CERROR)))

 (WITH-CONDITION-RESTARTS #:CONDITION867 (CAR *RESTART-CLUSTERS*)

 (CERROR "Continue from failure." #:CONDITION867)))

(The preceding code expands into a call of cerror, which we have not yet defined; we

will do that in the next sections and test it there.)

Finally, let us look at the example expansion of restart-case with error to see that the

error expression indeed expands into a with-condition-restarts-wrapped form.

(restart-case (error "Failure!")

 (return-42 ()

 :test (lambda (condition) (typep condition 'error))

 :report report-return-42

 42))

(LET ((#:RESTART-CASE-VAR940 NIL))

 (DECLARE (IGNORABLE #:RESTART-CASE-VAR940))

 (BLOCK #:RESTART-CASE-BLOCK939

 (TAGBODY

 (RESTART-BIND ((RETURN-42

 (LAMBDA (&REST #:RESTART-ARGS942)

 (SETF #:RESTART-CASE-VAR940 #:RESTART-ARGS942)

 (GO #:RETURN-42-RESTART-BINDING941))

 �:TEST-FUNCTION #'(LAMBDA (CONDITION) (TYPEP CONDITION 'ERROR))

 :REPORT-FUNCTION #'REPORT-RETURN-42))

 (RETURN-FROM #:RESTART-CASE-BLOCK939

 �(LET ((#:CONDITION943 (COERCE-TO-CONDITION "Failure!" (LIST) 'SIMPLE-ERROR 'ERROR)))

 (WITH-CONDITION-RESTARTS #:CONDITION943 (CAR *RESTART-CLUSTERS*)

 (ERROR #:CONDITION943)))))

 #:RETURN-42-RESTART-BINDING941

 (RETURN-FROM #:RESTART-CASE-BLOCK939

 (APPLY (LAMBDA () 42) #:RESTART-CASE-VAR940)))))

Chapter 3 Implementing the Common Lisp condition system

174

It is not yet possible to test this expansion, even though we have defined a dummy

implementation of error—we would need a handler to route the condition over to the

established restart. We will test this behavior in the next sections, after our handler-

binding mechanism is implemented.

This concludes the implementation of a portable and ANSI-conforming restart-

case—the most complex macro in the Common Lisp condition system.

3.6.5  �Implementing simple restarts
Thankfully, the only remaining restart-related macro is a simple one. with-simple-restarts

expands into a restart-case with a :report option based on the format control and optional

format arguments. If the restart case is invoked, it returns nil and t as multiple values.

(defmacro with-simple-restart ((name format-control &rest args) &body forms)

 (let ((stream (gensym "STREAM")))

 `(restart-case ,(if (= 1 (length forms)) (car forms) `(progn ,@forms))

 (,name ()

 :report (lambda (,stream) (format ,stream ,format-control ,@args))

 (values nil t)))))

(In most cases, only the first value returned by an expression, named the primary

value, is taken into account; however, some CL operators return more than one value,

which some other operators, such as nth-value or multiple-value-bind, are able to accept.)

(Additionally, the (if (= 1 (length forms)) ...) check is used to ensure that a singular

standard signaling form (signal, error, etc.) will be spliced in without a progn, so restart-

case may perform its implicit condition-restart association properly.)

The macroexpansion is readable without much effort; we can expand the

with-simple-restart form and read the resulting restart-case to verify that it does, indeed,

work as intended:

(with-simple-restart (fail "Fail the computation.")

 (compute-something))

(RESTART-CASE (COMPUTE-SOMETHING)

 (FAIL NIL :REPORT

 (LAMBDA (#:STREAM846) (FORMAT #:STREAM846 "Fail the computation."))

 (VALUES NIL T)))

Chapter 3 Implementing the Common Lisp condition system

175

3.7  �System-defined restarts
The CL standard defines five standard restarts that may (or even should) be bound by

standard CL operators. They are abort, continue, muffle-warning, store-value, and use-value.

Each of these restarts also has its associated restart-invoking function with the same

name. We will implement these now, starting with the least complicated ones—continue,

store-value, and use-value.

(defun continue (&optional condition)

 (let ((restart (find-restart 'continue condition)))

 (when restart (invoke-restart restart))))

(defun store-value (value &optional condition)

 (let ((restart (find-restart 'store-value condition)))

 (when restart (invoke-restart restart value))))

(defun use-value (value &optional condition)

 (let ((restart (find-restart 'use-value condition)))

 (when restart (invoke-restart restart value))))

These functions are the least complicated ones because they are not required to signal

any kind of errors if the restart they need to invoke is not active; in such a case they simply

return nil. This is in contrast to muffle-warning and abort, which require that a control-error

be signaled in such a case. For our convenience (and for more meaningful reports), we will

define a custom subtype of control-error and signal it from within abort and muffle-warning.

(defun report-restart-not-found (condition stream)

 (format stream "Restart ~S is not active."

 (restart-not-found-restart-name condition)))

(define-condition restart-not-found (control-error)

 �((restart-name :reader restart-not-found-restart-name :initarg :restart-name))

 (:report report-restart-not-found))

Thanks to these definitions, we may now implement abort and muffle-warning,

which—again—are similar to each other.

(defun abort (&optional condition)

 (let ((restart (find-restart 'abort condition)))

 (if restart

 (invoke-restart restart)

 (error 'restart-not-found :restart-name 'abort))))

Chapter 3 Implementing the Common Lisp condition system

176

(defun muffle-warning (&optional condition)

 (let ((restart (find-restart 'muffle-warning condition)))

 (if restart

 (invoke-restart restart)

 (error 'restart-not-found :restart-name 'muffle-warning))))

(Some Common Lisp implementations put additional error calls at the ends of abort

and muffle-warning to implement the part of the specification that states that these two

functions may never return; this might happen, e.g., if the abort or muffle-warning restart

function fails to transfer control. For simplicity, we leave this functionality out of this book.)

We may additionally factor all the common code from the preceding restart-invoking

functions into a single function, maybe-invoke-restart, which can then be called by all

standard restart-invoking functions. This common function will accept the restart name,

a condition object, and an optional parameter that states whether an error should be

signaled if the restart is not found.

(defun maybe-invoke-restart (restart-name &optional condition errorp &rest arguments)

 (let ((restart (find-restart restart-name condition)))

 (cond (restart (apply #'invoke-restart restart arguments))

 (errorp (error 'restart-not-found :restart-name restart-name)))))

(defun abort (&optional condition)

 (maybe-invoke-restart 'abort condition t))

(defun muffle-warning (&optional condition)

 (maybe-invoke-restart 'muffle-warning condition t))

(defun continue (&optional condition)

 (maybe-invoke-restart 'continue condition))

(defun store-value (value &optional condition)

 (maybe-invoke-restart 'store-value condition nil value))

(defun use-value (value &optional condition)

 (maybe-invoke-restart 'use-value condition nil value))

Simple REPL tests of the negative cases follow:

PCS> (catch :error (abort))

;; Error: RESTART-NOT-FOUND

NIL

Chapter 3 Implementing the Common Lisp condition system

177

PCS> (catch :error (muffle-warning))

;; Error: RESTART-NOT-FOUND

NIL

3.8  �Assertions
We have established enough restart-related macrology to be able to implement CL

assertion operators now. These operators can be grouped into three pairs: non-

correctable case assertions (ecase and etypecase), correctable case assertions (ccase and

ctypecase), and general assertions (assert and check-type).

3.8.1  �Case failures
Implementing case assertions will be easier if we notice that the errors signaled by these

assertions are going to be similar to each other. They are all type errors that have three

variables to them: the value that failed the assertion, the kind of assertion that was failed

(which could be defined to be the name of that assertion), and a set of possibilities that

was not matched.

Let us therefore abstract this into one common condition type, case-failure, along

with one function that shall expand into an error case-failure for us.

(defun report-case-failure (condition stream)

 (format stream "~S fell through ~S expression. Wanted one of ~:S."

 (type-error-datum condition)

 (case-failure-name condition)

 (case-failure-possibilities condition)))

(define-condition case-failure (type-error)

 ((name :reader case-failure-name :initarg :name)

 �(possibilities :reader case-failure-possibilities :initarg :possibilities))

 (:report report-case-failure))

(defun case-failure (datum complex-type operator-name keys)

 (error 'case-failure :datum datum

 :expected-type `(,complex-type ,@keys)

 :name operator-name

 :possibilities keys))

Chapter 3 Implementing the Common Lisp condition system

178

Since case-failure is a type-error, we should provide it, upon instantiation, with

values for its :datum and :expected-type keyword arguments. (Due to inheritance, signaling

a case-failure will nonetheless activate all handlers that are looking for a type-error.)

For constructing the type for :expected-type, we use the complex-type argument. For case

variants, this complex type will contain the symbol member; for typecase, it will contain or.

3.8.2  �Case utilities
Before we begin implementing our case assertions, we need to make a certain decision

about our approach. We may implement them fully from scratch, expanding them into

a cond with series of eql checks (for ecase and ccase) or a cond with a series of typep checks

(for etypecase and ctypecase). However, we may also piggyback on our implementations’

existing case and typecase operators, adapting them for our purpose. For simplicity, we

will use the latter option.

There is an important difference between case and ecase/ccase, however,

which we must account for. The pair of symbols t and otherwise have special meaning

in case—they allow fall-through and catch-all cases that do not match any earlier case.

These symbols carry no such special meanings in ecase or ccase, however; there, they are

expected to be matched by eql just like any other keys.

Therefore, in order to implement ecase and ccase, we need a means of translating the

t/otherwise cases from ecase/ccase into (t)/(otherwise) cases for case. Indeed, wrapping

each of these two symbols in a list is, thankfully, enough to disable their special meaning

inside case while preserving their ability to be matched by eql. With this trick in hand, our

first utility function for case assertions is now ready to be implemented:

(defun case-transform-t-otherwise-cases (cases)

 (loop for (key . forms) in cases

 if (member key '(t otherwise)) collect `((,key) ,@forms)

 else collect `(,key ,@forms)))

We can immediately test it in the REPL to see if it gives us the expected results:

PCS> (case-transform-t-otherwise-cases

 '((24 :foo)

 (:forty-two :bar)

 ((nil) :baz)

 (t :fallthrough)))

Chapter 3 Implementing the Common Lisp condition system

179

((24 :FOO)

 (:FORTY-TWO :BAR)

 ((NIL) :BAZ)

 ((T) :FALLTHROUGH))

PCS> (case-transform-t-otherwise-cases

 '((24 :foo)

 (:forty-two :bar)

 ((nil) :baz)

 (otherwise :fallthrough)))

((24 :FOO)

 (:FORTY-TWO :BAR)

 ((NIL) :BAZ)

 ((OTHERWISE) :FALLTHROUGH))

That works well. Another utility that we will need is a way to collect all keys from a

list of ecase/ccase cases, so that we will have something appropriate to pass along to our

case-failure function:

(defun case-accumulate-keys (cases)

 (loop for case in cases

 for key-or-keys = (first case)

 if (listp key-or-keys) append key-or-keys

 else collect key-or-keys))

This function iterates through the cases, checking the first element of each. When it’s

a list, its contents are appended to the collection; otherwise, the singular key is collected.

We can verify that this approach works:

PCS> (case-accumulate-keys

 '(((24 25 26) :foo)

 (:forty-two :bar)

 ((nil) :baz)

 (t :fallthrough)))

(24 25 26 :FORTY-TWO NIL T)

case-accumulate-keys will be useful for ecase/ccase, where keys are allowed to come

in lists or as atoms; we will not use it for etypecase/ctypecase, since type specifiers are

allowed to be lists.

Chapter 3 Implementing the Common Lisp condition system

180

3.8.3  �Non-correctable case assertions
With the preceding helper functions, we are now ready to implement ecase and etypecase.

Let us start with the first one. ecase accepts a form (keyform) evaluated at runtime

to produce the key to be tested and a list of cases. We will implement ecase via case,

remembering to transform the cases to get rid of the special meaning of any t/otherwise

keys.

(defun expand-ecase (keyform cases)

 (let ((keys (case-accumulate-keys cases))

 (variable (gensym "ECASE-VARIABLE")))

 `(let ((,variable ,keyform))

 (case ,variable ,@(case-transform-t-otherwise-cases cases)

 (t (case-failure ,variable 'member 'ecase ',keys))))))

(defmacro ecase (keyform &rest cases)

 (expand-ecase keyform cases))

We can see that we add our own t case to the body of case in order always to signal

an error in case of matching failure. In addition, we see that the keyform is bound to a

temporary variable that we create around the form; this is to prevent multiple evaluation

when we need to pass the value to the case-failure form. We can test the expansion of our

macro

PCS> (expand-ecase 'nil

 '(((24 25 26) :foo)

 (:forty-two :bar)

 ((nil) :baz)

 (t :no-fallthrough)))

(LET ((#:ECASE-VARIABLE970 NIL))

 (CASE NIL

 ((24 25 26) :FOO)

 (:FORTY-TWO :BAR)

 ((NIL) :BAZ)

 ((T) :NO-FALLTHROUGH)

 �(T (CASE-FAILURE #:ECASE-VARIABLE970 'MEMBER 'ECASE '(24 25 26 :FORTY-TWO NIL T)))))

Chapter 3 Implementing the Common Lisp condition system

181

and verify that it indeed works as expected:

PCS> (ecase nil

 ((24 25 26) :foo)

 (:forty-two :bar)

 ((nil) :baz)

 (t :no-fallthrough))

:BAZ

PCS> (catch :error

 (ecase :twenty-four

 ((24 25 26) :foo)

 (:forty-two :bar)

 ((nil) :baz)

 (t :no-fallthrough)))

;; Error: CASE-FAILURE

NIL

The implementation of etypecase is going to be similar, except that we will use

mapcar #'first instead of case-accumulate-keys, we do not need to do anything about t,

and otherwise is a valid type specifier and therefore we do not need to care about it at all

either.

(defun expand-etypecase (keyform cases)

 (let ((keys (mapcar #'first cases))

 (variable (gensym "ETYPECASE-VARIABLE")))

 `(let ((,variable ,keyform))

 (typecase ,keyform ,@cases

 (t (case-failure ,variable 'or 'etypecase ',keys))))))

(defmacro etypecase (keyform &rest cases)

 (expand-etypecase keyform cases))

We can test the expansion of expand-etypecase in the REPL and then check the

macro itself:

PCS> (expand-etypecase '"forty-two"

 '(((or integer rational float) :foo)

 (keyword :bar)

 (string :baz)))

(LET ((#:ETYPECASE-VARIABLE978 "forty-two"))

 (TYPECASE "forty-two"

Chapter 3 Implementing the Common Lisp condition system

182

 ((OR INTEGER RATIONAL FLOAT) :FOO)

 (KEYWORD :BAR)

 (STRING :BAZ)

 (T (ERROR 'CASE-FAILURE :DATUM #:ETYPECASE-VARIABLE978

 �:EXPECTED-TYPE '(OR (OR INTEGER RATIONAL FLOAT) KEYWORD STRING)

 :NAME 'ETYPECASE

 �:POSSIBILITIES '((OR INTEGER RATIONAL FLOAT) KEYWORD STRING)))))

PCS> (etypecase "forty-two"

 ((or integer rational float) :foo)

 (keyword :bar)

 (string :baz))

:BAZ

PCS> (catch :error

 (etypecase 'forty-two

 ((or integer rational float) :foo)

 (keyword :bar)

 (string :baz)))

;; Error: CASE-FAILURE

NIL

3.8.4  �Correctable case assertions
With the first pair of correctable assertions implemented, we may move on to the second

one. The correctable case assertions work similarly to the non-correctable ones, except that

they additionally bind a store-value restart that allows the programmer to retry the whole

assertion with the keyform place set to a new value. This additional binding, in turn, can be

implemented with a macro that accepts a place to set, a tag to transfer control to, and a set

of body forms to execute in an environment where the store-value restart is bound.

This abstraction is worth separating into a separate macro, because it can be shared

between ccase and ctypecase.

(defun store-value-read-evaluated-form ()

 (format *query-io* "~&;; Type a form to be evaluated:~%")

 (list (eval (read *query-io*))))

(defun expand-with-store-value-restart (temp-var place tag forms)

 (let ((report-var (gensym "STORE-VALUE-REPORT"))

 (new-value-var (gensym "NEW-VALUE"))

 �(form-or-forms (if (= 1 (length forms)) (first forms) `(progn ,@forms))))

Chapter 3 Implementing the Common Lisp condition system

183

 `(flet ((,report-var (stream)

 (format stream "Supply a new value of ~S." ',place)))

 (restart-case ,form-or-forms

 (store-value (,new-value-var)

 :report ,report-var

 :interactive store-value-read-evaluated-form

 (setf ,temp-var ,new-value-var

 ,place ,new-value-var)

 (go ,tag))))))

(defmacro with-store-value-restart ((temp-var place tag) &body forms)

 (expand-with-store-value-restart temp-var place tag forms))

The macro expands into a restart-case form, with a local function defined for

reporting the restart. The function store-value-read-evaluated-form is used to query the

user for a form to set the place to; this is the interactive function of the store-value restart

established within with-store-value-restart.

The established store-value restart case utilizes all three arguments that it is given:

the temporary variable and the place passed to it are set with the provided value, and

control is then transferred to the appropriate go tag.

Let us see the expansion of that form on sample data:

PCS> (expand-with-store-value-restart 'temp-var 'place 'tag '((frobnicate)))

(FLET ((#:STORE-VALUE-REPORT980 (STREAM) (FORMAT STREAM "Supply a new value of ~S." 'PLACE)))

 (RESTART-CASE (FROBNICATE)

 (STORE-VALUE (#:NEW-VALUE981)

 :REPORT #:STORE-VALUE-REPORT980

 :INTERACTIVE STORE-VALUE-READ-EVALUATED-FORM

 (SETF TEMP-VAR #:NEW-VALUE981

 PLACE #:NEW-VALUE981)

 (GO TAG))))

We can use this macro to implement our correctable case assertions. Let us start

with ccase:

(defun expand-ccase (keyform cases)

 (let ((keys (case-accumulate-keys cases))

 (variable (gensym "CCASE-VARIABLE"))

 (block-name (gensym "CCASE-BLOCK"))

 (tag (gensym "CCASE-TAG")))

Chapter 3 Implementing the Common Lisp condition system

184

 `(block ,block-name

 (let ((,variable ,keyform))

 (tagbody ,tag

 (return-from ,block-name

 (case ,variable ,@(case-transform-t-otherwise-cases cases)

 (t (with-store-value-restart (,variable ,keyform ,tag)

 �(case-failure ,variable 'member 'ccase ',keys))))))))))

(defmacro ccase (keyform &rest cases)

 (expand-ccase keyform cases))

We can see that the structure of special forms is more complex this time. We

establish a block from which to return our value, a lexical variable that will hold the value

of the keyform, and a tagbody with a single tag in the beginning. Immediately inside, we

attempt to return a value via return-from; this returning is meant to succeed if the case

succeeds, and otherwise, control is transferred back to the tagbody tag, and return-from is

entered again.

(The lexical variable is bound before tagbody and its name is passed to with-store-value-

restart in order to prevent the keyform being evaluated on each entry into tagbody.)

Let us attempt to expand ccase for place x and a single case in which the value 42

returns :foo.

PCS> (expand-ccase 'x '((42 :foo)))

(BLOCK #:CCASE-BLOCK1025

 (LET ((#:CCASE-VARIABLE1024 X))

 (TAGBODY

 #:CCASE-TAG1026

 (RETURN-FROM #:CCASE-BLOCK1025

 (CASE #:CCASE-VARIABLE1024

 (42 :FOO)

 �(T (WITH-STORE-VALUE-RESTART (#:CCASE-VARIABLE1024 X #:CCASE-TAG1026)

 �(CASE-FAILURE #:CCASE-VARIABLE1024 'MEMBER 'CCASE '(42)))))))))

Let us test our macro for both positive and negative outcomes:

PCS> (let ((x 42))

 (ccase x (42 :foo)))

:FOO

Chapter 3 Implementing the Common Lisp condition system

185

PCS> (catch :error

 (let ((x 24))

 (ccase x (42 :foo))))

;; Error: 24 fell through CCASE expression. Wanted one of (42).

NIL

Our typecase implementation is going to be similar in structure:

(defun expand-ctypecase (keyform cases)

 (let ((keys (case-accumulate-keys cases))

 (variable (gensym "CTYPECASE-VARIABLE"))

 (block-name (gensym "CTYPECASE-BLOCK"))

 (tag (gensym "CTYPECASE-TAG")))

 `(block ,block-name

 (let ((,variable ,keyform))

 (tagbody ,tag

 (return-from ,block-name

 (typecase ,keyform ,@cases

 (t (with-store-value-restart (,variable ,keyform ,tag)

 �(case-failure ,variable 'or 'ctypecase ',keys))))))))))

(defmacro ctypecase (keyform &rest cases)

 (expand-ctypecase keyform cases))

We can likewise verify its expansion and positive result in the REPL.

PCS> (expand-ctypecase 'x '((integer :foo)))

(BLOCK #:CTYPECASE-BLOCK1031

 (LET ((#:CTYPECASE-VARIABLE1030 X))

 (TAGBODY

 #:CTYPECASE-TAG1032

 (RETURN-FROM #:CTYPECASE-BLOCK1031

 (TYPECASE X

 (INTEGER :FOO)

 �(T (WITH-STORE-VALUE-RESTART (#:CTYPECASE-VARIABLE1030 X #:CTYPECASE-TAG1032)

 �(CASE-FAILURE #:CTYPECASE-VARIABLE1030 'OR 'CTYPECASE '(INTEGER)))))))))

PCS> (let ((x 42))

 (ctypecase x (integer :foo)))

:FOO

Chapter 3 Implementing the Common Lisp condition system

186

PCS> (catch :error

 (let ((x 42))

 (ctypecase x (keyword :foo))))

;; Error: 42 fell through CTYPECASE expression. Wanted one of (KEYWORD).

NIL

3.8.5  �General assertions
With our case assertions ready, we can now focus on the remaining two assertions: assert

itself and check-type. The former is the most general CL assertion operator: not only

does it allow arbitrary forms to be evaluated, but it is also the only CL assertion operator

capable of allowing the programmer interactively to set multiple places at once. The two

support functions that we will write for assert will be used exactly for that purpose: one of

them will report the continue report bound by assert, and the other will be responsible for

querying the user for whether they would like to supply a new value for a single place.

(defun assert-restart-report (names stream)

 (format stream "Retry assertion")

 (if names

 (format stream " with new value~P for ~{~S~^, ~}." (length names) names)

 (format stream ".")))

(defun assert-prompt (place-name value)

 (cond ((y-or-n-p "~&;; The old value of ~S is ~S.~%~

 ;; Do you want to supply a new value?"

 place-name value)

 (format *query-io* "~&;; Type a form to be evaluated:~%")

 (flet ((read-it ()

 (format *query-io* "> ")

 (eval (read *query-io*))))

 (cond ((symbolp place-name)

 (format *query-io*

 "~&;; (The old value is bound to the symbol ~S.)~%"

 place-name)

 (progv (list place-name) (list value) (read-it)))

 (t (read-it)))))

 (t value)))

Chapter 3 Implementing the Common Lisp condition system

187

Let us focus on the second function for a moment. It contains a conditional

expression that first calls a function y-or-n-p. That function prints the prompt to *query-

io* and waits for the user to answer either with a y or an n. In case of n, the function

returns false, and value is returned; in case of y, the function returns true, and the

conditional branch is entered.

Once inside, the function checks whether place-name is a symbol; if that is true, that

symbol is dynamically bound at runtime using the special operator progv. Then, an

expression is read and evaluated at runtime to provide the value to be returned from

assert-prompt. If the place is not a symbol, then the progv binding is skipped, but an

expression is still read and evaluated.

It is best to see this function in action in order to understand how it works:

PCS> (assert-prompt 'x 42)

;; The old value of X is 42.

;; Do you want to supply a new value? (y or n) y ; user input here

;; Type a form to be evaluated:

;; (The old value is bound to the symbol X.)

> (* x x) ; user input here

1764

PCS> (assert-prompt '(car some-cons) 42)

;; The old value of (CAR SOME-CONS) is 42.

;; Do you want to supply a new value? (y or n) y ; user input here

;; Type a form to be evaluated:

> 84 ; user input here

84

PCS> (assert-prompt 'x 42)

;; The old value of X is 42.

;; Do you want to supply a new value? (y or n) n ; user input here

42

We can see that, in the first example, we can use the symbol x inside the query

made by assert-prompt, even though x was never bound as a global dynamic variable.

This is allowed by the fact that the eval call is executed inside progv, and therefore a new

dynamic binding for x is established. This means that, even if x was originally a lexical

variable, it is re-created as a dynamic variable that we can use in the form read and

evaluated by assert.

Chapter 3 Implementing the Common Lisp condition system

188

In addition, we can see that assert-prompt always returns a value—either the new

one or the old one. This means that we can use the return value of that function as an

argument to setf in order to assign values to the place.

We may now work on our implementation of assert. It will be somewhat similar to

the earlier assertion operators: we will need a tagbody to which we will transfer control

to in order to retry the assertion, and a place-setting continue restart will be established.

The main differences are that the only value it returns is nil, which will save us from

establishing a block; in addition, assert can set multiple places, which we will need to

account for.

(defmacro assert (test-form &optional places datum &rest arguments)

 �(flet ((make-place-setter (place) `(setf ,place (assert-prompt ',place ,place))))

 (let ((tag (gensym "ASSERT-TAG")))

 `(tagbody ,tag

 (unless ,test-form

 (restart-case ,(if datum

 `(error ,datum ,@arguments)

 `(error "The assertion ~S failed." ',test-form))

 (continue ()

 :report (lambda (stream) (assert-restart-report ',places stream))

 ,@(mapcar #'make-place-setter places)

 (go ,tag))))))))

The main structure of our assert operator is lightweight: we have a tagbody wrapping

an unless. This setup means that, first, the test form is evaluated, and if it returns true,

then the rest of the form is not entered. Only when an assertion fails, and test-form

returns true, do we get to see the rest of assert’s functionality.

Immediately after establishing a continue restart, an error is signaled, based on the

datum and arguments that are passed to assert. A continue restart is available, with its report

calling our helper function assert-restart-report.

We can see that setting multiple places is taken care of by the local function make-

place-setter; this function turns the list of places into a list of setf forms. The value for each

such setf form is returned by the interactive function assert-prompt which we defined

earlier. Immediately after setting the places, control is transferred back to the unless test,

retrying the assertion with possibly new values given to our places (if any).

Chapter 3 Implementing the Common Lisp condition system

189

PCS> (assert t)

NIL

PCS> (catch :error

 (assert nil))

;; Error: The assertion NIL failed.

NIL

(More intricate tests of the full assert will come when we are capable of handling the

signaled error, for which we need to implement handlers.)

The sixth—and final—assertion macro, check-type, has a somewhat similar, if simpler,

structure. We have a tagbody over an unless typep check; if the check fails, then a store-

value restart is established, and an error is immediately signaled. The actual condition is

created in a separate helper function, extracted from the main body of the macro.

(defun check-type-error (place value type type-string)

 (error

 'simple-type-error

 :datum value

 :expected-type type

 :format-control (if type-string

 "The value of ~S is ~S, which is not ~A."

 "The value of ~S is ~S, which is not of type ~S.")

 :format-arguments (list place value (or type-string type))))

(defun expand-check-type (place type type-string)

 (let ((variable (gensym "CHECK-TYPE-VARIABLE"))

 (tag (gensym "CHECK-TYPE-TAG")))

 `(let ((,variable ,place))

 (tagbody ,tag

 (unless (typep ,variable ',type)

 (with-store-value-restart (,variable ,place ,tag)

 (check-type-error ',place ,variable ',type ,type-string)))))))

(defmacro check-type (place type &optional type-string)

 (expand-check-type place type type-string))

Chapter 3 Implementing the Common Lisp condition system

190

By now, the author hopes that the reader has gained enough confidence in reading

macros to be able to read this one themselves; we shall simply expand it in the REPL and

verify that a positive-outcome example works well:

PCS> (expand-check-type 'x 'integer nil)

(LET ((#:CHECK-TYPE-VARIABLE1034 X))

 (TAGBODY #:CHECK-TYPE-TAG1035

 (UNLESS (TYPEP #:CHECK-TYPE-VARIABLE1034 'INTEGER)

 �(WITH-STORE-VALUE-RESTART (#:CHECK-TYPE-VARIABLE1034 X #:CHECK-TYPE-TAG1035)

 (CHECK-TYPE-ERROR 'X #:CHECK-TYPE-VARIABLE1034 'INTEGER NIL)))))

PCS> (let ((x 42))

 (check-type x integer))

NIL

PCS> (catch :error

 (let ((x 42))

 (check-type x keyword)))

;; Error: The value of X is 42, which is not of type KEYWORD.

NIL

As mentioned earlier, testing the restarts established by the correctable and general

assertions will be performed after we implement handlers, and we will therefore be able

to handle the errors signaled by these operators by invoking a proper restart.

3.9  �Signaling
Our assertions are now done, but they are not yet functional or testable. This is because

we have not yet defined the signaling functions used within them: signal, warn, error, and

cerror. We will do this now.

The first and the most basic signaling function, signal, requires us to build some

infrastructure for two future parts of the condition system. In order to be able to process

all currently active handlers, we need to declare a variable to hold these handlers; in

addition, signal is allowed to call break when the variable *break-on-signals* is non-nil.

These two variables need to be defined:

(defvar *break-on-signals* nil)

(defvar *handler-clusters* '())

Chapter 3 Implementing the Common Lisp condition system

191

We are now allowed to define signal. It makes use of coerce-to-condition to ensure

that it is dealing with a condition object; it then checks whether or not break should be

called before signaling the condition, and finally, it walks the list of handler clusters and

invokes any matching handlers found there in order.

(defun signal (datum &rest arguments)

 �(let ((condition (coerce-to-condition datum arguments 'simple-condition 'signal)))

 (if (typep condition *break-on-signals*)

 �(break "~A~%Break entered because of *BREAK-ON-SIGNALS*." condition))

 (loop for (cluster . remaining-clusters) on *handler-clusters*

 do (let ((*handler-clusters* remaining-clusters))

 (dolist (handler cluster)

 (when (typep condition (car handler))

 (funcall (cdr handler) condition)))))))

It is interesting to note that *handler-clusters* is being rebound as the loop inside

signal progresses. This rebinding is required in order to implement the clustering

mechanism required by handlers: a handler invoked from a given cluster may only see

handlers that are “older” than itself, and this behavior is implemented by dynamically

binding *handler-clusters* to the list of all handler clusters “older” than the cluster that

the currently invoked handler belongs to.

Even though we do not have any defined standard means of binding handlers,

we may nonetheless bind *handler-clusters* manually in order to test our signal

implementation. We will perform this now.

PCS> (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 �(handler-2 (condition) (format t ";; Also got a ~S.~%" condition))

 �(handler-3 (condition) (format t ";; I too got a ~S.~%" condition)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1)

 (error . ,#'handler-2))

 ((condition . ,#'handler-3)))))

 (signal (make-condition 'condition))))

;; Got a #<CONDITION {100E885C63}>.

;; I too got a #<CONDITION {100E885C63}>.

NIL

PCS> (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (format t ";; Also got a ~S.~%" condition))

 (handler-3 (condition) (format t ";; I too got a ~S.~%" condition)))

Chapter 3 Implementing the Common Lisp condition system

192

 (let ((*handler-clusters* `(((condition . ,#'handler-1)

 (error . ,#'handler-2))

 ((condition . ,#'handler-3)))))

 (signal (make-condition 'error))))

;; Got a #<ERROR {100E9455D3}>.

;; Also got a #<ERROR {100E9455D3}>.

;; I too got a #<ERROR {100E9455D3}>.

NIL

We can now define warn, which will call signal as a part of its operation. It utilizes

check-type to ensure that the condition passed to the function is a warning condition,

as mandated by the standard: then, it establishes its muffle-warning restart, signals the

condition, and reports the condition if the signaling did not cause a transfer of control.

(defun warn (datum &rest arguments)

 (let ((condition (coerce-to-condition datum arguments 'simple-warning 'warn)))

 (check-type condition warning)

 (with-simple-restart (muffle-warning "Muffle the warning.")

 (signal condition)

 (format *error-output* "~&;; Warning: ~A~%" condition))

 nil))

(The nil at the end is required by the standard, since warn must return nil as its

only value if it returns normally; with-simple-restart will return an additional t as the

secondary value if its restart was invoked.)

Let us now test the three basic cases: when the warning is not muffled, when muffle-

warning is called, and when control is transferred outside the handler function (as if in

handler-case).

PCS> (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (format t ";; Also got a ~S.~%" condition)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1))

 ((warning . ,#'handler-2)))))

 (warn (make-condition 'warning))))

;; Got a #<WARNING {100F669063}>.

;; Also got a #<WARNING {100F669063}>.

;; Warning: Condition WARNING was signaled.

NIL

Chapter 3 Implementing the Common Lisp condition system

193

PCS> (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 �(handler-2 (condition) (declare (ignore condition)) (muffle-warning)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1))

 ((warning . ,#'handler-2)))))

 (warn (make-condition 'warning))))

;; Got a #<WARNING {100F78B153}>.

NIL

PCS> (block nil

 (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (declare (ignore condition)) (return 42)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1))

 ((warning . ,#'handler-2)))))

 (warn (make-condition 'warning)))))

;; Got a #<WARNING {100F5CDB63}>.

42

Finally, we may implement error (which redefines the earlier stub definition of same)

and cerror. error signals the condition object before entering the debugger, and cerror

calls error with an established simple restart named continue.

(defun error (datum &rest arguments)

 (let ((condition (coerce-to-condition datum arguments 'simple-error 'error)))

 (signal condition)

 (invoke-debugger condition)))

(defun cerror (continue-string datum &rest arguments)

 (with-simple-restart (continue "~A" (apply #'format nil continue-string arguments))

 (apply #'error datum arguments))

 nil)

Once again, we have run into bootstrapping issues: we have not yet defined the

debugger, so we are unable to invoke it. We will work around the issue in a similar way:

we shall stub the debugger out and have it transfer control via throw.

(defun invoke-debugger (condition)

 (format *error-output* ";; Debugger entered: ~A~%" condition)

 (throw :error nil))

Chapter 3 Implementing the Common Lisp condition system

194

A proper implementation of the debugger will come in the next sections. Until then,

we can test it with a catch tag and by manually binding condition handlers:

PCS> (catch :error

 (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (format t ";; Also got a ~S.~%" condition))

 (handler-3 (condition) (format t ";; I too got a ~S.~%" condition)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1)

 (error . ,#'handler-2)

 (condition . ,#'handler-3)))))

 (error (make-condition 'error)))))

;; Got a #<ERROR {10100CE1F3}>.

;; Also got a #<ERROR {10100CE1F3}>.

;; I too got a #<ERROR {10100CE1F3}>.

;; Debugger entered: Condition ERROR was signaled.

NIL

PCS> (block nil

 (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (declare (ignore condition)) (return)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1))

 ((error . ,#'handler-2)))))

 (error (make-condition 'error)))))

;; Got a #<ERROR {1012A78233}>.

NIL

Now that we can manually bind handlers, we may also begin testing our restarts—

starting with the continue restart established by cerror and then performing a tiny test of

restart-bind:

PCS> (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (continue condition)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1))

 ((error . ,#'handler-2)))))

 (cerror "Continue." (make-condition 'error))

 42))

;; Got a #<ERROR {1012DAD8B3}>.

42

Chapter 3 Implementing the Common Lisp condition system

195

PCS> (restart-bind ((foo (lambda () (format t ";; Restart FOO was invoked.~%"))))

 �(flet ((handler-1 (condition) (declare (ignore condition)) (invoke-restart 'foo)))

 (let ((*handler-clusters* `(((condition . ,#'handler-1)))))

 (signal (make-condition 'condition)))))

;; Restart FOO was invoked.

NIL

3.10  �Handlers
We defined our variable for handler clusters while implementing signal, and our testing

with manually binding *handler-clusters* showed that our signaling infrastructure is

working well. We can therefore immediately proceed with writing the handler-bind macro,

which is—maybe unsurprisingly—similar to our previous implementation of restart-

bind.

3.10.1  �Binding handlers
(defun handler-bind-make-binding (binding)

 (destructuring-bind (condition-type function) binding

 `(cons ',condition-type ,function)))

(defun expand-handler-bind (bindings forms)

 (let ((cluster (mapcar #'handler-bind-make-binding bindings)))

 `(let ((*handler-clusters* (cons (list ,@cluster) *handler-clusters*)))

 ,@forms)))

(defmacro handler-bind (bindings &body forms)

 (expand-handler-bind bindings forms))

Other than the function and macro names, the only distinct things are the form of

a handler binding (which must have exactly two elements: the condition type and the

handler function) and the fact that handlers themselves are not structures, but conses.

We can immediately put this macro to use by rewriting some of the signaling test

cases from earlier to use handler-bind—and to test the restarts of restart-case, as we

promised in the earlier chapters.

PCS> (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (format t ";; Also got a ~S.~%" condition))

 (handler-3 (condition) (format t ";; I too got a ~S.~%" condition)))

Chapter 3 Implementing the Common Lisp condition system

196

 (handler-bind ((condition #'handler-3))

 (handler-bind ((condition #'handler-1)

 (error #'handler-2))

 (signal (make-condition 'error)))))

;; Got a #<ERROR {1013AFF0C3}>.

;; Also got a #<ERROR {1013AFF0C3}>.

;; I too got a #<ERROR {1013AFF0C3}>.

NIL

PCS> (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 �(handler-2 (condition) (declare (ignore condition)) (muffle-warning)))

 (handler-bind ((condition #'handler-1)

 (warning #'handler-2))

 (warn (make-condition 'warning))))

;; Got a #<WARNING {1013BB1E23}>.

NIL

PCS> (block nil

 (flet ((handler-1 (condition) (format t ";; Got a ~S.~%" condition))

 (handler-2 (condition) (declare (ignore condition)) (return)))

 (handler-bind ((condition #'handler-1)

 (error #'handler-2))

 (error (make-condition 'error)))))

;; Got a #<ERROR {1013E3C563}>.

NIL

PCS> (handler-bind ((error (lambda (condition)

 �(let ((restart (find-restart 'return-42 condition)))

 (invoke-restart restart)))))

 (restart-case (error "Failure!")

 (return-42 ()

 :test (lambda (condition) (typep condition 'error))

 :report report-return-42

 42)))

42

3.10.2  �Handler cases
With a working handler-bind, we can begin working on getting a working handler-case.

This operator is, thankfully, simpler than restart-case, but it nonetheless introduces one

piece of functionality that is completely new: the :no-error case, which is called when

Chapter 3 Implementing the Common Lisp condition system

197

the expression passed to handler-case returns normally. Our handler-case implementation

will therefore be split into two parts: one which implements the normal, non-:no-error

behavior and another which handles the :no-error case.

The :no-error case is only run if the expression from handler-case returns normally,

and therefore no handlers are triggered. Therefore, it is possible to separate the :no-error

case and express it via additional code that calls the “standard” handler-case which does

not contain a :no-error case.

(defun expand-handler-case-with-no-error-case (form cases)

 (let* ((no-error-case (assoc :no-error cases))

 (other-cases (remove no-error-case cases))

 (normal-return (gensym "NORMAL-RETURN"))

 (case-return (gensym "CASE-RETURN")))

 `(block ,case-return

 (multiple-value-call (lambda ,@(cdr no-error-case))

 (block ,normal-return

 (return-from ,case-return

 (handler-case (return-from ,normal-return ,form)

 ,@other-cases)))))))

First of all, we separate the :no-error case from all other cases, and we generate a

pair of block names for the two blocks that we establish. The two blocks are nested and

intersect with each other: the form that was originally passed to handler-case is wrapped

in a return-from that triggers a return from the normal-return block, and the values of that

form are then passed as arguments to the function created from the :no-error case.

The recursive handler-case call is wrapped in a return-from that triggers a return to the

outermost case-return; this utilizes the fact that the full handler-case is now going to return

a value if and only if any of the handler cases have been triggered and control has been

routed out of the original expression.

PCS> (expand-handler-case-with-no-error-case

 '(+ 2 2)

 '((error () (format t ";; Oops~%"))

 (:no-error (x) (format t ";; Got ~A~%" x))))

(BLOCK #:CASE-RETURN1082

 (MULTIPLE-VALUE-CALL (LAMBDA (X) (FORMAT T ";; Got ~A~%" X))

 (BLOCK #:NORMAL-RETURN1081

 (RETURN-FROM #:CASE-RETURN1082

 (HANDLER-CASE (RETURN-FROM #:NORMAL-RETURN1081 (+ 2 2))

 (ERROR NIL (FORMAT T ";; Oops~%")))))))

Chapter 3 Implementing the Common Lisp condition system

198

This function will be called if and only if a :no-error case is present among the cases

passed to handler-case, which means that now we may focus on implementing the

“standard” situation—where all the cases have condition types for which control shall be

transferred and a case should be executed.

The internal structure for our handler-case macro is going to be similar to our first

iteration of restart-case. We will want to annotate our cases with a unique tag; we will

want to generate handler bindings and handler cases; finally, we will want the main

body of our macroexpansion to have a block for returning values from, a temporary

variable for passing arguments around, and a tagbody that will allow transferring control

to the handler cases.

(defun handler-case-parse-case (case)

 (destructuring-bind (type lambda-list . forms) case

 (let ((tag (gensym "HANDLER-TAG")))

 (list tag type lambda-list forms))))

(defun handler-case-make-handler-binding (case temp-var)

 (destructuring-bind (tag type lambda-list forms) case

 (declare (ignore forms))

 (let ((condition (gensym "CONDITION")))

 `(,type (lambda (,condition)

 (declare (ignorable ,condition))

 ,@(when lambda-list `((setf ,temp-var ,condition)))

 (go ,tag))))))

(defun handler-case-make-handler-case (case temp-var block-name)

 (destructuring-bind (tag type lambda-list body) case

 (declare (ignore type))

 `(,tag (return-from ,block-name

 ,(if lambda-list

 `(let ((,(first lambda-list) ,temp-var)) ,@body)

 `(locally ,@body))))))

One thing that is different in the functions that generate bindings and cases is the

fact that the lambda list is simpler in handler-case; the only permitted values are an

empty list (if we do not want to use the signaled condition) and a list containing one

symbol (if we do want to use it). In the former case, no binding for the condition object

is made, and in the latter, a let is introduced to bind the variable. Because of this simpler

structure, the handler case expands into a locally or let instead of into a lambda form.

Chapter 3 Implementing the Common Lisp condition system

199

Let us briefly test these functions to ensure that they return values that we would

expect them to return.

PCS> (handler-case-parse-case '(error (c) (format t ";; Error: ~A" c)))

(#:HANDLER-TAG1143 ERROR (C) ((FORMAT T ";; Error: ~A" C)))

PCS> (let ((case (handler-case-parse-case '(error (c) (format t ";; Error: ~A" c)))))

 (handler-case-make-handler-binding case 'temp-var))

(ERROR (LAMBDA (#:CONDITION1145)

 (DECLARE (IGNORABLE #:CONDITION1145))

 (SETF TEMP-VAR #:CONDITION1145)

 (GO #:HANDLER-TAG1144)))

PCS> (let ((case (handler-case-parse-case '(error (c) (format t ";; Error: ~A" c)))))

 (handler-case-make-handler-case case 'temp-var 'block-name))

(#:HANDLER-TAG1146

 (RETURN-FROM BLOCK-NAME

 (LET ((C TEMP-VAR))

 (FORMAT T ";; Error: ~A" C))))

We can now write a function that expands into the full handler-case body.

(defun expand-handler-case-without-no-error-case (form cases)

 (let ((block-name (gensym "HANDLER-CASE-BLOCK"))

 (temp-var (gensym "HANDLER-CASE-VAR"))

 (data (mapcar #'handler-case-parse-case cases)))

 (flet ((make-handler-binding (case)

 (handler-case-make-handler-binding case temp-var))

 (make-handler-case (case)

 (handler-case-make-handler-case case temp-var block-name)))

 `(let ((,temp-var nil))

 (declare (ignorable ,temp-var))

 (block ,block-name

 (tagbody

 (handler-bind ,(mapcar #'make-handler-binding data)

 (return-from ,block-name ,form))

 ,@(apply #'append (mapcar #'make-handler-case data))))))))

The similarities between expand-handler-case-without-no-error-case and expand-

restart-case should be visible almost immediately; because of this similarity, we will not

comment on this expansion function any further and instead skip straight to testing its

expansion in the REPL:

Chapter 3 Implementing the Common Lisp condition system

200

PCS> (expand-handler-case-without-no-error-case

 '(signal 'warning)

 '((error (c) (format t ";; Error: ~A~%" c))

 (warning (c) (format t ";; Warning: ~A~%" c))

 (condition () (format t ";; Condition!~%"))))

(LET ((#:HANDLER-CASE-VAR1153 NIL))

 (DECLARE (IGNORABLE #:HANDLER-CASE-VAR1153))

 (BLOCK #:HANDLER-CASE-BLOCK1152

 (TAGBODY

 (HANDLER-BIND ((ERROR (LAMBDA (#:CONDITION1157)

 (DECLARE (IGNORABLE #:CONDITION1157))

 (SETF #:HANDLER-CASE-VAR1153 #:CONDITION1157)

 (GO #:HANDLER-TAG1154)))

 (WARNING (LAMBDA (#:CONDITION1158)

 (DECLARE (IGNORABLE #:CONDITION1158))

 (SETF #:HANDLER-CASE-VAR1153 #:CONDITION1158)

 (GO #:HANDLER-TAG1155)))

 (CONDITION (LAMBDA (#:CONDITION1159)

 (DECLARE (IGNORABLE #:CONDITION1159))

 (GO #:HANDLER-TAG1156))))

 (RETURN-FROM #:HANDLER-CASE-BLOCK1152 (SIGNAL 'WARNING)))

 #:HANDLER-TAG1154

 (RETURN-FROM #:HANDLER-CASE-BLOCK1152

 (LET ((C #:HANDLER-CASE-VAR1153))

 (FORMAT T ";; Error: ~A~%" C)))

 #:HANDLER-TAG1155

 (RETURN-FROM #:HANDLER-CASE-BLOCK1152

 (LET ((C #:HANDLER-CASE-VAR1153))

 (FORMAT T ";; Warning: ~A~%" C)))

 #:HANDLER-TAG1156

 (RETURN-FROM #:HANDLER-CASE-BLOCK1152

 (LOCALLY (FORMAT T ";; Condition!~%"))))))

We have a pair of functions that expand handler-case in the presence of a :no-error

case and in its absence. We now need a function that will detect which case to use

and choose one expanding function or the other. Since this is going to be the ultimate

expanding function of handler-case, we may also define our macro at the same time:

Chapter 3 Implementing the Common Lisp condition system

201

(defun expand-handler-case (form cases)

 (if (member :no-error cases :key #'car)

 (expand-handler-case-with-no-error-case form cases)

 (expand-handler-case-without-no-error-case form cases)))

(defmacro handler-case (form &rest cases)

 (expand-handler-case form cases))

Now that we have these, we may check our macroexpansions one final time and then

run basic tests in our REPL:

PCS> (expand-handler-case

 '(signal 'warning)

 '((warning () (format t ";; Warning!~%"))))

(LET ((#:HANDLER-CASE-VAR1104 NIL))

 (DECLARE (IGNORABLE #:HANDLER-CASE-VAR1104))

 (BLOCK #:HANDLER-CASE-BLOCK1103

 (TAGBODY

 (HANDLER-BIND ((WARNING (LAMBDA (#:CONDITION1106)

 (DECLARE (IGNORABLE #:CONDITION1106))

 (GO #:HANDLER-TAG1105))))

 (RETURN-FROM #:HANDLER-CASE-BLOCK1103 (SIGNAL 'WARNING)))

 #:HANDLER-TAG1105

 �(RETURN-FROM #:HANDLER-CASE-BLOCK1103 (LOCALLY (FORMAT T ";; Warning!~%"))))))

PCS> (expand-handler-case

 '(signal 'condition)

 '((warning () (format t ";; Warning!~%"))

 �(:no-error (&rest args) (declare (ignore args)) (format t ";; No error!~%"))))

(BLOCK #:CASE-RETURN1116

 (MULTIPLE-VALUE-CALL

 (LAMBDA (&REST ARGS) (DECLARE (IGNORE ARGS)) (FORMAT T ";; No error!~%"))

 (BLOCK #:NORMAL-RETURN1115

 (RETURN-FROM #:CASE-RETURN1116

 (HANDLER-CASE (RETURN-FROM #:NORMAL-RETURN1115 (SIGNAL 'CONDITION))

 (WARNING NIL (FORMAT T ";; Warning!~%")))))))

PCS> (handler-case (signal 'warning)

 (warning () (format t ";; Warning!~%")))

;; Warning!

NIL

Chapter 3 Implementing the Common Lisp condition system

202

PCS> (handler-case (signal 'condition)

 (warning () (format t ";; Warning!~%"))

 �(:no-error (&rest args) (declare (ignore args)) (format t ";; No error!~%")))

;; No error!

NIL

Expanding and testing the final handling macro—ignore-errors—is left as an exercise

for the reader.

(defmacro ignore-errors (&rest forms)

 `(handler-case (progn ,@forms)

 (error (condition) (values nil condition))))

3.10.3  �Testing assertions
Now that we are nearing the end of this chapter, it is time to fulfill an old promise. In

the earlier chapters, we were unable to test our restart-binding assertions properly,

since we were missing a vital component used to connect conditions and restarts. That

component—handlers—is available now, which means that we are capable of testing all

four of these assertions.

PCS> (handler-bind ((error (lambda (condition) (store-value 42 condition))))

 (let ((x 24))

 (ccase x (42 :ok))))

:OK

PCS> (handler-bind ((error (lambda (condition) (store-value 42 condition))))

 (let ((x :forty-two))

 (ctypecase x (integer :ok))))

:OK

PCS> (handler-bind ((error (lambda (condition) (store-value 42 condition))))

 (let ((x :forty-two))

 (check-type x integer)))

NIL

PCS> (handler-bind ((error (lambda (condition) (continue condition))))

 (let ((x :forty-two))

 (assert (typep x 'integer) (x))))

Chapter 3 Implementing the Common Lisp condition system

203

;; The old value of X is :FORTY-TWO.

;; Do you want to supply a new value? (y or n) y ; user input here

;; Type a form to be evaluated:

;; (The old value is bound to the symbol X.)

42 ; user input here

NIL

3.11  �A featureful debugger
Our condition system is, at this point, more or less complete: we have fully working

conditions, handlers, and restarts. The only missing piece that we have stubbed out

is the function invoke-debugger that is supposed to call the system debugger to help the

programmer handle an otherwise unhandled condition. We will now implement our

debugger function and test it piece by piece, finishing our implementation by writing

invoke-debugger along with *debugger-hook* and break as soon as we are done.

We will define our debugger in terms of actions that should be possible to perform

within the debugger. For example, it should be possible to evaluate arbitrary Lisp forms,

to report and return the condition with which the debugger has been entered, and to

list and invoke available restarts. We can notice that these commands are fully driven by

input from the programmer—the debugger should first receive a command that informs

the debugger what kind of action it should take, and then, after accepting any additional

data, it should perform that command.

The reader may note that we have already implemented a simple debugger in the

first part of the book. This chapter will build on the knowledge from there, implementing

a more complex and well-structured debugger system than the one we produced earlier.

3.11.1  �Debugger commands
Let us model our commands via CL methods. In order to remain modular, each

command should receive a possibly full set of information accessible to our debugger,

that is, the command name itself, a debug stream from which it should receive input and

to which it should print, the condition object that was invoked, and an optional list of

additional arguments for which the command would otherwise need to prompt the user.

Chapter 3 Implementing the Common Lisp condition system

204

Let us define the run-debugger-command generic function along with its base case—a

command that has not been recognized by the debugger.

(defgeneric run-debugger-command (command stream condition &rest arguments))

(defmethod run-debugger-command (command stream condition &rest arguments)

 (declare (ignore arguments))

 (format stream "~&;; ~S is not a recognized command.

;; Type :HELP for available commands.~%" command))

A brief test in the REPL shows us how this function is going to be used:

PCS> (run-debugger-command :foo *debug-io* (make-condition 'condition))

;; :FOO is not a recognized command.

;; Type :HELP for available commands.

NIL

In order to have the function recognize individual commands, which are going to

be Lisp keywords, we are going to use a mechanism called eql specializers; they make

it possible to create methods that specialize on individual Lisp objects and are allowed

to be called when the argument to the generic function is eql to the object that is eql-

specialized on. Lisp keywords are comparable via eql; therefore, they are a suitable fit for

such a mechanism.

We are free to define commands by using defmethod and manually parsing the

optional argument list, but for multiple commands, this might become unwieldy. It

will be beneficial for us to introduce a more declarative way of defining new debugger

commands that hides the implementation details from us; it would accept the command

name, the stream and condition arguments and an optional list of arguments in its

lambda list, and a set of forms to be executed.

Let us therefore define a macro that abstracts away this syntax; we will name it

define-command.

(defmacro define-command (name (stream condition &rest arguments) &body body)

 (let ((command-var (gensym "COMMAND"))

 (arguments-var (gensym "ARGUMENTS")))

 `(defmethod run-debugger-command

 ((,command-var (eql ,name)) ,stream ,condition &rest ,arguments-var)

 (destructuring-bind ,arguments ,arguments-var ,@body))))

Chapter 3 Implementing the Common Lisp condition system

205

We can see that this macro is a wrapper around defmethod that creates a new

method with an eql specializer on the name that we provide. In addition, it automatically

destructures arguments-var into arguments, meaning that we will be able to provide

arbitrary optional arguments inside define-command’s lambda list.

3.11.2  �Evaluating Lisp forms
Let us demonstrate the preceding macrology on the first command that the user should

encounter upon merely entering the debugger:

(defvar *debug-level* 0)

(define-command :eval (stream condition &optional form)

 (let ((level *debug-level*))

 (with-simple-restart (abort "Return to debugger level ~D." level)

 (let* ((real-form (or form (read stream)))

 (- real-form)

 (values (multiple-value-list (eval real-form))))

 (format stream "~&~{~S~^~%~}" values)

 (values values real-form)))))

We have defined a new dynamic variable that will be rebound by the main debugger

function to state the current debugger level. Inside our define-command :eval form, we

immediately use the current value of that variable to define a simple restart that will

allow the programmer to return immediately to the current level of the debugger. Once

inside, we either use the Lisp form that was passed via the optional argument or read

it from the stream. We bind the REPL variable - to the form that we are processing (we

will define later what a REPL variable is), and we evaluate that form, memorizing all

values returned by it onto a list. We then print all the values to the stream and return

these values and the form which we have actually evaluated, the reason for which will be

explained at the end of the debugger chapter.

PCS> (let ((*debug-level* 3))

 (run-debugger-command :eval *debug-io* (make-condition 'error)

 '(+ 2 2)))

4 ; printed

(4) ; returned

(+ 2 2) ; returned

Chapter 3 Implementing the Common Lisp condition system

206

PCS> (let ((*debug-level* 3))

 (run-debugger-command :eval *debug-io* (make-condition 'error)

 '(values 1 2 3)))

1 ; printed

2 ; printed

3 ; printed

(1 2 3) ; returned

(VALUES 1 2 3) ; returned

PCS> (let ((*debug-level* 3))

 (run-debugger-command :eval *debug-io* (make-condition 'error)))

(* 42 42) ; user input here

1764 ; printed

(1764) ; returned

(* 42 42) ; returned

(Previously, we have been taking care to prepend all output printed by our code with

;;. In the preceding example, that is not the case; we have therefore introduced additional

comments that show which values were printed by the :eval command, which values

were returned by the function call, and which values were manually input by the user.)

3.11.3  �Reporting and returning conditions
Another important thing inside the debugger is having the user realize that a debugger

has been entered and informing them why it was entered: therefore, we need to report

the condition to the user.

(defun split (string)

 (loop for start = 0 then (1+ end)

 for end = (position #\Newline string :start start)

 collect (subseq string start end)

 while end))

(define-command :report (stream condition &optional (level *debug-level*))

 �(format stream "~&;; Debugger level ~D entered on ~S:~%" level (type-of condition))

 (handler-case (let* ((report (princ-to-string condition)))

 (format stream "~&~{;; ~A~%~}" (split report)))

 (error () (format stream "~&;; #<error while reporting condition>~%"))))

We have defined a small helper function to split a string by newline characters that

will help us report multi-line conditions. Finally, inside the method, we inform the

Chapter 3 Implementing the Common Lisp condition system

207

programmer that the debugger has been entered, and either report the condition to the

stream, or—in case an error has been signaled while reporting the condition—we inform

the programmer about that fact.

Seeing the macroexpansion of that define-command form may help to understand how

it works under the hood:

(DEFMETHOD RUN-DEBUGGER-COMMAND

 ((#:COMMAND1216 (EQL :REPORT)) STREAM CONDITION &REST #:ARGUMENTS1217)

 (DESTRUCTURING-BIND (&OPTIONAL (LEVEL *DEBUG-LEVEL*)) #:ARGUMENTS1217

 �(FORMAT STREAM "~&;; Debugger level ~D entered on ~S:~%" LEVEL (TYPE-OF CONDITION))

 (HANDLER-CASE (LET* ((REPORT (PRINC-TO-STRING CONDITION)))

 (FORMAT STREAM "~&~{;; ~A~%~}" (SPLIT REPORT)))

 �(ERROR NIL (FORMAT STREAM "~&;; #<error while reporting condition>~%")))))

We can now test this command in the REPL to simulate entering the level 3 debugger

with an error condition.

PCS> (let ((*debug-level* 3))

 (run-debugger-command :report *debug-io* (make-condition 'error)))

;; Debugger level 3 entered on ERROR:

;; Condition ERROR was signaled.

NIL

Since our debugger is going to have a REPL, it will be beneficial to be able to

pass the condition object with which the debugger was entered into the REPL, so the

programmer may interact with it.

(define-command :condition (stream condition)

 (run-debugger-command :eval stream condition condition))

Here, we invoke one command from another command. This is to reuse existing

code that we have written moments ago: we utilize the fact that condition objects are self-

evaluating and therefore evaluating them again is a no-op and that the :eval command

prints its value to the REPL before returning.

PCS> (let ((condition (make-condition 'error)))

 (run-debugger-command :condition *debug-io* condition))

#<ERROR {1011E31A23}> ; printed

(#<ERROR {1011E31A23}>) ; returned

#<ERROR {1011E31A23}> ; returned

Chapter 3 Implementing the Common Lisp condition system

208

(The condition object will be accessible in the REPL after invoking this command,

since it will immediately be bound to the REPL variable * by the function that

implements the REPL; we will explain this mechanism later in the book.)

3.11.4  �Listing and invoking restarts
We have now implemented the basic interaction with the condition object with

which the debugger has been entered. We may move to the next important part of the

debugger: allowing the programmer to list and invoke individual restarts.

(defun restart-max-name-length (restarts)

 (flet ((name-length (restart) (length (string (restart-name restart)))))

 (if restarts (reduce #'max (mapcar #'name-length restarts)) 0)))

(define-command :restarts (stream condition)

 (let ((restarts (compute-restarts condition)))

 (cond (restarts

 (format stream "~&;; Available restarts:~%")

 (loop with max-name-length = (restart-max-name-length restarts)

 for i from 0

 for restart in restarts

 for report = (handler-case (princ-to-string restart)

 �(error () "#<error while reporting restart>"))

 for restart-name = (or (restart-name restart) "")

 do (format stream ";; ~2,' D: [~vA] ~A~%"

 i max-name-length restart-name report)))

 (t (format stream "~&;; No available restarts.~%")))))

The preceding command implements printing the list of all restarts. The big loop

form is used to print the number, name, and report of each restart. The helper function

restart-max-name-length is used for computing the maximum length of restart names; it is

used along with the complex format form in order to provide an aesthetically pleasing list

of restarts. If no restarts whatsoever are available, then we also inform the programmer

of this.

PCS> (run-debugger-command :restarts *debug-io* (make-condition 'error))

;; No available restarts.

NIL

Chapter 3 Implementing the Common Lisp condition system

209

PCS> (restart-case (run-debugger-command :restarts *debug-io* (make-condition 'error))

 (abort () :report "Abort the operation." :abort)

 (retry () :report "Retry the operation." :retry)

 (refrobnicate () :report "Refrobnicate the operands." :refrobnicate))

;; Available restarts:

;; 0: [ABORT] Abort the operation.

;; 1: [RETRY] Retry the operation.

;; 2: [REFROBNICATE] Refrobnicate the operands.

NIL

The restarts have assigned numbers, which will be used to invoke the restarts in

question. Let us define a debugger command that will invoke a restart with the given

number.

(define-command :restart (stream condition &optional n)

 (let* ((n (or n (read stream)))

 (restart (nth n (compute-restarts condition))))

 (if restart

 (invoke-restart-interactively restart)

 (format stream "~&;; There is no restart with number ~D.~%" n))))

We can test it in both its interactive and non-interactive forms:

PCS> (restart-case (run-debugger-command :restart *debug-io* (make-condition 'error) 0)

 (abort () :report "Abort the operation." :abort)

 (retry () :report "Retry the operation." :retry)

 (refrobnicate () :report "Refrobnicate the operands." :refrobnicate))

:ABORT

PCS> (restart-case (run-debugger-command :restart *debug-io* (make-condition 'error))

 (abort () :report "Abort the operation." :abort)

 (retry () :report "Retry the operation." :retry)

 (refrobnicate () :report "Refrobnicate the operands." :refrobnicate))

2 ; user input here

:REFROBNICATE

PCS> (restart-case (run-debugger-command :restart *debug-io* (make-condition 'error) 42)

 (abort () :report "Abort the operation." :abort)

 (retry () :report "Retry the operation." :retry)

 (refrobnicate () :report "Refrobnicate the operands." :refrobnicate))

;; There is no restart with number 42.

NIL

Chapter 3 Implementing the Common Lisp condition system

210

In addition, we will provide four commands for the most commonly used standard

restarts: abort and continue. In order to abort, the programmer can use :abort or :q; in

order to continue, the programmer can use :continue or :c.

(defun debugger-invoke-restart (name stream condition)

 (let ((restart (find-restart name condition)))

 (if restart

 (invoke-restart-interactively restart)

 (format stream "~&;; There is no active ~A restart.~%" name))))

(define-command :abort (stream condition)

 (debugger-invoke-restart 'abort stream condition))

(define-command :q (stream condition)

 (debugger-invoke-restart 'continue stream condition))

(define-command :continue (stream condition)

 (debugger-invoke-restart 'continue stream condition))

(define-command :c (stream condition)

 (debugger-invoke-restart 'continue stream condition))

A series of very brief REPL tests follows in order to verify that these commands work

correctly.

PCS> (restart-case (run-debugger-command :abort *debug-io* (make-condition 'error))

 (abort () :report "Abort the operation." :abort)

 (continue () :report "Continue the operation." :continue))

:ABORT

PCS> (restart-case (run-debugger-command :q *debug-io* (make-condition 'error))

 (abort () :report "Abort the operation." :abort)

 (continue () :report "Continue the operation." :continue))

:ABORT

PCS> (restart-case (run-debugger-command :continue *debug-io* (make-condition 'error))

 (abort () :report "Abort the operation." :abort)

 (continue () :report "Continue the operation." :continue))

:CONTINUE

PCS> (restart-case (run-debugger-command :c *debug-io* (make-condition 'error))

 (abort () :report "Abort the operation." :abort)

 (continue () :report "Continue the operation." :continue))

:CONTINUE

Chapter 3 Implementing the Common Lisp condition system

211

3.11.5  �Debugger help and REPL
The preceding commands will not be helpful for the programmer if the programmer

does not know about them. Therefore, we need a help command that will list all the

available commands.

(define-command :help (stream condition)

 (format stream "~&~

;; This is the standard debugger of the Common Lisp Condition System.

;; The debugger read-eval-print loop supports the standard REPL variables:

;; * ** *** + ++ +++ / // /// -

;;

;; Available debugger commands:

;; :HELP Show this text.

;; :EVAL <form> Evaluate a form typed after the :EVAL command.

;; :REPORT Report the condition the debugger was invoked with.

;; :CONDITION Return the condition the debugger was invoked with.

;; :RESTARTS Print available restarts.

;; :RESTART <n>, <n> Invoke a restart with the given number.")

 (when (find-restart 'abort condition)

 (format stream "~&;; :ABORT, :Q Invoke an ABORT restart.~%"))

 (when (find-restart 'continue condition)

 (format stream "~&;; :CONTINUE, :C Invoke a CONTINUE restart.~%"))

 (format stream "~&~

;;

;; Any non-keyword non-integer form is evaluated.~%"))

Other than being very output-heavy, the only interesting thing about this function

is that it checks for the visibility of any abort and continue restarts and only lists the

respective commands if these restarts are available for invocation. We may verify if that

last part is true.

PCS> (run-debugger-command :help *debug-io* (make-condition 'error))

;; This is the standard debugger of the Common Lisp Condition System.

;; The debugger read-eval-print loop supports the standard REPL variables:

;; * ** *** + ++ +++ / // /// -

;;

;; Available debugger commands:

;; :HELP Show this text.

;; :EVAL <form> Evaluate a form typed after the :EVAL command.

Chapter 3 Implementing the Common Lisp condition system

212

;; :REPORT Report the condition the debugger was invoked with.

;; :CONDITION Return the condition the debugger was invoked with.

;; :RESTARTS Print available restarts.

;; :RESTART <n>, <n> Invoke a restart with the given number.

;;

;; Any non-keyword non-integer form is evaluated.

NIL

PCS> (restart-case (run-debugger-command :help *debug-io* (make-condition 'error))

 (abort () :report "Abort the operation." :abort)

 (continue () :report "Continue the operation." :continue))

;; This is the standard debugger of the Common Lisp Condition System.

;; The debugger read-eval-print loop supports the standard REPL variables:

;; * ** *** + ++ +++ / // /// -

;;

;; Available debugger commands:

;; :HELP Show this text.

;; :EVAL <form> Evaluate a form typed after the :EVAL command.

;; :REPORT Report the condition the debugger was invoked with.

;; :CONDITION Return the condition the debugger was invoked with.

;; :RESTARTS Print available restarts.

;; :RESTART <n>, <n> Invoke a restart with the given number.

;; :ABORT, :Q Invoke an ABORT restart.

;; :CONTINUE, :C Invoke a CONTINUE restart.

;;

;; Any non-keyword non-integer form is evaluated.

NIL

3.11.5.1  �REPL variables

The help screen mentions REPL variables, a term which we have used before. Let us

make a very quick introduction to them, since we will want our REPL to implement that

functionality.

The REPL variables are a set of ten symbols: *, **, ***, +, ++, +++, /, //, ///, and -. They

are bound by the CL REPL for utility purposes. The *-variables contain the results of

evaluating the last three expressions, the +-variables contain the expressions themselves,

the /-variables contain lists of all values returned by the three expressions, and - contains

the expression that is being evaluated right now. If there were no previous REPL

expressions, these variables are bound to nil.

Chapter 3 Implementing the Common Lisp condition system

213

Let us demonstrate this in the REPL:

PCS> (+ 2 2)

4

PCS> (let ((x 42)) (check-type x integer))

NIL

PCS> (values :foo :bar :baz)

:FOO

:BAR

:BAZ

PCS> (list (list * / +) (list ** // ++) (list *** /// +++) -)

((:FOO ; *

 (:FOO :BAR :BAZ) ; /

 (VALUES :FOO :BAR :BAZ)) ; +

 (NIL ; **

 (NIL) ; //

 (LET ((X 42)) (CHECK-TYPE X INTEGER))) ; ++

 (4 ; ***

 (4) ; ///

 (+ 2 2)) ; +++

 (LIST (LIST * / +) (LIST ** // ++) (LIST *** /// +++) -) ; -

)

In order to provide the programmer with a pleasant REPL experience, we will need to

account for setting these variables in our REPL. Since our debugger is meant to be used

interactively, we will assume that the host’s REPL has already established its bindings for

these REPL values; therefore, we will only set them and not create new bindings for them.

3.11.5.2  �Debugger read-eval-print step

Once the debugger has started and is ready to accept input from the programmer, we will

want to print a prompt that will inform the user (i.e., the programmer) that we are ready

to accept input from them. Afterward, we will read a form provided by them and check

its type. If it is a keyword, it shall denote a debugger command to be invoked; if it is an

integer, it shall denote the restart that should be invoked. If it is any other kind of form, it

shall be equivalent to invoking the :eval command on that form.

Chapter 3 Implementing the Common Lisp condition system

214

(defun read-eval-print-command (stream condition)

 (format stream "~&[~D] Debug> "*debug-level*)

 (let* ((thing (read stream)))

 (multiple-value-bind (values actual-thing)

 (typecase thing

 (keyword (run-debugger-command thing stream condition))

 (integer (run-debugger-command :restart stream condition thing))

 (t (run-debugger-command :eval stream condition thing)))

 (unless actual-thing (setf actual-thing thing))

 (prog1 values

 (shiftf /// // / values)

 (shiftf *** ** * (first values))

 (shiftf +++ ++ + actual-thing)))))

We can see that we bind the two values returned by run-debugger-command. While

the role of values is clear in the preceding code, the role of actual-thing needs a bit of

comment. This value is returned only from certain commands, and when it is returned, it

supersedes the form that was input into the REPL. This is, for example, so the user, upon

typing :eval (+ 2 2) in the debugger, receives a more friendly (+ 2 2) form bound to the +

value, rather than the less useful symbol :eval.

We can call this function in the REPL to test a single iteration of our debugger

read-eval-print cycle.

PCS> (read-eval-print-command *debug-io* (make-condition 'condition))

[0] Debug> (+ 2 2) ; user input here

4 ; printed

(4) ; returned

PCS> (read-eval-print-command *debug-io* (make-condition 'condition))

[0] Debug> :eval :foo ; user input here

:FOO ; printed

(:FOO) ; returned

PCS> (read-eval-print-command *debug-io* (make-condition 'condition))

[0] Debug> :report ; user input here

;; Debugger level 0 entered on CONDITION:

;; Condition CONDITION was signaled.

NIL ; returned

Chapter 3 Implementing the Common Lisp condition system

215

With the single step of our REPL available and tested, we may now implement the

standard debugger proper. Upon entry, we will bind the debug level to one more than

what it was before (effectively increasing it by one), report the condition, inform the

programmer about the existence of the :help command, and call read-eval-print-command

in a loop.

(defun standard-debugger (condition &optional (stream *debug-io*))

 (let ((*debug-level* (1+ *debug-level*)))

 (run-debugger-command :report stream condition)

 (format stream "~&;; Type :HELP for available commands.~%")

 (loop (read-eval-print-command stream condition))))

We can test this function in the REPL, but we need to be cautious about it: this

function never returns normally, which is intended and mandated by the CL standard.

Therefore, we will need some way out of the debugger—for which we will establish a

simple restart around the call to the debugger.

PCS> (with-simple-restart (abort "Leave the debugger.")

 (standard-debugger (make-condition 'condition)))

;; Debugger level 1 entered on CONDITION:

;; Condition CONDITION was signaled.

;; Type :HELP for available commands.

[1] Debug> (+ 2 2) ; user input here

4

[1] Debug> (list * / +) ; user input here

(4 (4) (+ 2 2))

[1] Debug> :restarts

;; Available restarts:

;; 0: [ABORT] Leave the debugger.

[1] Debug> :restart 0 ; user input here

NIL

T

(The final two values are returned from the “outer” REPL by with-simple-restart.)

Chapter 3 Implementing the Common Lisp condition system

216

3.11.6  �Debugger interface
Now that our debugger is more or less usable and useful for the programmer, we need

to integrate it into the rest of our condition system by implementing the standard

functionality related to the debugger: *debugger-hook*, break, and invoke-debugger.

So far, we have used a stub implementation of invoke-debugger that was good enough

for our use cases; now it is time to replace that stub with a fully standard-compliant

function that first queries the debugger hook and calls it and only then calls the standard

debugger.

(defvar *debugger-hook* nil)

(defun invoke-debugger (condition)

 (when *debugger-hook*

 (let ((hook *debugger-hook*)

 (*debugger-hook* nil))

 (funcall hook condition hook)))

 (standard-debugger condition))

Having this definition means that now we can use invoke-debugger instead of our

custom standard-debugger function.

PCS> (with-simple-restart (abort "Leave the debugger.")

 (invoke-debugger (make-condition 'condition)))

;; Debugger level 1 entered on CONDITION:

;; Condition CONDITION was signaled.

;; Type :HELP for available commands.

[1] Debug> :abort ; user input here

NIL

T

The only remaining function is break, which establishes a continue restart and directly

calls the debugger with the provided format control and arguments, returning nil.

(defun break (&optional (format-control "Break") &rest format-arguments)

 (let ((*debugger-hook* nil)

 (condition (make-condition 'simple-condition

 :format-control format-control

 :format-arguments format-arguments)))

 (with-simple-restart (continue "Return from BREAK.")

 (invoke-debugger condition))

 nil))

Chapter 3 Implementing the Common Lisp condition system

217

Finally, we may perform one final REPL test to complete the testing process of our

Portable Condition System.

PCS> (break)

;; Debugger level 1 entered on SIMPLE-CONDITION:

;; Break

;; Type :HELP for available commands.

[1] Debug> :continue ; user input here

NIL

3.12  �Finishing touches
Our condition system is now complete. If we are using this condition system in an

implementation that does not have a condition system, we can, for example, use the

condition types we defined, along with our error function, inside the implementation’s

arithmetic operations. This will ensure that our division-by-zero condition is signaled

when we attempt to evaluate, for example, (/ 2 0).

It is, however, more likely that the reader following the code in this book already has

a fully conforming Common Lisp implementation that has a condition system of its own;

therefore, this Portable Condition System which we have defined is, in a way, a piece of

guest code that has no full control over the host's condition system; therefore, if the host

Lisp system signals its own division-by-zero error, it is fully independent from our guest

condition system and therefore will not be captured by our debugger or even recognized

as an object of the condition type that we have defined ourselves.

3.12.1  �Integration
The authors of this book have prepared an ASDF system named portable-condition-

system.integration that provides a means of integrating the host’s condition system

with PCS. While we will not go into details of its inner functioning, we will nonetheless

show an example debugger session where the host’s condition object is wrapped in a

condition object of our own and where the host’s restarts are available for calling as if

they were restarts defined with our own mechanism.

Chapter 3 Implementing the Common Lisp condition system

https://github.com/phoe/portable-condition-system/tree/master/integration

218

;;; (ql:quickload :portable-condition-system.integration)

;;; (in-package :portable-condition-system.integration)

INTEGRATION> (restart-case (with-debugger (#'debugger) (/ 2 0))

 (return-42 () :report "Return 42 instead." 42))

;; Debugger level 1 entered on FOREIGN-ERROR:

;; Foreign condition FOREIGN-ERROR was signaled:

;; arithmetic error COMMON-LISP:DIVISION-BY-ZERO signaled

;; Operation was (/ 2 0).

;; Type :HELP for available commands.

[1] Debug> :restarts ; user input here

;; Available restarts:

;; 0: [RETURN-42] Return 42 instead.

;; 1: [RETRY] (*) Retry SLIME REPL evaluation request.

;; 2: [ABORT] (*) Return to SLIME's top level.

;; 3: [ABORT] (*) abort thread (#<THREAD "repl-thread" RUNNING {100CC01DE3}>)

[1] Debug> 0 ; user input here

42 ; returned

INTEGRATION> (restart-case (with-debugger (#'debugger) (/ 2 0))

 (return-42 () :report "Return 42 instead." 42))

;; Debugger level 1 entered on FOREIGN-ERROR:

;; Foreign condition FOREIGN-ERROR was signaled:

;; arithmetic error COMMON-LISP:DIVISION-BY-ZERO signaled

;; Operation was (/ 2 0).

;; Type :HELP for available commands.

[1] Debug> :abort ; user input here

; Evaluation aborted on #<DIVISION-BY-ZERO {1010F04FD3}>.

Please see the manual of the portable-condition-system.integration system for more

details.

3.12.2  �Additional work
The condition system we have created in this book passes the series of tests from the

ANSI-TEST suite related to the condition system and assertion operators. While it is

compliant, it is not very robust when it comes to undefined behavior; it is, for example,

possible to pass some duplicate keyword arguments to restart-bind and define-condition,

which, in turn, would trigger undefined behavior. For brevity and educational reasons,

Chapter 3 Implementing the Common Lisp condition system

219

we have omitted multiple places where argument validation and type checks could be

introduced; the reader is welcome to look at the GitHub version of Portable Condition

System and inspect the safety measures already present in the code, as well as suggest

new ones to be added.

This concludes our work on implementing a complete Common Lisp condition system.

Chapter 3 Implementing the Common Lisp condition system

221
© Michał “phoe” Herda 2020
M. “phoe” Herda, The Common Lisp Condition System, https://doi.org/10.1007/978-1-4842-6134-7_4

CHAPTER 4

Wrapping up
During the first half of this book, we have introduced the concept of dynamic variables

and showed how they can be used to implement new kinds of functionality: subsystems

of hooks and choices whose behavior depends on the dynamic context in which they are

executed. We have drawn direct parallels between these two subsystems and the existing

standard systems of Common Lisp condition handlers and restarts. We have shown how

these subsystems tie in with the existing standard mechanisms of transferring control in

CL programs. Finally, we have described the interactive means by which the condition

system and the Lisp debugger are allowed to interact with the programmer.

The second half has led us through the non-trivial task of implementing a complete,

ANSI-compliant Common Lisp condition system, from the very definition of the first

condition type to implementing the interactive debugger function. To accomplish that,

we have drawn parallels and gathered inspiration from the individual mechanisms that

we devised during our work through the first half of the book.

It is notable that we have written a Lisp condition system in Lisp itself. Multiple parts

of CL—the condition system, Common Lisp Object System, loop, format, print-object, and

documentation—have historically been implemented this way, layered as separate modules

upon a smaller language core.

This accomplishment demonstrates that it is easy to introduce new modules and

paradigms into Lisp in a way that forms seamless integration with the rest of Lisp. We owe

that to the nature of Lisp, which is a dynamic, image-based language with a powerful macro

system; while this last trait is certainly the predominant one allowing such modifications,

the first two are also important contributors, because they allow one to develop and test

naturally in an incremental manner and to redefine already existing parts of the language.

A particularly curious reader might want to compare the systems of hooks and

choices implemented in this book with a description of the original implementation of

the condition system written by Kent M. Pitman in 1988 for Common Lisp the Language

version 1. (For posterity, the code of that implementation has also been copied into the

code repository for Portable Condition System.)

https://doi.org/10.1007/978-1-4842-6134-7_4#DOI
http://www.nhplace.com/kent/CL/Revision-18.txt
http://www.nhplace.com/kent/CL/Revision-18.lisp.txt

222

The rest of this chapter is meant to explain a few more aspects of the condition

system that might seem more related to philosophy and design than to concrete

implementation. We will describe the difference between the binding and casing

operators that are related to handlers and restarts; and finally, we will criticize

the approach we have taken in the first part of our book and describe the pitfalls,

inconsistencies, and pain points of the condition system.

4.1  �The purpose of the condition system
In the first part of the book, we have made parallels that connected the CL handler

subsystem with the system of hooks that we have created. While what we have said is

technically correct at the detail level, one could consider it to be misleading when we

analyze the condition system from a different, more ideological point of view. It can be

said that the action of invoking the hooks is, in fact, the activity of seeking advice about

how to handle a particular situation that is implemented by calling a series of relevant

hook functions in order from most to least specific. Advice, in this context, is understood

as externally provided pieces of code that augment and supplement chunks of an already

existing program.

The actual purpose of a condition system, including its handler and restart

subsystems if present, is not to call hooks, to invoke choices, or even to execute code

whenever some condition is signaled or a restart is invoked; the actual purpose is

to maximize the possibilities and means by which a body of code can be externally

instructed, or advised, to treat situations encountered during its execution. The technical

details, such as executing hooks, invoking choices, or even entering the debugger, are

only means to achieving an ideological goal of having a system that seeks and utilizes

advice supplied to it by any available means—be it via programmatically supplying a

handler function, via interactively choosing and invoking one of the predefined restarts,

or by resolving the situation manually by means of using a REPL inside an interactive

Lisp debugger.

Advice can be therefore provided fully programmatically via a handler when a

programmer expects some situation to happen, semi-manually via a restart that is

invokable from a debugger and automates some process that a programmer may want to

utilize, or fully manually by means of using a Lisp REPL to debug the situation—even if

the other end of that REPL is hundreds of millions of miles away from the programmer.

In the end, the program does not care about how exactly its execution has been resumed

Chapter 4 Wrapping up

http://flownet.com/gat/jpl-lisp.html

223

after an error. Therefore, it is wise to make the process of resuming the program’s

execution as efficient and informing as possible for the programmer. Preserving the

dynamic environment and the wound stack and making these available inside the Lisp

debugger are merely means of fulfilling that goal.

4.2  �Binding vs. casing
The logical distinction between the *-bind macros (handler-bind and restart-bind) and the

*-case macros (handler-case and restart-case) can be understood as an analogy between

binding operators—such as let, let*, flet, labels, macrolet, symbol-macrolet, and so on—

and the Lisp macro case, along with its standard siblings ccase, ecase, and typecase. By

this distinction, with-simple-restart naturally falls into the bag of *-case macros, since

it manifests as a wrapper around restart-case; the same goes for the handler-bind-case

macro which we define ourselves in an appendix to this book.

The role of a binding operator is to modify the environment in which other forms

are run. In case of let and let*, the change in the environment is effective by means

of introducing new variables. flet and labels introduce local function bindings, while

macrolet and symbol-macrolet introduce bindings for local macros and local symbol

macros. It can be said that these operators affect the variable and function namespaces

by introducing new bindings into it. (For clarity, binding new macros counts as adding

new bindings to the function namespace, while binding new symbol macros counts as

adding new bindings to the variable namespace.)

In this context, handler-bind can be considered to add new bindings to the handler

namespace. This handler namespace is a somewhat curious one, since handlers do not

have names of their own; they instead use the condition types that the handler functions

are bound to. On the other hand, the restart namespace is a fully fledged one: each

restart bound by restart-bind has a name (even if this name is nil) that is bound—in the

restart namespace—to the restart object that we can invoke.

Theoretically, the act of binding is essentially a no-op until our code actually utilizes

the bindings in some way—regardless of the namespace we bind in. For variables and

symbol macros, such utilization effectively occurs upon accessing the value cells of the

symbols that name these variables and symbol macros. For functions and macros,

it occurs upon the act of trying to call them. For handlers, it counts as “utilization” when

a condition gets signaled whose type matches one of these handlers. Finally, for restarts,

Chapter 4 Wrapping up

224

“utilization” occurs upon the act of calling compute-restarts or find-restart in order to

access the restart objects or upon invoking these restart objects through any means.

The case-like operators, on the other hand, follow a different programming idiom.

The standard use of case in CL is to pass it a Lisp form, which is evaluated to produce a

value called a test key. The list of all cases is then checked in order to see if the test key

is eql to any of the objects specified for the individual cases. If a match is found, then

the forms associated with that particular case are executed, and their return value is the

effective returned value of the case form.

handler-case and restart-case follow the same idiom as case, except that they search

for matches more deeply than just at the point where their form returns a value. These

operators await, respectively, signal and invoke-restart calls issued within their dynamic

scope, at which point they check their lists of handler cases or restart cases. For handlers,

the type of condition is matched against the type of each handler, whereas restart names

are matched via eql, unless a restart object is invoked directly by retrieving it via compute-

restarts. For both operators, if a match is found, control is immediately transferred out

of the signaling or invoking form and into the matching case, whose forms are then

executed and whose return value becomes the return value of the given macro.

4.3  �Separation of concerns
In the first half of the book, we have translated the approach we used with the hook

and choice subsystems into the handler and restart subsystems. While that approach

was (hopefully) suitable for teaching the basics of these two CL subsystems, it might be

surprising to hear from the book’s author that it would not be the best choice for use in

actual, real code.

The main argument for not using handlers and restarts in such a way is separation of

concerns. The handler and restart systems have an already well-established meaning in

CL. While condition handlers are known to decline to handle a condition sometimes, by

not transferring control (an option which is explicitly mentioned in the ANSI standard),

restarts in CL are most commonly known as “means of leaving the debugger,” completely

ignoring the fact that they can also be used in the way for which we originally used our

choice system.

To elaborate, using handler-bind to evaluate code for signaled conditions is common

in real-life code, but restart-bind is pretty much unused to establish restarts. This stands

in direct contrast to our initial implementation of the choice subsystem, which was a

Chapter 4 Wrapping up

225

system of hooks that we could call selectively without transferring control. (In fact, we

explicitly mentioned that using choices to transfer control was changing the structure of

our code and creating tighter coupling between the place where our choices are bound

and the place where they are computed and invoked.)

This potential perceived disconnect means that using restarts for purpose of not

restarting some abstract process in the program might violate the principle of least

astonishment. Programmers reading our code might thus not expect to see restart-bind

used in a non-restarting way, and they might become confused by it.

Another question is whether such restarts should show up in the debugger at all. It

is possible to avoid their appearance there by setting up a test function that returns nil if

the condition argument passed to the test function is non-nil. But this in turn might lead

to confusion if the programmer mistakenly calls compute-restarts or find-restarts without

any condition object whatsoever and then sees some “means of leaving the debugger”

which does not actually transfer control anywhere.

Summing up, one could argue that it might be preferable to leave the original,

CL-provided handler and restart subsystems to their original roles and instead create

or use independent mechanisms for hooks and choices. Such mechanisms are easy

enough to construct, as we have demonstrated in the earlier chapters; in fact, multiple

implementations of hooks and events in CL have already been created and are available

to be fetched from Quicklisp. These systems also feature better introspection for

individual hook objects and the ability to declare hooks with indefinite scope. Some

examples are cl-events, cl-hooks, and modularize-hooks.

4.4  �Algebraic effects
There is an idea that has been gaining popularity as of late, going by the name of

algebraic effects and algebraic effect handlers. Its first widely known implementations

have been done in strictly statically typed strictly functional programming languages,

such as Haskell and Eff; from there, it has trickled back into dynamically typed languages

with weak typing, such as JavaScript.

The ideas behind algebraic effects are surprisingly similar to the ones by Common

Lisp condition system: they separate the act of signaling a given situation in the program

from the act of handling it, and they make it possible to provide a set of handlers for

these situations dynamically, at the call site of that piece of code. Many parallels between

Chapter 4 Wrapping up

https://github.com/deadtrickster/cl-events/
https://github.com/scymtym/architecture.hooks
https://github.com/Shinmera/modularize-hooks
https://hackage.haskell.org/package/effect-handlers
https://www.eff-lang.org/
https://overreacted.io/algebraic-effects-for-the-rest-of-us/
http://jacek.zlydach.pl/blog/2019-07-24-algebraic-effects-you-can-touch-this.html

226

the Common Lisp condition system and the system of algebraic effects have been drawn,

but it seems that the two ideas have developed independently from one another.

Only recently has the work been done to provide enough mathematical and logical

scaffolding to be able to bring these ideas into the world of languages such as Haskell,

which explains the surge of popularity as of late. An important implication of this spread

is that a condition system—or, if we decide to use that terminology, a system of algebraic

effects—can be implemented even in languages which do not follow the imperative

paradigm and therefore have no mutable variable bindings, through which dynamic

scoping could be implemented the same way we did it in C.

4.5  �Downsides of the condition system
As we mentioned before, the Common Lisp condition system is, like all of CL, a product

of a standardization committee; the people who have designed, discussed, and agreed

on CL over 25 years ago were, to some extent, solving problems that we do not need to

consider nowadays. That fact causes some aspects of the language—in our case, of the

condition system—to appear today as weird, unusual, and inconsistent or otherwise

“should have been done differently.”

4.5.1  �Separation from CLOS
define-condition and defclass are similar to each other, yet they are distinct in the

Common Lisp standard. This disparity is caused by a long history of the condition

system; the original define-condition had been created in the times of Common Lisp

the Language version 1, when CLOS did not yet exist and therefore defclass was not yet

available. During the time of CL standardization, the proposal to merge the condition

system fully into CLOS was rejected, resulting in a condition-defining system that

behaves like defclass, looks like defclass, is supposed to work like defclass, but is not

defclass. A similar situation arises around the inheritance model of condition types—a

multiple inheritance model identical to the one used by CLOS, but explicitly mentioned

not to be necessarily CLOS-based.

In many CL implementations, conditions are indeed instances of the CLOS-defined

standard-class and are therefore standard-objects themselves; this consistency, however,

is not mandated by the standard and in fact not followed by a least one popular CL

implementation. One could daydream of the standard stating that condition classes

Chapter 4 Wrapping up

227

could have a metaclass named condition-class; no such thing is required by the standard,

however.

Because of that disparity, it is impossible to, among other things, use the general

statement “condition class” instead of “condition type” when referring to standard CL

code, portably access slot values of a condition object by means of slot-value, create

mixin classes that can be added to standard classes and condition classes alike, and

define constructor functions for condition objects by defining initialize-instance:after

methods on condition types. (The last fact can be worked around by using make-instance

instead of make-condition for creating condition instances, which seems to work on that

particular implementation; the author of this book cheekily suggests that this behavior

could become standard in the implementation in question, to bridge that gap.)

4.5.1.1  �Making conditions of complex condition types

An unfortunate consequence of the divergence of define-condition from defclass is that

the specification for make-condition requires its datum to be a specifier for a condition

type. Given that the Common Lisp condition type is based on set theory, the form (or

condition integer) could be argued to be a valid condition type (since any condition is

of type (or condition integer)), and therefore that form should be a valid argument to

make-condition. An even more eyebrow-raising consequence: it should be possible to

instantiate condition types such as (or program-error file-error) or (and warning condition),

although the mental gymnastics required to adapt make-condition to accept such condition

type designators are left as an exercise for no one in particular.

4.5.2  �Dynamic extent of restart objects
It is “not a bug” in a sense that it is a feature; however, the fact that restarts are

defined to have dynamic extent in CL may generate confusion for newcomers and

experienced Lisp programmers alike. While it is undefined behavior to access any

objects of dynamic extent outside the scope in which they’re valid, it is nonetheless

trivial to invoke that undefined behavior for restarts—for example, by evaluating

(compute-restarts) in the REPL and allowing the resulting list to be printed. At the time

of writing this book, evaluating the following one-liner causes at least one commonly

used CL implementation to “halt and catch fire” by means of signaling memory

corruption errors.

((lambda () (print (restart-bind ((x (lambda ()))) (compute-restarts)))))

Chapter 4 Wrapping up

228

4.5.3  �Speed
While it is possible to use the Common Lisp condition system as a control transfer

mechanism for algorithms that perform backtracking, it might not be the best fit for

instances where performance of such a solution is a priority. Compared to the primitive

CL operators for transfer of control, such as tagbody/go, block/return-from, or catch/throw,

the condition system needs to perform more work in addition to using one of these

primitives: a condition object needs to be constructed with the provided arguments;

the list of handlers needs to be walked, with a runtime type check being done for each

handler; and all applicable handler functions need to be called, until a transfer of control

occurs. Therefore, heavily relying on the condition system in hot loops, and places that

require optimization for speed, may be a poor choice as compared to simply using the

CL primitives for performing non-local exits. Profiling such code is often the best way to

confirm such suspicions of poor performance choices: when profiling code that uses the

condition system in this way shows that significant time is spent in signal and handler

functions, then that result could serve as a strong clue that preferring simpler primitives

would be more appropriate in that instance.

4.5.4  �Optimization settings
The Common Lisp standard permits the condition system to be partially disabled for

certain optimization settings. In particular, setting a high speed and low safety quality at

the same time allows the compiler to generate code that omits all safety checks. Such code

may exhibit undefined behavior instead of signaling errors if it contains any sort of bugs.

This might lead to memory corruption, crashes, infinite loops, or—in the worst case—silent

corruption of data. In such cases, Lisp does not need to signal errors in case of accessing

unbound variables, undefined functions, arrays outside of their bounds, and so on.

It is not exactly a downside of the condition system, but rather the fact that the

programmer has purposely chosen no longer to depend on Lisp safety checks, by

explicitly disabling such checks.

4.5.5  �Introspection
The introspection facility for the condition system is arguably poor. There is no

portable way of inspecting the full lists of handlers; that lack is compounded by the fact

that handlers are only defined in terms of matching handler types and their handler

Chapter 4 Wrapping up

http://directed-procrastination.blogspot.se/2011/05/backtracking-with-common-lisp-condition.html
https://gist.github.com/nikodemus/b461ab9146a3397dd93e

229

functions and therefore were never meant to have distinct types of their own, like restarts

do. While it is possible to compute a list of restarts applicable for a given situation, it

is not possible to get a list of all established restarts and manually inspect their report,

interactive, or test functions.

In addition, the CL standard specifies nothing regarding backtrace information.

Libraries such as Dissect have to resort to implementation-defined mechanisms in order

to be able to fetch stack information across different CL implementations.

One more pain point is the fact that the debugger itself is not programmable. There

does exist the *debugger-hook* variable that is respected by all functions which invoke

the debugger—except for break, which binds this variable to nil before entering the

debugger. Because of this lack of programmability, again, libraries such as Swank, Slynk,

or trivial-custom-debugger, which implement their own debuggers, are required to hook

into implementation-specific code.

One more issue related to signaling introspection is the fact that there is no

indication of which operator has signaled a particular condition nor any reason given for

why a debugger has been invoked. This prevents code from acting differently depending

on whether a particular condition has been signaled using signal, warn, error, or cerror,

as well as prevents a portable debugger from acting differently based on whether it has

been entered due to an unhandled error or, for example, due to break.

4.5.6  �Concrete condition types
The tree of standard condition types is not very detailed. On one hand, we are missing

some specific condition types that are more targeted, such as a serious condition stack-

overflow that represents hitting a hardware limitation of the current platform, or more

elaborate variants of file-error that go into more details of what is amiss: the file is

missing, the file is being edited by another user, the file is read-only, and so on; on the

other hand, Common Lisp misses some useful variants of already existing types, such

as variants of simple conditions including simple-program-error which would be directly

useful for CL programmers.

This apparent incompleteness, again, is the result of the Common Lisp committee

deciding on what would be the best for the language being standardized: defining

too few condition types would cripple the condition functionality on which the

programmers could rely, but defining too many would increase the burden on

implementers and on people adapting existing programs into CL—forcing them to

Chapter 4 Wrapping up

https://github.com/Shinmera/dissect
https://github.com/slime/slime/tree/master/swank
https://github.com/joaotavora/sly/blob/master/slynk/

230

ensure that the errors signaled by their code were of proper standard type. In fact, one

of the authors of the standard mentioned that it was already a success to have fit the

existing set of condition types inside the CL standard!

4.5.7  �Warning conditions and #’WARN
While it is possible to signal any kind of condition object via signal, error, or cerror, the

function warn is required to signal a type-error if the condition object supplied to it is not

of type warning. This requirement means that it is illegal to warn on conditions that are not

warnings—even though the reasons for such a requirement are not clear.

4.5.8  �Implementing custom SIGNAL-like operators
The function coerce-to-condition is not directly exposed nor programmable. This has

two unfortunate consequences: firstly, it makes it impossible to provide to the signaling

operators any data which is not a condition, a string, a function, or a symbol; secondly,

it prevents the possibility of writing new signaling functions which hook into this

functionality portably—functions such as signal.

One example of the preceding limitation which is exhibited by many CL

implementations is signaling compiler notes, which are conditions of lesser relevance

than warning or even style-warning. Compiler notes are information for the programmer

that are related to valid CL code, but inform the programmer, for example, about dead

code branches which are never reachable or about the fact that the compiler was unable

to perform some requested optimizations. Not only are compiler note condition types not

a part of the standard, but it is also impossible to write a portable compiler-notify function

that first coerces its data to a condition of type compiler-note, then signals it, and finally

performs some additional reporting in cases where the condition was not handled.

4.5.9  �Lack of functional interfaces to handlers and
restarts

Since the CL operators handler-bind and restart-bind are macros rather than functions, the

condition type and restart name inside them are not evaluated. This makes it impossible

to provide new handlers and restarts in a functional way, such as in this hypothetical

example:

Chapter 4 Wrapping up

231

;;; Calls function FOO in an environment with a new handler for condition type MY-CONDITION

(call-with-handler #'foo 'my-condition (lambda (c) (print 42)))

;;; Calls function FOO in an environment with a new restart named MY-RESTART

(call-with-restart #'foo 'my-restart (lambda () (print 42))

It is possible to work around this limitation in a portable way, but not without

invoking the compiler at runtime; the example implementations of the preceding

functions are described in an appendix to this book.

4.5.10  �Smaller issues
The condition system also has smaller issues and pet peeves which are only relevant in

particular contexts:

•	 One such issue is the fact that the :no-error clause in handler-case

should be named differently, due to the fact that handler-case may

handle conditions that are not in fact errors.

•	 Another one is the fact that the clustering behavior is not consistent

between handlers and restarts: a handler may only invoke handlers

that are “older” than it, while a restart has access to all restarts that

have ever been bound in its dynamic environment.

•	 Yet another issue, previously mentioned, is the difference in syntax

between handler-bind/restart-bind (:report-function, :interactive-function,

:test-function) and handler-case/restart-case (:report, :interactive, :test)

and, in some cases, define-condition (which also accepts a :report option

that is consistent with the -case operators). One set of keywords accepts

a function object, and the other accepts forms suitable for passing to

the function special operator. This issue is related to the old feud, which

dates back to the times when older Lisp dialects were still alive, between

the proponents of (lambda ...) and the proponents of #'(lambda ...).

#'(lambda ...) was used as a means to be compatible with those dialects,

and CL ended up defining the macro (lambda ...), which expands into

#'(lambda ...), for this exact reason. Note in this connection that the

#'-less form (lambda ...) is the only function designator suitable for use

both in :report-function/:interactive-function/:test-function and in :repor

t/:interactive/:test.

Chapter 4 Wrapping up

232

•	 While it is not an issue with the Common Lisp condition system,

some readers might be interested in the fact that early versions of

the Rust programming language had a simple condition system of

its own. It has been removed, though: the commit that removed

them said that the introduction of conditions had “some unforeseen

shortcomings,” listed in detail in the commit, and mentioned that

condition-based input/output has been abandoned in favor of a

result-based solution with a lesser “cognitive burden.”

4.5.11  �Summary: Downsides of the Common Lisp condi-
tion system

We have listed a series of downsides and pitfalls in the Common Lisp condition system.

On one hand, ending this chapter on such a negative note might appear off-putting,

especially in the context of a programming language which has been described as “dead”

for decades in some places; on the other hand, the author considers it important to

collect all these issues in one place, both for completeness in describing the condition

system as it is currently standardized within ANSI CL and for spreading awareness of

practical issues which programmers may face while utilizing the condition system in

real-world applications. The author hopes that the above list will comprise a generally

useful compilation of issues found through thirty years of practice with the Common

Lisp condition system, which itself was built upon thirty previous years of practice

with error handling in general. It should be valuable for designers and implementers

of future condition systems, either in eventual future revisions of CL itself, or in other

programming languages.

In addition, it is important to remark that the condition system remains unique,

even with its flaws: it is one of the few aspects of Lisp which have not yet been adopted

by other languages which are nowadays considered mainstream. This is in contrast to

features such as if/then/else conditionals, first-class function objects, recursion, dynamic

typing, garbage collection, syntax trees composed of expressions rather than statements,

symbol types, image-based programming, and, most recently, symbolic code notation

for non-S-expression-based languages. (The reader may want to see Paul Graham’s

“What Made Lisp Different” for details.)

Importantly, even though the condition system has not made it into the core of other

languages, it should be noted that the author is aware of multiple implementations of

Chapter 4 Wrapping up

https://github.com/rust-lang/rust/commit/454882dcb7fdb03867d695a88335e2d2c8f7561a
http://www.paulgraham.com/diff.html

233

condition systems available as libraries for Python, Clojure, Ruby, and Perl (conditions

and restarts). There is also an article named *Condition Systems in an Exceptional

Language* by Chris Houser that describes the means of implementing a simplified (as

in, with error conditions only) condition system in Clojure.

4.6  �Condition system in practice
To sweeten the slight bitterness left by the last chapter, and to end the book on a

proper positive note, we shall now show several use cases for the condition system for

exception handling *and beyond exception handling* that are directly usable in practical

applications. The examples listed here are small, so they can be understood easily; they

are meant to be a source of inspiration, and they may be used as individual building

blocks and techniques for creating more intricate program flow control structures.

Do note that this list is incomplete in covering the potential types of use cases; dear

reader, you are encouraged to expand on it with your own real-world examples.

4.6.1  �Unit test library: Collecting results
The testing library should-test by Vsevolod Dyomkin utilizes the condition system as a

basis. A unit test in this framework consists of a number of assertions stated with should,

should-signal, or should-print-to; these forms are allowed to be placed arbitrarily within

the test code or even nested. An example from this library’s self-test module is:

(deftest test ()

 (should signal should-test-error

 (let ((*test-output* (make-broadcast-stream)))

 (test :test (gensym))))

 ;; some assertions skipped ...

 (should be true

 (let ((*test-output* (make-broadcast-stream)))

 (deftest foo2 ()

 (let ((bar t))

 (+ 1 2)

 (should be true bar)))

 (prog1 (test :test 'foo2)

 (undeftest 'foo2)))))

Chapter 4 Wrapping up

https://github.com/svetlyak40wt/python-cl-conditions
https://github.com/clojureman/special
https://github.com/michaeljbishop/mulligan
https://metacpan.org/release/Worlogog-Incident
https://metacpan.org/release/Worlogog-Restart
https://gist.github.com/msgodf/6f4e43c112b8e89eee3d

234

The macro should, after checking the assertion et al., signals conditions of appropriate

types; these conditions contain the test results of each assertion. The handlers for these

condition types, invoked via signaling, are then capable of recording the test results

appropriately. Without a condition system and consequently without the capability

to signal conditions, the testing framework would need to work with some predefined

structures to capture the test results; such approach is widespread in other testing

frameworks, both in the CL world and in other programming variables.

A similar effect may be used for collecting other kinds of data from within

dynamically nested code. For example, we may consider code that performs elaborate

string matching in order to capture the spans that match predefined values. Using

signaling in such applications allows the information about results to be passed to code

many levels above the concrete matching operations without disrupting the flow of the

matching process itself.

Similar effects may be achieved with raw dynamic variables or lexical closures.

However, Vsevolod argues that using conditions and signaling allows the resulting code

to be more semantic and modular, as handlers can be fully decoupled from the signaling

points; in addition, using signals avoids the need to define dynamic variables or pass

lexical closures deeper into the call stack.

4.6.2  �Web framework: Sending results over the network
The preceding technique may be adapted in a way where results are not explicitly

collected as Lisp data, but are instead sent over a network socket; this allows for creation

of web frameworks based around the ways in which the condition system works:

•	 Defining a given condition type may mean creating a particular way

of outputting an object to the network.

•	 Signaling may mean that a particular Lisp object should be output.

•	 Condition handlers may implement the actual logic for sending data

to network sockets.

•	 Restarts established around the signaling sites may be used as a

means of control flow that are invoked by handlers in order to tell

the framework that the current object has been processed and the

framework may continue processing new ones (in a way similar to

the muffle-warning restart established by the warn function).

Chapter 4 Wrapping up

235

4.6.3  �GUI applications: Interactive querying
Another possibility is utilizing the fact that restarts may be invoked directly by the Lisp

program instead of by condition handlers or the debugger. Such restarts may perform

operations as a part of program logic that is available from anywhere and either return

values or transfer control to a defined point within a sub-procedure of the program.

A good example for that is utilizing restarts in a graphical client application. Let

us assume that, in the middle of some complex process composed of multiple steps, a

REST request made from the client fails due to, for example, invalid credentials. This can

be detected in the application, which may then invoke a restart that brings up a dialog

querying the user to provide more suitable credentials. Using restarts in this technique

allows for decoupling the dialog from the error site. It is also a good way of programming

a means to continue the whole complex procedure, along with the previous steps which

have already been successfully executed.

4.6.4  �Generating data: Python-like generators
The following code defines a primitive facility for iterating the data similar to how simple

Python generators function:

(define-condition generated ()

 ((item :initarg :item :reader generated-item)))

(defun yield (item)

 (restart-case (signal 'generated :item item)

 (resume () item)))

(defmacro doing ((item generator-form &optional result) &body body)

 (with-gensyms (e)

 `(block nil

 (handler-bind ((generated (lambda (,e)

 (let ((,item (generated-item ,e)))

 (loop ,@body)

 (invoke-restart (find-restart 'resume))))))

 ,generator-form)

 ,result)))

Chapter 4 Wrapping up

236

Here is an example code using this facility:

CL-USER> (let ((foo '(1 2 3)))

 (doing (item (yield (pop foo)))

 (print item)

 (when (emptyp foo) (return))))

1

2

3

NIL

CL-USER> (doing (item (yield (random 10)))

 (when (= item 0) (return))

 (print item))

9

5

6

9

7

2

9

1

3

4

7

5

8

3

4

NIL

The preceding code is a pretty rough and quick implementation which can be

improved, for example, by hiding the termination test and the explicit return; however,

the idea behind this code and the way in which it functions should be clear for the

reader. The demonstrated mechanism does not permit implementing full coroutines

nor does it provide a way to utilize a Python-like yield-from, but it still demonstrates the

potential uses for non-local return features of the Common Lisp condition system.

Chapter 4 Wrapping up

237
© Michał “phoe” Herda 2020
M. “phoe” Herda, The Common Lisp Condition System, https://doi.org/10.1007/978-1-4842-6134-7_5

CHAPTER 5

Appendixes

5.1  �Appendix A: Implementation of dynamic
variables in C

The C language, just like Lisp, has a macro system that allows one to extend the language

with new syntax. Unlike Lisp macros, however, C macros are not an integral part of the

language; they are loaded and expanded before the actual compilation happens by the

utility called the preprocessor, which parses C code before passing it to the further stages

of the C toolchain.

As we mentioned earlier, the C programming language has no innate notion of

dynamic variables. However, we can “bolt” dynamic variables onto the language; we can

write macros for the C preprocessor that expand into C data and code that implement a

more robust variant of the dynamic variable emulation shown in an earlier chapter of the

book. In fact, this appendix will implement the dynamic_var and dynamic_bind constructs

introduced earlier in that chapter.

Before we write the actual macro, let us first write out the code into which the macro

should expand. We will want to implement a dynamic variable named x of type int with

the initial value of 42.

First of all, let us introduce our global variable named x.

int x = 42;

Nothing out of the ordinary here just yet; it is a standard global variable so far. The

actual magic for it is going to happen elsewhere. Our dynamic_bind operator is going

to create temporary variables that hold information about previous bindings of that

variable and restore them upon leaving the scope.

https://doi.org/10.1007/978-1-4842-6134-7_5#DOI

238

Therefore, we need to define a function that will perform cleanup upon exiting a

dynamic scope.

void __dynamic_int_x_cleanup__(int* arg) {

 x = *arg;

}

Upon calling the cleanup function, the variable x is set to the value pointed at by arg,

therefore restoring the previous value of the variable.

We will also want a means of creating new dynamic bindings. We would like to

retain the curly braces of our dynamic_bind operator, and therefore we will use a C macro

technique known as the run-once for loop. An example code that creates a new binding

for int x with the value 5 may look like the following:

for(int __dynamic_int_x_continue__ = 1; __dynamic_int_x_continue__;)

 for(int __dynamic_int_x_save__

 __attribute__((cleanup(__dynamic_int_x_cleanup__)))

 = x;

 __dynamic_int_x_continue__;)

 for (x = 5; __dynamic_int_x_continue__; __dynamic_int_x_continue__ = 0) {

 ...;

}

In order to use the C stack instead of an explicit one, we use a triple-nested for loop.

Let us go through them in order:

•	 We would like the body within our braces to be executed only once.

Therefore, in the outermost loop, we establish a local boolean variable

named __dynamic_x_continue__ with an initial value of 1. This variable is

checked in each of the for loops and is set to 0 in the innermost loop to

ensure that all loops terminate after exactly one iteration.

•	 The second loop establishes a variable named __dynamic_x_save__

that holds cleanup information for our variable x. We annotate that

variable with a cleanup attribute which ensures that our cleanup

function is called when the variable goes out of scope. (cleanup is a C

extension, supported by GCC and Clang compilers.)

•	 Once the cleanup information is saved, the third loop may assign a

new value to the variable.

Chapter 5 Appendixes

239

We can use the preceding technique to write a simple C program that demonstrates

how dynamic bindings may be implemented.

include <stdio.h>

int x = 42;

void __dynamic_int_x_cleanup__(int* arg) {

 x = *arg;

}

int get_x() {

 return x;

}

void rebind() {

 for(int __dynamic_int_x_continue__ = 1; __dynamic_int_x_continue__;)

 for(int __dynamic_int_x_save__

 __attribute__((cleanup(__dynamic_int_x_cleanup__)))

 = x;

 __dynamic_int_x_continue__;)

 �for (x = 5; __dynamic_int_x_continue__; __dynamic_int_x_continue__ = 0) {

 printf("dynamic binding, before assignment: %d\n", get_x());

 x = 222;

 printf("dynamic binding, after assignment: %d\n", get_x());

 }

}

int main(int argc, char** argv) {

 printf("top-level binding: %d\n", get_x());

 rebind();

 printf("top-level binding: %d\n", get_x());

 return 0;

}

Compiling and running this code gives us the results expected of a variable with

dynamic binding:

$ gcc test.c -o test && ./test

top-level binding: 42

dynamic binding, before assignment: 5

dynamic binding, after assignment: 222

top-level binding(): 42

Chapter 5 Appendixes

240

Our code works, even if it is somewhat bare-bones now. We need to cover its

internals with a more pleasant interface and add syntax sugar which will hide the initial

definitions and triple loop behind a dynamic_var and dynamic_bind.

The resulting code should look like the following:

#include <stdio.h>

dynamic_var(int, x, 5);

void rebind() {

 dynamic_bind(int, x, 42) {

 printf("before assignment: %d\n", x);

 x = 24;

 printf("after assignment: %d\n", x);

 }

}

int main(int argc, char** argv) {

 printf("toplevel binding: %d\n", x);

 rebind();

 printf("toplevel binding: %d\n", x);

 return 0;

}

If we count the internal (surrounded by double underscores) C symbols in the

preceding code, we can count three of them:

•	 __dynamic_int_x_cleanup__ naming the cleanup function

•	 __dynamic_int_x_save__ naming the temporary variable that saves the

original value

•	 __dynamic_int_x_continue__ naming the temporary iteration control

variable

We will need C macros that generate such internal symbols for us. Luckily, the C

preprocessor provides the required ## operation that concatenates symbols; we can use

it to implement the macros generating our internal symbols.

#define dynamic_name(type, name, postfix) \

 __dynamic_ ## type ## _ ## name ## _ ## postfix ## __ \

Chapter 5 Appendixes

241

(In the body of dynamic_name, the symbols type, name, and postfix are replaced with the

values passed to the macro, because they are passed to it as arguments. All remaining

symbols are used verbatim.)

Once we have the symbols, we can proceed with implementing the expansion

of dynamic_var. We will write a new macro that expands into the dynamic variable

declaration.

#define dynamic_var_aux(type, name, cleanup) \

 void cleanup (type * arg) { name = *arg; } \

#define dynamic_var(type, name, value) \

 type name = value; \

 dynamic_var_aux(type, \

 name, \

 dynamic_name(type, name, cleanup)) \

We could have written this as a single macro. For clarity, however, we have separated

the part that expands into actual C code (dynamic_var_aux) from the part that retrieves

symbols from external macro calls (dynamic_var).

The last remaining part is dynamic_bind that needs to expand into the triple

single-iteration for loop. Once again, we will use an aux macro to separate the act of

generating symbols from the act of expanding into code, especially because dynamic_bind

needs three generated symbols inside its expansion.

#define dynamic_bind_aux(type, name, value, save, pop, var) \

 for(int var = 1; var;) \

 for(type save __attribute__((cleanup(pop))) = name; var;) \

 for(name = value; var; var = 0) \

#define dynamic_bind(type, name, value) \

 dynamic_bind_aux(type, \

 name, \

 value, \

 dynamic_name(type, name, save), \

 dynamic_name(type, name, cleanup), \

 dynamic_name(type, name, continue)) \

And that’s it. With the preceding C preprocessor magic that uses a single C extension,

our dynamic bindings now work, and we can enjoy dynamic variables in a language that

used not to have them.

Chapter 5 Appendixes

242

The preceding example uses the C stack to contain the previous values of our

dynamic variable. This will work well for single integers, but it might cause stack

overflows if the rebound variable is, for example, a double[256] and it is rebound multiple

times, as the data is copied on every binding of the dynamic variable. In addition, we

generate a separate cleanup function for each variable, which is wasteful. The code

repository for this book contains alternative implementations of dynamic variables in C

that address these problems.

(Sidenote: the Rust programming language has an implementation of dynamic

variables—or fluid variables, as they are called there—available in the fluid-let crate. This

implementation utilizes a technique which is similar to the one described earlier, though it

makes use of Rust’s concepts of lifetimes and ownership that are unavailable in C.)

5.2  �Appendix B: Additional utilities for working
with Common Lisp conditions

5.2.1  �CALL-WITH-HANDLER and CALL-WITH-RESTART
As described earlier, there is no functional variant to the CL macros handler-bind and

restart-bind. This makes it impossible to specify condition types for newly bound

handlers and restart names for newly bound restarts at runtime, if we want to limit

ourselves to using only these two macros. Thanks to the image-based capabilities of CL,

however, it is possible to specify functions which enable us to to provide condition types.

Our approach will leverage the runtime availability of the compiler and the standard

coerce function.

For a detailed explanation, coerce is specified to yield a function object when

provided with a lambda form. Therefore, we can construct the lambda form using standard

Lisp operators, such as backquote notation, pass the resulting form to coerce to receive a

function object, and then funcall it.

This allows us to write the following Lisp functions:

(defun call-with-handler (thunk condition-type handler)

 (let ((lambda-form

 `(lambda ()

 (handler-bind ((,condition-type ,handler))

 (funcall ,thunk)))))

 (funcall (coerce lambda-form 'function))))

Chapter 5 Appendixes

https://github.com/phoe/tclcs-code
https://github.com/phoe/tclcs-code
https://docs.rs/fluid-let/0.1.0/fluid_let/

243

(defun call-with-restart (thunk restart-name restart-function

 &key (interactive-function nil interactive-function-p)

 (test-function nil test-function-p)

 (report-function nil report-function-p))

 (let ((lambda-form

 `(lambda ()

 (restart-bind ((,restart-name ,restart-function

 ,@(when interactive-function-p

 `(:interactive-function ,interactive-function))

 ,@(when report-function-p

 `(:report-function ,report-function))

 ,@(when test-function-p

 `(:test-function ,test-function))))

 (funcall ,thunk)))))

 (funcall (coerce lambda-form 'function))))

These two newly created functions allow us to specify condition types for handlers

and restart names for restarts as variable arguments.

CL-USER> (block foo

 (call-with-handler

 (lambda () (error "bar"))

 'error

 (lambda (c) (return-from foo c))))

#<SIMPLE-ERROR "bar" {1003076FB3}>

CL-USER> (block foo

 (call-with-restart

 (lambda () (invoke-restart 'frob))

 'frob

 (lambda () (return-from foo 42))))

42

Using these functions at runtime might prove beneficial during interactive

development. On the other hand, since each call to either of these functions does invoke

the compiler, they might prove slower for production purposes, as compared to the

standard macros handler-bind and restart-bind.

A workaround for this possible bottleneck would be to cache the compiled

anonymous functions, which would require the compiler to be invoked only once per

Chapter 5 Appendixes

244

condition type or restart name. We can store the functions in a pair of hash tables: a hash

table for condition types (which are allowed to be lists and must therefore be compared

via equal) and a hash table for restarts (for which the keys need to be lists too; we will

explain this later in this chapter).

(defvar *call-with-handler-cache* (make-hash-table :test #'equal))

(defvar *call-with-restart-cache* (make-hash-table :test #'equal))

(As a famous programming law states, there are only two hard problems in computer

science: cache invalidation, naming things, and off-by-one errors. Now that we have a

cache, we necessarily have an instance of that first of the hard problems: we must decide

how and when entries should be removed from our cache. For this simple example, we

will punt on removing entries from it, since it is unlikely that the size of this hash table

will become significant during the lifetime of a single Lisp image.)

We will now write the code for the cached call-with-handler. One function will ensure

the presence of a function object inside the cache, and the other will perform actual

calling of that function.

(defun ensure-call-with-handler-function (condition-type)

 (multiple-value-bind (value foundp) (gethash condition-type *call-with-handler-cache*)

 (if foundp

 value

 (let ((lambda-form

 `(lambda (handler thunk)

 (handler-bind ((,condition-type handler))

 (funcall thunk)))))

 (setf (gethash condition-type *call-with-handler-cache*)

 (coerce lambda-form 'function))))))

(defun call-with-handler (thunk condition-type handler)

 (funcall (ensure-call-with-handler-function condition-type)

 handler thunk))

For handlers, there are no keyword arguments to be passed into handler-bind. The

situation complicates itself, however, when it comes to restart-bind: for every restart

name, there can be multiple combinations of :interactive-function, :report-function,

and :test-function passed to the macro. We are unable to pass nil as arguments for

any of these, since the values of these keyword arguments must evaluate to functions;

therefore, we will generate a different function for each combination of the restart name

Chapter 5 Appendixes

245

and the three booleans which state whether report, interactive, and test functions have

been provided. A list containing these four values will serve as a valid equal-matching key

for *call-with-restart-cache*.

(defun ensure-call-with-restart-function (restart-name interactive-p report-p test-p)

 (let ((key (list restart-name interactive-p report-p test-p)))

 �(multiple-value-bind (value foundp) (gethash key *call-with-restart-cache*)

 (if foundp

 value

 (let ((lambda-form

 `(lambda (restart-function thunk interactive report test)

 (declare (ignorable interactive report test))

 (restart-bind

 ((,restart-name

 restart-function

 �,@(when interactive-p `(:interactive-function interactive))

 ,@(when report-p `(:report-function report))

 ,@(when test-p `(:test-function test))))

 (funcall thunk)))))

 (setf (gethash key *call-with-restart-cache*)

 (coerce lambda-form 'function)))))))

(defun call-with-restart (thunk restart-name restart-function

 &key (interactive-function nil interactive-p)

 (report-function nil report-p)

 (test-function nil test-p))

 (let ((function (ensure-call-with-restart-function

 restart-name (and interactive-p t) (and report-p t) (and test-p t))))

 (funcall function restart-function thunk

 interactive-function report-function test-function)))

We can see that these three keyword arguments are included conditionally inside the

handler binding in the generated function. In addition, call-with-restart checks whether

or not the keyword arguments have been provided. The (and interactive-t t) construct is

present to ensure that t is the symbol with which the cache key is constructed; note that

the parameters which state whether or not a value has been supplied are allowed to be

bound to any non-nil value—not necessarily t—when they are true.

With such a caching construction, the compiler will only be called once for each

condition type and for each combination of restart name, interactive-p, report-p, and

test-p, therefore, up to eight times for each restart name.

Chapter 5 Appendixes

246

5.2.2  �HANDLER-BIND* and HANDLER-CASE*
The clustering mechanism of handler-bind and handler-case might be unwanted in some

cases where the condition system is used. In particular, in a situation where a single

operator binds multiple handlers, the programmer may desire for a latter handler to

signal a condition that triggers the handler function of a former handler.

We therefore propose handler-bind* and handler-case*, variants of handler-bind and

handler-case that explicitly do not utilize clustering for the handlers that they bind. This

implies that, within the same form, handlers bound earlier can be invoked by handlers

bound later. We can say that let is to let* as handler-bind is to handler-bind* and as handler-

case is to handler-case*.

In the following example, if my-condition is signaled, we would like the error call inside

the handler function to trigger the my-error handler bound earlier within the same form.

(handler-bind* ((my-error ...)

 (my-condition (lambda (c) (error 'my-error :c c))))

 ...)

We can observe the difference between handler-bind and handler-bind* on the

following example, where each handler formats a line to standard output and then re-

signals the condition.

CL-USER> (handler-bind ((condition (lambda (c)

 (format t ";; A~%")

 (signal c)))

 (condition (lambda (c)

 (format t ";; B~%")

 (signal c)))

 (condition (lambda (c)

 (format t ";; C~%")

 (signal c))))

 (signal 'condition))

;; A

;; B

;; C

NIL

CL-USER> (handler-bind* ((condition (lambda (c)

 (format t ";; A~%")

 (signal c)))

Chapter 5 Appendixes

247

 (condition (lambda (c)

 (format t ";; B~%")

 (signal c)))

 (condition (lambda (c)

 (format t ";; C~%")

 (signal c))))

 (signal 'condition))

;; C

;; B

;; A

;; A

;; B

;; A

;; A

NIL

A similar effect can be seen when comparing handler-case and handler-case*.

CL-USER> (handler-case (signal 'condition)

 (condition (c) (format t ";; A~%") (signal c))

 (condition (c) (format t ";; B~%") (signal c))

 (condition (c) (format t ";; C~%") (signal c)))

;; A

NIL

CL-USER> (handler-case* (signal 'condition)

 (condition (c) (format t ";; A~%") (signal c))

 (condition (c) (format t ";; B~%") (signal c))

 (condition (c) (format t ";; C~%") (signal c)))

;; C

;; B

;; A

NIL

An important side effect of that fact is that the order in which multiple handlers bound

by handler-bind* and handler-case* is different. In handler-bind and handler-case, the handlers

are invoked from first to last; in handler-bind* and handler-case*, they are invoked from last to

first.

Chapter 5 Appendixes

248

The implementation of handler-bind* is straightforward, since this operator has no

edge cases.

(defun expand-handler-bind* (bindings body)

 (if (null bindings)

 `(progn ,@body)

 `(handler-bind (,(car bindings))

 (handler-bind* ,(cdr bindings) ,@body))))

(defmacro handler-bind* (bindings &body body)

 (expand-handler-bind* bindings body))

On the other hand, handler-case* needs to account for the :no-error case, which must

become the outermost one.

(defun make-handler-case*-with-no-error-case (form cases)

 (let* ((no-error-case (assoc :no-error cases))

 (other-cases (remove no-error-case cases)))

 (let ((normal-return (gensym "NORMAL-RETURN"))

 (error-return (gensym "ERROR-RETURN")))

 `(block ,error-return

 (multiple-value-call (lambda ,@(cdr no-error-case))

 (block ,normal-return

 (return-from ,error-return

 (handler-case* (return-from ,normal-return ,form)

 ,@other-cases))))))))

(defun make-handler-case*-without-no-error-case (form cases)

 (if (null cases)

 form

 `(handler-case (handler-case* ,form ,@(cdr cases))

 ,(car cases))))

(defun expand-handler-case* (form cases)

 (let ((no-error-case-count (count :no-error cases :key #'car)))

 (case no-error-case-count

 (0 (make-handler-case*-without-no-error-case form cases))

 (1 (make-handler-case*-with-no-error-case form cases))

 (t (error "Multiple :NO-ERROR cases found in HANDLER-CASE*.")))))

(defmacro handler-case* (form &rest cases)

 (expand-handler-case* form cases))

Chapter 5 Appendixes

249

5.2.3  �HANDLER-BIND-CASE
Let us introduce one more utility into the condition system. Although not specified in the

ANSI standard, this utility will prove useful for a certain class of problems, so we will go

ahead and implement it ourselves here.

In the world of handlers, handler-bind is sometimes used as a building block to

construct handler-bind-case, an operator with the same syntax as handler-case. The handler-

bind-case name comes from the fact that this operator can be seen as a mixture of handler-

bind and handler-case: the handler body is executed within the dynamic environment

of signal like in handler-bind, but then control is transferred back outside like in handler-

case. In other words, handler-bind-case, upon reacting to a signaled condition, evaluates

the handler body first, allowing it to operate within the dynamic environment in which

the condition was signaled. Only then does it unwind the stack by transferring control

outside of the handler.

This approach is useful for, for example, allowing the handler to preserve the

backtrace in case of an error; using handler-case for such situations would be useless,

because the handler body needs to operate before the stack is unwound and therefore

before the backtrace of the error site is destroyed.

An example implementation of handler-bind-case, adapted from the CMU CL source

of handler-case and refactored for clarity, may look like the following:

(defun make-handler-bind-case-with-no-error-case (form cases)

 (let* ((no-error-case (assoc :no-error cases))

 (other-cases (remove no-error-case cases)))

 (let ((normal-return (gensym "NORMAL-RETURN"))

 (error-return (gensym "ERROR-RETURN")))

 `(block ,error-return

 (multiple-value-call (lambda ,@(cdr no-error-case))

 (block ,normal-return

 (return-from ,error-return

 (handler-bind-case (return-from ,normal-return ,form)

 ,@other-cases))))))))

(defun make-handler-bind-case-without-no-error-case (form cases)

 (let ((block-name (gensym "HANDLER-BIND-CASE-BLOCK")))

 (flet ((make-handler-binding (case)

 (destructuring-bind (type lambda-list . body) case

 `(,type (lambda ,lambda-list

 (return-from ,block-name (locally ,@body)))))))

Chapter 5 Appendixes

250

 (let ((bindings (mapcar #'make-handler-binding cases)))

 `(block ,block-name (handler-bind ,bindings ,form))))))

(defun expand-handler-bind-case (form cases)

 (let ((no-error-case-count (count :no-error cases :key #'car)))

 (case no-error-case-count

 (0 (make-handler-bind-case-without-no-error-case form cases))

 (1 (make-handler-bind-case-with-no-error-case form cases))

 (t (error "Multiple :NO-ERROR cases found in HANDLER-BIND-CASE.")))))

(defmacro handler-bind-case (form &rest cases)

 (expand-handler-bind-case form cases))

We can see that the expansion can occur along one of two branches. One of them is

utilized if a :no-error case is present; that case is treated specially. The implementation

delegates other non-:no-error cases to be handled via a recursive macro call to handler-

bind-case. The case of :no-error is handled identically in handler-bind-case as in handler-

case, and the normal case is, thankfully, less complex in handler-bind-case than is its

matching implementation in handler-case.

handler-bind-case needs to iterate through the cases provided to it and turn them

into properly formatted bindings for handler-bind. The anonymous function within each

binding needs to execute the body of each case and then return the resulting value to the

outermost block. Once all cases are processed and the list of bindings is created, this list

is spliced into handler-bind, and the resulting code is returned.

(For completeness, the locally form wrapped around the splicing of body is there to

allow local declarations to work inside it. Describing declarations is, however, out of

scope for this book.)

We may test a combination of handler-bind-case and unwind-protect and compare

the resulting order in which forms are executed to the order that results from using the

standard macro handler-case.

CL-USER> (handler-case (unwind-protect (signal 'condition)

 (format t ";; Going out of dynamic scope~%"))

 (condition (c) (format t ";; Handling condition ~S~%" c)))

;; Going out of dynamic scope

;; Handling condition #<CONDITION {1001BC4FA3}>

NIL

Chapter 5 Appendixes

251

CL-USER> (handler-bind-case (unwind-protect (signal 'condition)

 (format t ";; Going out of dynamic scope~%"))

 (condition (c) (format t ";; Handling condition ~S~%" c)))

;; Handling condition #<CONDITION {1001C77553}>

;; Going out of dynamic scope

NIL

We may also check the macroexpansion of the sample handler-bind-case form, to see

what the final expansion looks like and how it utilizes handler-bind internally. In addition

to eyeballing it, we can also evaluate it live, for example, by copy-pasting it to the read-

eval-print loop. Note that by default gensym’ed symbols are not readable by the Lisp reader

subsystem (i.e., the first step of the read-eval-print loop); to sidestep this issue, such code

has to be printed with *print-gensym* set or bound to nil—this will cause the Lisp printer

subsystem to print gensym’ed symbols in a readable format.

CL-USER> (BLOCK HANDLER-BIND-CASE-BLOCK617

 (HANDLER-BIND ((CONDITION

 (LAMBDA (C)

 (RETURN-FROM HANDLER-BIND-CASE-BLOCK617

 �(LOCALLY (FORMAT T ";; Handling condition ~S~%" C))))))

 (UNWIND-PROTECT (SIGNAL 'CONDITION)

 (FORMAT T ";; Going out of dynamic scope~%"))))

;; Handling condition #<CONDITION {100258ADF3}>

;; Going out of dynamic scope

NIL

For completeness, we also provide a sequential version of the operator,

handler-bind-case*.

(defun make-handler-bind-case*-with-no-error-case (form cases)

 (let* ((no-error-case (assoc :no-error cases))

 (other-cases (remove no-error-case cases)))

 (let ((normal-return (gensym "NORMAL-RETURN"))

 (error-return (gensym "ERROR-RETURN")))

 `(block ,error-return

 (multiple-value-call (lambda ,@(cdr no-error-case))

 (block ,normal-return

 (return-from ,error-return

 (handler-bind-case* (return-from ,normal-return ,form)

 ,@other-cases))))))))

Chapter 5 Appendixes

252

(defun make-handler-bind-case*-without-no-error-case (form cases)

 (if (null cases)

 form

 `(handler-bind-case (handler-bind-case* ,form ,@(cdr cases))

 ,(car cases))))

(defun expand-handler-bind-case* (form cases)

 (let ((no-error-case-count (count :no-error cases :key #'car)))

 (case no-error-case-count

 (0 (make-handler-bind-case*-without-no-error-case form cases))

 (1 (make-handler-bind-case*-with-no-error-case form cases))

 (t (error "Multiple :NO-ERROR cases found in HANDLER-BIND-CASE*.")))))

(defmacro handler-bind-case* (form &rest cases)

 (expand-handler-bind-case* form cases))

5.3  �Appendix C: Lisp macros 101
A Common Lisp macro is a peculiar kind of function which transforms Lisp data into

Lisp code. Wherever a function cannot be used to achieve a particular task within Lisp

syntax, usually a macro can be employed in its place; this fact stems from two basic

differences between how functions and macros are treated in Lisp.

The first basic difference from the outer point of view is that functions receive their

arguments as the values which result after evaluating their forms; macros receive the

unevaluated forms verbatim. This gives macros the option of skipping the normal

evaluation rules of Lisp forms and then either evaluating them selectively or inventing

completely new syntax rules to process those verbatim forms.

The second basic difference is while return values of functions are returned to a

caller, return values of macros are inserted in place of the macro call and evaluated again.

When a macro is called, the macro call site is “replaced” with the code that it “returns”;

this is why a macro is always meant to yield a piece of valid Lisp code.

While ordinary functions are usually called at execution time, macros are usually

called at compilation time. This is because the Lisp compiler, as it processes Lisp forms

during compilation, is required to expand all macros completely before proceeding with

compilations; it is not required to do the same with functions.

Chapter 5 Appendixes

253

5.3.1  �Basics of macro writing
Let us write an example form that uses the standard macro and, which evaluates its

arguments in turn until one of them returns false.

(and (= 0 (random 6)) (error "Bang!"))

This simple implementation of Russian roulette contains a macro call. When the

compiler parses this form, it expands the and call and replaces the whole form with the

result of the macroexpansion function. The concrete implementation of and depends on

the Lisp implementation; an example expansion is shown as follows:

(IF (= 0 (RANDOM 6)) (ERROR "Bang!"))

This simple example is perhaps not very impressive. But, we can chain arguments

passed to it arbitrarily. Let us modify the game a bit and only make a bang when we hit

the roulette three times in a row.

(and (= 0 (random 6)) (= 0 (random 6)) (= 0 (random 6)) (error "Bang!"))

An example recursive expansion of this can be seen here:

(IF (= 0 (RANDOM 6))

 (AND (= 0 (RANDOM 6)) (= 0 (RANDOM 6)) (ERROR "Bang!")))

Using recursive macroexpansion, it is possible to generate the final, fully

macroexpanded form:

(IF (= 0 (RANDOM 6))

 (IF (= 0 (RANDOM 6))

 (IF (= 0 (RANDOM 6))

 (ERROR "Bang!"))))

Let us define our version of that macro, named my-and, which will implement the

following scheme:

(defmacro my-and (&rest forms)

 (cond ((null forms) 'nil)

 ((null (rest forms)) (first forms))

 (t (list 'if (first forms) (cons 'my-and (rest forms))))))

Chapter 5 Appendixes

254

We can see that our macro has a conditional with three possible branches. If the list

of forms is empty (which means that the macro was called like (my-and)), it returns nil;

if the list of forms contains only one element, then that element is returned. Otherwise

(when the list of forms contains more than one element), a compound form is returned:

a three-element list with the symbol if as its first element, the first form as its second

element, and another compound form, a cons of the symbol my-and and the rest of the

forms—those which remain after removing the first form. The form returned by the

macro is then treated as Lisp code by the compiler.

5.3.2  �Backquote
The explicit list-and-literal-symbols syntax in the macro will produce the correct result,

but Common Lisp exposes another kind of notation that allows us to make macro bodies

better resemble the final output of the macro. This is called backquote notation or

quasiquote. Backquote notation consists of four (or, in practice, three) syntactic operators:

•	 ` quasiquotes an expression.

•	 , unquotes an expression.

•	 ,@ splicing-unquotes an expression.

•	 ,. is a variant of ,@ that has generally fallen out of use, since it offers

no benefits and many more pitfalls than ,@.

Backquoting is similar to the quoting (') operator of CL, as it preserves a form in its

verbatim state; if we simply use a backquote in place of a normal quote with no further

backquote notation, then the two resulting forms will be equivalent. The main difference

is that backquote allows subforms of the backquoted expression to be unquoted

selectively. Let us demonstrate this:

CL-USER> (let ((values '(1 2 3)))

 '(funcall function values))

(FUNCALL FUNCTION VALUES)

CL-USER> (let ((values '(1 2 3)))

 `(funcall function values))

(FUNCALL FUNCTION VALUES)

Chapter 5 Appendixes

255

CL-USER> (let ((values '(1 2 3)))

 `(funcall function ,values))

(FUNCALL FUNCTION (1 2 3))

CL-USER> (let ((values '(1 2 3)))

 `(funcall function ,@values))

(FUNCALL FUNCTION 1 2 3)

In the first two cases, the whole funcall form has been quoted verbatim. In the third

case, we can see that the variable body has been replaced with its value, the list (1 2 3). In

the fourth case, we can see that the variable body has been replaced with multiple values;

these values required body to be bound to a list, and the elements of this list have been

spliced into the outer form.

In other words, in a backquoted expression, Lisp data which are not unquoted

(with , or ,@) end up effectively quoted under normal quoting rules and therefore come

through verbatim; Lisp data which are unquoted with , or ,@ are evaluated as usual to

yield a value, and then this value is inserted or spliced into the resulting form.

(It is possible to nest backquotes into so-called double or triple backquote notation;

describing this technique is out of scope of this book.)

5.3.3  �Symbol capture
One of the common pitfalls when writing macros is the risk of introducing symbol

capture, which is a typically adverse or unexpected effect that occurs when a symbol

used in the macroexpansion shares its name with a symbol already present in the lexical

scope of the macro call site.

Let us consider a modified version of the for macro that Paul Graham introduces in

chapter 9.6 of On Lisp.

(defmacro for ((var start stop) &body body)

 `(do ((,var ,start (1+ ,var))

 (limit ,stop))

 ((> ,var limit))

 ,@body))

Chapter 5 Appendixes

https://doi.org/10.1007/978-1-4842-6134-7_9

256

The macro seems to work correctly

CL-USER> (for (i 0 3)

 (format t ";; ~D~%" i))

;; 0

;; 1

;; 2

;; 3

NIL

until it interacts with a variable named in a particular way—in our case, limit.

CL-USER> (let ((limit 10))

 (for (i 0 3)

 (format t ";; ~D ~D~%" i limit)))

;; 0 3

;; 1 3

;; 2 3

;; 3 3

NIL

We have clearly defined limit to be 10, and yet, the format call prints 3 instead. We can

see why this happens by using macroexpand-1 on our for form:

(let ((limit 10))

 (for (i 0 3)

 (format t ";; ~D ~D~%" i limit)))

(let ((limit 10))

 (DO ((I 0 (1+ I))

 (LIMIT 3))

 ((> I LIMIT))

 (FORMAT T ";; ~D ~D~%" I LIMIT)))

We can see that the outer limit binding is shadowed by an internal binding of the

same symbol that is made inside do. In effect, the outer binding goes unused, and the

inner binding interferes with the format form that we want to execute.

A solution is to use gensyms inside our macroexpansion. Gensyms, short for

“generated symbols,” are freshly generated symbols that are completely unique: they

have no relationship to any package and are distinct from all other symbols. Because of

that, they are printed with a #: prefix.

Chapter 5 Appendixes

257

(Providing detailed information about symbols, packages, and the relationship

between the two is not in scope of this book. The reader may want to consult The

Complete Idiot’s Guide to Common Lisp Packages by Erann Gat/Ron Garret, after

disregarding the somewhat crude name of that article.)

A corrected version of our for macro may look like this:

(defmacro for ((var start stop) &body body)

 (let ((limit (gensym "LIMIT")))

 `(do ((,var ,start (1+ ,var))

 (,limit ,stop))

 ((> ,var ,limit))

 ,@body)))

We can now expand our example from earlier to see the difference:

(let ((limit 10))

 (for (i 0 3)

 (format t ";; ~D ~D~%" i limit)))

(let ((limit 10))

 (DO ((I 0 (1+ I))

 (#:LIMIT737 3))

 ((> I #:LIMIT737))

 (FORMAT T ";; ~D ~D~%" I LIMIT)))

The former limit variable has been replaced with a gensym that is guaranteed not to

collide with any existing symbols, no matter where in our Lisp world they might come

from. We can also verify that our new form works:

CL-USER> (let ((limit 10))

 (for (i 0 3)

 (format t ";; ~D ~D~%" i limit)))

;; 0 10

;; 1 10

;; 2 10

;; 3 10

NIL

Chapter 5 Appendixes

258

This symbol capture problem is not limited to variable names; in certain situations,

it is also possible to capture function names and to interact with symbols in other Lisp

namespaces. Using gensyms is a solution for the majority of all these cases.

5.3.4  �Order of evaluation
Macros are generally responsible to ensure that their arguments are evaluated in the

proper order. Let us consider a small variation of the preceding for macro:

(defmacro for ((var start stop) &body body)

 (let ((limit (gensym "LIMIT")))

 `(do ((,limit ,stop)

 (,var ,start (1+ ,var)))

 ((> ,var ,limit))

 ,@body)))

In this example, the bindings established by the expansion of for are in inverse order:

first, we establish the limit, and only then do we establish the iteration variable. Such

behavior might violate the programmer’s expectations, especially when side effects are

involved in computing the forms in question; such a side effect might be, for example,

printing to the screen. For the following example, the programmer may expect ;;

Returning 0! to be printed before ;; Returning 3!; the preceding version of the macro will

violate this expectation.

CL-USER> (flet ((return-0 () (format t ";; Returning 0!~%") 0)

 (return-3 () (format t ";; Returning 3!~%") 3))

 (for (i (return-0) (return-3))

 (format t ";; ~D~%" i)))

;; Returning 3!

;; Returning 0!

;; 0

;; 1

;; 2

;; 3

NIL

The solution in this case is once again to invert the order in which variables are

bound; for different macros, the required solutions will depend on the order in which the

forms passed to the macro are expected to be evaluated.

Chapter 5 Appendixes

259

5.3.5  �Multiple evaluation
Another mistake that is possible when writing the for macro is failing to introduce a limit

variable at all and passing the stop parameter directly into the body of do.

(defmacro for ((var start stop) &body body)

 `(do ((,var ,start (1+ ,var)))

 ((> ,var ,stop))

 ,@body))

This causes the (return-3) form to be evaluated anew on every iteration, which might

or might not be what we want a particular macro to do. In our case, the effect will be

printing the ;; Returning 3! message on each iteration of the do macro, which plainly

would be undesired.

CL-USER> (flet ((return-0 () (format t ";; Returning 0!~%") 0)

 (return-3 () (format t ";; Returning 3!~%") 3))

 (for (i (return-0) (return-3))

 (format t ";; ~D~%" i)))

;; Returning 0!

;; Returning 3!

;; 0

;; Returning 3!

;; 1

;; Returning 3!

;; 2

;; Returning 3!

;; 3

;; Returning 3!

NIL

The typical solution here is to create lexical variables within the macroexpansion and

use the name of the variable instead of inserting the full form everywhere. This will ensure

that the form is evaluated only once and that the resulting value is then used throughout

the body of our macro. In this case, we need—once again—to step back and re-introduce

our limit variable, also creating a gensym for it in order to avoid variable capture.

Chapter 5 Appendixes

260

5.3.6  �When not to write macros
In short, only use macros if a function won’t do. If a function is enough, you should write

a function.

There are two groups of situations for which macros are the proper tool. These are

evaluation control and syntactic abstraction. An example of evaluation control is the

and macro that we demonstrated earlier and re-implemented as my-and; an example of

syntactic abstraction is the for macro, also demonstrated earlier.

In other words, a macro should be used only when the syntax rules for functions are

not enough—namely, when evaluating all forms before passing their values to the called

function is not what we want.

This is because a macro receives its arguments unevaluated and is capable of

performing arbitrary transformations on them. The earlier example of for cannot be written

as a function—the (i 0 3) form would have been misinterpreted as a call of an unknown

function named i, instead of being processed as a binding for an iteration variable.

However, macros also have their downsides: it is impossible to use the #' notation

with them; for example, #'and is invalid syntax. Therefore, it is impossible to pass macro

functions directly as values to, for example, mapcar. In addition, macro calls are invisible

in debug traces, since they no longer exist in compiled code (only their expansions do).

5.3.7  �Reference
For more information and detail on basics of macro writing, the reader should consult

the “Macros: Defining Your Own” chapter of Practical Common Lisp by Peter Seibel, as

well as Chapters 9 and 10 of On Lisp by Paul Graham.

5.4  �Appendix D: Condition system reference
5.4.1  �Restarts and related functions
5.4.1.1  �Class RESTART

•	 Class precedence list: restart, t

Represents a restart available in a given dynamic environment. A restart can be

named with a symbol; an anonymous restart has nil as its name.

A restart always has a restart function, which is called when the restart is invoked.

Chapter 5 Appendixes

https://doi.org/10.1007/978-1-4842-6134-7_9
https://doi.org/10.1007/978-1-4842-6134-7_10

261

A restart may be active or not. For a restart to be active, its test function must return

true, and it must either not be associated with any condition or it must be associated with

the condition that is used to compute the active restarts.

A restart may have a report function associated with it; that function describes how

a restart is reported, meaning how the restart object is printed with *print-escape* being

bound to nil.

A restart may have an interactive function that may be called to query the user

interactively for arguments for that restart. If no interactive function is provided, that list

is always assumed to be '().

All restarts have dynamic extent relative to the scope of the form that established them.

5.4.1.2  �Function RESTART-NAME

•	 (restart-name restart) → name

•	 restart – a restart.

•	 name – a symbol.

Returns the name of a restart, or nil in case of anonymous restarts.

5.4.1.3  �Function COMPUTE-RESTARTS

•	 (compute-restarts &optional condition) → restarts

•	 condition – a condition, or nil.

•	 restarts – a list of restarts.

Returns an immutable list of all restarts which are active in the dynamic environment

where compute-restarts is called, sorted with most recently established restarts first.

If condition is non-nil, then compute-restarts skips restarts associated with conditions

other than condition.

5.4.1.4  �Function FIND-RESTART

•	 (find-restart designator &optional condition) → maybe-restart

•	 designator – a restart object or a non-nil symbol.

•	 condition – a condition.

•	 maybe-restart – a restart or nil.

Chapter 5 Appendixes

262

If designator is a restart, find-restart checks whether or not it is active. If yes, the

restart is returned; otherwise, nil is returned.

If designator is a symbol, find-restart returns the newest established active restart

named with that symbol.

If condition is non-nil, then find-restarts skips restarts associated with conditions

other than condition.

5.4.1.5  �Function INVOKE-RESTART

•	 (invoke-restart designator &optional arguments) → result*

•	 designator – a restart object or a non-nil symbol.

•	 arguments – arbitrary Lisp data.

•	 result* – arbitrary Lisp data.

If designator is a restart, then its restart function is called with the provided

arguments.

If designator is a symbol, then invoke-restart finds the newest established active

restart named with that symbol and then invokes it with the provided arguments.

If the restart function returns normally, then results are the values returned from that

function.

5.4.1.6  �Function INVOKE-RESTART-INTERACTIVELY

•	 (invoke-restart-interactively designator) → result*

•	 designator – a restart object or a non-nil symbol.

•	 result – arbitrary Lisp data.

If designator is a restart, then its interactive function is called to retrieve a list of

arguments for that restart. Then, the restart function is called with these arguments.

If designator is a symbol, then invoke-restart finds the newest established active

restart named with that symbol and then invokes it interactively.

If the restart function returns normally, then results are the values returned from that

function.

Chapter 5 Appendixes

263

Examples

CL-USER> (type-of (first (compute-restarts)))

RESTART

CL-USER> (restart-name (first (compute-restarts)))

ABORT ; may differ across implementations

CL-USER> (progn (format t "~&;; ~S~%" (compute-restarts)) nil)

;; (#<RESTART ABORT {7FFAE3DAEAB3}>) ; may differ across implementations

NIL

CL-USER> (find-restart 'abort)

#<RESTART ABORT {7FFAE3DADC03}>

CL-USER> (restart-bind ((return-42 (lambda () 42)))

 (invoke-restart 'return-42))

42

CL-USER> (restart-bind ((always-visible (lambda ())))

 (format t "~&;; ~S~%" (find-restart 'always-visible)) nil)

;; #<RESTART ALWAYS-VISIBLE {7FFAE3DAD213}>

NIL

CL-USER> (flet ((report-always-visible (stream)

 (write-string "Invoke the always visible restart." stream)))

 (restart-bind ((always-visible (lambda ()) :report-function #'report-always-

visible))

 (format t "~&;; ~A~%" (find-restart 'always-visible)) nil))

;; Invoke the always visible restart.

NIL

CL-USER> (restart-bind ((never-visible (lambda ()) :test-function (constantly nil)))

 (format t "~&;; ~S~%" (find-restart 'never-visible)) nil)

;; NIL

NIL

CL-USER> (flet ((query ()

 (format *query-io* "~&;; Type a number: ")

 (list (read *query-io*))))

 �(restart-bind ((return-a-number #'identity :interactive-function #'query))

 (invoke-restart-interactively 'return-a-number)))

;; Type a number: 42 ; user input here

42

Chapter 5 Appendixes

264

5.4.2  �Condition-restart association
5.4.2.1  �Macro WITH-CONDITION-RESTARTS

•	 (with-condition-restarts condition restarts &body body) → result*

•	 condition – a form, evaluated to produce a condition.

•	 restarts – a form, evaluated to produce a list of restarts.

•	 body – an implicit progn, evaluated to produce result*.

•	 result – arbitrary Lisp data.

Evaluates body in a dynamic environment where the provided condition is associated

with each of the provided restarts.

If the body forms return normally, results are the values returned from these forms.

Examples

CL-USER> (let ((toplevel-restarts (compute-restarts))

 (condition-1 (make-instance 'condition))

 (condition-2 (make-instance 'condition)))

 (restart-bind ((restart-1 (lambda ()))

 (restart-2 (lambda ())))

 �(with-condition-restarts condition-1 (list (find-restart 'restart-1))

 (with-condition-restarts condition-2 (list (find-restart 'restart-2))

 (format t ";; All restarts:~%")

 (format t ";; ~S~%" (mapcar #'restart-name

 (set-difference (compute-restarts)

 toplevel-restarts)))

 (format t ";; Restarts applicable for condition-1:~%")

 (format t ";; ~S~%" (mapcar #'restart-name

 �(set-difference (compute-restarts condition-1)

 toplevel-restarts)))

 (format t ";; Restarts applicable for condition-2:~%")

 (format t ";; ~S~%" (mapcar #'restart-name

 �(set-difference (compute-restarts condition-2)

 toplevel-restarts)))))))

;; All restarts:

;; (RESTART-2 RESTART-1)

;; Restarts applicable for condition-1:

;; (RESTART-1)

Chapter 5 Appendixes

265

;; Restarts applicable for condition-2:

;; (RESTART-2)

NIL

5.4.3  �Restart macros
5.4.3.1  �Macro RESTART-BIND

•	 (restart-bind (&rest bindings) &body body) → result*

•	 bindings – a list of restart bindings.

•	 body – an implicit progn, evaluated to produce result*.

•	 result – arbitrary Lisp data.

•	 A restart binding: (name restart-function . options)

•	 name – a symbol, not evaluated.

•	 function – a form, evaluated to produce a restart function.

•	 options – a property list.

Evaluates body in a dynamic environment where new restarts are established. The

restarts are constructed based on the provided restart bindings. Each restart is given a name

and a restart function based on the symbol and function passed to the restart binding.

The keys allowed for options are :interactive-function, :report-function, and test-

function. Their values are evaluated to produce an interactive function, a report function,

and a test function for the established restart:

•	 The interactive function must be a function of zero arguments that

returns a list of arguments suitable to apply the restart function to. If

not supplied, it is equivalent to (constantly '()).

•	 The test function must be a function that accepts a condition

argument and returns a generalized boolean. If not supplied, it is

equivalent to (constantly t).

•	 The report function must be a function that accepts a stream

argument and writes the restart’s report to that stream. If not

supplied, the restart report is implementation-dependent.

If the body forms return normally, results are the values returned from these forms.

Chapter 5 Appendixes

266

5.4.3.2  �Macro RESTART-CASE

•	 (restart-case form &rest cases) → result*

•	 form – a form, evaluated to produce result*.

•	 cases – a list of restart cases.

•	 result – arbitrary Lisp data.

•	 A restart case: (name lambda-list &rest keywords-and-body)

•	 name – a symbol, not evaluated.

•	 lambda-list – an ordinary lambda-list, not evaluated.

•	 keywords-and-body – a list of keyword-value option pairs, followed

by a list of body forms; the body forms are evaluated.

•	 Keyword-value option pairs: &key interactive report test

•	 interactive – a symbol or a lambda form. May be supplied at most

once.

•	 report – a symbol, a string, or a lambda form. May be supplied at

most once.

•	 test – a symbol or a lambda form. May be supplied at most once.

Evaluates body in a dynamic environment where new restarts are established. The

restarts are constructed based on the provided restart cases. Each restart is given a name

based on the symbol passed to the restart case.

The restart function for each bound restart, upon being called, immediately transfers

control to the restart case that is constructed based on the data passed to the macro; the

arguments passed to the restart function are passed to the restart case, and the body of

that restart case then produces the results that are returned from restart-case.

The values of keyword-value option pairs are used to produce an interactive

function, a report function, and a test function for the established restart:

•	 The interactive function must be a function of zero arguments that

returns a list of arguments suitable to apply the restart function to. If

not supplied, it is equivalent to (constantly '()).

Chapter 5 Appendixes

267

•	 The test function must be a function that accepts a condition

argument and returns a generalized boolean. If not supplied, it is

equivalent to (constantly t).

•	 The report function must be a function that accepts a stream

argument and writes the restart’s report to that stream. If not

supplied, the restart report is implementation-dependent.

If form returns normally, results are the values returned from these forms.

5.4.3.3  �Macro WITH-SIMPLE-RESTART
•	 (with-simple-restart (name format-control &rest format-arguments) &body

body) → result*

•	 name – a symbol.

•	 format-control – a format control.

•	 format-arguments – a list of arbitrary Lisp data.

•	 result – arbitrary Lisp data.

Evaluates body in a dynamic environment where a new restart is established. The

restart is constructed based on the provided name, and its report is constructed based

on the provided format control and arguments.

If the restart is invoked, control is immediately transferred outside the body of

with-simple-restart, returning two values: nil and t. Otherwise, if the body forms return

normally, results are the values returned from these forms.

Examples

CL-USER> (restart-bind ((new-restart (lambda () (format t "~&;;

New restart!~%"))))

 (format t "~&;; ~S~%" (find-restart 'new-restart)))

;; #<RESTART NEW-RESTART {7FFAE3DAD213}>

NIL

CL-USER> (restart-bind ((new-restart (lambda () (format t "~&;;

New restart!~%"))))

 (invoke-restart 'new-restart)

 42)

;; New restart!

42

Chapter 5 Appendixes

268

CL-USER> (restart-case (progn (format t "~&;; ~S~%" (find-restart

'new-restart)) 42)

 (new-restart () (format t "~&;; New restart!~%") 24))

;; #<RESTART NEW-RESTART {7FFAE3DAD1D3}>

42

CL-USER> (restart-case (progn (invoke-restart 'new-restart) 42)

 (new-restart () (format t "~&;; New restart!~%") 24))

;; New restart!

24

CL-USER> (with-simple-restart (new-restart "Invoke the new restart.")

 (format t "~&;; ~S~%" (find-restart 'new-restart)))

;; #<RESTART NEW-RESTART {7FFAE3DAD1D3}>

NIL

CL-USER> (with-simple-restart (new-restart "Invoke the new restart.")

 (format t "~&;; ~A~%" (find-restart 'new-restart)))

;; Invoke the new restart.

NIL

CL-USER> (with-simple-restart (new-restart "Invoke the new restart.")

 (invoke-restart 'new-restart))

NIL

T

5.4.4  �Standard restarts
5.4.4.1  �Restart ABORT

•	 Arguments: ()

Aborts the currently executing action by means of transferring control.

An abort restart of some kind should always be established by the Lisp environment.

5.4.4.2  �Restart MUFFLE-WARNING

•	 Arguments: ()

Transfers control back into warn in order to inform it that the warning condition has

been accounted for and no further handling is needed.

Chapter 5 Appendixes

269

5.4.4.3  �Restart CONTINUE

•	 Arguments: ()

Continues the action in case of situations where a single defined way to continue

exists, such as in case of cerror or break.

5.4.4.4  �Restart STORE-VALUE

•	 Arguments: (value)

•	 value – arbitrary Lisp data.

Uses the provided value to recover from an error. The value is then stored for

permanent use.

5.4.4.5  �Restart USE-VALUE

•	 Arguments: (value)

•	 value – arbitrary Lisp data.

Uses the provided value to recover from an error. The value is not stored for any kind

of permanent use afterward.

5.4.4.6  �Function ABORT, CONTINUE, MUFFLE-WARNING, USE-
VALUE, STORE-VALUE

•	 (abort &optional condition) → |

•	 (muffle-warning &optional condition) → |

•	 (continue &optional condition) → nil

•	 (store-value value &optional condition) → nil

•	 (use-value value &optional condition) → nil

•	 condition – a condition.

•	 value – arbitrary Lisp datum.

Chapter 5 Appendixes

270

Finds the newest established active restart with the same name as the function, as if

via find-restart. If no such restart is found, abort and muffle-warning signal a control-error,

while continue, store-value, and use-value return nil. If such a restart exists, it is invoked—

in case of store-value and use-value, with the provided value argument.

If condition is non-nil, then the restart search skip restarts associated with conditions

other than condition.

Examples

CL-USER> (handler-bind ((error #'abort))

 (+ 2 :two))

;; Evaluation aborted on TYPE-ERROR: The value :TWO is not of type NUMBER.

CL-USER> (handler-bind ((warning #'muffle-warning))

 (warn "Example warning."))

NIL

CL-USER> (handler-bind ((error #'continue))

 (cerror "Continue." "Example error."))

NIL

CL-USER> (handler-bind ((type-error (lambda (c) (declare (ignore c)) (store-value 42))))

 (let ((x "42")) (check-type x integer)))

NIL

5.4.5  �Defining and instantiating conditions
5.4.5.1  Macro DEFINE-CONDITION

•	 (define-condition name (&rest parent-types) (&rest slot-specifiers) &key

default-initargs documentation report) → name

•	 name – a symbol, not evaluated.

•	 parent-types – a list of symbols naming condition types, not

evaluated. If empty, defaults to a list containing condition.

•	 slot-specifiers – a list of slot specifiers.

•	 default-initargs – a list of default initialization arguments, whose

elements are evaluated when the condition object is instantiated.

May be supplied at most once.

Chapter 5 Appendixes

271

•	 documentation – a string, not evaluated. May be supplied at

most once.

•	 report – a symbol, a string, or a lambda form. May be supplied at

most once.

•	 A slot specifier: slot-name or (slot-name &key reader writer accessor

allocation initarg initform type)

•	 reader – a symbol, not evaluated. May be supplied multiple times.

•	 writer – a symbol or a setf function name, not evaluated. May be

supplied multiple times.

•	 accessor – a symbol, not evaluated. May be supplied multiple times.

•	 allocation – either :instance or :class, not evaluated. May be

supplied at most once.

•	 initarg – a symbol, not evaluated. May be supplied multiple times.

•	 initform – a form, evaluated when the condition object is

instantiated. May be supplied at most once.

•	 type – a type specifier, not evaluated. May be supplied at most once.

Defines a new condition type named name with parent-types as its supertypes, slots

described by slot-specifiers, and optional default-initargs, documentation, and report.

Works like defclass, with the exception of the additional :report option and a lack of

:metaclass option.

Each slot specified in slot-specifiers gets one reader function for each provided

:reader, each writer function for each provided :writer, and a reader function and a setf

writer function for each provided :accessor. The slot may be allocated on the :instance

(separate values for each condition; default) or on the :class (single shared value across

all objects). The slot may have multiple :initargs which are usable in make-condition and

a single :initform that is used when no :initarg is used its value is evaluated and used for

initializing the slot. Optionally, :type can be provided to declare the type of the slot.

It is possible to specify a list of default initialization arguments for the condition type

via :default-initargs, a documentation string via :documentation, and a condition report

via :report.

Chapter 5 Appendixes

272

5.4.5.2  �Function MAKE-CONDITION

•	 (make-condition condition-type &rest arguments) → condition

•	 condition-type – a symbol naming a condition type.

•	 arguments – a list of keyword-value pairs suitable for initializing the

condition object.

•	 condition – a condition.

Creates and returns an instance of condition type condition, initialized with arguments.

Examples

CL-USER> (define-condition foo-condition () ())

FOO-CONDITION

CL-USER> (make-condition 'foo-condition)

#<FOO-CONDITION {1018A1FED3}>

CL-USER> (typep (make-condition 'foo-condition) 'condition)

T

Readers, writers, accessors:

CL-USER> (define-condition bar-condition ()

 ((bar-slot :reader bar-slot-reader

 :writer bar-slot-writer

 :accessor bar-slot-accessor)))

BAR-CONDITION

CL-USER> (defvar *bar-condition* (make-condition 'bar-condition))

BAR-CONDITION

CL-USER> (bar-slot-writer 42 *bar-condition*)

42

CL-USER> (bar-slot-reader *bar-condition*)

42

CL-USER> (setf (bar-slot-accessor *bar-condition*) :forty-two)

:FORTY-TWO

CL-USER> (bar-slot-accessor *bar-condition*)

:FORTY-TWO

Chapter 5 Appendixes

273

Slot inheritance:

CL-USER> (define-condition also-bar-condition (bar-condition) ())

ALSO-BAR-CONDITION

CL-USER> (defvar *also-bar-condition* (make-condition 'also-bar-condition))

ALSO-BAR-CONDITION

CL-USER> (setf (bar-slot-accessor *also-bar-condition*) :also-42)

:ALSO-42

CL-USER> (bar-slot-accessor *also-bar-condition*)

:ALSO-42

Initialization arguments, initialization forms, and default initialization arguments:

CL-USER> (define-condition baz-condition ()

 �((baz-slot :accessor baz-slot :initarg :baz-slot :initform :nothing)))

BAZ-CONDITION

CL-USER> (baz-slot (make-condition 'baz-condition))

:NOTHING

CL-USER> (baz-slot (make-condition 'baz-condition :baz-slot :something))

:SOMETHING

CL-USER> (define-condition fred-condition ()

 ((fred-slot :initarg :fred-slot :reader fred-slot))

 (:default-initargs :fred-slot "Roses are red"))

FRED-CONDITION

CL-USER> (fred-slot (make-condition 'fred-condition))

"Roses are red"

CL-USER> (fred-slot (make-condition 'fred-condition :fred-slot "Violets are blue"))

"Violets are blue"

Class-allocated slots:

CL-USER> (define-condition quux-condition (foo-condition)

 ((quux-slot :accessor quux-slot :allocation :class)))

QUUX-CONDITION

CL-USER> (defvar *quux-condition-1* (make-condition 'quux-condition))

QUUX-CONDITION-1

Chapter 5 Appendixes

274

CL-USER> (defvar *quux-condition-2* (make-condition 'quux-condition))

QUUX-CONDITION-2

CL-USER> (setf (quux-slot *quux-condition-1*) :something)

:SOMETHING

CL-USER> (quux-slot *quux-condition-2*)

:SOMETHING

Reports and documentation strings:

CL-USER> (define-condition yiip-condition () ()

 (:report "A YIIP-CONDITION was signaled. Yiip!")

 (:documentation "A condition type representing yiips. Yiip!"))

YIIP-CONDITION

CL-USER> (princ-to-string (make-condition 'yiip-condition))

"A YIIP-CONDITION was signaled. Yiip!"

CL-USER> (documentation 'yiip-condition 'type)

"A condition type representing yiips. Yiip!"

5.4.6  �Assertions
5.4.6.1  �Macro ASSERT

•	 (assert test-form &optional places datum &rest arguments) → nil

•	 test-form – a form, evaluated each time the assertion is tried and

retried.

•	 places – a list of places. Subforms of each place may be evaluated

multiple times when assert signals an error.

•	 datum, arguments – condition designators suitable for passing to

error.

Evaluates test-form and checks whether it returned a true value. If not, an error is

signaled; if datum and arguments are passed to assert, they are used to construct the error

condition.

In addition to signaling an error, assert establishes a continue restart that allows the

user to set new values to the provided places before the assertion is retried.

Chapter 5 Appendixes

275

5.4.6.2  �Macro CHECK-TYPE

•	 (check-type place type &optional type-string)

•	 place – a place. Its subforms may be evaluated multiple times

when check-type signals an error.

•	 type – a type specifier, not evaluated.

•	 type-string – a string, evaluated.

Evaluates place and checks whether the value it returned is of type type. If not, a type-

error is signaled; if type-string is provided, it is used to report the error.

In addition to signaling an error, check-type establishes a store-value restart that allows

the user to set new values to the provided place before the assertion is retried.

5.4.6.3  �Macro ECASE, ETYPECASE, CCASE, CTYPECASE

•	 (ecase keyplace &rest cases) → result*

•	 (etypecase keyplace &rest cases) → result*

•	 (ccase keyplace &rest cases) → result*

•	 (ctypecase keyplace &rest cases) → result*

•	 keyplace – a form, evaluated once. In case of ccase and ctypecase,

used as a place if the store-value restart is invoked, and its

subforms may be evaluated multiple times when an error is

signaled by the assertion.

•	 cases – a list of cases.

•	 An ecase/ccase case: (key-or-keys &rest forms)

•	 key-or-keys – a list of keys, or an atom that denotes a one-element

list containing that atom as a key.

•	 forms – an implicit progn, evaluated to produce result* if the given

case matches.

Chapter 5 Appendixes

276

•	 An etypecase/ctypecase case: (type &rest forms)

•	 type – a type specifier.

•	 forms – an implicit progn, evaluated to produce result* if the given

case matches.

Evaluates keyplace and checks whether or not its value matches any of the provided

cases. For ecase and ccase, the value needs to be eql to any of the provided keys; for

etypecase and ctypecase, the value needs to be of one of the provided types. If no match is

found, a type-error is signaled.

Additionally, ccase and ctypecase establish a store-value restart which allows the user to

correct the error by providing a value to be stored in place before the assertion is retried.

Examples
General assertions:

CL-USER> (let ((x 42)) (assert (= x 42)))

NIL

CL-USER> (let ((x 24)) (assert (= x 42) (x) "X is ~A, not 42." 42))

;; Debugger level 1 entered on SIMPLE-ERROR:

;; X is 24, not 42.

;; Type :HELP for available commands.

[1] Debug> (continue) ; user input here

;; The old value of X is 24.

;; Do you want to supply a new value? (y or n) y ; user input here

;; Type a form to be evaluated:

42 ; user input here

NIL

CL-USER> (let ((x 42)) (check-type x integer))

NIL

CL-USER> (let ((x :forty-two)) (check-type x integer) x)

;; Debugger level 1 entered on SIMPLE-TYPE-ERROR:

;; The value of X is :FORTY-TWO, which is not of type INTEGER.

;; Type :HELP for available commands.

[1] Debug> (store-value 42) ; user input here

42

Chapter 5 Appendixes

277

Non-correctable case assertions:

CL-USER> (ecase 42 (42 :ok))

:OK

CL-USER> (ecase 24 (42 :ok))

;; Debugger level 1 entered on SB-KERNEL:CASE-FAILURE:

;; 24 fell through ECASE expression. Wanted one of (42).

;; Type :HELP for available commands.

[1] Debug> (abort) ; user input here

;; Evaluation aborted on TYPE-ERROR: The value 24 is not of type (MEMBER 42).

CL-USER> (etypecase 42 (number :ok))

:OK

CL-USER> (etypecase 42 (keyword :ok))

;; Debugger level 1 entered on SB-KERNEL:CASE-FAILURE:

;; 42 fell through ETYPECASE expression. Wanted one of (KEYWORD).

;; Type :HELP for available commands.

[1] Debug> (abort) ; user input here

;; Evaluation aborted on TYPE-ERROR: The value 42 is not of type (OR KEYWORD).

Correctable case assertions:

CL-USER> (let ((x 42)) (ccase x (42 :ok)))

:OK

CL-USER> (let ((x 24)) (ccase x (42 :ok)))

;; Debugger level 1 entered on SB-KERNEL:CASE-FAILURE:

;; 24 fell through CCASE expression. Wanted one of (42).

;; Type :HELP for available commands.

[1] Debug> (store-value 42) ; user input here

:OK

CL-USER> (let ((x 24)) (ctypecase x (number :ok)))

:OK

CL-USER> (let ((x 24)) (ctypecase x (keyword :ok)))

;; Debugger level 1 entered on SB-KERNEL:CASE-FAILURE:

;; 24 fell through CTYPECASE expression. Wanted one of (KEYWORD).

;; Type :HELP for available commands.

[1] Debug> (store-value :forty-two) ; user input here

:OK

Chapter 5 Appendixes

278

5.4.7  �Condition signaling
5.4.7.1  �Function SIGNAL

•	 (signal datum &rest arguments) → nil

•	 datum, arguments – condition designators:

•	 If datum is a condition object, arguments must be nil.

•	 If datum is a symbol naming a condition type, arguments must

be a list of keyword-value pairs suitable for initializing the

condition object.

•	 If datum is a format control or a formatter function, arguments

must be a list of format arguments matching the format

control or formatter function.

Signals the condition resulting from coercing datum and arguments to a condition.

Returns nil if control was not transferred by any handler.

The handlers are searched sequentially from most recent binding form to last and

within a single binding form from first handler to last.

5.4.7.2  �Function WARN

•	 (warn datum &rest arguments) → nil

•	 datum, arguments – condition designators for a warning condition:

•	 If datum is a condition object, arguments must be nil.

•	 If datum is a symbol naming a condition type, arguments must

be a list of keyword-value pairs suitable for initializing the

condition object.

•	 If datum is a format control or a formatter function, arguments

must be a list of format arguments matching the format

control or formatter function.

Establishes a muffle-warning restart and signals the condition resulting from coercing

datum and arguments to a condition. If the muffle-warning restart is invoked, returns nil.

Otherwise, reports the condition to *error-output* and returns nil if control was not

transferred by any handler.

Chapter 5 Appendixes

279

5.4.7.3  �Function ERROR

•	 (error datum &rest arguments) → |

•	 datum, arguments – condition designators:

•	 If datum is a condition object, arguments must be nil.

•	 If datum is a symbol naming a condition type, arguments must

be a list of keyword-value pairs suitable for initializing the

condition object.

•	 If datum is a format control or a formatter function, arguments

must be a list of format arguments matching the format

control or formatter function.

Signals the condition resulting from coercing datum and arguments to a condition.

Invokes the debugger if control was not transferred by any handler.

5.4.7.4  �Function CERROR

•	 (cerror format-control datum &rest arguments) → nil

•	 format-control – a format control.

•	 datum, arguments – condition designators:

•	 If datum is a condition object, arguments must be nil.

•	 If datum is a symbol naming a condition type, arguments must

be a list of keyword-value pairs suitable for initializing the

condition object.

•	 If datum is a format control or a formatter function, arguments

must be a list of format arguments matching the format

control or formatter function.

Signals the condition resulting from coercing datum and arguments to a condition.

Establishes a continue restart and invokes the debugger if control was not transferred

by any handler. arguments is additionally passed with format-control as a list of format

arguments to report the established continue restart.

Chapter 5 Appendixes

280

Examples
Signaling:

CL-USER> (signal 'condition)

NIL

CL-USER> (warn 'warning)

;; WARNING: Condition WARNING was signaled.

NIL

CL-USER> (error 'error)

;; Debugger level 1 entered on ERROR:

;; Condition ERROR was signaled.

;; Type :HELP for available commands.

[1] Debug> (abort) ; user input here

;; Evaluation aborted on ERROR: Condition ERROR was signaled.

CL-USER> (cerror "Continue." 'error)

;; Debugger level 1 entered on ERROR:

;; Condition ERROR was signaled.

;; Type :HELP for available commands.

[1] Debug> (continue) ; user input here

NIL

Different data coercible to conditions:

CL-USER> (warn 'warning)

;; WARNING: Condition WARNING was signaled.

NIL

CL-USER> (warn (make-condition 'warning))

;; WARNING: Condition WARNING was signaled.

NIL

CL-USER> (warn "Warning: ~A." :something-scary)

;; WARNING: Warning: SOMETHING-SCARY.

NIL

CL-USER> (warn (lambda (stream argument) (format stream "Warning: ~A." argument))

:something-scary)

;; WARNING: Warning: SOMETHING-SCARY.

NIL

Chapter 5 Appendixes

281

5.4.8  �Handler macros
5.4.8.1  �Macro HANDLER-BIND

•	 (handler-bind (&rest bindings) &body body) → result*

•	 bindings – a list of handler bindings.

•	 body – an implicit progn, evaluated to produce result*.

•	 result – arbitrary Lisp data.

•	 A restart binding: (type function)

•	 type – a type designator, not evaluated.

•	 function – a form, evaluated to produce a handler function.

Evaluates body in a dynamic environment where new handlers are established. The

handlers are provided based on the provided handler bindings. Each handler is created

based on the provided type designator and handler function.

Any conditions signaled from within a handler body will only be able to invoke

handlers established outside the handler-bind form that bound it.

If the body forms return normally, results are the values returned from these forms.

5.4.8.2  �Macro HANDLER-CASE

•	 (handler-case form &rest cases) → result*

•	 form – a form, evaluated to produce result*.

•	 cases – a list of handler cases.

•	 result – arbitrary Lisp data.

•	 A handler case: (name lambda-list &rest body)

•	 name – a symbol, not evaluated.

•	 lambda-list – an ordinary lambda-list, not evaluated. Must be

either empty or contain a single required argument.

•	 body – a list of body forms, evaluated.

Chapter 5 Appendixes

282

Evaluates body in a dynamic environment where new handlers are established. The

handlers are provided based on the provided handler bindings. Each handler is created

based on the provided type designator and handler function.

The handler function for each bound handler, upon being called, immediately

transfers control to the handler case that is constructed based on the data passed to

the macro. If the lambda list is non-empty, then the condition passed to the handler

function is passed to the handler case. The body of that handler case then produces the

results that are returned from handler-case.

Any conditions signaled from within a handler case will only be able to invoke

handlers established outside the handler-case form that bound it.

A single handler case with name :no-error may be provided. This case will be executed

when form returns normally. The values returned by form are passed as arguments to the

:no-error case, and results are the values returned by the body of that case.

When there is no :no-error case, if form returns normally, results are the values

returned from these forms.

5.4.8.3  �Macro IGNORE-ERRORS

•	 (ignore-errors &body body) → result*

•	 body – an implicit progn; evaluated.

•	 result – arbitrary Lisp data.

Evaluates body in a dynamic environment where a new error handler is established.

If that handler is invoked, control is immediately transferred outside the body of with-

simple-restart, returning two values: nil and the condition object the handler was

invoked with. Otherwise, if the body forms return normally, then results are the values

returned from these forms.

Examples

CL-USER> (handler-bind ((condition (lambda (c) (format t "~&;; ~A~%" c) 24)))

 (signal 'condition)

 42)

;; Condition CONDITION was signaled.

42

Chapter 5 Appendixes

283

CL-USER> (handler-case (progn (signal 'condition) 42)

 (condition (c) (format t "~&;; ~A~%" c) 24))

;; Condition CONDITION was signaled.

24

CL-USER> (handler-case 42

 (:no-error (x) (format t "~&;; No error: ~A~%" x)))

;; No error: 42

NIL

5.4.9  �Condition types
5.4.9.1  �Condition Type CONDITION

•	 Class precedence list: condition, t

The base condition type; a supertype for all condition types.

5.4.9.2  �Condition Type WARNING

•	 Class precedence list: warning, condition, t

The base warning type; a supertype for all warning types.

5.4.9.3  �Condition Type STYLE-WARNING

•	 Class precedence list: style-warning, warning, condition, t

The warning type representing situations which involve code that is conformant but

that is considered to be of poor quality by the Lisp implementation.

5.4.9.4  �Condition Type SERIOUS-CONDITION

•	 Class precedence list: serious-condition, condition, t

The condition type representing all situations that require handling or interactive

programmer intervention. These situations may happen due to programming errors or

limitations of software or hardware that prevent the program from continuing execution.

Chapter 5 Appendixes

284

5.4.9.5  �Condition Type ERROR

•	 Class precedence list: error, serious-condition, condition, t

The condition type representing all erroneous program situations; a supertype for all

error types.

5.4.9.6  �Condition Type SIMPLE-CONDITION

•	 Class precedence list: simple-condition, condition, t

•	 Argument: format control

•	 Type: a format control.

•	 Initialization argument: :format-control

•	 Reader function: simple-condition-format-control

•	 Argument: format arguments

•	 Type: a list.

•	 Initialization argument: :format-argument

•	 Default value: '()

•	 Reader function: simple-condition-format-arguments

The condition type representing conditions whose reporting is driven by a format

control and format arguments.

5.4.9.7  �Condition Type SIMPLE-WARNING

•	 Class precedence list: simple-warning, simple-condition, warning,

condition, t

The condition type representing warnings whose reporting is driven by a format

control and format arguments.

5.4.9.8  �Condition Type SIMPLE-ERROR

•	 Class precedence list: simple-error, simple-condition, error, serious-

condition condition, t

Chapter 5 Appendixes

285

The condition type representing errors whose reporting is driven by a format control

and format arguments.

5.4.9.9  �Condition Type STORAGE-CONDITION

•	 Class precedence list: storage-condition, serious-condition, condition, t

The condition type representing serious conditions related to implementation-,

software-, and hardware-dependent limits that affect program execution.

5.4.9.10  �Condition Type TYPE-ERROR

•	 Class precedence list: type-error, error, serious-condition, condition, t

•	 Argument: datum

•	 Type: arbitrary Lisp datum.

•	 Initialization argument: :datum

•	 Reader function: type-error-datum

•	 Argument: expected type

•	 Type: a type designator.

•	 Initialization argument: :expected-type

•	 Reader function: type-error-expected-type

The error type representing situations where a Lisp object is not of the expected type.

5.4.9.11  �Condition Type SIMPLE-TYPE-ERROR

•	 Class precedence list: simple-error, simple-condition, type-error, error,

serious-condition condition, t

The error type representing type errors whose reporting is driven by a format control

and format arguments.

Chapter 5 Appendixes

286

5.4.9.12  �Condition Type CONTROL-ERROR

•	 Class precedence list: control-error, error, serious-condition, condition, t

The error type representing errors resulting from attempts to perform an invalid

non-local transfer of control within the program.

5.4.9.13  �Condition Type PROGRAM-ERROR

•	 Class precedence list: program-error, error, serious-condition, condition,

t

The error type representing errors resulting from attempts to execute Lisp code with

invalid syntax.

5.4.9.14  �Condition Type CELL-ERROR

•	 Class precedence list: cell-error, error, serious-condition, condition, t

•	 Argument: name of the offending location

•	 Type: arbitrary Lisp data.

•	 Initialization argument: :name

•	 Reader function: cell-error-name

The error type representing erroneous access to locations.

5.4.9.15  �Condition Type UNBOUND-VARIABLE

•	 Class precedence list: unbound-variable, cell-error, error, serious-

condition, condition, t

The cell error type representing errors resulting from attempts to reference an

unbound variable.

5.4.9.16  �Condition Type UNDEFINED-FUNCTION

•	 Class precedence list: undefined-functions, cell-error, error, serious-

condition, condition, t

The cell error type representing errors resulting from attempts to reference an

undefined function.

Chapter 5 Appendixes

287

5.4.9.17  �Condition Type UNBOUND-SLOT

•	 Class precedence list: unbound-slot, cell-error, error, serious-condition,

condition, t

•	 Argument: the instance whose slot is unbound

•	 Type: arbitrary Lisp datum.

•	 Initialization argument: :instance

•	 Reader function: unbound-slot-instance

The cell error type representing errors resulting from attempts to reference an

unbound slot of an instance.

5.4.9.18  �Condition Type STREAM-ERROR

•	 Class precedence list: stream-error, error, serious-condition, condition, t

•	 Argument: the offending stream

•	 Type: a stream.

•	 Initialization argument: :stream

•	 Reader function: stream-error-stream

The error type representing errors related to performing I/O on a stream.

5.4.9.19  �Condition Type END-OF-FILE

•	 Class precedence list: end-of-file, stream-error, error, serious-condition,

condition, t

The stream error type representing errors resulting from attempts to read from

streams that have no more data to be read.

5.4.9.20  �Condition Type PARSE-ERROR

•	 Class precedence list: parse-error, error, serious-condition, condition, t

The error type representing parsing errors.

Chapter 5 Appendixes

288

5.4.9.21  �Condition Type READER-ERROR

•	 Class precedence list: reader-error, parse-error, stream-error, error,

serious-condition, condition, t

The parse error type representing errors in operation of the Lisp reader.

5.4.9.22  �Condition Type PACKAGE-ERROR

•	 Class precedence list: package-error, error, serious-condition, condition, t

•	 Argument: the offending package

•	 Type: a package designator.

•	 Initialization argument: :package

•	 Reader function: package-error-package

The error type representing errors related to package operations.

5.4.9.23  �Condition Type FILE-ERROR

•	 Class precedence list: file-error, error, serious-condition, condition, t

•	 Argument: the offending pathname

•	 Type: a pathname.

•	 Initialization argument: :pathname

•	 Reader function: file-error-pathname

The error type representing errors related to operating on files.

5.4.9.24  �Condition Type PRINT-NOT-READABLE

•	 Class precedence list: print-not-readable, error, serious-condition,

condition, t

•	 Argument: the object that is unable to be printed readably

•	 Type: arbitrary Lisp datum.

•	 Initialization argument: :object

•	 Reader function: print-not-readable-object

Chapter 5 Appendixes

289

The error type representing errors resulting from situations where it is impossible to

print an object readably (when *print-readably* is true).

5.4.9.25  �Condition Type ARITHMETIC-ERROR

•	 Class precedence list: arithmetic-error, error, serious-condition,

condition, t

•	 Argument: operation

•	 Type: a function designator.

•	 Initialization argument: :operation

•	 Reader function: arithmetic-error-operation

•	 Argument: operands

•	 Type: a list.

•	 Initialization argument: :operands

•	 Reader function: arithmetic-error-operands

The error type representing errors while performing number arithmetic.

5.4.9.26  �Condition Type DIVISION-BY-ZERO

•	 Class precedence list: division-by-zero, arithmetic-error, error, serious-

condition, condition, t

The arithmetic error type representing errors resulting from attempts to divide by zero.

In practice, signaled when division by integer zero is attempted or when the IEEE

floating point exception “Division by Zero” is signaled.

5.4.9.27  �Condition Type FLOATING-POINT-INVALID-OPERATION

•	 Class precedence list: floating-point-invalid-operation, arithmetic-

error, error, serious-condition, condition, t

The arithmetic error type representing floating point exceptions related to invalid

operations.

In practice, signaled when the IEEE floating point exception “Invalid Operation” is

signaled.

Chapter 5 Appendixes

290

5.4.9.28  �Condition Type FLOATING-POINT-INEXACT

•	 Class precedence list: floating-point-inexact, arithmetic-error, error,

serious-condition, condition, t

The arithmetic error type representing floating point exceptions related to inexact

result. In practice, signaled when the IEEE floating point exception “Inexact” is signaled.

5.4.9.29  �Condition Type FLOATING-POINT-UNDERFLOW

•	 Class precedence list: floating-point-underflow, arithmetic-error, error,

serious-condition, condition, t

The arithmetic error type representing underflow floating point exceptions.

In practice, signaled when the IEEE floating point exception “Underflow” is signaled.

5.4.9.30  �Condition Type FLOATING-POINT-OVERFLOW

•	 Class precedence list: floating-point-overflow, arithmetic-error, error,

serious-condition, condition, t

The arithmetic error type representing overflow floating point exceptions.

In practice, signaled when the IEEE floating point exception “Overflow” is signaled.

Examples

CL-USER> (error (make-condition 'division-by-zero :operation '/ :operands '(1 0)))

;; Debugger level 1 entered on DIVISION-BY-ZERO:

;; Attempted to divide by zero: (/ 1 0)

;; Type :HELP for available commands.

[1] Debug> (abort) ; user input here

; Evaluation aborted on DIVISION-BY-ZERO: Attempted to divide by zero: (/ 1 0)

5.4.10  �Debugger invocation
5.4.10.1  �Variable *BREAK-ON-SIGNALS*

•	 Value type: a type specifier.

•	 Initial value: nil

Describes a condition type for which signaling forms will enter the debugger via

break before proceeding with signaling the condition.

Chapter 5 Appendixes

291

5.4.10.2  �Variable *DEBUGGER-HOOK*

•	 Value type: nil or a function designator for a function of two

arguments.

•	 Initial value: nil

When non-nil, this function is called before the normal entry to the debugger. This

function must accept two arguments: one that is the condition with which the debugger

is attempted to be entered and the value of *debugger-hook* prior to entering the debugger.

(At the time of calling the function, *debugger-hook* is bound to nil and its value is passed

as the second argument to the function.)

5.4.10.3  �Function BREAK

•	 (break &optional format-control &rest format-arguments) → nil

•	 format-control – a format control.

•	 format-arguments – a list of arbitrary Lisp data.

Binds *debugger-hook* to nil, establishes a continue restart, and enters the debugger. If

the continue restart is invoked, break returns nil.

The format control and arguments, if provided, are used to report the condition with

which the debugger is entered.

5.4.10.4  �Function INVOKE-DEBUGGER

•	 (invoke-debugger condition) → |

•	 condition – a condition.

Calls the *debugger-hook*, if any. If the hook function does not exist or returns

normally, enters the debugger with the provided condition.

Examples

CL-USER> (let ((*break-on-signals* 'condition))

 (signal 'condition))

;; Debugger level 1 entered on SIMPLE-CONDITION:

;; Condition CONDITION was signaled.

;; BREAK was entered because of *BREAK-ON-SIGNALS* (now rebound to NIL).

Chapter 5 Appendixes

292

;; Type :HELP for available commands.

[1] Debug> (continue) ; user input here

NIL

CL-USER> (block nil

 (let ((*debugger-hook* (lambda (condition hook)

 (declare (ignore condition hook))

 (return 42))))

 (invoke-debugger (make-condition 'condition))))

42

CL-USER> (break "Breaking with ~S." 42)

;; Debugger level 1 entered on SIMPLE-CONDITION:

;; Breaking with 42.

;; Type :HELP for available commands.

[1] Debug> (continue) ; user input here

NIL

CL-USER> (invoke-debugger (make-condition 'condition))

;; Debugger level 1 entered on CONDITION:

;; Condition CONDITION was signaled.

;; Type :HELP for available commands.

[1] Debug> (abort) ; user input here

;; Evaluation aborted on CONDITION: Condition CONDITION was signaled.

Chapter 5 Appendixes

293
© Michał “phoe” Herda 2020
M. “phoe” Herda, The Common Lisp Condition System, https://doi.org/10.1007/978-1-4842-6134-7

Index

A
abort restart, 94, 113, 114, 122, 124, 125,

153, 268
Algebraic effects, 225
Assertions

arguments for continuable
errors, 111, 112

continue restart, 107
correctable case, 110
macro assert, 107, 108
case, 110
functions

assert, 274
check-type, 275
ecase, etypecase, ccase,

ctypecase, 275, 277
general, 186–190
implementation

case failures, 177, 178
case utilities, 178, 179
correctable case

assertions, 182–186
non-correctable case

assertions, 180–182
type checking, 109

assert-prompt, 187, 188
assert-restart-report, 188

B
Backquote notation, 40, 41, 254
Backtraces, 127
before-call condition, 45
Binding vs. casing, 223, 224
Binding handlers, 195, 196
Binding restarts, 155, 157
block and return-from, 18–20

C
call-people, 50
call-with-handler, 242–245
call-with-home-choices, 71, 74, 79
call-with-home-restarts, 79, 81, 90, 92,

102–104
call-with-restart, 242–245
Case assertions, 110
case-failure, 177
catch and throw, 20, 23
catch forms, 33, 42
catch tags, 23, 33, 34, 59
ccase, 110
cerror, 111
check-type functions, 109, 275
choice-effect-function, 64
choice-name, 64

https://doi.org/10.1007/978-1-4842-6134-7#DOI

294

choice-test-function, 64
Closure, 21–23, 30, 234
Clustering, 60, 61, 191, 246
coerce function, 242
coerce-to-condition, 146, 147, 172, 191, 230
common-lisp package, 137
Common Lisp Object System, 52, 138
compiler-notify function, 230
compute-relevant-restarts, 78, 80, 84, 102
compute-restarts, 77, 130, 131, 152,

224, 225
Concrete condition types, 229, 230
Condition handlers

before-call condition, 45
call-people, 50
calling parents only, 47
calling people, 49
clustering, 60, 61
Counter-Strike, 43
exception handling (see Exception

handling)
handler-bind, 45, 47
handler subsystem, 62
hook function, 46
protection, transfers of control, 58–60
skipping people, 47
situation, 43
wishing happy holidays, 48

Condition objects, 52, 97, 98, 131, 133,
138, 139, 146, 227

Condition-restart association, 169, 264
Conditions

base class, 138, 139
coercing data, 146–148
decline, 224
define-condition, 140, 142
types, defining, 140–142, 144, 145

Condition signaling function, 278–280

Condition system
Choices (see System of choices)
condition handlers, 43
downsides

concrete condition types, 229, 230
custom SIGNAL-like operators, 230
dynamic extent of restart

objects, 227
functional interfaces to handlers

and restarts, 230
introspection facility, 228, 229
optimization settings, 228
separation from CLOS, 226, 227
smaller issues and pet

peeves, 231, 232
speed, 228
warning conditions and #’WARN, 230

practice
interactive querying, 235
python-like generators, 235, 236
unit test library, 233, 234
web framework, 234

purpose, 222, 223
Condition types

arithmetic-error, 289
cell-error, 286
control-error, 286
division-by-zero, 289
end-of-file, 287
error, 284
file-error, 288
floating-point-inexact, 290
floating-point-invalid-operation, 289
floating-point-overflow, 290
floating-point-underflow, 290
package-error, 288
parse-error, 287
print-not-readable, 288

Index

295

program-error, 286
reader-error, 288
serious-condition, 283
simple-condition, 284
simple-error, 284, 285
simple-warning, 283, 284
storage-condition, 285
stream-error, 287
type-error, 285
unbound-slot, 287
unbound-variable, 286
undefined-functions, 286
warning, 283

Context and dependency injection, 14
continue restart, 94, 107, 109, 172, 188, 291
Correctable assertions, 182–186
Correctable case assertions, 110
Counter strike, 26–29
csgo-launched-p variable, 32
ctypecase, 110
current-debugger-level, 123
Custom condition reports, 98–100
Custom restart-invoking functions, 95, 96
Custom restart reports, 101–104

D
Debugger

associated conditions with restarts, 128
BREAK-ON-SIGNALS variable, 290
commands, 203–205
conditions with restarts, 129–133
custom, installation, 118–120
evaluating Lisp forms, 205, 206
help and REPL, 211, 212
interactive condition handler, 55
interface, 216, 217
listing and invoking restarts, 208, 210

read-eval-print cycle, 213–215
recursive, 120–124
REPL, adding, 124, 126
REPL variables, 212, 213
reporting

condition, 113, 114
condition type, 114
restarts, 115

reporting and returning
conditions, 206–208

restarts, choosing, 116, 117
debugger-hook variable, 114, 291
defclass, 138, 226
define-condition, 98, 103, 138, 142, 144,

145, 218, 226, 227, 270, 271
define-condition-make-report-method,

141, 142
define-condition-remove-report-method

function, 143
defmethod, 204
defmethod print-object form, 141
defstruct, 64, 138
defuse-grave-mistake, 56
Dependency injection pattern, 13
Design patterns, 13
Distinct condition types, 52
division-by-zero condition, 217
Double/triple backquote notation, 255
dynamic_bind operator, 8, 237
dynamic_bind variables, 7
Dynamic extent, 76, 149, 227
dynamic_var, 7, 8, 237
Dynamic variables

C
dynamic_binds of dynamic_x, 5
dynamic float dynamic_z[3], 6
dynamic_x, 3–5, 7
environment, 6

Index

296

foo(), 2, 3, 5
implementation, 7, 8, 237–242
lexically scoped, 2
rebinding, 4
stack data structure, 4

Common Lisp
bar(), 10
declare special, 12
defparameter, 12
defvar, 12
dynamic scoping, 8
environment stack, 11
setf, 12
syntax, 12
x symbol, 11

design patterns, 13, 14
scheme, 13

E
Earmuffs, 10
effect function, 64, 79
Environment monad, 14
error function, 149, 217
error signals, 193
escape restart, 82
escape-through-front-door, 76, 77
Evaluation control, 260
Exception handling

iteration
debugger, 54–58
no handling, 51, 52
signaling, condition, 52, 54

excuse choice, 73
excuse function, 97
excuse restart, 83–86, 96, 104
excuse variable, 104

excuse-text argument, 96
expand-define-condition, 143, 144
expand-etypecase, 181
expand-restart-case, 167, 170

F
find-choice, 71
find-restart, 131, 224, 262
find-restarts, 152
floating-point-invalid-operation, 289
foo-condition, 143
Format arguments, 93, 97, 105, 107, 108, 111
format directive, 98
Formatter function, 147
Function arguments, 31

G
Generic function, 146
Gensyms, 256, 258
Global dynamic variable, 31
Go special operator, 16
Go tags, 16
Go-to instruction, 16
grave-mistake conditions, 52, 100, 105

H
handler-bind, 45, 47, 57, 59–61, 112, 155,

224, 246–248
handler-bind-case, 249–252
handler-case, 56, 57, 59, 60, 91, 132, 169,

224, 246–248
Handler macros

handler-bind, 281
handler-case, 281
ignore-errors, 282

Dynamic variables (cont.)

Index

297

Handlers
binding, 195, 196
case handler, 57cases, 196–202
clustering, 60
testing assertions, 202

Handler subsystem, 62
Helper functions, 180
hook variable, 39
hook function, 39

I
ignore-errors, 57
Implementation object, 13
Implicit stack, 7
Implicit progn, 14
Implicit state, 22
Input/output streams, 136
interactive function, 91, 168, 244, 261, 265
Interface object, 13
Introspection facility, 228, 229
invoke-choice, 71, 75
invoke-debugger, 55, 113, 114, 118, 203, 291
invoke-restart, 80, 85, 153, 155, 262
invoke-restart-interactively, 84, 85, 87,

122, 153, 155, 262, 263

J, K
Jump instruction, 16

L
Lambda expression, 29
Lexical closures, 21–23
Lexical scope, 16
Lexical variables, 5, 30, 31
limit variable, 257, 259

Lisp types, 44
local variable, 89
loop form, 67

M
macroexpansion function, 174, 253
Macros

backquote, 254, 255
basics, writing, 253, 254
compilation time, 252
limit variable, 259
multiple evaluation, 259
order of evaluation, 258
reference, 260
symbol capture, 255–258
transforming Lisp data into

Lisp code, 252
main() function, 5
make-condition, 139
make-condition, 272–274
make-instance, 139
make-parameter procedure, 13
make-place-setter, 188
make-restart, 155
make-restart-binding, 161
make-restart-case, 161
mapcar make-restart-binding, 162
maybe-invoke-restart, 176
muffle-warning restart, 192
Muffling warnings, 106
multiple variables, 39

N
Named block, 88
no-error case, 197, 200
Non-correctable case assertions, 180–182

Index

298

Non-local transfers of control
block and return-from, 18–20
catch and throw, 20, 21
TAGBODY and GO, 16–18

Null environment, 171

O
&optional condition argument, 78
Optional format arguments, 93

P
Package definition, 136, 137
package-error, 288
parameterize special form, 13
parents-come-back, 63, 70, 81
Partial application, 161
person function, 45
portable-condition-system, 137
portable-condition-system.integration

system, 217, 218
Preprocessor, 237
Printing vs. reporting, 97, 98
print-object method, 141
progn operator, 14
program-error, 52
provide-excuse function, 86

Q
Quasiquote, 254

R
read function, 97
read-valid-restart-number, 124
receive-phone-call function, 54

Recursive debugger, 120–124
remove-method, 143
REPL variables, 212, 213
report variable, 142
report-excuse, 102, 104
report-foo-condition, 142
Report function, 98, 99, 244, 261, 265
report-grave-mistake, 100
Reporting conditions and restarts

condition class, 148, 149
custom, 98–104
printing vs. reporting, 97, 98

Restart
binding, 155, 157
cases

associating conditions with
restarts, 169–174

basics, 158–163
forms instead of function, 163–167
implementation, 174
keyword differences management,

167–169
invoking, 153, 155
structure, 148
visibility and computing, 150–153
functions

compute-restarts, 261
find-restart, 261
invoke-restart, 262
invoke-restart-interactively, 262, 263
restart-name, 261

Standard functions, 269, 270
Standard restarts, 268

restart-bind, 87, 98, 103, 155, 158, 162
restart-bind-transform-binding, 155
restart-case, 89–91, 93, 94, 102, 103, 158
restart-case form, 172
restart-case macros, 98

Index

299

restart-case-expand-signaling-form,
170, 172

restart-case-make-restart-binding, 160,
161, 165

restart-case-make-restart-case, 161, 165
restart-case-parse-case, 159, 161, 165
restart-case-pop-keywords, 167, 168
restart-case-signaling-form-p, 170, 171
restart-case-transform-subform, 167, 168
Restart designator, 84
Restart macros

restart-bind, 265
restart-case, 266, 267
with-simple-restart, 267, 268

restart-name function, 77
restart-visible-p, 150
run-debugger-command, 204, 214

S
serious-condition, 51, 52
Signaling, 43, 190–195
simple-error, 112
simple-warning, 104, 105
Stack data structure, 4
storage-condition, 285
store-value restart, 109, 110, 129, 132, 182,

183, 189
Structured programming paradigm, 15
Symbol capture, 255–258
symbol-macrolet, 223
Syntactic abstraction, 260
System-defined restarts, 175–177
System of choices

escape
back door, 66
computing and invoking, 66–68
front door, 65

results, 69, 70
same-named choices, 70–72
structure, 64

excuses, 72–74
Kate and Mark, 63
subsystem, 74, 75

System of hooks
accumulation of hook

functions, 36, 37
calling Tom’s girlfriend, 37, 38
call parents, 34, 35
counter strike, launching, 27–29
holiday wishes, 35, 36
multiple types of hooks, 39
only call Counter Strike players, 33, 34
subsystem, 42
types, 39, 42

System of restarts
abort, 94
call-with-home-restarts, 79, 83
compute-relevant-restarts function, 78
custom restart-invoking

functions, 95, 96
escape-through-front-door, 77
excuse restart, 83
find-choice, 82
interactive restarts, 84, 85, 87
muffle-warning, 95
non-local exit, 87, 89
parents-come-back, 81
restart-bind, 76, 93
restart-bind macro, 83
restart-case, 90, 91, 93, 94
standard restarts and restart-invoking

functions, 94
toplevel-restarts variable, 79
try-to-hide-mark, 83
use-value and store-value, 94

Index

300

T
tagbody, 17, 18, 161
tagbody and block operators, 23
tagbody form, 160, 162
test function, 64, 91, 168, 244, 265
Trivial-custom-debugger, 127, 229
Try-catch, 56
try-to-hide-mark, 63, 66, 67, 70, 71, 74, 80,

82, 92
type-error, 109, 285

U, V
undefined-function, 52, 131, 133
undefined-function error, 129
Unreadable object, 97
unwind-protect, 59, 60, 89, 150

W, X, Y, Z
warn function, 95
Warnings

handling, 105
make-condition explicitly, 105
muffling, 106
signal and error, 104
simple-warning, 105

with-abort-restart, 125
with-condition-restarts,

133, 169, 173
with-condition-restarts, 132
with-debugger macro, 118
with-simple-restart, 93, 97, 267
with-simple-restart

form, 122
with-store-value-restart, 184

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Preface
	Chapter 1: Basic concepts
	1.1 Dynamic variables
	1.1.1 Dynamic variables in C
	1.1.1.1 Implementing dynamic variables in C

	1.1.2 Dynamic variables in Common Lisp
	1.1.3 Alternatives in other languages
	1.1.3.1 Scheme
	1.1.3.2 Design patterns

	1.2 Non-local transfers of control
	1.2.1 TAGBODY and GO
	1.2.2 BLOCK and RETURN-FROM/RETURN
	1.2.3 CATCH and THROW

	1.3 Lexical closures

	Chapter 2: Introducing the condition system
	2.1 A simple system of hooks
	2.1.1 Hook #1: Launching Counter-Strike
	2.1.1.1 Equivalent examples

	2.1.2 Hook #2: Only call Counter-Strike players
	2.1.3 Hook #3: Only call parents… maybe
	2.1.4 Hook #4: Holiday wishes
	2.1.5 Accumulating hooks
	2.1.6 Hook #5: Calling Tom’s girlfriend again
	2.1.7 Multiple types of hooks
	2.1.8 Summary: The hook subsystem

	2.2 A simple system of condition handlers
	2.2.1 Exception handling
	2.2.1.1 First iteration: No handling
	2.2.1.2 Second iteration: Signaling a condition
	2.2.1.3 Third iteration: Entering the debugger

	2.2.2 Protection against transfers of control
	2.2.3 Clustering
	2.2.4 Summary: The handler subsystem

	2.3 A simple system of choices
	2.3.1 Kate and Mark
	2.3.2 Choice #1: Escape
	2.3.2.1 The CHOICE structure
	2.3.2.2 Escaping through the front door
	2.3.2.3 Escaping through the back door
	2.3.2.4 Computing and invoking choices
	2.3.2.5 The results
	2.3.2.6 Same-named choices

	2.3.3 Choice #2: Excuses
	2.3.4 Summary: the choice subsystem

	2.4 A simple system of restarts
	2.4.1 Interactive restarts

	2.5 A simple system of actually restarting restarts
	2.5.1 Restarts that perform a non-local exit
	2.5.2 From RESTART-BIND to RESTART-CASE
	2.5.3 Simple restarts
	2.5.4 Standard restarts and restart-invoking functions
	2.5.5 Defining custom restart-invoking functions

	2.6 Reporting conditions and restarts
	2.6.1 Printing vs. reporting
	2.6.2 Custom condition reports
	2.6.3 Custom restart reports

	2.7 Warnings
	2.7.1 Different ways of warning
	2.7.2 Muffling warnings

	2.8 Assertions
	2.8.1 Simple assertions via ASSERT
	2.8.2 Type checking via CHECK-TYPE
	2.8.3 Case assertions
	2.8.4 Correctable case assertions
	2.8.5 Arguments for continuable errors

	2.9 A simple debugger
	2.9.1 Reporting the condition in the debugger
	2.9.2 Reporting the condition type in the debugger
	2.9.3 Reporting the restarts in the debugger
	2.9.4 Choosing the restarts in the debugger
	2.9.5 Installing a custom debugger
	2.9.6 Recursive debugger
	2.9.7 Adding a REPL to the debugger
	2.9.8 Backtraces
	2.9.9 Associating conditions with restarts

	Chapter 3: Implementing the Common Lisp condition system
	3.1 Package definition
	3.2 Conditions
	3.2.1 Base class for conditions
	3.2.2 Defining new condition types

	3.3 Coercing data to conditions
	3.4 Restart basics
	3.4.1 Restart class
	3.4.2 Restart visibility and computing restarts
	3.4.3 Invoking restarts

	3.5 Binding restarts
	3.6 Restart cases
	3.6.1 First iteration: basics
	3.6.2 Second iteration: Forms instead of a function
	3.6.3 Third iteration: Managing the keyword differences
	3.6.4 Fourth iteration: Associating conditions with restarts
	3.6.5 Implementing simple restarts

	3.7 System-defined restarts
	3.8 Assertions
	3.8.1 Case failures
	3.8.2 Case utilities
	3.8.3 Non-correctable case assertions
	3.8.4 Correctable case assertions
	3.8.5 General assertions

	3.9 Signaling
	3.10 Handlers
	3.10.1 Binding handlers
	3.10.2 Handler cases
	3.10.3 Testing assertions

	3.11 A featureful debugger
	3.11.1 Debugger commands
	3.11.2 Evaluating Lisp forms
	3.11.3 Reporting and returning conditions
	3.11.4 Listing and invoking restarts
	3.11.5 Debugger help and REPL
	3.11.5.1 REPL variables
	3.11.5.2 Debugger read-eval-print step

	3.11.6 Debugger interface

	3.12 Finishing touches
	3.12.1 Integration
	3.12.2 Additional work

	Chapter 4: Wrapping up
	4.1 The purpose of the condition system
	4.2 Binding vs. casing
	4.3 Separation of concerns
	4.4 Algebraic effects
	4.5 Downsides of the condition system
	4.5.1 Separation from CLOS
	4.5.1.1 Making conditions of complex condition types

	4.5.2 Dynamic extent of restart objects
	4.5.3 Speed
	4.5.4 Optimization settings
	4.5.5 Introspection
	4.5.6 Concrete condition types
	4.5.7 Warning conditions and #’WARN
	4.5.8 Implementing custom SIGNAL-like operators
	4.5.9 Lack of functional interfaces to handlers and restarts
	4.5.10 Smaller issues
	4.5.11 Summary: Downsides of the Common Lisp condition system

	4.6 Condition system in practice
	4.6.1 Unit test library: Collecting results
	4.6.2 Web framework: Sending results over the network
	4.6.3 GUI applications: Interactive querying
	4.6.4 Generating data: Python-like generators

	Chapter 5: Appendixes
	5.1 Appendix A: Implementation of dynamic variables in C
	5.2 Appendix B: Additional utilities for working with Common Lisp conditions
	5.2.1 CALL-WITH-HANDLER and CALL-WITH-RESTART
	5.2.2 HANDLER-BIND* and HANDLER-CASE*
	5.2.3 HANDLER-BIND-CASE

	5.3 Appendix C: Lisp macros 101
	5.3.1 Basics of macro writing
	5.3.2 Backquote
	5.3.3 Symbol capture
	5.3.4 Order of evaluation
	5.3.5 Multiple evaluation
	5.3.6 When not to write macros
	5.3.7 Reference

	5.4 Appendix D: Condition system reference
	5.4.1 Restarts and related functions
	5.4.1.1 Class RESTART
	5.4.1.2 Function RESTART-NAME
	5.4.1.3 Function COMPUTE-RESTARTS
	5.4.1.4 Function FIND-RESTART
	5.4.1.5 Function INVOKE-RESTART
	5.4.1.6 Function INVOKE-RESTART-INTERACTIVELY

	5.4.2 Condition-restart association
	5.4.2.1 Macro WITH-CONDITION-RESTARTS

	5.4.3 Restart macros
	5.4.3.1 Macro RESTART-BIND
	5.4.3.2 Macro RESTART-CASE
	5.4.3.3 Macro WITH-SIMPLE-RESTART

	5.4.4 Standard restarts
	5.4.4.1 Restart ABORT
	5.4.4.2 Restart MUFFLE-WARNING
	5.4.4.3 Restart CONTINUE
	5.4.4.4 Restart STORE-VALUE
	5.4.4.5 Restart USE-VALUE
	5.4.4.6 Function ABORT, CONTINUE, MUFFLE-WARNING, USE-VALUE, STORE-VALUE

	5.4.5 Defining and instantiating conditions
	5.4.5.1 Macro DEFINE-CONDITION
	5.4.5.2 Function MAKE-CONDITION

	5.4.6 Assertions
	5.4.6.1 Macro ASSERT
	5.4.6.2 Macro CHECK-TYPE
	5.4.6.3 Macro ECASE, ETYPECASE, CCASE, CTYPECASE

	5.4.7 Condition signaling
	5.4.7.1 Function SIGNAL
	5.4.7.2 Function WARN
	5.4.7.3 Function ERROR
	5.4.7.4 Function CERROR

	5.4.8 Handler macros
	5.4.8.1 Macro HANDLER-BIND
	5.4.8.2 Macro HANDLER-CASE
	5.4.8.3 Macro IGNORE-ERRORS

	5.4.9 Condition types
	5.4.9.1 Condition Type CONDITION
	5.4.9.2 Condition Type WARNING
	5.4.9.3 Condition Type STYLE-WARNING
	5.4.9.4 Condition Type SERIOUS-CONDITION
	5.4.9.5 Condition Type ERROR
	5.4.9.6 Condition Type SIMPLE-CONDITION
	5.4.9.7 Condition Type SIMPLE-WARNING
	5.4.9.8 Condition Type SIMPLE-ERROR
	5.4.9.9 Condition Type STORAGE-CONDITION
	5.4.9.10 Condition Type TYPE-ERROR
	5.4.9.11 Condition Type SIMPLE-TYPE-ERROR
	5.4.9.12 Condition Type CONTROL-ERROR
	5.4.9.13 Condition Type PROGRAM-ERROR
	5.4.9.14 Condition Type CELL-ERROR
	5.4.9.15 Condition Type UNBOUND-VARIABLE
	5.4.9.16 Condition Type UNDEFINED-FUNCTION
	5.4.9.17 Condition Type UNBOUND-SLOT
	5.4.9.18 Condition Type STREAM-ERROR
	5.4.9.19 Condition Type END-OF-FILE
	5.4.9.20 Condition Type PARSE-ERROR
	5.4.9.21 Condition Type READER-ERROR
	5.4.9.22 Condition Type PACKAGE-ERROR
	5.4.9.23 Condition Type FILE-ERROR
	5.4.9.24 Condition Type PRINT-NOT-READABLE
	5.4.9.25 Condition Type ARITHMETIC-ERROR
	5.4.9.26 Condition Type DIVISION-BY-ZERO
	5.4.9.27 Condition Type FLOATING-POINT-INVALID-OPERATION
	5.4.9.28 Condition Type FLOATING-POINT-INEXACT
	5.4.9.29 Condition Type FLOATING-POINT-UNDERFLOW
	5.4.9.30 Condition Type FLOATING-POINT-OVERFLOW

	5.4.10 Debugger invocation
	5.4.10.1 Variable *BREAK-ON-SIGNALS*
	5.4.10.2 Variable *DEBUGGER-HOOK*
	5.4.10.3 Function BREAK
	5.4.10.4 Function INVOKE-DEBUGGER

	Index

