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Preface

If you are reading this book, I probably don’t have to sell you on CUDA. Readers 
of this book should already be familiar with CUDA from using NVIDIA’s SDK 
materials and documentation, taking a course on parallel programming, or 
reading the excellent introductory book CUDA by Example (Addison-Wesley, 2011) 
by Jason Sanders and Edward Kandrot.

Reviewing CUDA by Example, I am still struck by how much ground the book 
covers. Assuming no special knowledge from the audience, the authors manage 
to describe everything from memory types and their applications to graphics 
interoperability and even atomic operations. It is an excellent introduction to 
CUDA, but it is just that: an introduction. When it came to giving more detailed 
descriptions of the workings of the platform, the GPU hardware, the compiler 
driver nvcc, and important “building block” parallel algorithms like parallel 
prefix sum (“scan”), Jason and Edward rightly left those tasks to others.

This book is intended to help novice to intermediate CUDA programmers 
continue to elevate their game, building on the foundation laid by earlier work. 
In addition, while introductory texts are best read from beginning to end, The 
CUDA Handbook can be sampled. If you’re preparing to build or program a 
new CUDA-capable platform, a review of Chapter 2 (“Hardware Architecture”) 
might be in order. If you are wondering whether your application would benefit 
from using CUDA streams for additional concurrency, take a look at Chap-
ter 6 (“Streams and Events”). Other chapters give detailed descriptions of the 
software architecture, GPU subsystems such as texturing and the streaming 
multiprocessors, and applications chosen according to their data access pattern 
and their relative importance in the universe of parallel algorithms. The chap-
ters are relatively self-contained, though they do reference one another when 
appropriate.

The latest innovations, up to and including CUDA 5.0, also are covered here. In 
the last few years, CUDA and its target platforms have significantly evolved. 
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When CUDA by Example was published, the GeForce GTX 280 (GT200) was new, 
but since then, two generations of CUDA-capable hardware have become avail-
able. So besides more detailed discussions of existing features such as mapped 
pinned memory, this book also covers new instructions like Fermi’s “ballot” and 
Kepler’s “shuffle” and features such as 64-bit and unified virtual addressing and 
dynamic parallelism. We also discuss recent platform innovations, such as the 
integration of the PCI Express bus controller into Intel’s “Sandy Bridge” CPUs.

However you choose to read the book—whether you read it straight through or 
keep it by your keyboard and consult it periodically—it’s my sincerest hope that 
you will enjoy reading it as much as I enjoyed writing it.
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Chapter 1

Background

Much ink has been spilled describing the GPU revolution in computing. I have 
read about it with interest because I got involved very early. I was at Microsoft in 
the mid-1990s as development lead for Direct3D when Intel and AMD were intro-
ducing the first multimedia instruction sets to accelerate floating point compu-
tation. Intel had already tried (unsuccessfully) to forestall the migration of clock 
cycles for 3D rasterization from their CPUs by working with Microsoft to ship 
rasterizers that used their MMX instruction set. I knew that effort was doomed 
when we found that the MMX rasterizer, running on a yet-to-be- released Pen-
tium 2 processor, was half as fast as a humble S3 Virge GX rasterizer that was 
available for sale. 

For Direct3D 6.0, we worked with CPU vendors to integrate their code into our 
geometry pipeline so developers could transparently benefit from vendor- 
optimized code paths that used new instruction sets from Intel and AMD. Game 
developers embraced the new geometry pipeline, but it did not forestall the con-
tinued migration of clock cycles from the CPU to the GPU, as the new instruction 
sets were used to generate vertex data for consumption by GPUs’ hardware 
geometry pipelines.

 About this time, the number of transistors on GPUs overtook the number of 
transistors on CPUs. The crossover was in 1997–1998, when the Pentium 2 and 
the NVIDIA RIVA TNT both had transistor counts of about 8M. Subsequently, the 
Geforce 256 (15M transistors), Geforce 2 (28M transistors), and Geforce3 (63M 
transistors) all had more transistors than contemporary CPUs. Additionally, the 
architectural differences between the two devices were becoming clear: Most 
of the die area for CPUs was dedicated to cache, while most of the die area for 
GPUs was dedicated to logic. Intel was able to add significant new instruction 



BACKGROUND

4

set extensions (MMX, SSE, SSE2, etc.) with negligible area cost because their 
CPUs were mostly cache. GPUs were designed for parallel throughput process-
ing; their small caches were intended more for bandwidth aggregation than for 
reducing latency.

While companies like ATI and NVIDIA were building GPUs that were faster and 
increasingly capable, CPU vendors continued to drive clock rates higher as 
Moore’s Law enabled both increased transistor budgets and increased clock 
speeds. The first Pentium (c. 1993) had a clock rate of 60MHz, while MMX- 
enabled Pentiums (c. 1997) had clock rates of 200MHz. By the end of the decade, 
clock rates had exceeded 1,000MHz. But shortly thereafter, an important event 
in the history of computing took place: Moore’s Law hit a wall. The transistors 
would continue to shrink, but clock rates could not continue to increase.

The event was not unexpected. Pat Gelsinger of Intel delivered a keynote at the 
2001 IEEE Solid-State Circuits Conference and stated that if chips continued on 
their current design path, they would be as hot as nuclear reactors by the end 
of the decade and as hot as the surface of the sun by 2015. In the future, perfor-
mance would have to come from “simultaneous multithreading” (SMT), possibly 
supported by putting multiple CPU cores on a single chip. Indeed, that is exactly 
what CPU vendors have done; today, it is difficult to almost impossible to find a 
desktop PC with a single-core CPU. But the decades-long free ride enabled by 
Moore’s Law, in which increased clock rates made it possible for applications to 
run faster with little to no effort on the part of software developers, was over. 
Multicore CPUs require multithreaded applications. Only applications that bene-
fit from parallelism can expect increased performance from CPUs with a larger 
number of cores.

GPUs were well positioned to take advantage of this new trend in Moore’s 
Law. While CPU applications that had not been authored with parallelism in 
mind would require extensive refactoring (if they could be made parallel at 
all), graphics applications were already formulated in a way that exploited the 
inherent parallelism between independent pixels. For GPUs, increasing perfor-
mance by increasing the number of execution cores was a natural progression. 
In fact, GPU designers tend to prefer more cores over more capable cores. They 
eschew strategies that CPU manufacturers take for granted, like maximizing 
clock frequency (GPUs had never, and still do not, run at clock rates approaching 
the limits of transistor fabrication), speculative execution, branch prediction, 
and store forwarding. And to prevent this ever-more-capable processor from 
becoming I/O bound, GPU designers integrated memory controllers and worked 
with DRAM manufacturers to enable bandwidths that far exceeded the amount 
of bandwidth available to CPUs.
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But that abundant horsepower was difficult for nongraphics developers to 
exploit. Some adventurous souls used graphics APIs such as Direct3D and 
OpenGL to subvert graphics hardware to perform nongraphics computations. 
The term GPGPU (general-purpose GPU programming) was invented to describe 
this approach, but for the most part, the computational potential of GPUs 
remained untapped until CUDA. Ian Buck, whose Brook project at Stanford 
enabled simplified development of GPGPU applications, came to NVIDIA and led 
development of a new set of development tools that would enable nongraphics 
applications to be authored for GPUs much more easily. The result is CUDA: a 
proprietary toolchain from NVIDIA that enables C programmers to write parallel 
code for GPUs using a few easy-to-use language extensions.

Since its introduction in 2007, CUDA has been well received. Tens of thousands 
of academic papers have been written that use the technology. It has been used 
in commercial software packages as varied as Adobe’s CS5 to Manifold’s GIS 
(geographic information system). For suitable workloads, CUDA-capable GPUs 
range from 5x to 400x faster than contemporary CPUs. The sources of these 
speedups vary. Sometimes the GPUs are faster because they have more cores; 
sometimes because they have higher memory bandwidth; and sometimes 
because the application can take advantage of specialized GPU hardware not 
present in CPUs, like the texture hardware or the SFU unit that can perform fast 
transcendentals. Not all applications can be implemented in CUDA. In fact, not 
all parallel applications can be implemented in CUDA. But it has been used in a 
wider variety of applications than any other GPU computing technology. I hope 
this book helps accomplished CUDA developers to get the most out of CUDA.

 1.1 Our Approach
CUDA is a difficult topic to write about. Parallel programming is complicated 
even without operating system considerations (Windows, Linux, MacOS), plat-
form considerations (Tesla and Fermi, integrated and discrete GPUs, multiple 
GPUs), CPU/GPU concurrency considerations, and CUDA-specific consider-
ations, such as having to decide between using the CUDA runtime or the driver 
API. When you add in the complexities of how best to structure CUDA kernels, it 
may seem overwhelming.

To present this complexity in a manageable way, most topics are explained more 
than once from different perspectives. What does the texture mapping hardware 
do? is a different question than How do I write a kernel that does texture map-
ping? This book addresses both questions in separate sections. Asynchronous 
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memory copy operations can be explained in several different contexts: the 
interactions between software abstractions (for example, that participating host 
memory must be pinned), different hardware implementations, API support for 
the feature, and optimization strategies. Readers sometimes may wish to con-
sult the index and read all of the different presentations on a given topic.

Optimization guides are like advice columns: Too often, the guidance is offered 
without enough context to be applied meaningfully, and they often seem to 
contradict themselves. That observation isn’t intended to be pejorative; it’s just 
a symptom of the complexity of the problem. It has been at least 20 years since 
blanket generalizations could be made about CPU optimizations, and GPUs are 
more complicated to program, so it’s unrealistic to expect CUDA optimization 
advice to be simple.

Additionally, GPU computing is so new that GPU architects, let alone developers, 
are still learning how best to program them. For CUDA developers, the ultimate 
arbiter is usually performance, and performance is usually measured in wall 
clock time! Recommendations on grid and block sizes, how and when to use 
shared memory, how many results to compute per thread, and the implications 
of occupancy on performance should be confirmed empirically by implementing 
different approaches and measuring the performance of each.

 1.2 Code
Developers want CUDA code that is illustrative yet not a toy; useful but does not 
require a technical dive into a far-afield topic; and high performance but does 
not obscure the path taken by implementors from their initial port to the final 
version. To that end, this book presents three types of code examples designed 
to address each of those considerations: microbenchmarks, microdemos, and 
optimization journeys. 

1.2.1 MICROBENCHMARKS

Microbenchmarks are designed to illustrate the performance implications of a 
very specific CUDA question, such as how uncoalesced memory transactions 
degrade device memory bandwidth or the amount of time it takes the WDDM 
driver to perform a kernel thunk. They are designed to be compiled standalone 
and will look familiar to many CUDA programmers who’ve already implemented 
microbenchmarks of their own. In a sense, I wrote a set of microbenchmarks to 
obviate the need for other people to do the same.
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1.2.2 MICRODEMOS

Microdemos are small applications designed to shed light on specific questions 
of how the hardware or software behaves. Like microbenchmarks, they are 
small and self-contained, but instead of highlighting a performance question, 
they highlight a question of functionality. For example, the chapter on texturing 
includes microdemos that illustrate how to texture from 1D device memory, how 
the float�int conversion is performed, how different texture addressing modes 
work, and how the linear interpolation performed by texture is affected by the 
9-bit weights.

Like the microbenchmarks, these microdemos are offered in the spirit in which 
developers probably wanted to write them, or at least have them available. I 
wrote them so you don’t have to!

1.2.3 OPTIMIZATION JOURNEYS

Many papers on CUDA present their results as a fait accompli, perhaps with 
some side comments on tradeoffs between different approaches that were 
investigated before settling on the final approach presented in the paper. 
Authors often have length limits and deadlines that work against presenting 
more complete treatments of their work.

For some select topics central to the data parallel programming enabled by 
CUDA, this book includes optimization journeys in the spirit of Mark Harris’s 
“Optimizing Parallel Reduction in CUDA” presentation that walks the reader 
through seven increasingly complex implementations of increasing perfor-
mance.1 The topics we’ve chosen to address this way include reduction, parallel 
prefix sum (“scan”), and the N-body problem.

 1.3 Administrative Items
1.3.1 OPEN SOURCE

The source code that accompanies this book is available on www.cudahandbook.
com, and it is open source, copyrighted with the 2-clause BSD license.2

1.  http://bit.ly/Z2q37x
2.  www.opensource.org/licenses/bsd-license.php
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1.3.2 CUDA HANDBOOK LIBRARY (CHLIB)

The CUDA Handbook Library, located in the chLib/ directory of the source 
code, contains a portable library with support for timing, threading, driver API 
utilities, and more. They are described in more detail in Appendix A.

1.3.3 CODING STYLE

Arguments over brace placement aside, the main feature of the code in this 
book that will engender comment is the goto-based error handling mechanism. 
Functions that perform multiple resource allocations (or other operations that 
might fail, and where failure should be propagated to the caller) are structured 
around an Initialize / ErrorCheck / Cleanup idiom, similar to a pattern commonly 
used in Linux kernel code.

On failure, all cleanup is performed by the same body of code at the end of the 
function. It is important to initialize the resources to guaranteed-invalid values 
at the top of the function, so the cleanup code knows which resources must be 
freed. If a resource allocation or other function fails, the code performs a goto 
the cleanup code. chError.h, described in Section A.6, defines error-handling 
macros for the CUDA runtime and the driver API that implement this idiom.

1.3.4 CUDA SDK

The SDK is a shared experience for all CUDA developers, so we assume you’ve 
installed the CUDA SDK and that you can build CUDA programs with it. The SDK 
also includes the GLUT (GL Utility Library), a convenient library that enables 
OpenGL applications to target a variety of operating systems from the same 
code base. GLUT is designed to build demo-quality as opposed to produc-
tion-quality applications, but it fits the bill for our needs.

 1.4 Road Map
The remaining chapters in Part I provide architectural overviews of CUDA hard-
ware and software.

• Chapter 2 details both the CUDA hardware platforms and the GPUs
themselves.
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• Chapter 3 similarly covers the CUDA software architecture.

• Chapter 4 covers the CUDA software environment, including descriptions of
CUDA software tools and Amazon’s EC2 environment.

In Part II, Chapters 5 to 10 cover various aspects of the CUDA programming 
model in great depth. 

• Chapter 5 covers memory, including device memory, constant memory,
shared memory, and texture memory.

• Chapter 6 covers streams and events—the mechanisms used for “coarse-
grained” parallelism between the CPU and GPU, between hardware units
of the GPU such as copy engines and the streaming multiprocessors, or
between discrete GPUs.

• Chapter 7 covers kernel execution, including the dynamic parallelism feature
that is new in SM 3.5 and CUDA 5.0.

• Chapter 8 covers every aspect of streaming multiprocessors.

• Chapter 9 covers multi-GPU applications, including peer-to-peer operations
and embarrassingly parallel operations, with N-body as an example.

• Chapter 10 covers every aspect of CUDA texturing.

Finally, in Part III, Chapters 11 to 15 discuss various targeted CUDA applications. 

• Chapter 11 describes bandwidth-bound, streaming workloads such as  vector-
vector multiplication.

• Chapters 12 and 13 describe reduction and parallel prefix sum (otherwise
known as scan), both important building blocks in parallel programming.

• Chapter 14 describes N-body, an important family of applications with high
computational density that derive a particular benefit from GPU computing.

• Chapter 15 takes an in-depth look at an image processing operation called
normalized cross-correlation that is used for feature extraction. Chapter 15
features the only code in the book that uses texturing and shared memory
together to deliver optimal performance.
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Chapter 2

Hardware Architecture 

This chapter provides more detailed descriptions of CUDA platforms, from the 
system level to the functional units within the GPUs. The first section discusses 
the many different ways that CUDA systems can be built. The second section 
discusses address spaces and how CUDA’s memory model is implemented in 
hardware and software. The third section discusses CPU/GPU interactions, with 
special attention paid to how commands are submitted to the GPU and how 
CPU/GPU synchronization is performed. Finally, the chapter concludes with a 
high-level description of the GPUs themselves: functional units such as copy 
engines and streaming multiprocessors, with block diagrams of the different 
types of streaming multiprocessors over three generations of CUDA-capable 
hardware.

 2.1 CPU Configurations
This section describes a variety of CPU/GPU architectures, with some com-
ments on how a CUDA developer would approach programming the system 
differently. We examine a variety of CPU configurations, integrated GPUs, and 
multi-GPU configurations. We begin with Figure 2.1. 

An important element that was omitted from Figure 2.1 is the “chipset” or “core 
logic” that connects the CPU to the outside world. Every bit of input and output 
of the system, including disk and network controllers, keyboards and mice, USB 
devices, and, yes, GPUs, goes through the chipset. Until recently, chipsets were 
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divided into a “southbridge” that connected most peripherals to the system1 and 
a “northbridge” that contained the graphics bus (the Accelerated Graphics Port, 
until the PCI Express [PCIe] bus displaced it) and a memory controller (“front 
side bus”) connected to the CPU memory.

Each “lane” in PCI Express 2.0 can theoretically deliver about 500MB/s of band-
width, and the number of lanes for a given peripheral can be 1, 4, 8, or 16. GPUs 
require the most bandwidth of any peripheral on the platform, so they generally 
are designed to be plugged into 16-lane PCIe slots. With packet overhead, the 
8G/s of bandwidth for such a connection delivers about 6G/s in practice.2

2.1.1 FRONT-SIDE BUS

Figure 2.2 adds the northbridge and its memory controller to the original sim-
plified diagram. For completeness, Figure 2.2 also shows the GPU’s integrated 
memory controller, which is designed under a very different set of constraints 
than the CPU’s memory controller. The GPU must accommodate so-called 
isochronous clients, such as video display(s), whose bandwidth requirements are 
fixed and nonnegotiable. The GPU’s memory controller also is designed with the 
GPU’s extreme latency-tolerance and vast memory bandwidth requirements in 
mind. As of this writing, high-end GPUs commonly deliver local GPU memory 
bandwidths well in excess of 100G/s. GPU memory controllers are always inte-
grated with the GPU, so they are omitted from the rest of the diagrams in this 
chapter.

1.  For simplicity, the southbridge is omitted from all diagrams in this section.
2.  PCI 3.0 delivers about twice as much bandwidth as PCIe 2.0.

CPU

CPU memory

GPU

GPU memory

PCI Express

Figure 2.1 CPU/GPU architecture simplified.
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2.1.2 SYMMETRIC MULTIPROCESSORS

Figure 2.3 shows a system with multiple CPUs in a traditional northbridge 
configuration.3 Before multicore processors, applications had to use multi-
ple threads to take full advantage of the additional power of multiple CPUs. 
The northbridge must ensure that each CPU sees the same coherent view of 

3.  For reasons that will soon become clear, we offer Figure 2.3 more for historical reference than
because there are CUDA-capable computers with this configuration.

“Northbridge”

CPU

CPU memory

GPU

GPU memory

PCI 
Express

Memory controller
Memory controller

Front-side bus

Figure 2.2 CPU/GPU architecture—northbridge.

CPU

CPU memory

GPU

GPU memory

PCI 
Express

CPU

“Northbridge”

Memory controller

Figure 2.3 Multiple CPUs (SMP configuration).
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 memory, even though every CPU and the northbridge itself all contain caches. 
Since these so-called “symmetric multiprocessor” (SMP) systems share a 
common path to CPU memory, memory accesses exhibit relatively uniform 
performance.

2.1.3 NONUNIFORM MEMORY ACCESS

Starting with AMD’s Opteron and Intel’s Nehalem (i7) processors, the memory 
controller in the northbridge was integrated directly into the CPU, as shown in 
Figure 2.4. This architectural change improves CPU memory performance.

For developers, the system in Figure 2.4 is only slightly different from the ones 
we’ve already discussed. For systems that contain multiple CPUs, as shown in 
Figure 2.5, things get more interesting.

For machine configurations with multiple CPUs,4 this architecture implies that 
each CPU gets its own pool of memory bandwidth. At the same time, because 
multithreaded operating systems and applications rely on the cache coherency 
enforced by previous CPUs and northbridge configurations, the Opteron and 

4.  On such systems, the CPUs also may be referred to as “nodes” or “sockets.”

I/O Hub

CPU

CPU memory

GPU

GPU memory

PCI 
Express

Memory controller

Figure 2.4 CPU with integrated memory controller.
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Nehalem architectures also introduced HyperTransport (HT) and QuickPath 
Interconnect (QPI), respectively. 

HT and QPI are point-to-point interconnects that connect CPUs to other CPUs, 
or CPUs to I/O hubs. On systems that incorporate HT/QPI, any CPU can access 
any memory location, but accesses are much faster to “local” memory loca-
tions whose physical address is in the memory directly attached to the CPU. 
Nonlocal accesses are resolved by using HT/QPI to snoop the caches of other 
CPUs, evict any cached copies of the requested data, and deliver the data to the 
CPU that performed the memory request. In general, the enormous on-chip 
caches on these CPUs mitigate the cost of these nonlocal memory accesses; the 
requesting CPU can keep the data in its own cache hierarchy until the memory 
is requested by another CPU.

To help developers work around these performance pitfalls, Windows and Linux 
have introduced APIs to enable applications to steer their allocations toward 
specific CPUs and to set CPU “thread affinities” so the operating system sched-
ules threads onto CPUs so most or all of their memory accesses will be local.

A determined programmer can use these APIs to write contrived code that 
exposes the performance vulnerabilities of NUMA, but the more common (and 
insidious!) symptom is a slowdown due to “false sharing” where two threads 
running on different CPUs cause a plethora of HT/QPI transactions by accessing 

I/O Hub GPU

GPU 
memory

CPU

CPU 
memory

CPU

CPU 
memory

PCI 
Express

HT/QPI

HT/QPI HT/QPI

Figure 2.5 Multiple CPUs (NUMA).
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memory locations that are in the same cache line. So NUMA APIs must be used 
with caution: Although they give programmers the tools to improve perfor-
mance, they also can make it easy for developers to inflict performance prob-
lems on themselves.

One approach to mitigating the performance impact of nonlocal memory 
accesses is to enable memory interleaving, in which physical memory is evenly 
split between all CPUs on cache line boundaries.5 For CUDA, this approach 
works well on systems that are designed exactly as shown in Figure 2.5, with 
multiple CPUs in a NUMA configuration connected by a shared I/O hub to the 
GPU(s). Since PCI Express bandwidth is often a bottleneck to overall application 
performance, however, many systems have separate I/O hubs to service more 
than one PCI Express bus, as shown in Figure 2.6. 

In order to run well on such “affinitized” systems, CUDA applications must take 
care to use NUMA APIs to match memory allocations and thread affinities to the 
PCI Express bus attached to a given GPU. Otherwise, memory copies initiated 
by the GPU(s) are nonlocal, and the memory transactions take an extra “hop” 
over the HT/QPI interconnect. Since GPUs demand a huge amount of bandwidth, 
these DMA operations reduce the ability of HT/QPI to serve its primary purpose. 
Compared to false sharing, the performance impact of nonlocal GPU memory 
copies is a much more plausible performance risk for CUDA applications.

5.  A cynic would say this makes all memory accesses “equally bad.”

CPU

CPU 
memory

CPU

CPU 
memory

GPU
PCIe

I/O Hub

QPI

PCIe
I/O Hub

GPU 
memory

QPIQPI

GPU

GPU 
memory

Figure 2.6 Multi-CPU (NUMA configuration), multiple buses.
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2.2 INTEGRATED GPUS 

2.1.4 PCI EXPRESS INTEGRATION

Intel’s Sandy Bridge class processors take another step toward full system 
 integration by integrating the I/O hub into the CPU, as shown in Figure 2.7. 
A single Sandy Bridge CPU has up to 40 lanes of PCI Express bandwidth 
(remember that one GPU can use up to 16 lanes, so 40 are enough for more 
than two full-size GPUs).

For CUDA developers, PCI Express integration brings bad news and good news. 
The bad news is that PCI Express traffic is always affinitized. Designers can-
not build systems like the system in Figure 2.5, where a single I/O hub serves 
multiple CPUs; all multi-CPU systems resemble Figure 2.6. As a result, GPUs 
associated with different CPUs cannot perform peer-to-peer operations. The 
good news is that the CPU cache can participate in PCI Express bus traffic: The 
CPU can service DMA read requests out of cache, and writes by the GPU are 
posted to the CPU cache. 

 2.2 Integrated GPUs
Here, the term integrated means “integrated into the chipset.” As Figure 2.8 
shows, the memory pool that previously belonged only to the CPU is now shared 
between the CPU and the GPU that is integrated into the chipset. Examples 
of NVIDIA chipsets with CUDA-capable GPUs include the MCP79 (for laptops 
and netbooks) and MCP89. MCP89 is the last and greatest CUDA-capable x86 
chipset that NVIDIA will manufacture; besides an integrated L3 cache, it has 3x 
as many SMs as the MCP7x chipsets. 

CPU

CPU 
memory

CPU

CPU 
memory

GPU
PCIe

I/O Hub

QPI

GPU
PCIe

I/O Hub

GPU 
memory

GPU 
memory

Figure 2.7 Multi-CPU with integrated PCI Express.
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CUDA’s APIs for mapped pinned memory have special meaning on integrated 
GPUs. These APIs, which map host memory allocations into the address space 
of CUDA kernels so they can be accessed directly, also are known as “zero-
copy,” because the memory is shared and need not be copied over the bus. In 
fact, for transfer-bound workloads, an integrated GPU can outperform a much 
larger discrete GPU.

“Write-combined” memory allocations also have significance on integrated 
GPUs; cache snoops to the CPU are inhibited on this memory, which increases 
GPU performance when accessing the memory. Of course, if the CPU reads 
from the memory, the usual performance penalties for WC memory apply.

Integrated GPUs are not mutually exclusive with discrete ones; the MCP7x and 
MCP89 chipsets provide for PCI Express connections (Figure 2.9). On such sys-
tems, CUDA prefers to run on the discrete GPU(s) because most CUDA applica-
tions are authored with them in mind. For example, a CUDA application designed 
to run on a single GPU will automatically select the discrete one.

CUDA applications can query whether a GPU is integrated by examining 
cudaDeviceProp.integrated or by passing CU_DEVICE_ATTRIBUTE_
INTEGRATED to cuDeviceGetAttribute().

For CUDA, integrated GPUs are not exactly a rarity; millions of computers have 
integrated, CUDA-capable GPUs on board, but they are something of a curiosity, 
and in a few years, they will be an anachronism because NVIDIA has exited the 

“Northbridge”

CPU

CPU and GPU 
memory

GPUMemory controller

Figure 2.8 Integrated GPU.
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x86 chipset business. That said, NVIDIA has announced its intention to ship sys-
tems on a chip (SOCs) that integrate CUDA-capable GPUs with ARM CPUs, and it 
is a safe bet that zero-copy optimizations will work well on those systems.

 2.3 Multiple GPUs
This section explores the different ways that multiple GPUs can be installed in a 
system and the implications for CUDA developers. For purposes of this discus-
sion, we will omit GPU memory from our diagrams. Each GPU is assumed to be 
connected to its own dedicated memory.

Around 2004, NVIDIA introduced “SLI” (Scalable Link Interface) technology that 
enables multiple GPUs to deliver higher graphics performance by working in 
parallel. With motherboards that could accommodate multiple GPU boards, end 
users could nearly double their graphics performance by installing two GPUs 
in their system (Figure 2.10). By default, the NVIDIA driver software configures 
these boards to behave as if they were a single, very fast GPU to accelerate 
graphics APIs such as Direct3D and OpenGL. End users who intend to use CUDA 
must explicitly enable it in the Display Control panel on Windows.

It also is possible to build GPU boards that hold multiple GPUs (Figure 
2.11). Examples of such boards include the GeForce 9800GX2 (dual-G92), 
the GeForce GTX 295 (dual-GT200), the GeForce GTX 590 (dual-GF110), and 

“Northbridge”

CPU

CPU and GPU 
memory

GPU

PCI 
Express

Discrete GPU(s)

Memory controller

Figure 2.9 Integrated GPU with discrete GPU(s).
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the GeForce GTX 690 (dual-GK104). The only thing shared by the GPUs on 
these boards is a bridge chip that enables both chips to communicate via PCI 
Express. They do not share memory resources; each GPU has an integrated 
memory controller that gives full-bandwidth performance to the memory 
connected to that GPU. The GPUs on the board can communicate via peer-to-
peer memcpy, which will use the bridge chip to bypass the main PCIe fabric. 
In addition, if they are Fermi-class or later GPUs, each GPU can map memory 
belonging to the other GPU into its global address space.

SLI is an NVIDIA technology that makes multiple GPUs (usually on the same 
board, as in Figure 2.11) appear as a single, much faster GPU. When the graphics 

CPU

CPU memory

PCI 
Express

GPU

GPU
“Northbridge”

Memory controller

Figure 2.10 GPUs in multiple slots.
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Figure 2.11 Multi-GPU board.
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application downloads textures or other data, the NVIDIA graphics driver broad-
casts the data to both GPUs; most rendering commands also are broadcast, 
with small changes to enable each GPU to render its part of the output buffer. 
Since SLI causes the multiple GPUs to appear as a single GPU, and since CUDA 
applications cannot be transparently accelerated like graphics applications, 
CUDA developers generally should disable SLI.

This board design oversubscribes the PCI Express bandwidth available to the 
GPUs. Since only one PCI Express slot’s worth of bandwidth is available to both 
GPUs on the board, the performance of transfer-limited workloads can suffer. If 
multiple PCI Express slots are available, an end user can install multiple dual-
GPU boards. Figure 2.12 shows a machine with four GPUs.

If there are multiple PCI Express I/O hubs, as with the system in Figure 2.6, the 
placement and thread affinity considerations for NUMA systems apply to the 
boards just as they would to single-GPU boards plugged into that configuration.

If the chipset, motherboard, operating system, and driver software can sup-
port it, even more GPUs can be crammed into the system. Researchers at the 
University of Antwerp caused a stir when they built an 8-GPU system called 
FASTRA by plugging four GeForce 9800GX2’s into a single desktop computer. 
A similar system built on a dual-PCI Express chipset would look like the one in 
Figure 2.13. 

As a side note, peer-to-peer memory access (the mapping of other GPUs’ device 
memory, not memcpy) does not work across I/O hubs or, in the case of CPUs 
such as Sandy Bridge that integrate PCI Express, sockets.

CPU
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GPU GPU

GPU GPU

“Northbridge”

Memory controller

Figure 2.12 Multi-GPU boards in multiple slots.
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2.4 Address Spaces in CUDA
As every beginning CUDA programmer knows, the address spaces for the CPU 
and GPU are separate. The CPU cannot read or write the GPU’s device memory, 
and in turn, the GPU cannot read or write the CPU’s memory. As a result, the 
application must explicitly copy data to and from the GPU’s memory in order to 
process it.

The reality is a bit more complicated, and it has gotten even more so as CUDA 
has added new capabilities such as mapped pinned memory and peer-to-peer 
access. This section gives a detailed description of how address spaces work in 
CUDA, starting from first principles.

2.4.1 VIRTUAL ADDRESSING: A BRIEF HISTORY

Virtual address spaces are such a pervasive and successful abstraction that most 
programmers use and benefit from them every day without ever knowing they 
exist. They are an extension of the original insight that it was useful to assign con-
secutive numbers to the memory locations in the computer. The standard unit of 
measure is the byte, so, for example, a computer with 64K of memory had memory 
locations 0..65535. The 16-bit values that specify memory locations are known as 
addresses, and the process of computing addresses and operating on the corre-
sponding memory locations is collectively known as addressing.
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CPU 
memory
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Figure 2.13 Multi-GPU boards, multiple I/O hubs.
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Early computers performed physical addressing. They would compute a memory 
location and then read or write the corresponding memory location, as shown 
in Figure 2.14. As software grew more complex and computers hosting multiple 
users or running multiple jobs grew more common, it became clear that allow-
ing any program to read or write any physical memory location was unaccept-
able; software running on the machine could fatally corrupt other software by 
writing the wrong memory location. Besides the robustness concern, there 
were also security concerns: Software could spy on other software by reading 
memory locations it did not “own.”

As a result, modern computers implement virtual address spaces. Each program 
(operating system designers call it a process) gets a view of memory similar to 
Figure 2.14, but each process gets its own address space. They cannot read or 
write memory belonging to other processes without special permission from the 
operating system. Instead of specifying a physical address, the machine instruc-
tion specifies a virtual address to be translated into a physical address by per-
forming a series of lookups into tables that were set up by the operating system.

In most systems, the virtual address space is divided into pages, which are units 
of addressing that are at least 4096 bytes in size. Instead of referencing physi-
cal memory directly from the address, the hardware looks up a page table entry 
(PTE) that specifies the physical address where the page’s memory resides.

01c0

0000
0001

…

FFFF

Instruction

Memory

Figure 2.14 Simple 16-bit address space.
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It should be clear from Figure 2.15 that virtual addressing enables a contiguous 
virtual address space to map to discontiguous pages in physical memory. Also, 
when an application attempts to read or write a memory location whose page 
has not been mapped to physical memory, the hardware signals a fault that 
must be handled by the operating system.

Just a side note: In practice, no hardware implements a single-level page table 
as shown in Figure 2.15. At minimum, the address is split into at least two indi-
ces: an index into a “page directory” of page tables, and an index into the page 
table selected by the first index. The hierarchical design reduces the amount 
of memory needed for the page tables and enables inactive page tables to be 
marked nonresident and swapped to disk, much like inactive pages.

Besides a physical memory location, the PTEs contain permissions bits that 
the hardware can validate while doing the address translation. For example, 

Page (e.g., 4096 bytes)

…

Instruction

Physical Memory

Address
Page

…

Page Table

Figure 2.15 Virtual address space.
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the operating system can make pages read-only, and the hardware will signal a 
fault if the application attempts to write the page.

Operating systems use virtual memory hardware to implement many features.

• Lazy allocation: Large amounts of memory can be “allocated” by setting aside
PTEs with no physical memory backing them. If the application that requested
the memory happens to access one of those pages, the OS resolves the fault
by finding a page of physical memory at that time.

• Demand paging: Memory can be copied to disk and the page marked nonresi-
dent. If the memory is referenced again, the hardware signals a “page fault,”
and the OS resolves the fault by copying the data to a physical page, fixing up
the PTE to point there, and resuming execution.

• Copy-on-write: Virtual memory can be “copied” by creating a second set of
PTEs that map to the same physical pages, then marking both sets of PTEs
read-only. If the hardware catches an attempt to write to one of those pages,
the OS can copy it to another physical page, mark both PTEs writeable again,
and resume execution. If the application only writes to a small percentage of
pages that were “copied,” copy-on-write is a big performance win.

• Mapped file I/O: Files can be mapped into the address space, and page faults
can be resolved by accessing the file. For applications that perform random
access on the file, it may be advantageous to delegate the memory manage-
ment to the highly optimized VMM code in the operating system, especially
since it is tightly coupled to the mass storage drivers.

It is important to understand that address translation is performed on every 
memory access performed by the CPU. To make this operation fast, the CPU 
contains special hardware: caches called translation lookaside buffers (TLBs) 
that hold recently translated address ranges, and “page walkers” that resolve 
cache misses in the TLBs by reading the page tables.6 Modern CPUs also 
include hardware support for “unified address spaces,” where multiple CPUs 
can access one another’s memory efficiently via AMD’s HT (HyperTransport) 
and Intel’s QuickPath Interconnect (QPI). Since these hardware facilities enable 
CPUs to access any memory location in the system using a unified address 
space, this section refers to “the CPU” and the “CPU address space” regardless 
of how many CPUs are in the system.

6.  It is possible to write programs (for both CPUs and CUDA) that expose the size and structure 
of the TLBs and/or the memory overhead of the page walkers if they stride through enough 
memory in a short enough period of time.



HARDWARE ARCHITECTURE 

26

Sidebar: Kernel Mode and User Mode
A final point about memory management on CPUs is that the operating system 
code must use memory protections to prevent applications from corrupting the 
operating system’s own data structures—for example, the page tables that control 
address translation. To aid with this memory protection, operating systems have 
a “privileged” mode of execution that they use when performing critical system 
functions. In order to manage low-level hardware resources such as page tables 
or to program hardware registers on peripherals such as the disk or network 
controller or the CUDA GPU, the CPU must be running in kernel mode. The unpriv-
ileged execution mode used by application code is called user mode.7 Besides code 
written by the operating system provider, low-level driver code to control hard-
ware peripherals also runs in kernel mode. Since mistakes in kernel mode code 
can lead to system stability or security problems, kernel mode code is held to a 
higher quality standard. Also, many operating system services, such as mapped 
file I/O or other memory management facilities listed above, are not available in 
kernel mode.

To ensure system stability and security, the interface between user mode and 
kernel mode is carefully regulated. The user mode code must set up a data struc-
ture in memory and make a special system call that validates the memory and 
the request that is being made. This transition from user mode to kernel mode is 
known as a kernel thunk. Kernel thunks are expensive, and their cost sometimes 
must be taken into account by CUDA developers. 

Every interaction with CUDA hardware by the user mode driver is arbitrated by 
kernel mode code. Often this means having resources allocated on its behalf—not 
only memory but also hardware resources such as the hardware register used by 
the user mode driver to submit work to the hardware.

The bulk of CUDA’s driver runs in user mode. For example, in order to allocate 
page-locked system memory (e.g., with the cudaHostAlloc() function), the 
CUDA application calls into the user mode CUDA driver, which composes a request 
to the kernel mode CUDA driver and performs a kernel thunk. The kernel mode 
CUDA driver uses a mix of low-level OS services (for example, it may call a system 
service to map GPU hardware registers) and hardware-specific code (for example, 
to program the GPU’s memory management hardware) to satisfy the request.

2.4.2 DISJOINT ADDRESS SPACES

On the GPU, CUDA also uses virtual address spaces, although the hardware 
does not support as rich a feature set as do the CPUs. GPUs do enforce memory 

7.  The x86-specific terms for kernel mode and user mode are “Ring 0” and “Ring 3,” respectively.
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protections, so CUDA programs cannot accidentally read or corrupt other CUDA 
programs’ memory or access memory that hasn’t been mapped for them by 
the kernel mode driver. But GPUs do not support demand paging, so every 
byte of virtual memory allocated by CUDA must be backed by a byte of physical 
memory. Also, demand paging is the underlying hardware mechanism used by 
operating systems to implement most of the features outlined above.

Since each GPU has its own memory and address translation hardware, the 
CUDA address space is separate from the CPU address space where the host 
code in a CUDA application runs. Figure 2.16 shows the address space archi-
tecture for CUDA as of version 1.0, before mapped pinned memory became 
available. The CPU and GPU each had its own address space, mapped with each 
device’s own page tables. The two devices exchanged data via explicit memcpy 
commands. The GPU could allocate pinned memory—page-locked memory that 
had been mapped for DMA by the GPU—but pinned memory only made DMA 
faster; it did not enable CUDA kernels to access host memory.8

8.  On 32-bit operating systems, CUDA-capable GPUs can map pinned memory for memcpy in a
40-bit address space that is outside the CUDA address space used by kernels. 

CPU Address Space

Device memory
allocation

CPU
allocation

GPU memory CPU memory

GPU Address Space

Explicit memcpy calls

Figure 2.16 Disjoint address spaces.
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The CUDA driver tracks pinned memory ranges and automatically accelerates 
memcpy operations that reference them. Asynchronous memcpy calls require 
pinned memory ranges to ensure that the operating system does not unmap or 
move the physical memory before the memcpy is performed.

Not all CUDA applications can allocate the host memory they wish to process 
using CUDA. For example, a CUDA-aware plugin to a large, extensible appli-
cation may want to operate on host memory that was allocated by non- CUDA-
aware code. To accommodate that use case, CUDA 4.0 added the ability to 
register existing host address ranges, which page-locks a virtual address range, 
maps it for the GPU, and adds the address range to the tracking data structure 
so CUDA knows it is pinned. The memory then can be passed to asynchronous 
memcpy calls or otherwise treated as if it were allocated by CUDA.

2.4.3 MAPPED PINNED MEMORY

CUDA 2.2 added a feature called mapped pinned memory, shown in Figure 2.17. 
Mapped pinned memory is page-locked host memory that has been mapped 
into the CUDA address space, where CUDA kernels can read or write it 
directly. The page tables of both the CPU and the GPU are updated so that 
both the CPU and the GPU have address ranges that point to the same host 
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Figure 2.17 Mapped pinned memory.
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memory buffer. Since the address spaces are different, the GPU pointer(s) 
to the buffer must be queried using cuMemHostGetDevicePointer()/
cudaHostGetDevicePointer().9

2.4.4 PORTABLE PINNED MEMORY

CUDA 2.2 also enabled a feature called portable pinned memory, shown in 
Figure 2.18. Making pinned memory “portable” causes the CUDA driver to map 
it for all GPUs in the system, not just the one whose context is current. A sep-
arate set of page table entries is created for the CPU and every GPU in the 
system, enabling the corresponding device to translate virtual addresses to the 
underlying physical memory. The host memory range also is added to every 

9.  For multi-GPU configurations, CUDA 2.2 also added a feature called “portable” pinned memory 
that causes the allocation to be mapped into every GPU’s address space. But there is no guaran-
tee that cu(da)HostGetDevicePointer() will return the same value for different GPUs!

CPU Address Space

Device memory
allocation

Portable, mapped 
pinned allocation

3 addresses may be different

CPU
allocation

GPU memory

CPU memory

GPU Address Space

Device memory
allocation

GPU memory

GPU Address Space

Figure 2.18 Portable, mapped pinned memory.
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active CUDA context’s tracking mechanism, so every GPU will recognize the 
portable allocation as pinned.

Figure 2.18 likely represents the limit of developer tolerance for multiple 
address spaces. Here, a 2-GPU system has 3 addresses for an allocation; a 
4-GPU system would have 5 addresses. Although CUDA has fast APIs to look 
up a given CPU address range and pass back the corresponding GPU address 
range, having N+1 addresses on an N-GPU system, all for the same allocation, 
is inconvenient to say the least. 

2.4.5 UNIFIED ADDRESSING

Multiple address spaces are required for 32-bit CUDA GPUs, which can only 
map 232=4GiB of address space; since some high-end GPUs have up to 4GiB of 
device memory, they are hard-pressed to address all of device memory and also 
map any pinned memory, let alone use the same address space as the CPU. But 
on 64-bit operating systems with Fermi or later GPUs, a simpler abstraction is 
possible.

CUDA 4.0 added a feature called unified virtual addressing (UVA), shown in 
Figure 2.19. When UVA is in force, CUDA allocates memory for both CPUs and 
GPUs from the same virtual address space. The CUDA driver accomplishes this 
by having its initialization routine perform large virtual allocations from the CPU 
address space—allocations that are not backed by physical memory—and then 

Mapped pinned
allocation

Note: GPU and CPU 
addresses are the same.

CPU
allocation

GPU memory CPU memory

GPU page
tables

CPU page
tables

Device memory
allocation

Figure 2.19 Unified virtual addressing (UVA).
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mapping GPU allocations into those address ranges. Since x64 CPUs support 
48-bit virtual address spaces,10 while CUDA GPUs only support 40 bits, applica-
tions using UVA should make sure CUDA gets initialized early to guard against 
CPU code using virtual address needed by CUDA.

For mapped pinned allocations, the GPU and CPU pointers are the same. For 
other types of allocation, CUDA can infer the device for which a given alloca-
tion was performed from the address. As a result, the family of linear mem-
cpy functions (cudaMemcpy() with a direction specified, cuMemcpyHtoD(), 
 cuMemcpyDtoH(), etc.) have been replaced by simplified cuMemcpy() and 
cudaMemcpy() functions that do not take a memory direction.

UVA is enabled automatically on UVA-capable systems. At the time of this 
 writing, UVA is enabled on 64-bit Linux, 64-bit MacOS, and 64-bit Windows 
when using the TCC driver; the WDDM driver does  not yet support UVA. When 
UVA is in effect, all pinned allocations performed by CUDA are both mapped 
and portable. Note that for system memory that has been pinned using 
 cuMemRegisterHost(), the device pointers still must be queried using 
cu(da)HostGetDevicePointer(). Even when UVA is in effect, the CPU(s) 
 cannot access device memory. In addition, by default, the GPU(s) cannot access 
one another’s memory.

2.4.6 PEER-TO-PEER MAPPINGS

In the final stage of our journey through CUDA’s virtual memory  abstractions, 
we discuss peer-to-peer mapping of device memory, shown in Figure 2.20. 
Peer-to-peer enables a Fermi-class GPU to read or write memory that resides 
in another Fermi-class GPU. Peer-to-peer mapping is supported only on 
UVA-enabled platforms, and it only works on GPUs that are connected to the 
same I/O hub. Because UVA is always in force when using peer-to-peer, the 
address ranges for different devices do not overlap, and the driver (and runtime) 
can infer the owning device from a pointer value. 

Peer-to-peer memory addressing is asymmetric; note that Figure 2.20 shows 
an asymmetric mapping in which GPU 1’s allocations are visible to GPU 0, but 
not vice versa. In order for GPUs to see each other’s memory, each GPU must 
explicitly map the other’s memory. The API functions to manage peer-to-peer 
mappings are discussed in Section 9.2.

10.  48 bits of virtual address space = 256 terabytes. Future x64 CPUs will support even larger 
address spaces.
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 2.5 CPU/GPU Interactions
This section describes key elements of CPU-GPU interactions.

• Pinned host memory: CPU memory that the GPU can directly access

• Command buffers: the buffers written by the CUDA driver and read by the GPU
to control its execution

• CPU/GPU synchronization: how the GPU’s progress is tracked by the CPU

This section describes these facilities at the hardware level, citing APIs only as 
necessary to help the reader understand how they pertain to CUDA develop-
ment. For simplicity, this section uses the CPU/GPU model in Figure 2.1, setting 
aside the complexities of multi-CPU or multi-GPU programming.

2.5.1 PINNED HOST MEMORY AND COMMAND BUFFERS

For obvious reasons, the CPU and GPU are each best at accessing its own mem-
ory, but the GPU can directly access page-locked CPU memory via direct memory 

Unified Address Space

GPU 0 memory GPU 1 memory

Device memory
allocation (GPU 0)

Peer-to-peer 
allocation (GPU 1)

Figure 2.20 Peer-to-peer. 
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access (DMA). Page-locking is a facility used by operating systems to enable 
hardware peripherals to directly access CPU memory, avoiding extraneous cop-
ies. The “locked” pages have been marked as ineligible for eviction by the oper-
ating system, so device drivers can program these peripherals to use the pages’ 
physical addresses to access the memory directly. The CPU still can access the 
memory in question, but the memory cannot be moved or paged out to disk. 

Since the GPU is a distinct device from the CPU, direct memory access also 
enables the GPU to read and write CPU memory independently of, and in par-
allel with, the CPU’s execution. Care must be taken to synchronize between the 
CPU and GPU to avoid race conditions, but for applications that can make pro-
ductive use of CPU clock cycles while the GPU is processing, the performance 
benefits of concurrent execution can be significant.

Figure 2.21 depicts a “pinned” buffer that has been mapped by the GPU11 for 
direct access. CUDA programmers are familiar with pinned buffers because 
CUDA has always given them the ability to allocate pinned memory via APIs such 
as cudaMallocHost(). But under the hood, one of the main applications for 
such buffers is to submit commands to the GPU. The CPU writes commands 
into a “command buffer” that the GPU can consume, and the GPU simultane-
ously reads and executes previously written commands. Figure 2.22 shows 
how the CPU and GPU share this buffer. This diagram is simplified because the 
commands may be hundreds of bytes long, and the buffer is big enough to hold 
several thousand such commands. The “leading edge” of the buffer is under 
construction by the CPU and not yet ready to be read by the GPU. The “trailing 
edge” of the buffer is being read by the GPU. The commands in between are 
ready for the GPU to process when it is ready.

11.  Important note: In this context, “mapping” for the GPU involves setting up hardware tables that
refer to the CPU memory’s physical addresses. The memory may or may not be mapped into 
the address space where it can be accessed by CUDA kernels.

CPU GPU

Figure 2.21 Pinned buffer. 
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Typically, the CUDA driver will reuse command buffer memory because once 
the GPU has finished processing a command, the memory becomes eligible to 
be written again by the CPU. Figure 2.23 shows how the CPU can “wrap around” 
the command buffer.

Since it takes several thousand CPU clock cycles to launch a CUDA kernel, a key 
use case for CPU/GPU concurrency is simply to prepare more GPU commands 
while the GPU is processing. Applications that are not balanced to keep both 
the CPU and GPU busy may become “CPU bound” or “GPU bound,” as shown in 
Figures 2.24 and 2.25, respectively. In a CPU-bound application, the GPU is poised 
and ready to process the next command as soon as it becomes available; in a 
GPU-bound application, the CPU has completely filled the command buffer and 

CPU GPU

GPU memory

Figure 2.22 CPU/GPU command buffer.

CPU GPU

GPU memory

CPU GPU

GPU memory

Figure 2.23 Command buffer wrap-around.
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must wait for the GPU before writing the next GPU command. Some applications 
are intrinsically CPU-bound or GPU-bound, so CPU- and GPU-boundedness does 
not necessarily indicate a fundamental problem with an application’s structure. 
Nevertheless, knowing whether an application is CPU-bound or GPU-bound can 
help highlight performance opportunities.

2.5.2 CPU/GPU CONCURRENCY

The previous section introduced the coarsest-grained parallelism available in 
CUDA systems: CPU/GPU concurrency. All launches of CUDA kernels are asyn-
chronous: the CPU requests the launch by writing commands into the command 
buffer, then returns without checking the GPU’s progress. Memory copies 
optionally also may be asynchronous, enabling CPU/GPU concurrency and pos-
sibly enabling memory copies to be done concurrently with kernel processing.

Amdahl’s Law
When CUDA programs are written correctly, the CPU and GPU can fully operate 
in parallel, potentially doubling performance. CPU- or GPU-bound programs do 
not benefit much from CPU/GPU concurrency because the CPU or GPU will limit 

CPU GPU

GPU memory

Figure 2.24 GPU-bound application.

CPU GPU

GPU memory

Figure 2.25 CPU-bound application.
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performance even if the other device is operating in parallel. This vague obser-
vation can be concretely characterized using Amdahl’s Law, first articulated in 
a paper by Gene Amdahl in 1967.12 Amdahl’s Law is often summarized as follows.

Speedup

N

1

r
r

s
p

=

+

where  rs + rp = 1 and rs represents the ratio of the sequential portion. This for-
mulation seems awkward when examining small-scale performance opportuni-
ties such as CPU/GPU concurrency. Rearranging the equation as follows

Speedup N

N 1 r r
p p)(=

− +

clearly shows that the speedup is Nx if rp = 1. If there is one CPU and one GPU 
(N = 2), the maximum speedup from full concurrency is 2x; this is almost achiev-
able for balanced workloads such as video transcoding, where the CPU can 
perform serial operations (such as variable-length decoding) in parallel with 
the GPU’s performing parallel operations (such as pixel processing). But for 
more CPU- or GPU-bound applications, this type of concurrency offers limited 
benefits.

Amdahl’s paper was intended as a cautionary tale for those who believed that 
parallelism would be a panacea for performance problems, and we use it 
elsewhere in this book when discussing intra-GPU concurrency, multi-GPU 
concurrency, and the speedups achievable from porting to CUDA kernels. It can 
be empowering, though, to know which forms of concurrency will not confer any 
benefit to a given application, so developers can spend their time exploring other 
avenues for increased performance.

Error Handling
CPU/GPU concurrency also has implications for error handling. If the CPU 
launches a dozen kernels and one of them causes a memory fault, the CPU can-
not discover the fault until it has performed CPU/GPU synchronization (described 
in the next section). Developers can manually perform CPU/GPU synchronization 
by calling cudaThreadSynchronize() or  cuCtxSynchronize(), and other 
functions such as cudaFree() or  cuMemFree()may cause CPU/GPU synchro-
nization to occur as a side effect. The CUDA C Programming Guide references 
this behavior by calling out functions that may cause CPU/GPU synchronization: 

12.  http://bit.ly/13UqBm0
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“Note that this function may also return error codes from previous, asynchro-
nous launches.”

As CUDA is currently implemented, if a fault does occur, there is no way to know 
which kernel caused the fault. For debug code, if it’s difficult to isolate faults 
with synchronization, developers can set the CUDA_LAUNCH_BLOCKING envi-
ronment variable to force all launches to be synchronous.

CPU/GPU Synchronization
Although most GPU commands used by CUDA involve performing memory 
copies or kernel launches, an important subclass of commands helps the CUDA 
driver track the GPU’s progress in processing the command buffer. Because the 
application cannot know how long a given CUDA kernel may run, the GPU itself 
must report progress to the CPU. Figure 2.26 shows both the command buffer 
and the “sync location” (which also resides in pinned host memory) used by the 
driver and GPU to track progress. A monotonically increasing integer value (the 
“progress value”) is maintained by the driver, and every major GPU operation 
is followed by a command to write the new progress value to the shared sync 
location. In the case of Figure 2.26, the progress value is 3 until the GPU finishes 
executing the command and writes the value 4 to the sync location.

CPU GPU

GPU memory3

84 5 6 7

The shared sync location in pinned memory 
contains the value 3. At any time, the driver 
can read this memory location to know which 
commands have been completed by the GPU.

When the GPU is done 
processing this command, 
it writes the value 4 into the 
shared sync location.

The driver keeps track of a monotonically increasing value to track 
the GPU’s progress. Every major operation, such as a memcpy or 
kernel launch, is followed by a command to the GPU to write this 
new value to the shared sync location.

Figure 2.26 Shared sync value—before.
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CUDA exposes these hardware capabilities both implicitly and explicitly. 
Context-wide synchronization calls such as cuCtxSynchronize() or 
 cudaThreadSynchronize() simply examine the last sync value requested 
of the GPU and wait until the sync location attains that value. For example, 
if the command 8 being written by the CPU in Figure 2.27 were followed by 
 cuCtxSynchronize() or cudaThreadSynchronize(), the driver would wait 
until the shared sync value became greater than or equal to 8.

CUDA events expose these hardware capabilities more explicitly. cuEvent-
Record()enqueues a command to write a new sync value to a shared sync 
location, and cuEventQuery() and cuEventSynchronize() examine and 
wait on the event’s sync value, respectively.

Early versions of CUDA simply polled shared sync locations, repeatedly read-
ing the memory until the wait criterion had been achieved, but this approach is 
expensive and only works well when the application doesn’t have to wait long 
(i.e., the sync location doesn’t have to be read many times before exiting because 
the wait criterion has been satisfied). For most applications, interrupt-based 
schemes (exposed by CUDA as “blocking syncs”) are better because they enable 
the CPU to suspend the waiting thread until the GPU signals an interrupt. The 
driver maps the GPU interrupt to a platform-specific thread synchronization 
primitive, such as Win32 events or Linux signals, that can be used to suspend 
the CPU thread if the wait condition is not true when the application starts to 
wait.

CPU GPU

GPU memory4

85 6 7

The GPU has written the value 4 into 
the shared sync location, so the driver 
can see that the previous command 
has been executed.

When the GPU is done processing this 
command, it will write the value 5 into the 
shared sync location.

Figure 2.27 Shared sync value—after.
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Applications can force the context-wide synchronization to be blocking by specifying 
CU_CTX_BLOCKING_SYNC to cuCtxCreate()or cudaDeviceBlockingSync to 
cudaSetDeviceFlags(). It is preferable, however, to use blocking CUDA events 
(specify CU_EVENT_BLOCKING_SYNC to cuEventCreate() or cudaEvent-
BlockingSync to cudaEventCreate()), since they are more fine-grained and 
interoperate seamlessly with any type of CUDA context.

Astute readers may be concerned that the CPU and GPU read and write this 
shared memory location without using atomic operations or other synchroni-
zation primitives. But since the CPU only reads the shared location, race con-
ditions are not a concern. The worst that can happen is the CPU reads a “stale” 
value that causes it to wait a little longer than it would otherwise.

Events and Timestamps
The host interface has an onboard high-resolution timer, and it can write a time-
stamp at the same time it writes a 32-bit sync value. CUDA uses this hardware 
facility to implement the asynchronous timing features in CUDA events.

2.5.3 THE HOST INTERFACE AND INTRA-GPU SYNCHRONIZATION

The GPU may contain multiple engines to enable concurrent kernel process-
ing and memory copying. In this case, the driver will write commands that are 
dispatched to different engines that run concurrently. Each engine has its own 
command buffer and shared sync value, and the engine’s progress is tracked 
as described in Figures 2.26 and 2.27. Figure 2.28 shows this situation, with two 
copy engines and a compute engine operating in parallel. The host interface is 
responsible for reading the commands and dispatching them to the appropri-
ate engine. In Figure 2.28, a host�device memcpy and two dependent opera-
tions—a kernel launch and a device�host memcpy—have been submitted to the 
hardware. In terms of CUDA programming abstractions, these operations are 
within the same stream. The stream is like a CPU thread, and the kernel launch 
was submitted to the stream after the memcpy, so the CUDA driver must insert 
GPU commands for intra-GPU synchronization into the command streams for 
the host interface.

As Figure 2.28 shows, the host interface plays a central role in coordinating the 
needed synchronization for streams. When, for example, a kernel must not be 
launched until a needed memcpy is completed, the DMA unit can stop giving 
commands to a given engine until a shared sync location attains a certain value. 
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This operation is similar to CPU/GPU synchronization, but the GPU is synchro-
nizing different engines within itself.

The software abstraction layered on this hardware mechanism is a CUDA 
stream. CUDA streams are like CPU threads in that operations within a stream 
are sequential and multiple streams are needed for concurrency. Because 
the command buffer is shared between engines, applications must “software- 
pipeline” their requests in different streams. So instead of

foreach stream
 Memcpy device�host
 Launch kernel
 Memcpy host�device

they must implement

 foreach stream
Memcpy device�host

 foreach stream
Launch kernel

 foreach stream
Memcpy host�device

6
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...while Host Interface waits for the sync value to equal 2 
before dispatching this  D�H memcpy.

...and before dispatching the dependent kernel launch, 
Host must wait until Copy Engine 1's sync value == 7.

Figure 2.28 Intra-GPU synchronization.
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Without the software pipelining, the DMA engine will “break concurrency” by syn-
chronizing the engines to preserve each stream’s model of sequential execution. 

Multiple DMA Engines on Kepler
The latest Kepler-class hardware from NVIDIA implements a DMA unit per 
engine, obviating the need for applications to software-pipeline their streamed 
operations.

2.5.4 INTER-GPU SYNCHRONIZATION

Since the sync location in Figures 2.26 through 2.28 is in host memory, it can 
be accessed by any of the GPUs in the system. As a result, in CUDA 4.0, NVIDIA 
was able to add inter-GPU synchronization in the form of cudaStreamWait-
Event() and cuStreamWaitEvent(). These API calls cause the driver to 
insert wait commands for the host interface into the current GPU’s command 
buffer, causing the GPU to wait until the given event’s sync value has been writ-
ten. Starting with CUDA 4.0, the event may or may not be signaled by the same 
GPU that is doing the wait. Streams have been promoted from being able to 
synchronize execution between hardware units on a single GPU to being able to 
synchronize execution between GPUs.

 2.6 GPU Architecture
Three distinct GPU architectures can run CUDA. 

• Tesla hardware debuted in 2006, in the GeForce 8800 GTX (G80).

• Fermi hardware debuted in 2010, in the GeForce GTX 480 (GF100).

• Kepler hardware debuted in 2012, in the GeForce GTX 680 (GK104).

The GF100/GK104 nomenclature refers to the ASIC that implements the GPU. 
The “K” and “F” in GK104 and GF100 refer to Kepler and Fermi, respectively.

The Tesla and Fermi families followed an NVIDIA tradition in which they would 
first ship the huge, high-end flagship chip that would win benchmarks. These 
chips were expensive because NVIDIA’s manufacturing costs are closely related 
to the number of transistors (and thus the amount of die area) required to build 
the ASIC. The first large “win” chips would then be followed by smaller chips: 
half-size for the mid-range, quarter-size for the low end, and so on. 
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In a departure from that tradition, NVIDIA’s first Kepler-class chip is targeted at 
the midrange; their “win” chip shipped months after the first Kepler-class chips 
became available. GK104 has 3.5B transistors, while GK110 has 7.1B transistors.

2.6.1 OVERVIEW

CUDA’s simplified view of the GPU includes the following. 

• A host interface that connects the GPU to the PCI Express bus

• 0 to 2 copy engines

• A DRAM interface that connects the GPU to its device memory

• Some number of TPCs or GPCs (texture processing clusters or graphics
processing clusters), each of which contains caches and some number of
streaming multiprocessors (SMs)

The architectural papers cited at the end of this chapter give the full story on 
GPU functionality in CUDA-capable GPUs, including graphics-specific function-
ality like antialiased rendering support.

Host Interface
The host interface implements the functionality described in the previous sec-
tion. It reads GPU commands (such as memcpy and kernel launch commands) 
and dispatches them to the appropriate hardware units, and it also implements 
the facilities for synchronization between the CPU and GPU, between different 
engines on the GPU, and between different GPUs. In CUDA, the host interface’s 
functionality primarily is exposed via the Stream and Event APIs (see Chapter 6).

Copy Engine(s)
Copy engines can perform host�device memory transfers while the SMs are 
doing computations. The earliest CUDA hardware did not have any copy engines; 
subsequent versions of the hardware included a copy engine that could transfer 
linear device memory (but not CUDA arrays), and the most recent CUDA hard-
ware includes up to two copy engines that can convert between CUDA arrays 
and linear memory while saturating the PCI Express bus.13

13.  More than two copy engines doesn’t really make sense, since each engine can saturate one of
the two directions of PCI Express.
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DRAM Interface
The GPU-wide DRAM interface, which supports bandwidths in excess of 100 
GB/s, includes hardware to coalesce memory requests. More recent CUDA 
hardware has more sophisticated DRAM interfaces. The earliest (SM 1.x) hard-
ware had onerous coalescing requirements, requiring addresses to be contigu-
ous and 64-, 128-, or 256-byte aligned (depending on the operand size). Starting 
with SM 1.2 (the GT200 or GeForce GTX 280), addresses could be coalesced 
based on locality, regardless of address alignment. Fermi-class hardware 
(SM 2.0 and higher) has a write-through L2 cache that provides the benefits of 
the SM 1.2 coalescing hardware and additionally improves performance when 
data is reused.

TPCs and GPCs
TPCs and GPCs are units of hardware that exist between the full GPU and 
the streaming multiprocessors that perform CUDA computation. Tesla-class 
hardware groups the SMs in “TPCs” (texture processing clusters) that contain 
texturing hardware support (in particular, a texture cache) and two or three 
streaming multiprocessors, described below. Fermi-class hardware groups the 
SMs in “GPCs” (graphics processing clusters) that each contain a raster unit and 
four SMs.

For the most part, CUDA developers need not concern themselves with TPCs 
or GPCs because streaming multiprocessors are the most important unit of 
abstraction for computational hardware. 

Contrasting Tesla and Fermi

The first generation of CUDA-capable GPUs was code-named Tesla, and the 
second, Fermi. These were confidential code names during development, but 
NVIDIA decided to use them as external product names to describe the first two 
generations of CUDA-capable GPU. To add to the confusion, NVIDIA chose the 
name “Tesla” to describe the server-class boards used to build compute clus-
ters out of CUDA machines.14 To distinguish between the expensive server-class 
Tesla boards and the architectural families, this book refers to the architectural 
families as “Tesla-class hardware,” “Fermi-class hardware,” and “Kepler-class 
hardware.”

14.  Of course, when the Tesla brand name was chosen, Fermi-class hardware did not exist. The
marketing department told us engineers that it was just a coincidence that the architectural 
codename and the brand name were both “Tesla”!
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All of the differences between Tesla-class hardware and Fermi-class 
hardware also apply to Kepler. 

Early Tesla-class hardware is subject to onerous performance penalties (up to 
6x) when running code that performs uncoalesced memory transactions. Later 
implementations of Tesla-class hardware, starting with the GeForce GTX 280, 
decreased the penalty for uncoalesced transactions to about 2x. Tesla-class 
hardware also has performance counters that enable developers to measure 
how many memory transactions are uncoalesced.

Tesla-class hardware only included a 24-bit integer multiplier, so developers 
must use intrinsics such as __mul24() for best performance. Full 32-bit multi-
plication (i.e., the native operator * in CUDA) is emulated with a small instruction 
sequence.

Tesla-class hardware initialized shared memory to zero, while Fermi-class 
hardware leaves it uninitialized. For applications using the driver API, one 
subtle side effect of this behavior change is that applications that used 
 cuParamSeti() to pass pointer parameters on 64-bit platforms do not work 
correctly on Fermi. Since parameters were passed in shared memory on Tesla 
class hardware, the uninitialized top half of the parameter would become the 
most significant 32 bits of the 64-bit pointer.

Double-precision support was introduced with SM 1.3 on the GT200, the sec-
ond-generation “win” chip of the Tesla family.15 At the time, the feature was 
considered speculative, so it was implemented in an area-efficient manner that 
could be added and subtracted from the hardware with whatever ratio of dou-
ble-to-single performance NVIDIA desired (in the case of GT200, this ratio was 
1:8). Fermi integrated double-precision support much more tightly and at higher 
performance.16 Finally, for graphics applications, Tesla-class hardware was the 
first DirectX 10-capable hardware.

Fermi-class hardware is much more capable than Tesla-class hardware. It 
supports 64-bit addressing; it added L1 and L2 cache hardware; it added a full 
32-bit integer multiply instruction and new instructions specifically to support 
the Scan primitive; it added surface load/store operations so CUDA kernels 
could read and write CUDA arrays without using the texture hardware; it was 

15.  In fact, the only difference between SM 1.2 and SM 1.3 is that SM 1.3 supports double precision.
16.  In SM 3.x, NVIDIA has decoupled double precision floating-point performance from the SM

version, so GK104 has poor double precision performance and GK110 has excellent double
precision performance.
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the first family of GPUs to feature multiple copy engines; and it improved sup-
port for C++ code, such as virtual functions.

Fermi-class hardware does not include the performance counters needed to 
track uncoalesced memory transactions. Also, because it does not include a 
24-bit multiplier, Fermi-class hardware may incur a small performance penalty 
when running code that uses the 24-bit multiplication intrinsics. On Fermi, using 
operator * for multiplication is the fast path.

For graphics applications, Fermi-class hardware can run DirectX 11. Table 2.1 
summarizes the differences between Tesla- and Fermi-class hardware.

Texturing Niceties
A subtle difference between Tesla- and Fermi-class hardware is that on Tesla-
class hardware, the instructions to perform texturing overwrite the input 
register vector with the output. On Fermi-class hardware, the input and output 
register vectors can be different. As a result, Tesla-class hardware may have 
extra instructions to move the texture coordinates into the input registers where 
they will be overwritten.

Table 2.1 Differences between Tesla- and Fermi-Class Hardware

CHARACTERISTIC TESLA FERMI

Penalty for uncoalesced memory transactions Up to 8x* Up to 10%**

24-bit IMUL ✔

32-bit IMUL ✔

Shared memory RAM ✔

L1 cache ✔

L2 cache ✔

Concurrent kernels ✔

Surface load/store ✔

* Up to 2x for Tesla2 hardware.
** Up to 2x if ECC is enabled.
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Another subtle difference between Tesla- and Fermi-class hardware is that 
when texturing from 1D CUDA arrays, Fermi-class hardware emulates this 
functionality using 2D textures with the second coordinate always set to 0.0. 
Since this emulation only costs an extra register and very few extra instructions, 
the difference will be noticed by very few applications.

2.6.2 STREAMING MULTIPROCESSORS 

The workhorse of the GPU is the streaming multiprocessor, or SM. As men-
tioned in the previous section, each TPC in SM 1.x hardware contains 2 or 3 SMs, 
and each GPC in SM 2.x hardware contains 4 SMs. The very first CUDA-capable 
GPU, the G80 or GeForce 8800 GTX, contained 8 TPCs; at 2 SMs per TPC, that is 
a total of 16 SMs. The next big CUDA-capable GPU, the GT200 or GeForce GTX 
280, increased the number of SMs/TPC to 3 and contained 10 TPCs, for a total of 
30 SMs.

The number of SMs in a CUDA GPU may range from 2 to several dozen, and each 
SM contains

• Execution units to perform 32-bit integer and single- and double-precision
floating-point arithmetic

• Special function units (SFUs) to compute single-precision approximations of
log/exp, sin/cos, and rcp/rsqrt

• A warp scheduler to coordinate instruction dispatch to the execution units

• A constant cache to broadcast data to the SMs

• Shared memory for data interchange between threads

• Dedicated hardware for texture mapping

Figure 2.29 shows a Tesla-class streaming multiprocessor (SM 1.x). It contains 
8 streaming processors that support 32-bit integer and single-precision float-
ing-point arithmetic. The first CUDA hardware did not support double precision 
at all, but starting with GT200, the SMs may include one double-precision float-
ing-point unit.17

17.  GT200 added a few instructions as well as double precision (such as shared memory atomics), 
so the GT200 instruction set without double precision is SM 1.2 and with double precision is 
SM 1.3.
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Figure 2.30 shows a Fermi-class streaming multiprocessor (SM 2.0). Unlike 
Tesla-class hardware, which implemented double-precision floating-point 
support separately, each Fermi-class SM has full double-precision support. The 
double-precision instructions execute slower than single precision, but since 
the ratio is more favorable than the 8:1 ratio of Tesla-class hardware, overall 
double-precision performance is much higher.18

Figure 2.31 shows an updated Fermi-class streaming multiprocessor (SM 2.1) 
that may be found in, for example, the GF104 chip. For higher performance, 
NVIDIA chose to increase the number of streaming processors per SM to 48. 
The SFU-to-SM ratio is increased from 1:8 to 1:6.

Figure 2.32 shows the most recent (as of this writing) streaming multiproces-
sor design, featured in the newest Kepler-class hardware from NVIDIA. This 
design is so different from previous generations that NVIDIA calls it “SMX” 
(next- generation SM). The number of cores is increased by a factor of 6 to 192, 

18.  For Kepler-class hardware, NVIDIA can tune floating-point performance to the target market
of the GPU. 
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Figure 2.29 Streaming multiprocessor 1.x.
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and each SMX is much larger than analogous SMs in previous-generation GPUs. 
The largest Fermi GPU, GF110, had about 3 billion transistors containing 16 SMs; 
the GK104 has 3.5 billion transistors and much higher performance but only 8 
SMX’s. For area savings and power efficiency reasons, NVIDIA greatly increased 
the resources per SM, with the conspicuous exception of the shared memory/L1 
cache. Like Fermi’s SMs, each Kepler SMX has 64K of cache that can be par-
titioned as 48K L1/16K shared or 48K shared/16K L1. The main implication for 
CUDA developers is that on Kepler, developers have even more incentive to keep 
data in registers (as opposed to L1 cache or shared memory) than on previous 
architectures.

 2.7 Further Reading
NVIDIA has white papers on their Web site that describe the Fermi and Kepler 
architectures in detail. The following white paper describes Fermi.

The Next Generation of NVIDIA GeForce GPU www.nvidia.com/object/GTX_400_
architecture.html

The following white paper describes the Kepler architecture and its implemen-
tation in the NVIDIA GeForce GTX 680 (GK104).

www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-
FINAL.pdf

NVIDIA engineers also have published several architectural papers that give 
more detailed descriptions of the various CUDA-capable GPUs.

Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified 
graphics and computing architecture. IEEE Micro 28 (2), March–April 2008, pp. 
39–55.

Wittenbrink, C., E. Kilgariff, and A. Prabhu. Fermi GF100 GPU architecture. IEEE 
Micro 31 (2), March–April 2011, pp. 50–59.

Wong et al. used CUDA to develop microbenchmarks and clarify some aspects 
of Tesla-class hardware architecture.

Wong, H., M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demysti-
fying GPU microarchitecture through microbenchmarking. 2010 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (IPSASS), 
March 28–30, 2010, pp. 235–246.
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Software Architecture

This chapter provides an overview of the CUDA software architecture. Chapter 2 
gave an overview of the hardware platform and how it interacts with CUDA, and 
we’ll start this chapter with a description of the software platforms and operat-
ing environments supported by CUDA. Next, each software abstraction in CUDA 
is briefly described, from devices and contexts to modules and kernels to mem-
ory. This section may refer back to Chapter 2 when describing how certain soft-
ware abstractions are supported by the hardware. Finally, we spend some time 
contrasting the CUDA runtime and driver API and examining how CUDA source 
code is translated into microcode that operates on the GPU. Please remember 
that this chapter is just an overview. Most of the topics covered are described in 
more detail in later chapters.

 3.1 Software Layers
Figure 3.1 shows the different layers of software in a CUDA application, from the 
application itself to the CUDA driver that operates the GPU hardware. All of the 
software except the kernel mode driver operate in the target operating system’s 
unprivileged user mode. Under the security models of modern multitasking 
operating systems, user mode is “untrusted,” and the hardware and operating 
system software must take measures to strictly partition applications from one 
another. In the case of CUDA, that means host and device memory allocated 
by one CUDA program cannot be accessed by other CUDA programs. The only 
exceptions happen when these programs specifically request memory sharing, 
which must be provided by the kernel mode driver.
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CUDA libraries, such as cuBLAS, are built on top of the CUDA runtime or driver 
API. The CUDA runtime is the library targeted by CUDA’s integrated C++/GPU 
toolchain. When the nvcc compiler splits .cu files into host and device portions, 
the host portion contains automatically generated calls to the CUDA runtime 
to facilitate operations such as the kernel launches invoked by nvcc’s special 
triple-angle bracket <<< >>> syntax.

CUDA Application

CUDA Runtime (CUDART)

Driver API (CUDA)

CUDA Driver (User Mode)

CUDA Driver (Kernel Mode)

CUDA Libraries (e.g., cuFFT, cuBLAS)

e.g., cublasSGEMM()

e.g., cudaMalloc()

User/Kernel boundary

e.g., cuCtxCreate()

(internal interfaces)

Figure 3.1 Software layers in CUDA.
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The CUDA driver API, exported directly by CUDA’s user mode driver, is the 
lowest-level API available to CUDA apps. The driver API calls into the user 
mode driver, which may in turn call the kernel mode driver to perform opera-
tions such as memory allocation. Functions in the driver API and CUDA runtime 
generally start with cu*() and cuda*(), respectively. Many functions, such as 
 cudaEventElapsedTime(), are essentially identical, with the only difference 
being in the prefix.

3.1.1 CUDA RUNTIME AND DRIVER

The CUDA runtime (often abbreviated CUDART) is the library used by the lan-
guage integration features of CUDA. Each version of the CUDA toolchain has its 
own specific version of the CUDA runtime, and programs built with that tool-
chain will automatically link against the corresponding version of the runtime. A 
program will not run correctly unless the correct version of CUDART is available 
in the path.

The CUDA driver is designed to be backward compatible, supporting all pro-
grams written against its version of CUDA, or older ones. It exports a low-level 
“driver API” (in cuda.h) that enables developers to closely manage resources 
and the timing of initialization. The driver version may be queried by calling 
cuDriverGetVersion().

CUresult CUDAAPI cuDriverGetVersion(int *driverVersion);

This function passes back a decimal value that gives the version of CUDA sup-
ported by the driver—for example, 3010 for CUDA 3.1 and 5000 for CUDA 5.0.

Table 3.1 summarizes the features that correspond to the version number 
passed back by cuDriverGetVersion(). For CUDA runtime applications, this 
information is given by the major and minor members of the  cudaDeviceProp 
structure as described in Section 3.2.2. 

The CUDA runtime requires that the installed driver have a version greater than 
or equal to the version of CUDA supported by the runtime. If the driver version is 
older than the runtime version, the CUDA application will fail to initialize with the 
error cudaErrorInsufficientDriver (35). CUDA 5.0 introduced the device 
runtime, a subset of the CUDA runtime that can be invoked from CUDA kernels. 
A detailed description of the device runtime is given in Chapter 7.
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3.1.2 DRIVER MODELS

Other than Windows Vista and subsequent releases of Windows, all of the 
operating systems that CUDA runs—Linux, MacOS, and Windows XP—access 
the hardware with user mode client drivers. These drivers sidestep the require-
ment, common to all modern operating systems, that hardware resources be 
manipulated by kernel code. Modern hardware such as GPUs can finesse that 
requirement by mapping certain hardware registers—such as the hardware 
register used to submit work to the hardware—into user mode. Since user mode 
code is not trusted by the operating system, the hardware must contain protec-
tions against rogue writes to the user mode hardware registers. The goal is to 
prevent user mode code from prompting the hardware to use its direct memory 

Table 3.1. CUDA Driver Features

CUDA 

VERSION DRIVER FEATURES INTRODUCED

1.0 CUDA

1.1 Streams and events; concurrent 1D memcpy and kernel execution

2.0 3D texturing

2.1 Improved OpenGL interoperability

2.2 Portable, mapped and write-combined pinned memory; texturing from pitch memory

3.0 Fermi; multiple copy engines; concurrent kernel execution

3.1 GPUDirect

3.2 64-bit addressing; malloc()/free() in CUDA kernels

4.0 Unified virtual addressing; improved threading support; host memory registration; GPUDirect 
2.0 (peer-to-peer memcpy and mapping); layered textures

4.1 Cubemap textures; interprocess peer-to-peer mappings

4.2 Kepler

5.0 Dynamic parallelism; GPUDirect RDMA
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access (DMA) facilities to read or write memory that it should not (such as the 
operating system’s kernel code!). 

Hardware designers protect against memory corruption by introducing a level 
of indirection into the command stream available to user mode software so 
DMA operations can only be initiated on memory that previously was validated 
and mapped by kernel code; in turn, driver developers must carefully validate 
their kernel code to ensure that it only gives access to memory that should be 
made available. The end result is a driver that can operate at peak efficiency by 
submitting work to the hardware without having to incur the expense of a kernel 
transition.

Many operations, such as memory allocation, still require kernel mode transi-
tions because editing the GPU’s page tables can only be done in kernel mode. In 
this case, the user mode driver may take steps to reduce the number of kernel 
mode transitions—for example, the CUDA memory allocator tries to satisfy 
memory allocation requests out of a pool.

Unified Virtual Addressing
Unified virtual addressing, described in detail in Section 2.4.5, is available on 
64-bit Linux, 64-bit XPDDM, and MacOS. On these platforms, it is made available 
transparently. As of this writing, UVA is not available on WDDM.

Windows Display Driver Model
For Windows Vista, Microsoft introduced a new desktop presentation model in 
which the screen output was composed in a back buffer and page-flipped, like a 
video game. The new “Windows Desktop Manager” (WDM) made more extensive 
use of GPUs than Windows had previously, so Microsoft decided it would be best 
to revise the GPU driver model in conjunction with the presentation model. The 
resulting Windows Display Driver Model (WDDM) is now the default driver model 
on Windows Vista and subsequent versions. The term XPDDM was created to 
refer to the driver model used for GPUs on previous versions of Windows.1

As far as CUDA is concerned, these are the two major changes made by WDDM. 

1. WDDM does not permit hardware registers to be mapped into user mode.
Hardware commands—even commands to kick off DMA operations—must be

1.  Tesla boards (CUDA-capable boards that do not have a display output) can use XPDDM on Win-
dows, called the Tesla Compute Cluster (TCC) driver, and can be toggled with the nvidia-smi
tool.
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invoked by kernel code. The user�kernel transition is too expensive for the 
user mode driver to submit each command as it arrives, so instead the user 
mode driver buffers commands for later submission.

2. Since WDDM was built to enable many applications to use a GPU concur-
rently, and GPUs do not support demand paging, WDDM includes facilities to
emulate paging on a “memory object” basis. For graphics applications, mem-
ory objects may be render targets, Z buffers, or textures; for CUDA, memory
objects include global memory and CUDA arrays. Since the driver must set
up access to CUDA arrays before each kernel invocation, CUDA arrays can
be swapped by WDDM. For global memory, which resides in a linear address
space (where pointers can be stored), every memory object for a given CUDA
context must be resident in order for a CUDA kernel to launch.

The main effect of WDDM due to number 1 above is that work requested of 
CUDA, such as kernel launches or asynchronous memcpy operations, generally 
is not submitted to the hardware immediately.

The accepted idiom to force pending work to be submitted is to query the NULL 
stream: cudaStreamQuery(0) or cuStreamQuery(NULL). If there is no 
pending work, these calls will return quickly. If any work is pending, it will be 
submitted, and since the call is asynchronous, execution may be returned to the 
caller before the hardware has finished processing. On non-WDDM platforms, 
querying the NULL stream is always fast.

The main effect of WDDM due to number 2 above is that CUDA’s control of mem-
ory allocation is much less concrete. On user mode client drivers, successful 
memory allocations mean that the memory has been allocated and is no longer 
available to any other operating system client (such as a game or other CUDA 
application that may be running). On WDDM, if there are applications competing 
for time on the same GPU, Windows can and will swap memory objects out in 
order to enable each application to run. The Windows operating system tries to 
make this as efficient as possible, but as with all paging, having it never happen 
is much faster than having it ever happen.

Timeout Detection and Recovery 

Because Windows uses the GPU to interact with users, it is important that 
compute applications not take inordinate amounts of GPU time. Under WDDM, 
Windows enforces a timeout (default of 2 seconds) that, if it should elapse, will 
cause a dialog box that says “Display driver stopped responding and has recov-
ered,” and the display driver is restarted. If this happens, all work in the CUDA 
context is lost. See http://bit.ly/16mG0dX.
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Tesla Compute Cluster Driver

For compute applications that do not need WDDM, NVIDIA provides the Tesla 
Compute Cluster (TCC) driver, available only for Tesla-class boards. The TCC 
driver is a user mode client driver, so it does not require a kernel thunk to sub-
mit work to the hardware. The TCC driver may be enabled and disabled using 
the nvidia-smi tool.

3.1.3 NVCC, PTX, AND MICROCODE

nvcc is the compiler driver used by CUDA developers to turn source code into 
functional CUDA applications. It can perform many functions, from as complex 
as compiling, linking, and executing a sample program in one command (a 
usage encouraged by many of the sample programs in this book) to a simple tar-
geted compilation of a GPU-only .cu file.

Figure 3.2 shows the two recommended workflows for using nvcc for CUDA 
runtime and driver API applications, respectively. For applications larger than 
the most trivial size, nvcc is best used strictly for purposes of compiling CUDA 
code and wrapping CUDA functionality into code that is callable from other 
tools. This is due to nvcc’s limitations.

• nvcc only works with a specific set of compilers. Many CUDA developers
never notice because their compiler of choice happens to be in the set of
supported compilers. But in production software development, the amount of
CUDA code tends to be minuscule compared to the am ount of other code, and
the presence or absence of CUDA support may not be the dominant factor in
deciding which compiler to use.

• nvcc makes changes to the compile environment that may not be compatible
with the build environment for the bulk of the application.

• nvcc “pollutes” the namespace with nonstandard built-in types (e.g., int2)
and intrinsic names (e.g., __popc()). Only in recent versions of CUDA have
the intrinsics symbols become optional and can be used by including the
appropriate sm_*_intrinsics.h header.

For CUDA runtime applications, nvcc embeds GPU code into string literals in 
the output executable. If the --fatbin option is specified, the executable will 
automatically load suitable microcode for the target GPU or, if no microcode is 
available, have the driver automatically compile the PTX into microcode.
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nvcc and PTX
PTX (“Parallel Thread eXecution”) is the intermediate representation of com-
piled GPU code that can be compiled into native GPU microcode. It is the mecha-
nism that enables CUDA applications to be “future-proof” against instruction set 
innovations by NVIDIA—as long as the PTX for a given CUDA kernel is available, 
the CUDA driver can translate it into microcode for whichever GPU the applica-
tion happens to be running on (even if the GPU was not available when the code 
was written).

PTX can be compiled into GPU microcode both “offline” and “online.” Offline 
compilation refers to building software that will be executed by some computer 
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GPU Code
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Host Executable 
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Figure 3.2 nvcc workflows.
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in the future. For example, Figure 3.2 highlights the offline portions of the CUDA 
compilation process. Online compilation, otherwise known as “just-in-time” 
compilation, refers to compiling intermediate code (such as PTX) for the com-
puter running the application for immediate execution.

nvcc can compile PTX offline by invoking the PTX assembler ptxas, which 
compiles PTX into the native microcode for a specific version of GPU. The result-
ing microcode is emitted into a CUDA binary called a “cubin” (pronounced like 
“Cuban”). Cubin files can be disassembled with cuobjdump --dump-sass; 
this will dump the SASS mnemonics for the GPU-specific microcode.2 

PTX also can be compiled online (JITted) by the CUDA driver. Online compilation 
happens automatically when running CUDART applications that were built with 
the --fatbin option (which is the default). .cubin and PTX representations 
of every kernel are included in the executable, and if it is run on hardware that 
doesn’t support any of the .cubin representations, the driver compiles the PTX 
version. The driver caches these compiled kernels on disk, since compiling PTX 
can be time consuming.

Finally, PTX can be generated at runtime and compiled explicitly by the driver 
by calling cuModuleLoadEx(). The driver API does not automate any of the 
embedding or loading of GPU microcode. Both .cubin and .ptx files can be 
given to cuModuleLoadEx(); if a .cubin is not suitable for the target GPU 
architecture, an error will be returned. A reasonable strategy for driver API 
developers is to compile and embed PTX, and they should always JIT-compile 
it onto the GPU with cuModuleLoadEx(), relying on the driver to cache the 
compiled microcode.

3.2 Devices and Initialization
Devices correspond to physical GPUs. When CUDA is initialized (either explicitly 
by calling the driver API’s cuInit() function or implicitly by calling a CUDA 
runtime function), the CUDA driver enumerates the available devices and cre-
ates a global data structure that contains their names and immutable capabili-
ties such as the amount of device memory and maximum clock rate.

For some platforms, NVIDIA includes a tool that can set policies with respect 
to specific devices. The nvidia-smi tool sets the policy with respect to a 

2.  Examining the SASS code is a key strategy to help drive optimization.
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given GPU. For example, nvidia-smi can be used to enable and disable ECC 
(error correction) on a given GPU. nvidia-smi also can be used to control the 
number of CUDA contexts that can be created on a given device. These are the 
possible modes. 

• Default: Multiple CUDA contexts may be created on the device.

• “Exclusive” mode: One CUDA context may be created on the device.

• “Prohibited”: No CUDA context may be created on the device.

If a device is enumerated but you are not able to create a context on that device, 
it is likely the device is in “prohibited” mode or in “exclusive” mode and another 
CUDA context already has been created on that device.

3.2.1 DEVICE COUNT

The application can discover how many CUDA devices are available by calling 
cuDeviceGetCount() or cudaGetDeviceCount(). Devices can then be 
referenced by an index in the range [0..DeviceCount-1]. The driver API requires 
applications to call cuDeviceGet() to map the device index to a device handle 
(CUdevice). 

3.2.2 DEVICE ATTRIBUTES

Driver API applications can query the name of a device by calling cuDevice-
GetName() and query the amount of global memory by calling cuDevice-
TotalMem(). The major and minor compute capabilities of the device (i.e., the 
SM version, such as 2.0 for the first Fermi-capable GPUs) can be queried by 
calling cuDeviceComputeCapability().

CUDA runtime applications can call cudaGetDeviceProperties(), which 
will pass back a structure containing the name and properties of the device. 
Table 3.2 gives the descriptions of the members of cudaDeviceProp, the struc-
ture passed back by cudaGetDeviceProperties().

The driver API’s function for querying device attributes,  cuDeviceGetAttribute(), 
can pass back one attribute at a time, depending on the CUdevice_ attribute 
parameter. In CUDA 5.0, the CUDA runtime added the same function in the form 
of cudaDeviceGetAttribute(), presumably because the structure-based 
interface was too cumbersome to run on the device.
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Table 3.2 cudaDeviceProp Members

CUDADEVICEPROP MEMBER DESCRIPTION

char name[256]; ASCII string identifying device

size_t totalGlobalMem; Global memory available on device in bytes

size_t sharedMemPerBlock; Shared memory available per block in bytes

int regsPerBlock; 32-bit registers available per block

int warpSize; Warp size in threads

size_t memPitch; Maximum pitch in bytes allowed by memory copies

int maxThreadsPerBlock; Maximum number of threads per block

int maxThreadsDim[3]; Maximum size of each dimension of a block

int maxGridSize[3]; Maximum size of each dimension of a grid

int clockRate; Clock frequency in kilohertz

size_t totalConstMem; Constant memory available on device in bytes

int major; Major compute capability

int minor; Minor compute capability

size_t textureAlignment; Alignment requirement for textures

size_t texturePitchAlignment; Pitch alignment requirement for texture references bound to 
pitched memory

int deviceOverlap; Device can concurrently copy memory and execute a kernel. 
Deprecated. Use asyncEngineCount instead.

int multiProcessorCount; Number of multiprocessors on device

int kernelExecTimeoutEnabled; Specified whether there is a runtime limit on kernels

int integrated; Device is integrated as opposed to discrete

continues
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CUDADEVICEPROP MEMBER DESCRIPTION

int canMapHostMemory; Device can map host memory with cudaHostAlloc/
cudaHostGetDevicePointer

int computeMode; Compute mode (see ::cudaComputeMode)

int maxTexture1D; Maximum 1D texture size

int maxTexture1DMipmap; Maximum 1D mipmapped texture size

int maxTexture1DLinear; Maximum size for 1D textures bound to linear memory

int maxTexture2D[2]; Maximum 2D texture dimensions

int maxTexture2DMipmap[2]; Maximum 2D mipmapped texture dimensions

int maxTexture2DLinear[3]; Maximum dimensions (width)

int maxTexture2DGather[2]; Maximum 2D texture dimensions if texture gather operations 
have to be performed

int maxTexture3D[3]; Maximum 3D texture dimensions

int maxTextureCubemap; Maximum Cubemap texture dimensions

int maxTexture1DLayered[2]; Maximum 1D layered texture dimensions

int maxTexture2DLayered[3]; Maximum 2D layered texture dimensions

int maxTextureCubemapLayered[2]; Maximum Cubemap layered texture dimensions

int maxSurface1D; Maximum 1D surface size

int maxSurface2D[2]; Maximum 2D surface dimensions

int maxSurface3D[3]; Maximum 3D surface dimensions

int maxSurface1DLayered[2]; Maximum 1D layered surface dimensions

int maxSurface2DLayered[3]; Maximum 2D layered surface dimensions

Table 3.2 cudaDeviceProp Members (Continued )
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  3.2 DEVICES AND INITIALIZATION 

3.2.3 WHEN CUDA IS NOT PRESENT

The CUDA runtime can run on machines that cannot run CUDA or that do not 
have CUDA installed; if cudaGetDeviceCount() returns cudaSuccess and a 
nonzero device count, CUDA is available.

When using the driver API, executables that link directly against nvcuda.
dll (Windows) or libcuda.so (Linux) will not load unless the driver binary 

CUDADEVICEPROP MEMBER DESCRIPTION

int maxSurfaceCubemap; Maximum Cubemap surface dimensions

int maxSurfaceCubemapLayered[2]; Maximum Cubemap layered surface dimensions

size_t surfaceAlignment; Alignment requirements for surfaces

int concurrentKernels; Device can possibly execute multiple kernels concurrently

int ECCEnabled; Device has ECC support enabled

int pciBusID; PCI bus ID of the device

int pciDeviceID; PCI device ID of the device

int pciDomainID; PCI domain ID of the device

int tccDriver; 1 if device is a Tesla device using TCC driver

int asyncEngineCount; Number of asynchronous engines

int unifiedAddressing; Device shares a unified address space with the host

int memoryClockRate; Peak memory clock frequency in kilohertz

int memoryBusWidth; Global memory bus width in bits

int l2CacheSize; Size of L2 cache in bytes

int maxThreadsPerMultiProcessor; Maximum resident threads per multiprocessor

Table 3.2 cudaDeviceProp Members (Continued )
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is available. For driver API applications that require CUDA, trying to launch an 
application that was linked directly against the driver will result in an error such 
as in Figure 3.3. 

For those applications that must run with or without CUDA, the CUDA SDK 
provides a set of header files and a C source file that wrap the driver API such 
that the application can check for CUDA without having the operating system 
signal an exception. These files, in the dynlink subdirectory <SDKRoot>/C/
common/inc/dynlink, can be included in lieu of the core CUDA files. They 
interpose an intermediate set of functions that lazily load the CUDA libraries if 
CUDA is available. 

As an example, let’s compare two programs that use the driver API to initialize 
CUDA and write the name of each device in the system. Listing 3.1 gives init_
hardcoded.cpp, a file that can be compiled against the CUDA SDK with the 
following command line.

nvcc –oinit_hardcoded –I ../chLib init_hardcoded.cpp -lcuda

Using nvcc to compile a C++ file that doesn’t include any GPU code is just a 
convenient way to pick up the CUDA headers. The –oinit_hardcoded at the 
beginning specifies the root name of the output executable. The -lcuda at the 
end causes nvcc to link against the driver API’s library; without it, the build will 
fail with link errors. This program hard-links against the CUDA driver API, so it 
will fail on systems that don’t have CUDA installed.

Listing 3.1 Initialization (hard-coded).
/*
* init_hardcoded.cpp
 *
 */

Figure 3.3 Error when CUDA is not present (Windows).
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  3.2 DEVICES AND INITIALIZATION 

#include <stdio.h>

#include <cuda.h>
#include <chError.h>

int
main()
{
    CUresult status;
    int numDevices;

    CUDA_CHECK( cuInit( 0 ) );
    CUDA_CHECK( cuDeviceGetCount( &numDevices ) );

    printf( "%d devices detected:\n", numDevices );
    for ( int i = 0; i < numDevices; i++ ) {

char szName[256];
CUdevice device;
CUDA_CHECK( cuDeviceGet( &device, i ) );
CUDA_CHECK( cuDeviceGetName( szName, 255, device ) );
printf( "\t%s\n", szName );

    }

    return 0;
Error:
    fprintf( stderr, "CUDA failure code: 0x%x\n", status );
    return 1;

}

Listing 3.2 gives a program that will work on systems without CUDA. As you can 
see, the source code is identical except for a few lines of code.

#include <cuda.h>

is replaced by 

#include "cuda_drvapi_dynlink.c"
#include "dynlink/cuda_drvapi_dynlink.h"

and the cuInit() call has been changed to specify a CUDA version.

 CUDA_CHECK( cuInit(0) );

is replaced by

 CUDA_CHECK( cuInit( 0, 4010 ) );

Here, passing 4010 as the second parameter requests CUDA 4.1 , and the func-
tion will fail if the system doesn’t include that level of functionality.
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Note that you could compile and link cuda_drvapi_dynlink.c into the 
application separately instead of #include’ing it into a single source file. The 
header file and C file work together to interpose a set of wrapper functions onto 
the driver API. The header uses the preprocessor to rename the driver API 
functions to wrapper functions declared in cuda_drvapi_dynlink.h (e.g., 
calls to cuCtxCreate()become calls to tcuCtxCreate()). On CUDA-capable 
systems, the driver DLL is loaded dynamically, and the wrapper functions call 
pointers-to-function that are obtained from the driver DLL during initialization. 
On non-CUDA-capable systems, or if the driver does not support the request 
CUDA version, the initialization function returns an error.

Listing 3.2 Initialization (dynlink).
/*
* init_dynlink.cpp
 *
 */

#include <stdio.h>

#include "dynlink/cuda_drvapi_dynlink.h"
#include <chError.h>

int
main()
{
    CUresult status;
    int numDevices;

    CUDA_CHECK( cuInit( 0, 4010 ) );
    CUDA_CHECK( cuDeviceGetCount( &numDevices ) );

    printf( "%d devices detected:\n", numDevices );
    for ( int i = 0; i < numDevices; i++ ) {

char szName[256];
CUdevice device;
CUDA_CHECK( cuDeviceGet( &device, i ) );
CUDA_CHECK( cuDeviceGetName( szName, 255, device ) );
printf( "\t%s\n", szName );

    }

    return 0;
Error:
    fprintf( stderr, "CUDA failure code: 0x%x\n", status );
    return 1;

}
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3.3 CONTEXTS 

CUDA-Only DLLs
For Windows developers, another way to build CUDA applications that can run 
on non-CUDA-capable systems is as follows.

1. Move the CUDA-specific code into a DLL.

2. Call LoadLibrary() explicitly to load the DLL.

3. Enclose the LoadLibrary() call in a __try/__except clause to catch the
exception if CUDA is not present.

 3.3 Contexts
Contexts are analogous to processes on CPUs. With few exceptions, they are 
containers that manage the lifetimes of all other objects in CUDA, including the 
following.

• All memory allocations (including linear device memory, host memory, and
CUDA arrays)

• Modules

• CUDA streams

• CUDA events

• Texture and surface references

• Device memory for kernels that use local memory

• Internal resources for debugging, profiling, and synchronization

• The pinned staging buffers used for pageable memcpy

The CUDA runtime does not provide direct access to CUDA contexts. It per-
forms context creation through deferred initialization. Every CUDART library call 
or kernel invocation checks whether a CUDA context is current and, if neces-
sary, creates a CUDA context (using the state previously set by calls such as 
 cudaSetDevice(), cudaSetDeviceFlags(), cudaGLSetGLDevice(), etc.).

Many applications prefer to explicitly control the timing of this deferred initial-
ization. To force CUDART to initialize without any other side effects, call

cudaFree(0);
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CUDA runtime applications can access the current-context stack (described 
below) via the driver API.

For functions that specify per-context state in the driver API, the CUDA runtime 
conflates contexts and devices. Instead of cuCtxSynchronize(), the CUDA 
runtime has cudaDeviceSynchronize(); instead of cuCtxSetCacheConfig(), 
the CUDA runtime has cudaDeviceSetCacheConfig().

Current Context

Instead of the current-context stack, the CUDA runtime provides the 
 cudaSet Device() function, which sets the current context for the calling 
thread. A device can be current to more than one CPU thread at a time.3

3.3.1 LIFETIME AND SCOPING

All of the resources allocated in association with a CUDA context are destroyed 
when the context is destroyed. With few exceptions, the resources created for a 
given CUDA context may not be used with any other CUDA context. This restric-
tion applies not only to memory but also to objects such as CUDA streams and 
CUDA events.

3.3.2 PREALLOCATION OF RESOURCES

CUDA tries to avoid “lazy allocation,” where resources are allocated as needed 
to avoid failing operations for lack of resources. For example, pageable memory 
copies cannot fail with an out-of-memory condition because the pinned staging 
buffers needed to perform pageable memory copies are allocated at context 
creation time. If CUDA is not able to allocate these buffers, the context creation 
fails.

There are some isolated cases where CUDA does not preallocate all the 
resources that it might need for a given operation. The amount of memory 
needed to hold local memory for a kernel launch can be prohibitive, so CUDA 
does not preallocate the maximum theoretical amount needed. As a result, a 
kernel launch may fail if it needs more local memory than the default allocated 
by CUDA for the context.

3.  Early versions of CUDA prohibited contexts from being current to more than one thread
at a time because the driver was not thread-safe. Now the driver implements the 
needed synchronization—even when applications call synchronous functions such as 
cudaDeviceSynchronize().
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3.3 CONTEXTS 

3.3.3 ADDRESS SPACE

Besides objects that are automatically destroyed (“cleaned up”) when the con-
text is destroyed, the key abstraction embodied in a context is its address space: 
the private set of virtual memory addresses that it can use to allocate linear 
device memory or to map pinned host memory. These addresses are unique per 
context. The same address for different contexts may or may not be valid and 
certainly will not resolve to the same memory location unless special provisions 
are made. The address space of a CUDA context is separate and distinct from 
the CPU address space used by CUDA host code. In fact, unlike shared-memory 
multi-CPU systems, CUDA contexts on multi-GPU configurations do not share 
an address space. When UVA (unified virtual addressing) is in effect, the CPU 
and GPU(s) share the same address space, in that any given allocation has a 
unique address within the process, but the CPUs and GPUs can only read or 
write each other’s memory under special circumstances, such as mapped 
pinned memory (see Section 5.1.3) or peer-to-peer memory (see Section 9.2.2). 

3.3.4 CURRENT CONTEXT STACK

Most CUDA entry points do not take a context parameter. Instead, they operate 
on the “current context,” which is stored in a thread-local storage (TLS) handle 
in the CPU thread. In the driver API, each CPU thread has a stack of current 
contexts; creating a context pushes the new context onto the stack.

The current-context stack has three main applications. 

• Single-threaded applications can drive multiple GPU contexts.

• Libraries can create and manage their own CUDA contexts without interfering
with their callers’ CUDA contexts.

• Libraries can be agnostic with respect to which CPU thread calls into the
CUDA-aware library.

The original motivation for the current-context stack to CUDA was to enable 
a single-threaded CUDA application to drive multiple CUDA contexts. After 
creating and initializing each CUDA context, the application can pop it off the 
 current-context stack, making it a “floating” context. Since only one CUDA 
context at a time may be current to a CPU thread, a single-threaded CUDA 
application drives multiple contexts by pushing and popping the contexts in turn, 
keeping all but one of the contexts “floating” at any given time.
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On most driver architectures, pushing and popping a CUDA context is inexpen-
sive enough that a single-threaded application can keep multiple GPUs busy. 
On WDDM (Windows Display Driver Model) drivers, which run only on Windows 
Vista and later, popping the current context is only fast if there are no GPU com-
mands pending. If there are commands pending, the driver will incur a kernel 
thunk to submit the commands before popping the CUDA context.4

Another benefit of the current-context stack is the ability to drive a given CUDA 
context from different CPU threads. Applications using the driver API can 
“migrate” a CUDA context to other CPU threads by popping the context with 
cuCtxPopCurrent(), then calling cuCtxPushCurrent() from another 
thread. Libraries can use this functionality to create CUDA contexts without the 
knowledge or involvement of their callers. For example, a CUDA-aware plugin 
library could create its own CUDA context on initialization, then pop it and keep it 
floating except when called by the main application. The floating context enables 
the library to be completely agnostic about which CPU thread is used to call into 
it. When used in this way, the containment enforced by CUDA contexts is a mixed 
blessing. On the one hand, the floating context’s memory cannot be polluted by 
spurious writes by third-party CUDA kernels, but on the other hand, the library 
can only operate on CUDA resources that it allocated. 

Attaching and Detaching Contexts
Until CUDA 4.0, every CUDA context had a “usage count” set to 1 when the con-
text was created. The functions cuCtxAttach() and cuCtxDetach()incre-
mented and decremented the usage count, respectively.5 The usage count was 
intended to enable libraries to “attach” to CUDA contexts created by the applica-
tion into which the library was linked. This way, the application and its libraries 
could interoperate via a CUDA context that was created by the application.6

If a CUDA context is already current when CUDART is first invoked, it attaches 
the CUDA context instead of creating a new one. The CUDA runtime did not 
provide access to the usage count of a context. As of CUDA 4.0, the usage count 
is deprecated, and cuCtxAttach()/cuCtxDetach() do not have any side 
effects.

4.  This expense isn’t unique to the driver API or the current-context stack. Calling cudaSet-
Device() to switch devices when commands are pending also will cause a kernel thunk on
WDDM.

5.  Until the cuCtxDestroy() function was added in CUDA 2.2, CUDA contexts were destroyed by
calling cuCtxDetach(). 

6.  In retrospect, it would have been wiser for NVIDIA to leave reference-counting to higher-level
software layers than the driver API.
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  3.4 MODULES AND FUNCTIONS 

3.3.5 CONTEXT STATE

The cuCtxSetLimit() and cuCtxGetLimit() functions configure limits 
related to CPU-like functionality: in-kernel malloc() and printf(). The 
cuCtxSetCacheConfig() specifies the preferred cache configuration to use 
when launching kernels (whether to allocate 16K or 48K to shared memory 
and L1 cache). This is a hint, since any kernel that uses more than 16K of shared 
memory needs the configuration setting with 48K of shared memory. Additionally, 
the context state can be overridden by a kernel-specific state (cuFuncSetCache-
Config()). These states have context scope (in other words, they are not specified 
for each kernel launch) because they are expensive to change.

3.4 Modules and Functions
Modules are collections of code and related data that are loaded together, anal-
ogous to DLLs on Windows or DSOs on Linux. Like CUDA contexts, the CUDA 
runtime does not explicitly support modules; they are available only in the CUDA 
driver API.7

CUDA does not have an intermediate structure analogous to object files that can 
be synthesized into a CUDA module. Instead, nvcc directly emits files that can 
be loaded as CUDA modules. 

• .cubin files that target specific SM versions

• .ptx files that can be compiled onto the hardware by the driver

This data needn’t be sent to end users in the form of these files. CUDA includes 
APIs to load modules as NULL-terminated strings that can be embedded in exe-
cutable resources or elsewhere.8

Once a CUDA module is loaded, the application can query for the resources 
contained in it. 

• Globals

• Functions (kernels)

• Texture references

7.  If CUDA adds the oft-requested ability to JIT from source code (as OpenCL can), NVIDIA may see 
fit to expose modules to the CUDA runtime.

8.  The cuModuleLoadDataEx() function is described in detail in Section 4.2.
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One important note: All of these resources are created when the module is 
loaded, so the query functions cannot fail due to a lack of resources.

Like contexts, the CUDA runtime hides the existence and management of 
modules. All modules are loaded at the same time CUDART is initialized. For 
applications with large amounts of GPU code, the ability to explicitly manage 
residency by loading and unloading modules is one of the principal reasons to 
use the driver API instead of the CUDA runtime.

Modules are built by invoking nvcc, which can emit different types of modules, 
depending on the command line parameters, as summarized in Table 3.3. Since 
cubins have been compiled to a specific GPU architecture, they do not have to 
be compiled “just in time” and are faster to load. But they are neither backward 
compatible (e.g., cubins compiled onto SM 2.x cannot run on SM 1.x architec-
tures) nor forward compatible (e.g., cubins compiled onto SM 2.x architectures 
will not run on SM 3.x architectures). As a result, only applications with a priori 
knowledge of their target GPU architectures (and thus cubin versions) can use 
cubins without also embedding PTX versions of the same modules to use as 
backup.

PTX is the intermediate language used as a source for the driver’s just-in-time 
compilation. Because this compilation can take a significant amount of time, 
the driver saves compiled modules and reuses them for a given PTX module, 
provided the hardware and driver have not changed. If the driver or hardware 
changes, all PTX modules must be recompiled.

With fatbins, the CUDA runtime automates the process of using a suitable cubin, 
if available, and compiling PTX otherwise. The different versions are embedded 
as strings in the host C++ code emitted by nvcc. Applications using the driver 

Table 3.3 nvcc Module Types

NVCC PARAMETER DESCRIPTION

-cubin Compiled onto a specific GPU architecture

-ptx Intermediate representation used as a source for the driver’s just-
in-time compilation

-fatbin Combination of cubin and PTX. Loads the suitable cubin if available; 
otherwise, compiles PTX onto the GPU. CUDART only
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3.5 KERNELS (FUNCTIONS) 

API have the advantage of finer-grained control over modules. For example, 
they can be embedded as resources in the executable, encrypted, or generated 
at runtime, but the process of using cubins if available and compiling PTX other-
wise must be implemented explicitly.

Once a module is loaded, the application can query for the resources contained 
in it: globals, functions (kernels), and texture references. One important note: 
All of these resources are created when the module is loaded, so the query 
functions (summarized in Table 3.4) cannot fail due to a lack of resources.

 3.5 Kernels (Functions)
Kernels are highlighted by the __global__ keyword in .cu files. When using 
the CUDA runtime, they can be invoked in-line with the triple- angle-bracket 
<<< >>> syntax. Chapter 7 gives a detailed description of how kernels can be 
invoked and how they execute on the GPU.

The GPU executable code of the module comes in the form of kernels that are 
invoked with the language integration features of the CUDA runtime (<<< >>> 
syntax) or the cuLaunchKernel() function in the driver API. At the time of this 
writing, CUDA does not do any dynamic residency management of the execut-
able code in CUDA modules. When a module is loaded, all of the kernels are 
loaded into device memory.

Once a module is loaded, kernels may be queried with  cuModuleGetFunction(); 
the kernel’s attributes can be queried with cuFuncGetAttribute(); and 
the kernel may be launched with cuLaunchKernel().  cuLaunchKernel() 

Table 3.4 Module Query Functions

FUNCTION DESCRIPTION

cuModuleGetGlobal() Passes back the pointer and size of a symbol in a module. 

cuModuleGetTexRef() Passes back a texture reference declared in a module

cuModuleGetFunction() Passes back a kernel declared in a module



SOFTWARE ARCHITECTURE

74

rendered a whole slew of API entry points obsolete: Functions such as 
cuFuncSetBlockShape() specified the block size to use the next time a given 
kernel was launched; functions such as cuParamSetv() specified the param-
eters to pass the next time a given kernel was launched; and cuLaunch(), 
cuLaunchGrid(), and cuLaunchGridAsync() launched a kernel using the 
previously set state. These APIs were inefficient because it took so many calls 
to set up a kernel launch and because parameters such as block size are best 
specified atomically with the request to launch the kernel.

The cuFuncGetAttribute() function may be used to query specific attributes 
of a function, such as

• The maximum number of threads per block

• The amount of statically allocated shared memory

• The size of user-allocated constant memory

• The amount of local memory used by each function

• The number of registers used by each thread of the function

• The virtual (PTX) and binary architecture versions for which the function was
compiled

When using the driver API, it is usually a good idea to use extern "C" to inhibit 
the default name-mangling behavior of C++. Otherwise, you have to specify the 
mangled name to cuModuleGetFunction().

CUDA Runtime
As executables that were built with the CUDA runtime are loaded, they create 
global data structures in host memory that describe the CUDA resources to 
be allocated when a CUDA device is created. Once a CUDA device is initialized, 
these globals are used to create the CUDA resources all at once. Because these 
globals are shared process-wide by the CUDA runtime, it is not possible to 
incrementally load and unload CUDA modules using the CUDA runtime.

Because of the way the CUDA runtime is integrated with the C++ language, kernels 
and symbols should be specified by name (i.e., not with a string literal) to API func-
tions such as cudaFuncGetAttributes()and cudaMemcpyToSymbol(). 
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3.6 DEVICE MEMORY 

Cache Configuration
In Fermi-class architectures, the streaming multiprocessors have L1 caches 
that can be split as 16K shared/48K L1 cache or 48K shared/16K L1 cache.9 
Initially, CUDA allowed the cache configuration to be specified on a per- 
kernel basis, using cudaFuncSetCacheConfig() in the CUDA runtime or 
cuFuncSetCacheConfig() in the driver API. Later, this state was moved to be 
more global: cuCtxSetCacheConfig()/cudaDeviceSetCacheConfig() 
specifies the default cache configuration.

 3.6 Device Memory
Device memory (or linear device memory) resides in the CUDA address space 
and may be accessed by CUDA kernels via normal C/C++ pointer and array 
dereferencing operations. Most GPUs have a dedicated pool of device memory 
that is directly attached to the GPU and accessed by an integrated memory 
controller.

CUDA hardware does not support demand paging, so all memory allocations are 
backed by actual physical memory. Unlike CPU applications, which can allocate 
more virtual memory than there is physical memory in the system, CUDA’s 
memory allocation facilities fail when the physical memory is exhausted. 
The details of how to allocate, free, and access device memory are given in 
Section 5.2.

CUDA Runtime
CUDA runtime applications may query the total amount of device memory avail-
able on a given device by calling cudaGetDeviceProperties() and examining 
cudaDeviceProp::totalGlobalMem.  cudaMalloc() and cudaFree() 
allocate and free device memory, respectively.  cudaMallocPitch() allocates 
pitched memory; cudaFree() may be used to free it. cudaMalloc3D() per-
forms a 3D allocation of pitched memory.

Driver API
Driver API applications may query the total amount of device memory avail-
able on a given device by calling cuDeviceTotalMem(). Alternatively, the 

9.  SM 3.x added the ability to split the cache evenly (32K/32K) between L1 and shared memory.
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cuMemGetInfo() function may be used to query the amount of free device 
memory as well as the total. cuMemGetInfo() can only be called when a 
CUDA context is current to the CPU thread. cuMemAlloc() and cuMemFree() 
allocate and free device memory, respectively. cuMemAllocPitch() allocates 
pitched memory; cuMemFree() may be used to free it.

3.7 Streams and Events
In CUDA, streams and events were added to enable host�device memory cop-
ies to be performed concurrently with kernel execution. Later versions of CUDA 
expanded streams’ capabilities to support execution of multiple kernels concur-
rently on the same GPU and to support concurrent execution between multiple 
GPUs.

CUDA streams are used to manage concurrency between execution units with 
coarse granularity.

• The GPU and the CPU

• The copy engine(s) that can perform DMA while the SMs are processing

• The streaming multiprocessors (SMs)

• Kernels that are intended to run concurrently

• Separate GPUs that are executing concurrently

The operations requested in a given stream are performed sequentially. In a 
sense, CUDA streams are like CPU threads in that operations within a CUDA 
stream are performed in order.

3.7.1 SOFTWARE PIPELINING

Because there is only one DMA engine serving the various coarse-grained hard-
ware resources in the GPU, applications must “software-pipeline” the opera-
tions performed on multiple streams. Otherwise, the DMA engine will “break 
concurrency” by enforcing synchronization within the stream between different 
engines. A detailed description of how to take full advantage of CUDA streams 
using software pipelining is given in Section 6.5, and more examples are given in 
Chapter 11.
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  3.7 STREAMS AND EVENTS 

The Kepler architecture reduced the need to software-pipeline streamed 
operations and, with NVIDIA’s Hyper-Q technology (first available with SM 3.5), 
virtually eliminated the need for software pipelining.

3.7.2 STREAM CALLBACKS

CUDA 5.0 introduced another mechanism for CPU/GPU synchronization that com-
plements the existing mechanisms, which focus on enabling CPU threads to wait 
until streams are idle or events have been recorded. Stream callbacks are func-
tions provided by the application, registered with CUDA, and later called by CUDA 
when the stream has reached the point at which  cuStreamAddCallback() was 
called.

Stream execution is suspended for the duration of the stream callback, so for 
performance reasons, developers should be careful to make sure other streams 
are available to process during the callback.

3.7.3 THE NULL STREAM

Any of the asynchronous memcpy functions may be called with NULL as the 
stream parameter, and the memcpy will not be initiated until all preceding 
operations on the GPU have been completed; in effect, the NULL stream is a join 
of all the engines on the GPU. Additionally, all streamed memcpy functions are 
asynchronous, potentially returning control to the application before the memcpy 
has been performed. The NULL stream is most useful for facilitating CPU/GPU 
concurrency in applications that have no need for the intra-GPU concurrency 
facilitated by multiple streams. Once a streamed operation has been initiated 
with the NULL stream, the application must use synchronization functions 
such as cuCtxSynchronize() or cudaThreadSynchronize() to ensure 
that the operation has been completed before proceeding. But the application 
may request many such operations before performing the synchronization. For 
example, the application may perform

• an asynchronous host�device memcpy

• one or more kernel launches

• an asynchronous device�host memcpy

before synchronizing with the context. The cuCtxSynchronize() or 
 cudaThreadSynchronize() call returns after the GPU has performed the 
last-requested operation. This idiom is especially useful when performing 
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smaller memcpy’s or launching kernels that will not run for long. The CUDA 
driver takes valuable CPU time to write commands to the GPU, and overlapping 
that CPU execution with the GPU’s processing of the commands can improve 
performance.

Note: Even in CUDA 1.0, kernel launches were asynchronous; the NULL stream 
is implicitly specified to any kernel launch in which no stream is explicitly 
specified.

3.7.4 EVENTS

CUDA events present another mechanism for synchronization. Introduced at 
the same time as CUDA streams, “recording” CUDA events is a way for applica-
tions to track progress within a CUDA stream. All CUDA events work by writing 
a shared sync memory location when all preceding operations in the CUDA 
stream have been performed.10 Querying the CUDA event causes the driver to 
peek at this memory location and report whether the event has been recorded; 
synchronizing with the CUDA event causes the driver to wait until the event has 
been recorded.

Optionally, CUDA events also can write a timestamp derived from a high- 
resolution timer in the hardware. Event-based timing can be more robust than 
CPU-based timing, especially for smaller operations, because it is not subject 
to spurious unrelated events (such as page faults or network traffic) that may 
affect wall-clock timing by the CPU. Wall-clock times are definitive because they 
are a better approximation of what the end users sees, so CUDA events are best 
used for performance tuning during product development.11 

Timing using CUDA events is best performed in conjunction with the NULL 
stream. This rule of thumb is motivated by reasons similar to the reasons 
RDTSC (Read TimeStamp Counter) is a serializing instruction on the CPU: Just 
as the CPU is a superscalar processor that can execute many instructions at 
once, the GPU can be operating on multiple streams at the same time. With-
out explicit serialization, a timing operation may inadvertently include opera-
tions that were not intended to be timed or may exclude operations that were 
supposed to be timed. As with RDTSC, the trick is to bracket the CUDA event 

10.  Specifying the NULL stream to cuEventRecord() or cudaEventRecord() means the event
will not be recorded until the GPU has processed all preceding operations.

11.  Additionally, CUDA events that can be used for timing cannot be used for certain other opera-
tions; more recent versions of CUDA allow developers to opt out of the timing feature to enable
the CUDA event to be used, for example, for interdevice synchronization.
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3.8 HOST MEMORY 

recordings with enough work that the overhead of performing the timing itself is 
negligible.

CUDA events optionally can cause an interrupt to be signaled by the hardware, 
enabling the driver to perform a so-called “blocking” wait. Blocking waits 
suspend the waiting CPU thread, saving CPU clock cycles and power while the 
driver waits for the GPU. Before blocking waits became available, CUDA devel-
opers commonly complained that the CUDA driver burned a whole CPU core 
waiting for the GPU by polling a memory location. At the same time, blocking 
waits may take longer due to the overhead of handling the interrupt, so latency-
sensitive applications may still wish to use the default polling behavior.

 3.8 Host Memory
“Host” memory is CPU memory—the stuff we all were managing with 
 malloc()/free() and new[]/delete[] for years before anyone had heard 
of CUDA. On all operating systems that run CUDA, host memory is virtualized; 
memory protections enforced by hardware are in place to protect CPU pro-
cesses from reading or writing each other’s memory without special provi-
sions.12 “Pages” of memory, usually 4K or 8K in size, can be relocated without 
changing their virtual address; in particular, they can be swapped to disk, effec-
tively enabling the computer to have more virtual memory than physical mem-
ory. When a page is marked “nonresident,” an attempt to access the page will 
signal a “page fault” to the operating system, which will prompt the operating 
system to find a physical page available to copy the data from disk and resume 
execution with the virtual page pointing to the new physical location.

The operating system component that manages virtual memory is called the 
“virtual memory manager” or VMM. Among other things, the VMM monitors 
memory activity and uses heuristics to decide when to “evict” pages to disk and 
resolves the page faults that happen when evicted pages are referenced.

The VMM provides services to hardware drivers to facilitate direct access of 
host memory by hardware. In modern computers, many peripherals, including 
disk controllers, network controllers, and GPUs, can read or write host mem-
ory using a facility known as “direct memory access” or DMA. DMA gives two 

12.  Examples of APIs that facilitate interprocess sharing include MapViewOfFile() on Windows 
or mmap() on Linux.
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performance benefits: It avoids a data copy13 and enables the hardware to oper-
ate concurrently with the CPU. A tertiary benefit is that hardware may achieve 
better bus performance over DMA.

To facilitate DMA, operating system VMMs provide a service called “page- 
locking.” Memory that is page-locked has been marked by the VMM as ineligible 
for eviction, so its physical address cannot change. Once memory is page-
locked, drivers can program their DMA hardware to reference the physical 
addresses of the memory. This hardware setup is a separate and distinct oper-
ation from the page-locking itself. Because page-locking makes the underlying 
physical memory unavailable for other uses by the operating system, page- 
locking too much memory can adversely affect performance.

Memory that is not page-locked is known as “pageable.” Memory that is page-
locked is sometimes known as “pinned” memory, since its physical address can-
not be changed by the operating system (it has been pinned in place).

3.8.1 PINNED HOST MEMORY

“Pinned” host memory is allocated by CUDA with the functions  cuMemHostAlloc() / 
cudaHostAlloc(). This memory is page-locked and set up for DMA by the 
current CUDA context.14 

CUDA tracks the memory ranges allocated in this way and automatically 
accelerates memcpy operations that reference pinned memory. Asynchro-
nous memcpy operations only work on pinned memory. Applications can 
determine whether a given host memory address range is pinned using the 
 cuMemHostGetFlags() function.

In the context of operating system documentation, the terms page-locked and 
pinned are synonymous, but for CUDA purposes, it may be easier to think of 
“pinned” memory as host memory that has been page-locked and mapped for 
access by the hardware. “Page-locking” refers only to the operating system 
mechanism for marking host memory pages as ineligible for eviction.

13.  This extra copy is more obvious to developers using GPUs, whose target peripheral can 
consume much more bandwidth than more pedestrian devices like those for disk or network 
controllers. Whatever the type of peripheral, without DMA, the driver must use the CPU to copy
data to or from special hardware buffers.

14.  CUDA developers often ask if there is any difference between page-locked memory and CUDA’s 
“pinned” memory. There is! Pinned memory allocated or registered by CUDA is mapped for
direct access by the GPU(s); ordinary page-locked memory is not.
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3.8.2 PORTABLE PINNED MEMORY

Portable pinned memory is mapped for all CUDA contexts after being page-
locked. The underlying mechanism for this operation is complicated: When a 
portable pinned allocation is performed, it is mapped into all CUDA contexts 
before returning. Additionally, whenever a CUDA context is created, all porta-
ble pinned memory allocations are mapped into the new CUDA context before 
returning. For either portable memory allocation or context creation, any failure 
to perform these mappings will cause the allocation or context creation to fail. 
Happily, as of CUDA 4.0, if UVA (unified virtual addressing) is in force, all pinned 
allocations are portable.

3.8.3 MAPPED PINNED MEMORY

Mapped pinned memory is mapped into the address space of the CUDA context, 
so kernels may read or write the memory. By default, pinned memory is not 
mapped into the CUDA address space, so it cannot be corrupted by spurious 
writes by a kernel. For integrated GPUs, mapped pinned memory enables “zero 
copy”: Since the host (CPU) and device (GPU) share the same memory pool, they 
can exchange data without explicit copies.

For discrete GPUs, mapped pinned memory enables host memory to be read 
or written directly by kernels. For small amounts of data, this has the benefit of 
eliminating the overhead of explicit memory copy commands. Mapped pinned 
memory can be especially beneficial for writes, since there is no latency to 
cover. As of CUDA 4.0, if UVA (unified virtual addressing) is in effect, all pinned 
allocations are mapped.

3.8.4 HOST MEMORY REGISTRATION

Since developers (especially library developers) don’t always get to allocate 
memory they want to access, CUDA 4.0 added the ability to “register” existing 
virtual address ranges for use by CUDA. The cuMemHostRegister()/
cudaHostRegister() functions take a virtual address range and page-locks 
and maps it for the current GPU (or for all GPUs, if CU_MEMHOSTREGISTER_
PORTABLE or cudaHostRegisterPortable is specified). Host memory 
registration has a perverse relationship with UVA (unified virtual addressing), 
in that any address range eligible for registration must not have been included 
in the virtual address ranges reserved for UVA purposes when the CUDA driver 
was initialized. 
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3.9 CUDA Arrays and Texturing
CUDA arrays are allocated from the same pool of physical memory as device 
memory, but they have an opaque layout that is optimized for 2D and 3D locality. 
The graphics drivers use these layouts to hold textures; by decoupling the indexing 
from the addressing, the hardware can operate on 2D or 3D blocks of elements 
instead of 1D rows. For applications that exhibit sparse access patterns, especially 
patterns with dimensional locality (for example, computer vision applications), 
CUDA arrays are a clear win. For applications with regular access patterns, espe-
cially those with little to no reuse or whose reuse can be explicitly managed by the 
application in shared memory, device pointers are the obvious choice.

Some applications, such as image processing applications, fall into a gray area 
where the choice between device pointers and CUDA arrays is not obvious. All 
other things being equal, device memory is probably preferable to CUDA arrays, 
but the following considerations may be used to help in the decision-making 
process.

• CUDA arrays do not consume CUDA address space.

• On WDDM drivers (Windows Vista and later), the system can automatically
manage the residence of CUDA arrays.

• CUDA arrays can reside only in device memory, and the GPU can convert
between the two representations while transferring the data across the bus.
For some applications, keeping a pitch representation in host memory and a
CUDA array representation in device memory is the best approach.

3.9.1 TEXTURE REFERENCES

Texture references are objects that CUDA uses to set up the texturing hardware 
to “interpret” the contents of underlying memory.15 Part of the reason this level 
of indirection exists is because it is valid to have multiple texture references 
referencing the same memory with different attributes.

A texture reference’s attributes may be immutable—that is, specified at com-
pile time and not subject to change without causing the application to behave 

15.  Before CUDA 3.2, texture references were the only way to read from CUDA arrays, other than 
explicit memcpy. Today, surface references may be used to write to CUDA arrays as well as to
read from them.
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incorrectly—or mutable—that is, where the application may change the texture’s 
behavior in ways that are not visible to the compiler (Table 3.5). For example, 
the dimensionality of the texture (1D, 2D, or 3D) is immutable, since it must be 
known by the compiler to take the correct number of input parameters and emit 
the correct machine instruction. In contrast, the filtering and addressing modes 
are mutable, since they implicitly change the application’s behavior without any 
knowledge or involvement from the compiler.

The CUDA runtime (language integration) and the CUDA driver API deal with tex-
ture references very differently. In both cases, a texture reference is declared by 
invoking a template called texture.

texture<Type, Dimension, ReadMode> Name;

where Type is the type of the elements in the memory being read by the texture, 
Dimension is the dimension of the texture (1, 2, or 3), and ReadMode specifies 
whether integer-valued texture types should be converted to normalized float-
ing point when read by the texture reference.

The texture reference must be bound to underlying memory before it can be 
used. The hardware is better optimized to texture from CUDA arrays, but in the 
following cases, applications benefit from texturing from device memory.

• It enlists the texture cache, which serves as a bandwidth aggregator.

• It enables applications to work around coalescing restrictions.

• It avoids superfluous copies when reading from memory that is otherwise
best written via device memory. For example, a video codec may wish to emit
frames into device memory, yet read from them via texture.

Table 3.5 Mutable and Immutable Texture Attributes

IMMUTABLE ATTRIBUTES MUTABLE ATTRIBUTES

Dimensionality Filtering mode

Type (format) Addressing modes

Return type Normalized coordinates

sRGB conversion
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Once the texture reference is bound to underlying memory, CUDA kernels may 
read the memory by invoking tex* intrinsics, such as tex1D(), given in 
Table 3.6.

Note: There are no coherency guarantees between texture reads and writes per-
formed via global load/store or surface load/store. As a result, CUDA kernels 
must take care not to texture from memory that also is being accessed by other 
means.

CUDA Runtime
To bind memory to a texture, applications must call one of the functions in 
Table 3.7. CUDA runtime applications can modify mutable attributes of the tex-
ture reference by directly assigning structure members.

texture<float, 1, cudaReadModeElementType> tex1;
...
tex1.filterMode = cudaFilterModeLinear; // enable linear filtering
tex1.normalized = true; // texture coordinates will be normalized

Assigning to these structure members has an immediate effect; there is no 
need to rebind the texture. 

Table 3.6 Texture Intrinsics

TEXTURE TYPE INTRINSIC

Device memory tex1Dfetch(int)

1D tex1D(float x, float y)

2D tex2D(float x, float y)

3D tex3D(float x, float y, float z)

Cubemap texCubemap(float x, float y, float z)

Layered (1D) tex1DLayered(float x, int layer)

Layered (2D) tex2DLayered(float x, float y, int layer)

Layered (Cubemap) texCubemapLayered(float x, float y, float z, int layer)
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Driver API
Since there is a stricter partition between CPU code and GPU code when using 
the driver API, any texture references declared in a CUDA module must be que-
ried via cuModuleGetTexRef(), which passes back a CUtexref. Unlike the 
CUDA runtime, the texture reference then must be initialized with all of the cor-
rect attributes—both mutable and immutable—because the compiler does not 
encode the immutable attributes of the texture reference into the CUDA module. 
Table 3.8 summarizes the driver API functions that can be used to bind a texture 
reference to memory.

3.9.2 SURFACE REFERENCES

Surface references, a more recent addition to CUDA not available on Tesla-class 
GPUs, enable CUDA kernels to read and write CUDA arrays via the surface load/
store intrinsics. Their primary purpose is to enable CUDA kernels to write CUDA 
arrays directly. Before surface load/store became available, kernels had to 
write to device memory and then perform a device�array memcpy to copy and 
convert the output into a CUDA array.

Table 3.7 Functions to Bind Device Memory to Textures

MEMORY FUNCTION

1D device memory cudaBindTexture()

2D device memory cudaBindTexture2D()

CUDA array cudaBindTextureToArray()

Table 3.8 Driver API Functions to Bind Memory to Textures

MEMORY FUNCTION

1D device memory cuTexRefSetAddress()

2D device memory cuTexRefSetAddress2D()

CUDA array cuTexRefSetArray()
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Compared to texture references, which can transform everything from the input 
coordinates to the output format, depending on how they are set up, surface 
references expose a vanilla, bitwise interface to read and write the contents of 
the CUDA array.

You might wonder why CUDA did not implement surface load/store intrinsics 
that operated directly on CUDA arrays (as OpenCL did). The reason is to be 
future-proof to surface load/store operations that convert to the underlying rep-
resentation in a more sophisticated way, such as enabling samples to be “splat-
ted” into the CUDA array with fractional coordinates, or interoperating with an 
antialiased graphics surface. For now, CUDA developers will have to make do 
implementing such operations in software.

 3.10 Graphics Interoperability
The graphics interoperability (or “graphics interop”) family of functions enables 
CUDA to read and write memory belonging to the OpenGL or Direct3D APIs. If 
applications could attain acceptable performance by sharing data via host mem-
ory, there would be no need for these APIs. But with local memory bandwidth 
that can exceed 140G/s and PCI Express bandwidth that rarely exceeds 6G/s in 
practice, it is important to give applications the opportunity to keep data on the 
GPU when possible. Using the graphics interop APIs, CUDA kernels can write 
data into images and textures that are then incorporated into graphical output to 
be performed by OpenGL or Direct3D.

Because the graphics and CUDA drivers must coordinate under the hood to 
enable interoperability, applications must signal their intention to perform 
graphics interop early. In particular, the CUDA context must be notified that it 
will be interoperating with a given API by calling special context creation APIs 
such as cuD3D10CtxCreate() or cudaGLSetDevice().

The coordination between drivers also motivated resource-sharing between 
graphics APIs and CUDA to occur in two steps. 

1. Registration: a potentially expensive operation that signals the developer’s 
intent to share the resources to the underlying drivers, possibly prompting 
them to move and/or lock down the resources in question 

2. Mapping: a lightweight operation that is expected to occur at high frequency
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In early versions of CUDA, the APIs for graphics interoperability with all four 
graphics APIs (OpenGL, Direct3D 9, Direct3D 10, and Direct3D 11) were strictly 
separate. For example, for Direct3D 9 interoperability, the following functions 
would be used in conjunction with one another.

• cuD3D9RegisterResource()/cudaD3D9RegisterResource()

• cuD3D9MapResources()/cudaD3D9MapResources()

• cuD3D9UnmapResources()/cudaD3D9UnmapResources()

• cuD3D9UnregisterResource()/cudaD3D9UnregisterResource()

Because the underlying hardware capabilities are the same, regardless of the 
API used to access them, many of these functions were merged in CUDA 3.2. 
The registration functions remain API-specific, since they require API-specific 
bindings, but the functions to map, unmap, and unregister resources were made 
common. The CUDA 3.2 APIs corresponding to the above are as follows.

• cuD3D9RegisterResource()/cudaD3D9RegisterResource()

• cuGraphicsMapResources()/cudaGraphicsMapResources()

• cuGraphicsUnmapResources()/cudaGraphicsUnmapResources()

• cuGraphicsUnregisterResource()/
cudaGraphicsUnregisterResource()

The interoperability APIs for Direct3D 10 are the same, except the developer 
must use cuD3D10RegisterResource()/ cudaD3D10RegisterResource() 
instead of the cuD3D9* variants.

CUDA 3.2 also added the ability to access textures from graphics APIs in the form 
of CUDA arrays. In Direct3D, textures are just a different type of “resource” and 
may be referenced by IDirect3DResource9 * (or  IDirect3DResource10 *, 
etc.). In OpenGL, a separate function  cuGraphicsGLRegisterImage() is provided.

 3.11  The CUDA Runtime and CUDA 
Driver API
The CUDA runtime (“CUDART”) facilitates the language integration that makes 
CUDA so easy to program out of the gate. By automatically taking care of tasks 
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such as initializing contexts and loading modules, and especially by enabling 
kernel invocation to be done in-line with other C++ code, CUDART lets develop-
ers focus on getting their code working quickly. A handful of CUDA abstractions, 
such as CUDA modules, are not accessible via CUDART.

In contrast, the driver API exposes all CUDA abstractions and enables them to 
be manipulated by developers as needed for the application. The driver API does 
not provide any performance benefit. Instead, it enables explicit resource man-
agement for applications that need it, like large-scale commercial applications 
with plug-in architectures.

The driver API is not noticeably faster than the CUDA runtime. If you are 
looking to improve performance in your CUDA application, look elsewhere.

Most CUDA features are available to both CUDART and the driver API, but a few 
are exclusive to one or the other. Table 3.9 summarizes the differences.

Table 3.9 CUDA Runtime versus Driver API Features

FEATURE CUDART DRIVER API

Device memory allocation * *

Pinned host memory allocation * *

Memory copies * *

CUDA streams * *

CUDA events * *

Graphics interoperability * *

Texture support * *

Surface support * *

cuMemGetAddressRange *

Language integration *

“Fat binary” *

Explicit JIT options *
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FEATURE CUDART DRIVER API

Simplified kernel invocation *

Explicit context and module management *

Context migration *

Float16 textures *

Memset of 16- and 32-bit values *

Compiler independence *

Table 3.9 CUDA Runtime versus Driver API Features (Continued )

Between the two APIs, operations like memcpy tend to be functionally identical, 
but the interfaces can be quite different. The stream APIs are almost identical.

CUDART DRIVER API

cudaStream_t stream; CUstream stream;

cudaError_t status = 
   cudaStreamCreate( &stream );

CUresult status = 
   cuStreamCreate( &stream, 0 );

... ...

status = cudaStreamSynchronize( 
   stream );

status = cuStreamSynchronize( 
   stream );

The event APIs have minor differences, with CUDART providing a separate 
cudaEventCreateWithFlags() function if the developer wants to specify a 
flags word (needed to create a blocking event).

CUDART DRIVER API

cudaEvent_t eventPolling; CUevent eventPolling;

cudaEvent_t eventBlocking; CUevent eventBlocking;

continues
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CUDART DRIVER API

cudaError_t status = 
   cudaEventCreate( 
   &eventPolling );

CUresult status = cuEventCreate( 
   &eventPolling, 0);

cudaError_t status = 
   cudaEventCreateWithFlags( 
   &eventBlocking,
   cudaEventBlockingSync );

CUresult status = cuEventCreate( 
   &eventBlocking, 
   CU_EVENT_BLOCKING_SYNC );

... ...

status = cudaEventSynchronize( 
   event );

status = cuEventSynchronize( 
   event );

The memcpy functions are the family where the interfaces are the most differ-
ent, despite identical underlying functionality. CUDA supports three variants of 
memory—host, device, and CUDA array—which are all permutations of par-
ticipating memory types, and 1D, 2D, or 3D memcpy. So the memcpy functions 
must contain either a large family of different functions or a small number of 
functions that support many types of memcpy.

The simplest memcpy’s in CUDA copy between host and device memory, but even 
those function interfaces are different: CUDART uses void * for the types of both 
host and device pointers and a single memcpy function with a direction parame-
ter, while the driver API uses void * for host memory,  CUdeviceptr for device 
memory, and three separate functions (cuMemcpyHtoD(),  cuMemcpyDtoH(), 
and cuMemcpyDtoD()) for the different memcpy directions. Here are equivalent 
CUDART and driver API formulations of the three permutations of host�device 
memcpy.

CUDART DRIVER API

void *dptr;
void *hptr;
void *dptr2;
status = cudaMemcpy( dptr, hptr, 
  size, cudaMemcpyHostToDevice );

CUdeviceptr dptr;
void *hptr;
Cudeviceptr dptr2;
status = cuMemcpyHtoD( dptr, 
   hptr, size );

status = cudaMemcpy( hptr, dptr, 
   size, cudaMemcpyDeviceToHost );

status = cuMemcpyDtoH( hptr, 
   dptr, size );

status = cudaMemcpy( dptr, dptr2, 
   size, cudaMemcpyDeviceToDevice );

status = cuMemcpyDtoD( dptr, 
   dptr2, size );
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For 2D and 3D memcpy’s, the driver API implements a handful of functions that 
take a descriptor struct and support all permutations of memcpy, including 
 lower-dimension memcpy’s. For example, if desired, cuMemcpy3D() can be 
used to perform a 1D host�device memcpy instead of cuMemcpyHtoD().

CUDA_MEMCPY3D cp = {0};
cp.dstMemoryType = CU_MEMORYTYPE_DEVICE;
cp.dstDevice = dptr;
cp.srcMemoryType = CU_MEMORYTYPE_HOST;
cp.srcHost = host;
cp.WidthInBytes = bytes;
cp.Height = cp.Depth = 1;
status = cuMemcpy3D( &cp );

CUDART uses a combination of descriptor structs for more complicated memcpy’s 
(e.g., cudaMemcpy3D()), while using different functions to cover the different 
memory types. Like cuMemcpy3D(), CUDART’s cudaMemcpy3D() function takes 
a descriptor struct that can describe any permutation of memcpy, including inter-
dimensional memcpy’s (e.g., performing a 1D copy to or from the row of a 2D CUDA 
array, or copying 2D CUDA arrays to or from slices of 3D CUDA arrays). Its descrip-
tor struct is slightly different in that it embeds other structures; the two APIs’ 3D 
memcpy structures are compared side-by-side in Table 3.10.

Usage of both 3D memcpy functions is similar. They are designed to be zero- 
initialized, and developers set the members needed for a given operation. For 
example, performing a host�3D array copy may be done as follows.

struct cudaMemcpy3DParms cp = {0};
cp.srcPtr.ptr = host;
cp.srcPtr.pitch = pitch;
cp.dstArray = hArray;
cp.extent.width = Width;
cp.extent.height = Height;
cp.extent.depth = Depth;
cp.kind = cudaMemcpyHostToDevice;

status = cudaMemcpy3D( &cp );

CUDA_MEMCPY3D cp = {0};
cp.srcMemoryType = CU_MEMORYTYPE_HOST;
cp.srcHost = host;
cp.srcPitch = pitch;
cp.srcHeight = Height;
cp.dstMemoryType = CU_MEMORYTYPE_ARRAY;
cp.dstArray = hArray;
cp.WidthInBytes = Width;
cp.Height = Height;
cp.Depth = Depth;
status = cuMemcpy3D( &cp );

For a 3D copy that covers the entire CUDA array, the source and destination 
offsets are set to 0 by the first line and don’t have to be referenced again. Unlike 
parameters to a function, the code only needs to reference the parameters 
needed by the copy, and if the program must perform more than one similar 
copy (e.g., to populate more than one CUDA array or device memory region), the 
descriptor struct can be reused.

       



SOFTWARE ARCHITECTURE

92

Table 3.10 3D Memcpy Structures

struct cudaMemcpy3DParms
{
    struct cudaArray *srcArray; 
    struct cudaPos srcPos; 
    struct cudaPitchedPtr 
srcPtr; 

    struct cudaArray *dstArray; 
    struct cudaPos dstPos; 
    struct cudaPitchedPtr 
dstPtr; 

    struct cudaExtent extent; 
    enum cudaMemcpyKind kind; 
};

struct cudaPos
{
    size_t x;
    size_t y;
    size_t z;
};

struct cudaPitchedPtr
{
    void *ptr; 
    size_t pitch; 
    size_t xsize; 
    size_t ysize; 
};

struct cudaExtent
{
    size_t width; 
    size_t height; 
    size_t depth; 
};

typedef struct CUDA_MEMCPY3D_st {
    size_t srcXInBytes;
    size_t srcY;
    size_t srcZ;
    size_t srcLOD;
    CUmemorytype srcMemoryType;
    const void *srcHost;
    CUdeviceptr srcDevice;
    CUarray srcArray;
    void *reserved0;
    size_t srcPitch;
    size_t srcHeight;

    size_t dstXInBytes;
    size_t dstY;
    size_t dstZ;
    size_t dstLOD;
    CUmemorytype dstMemoryType;
    void *dstHost;
    CUdeviceptr dstDevice;
    CUarray dstArray;
    void *reserved1;
    size_t dstPitch;
    size_t dstHeight;

    size_t WidthInBytes;
    size_t Height;
    size_t Depth;
} CUDA_MEMCPY3D;
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Software Environment

This chapter gives an overview of the CUDA development tools and the software 
environments that can host CUDA applications. Sections are devoted to the vari-
ous tools in the NVIDIA toolkit. 

• nvcc: the CUDA compiler driver 

• ptxas: the PTX assembler 

• cuobjdump: the CUDA object file dump utility 

• nvidia-smi: the NVIDIA System Management Interface

Section 4.5 describes Amazon’s EC2 (Elastic Compute Cloud) service and how to 
use it to access GPU-capable servers over the Internet. This chapter is intended 
more as a reference than as a tutorial. Example usages are given in Part III of 
this book. 

 4.1 nvcc—CUDA Compiler Driver
nvcc is the compiler driver CUDA developers use to translate source code into 
functional CUDA applications. It can perform many functions, from as simple 
as a targeted compilation of a GPU-only .cu file to as complex as compiling, 
linking, and executing a sample program in one command (a usage encouraged 
by many of the sample programs in this book). 

As a compiler driver, nvcc does nothing more than set up a build environment 
and spawn a combination of native tools (such as the C compiler installed on the 
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system) and CUDA-specific command-line tools (such as ptxas) to build the 
CUDA code. It implements many sensible default behaviors that can be over-
ridden by command-line options; its exact behavior depends on which “compile 
trajectory” is requested by the main command-line option.

Table 4.1 lists the file extensions understood by nvcc and the default behavior 
implemented for them. (Note: Some intermediate file types, like the .i/.ii 
files that contain host code generated by CUDA’s front end, are omitted here.) 
Table 4.2 lists the compilation stage options and corresponding compile trajec-
tory. Table 4.3 lists nvcc options that affect the environment, such as paths to 
include directories. Table 4.4 lists nvcc options that affect the output, such as 
whether to include debugging information. Table 4.5 lists “passthrough” options 
that enable nvcc to pass options to the tools that it invokes, such as ptxas. 
Table 4.6 lists nvcc options that aren’t easily categorized, such as the –keep 
option that instructs nvcc not to delete the temporary files it created. 

Table 4.1 Extensions for nvcc Input Files

FILE EXTENSION DEFAULT BEHAVIOR

.c/.cc/.cpp/.cxx Preprocess, compile, link

.cu Split host and device cost, compile them separately

.o(bj) Link

.ptx PTX-assemble into cubin

Table 4.2 Compilation Trajectories

OPTION TRAJECTORY

--cuda Compile all .cu input files to .cu.cpp.ii output.

--cubin Compile all .cu/ptx/.gpu files to .cubin files.*

--fatbin Compile all .cu/ptx/.gpu files to PTX and/or device-only bina-
ries, as specified by --arch and/or --code, and output the result 
into the fat binary file specified with the –o option.*
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Table 4.2 Compilation Trajectories (Continued )

OPTION TRAJECTORY

--ptx Compile all .cu/.gpu files to device-only .ptx files.*

--gpu Compile all .cu files to device-only .gpu files.*

--preprocess (-E) Preprocess all .c/.cc/.cpp/.cxx/.cu input files.

--generate-dependencies (-M) Generate for the one .c/.cc/.cpp/.cxx/.cu input file (more 
than one input file is not allowed in this mode) a dependency file 
that can be included in a makefile.

--compile (-c) Compile each .c/.cc/.cpp/.cxx/.cu input file into an object file.

--link (-link) Compile and link all inputs (this is the default trajectory).

--lib (-lib) Compile all inputs into object files (if necessary) and add the 
results to the specified output library file.

--x (-x) Explicitly specify the language for the input files rather than 
letting the compiler choose a default based on the file name suffix. 
Allowed values: c, c++, cu.

--run (-run) Compiles and links all inputs into an executable, then runs it. If the 
input is an executable, runs it without any compiling or linking.

* These command-line options discard any host code in the input file.

Table 4.3 nvcc Options (Environment) 

OPTION DESCRIPTION

--output-file <file> 
(-o)

Specify name and location of the output file. Only a single 
input file is allowed when this option is present in nvcc non-
linking/archiving mode.

--pre-include <include-file>
(-include)

Specify header files that must be preincluded during 
preprocessing.

--library <library> 
(-l)

Specify libraries to be used in the linking stage. The libraries 
are searched for on the library search paths that have been 
specified using –L.

continues
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OPTION DESCRIPTION

--define-macro <macrodef>
(-D)

Specify macro definitions to define during preprocessing or 
compilation.

--undefine-macro
(-U)

Specify macro definitions to undefine during preprocessing or 
compilation.

--include-path <include-path>
(-I)

Specify include search paths.

--system-include <include-path>
-isystem

Specify system include search paths.

--library-path
(-L)

Specify library search paths.

--output-directory
(-odir)

Specify the directory of the output file. This option is intended 
to enable the dependency generation step (--generate-
dependencies) to generate a rule that defines the target 
object file in the proper directory.

--compiler-bindir <path>
(--ccbin)

Specify the directory in which the compiler executable (Mic-
rosoft Visual Studio cl, or a gcc derivative) resides. By default, 
this executable is expected in the current executable search 
path. For a different compiler, or to specify these compilers 
with a different executable name, specify the path to the 
compiler including the executable name.

--cl-version <cl-version-number>
(-cl-version)

Specify the version of Microsoft Visual Studio installation. 
Allowed values for this option: 2005, 2008, 2010. This option is 
required if --use-local-env is specified.

Table 4.3 nvcc Options (Environment) (Continued )

Table 4.4 Options for Specifying Behavior of Compiler/Linker

OPTION DESCRIPTION

--profile
(-pg)

Instrument-generated code/executable for use by gprof (Linux only).

--debug
(-g)

Generate debug information for host code.
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Table 4.4 Options for Specifying Behavior of Compiler/Linker (Continued )

OPTION DESCRIPTION

--device-debug<level>
(-G)

Generate debug information for device code, plus also specify the optimi-
zation level (0–3) for the device code in order to control its “debuggability.”

--optimize <level>
-O

Specify optimization level for host code.

--shared
-shared

Generate a shared library during linking. 

--machine <bits>
-m

Specify 32- vs. 64-bit architecture. Allowed values for this option: 32, 64.

Table 4.5 nvcc Options for Passthrough

OPTION DESCRIPTION

--compiler-options <options>
(-Xcompiler)

Specify options directly to the compiler/preprocessor.

--linker-options <options>
-Xlinker

Specify options directly to the linker.

--archive-options <options>
(-Xarchive)

Specify options directly to library manager.

--cudafe-options <options>
-Xcudafe

Specify options directly to cudafe.

--ptx-options <options>
-Xptxas

Specify options directly to the PTX optimizing assembler.

Table 4.6 Miscellaneous nvcc Options

OPTION DESCRIPTION

--dont-use-profile
(-noprof)

Do not use nvcc.profiles file for compilation.

--dryrun
(-dryrun)

Suppresses execution of the compilation commands.

continues
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Table 4.7 lists nvcc options related to code generation. The --gpu-architecture 
and --gpu-code options are especially confusing. The former controls which vir-
tual GPU architecture to compile for (i.e., which version of PTX to emit), while the 
latter controls which actual GPU architecture to compile for (i.e., which version 
of SM microcode to emit). The --gpu-code option must specify SM versions 
that are at least as high as the versions specified to --gpu-architecture.

OPTION DESCRIPTION

--verbose
(-v)

List the commands generated by nvcc.

--keep
(-keep)

Keep all the intermediate files generated during internal 
compilation steps.

--keep-dir
(-keep-dir)

Specifies the directory where files specified by --keep 
should be written.

--save-temps
(-save-temps)

(Same as --keep)

--clean-targets
(-clean)

Causes nvcc to delete all the nontemporary files that 
other wise would be created by nvcc.

--run-args <arguments>
(-run-args)

If --run is specified, this option specifies command-line 
arguments to pass to the executable.

--input-drive-prefix <prefix>
(-idp)

Windows specific: specifies prefix for absolute paths of 
input files. For Cygwin users, specify “-idp /cygwin/”; 
for Mingw, specify “-idp /”

--dependency-drive-prefix <prefix>
(-ddp)

Windows specific: specifies prefix for absolute paths when 
generating dependency files (--generate-dependencies). 
For Cygwin users, specify “-idp /cygwin/”; for Mingw, 
specify “-idp /”

--drive-prefix <prefix>
(-dp)

Specifies prefix to use for both input files and dependency 
files.

--no-align-double Specifies that –malign-double should not be passed as a 
compiler argument on 32-bit platforms. Note: For certain 
64-bit types, this option makes the ABI incompatible with 
CUDA’s kernel ABI.

Table 4.6 Miscellaneous nvcc Options (Continued )
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Table 4.7 nvcc Options for Code Generation

OPTION DESCRIPTION

--gpu-architecture 
  <gpu architecture name>
-arch

Specify the virtual NVIDIA GPU architectures to compile for. This 
option specifies which version of PTX to target. Valid options include: 
compute_10, compute_11, compute_12, compute_13, 
compute_20, compute_30, compute_35, sm_10, sm_11, 
sm_12, sm_13, sm_20, sm_21, sm_30, sm_35.

--gpu-code 
  <gpu architecture name>
-code

Specify the actual GPU architecture to compile for. This option speci-
fies which SM versions to compile for. If left unspecified, this option is 
inferred to be the SM version corresponding to the PTX version speci-
fied by --gpu- architecture. Valid options include: compute_10, 
 compute_11,  compute_12,  compute_13,  compute_20, 
compute_30,  compute_35, sm_10, sm_11, sm_12, sm_13, 
sm_20, sm_21, sm_30, sm_35.

--generate-code
(-gencode)

Specifies a tuple of virtual and actual GPU architectures to target. 
--generate-code arch=<arch>,code=<code> is equivalent to 
--gpu-architecture <arch> --gpu-code <code>. 

--export-dir Specify the name of the directory to which all device code images will 
be copied.

--maxregcount <N>
(-maxregcount)

Specify the maximum number of registers that GPU functions can 
use.

--ftz [true,false]
(-ftz)

Flush-to-zero: when performing single-precision floating-point 
operations, denormals are flushed to zero. --use-fast-math implies 
--ftz=true. The default is false.

--prec-div [true, false]
(-prec-div)

Precise division: if true, single-precision floating-point division and 
reciprocals are performed to full precision (round-to-nearest-even 
with 0 ulps in error). 

--use-fast-math implies --prec-div=false. The default value 
is true.

--prec-sqrt [true, false] Precise square root: if true, single-precision floating-point square 
root is performed to full precision (round-to-nearest-even with 0 
ulps in error).

--use-fast-math implies --prec-sqrt=false. The default value 
is true.

continues
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The --export-dir option specifies a directory where all device code images 
will be copied. It is intended as a device code repository that can be inspected 
by the CUDA driver when the application is running (in which case the directory 
should be in the CUDA_DEVCODE_PATH environment variable). The reposi-
tory can be either a directory or a ZIP file. In either case, CUDA will maintain a 
directory structure to facilitate code lookup by the CUDA driver. If a filename is 
specified but does not exist, a directory structure (not a ZIP file) will be created 
at that location.

 4.2 ptxas—the PTX Assembler
ptxas, the tool that compiles PTX into GPU-specific microcode, occupies a 
unique place in the CUDA ecosystem in that NVIDIA makes it available both in 
the offline tools (which developers compile into applications) and as part of the 
driver, enabling so-called “online” or “just-in-time” (JIT) compilation (which 
occurs at runtime).

When compiling offline, ptxas generally is invoked by nvcc if any actual GPU 
architectures are specified with the --gpu-code command-line option. In that 
case, command-line options (summarized in Table 4.8) can be passed to ptxas 
via the -Xptxas command-line option to nvcc.

Table 4.7 nvcc Options for Code Generation (Continued )

OPTION DESCRIPTION

--fmad [true, false] Enables or disables the contraction of floating-point multiplies and 
adds/subtracts into floating-point multiply-add (FMAD) instruc-
tions. This option is supported only when --gpu-architecture 
is compute_20, sm_20, or higher. For other architecture classes, 
the contraction is always enabled. --use-fast-math implies 
--fmad=true.

--use-fast-math Use fast math library. Besides implying --prec-div false, 
--prec-sqrt false, --fmad true, the single-precision runtime 
math functions are compiled directly to SFU intrinsics.
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Table 4.8 Command-Line Options for ptxas

OPTION DESCRIPTION

--abi-compile <yes|no>
(-abi)

Enable or disable the compiling of functions using the 
Application Binary Interface (ABI). The default is yes.

--allow-expensive-optimizations 
   <true|false>
(-allow-expensive-optimizations)

Enable or disable expensive compile-time optimizations 
that use maximum available resources (memory and 
compile time). If unspecified, the default behavior is to 
enable this feature for optimization level ≥O2.

--compile-only
(-c)

Generate a relocatable object.

--def-load-cache [ca|cg|cs|lu|cv]
-dlcm

Default cache modifier on global load. Default value: ca. 

--device-debug
(-g)

Generate debug information for device code.

--device-function-maxregcount 
   <archmax/archmin/N>
(-func-maxregcount)

When compiling with --compile-only, specify the 
maximum number of registers that device functions can 
use. This option is ignored for whole-program compila-
tion and does not affect the number of registers used 
by entry functions. For device functions, this option over-
rides the value specified by --maxrregcount. If 
neither --device-function-maxrregcount nor 
--maxrregcount is specified, then no maximum is 
assumed.

--dont-merge-basicblocks
 (-no-bb-merge) 

Normally, ptxas attempts to merge consecutive basic 
blocks as part of its optimization process. This option 
inhibits basic block merging, improving the debuggability 
of generated code at a slight performance cost.

--entry <entry function>
 (-e) 

Entry function name.

--fmad <true|false>
 (-fmad) 

Enables or disables the contraction of floating-point 
multiplies and adds/subtracts into floating-point mul-
tiply-add operations (FMAD, FFMA, or DFMA). Default 
value: true.

--generate-line-info
 (-lineinfo) 

Generate line-number information for device code.

continues
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Table 4.8 Command-Line Options for ptxas (Continued )

OPTION DESCRIPTION

--gpu-name <gpu name>
(-arch)

Specify the SM version for which to generate code. This 
option also takes virtual compute architectures, in which 
case code generation is suppressed. This can be used for 
parsing only.

Allowed values for this option: compute_10, 
compute_11, compute_12, compute_13, 
compute_20, compute_30, compute_35, sm_10, 
sm_11, sm_12, sm_13, sm_20, sm_21, sm_30, 
sm_35.

Default value: sm_10.

--input-as-string <ptx-string>
(-ias)

Specifies the string containing the PTX module to com-
pile on the command line.

--machine [32|34]
(-m)

Compile for 32-bit versus 64-bit architecture.

--maxrregcount <archmax/archmin/N>
-maxrregcount

Specify the maximum amount of registers that GPU 
functions can use.

--opt-level <N>
 (-O)

Specifies the optimization level (0–3).

--options-file <filename>
(-optf)

Include command-line options from the specified file.

--output-file <filename>
(-o)

Specify name of output file. (Default: elf.o)

--return-at-end
-ret-end

Suppresses the default ptxas behavior of optimizing 
out return instructions at the end of the program for 
improved debuggability.

--sp-bounds-check
(-sp-bounds-check)

Generate a stack-pointer bounds-checking code sequence. 
Automatically enabled when --device- debug (-g) or 
--generate-line-info (-lineinfo) is specified.

--suppress-double-demote-warning
-suppress-double-demote-warning

Suppress the warning when a double precision instruc-
tion is encountered in PTX being compiled for an SM 
version that does not include double precision support.

--verbose
-v

Enable verbose mode.
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Developers also can load PTX code dynamically by invoking cuModuleLoadDa-
taEx(), as follows.

CUresult cuModuleLoadDataEx (
    CUmodule *module,
    const void *image,
    unsigned int numOptions,
    CUjit_option *options,
    void **optionValues  
);

cuModuleLoadDataEx() takes a pointer image and loads the correspond-
ing module into the current context. The pointer may be obtained by mapping 
a cubin or PTX or fatbin file, passing a cubin or PTX or fatbin file as a 
NULL-terminated text string, or incorporating a cubin or fatbin object into 
the executable resources and using operating system calls such as Windows 
 FindResource() to obtain the pointer. Options are passed as an array via 
options, and any corresponding parameters are passed in optionValues. 
The number of total options is specified by numOptions. Any outputs will be 
returned via optionValues. Supported options are given in Table 4.9.

Table 4.8 Command-Line Options for ptxas (Continued )

OPTION DESCRIPTION

--version Print version information.

--warning-as-error
-Werror

Make all warnings into errors.

Table 4.9 Options for cuModuleLoadDataEx()

OPTION DESCRIPTION

CU_JIT_MAX_REGISTERS Specifies the maximum number of registers per thread.

CU_JIT_THREADS_PER_BLOCK Input is the minimum number of threads per block for 
which to target compilation. Output is the number of 
threads used by the compiler. This parameter enables the 
caller to restrict the number of registers such that a block 
with the given number of threads should be able to launch 
based on register limitations. Note that this option does 
not account for resources other than registers (such as 
shared memory).

continues
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Table 4.9 Options for cuModuleLoadDataEx() (Continued )

OPTION DESCRIPTION

CU_JIT_WALL_TIME Passes back a float containing the wall clock time (in milli-
seconds) spent compiling the PTX code.

CU_JIT_INFO_LOG_BUFFER Input is a pointer to a buffer in which to print any informa-
tional log messages from PTX assembly (the buffer size is 
specified via option CU_JIT_INFO_LOG_BUFFER_SIZE_
BYTES).

CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES Input buffer size in bytes; passes back the number of bytes 
filled with messages.

CU_JIT_ERROR_LOG_BUFFER Input is a pointer to a buffer in which to print any error log 
messages from PTX assembly (the buffer size is specified 
via option CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES).

CU_JIT_ERROR_LOG_BUFFER_BYTES Input is the size in bytes of the buffer; output is the number 
of bytes filled with messages.

CU_JIT_OPTIMIZATION_LEVEL Level of optimization to apply to generated code (0–4), with 
4 being the default.

CU_JIT_TARGET_FROM_CUCONTEXT Infers compilation target from the current CUDA context. 
This is the default behavior if CU_JIT_TARGET is not 
specified.

CU_JIT_TARGET CUjit_target_enum: specifies the compilation target. 
May be any of: CU_TARGET_COMPUTE_10, CU_
TARGET_COMPUTE_11, CU_TARGET_COMPUTE_12, 
CU_TARGET_COMPUTE_13, CU_TARGET_COMPUTE_20, 
CU_TARGET_COMPUTE_21, CU_TARGET_COMPUTE_30,
CU_TARGET_COMPUTE_35.

CU_JIT_TARGET_FALLBACK_STRATEGY CUjit_fallback_enum: specifies fallback strategy of 
matching cubin is not found; possibly values are 
CU_PREFER_PTX or CU_PREFER_BINARY.
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 4.3 cuobjdump
cuobjdump is the utility that may be used to examine the binaries generated by 
CUDA. In particular, it is useful for examining the microcode generated by nvcc. 
Specify the --cubin parameter to nvcc to generate a .cubin file, and then use

cuobjdump --dump-sass <filename.cubin>

to dump the disassembled microcode from the .cubin file. The complete list of 
command-line options for cuobjdump is given in Table 4.10.

Table 4.10 cuobjdump Command-Line Options

OPTION DESCRIPTION

--all-fatbin
(-all)

Dump all fatbin sections. By default, will only dump the contents 
of executable fatbin; if there is no executable fatbin, dumps the 
contents of the relocatable fatbin.

--dump-cubin
(-cubin)

Dump cubin for all listed device functions.

--dump-elf
(-elf)

Dump ELF Object sections.

--dump-elf-symbols
(-symbols)

Dump ELF symbol names.

--dump-function-names
(-fnam)

Dump names of device functions. This option is implied if options 
--dump-sass, --dump-cubin, or --dump-ptx are given.

--dump-ptx
(-ptx)

Dump PTX for all listed device functions.

--dump-sass
(-sass)

Dump disassembly for all listed device functions.

--file <filename>
(-f)

Specify names of source files whose fat binary structures must be 
dumped. Source files may be specified by the full path by which they 
were compiled with nvcc, by filename only, or by base filename 
(with no file extension).

--function <function name>
(-fun)

Specify names of device functions whose fat binary structures must 
be dumped.

continues
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 4.4 nvidia-smi
nvidia-smi, the NVIDIA System Management Interface, is used to manage 
the environment in which Tesla-class NVIDIA GPU boards operate. It can report 
GPU status and control aspects of GPU execution, such as whether ECC is 
enabled and how many CUDA contexts can be created on a given GPU.

When nvidia-smi is invoked with the -–help (-h) option, it generates a 
usage message that, besides giving a brief description of its purpose and com-
mand-line options, also gives a list of supported products. Tesla- and Quadro-
branded GPUs are fully supported, while GeForce-branded GPUs get limited 
support.

Many of the GPU boards supported by nvidia-smi include multiple GPUs; 
nvidia-smi refers to these boards as units. Some operations, such as toggling 
the status of an LED (light emitting diode), are available only on a per-unit basis.

nvidia-smi has several modes of operation. If no other command-line param-
eters are given, it lists a summary of available GPUs that can be refined by the 
command-line options in Table 4.11. Otherwise, the other command-line options 
that are available include the following.

• List: The --list-gpus (-L) option displays a list of available GPUs and 
their UUIDs. Additional options to refine the listing are summarized in 
Table 4.11.

Table 4.10 cuobjdump Command-Line Options (Continued )

OPTION DESCRIPTION

--help
(-h)

Print this help information on this tool.

--options-file <file>
(-optf)

Include command-line options from specified file.

--sort-functions
(-sort)

Sort functions when dumping SASS.

--version
(-V)

Print version information on this tool.
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• Query: The --query (-q) option displays GPU or unit information. Addi-
tional options to refine the query are summarized in Table 4.12.

• Document Type Definition (DTD): The --dtd option produces the Document 
Type Definition for the XML-formatted output of nvidia-smi. The 
--filename (-f) option optionally specifies an output file; the 
--unit (-u) option causes the DTD for GPU boards (as opposed to 
GPUs) to be written.

• Device modification: The options specified in Table 4.13 may be used to set 
the persistent state of the GPU, such as whether ECC (error correction) is 
enabled.

• Unit modification: The --toggle-led option (-t) may be set to 0/GREEN or 
1/AMBER. The --id (-i) option can be used to target a specific unit.

Table 4.11 nvidia-smi List Options

OPTION DESCRIPTION

--list-gpus (-L) Display a list of available GPUs.

--id=<GPU> (-i) Target a specific GPU.

--filename=<name> (-f) Log to a given file rather than to stdout.

--loop=<interval> (-l) Probe at specified interval (in seconds) until Ctrl+C.

Table 4.12 nvidia-smi Query Options

OPTION DESCRIPTION

--query (-q) Display GPU or unit information.

--unit (-u) Show unit attributes rather than GPU attributes.

--id=<GPU> (-i) Target a specific GPU.

--filename=<name> (-f) Log to a given file rather than to stdout.

continues
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Table 4.12 nvidia-smi Query Options  (Continued )

OPTION DESCRIPTION

--xml-format (-x) Produce XML output.

--display=<list> (-d) Display only selected information. The following 
options may be selected with a comma-delimited 
list: MEMORY, UTILIZATION, ECC, TEMPERATURE, 
POWER, CLOCK, COMPUTER, PIDS, PERFORMNACE, 
SUPPORTED_CLOCKS.

--loop=<interval> (-l) Probe at specified interval (in seconds) until Ctrl+C.

Table 4.13 nvidia-smi Device Modification Options

OPTION DESCRIPTION

--application-clocks=<clocks> (-ac) Specifies GPU clock speeds as a tuple: <memory,
graphics> (e.g., 2000,800).

--compute-mode=<mode> (-c) Set compute mode: 0/DEFAULT, 1/EXCLUSIVE_
THREAD, 2/PROHIBITED, or 3/EXCLUSIVE_
PROCESS.

--driver-model=<model> (-dm) Windows only: Enable or disable TCC (Tesla 
Compute Cluster) driver: 0/WDDM, 1/TCC. See also 
--force-driver-model (-fdm).

--ecc-config=<config> (-e) Set ECC mode: 0/DISABLED or 1/ENABLED.

--force-driver-model=<model> (-fdm) Windows only: Enable or disable TCC (Tesla Compute 
Cluster) driver: 0/WDDM, 1/TCC. This option causes 
TCC to be enabled even if a display is connected to the 
GPU, which otherwise would cause nvidia-smi to 
report an error.

--gom=<mode> Set GPU operation mode: 0/ALL_ON, 1/COMPUTE, 
2/LOW_DP.

--gpu-reset (-r) Trigger secondary bus reset of GPU. This operation can 
be used to reset GPU hardware state when a machine 
reboot might otherwise be required. Requires --id.
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 4.5 Amazon Web Services
Amazon Web Services is the preeminent vendor of “infrastructure as a ser-
vice” (IAAS) cloud computing services. Their Web services enable customers to 
allocate storage, transfer data to and from their data centers, and run servers 
in their data centers. In turn, customers are charged for the privilege on an a 
la carte basis: per byte of storage, per byte transferred, or per instance-hour 
of server time. On the one hand, customers can access potentially unlimited 
compute resources without having to invest in their own infrastructure, and on 
the other hand, they need only pay for the resources they use. Due to the flexi-
bility and the cloud’s ability to accommodate rapidly increasing demand (say, if 
an independent game developer’s game “goes viral”), cloud computing is rapidly 
increasing in popularity.

A full description of the features of AWS and how to use them is outside the 
scope of this book. Here we cover some salient features for those who are inter-
ested in test-driving CUDA-capable virtual machines.

• S3 (Simple Storage Service) objects can be uploaded and downloaded.

• EC2 (Elastic Compute Cloud) instances can be launched, rebooted, and 
terminated.

• EBS (Elastic Block Storage) volumes can be created, copied, attached to EC2 
instances, and destroyed.

Table 4.13 nvidia-smi Device Modification Options (Continued )

OPTION DESCRIPTION

--id=<GPU> (-i) Target a specific GPU.

--persistence-mode=<mode> (-pm) Set persistence mode: 0/DISABLED or 1/ENABLED.

--power-limit (-pl) Specifies maximum power management limit in watts.

--reset-application-clocks (-rac) Reset the application clocks to the default.

--reset-ecc-errors=<type> (-p) Reset ECC error counts: 0/VOLATILE or 1/AGGREGATE.
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• It features security groups, which are analogous to firewalls for EC2 instances.

• It features key pairs, which are used for authentication.

All of the functionality of Amazon Web Services is accessible via the AWS 
Management Console, accessible via aws.amazon.com. The AWS Management 
 Console can do many tasks not listed above, but the preceding handful of opera-
tions are all we’ll need in this book.

4.5.1 COMMAND-LINE TOOLS

The AWS command-line tools can be downloaded from http://aws.amazon.
com/developertools. Look for “Amazon EC2 API Tools.” These tools can be 
used out of the box on Linux machines; Windows users can install Cygwin. Once 
installed, you can use commands such as ec2-run-instances to launch EC2 
instances, ec2-describe-instances to give a list of running instances, or 
ec2-terminate-instances to terminate a list of instances. Anything that can 
be done in the Management Console also can be done using a command-line tool.

4.5.2 EC2 AND VIRTUALIZATION

EC2, the “Elastic Compute Cloud,” is the member of the AWS family that enables 
customers to “rent” a CUDA-capable server for a period of time and be charged 
only for the time the server was in use. These virtual computers, which look to 
the customer like standalone servers, are called instances. Customers can use 
EC2’s Web services to launch, reboot, and terminate instances according to their 
need for the instances’ computing resources.

One of the enabling technologies for EC2 is virtualization, which enables a 
single server to host multiple “guest” operating systems concurrently. A sin-
gle server in the EC2 fleet potentially can host several customers’ running 
instances, improving the economies of scale and driving down costs. Different 
instance types have different characteristics and pricing. They may have dif-
ferent amounts of RAM, CPU power,1 local storage, and I/O performance, and 
the on-demand pricing may range from $0.085 to $2.40 per instance-hour. As 
of this writing, the CUDA-capable cg1.4xlarge instance type costs $2.10 per 
instance-hour and has the following characteristics.

1.  The CPU capabilities are measured in EC2 Compute Units (ECUs). As of this writing, the ECUs 
available from a given instance range from 1 (in the m1.small instance type) to 88.5 (in the
cc2.8xlarge instance type).
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• 23 GB of RAM

• 33.5 ECUs (two quad-core Intel Xeon X5570 “Nehalem” CPUs)

• 1690 GB of instance storage

• 64-bit platform

Since cg1.4xlarge is a member of the “cluster” instance family, only a single 
instance will run on a given server; also, it is plugged into a much higher band-
width network than other EC2 instance types to enable cluster computing for 
parallel workloads.

4.5.3 KEY PAIRS

Access to EC2 instances is facilitated by key pairs. The term refers to the central 
concept in public key cryptography that the authentication is performed using a 
private key (available only to those who are authorized) and a public key that can 
be freely shared.

When a key pair is created, the private key is downloaded in the form of a .pem 
file. There are two reasons to keep careful track of a .pem file after creating a 
key pair: First, anyone with access to the .pem file can use it to gain access to 
your EC2 computing resources, and second, there is no way to obtain new copies 
of the private key! Amazon is not in the key retention business, so once the pri-
vate key is downloaded, it is yours to keep track of.

Listing 4.1 gives an example .pem file. The format is convenient because it 
has anchor lines (the “BEGIN RSA PRIVATE KEY”/ “END RSA PRIVATE 
KEY”) and is “7-bit clean” (i.e., only uses ASCII text characters), so it can be 
emailed, copied-and-pasted into text fields, appended to files such as ~/.ssh/ 
authorized_keys to enable password-less login, or published in books. The 
name for a given key pair is specified when launching an EC2 instance; in turn, 
the corresponding private key file is used to gain access to that instance. To see 
more specifically how the .pem file is used to access EC2 instances, see the 
sections on Linux and Windows below.

Listing 4.1 Example .pem file.
-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEA2mHaXk9tTZqN7ZiUWoxhcSHjVCbHmn1SKamXqOKdLDfmqducvVkAlB1cjIz/
NcwIHk0TxbnEPEDyPPHg8RYGya34evswzBUCOIcilbVIpVCyaTyzo4k0WKPW8znXJzQpxr/OHzzu
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tAvlq95HGoBobuGM5kaDSlkugOmTUXFKxZ4ZN1rm2kUo21N2m9jrkDDq4qTMFxuYW0H0AXeHOfNF
ImroUCN2udTWOjpdgIPCgYEzz3Cssd9QIzDyadw+wbkTYq7eeqTNKULs4/gmLIAw+EXKE2/seyBL
leQeK11j1TFhDCjYRfghp0ecv4UnpAtiO6nNzod7aTAR1bXqJXbSqwIDAQABAoIBAAh2umvlUCst
zkpjG3zW6//ifFkKl7nZGZIbzJDzF3xbPklfBZghFvCmoquf21ROcBIckqObK4vaSIksJrexTtoK
MBM0IRQHzGo8co6y0/n0QrXpcFzqOGknEHGk0D3ou6XEUUzMo8O+okwi9UaFq4aAn2FdYkFDa5X7
d4Y0id1WzPcVurOSrnFNkWl4GRu+pluD2bmSmb7RUxQWGbP7bf98EyhpdugOdO7R3yOCcdaaGg0L
hdTlwJ3jCP9dmnk7NqApRzkv7R1sXzOnU2v3b9+WpF0g6wCeM2eUuK1IY3BPl0Pg+Q4xU0jpRSr0
vLDt8fUcIdH4PXTKua1NxsBA1uECgYEA72wC3BmL7HMIgf33yvK+/yA1z6AsAvIIAlCHJOi9sihT
XF6dnfaJ6d12oCj1RUqG9e9Y3cW1YjgcdqQBk5F8M6bPuIfzOctM/urd1ryWZ3ddSxgBaLEO1h4c
3/cQWGGvaMPpDSAihs2d/CnnlVoQGiQrlWxDGzIHzu8RRV43fKcCgYEA6YDkj6kzlx4cuQwwsPVb
IfdtP6WrHe+Ro724ka3Ry+4xFPcarXj5yl5/aPHNpdPPCfR+uYNjBiTD90w+duV8LtBxJoF+i/lt
Mui4116xXMBaMGQfFMS0u2+z3aZI8MXZF8gGDIrI9VVfpDCi2RNKaT7KhfraZ8VzZsdAqDO8Zl0C
gYEAvVq3iEvMFl2ERQsPhzslQ7G93U/Yfxvcqbf2qoJIRTcPduZ90gjCWmwE/fZmxT6ELs31grBz
HBM0r8BWXteZW2B6uH8NJpBbfOFUQhk0+u+0oUeDFcGy8jUusRM9oijgCgOntfHMXMESSfT6a2yn
f4VL0wmkqUWQV2FMT4iMadECgYATFUGYrA9XTlKynNht3d9wyzPWe8ecTrPsWdj3rujybaj9OaSo
gLaJX2eyP/C6mLDW83BX4PD6045ga46/UMnxWX+l0fdxoRTXkEVq9IYyOlYklkoj/F944gwlFS3o
34J6exJjfAQoaK3EUWU9sGHocAVFJdcrm+tufuI93NyM0QKBgB+koBIkJG8u0f19oW1dhUWERsuo
poXZ9Kh/GvJ9u5DUwv6F+hCGRotdBFhjuwKNTbutdzElxDMNHKoy/rhiqgcneMUmyHh/F0U4sOWl
XqqMD2QfKXBAU0ttviPbsmm0dbjzTTd3FO1qx2K90T3u9GEUdWYqMxOyZjUoLyNr+Tar
-----END RSA PRIVATE KEY-----

4.5.4 AVAILABILITY ZONES (AZS) AND REGIONS

AWS provides its services in separate Availability Zones (AZs) that are carefully 
segregated from one another, with the intention of preventing outages affecting 
one Availability Zone from affecting any other Availability Zone. For CUDA devel-
opers, the main consideration to bear in mind is that instances, EBS volumes, 
and other resources must be in the same AZ to interoperate.

4.5.5 S3 

S3 (Simple Storage Service) is designed to be a reliable way to store data for 
later retrieval. The “objects” (basically files) are stored in a hierarchical layout 
consisting of “buckets” at the top of the hierarchy, with optional intervening 
“folders.”

Besides storage and retrieval (“PUT” and “GET,” respectively), S3 includes the 
following features.

• Permissions control. By default, S3 objects are accessible only to the owner 
of the S3 account, but they may be made public or permissions can be granted 
to specific AWS accounts.

• Objects may be encrypted.
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• Metadata may be associated with an S3 object, such as the language of a text 
file or whether the object is an image.

• Logging: Operations performed on S3 objects can be logged (and the logs are 
stored as more S3 objects).

• Reduced Redundancy: S3 objects can be stored with a lower reliability factor, 
for a lower price.

• Notifications: Automatic notifications can be set up, to, for example, let the 
customer know if loss of a Reduced Redundancy object is detected.

• Object lifetime management: Objects can be scheduled to be deleted auto-
matically after a specified period of time.

Many other AWS services use S3 as a persistent data store; for example, snap-
shots of AMIs and EBS volumes are stored in S3.

4.5.6 EBS 

EBS (Elastic Block Storage) consists of network-based storage that can be allo-
cated and attached and detached to running instances. AWS customers also can 
“snapshot” EBS volumes, creating templates for new EBS volumes.

EC2 instances often have a root EBS volume that contains the operating system 
and driver software. If more storage is desired, you can create and attach an 
EBS volume and mount it within the guest operating system.2

4.5.7 AMIS 

Amazon Machine Images (AMIs) are descriptions of what an EC2 instance would 
“look like” once launched, including the operating system and the number and 
contents of attached EBS volumes. Most EC2 customers start with a “stock” AMI 
provided by Amazon, modify it to their satisfaction, and then take a snapshot of 
the AMI so they can launch more instances with the same setup.

When an instance is launched, EC2 will take a few minutes to muster the 
requested resources and boot the virtual machine. Once the instance is running, 

2.  You may have to change the OS configuration if you want the EBS volume to be available to 
instances launched from a derivative AMI; see the “Linux on EC2” or “Windows on EC2” sections 
in this chapter. 
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you can query its IP address and access it over the Internet using the private key 
whose name was specified at instance launch time.

The external IP address of the instance is incorporated into the DNS name. For 
example, a cg1.4xlarge instance might be named

ec2-70-17-16-35.compute-1.amazonaws.com

and the external IP address of that machine is 70.17.16.35.3

EC2 instances also have internal IP addresses that can be used for intracluster 
communication. If, for example, you launch a cluster of instances that need to 
communicate using software such as the Message Passing Interface (MPI), use 
the internal IP addresses.

4.5.8 LINUX ON EC2

EC2 supports many different flavors of Linux, including an Amazon-branded 
 flavor (“Amazon Linux”) that is derived from Red Hat. Once an instance is 
launched, it may be accessed via ssh using the key pair that was used to launch 
the instance. Using the IP address above and the Example.pem file in List-
ing 4.1, we might type

ssh –i Example.pem ec2-user@70.17.16.35

(The root username varies with the flavor of Linux: ec2-user is the root user-
name for Amazon Linux, while CentOS uses root and Ubuntu uses ubuntu.)

Once logged in, the machine is all yours! You can add users and set their pass-
words, set up SSH for password-less login, install needed software (such as the 
CUDA toolchain), attach more EBS volumes, and set up the ephemeral disks. 
You can then snapshot an AMI to be able to launch more instances that look 
exactly like the one you’ve set up.

EBS 
EBS (Elastic Block Storage) volumes are easy to create, either from a blank 
volume or by making a live copy of a snapshot. Once created, the EBS volume 
may be attached to an instance, where it will appear as a device (such as /dev/
sdf or, on more recent Linux kernels, /dev/xvdf). When the EBS volume is 
first attached, it is just a raw block storage device that must be formatted before 

3.  IP addresses have been changed to protect the innocent.
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use using a command such as mkfs.ext3. Once formatted, the drive may be 
mounted to a directory.

mount <Device> <Directory>

Finally, if you want to snapshot an AMI and for the drive to be visible on instances 
launched using the derivative AMI, edit /etc/fstab to include the volume. 
When creating an EBS volume to attach to a running instance, make sure to 
create it in the same Availability Zone (e.g., us-east-1b) as the instance.

Ephemeral Storage 
Many EC2 instance types, including cg1.4xlarge, have local hard disks 
associated with them. These disks, when available, are used strictly for scratch 
local storage; unlike EBS or S3, no erasure encoding or other technologies are 
employed to make the disks appear more reliable. To emphasize this reduced 
reliability, the disks are referred to as ephemeral storage.

To make ephemeral disks available, specify the “-b” option to ec2-run- 
instances—for example, 

ec2-run-instances –t cg1.4xlarge –k nwiltEC2 –b /dev/sdb=ephemeral0 
/dev/sdc=ephemeral1

Like EBS volumes, ephemerals must be formatted (e.g., mkfs.ext3) and 
mounted before they can be used, and they must have fstab entries in order to 
reappear when the instance is rebooted.

User Data
User data may be specified to an instance, either at launch time or while an 
instance is running (in which case the instance must be rebooted). The user data 
then may be queried at

http://169.254.169.254/latest/user-data

4.5.9 WINDOWS ON EC2

Windows instances are accessed in a slightly different way than Linux instances. 
Once launched, customers must use their private key file to retrieve the pass-
word for the EC2 instance’s Administrator account. You can either specify your 
.pem file or copy-and-paste its contents into the AWS Management Console 
(shown in Figure 4.1).
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By default, this password-generation behavior is only in force on “stock” AMIs 
from AWS. If you “snapshot” one of these AMIs, they will retain whatever pass-
words were present on the machine when the snapshot was taken. To create 
a new Windows AMI that generates a random password upon launch, run the 
“EC2 Config Service” tool (available in the Start menu), click the “Bundle” tab, 
and click the button that says “Run Sysprep and Shutdown Now” (Figure 4.2). 
After clicking this button, any AMI created against it will generate a random 
password, like the stock Windows AMIs.

Ephemeral Storage

In order for ephem eral storage to be useable by a Windows instance, you must 
specify the –b option to ec2-run-instances, as follows.

ec2-run-instances –t cg1.4xlarge –k nwiltEC2 –b /dev/sdb=ephemeral0 
/dev/sdc=ephemeral1

Figure 4.1 AWS Windows password retrieval.

       



117

   4.5 AMAZON WEB SERVICES 

Figure 4.2 Sysprep for Windows on EC2. 

User Data

User data may be specified to an instance, either at launch time or while an 
instance is running (in which case the instance must be rebooted). The user data 
then may be queried at

http://169.254.169.254/latest/user-data
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Chapter 5

Memory

To maximize performance, CUDA uses different types of memory, depending on 
the expected usage. Host memory refers to the memory attached to the CPU(s) 
in the system. CUDA provides APIs that enable faster access to host memory 
by page-locking and mapping it for the GPU(s). Device memory is attached to the 
GPU and accessed by a dedicated memory controller, and, as every beginning 
CUDA developer knows, data must be copied explicitly between host and device 
memory in order to be processed by the GPU.

Device memory can be allocated and accessed in a variety of ways.

• Global memory may be allocated statically or dynamically and accessed via 
pointers in CUDA kernels, which translate to global load/store instructions.

• Constant memory is read-only memory accessed via different instructions that 
cause the read requests to be serviced by a cache hierarchy optimized for 
broadcast to multiple threads.

• Local memory contains the stack: local variables that cannot be held in regis-
ters, parameters, and return addresses for subroutines.

• Texture memory (in the form of CUDA arrays) is accessed via texture and 
surface load/store instructions. Like constant memory, read requests from 
texture memory are serviced by a separate cache that is optimized for read-
only access.

Shared memory is an important type of memory in CUDA that is not backed by 
device memory. Instead, it is an abstraction for an on-chip “scratchpad” mem-
ory that can be used for fast data interchange between threads within a block. 
Physically, shared memory comes in the form of built-in memory on the SM: On 
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SM 1.x hardware, shared memory is implemented with a 16K RAM; on SM 2.x 
and more recent hardware, shared memory is implemented using a 64K cache 
that may be partitioned as 48K L1/16K shared, or 48K shared/16K L1.

 5.1 Host Memory
In CUDA, host memory refers to memory accessible to the CPU(s) in the system. 
By default, this memory is pageable, meaning the operating system may move 
the memory or evict it out to disk. Because the physical location of pageable 
memory may change without notice, it cannot be accessed by peripherals like 
GPUs. To enable “direct memory access” (DMA) by hardware, operating sys-
tems allow host memory to be “page-locked,” and for performance reasons, 
CUDA includes APIs that make these operating system facilities available to 
application developers. So-called pinned memory that has been page-locked and 
mapped for direct access by CUDA GPU(s) enables

• Faster transfer performance

• Asynchronous memory copies (i.e., memory copies that return control to the 
caller before the memory copy necessarily has finished; the GPU does the 
copy in parallel with the CPU)

• Mapped pinned memory that can be accessed directly by CUDA kernels

Because the virtual�physical mapping for pageable memory can change 
unpredictably, GPUs cannot access pageable memory at all. CUDA copies page-
able memory using a pair of staging buffers of pinned memory that are allocated 
by the driver when a CUDA context is allocated. Chapter 6 includes hand-crafted 
pageable memcpy routines that use CUDA events to do the synchronization 
needed to manage this double-buffering.

5.1.1 ALLOCATING PINNED MEMORY

Pinned memory is allocated and freed using special functions provided by 
CUDA: cudaHostAlloc()/cudaFreeHost() for the CUDA runtime, and 
cuMemHostAlloc()/cuMemFreeHost() for the driver API. These functions 
work with the host operating system to allocate page-locked memory and map it 
for DMA by the GPU(s).
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CUDA keeps track of memory it has allocated and transparently accelerates 
memory copies that involve host pointers allocated with cuMemHostAlloc()/
cudaHostAlloc(). Additionally, some functions (notably the asynchronous 
memcpy functions) require pinned memory.

The bandwidthTest SDK sample enables developers to easily compare the 
performance of pinned memory versus normal pageable memory. The 
--memory=pinned option causes the test to use pinned memory instead 
of pageable memory. Table 5.1 lists the bandwidthTest numbers for a 
cg1.4xlarge instance in Amazon EC2, running Windows 7-x64 (numbers in 
MB/s). Because it involves a significant amount of work for the host, including a 
kernel transition, allocating pinned memory is expensive.

CUDA 2.2 added several features to pinned memory. Portable pinned memory 
can be accessed by any GPU; mapped pinned memory is mapped into the CUDA 
address space for direct access by CUDA kernels; and write-combined pinned 
memory enables faster bus transfers on some systems. CUDA 4.0 added two 
important features that pertain to host memory: Existing host memory ranges 
can be page-locked in place using host memory registration, and Unified Virtual 
Addressing (UVA) enables all pointers to be unique process-wide, including 
host and device pointers. When UVA is in effect, the system can infer from the 
address range whether memory is device memory or host memory.

5.1.2 PORTABLE PINNED MEMORY

By default, pinned memory allocations are only accessible to the GPU that 
is current when cudaHostAlloc() or cuMemHostAlloc() is called. By 
specifying the cudaHostAllocPortable flag to cudaHostAlloc(), or the 
CU_MEMHOSTALLOC_PORTABLE flag to cuHostMemAlloc(), applications 
can request that the pinned allocation be mapped for all GPUs instead. Porta-
ble pinned allocations benefit from the transparent acceleration of memcpy 
described earlier and can participate in asynchronous memcpys for any GPU in 

Table 5.1 Pinned versus Pageable Bandwidth

HOST�DEVICE DEVICE�HOST

Pinned 5523 5820

Pageable 2951 2705
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the system. For applications that intend to use multiple GPUs, it is good practice 
to specify all pinned allocations as portable.

NOTE 

When UVA is in effect, all pinned memory allocations are portable.

5.1.3 MAPPED PINNED MEMORY

By default, pinned memory allocations are mapped for the GPU outside the 
CUDA address space. They can be directly accessed by the GPU, but only 
through memcpy functions. CUDA kernels cannot read or write the host mem-
ory directly. On GPUs of SM 1.2 capability and higher, however, CUDA kernels 
are able to read and write host memory directly; they just need allocations to be 
mapped into the device memory address space.

To enable mapped pinned allocations, applications using the CUDA runtime 
must call cudaSetDeviceFlags() with the cudaDeviceMapHost flag before 
any initialization has been performed. Driver API applications specify the 
CU_CTX_MAP_HOST flag to cuCtxCreate().

Once mapped pinned memory has been enabled, it may be allocated by 
calling cudaHostAlloc() with the cudaHostAllocMapped flag, or 
cuMemHostAlloc() with the CU_MEMALLOCHOST_DEVICEMAP flag. 
Unless UVA is in effect, the application then must query the device pointer 
corresponding to the allocation with cudaHostGetDevicePointer() or 
cuMemHostGetDevicePointer(). The resulting device pointer then can 
be passed to CUDA kernels. Best practices with mapped pinned memory are 
described in the section “Mapped Pinned Memory Usage.”

NOTE 

When UVA is in effect, all pinned memory allocations are mapped.1

5.1.4 WRITE-COMBINED PINNED MEMORY

Write-combined memory, also known as write-combining or Uncacheable 
Write Combining (USWC) memory, was created to enable the CPU to write 

1.  Except those marked as write combining.
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to GPU frame buffers quickly and without polluting the CPU cache.2 To that 
end, Intel added a new page table kind that steered writes into special write- 
combining buffers instead of the main processor cache hierarchy. Later, Intel 
also added “nontemporal” store instructions (e.g., MOVNTPS and MOVNTI) 
that enabled applications to steer writes into the write-combining buffers on a 
per- instruction basis. In general, memory fence instructions (such as MFENCE) 
are needed to maintain coherence with WC memory. These operations are not 
needed for CUDA applications because they are done automatically when the 
CUDA driver submits work to the hardware.

For CUDA, write-combining memory can be requested by calling cudaHost-
Alloc() with the cudaHostWriteCombined flag, or cuMemHostAlloc() 
with the CU_MEMHOSTALLOC_WRITECOMBINED flag. Besides setting the page 
table entries to bypass the CPU caches, this memory also is not snooped during 
PCI Express bus transfers. On systems with front side buses (pre-Opteron and 
pre-Nehalem), avoiding the snoops improves PCI Express transfer performance. 
There is little, if any, performance advantage to WC memory on NUMA systems.

Reading WC memory with the CPU is very slow (about 6x slower), unless the 
reads are done with the MOVNTDQA instruction (new with SSE4). On NVIDIA’s 
integrated GPUs, write-combined memory is as fast as the system memory 
 carveout—system memory that was set aside at boot time for use by the GPU 
and is not available to the CPU.

Despite the purported benefits, as of this writing, there is little reason for CUDA 
developers to use write-combined memory. It’s just too easy for a host memory 
pointer to WC memory to “leak” into some part of the application that would 
try to read the memory. In the absence of empirical evidence to the contrary, it 
should be avoided. 

NOTE 

When UVA is in effect, write-combined pinned allocations are not mapped 
into the unified address space.

5.1.5 REGISTERING PINNED MEMORY

CUDA developers don’t always get the opportunity to allocate host memory they 
want the GPU(s) to access directly. For example, a large, extensible application 

2.  WC memory originally was announced by Intel in 1997, at the same time as the Accelerated 
Graphics Port (AGP). AGP was used for graphics boards before PCI Express.
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may have an interface that passes pointers to CUDA-aware plugins, or the 
application may be using an API for some other peripheral (notably high-speed 
networking) that has its own dedicated allocation function for much the same 
reason CUDA does. To accommodate these usage scenarios, CUDA 4.0 added 
the ability to register pinned memory.

Pinned memory registration decouples allocation from the page-locking and 
mapping of host memory. It takes an already-allocated virtual address range, 
page-locks it, and maps it for the GPU. Just as with cudaHostAlloc(), the 
memory optionally may be mapped into the CUDA address space or made porta-
ble (accessible to all GPUs).

The cuMemHostRegister()/cudaHostRegister()and cuMemHost-
Unregister()/ cudaHostUnregister() functions register and unregister 
host memory for access by the GPU(s), respectively. The memory range to reg-
ister must be page-aligned: In other words, both the base address and the size 
must be evenly divisible by the page size of the operating system. Applications 
can allocate page-aligned address ranges in two ways.

• Allocate the memory with operating system facilities that traffic in whole 
pages, such as VirtualAlloc() on Windows or valloc() or mmap()3 on 
other platforms. 

• Given an arbitrary address range (say, memory allocated with malloc() or 
operator new[]), clamp the address range to the next-lower page bound-
ary and pad to the next page size.

NOTE

Even when UVA is in effect, registered pinned memory that has been 
mapped into the CUDA address space has a different device pointer than the 
host pointer. Applications must call  cudaHostGetDevicePointer()/
cuMemHostGetDevicePointer() in order to obtain the device pointer.

5.1.6 PINNED MEMORY AND UVA 

When UVA (Unified Virtual Addressing) is in effect, all pinned memory allo-
cations are both mapped and portable. The exceptions to this rule are 
write-combined memory and registered memory. For those, the device pointer 

3.  Or posix_memalign() in conjunction with getpagesize().
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may differ from the host pointer, and applications still must query it with 
cudaHostGetDevicePointer()/cuMemHostGetDevicePointer().

UVA is supported on all 64-bit platforms except Windows Vista and Windows 7. 
On Windows Vista and Windows 7, only the TCC driver (which may be enabled 
or disabled using nvidia-smi) supports UVA. Applications can query whether 
UVA is in effect by calling cudaGetDeviceProperties() and examining the 
cudaDeviceProp::unifiedAddressing structure member, or by calling 
cuDeviceGetAttribute() with CU_DEVICE_ATTRIBUTE_UNIFIED_
ADDRESSING.

5.1.7 MAPPED PINNED MEMORY USAGE

For applications whose performance relies on PCI Express transfer perfor-
mance, mapped pinned memory can be a boon. Since the GPU can read or write 
host memory directly from kernels, it eliminates the need to perform some 
memory copies, reducing overhead. Here are some common idioms for using 
mapped pinned memory. 

• Posting writes to host memory: Multi-GPU applications often must stage 
results back to system memory for interchange with other GPUs; writing 
these results via mapped pinned memory avoids an extraneous device�host 
memory copy. Write-only access patterns to host memory are appealing 
because there is no latency to cover.

• Streaming: These workloads otherwise would use CUDA streams to coordi-
nate concurrent memcpys to and from device memory, while kernels do their 
processing on device memory.

• “Copy with panache”: Some workloads benefit from performing computations 
as data is transferred across PCI Express. For example, the GPU may com-
pute subarray reductions while transferring data for Scan. 

Caveats
Mapped pinned memory is not a panacea. Here are some caveats to consider 
when using it. 

• Texturing from mapped pinned memory is possible, but very slow.

• It is important that mapped pinned memory be accessed with coalesced 
memory transactions (see Section 5.2.9). The performance penalty for unco-
alesced memory transactions ranges from 6x to 2x. But even on SM 2.x and 
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later GPUs, whose caches were supposed to make coalescing an obsolete 
consideration, the penalty is significant.

• Polling host memory with a kernel (e.g., for CPU/GPU synchronization) is not 
recommended. 

• Do not try to use atomics on mapped pinned host memory, either for the host 
(locked compare-exchange) or the device (atomicAdd()). On the CPU side, 
the facilities to enforce mutual exclusion for locked operations are not visible 
to peripherals on the PCI Express bus. Conversely, on the GPU side, atomic 
operations only work on local device memory locations because they are 
implemented using the GPU’s local memory controller.

5.1.8 NUMA, THREAD AFFINITY, AND PINNED MEMORY

Beginning with the AMD Opteron and Intel Nehalem, CPU memory controllers 
were integrated directly into CPUs. Previously, the memory had been attached 
to the so-called “front-side bus” (FSB) of the “northbridge” of the chipset. In 
multi-CPU systems, the northbridge could service memory requests from any 
CPU, and memory access performance was reasonably uniform from one CPU 
to another. With the introduction of integrated memory controllers, each CPU 
has its own dedicated pool of “local” physical memory that is directly attached 
to that CPU. Although any CPU can access any other CPU’s memory, “ nonlocal” 
accesses—accesses by one CPU to memory attached to another CPU—are 
performed across the AMD HyperTransport (HT) or Intel QuickPath Interconnect 
(QPI), incurring latency penalties and bandwidth limitations. To contrast with the 
uniform memory access times exhibited by systems with FSBs, these system 
architectures are known as NUMA for nonuniform memory access. 

As you can imagine, performance of multithreaded applications can be heavily 
dependent on whether memory references are local to the CPU that is running 
the current thread. For most applications, however, the higher cost of a nonlocal 
access is offset by the CPUs’ on-board caches. Once nonlocal memory is fetched 
into a CPU, it remains in-cache until evicted or needed by a memory access 
to the same page by another CPU. In fact, it is common for NUMA systems to 
include a System BIOS option to “interleave” memory physically between CPUs. 
When this BIOS option is enabled, the memory is evenly divided between CPUs 
on a per-cache line (typically 64 bytes) basis, so, for example, on a 2-CPU sys-
tem, about 50% of memory accesses will be nonlocal on average.

For CUDA applications, PCI Express transfer performance can be dependent on 
whether memory references are local. If there is more than one I/O hub (IOH) 
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in the system, the GPU(s) attached to a given IOH have better performance and 
reduce demand for QPI bandwidth when the pinned memory is local. Because 
some high-end NUMA systems are hierarchical but don’t associate the pools of 
memory bandwidth strictly with CPUs, NUMA APIs refer to nodes that may or 
may not strictly correspond with CPUs in the system.

If NUMA is enabled on the system, it is good practice to allocate host mem-
ory on the same node as a given GPU. Unfortunately, there is no official CUDA 
API to affiliate a GPU with a given CPU. Developers with a priori knowledge of 
the system design may know which node to associate with which GPU. Then 
platform-specific, NUMA-aware APIs may be used to perform these memory 
allocations, and host memory registration (see Section 5.1.5) can be used to pin 
those virtual allocations and map them for the GPU(s).

Listing 5.1 gives a code fragment to perform NUMA-aware allocations on Linux,4 
and Listing 5.2 gives a code fragment to perform NUMA-aware allocations on 
Windows.5

Listing 5.1 NUMA-aware allocation (Linux).
bool
numNodes( int *p )
{
    if ( numa_available() >= 0 ) {
        *p = numa_max_node() + 1;
        return true;
    }
    return false;
}

void *
pageAlignedNumaAlloc( size_t bytes, int node )
{
    void *ret;
    printf( "Allocating on node %d\n", node ); fflush(stdout);
    ret = numa_alloc_onnode( bytes, node );
    return ret;
}

void
pageAlignedNumaFree( void *p, size_t bytes )
{
    numa_free( p, bytes );
}

4.  http://bit.ly/USy4e7
5.  http://bit.ly/XY1g8m
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Listing 5.2 NUMA-aware allocation (Windows).
bool
numNodes( int *p )
{
    ULONG maxNode;
    if ( GetNumaHighestNodeNumber( &maxNode ) ) {
        *p = (int) maxNode+1;
        return true;
    }
    return false;
}

void *
pageAlignedNumaAlloc( size_t bytes, int node )
{
    void *ret;
    printf( "Allocating on node %d\n", node ); fflush(stdout);
    ret = VirtualAllocExNuma( GetCurrentProcess(), 
                              NULL,
                              bytes,
                              MEM_COMMIT | MEM_RESERVE,
                              PAGE_READWRITE,
                              node );
    return ret;
}

void
pageAlignedNumaFree( void *p )
{
    VirtualFreeEx( GetCurrentProcess(), p, 0, MEM_RELEASE );
}

 5.2 Global Memory
Global memory is the main abstraction by which CUDA kernels read or write 
device memory.6 Since device memory is directly attached to the GPU and read 
and written using a memory controller integrated into the GPU, the peak band-
width is extremely high: typically more than 100G/s for high-end CUDA cards.

Device memory can be accessed by CUDA kernels using device pointers. The 
following simple memset kernel gives an example.

template<class T>
__global__ void

6.  For maximum developer confusion, CUDA uses the term device pointer to refer to pointers that 
reside in global memory (device memory addressable by CUDA kernels).
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GPUmemset( int *base, int value, size_t N )
{
    for ( size_t i = blockIdx.x*blockDim.x + threadIdx.x; 
        i < N; 
        i += gridDim.x*blockDim.x )
    {
        base[i] = value;
    }
}

The device pointer base resides in the device address space, separate from the 
CPU address space used by the host code in the CUDA program. As a result, 
host code in the CUDA program can perform pointer arithmetic on device point-
ers, but they may not dereference them.7 

This kernel writes the integer value into the address range given by base and 
N. The references to blockIdx, blockDim, and gridDim enable the kernel to 
operate correctly, using whatever block and grid parameters were specified to 
the kernel launch.

5.2.1 POINTERS

When using the CUDA runtime, device pointers and host pointers both are typed 
as void *. The driver API uses an integer-valued typedef called CUdeviceptr 
that is the same width as host pointers (i.e., 32 bits on 32-bit operating systems 
and 64 bits on 64-bit operating systems), as follows. 

#if defined(__x86_64) || defined(AMD64) || defined(_M_AMD64)
typedef unsigned long long CUdeviceptr;
#else
typedef unsigned int CUdeviceptr;
#endif

The uintptr_t type, available in <stdint.h> and introduced in C++0x, may 
be used to portably convert between host pointers (void *) and device pointers 
(CUdeviceptr), as follows.

CUdeviceptr devicePtr;
void *p;
p = (void *) (uintptr_t) devicePtr;
devicePtr = (CUdeviceptr) (uintptr_t) p;

7.  Mapped pinned pointers represent an exception to this rule. They are located in system 
memory but can be accessed by the GPU. On non-UVA systems, the host and device pointers 
to this memory are different: The application must call cuMemHostGetDevicePointer() or 
 cudaHostGetDevicePointer() to map the host pointer to the corresponding device pointer. 
But when UVA is in effect, the pointers are the same.
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The host can do pointer arithmetic on device pointers to pass to a kernel or mem-
cpy call, but the host cannot read or write device memory with these pointers. 

32- and 64-Bit Pointers in the Driver API
Because the original driver API definition for a pointer was 32-bit, the addition 
of 64-bit support to CUDA required the definition of CUdeviceptr and, in turn, 
all driver API functions that took CUdeviceptr as a parameter, to change.8 
 cuMemAlloc(), for example, changed from

CUresult CUDAAPI cuMemAlloc(CUdeviceptr *dptr, unsigned int bytesize);

to

CUresult CUDAAPI cuMemAlloc(CUdeviceptr *dptr, size_t bytesize);

To accommodate both old applications (which linked against a cuMemAlloc() 
with 32-bit CUdeviceptr and size) and new ones, cuda.h includes two blocks 
of code that use the preprocessor to change the bindings without requiring func-
tion names to be changed as developers update to the new API.

First, a block of code surreptitiously changes function names to map to newer 
functions that have different semantics.

#if defined(__CUDA_API_VERSION_INTERNAL) || __CUDA_API_VERSION 
>= 3020

 #define cuDeviceTotalMem cuDeviceTotalMem_v2
…
 #define cuTexRefGetAddress cuTexRefGetAddress_v2
#endif /* __CUDA_API_VERSION_INTERNAL || __CUDA_API_VERSION >= 3020 */

This way, the client code uses the same old function names, but the compiled 
code generates references to the new function names with _v2 appended.

Later in the header, the old functions are defined as they were. As a result, devel-
opers compiling for the latest version of CUDA get the latest function definitions 
and semantics. cuda.h uses a similar strategy for functions whose semantics 
changed from one version to the next, such as cuStreamDestroy().

5.2.2 DYNAMIC ALLOCATIONS

Most global memory in CUDA is obtained through dynamic allocation. Using the 
CUDA runtime, the functions

8.  The old functions had to stay for compatibility reasons.
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cudaError_t cudaMalloc( void **, size_t );
cudaError_t cudaFree( void );

allocate and free global memory, respectively. The corresponding driver API 
functions are

CUresult CUDAAPI cuMemAlloc(CUdeviceptr *dptr, size_t bytesize);
CUresult CUDAAPI cuMemFree(CUdeviceptr dptr);

Allocating global memory is expensive. The CUDA driver implements a sub-
allocator to satisfy small allocation requests, but if the suballocator must create 
a new memory block, that requires an expensive operating system call to the 
kernel mode driver. If that happens, the CUDA driver also must synchronize with 
the GPU, which may break CPU/GPU concurrency. As a result, it’s good practice 
to avoid allocating or freeing global memory in performance-sensitive code.

Pitched Allocations
The coalescing constraints, coupled with alignment restrictions for texturing 
and 2D memory copy, motivated the creation of pitched memory allocations. 
The idea is that when creating a 2D array, a pointer into the array should have 
the same alignment characteristics when updated to point to a different row. 
The pitch of the array is the number of bytes per row of the array.9 The pitch 
allocations take a width (in bytes) and height, pad the width to a suitable hard-
ware-specific pitch, and pass back the base pointer and pitch of the allocation. 
By using these allocation functions to delegate selection of the pitch to the 
driver, developers can future-proof their code against architectures that widen 
alignment requirements.10

CUDA programs often must adhere to alignment constraints enforced by 
the hardware, not only on base addresses but also on the widths (in bytes) of 
memory copies and linear memory bound to textures. Because the alignment 
constraints are hardware-specific, CUDA provides APIs that enable developers 
to delegate the selection of the appropriate alignment to the driver. Using these 
APIs enables CUDA applications to implement hardware-independent code and 
to be “future-proof” against CUDA architectures that have not yet shipped.

 9.  The idea of padding 2D allocations is much older than CUDA. Graphics APIs such as Apple 
QuickDraw and Microsoft DirectX exposed “rowBytes” and “pitch,” respectively. At one time, 
the padding simplified addressing computations by replacing a multiplication by a shift, or even 
replacing a multiplication by two shifts and an add with “two powers of 2” such as 640 (512 + 
128). But these days, integer multiplication is so fast that pitch allocations have other motiva-
tions, such as avoiding negative performance interactions with caches.

10.  Not an unexpected trend. Fermi widened several alignment requirements over Tesla.
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Figure 5.1 shows a pitch allocation being performed on an array that is 352 
bytes wide. The pitch is padded to the next multiple of 64 bytes before allocating 
the memory. Given the pitch of the array in addition to the row and column, the 
address of an array element can be computed as follows.

inline T *
getElement( T *base, size_t Pitch, int row, int col )
{
 return (T *) ((char *) base + row*Pitch) + col;
} 

The CUDA runtime function to perform a pitched allocation is as follows.

template<class T>
__inline__ __host__ cudaError_t cudaMallocPitch(
 T **devPtr,
 size_t *pitch,
 size_t widthInBytes,
 size_t height
);

The CUDA runtime also includes the function cudaMalloc3D(), which allo-
cates 3D memory regions using the cudaPitchedPtr and cudaExtent 
structures.

extern __host__ cudaError_t CUDARTAPI cudaMalloc3D(struct 
cudaPitchedPtr* pitchedDevPtr, struct cudaExtent extent);

cudaPitchedPtr, which receives the allocated memory, is defined as follows.

struct cudaPitchedPtr
{
    void *ptr;
    size_t pitch;
    size_t xsize;
    size_t ysize;
};

Pitch = 384

Width = 352

Figure 5.1 Pitch versus width.
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cudaPitchedPtr::ptr specifies the pointer; cudaPitchedPtr::pitch 
specifies the pitch (width in bytes) of the allocation; and cudaPitchedPtr::
xsize and cudaPitchedPtr::ysize are the logical width and height of the 
allocation, respectively. cudaExtent is defined as follows.

struct cudaExtent
{
    size_t width;
    size_t height;
    size_t depth;
};

cudaExtent::width is treated differently for arrays and linear device  memory. 
For arrays, it specifies the width in array elements; for linear device memory, it 
specifies the pitch (width in bytes).

The driver API function to allocate memory with a pitch is as follows.

CUresult CUDAAPI cuMemAllocPitch(CUdeviceptr *dptr, size_t *pPitch, 
size_t WidthInBytes, size_t Height, unsigned int ElementSizeBytes);

The ElementSizeBytes parameter may be 4, 8, or 16 bytes, and it causes the 
allocation pitch to be padded to 64-, 128-, or 256-byte boundaries. Those are the 
alignment requirements for coalescing of 4-, 8-, and 16-byte memory transac-
tions on SM 1.0 and SM 1.1 hardware. Applications that are not concerned with 
running well on that hardware can specify 4.

The pitch returned by cudaMallocPitch()/cuMemAllocPitch() is the 
width-in-bytes passed in by the caller, padded to an alignment that meets the 
alignment constraints for both coalescing of global load/store operations, and 
texture bind APIs. The amount of memory allocated is height*pitch.

For 3D arrays, developers can multiply the height by the depth before perform-
ing the allocation. This consideration only applies to arrays that will be accessed 
via global loads and stores, since 3D textures cannot be bound to global 
memory.

Allocations within Kernels
Fermi-class hardware can dynamically allocate global memory using mal-
loc(). Since this may require the GPU to interrupt the CPU, it is potentially 
slow. The sample program mallocSpeed.cu measures the performance of 
malloc() and free() in kernels.

Listing 5.3 shows the key kernels and timing routine in mallocSpeed.cu. As 
an important note, the cudaSetDeviceLimit() function must be called with 
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cudaLimitMallocHeapSize before malloc() may be called in kernels. The 
invocation in mallocSpeed.cu requests a full gigabyte (230 bytes).

CUDART_CHECK( cudaDeviceSetLimit(cudaLimitMallocHeapSize, 1<<30) );

When cudaDeviceSetLimit() is called, the requested amount of memory is 
allocated and may not be used for any other purpose.

Listing 5.3 MallocSpeed function and kernels.
__global__ void
AllocateBuffers( void **out, size_t N )
{
    size_t i = blockIdx.x*blockDim.x + threadIdx.x;
    out[i] = malloc( N );
}

__global__ void
FreeBuffers( void **in )
{
    size_t i = blockIdx.x*blockDim.x + threadIdx.x;
    free( in[i] );
}

cudaError_t
MallocSpeed( double *msPerAlloc, double *msPerFree, 
             void **devicePointers, size_t N,
             cudaEvent_t evStart, cudaEvent_t evStop,
             int cBlocks, int cThreads )
{
    float etAlloc, etFree;
    cudaError_t status;

    CUDART_CHECK( cudaEventRecord( evStart ) );
    AllocateBuffers<<<cBlocks,cThreads>>>( devicePointers, N );
    CUDART_CHECK( cudaEventRecord( evStop ) );
    CUDART_CHECK( cudaThreadSynchronize() );
    CUDART_CHECK( cudaGetLastError() ); 
    CUDART_CHECK( cudaEventElapsedTime( &etAlloc, evStart, evStop ) );

    CUDART_CHECK( cudaEventRecord( evStart ) );
    FreeBuffers<<<cBlocks,cThreads>>>( devicePointers );
    CUDART_CHECK( cudaEventRecord( evStop ) );
    CUDART_CHECK( cudaThreadSynchronize() );
    CUDART_CHECK( cudaGetLastError() ); 
    CUDART_CHECK( cudaEventElapsedTime( &etFree, evStart, evStop ) );

    *msPerAlloc = etAlloc / (double) (cBlocks*cThreads);
    *msPerFree = etFree / (double) (cBlocks*cThreads);
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Error:
    return status;
}

Listing 5.4 shows the output from a sample run of mallocSpeed.cu on Ama-
zon’s cg1.4xlarge instance type. It is clear that the allocator is optimized for 
small allocations: The 64-byte allocations take an average of 0.39 microsec-
onds to perform, while allocations of 12K take at least 3 to 5 microseconds. The 
first result (155 microseconds per allocation) is having 1 thread per each of 500 
blocks allocate a 1MB buffer.

Listing 5.4 Sample mallocSpeed.cu output.
Microseconds per alloc/free (1 thread per block):
alloc       free
154.93      4.57

Microseconds per alloc/free (32-512 threads per block, 12K 
allocations):
32            64            128           256           512
alloc  free   alloc  free   alloc  free   alloc  free   alloc  free
3.53   1.18   4.27   1.17   4.89   1.14   5.48   1.14   10.38  1.11

Microseconds per alloc/free (32-512 threads per block, 64-byte 
allocations):
32            64            128           256           512
alloc  free   alloc  free   alloc  free   alloc  free   alloc  free
0.35   0.27   0.37   0.29   0.34   0.27   0.37   0.22   0.53   0.27

IMPORTANT NOTE 

Memory allocated by invoking malloc() in a kernel must be freed by a 
kernel calling free(). Calling cudaFree() on the host will not work.

5.2.3 QUERYING THE AMOUNT OF GLOBAL MEMORY

The amount of global memory in a system may be queried even before CUDA 
has been initialized.

CUDA Runtime
Call cudaGetDeviceProperties() and examine cudaDeviceProp.
totalGlobalMem:

size_t totalGlobalMem; /**< Global memory on device in bytes */.
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Driver API
Call this driver API function.

CUresult CUDAAPI cuDeviceTotalMem(size_t *bytes, CUdevice dev);

WDDM and Available Memory

The Windows Display Driver Model (WDDM) introduced with Windows Vista 
changed the model for memory management by display drivers to enable 
chunks of video memory to be swapped in and out of host memory as 
needed to perform rendering. As a result, the amount of memory reported 
by cuDeviceTotalMem() / cudaDeviceProp::totalGlobalMem 
will not exactly reflect the amount of physical memory on the card.

5.2.4 STATIC ALLOCATIONS

Applications can statically allocate global memory by annotating a memory dec-
laration with the __device__ keyword. This memory is allocated by the CUDA 
driver when the module is loaded.

CUDA Runtime
Memory copies to and from statically allocated memory can be performed by 
cudaMemcpyToSymbol() and cudaMemcpyFromSymbol().

cudaError_t cudaMemcpyToSymbol(
    char *symbol,
    const void *src,
    size_t count,
    size_t offset = 0,
    enum cudaMemcpyKind kind = cudaMemcpyHostToDevice
);
cudaError_t cudaMemcpyFromSymbol(
    void *dst,
    char *symbol,
    size_t count,
    size_t offset = 0,
    enum cudaMemcpyKind kind = cudaMemcpyDeviceToHost
);

When calling cudaMemcpyToSymbol() or cudaMemcpyFromSymbol(), do 
not enclose the symbol name in quotation marks. In other words, use 

 cudaMemcpyToSymbol(g_xOffset, poffsetx, Width*Height*sizeof(int));

not
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 cudaMemcpyToSymbol(“g_xOffset”, poffsetx, ... );

Both formulations work, but the latter formulation will compile for any symbol 
name (even undefined symbols). If you want the compiler to report errors for 
invalid symbols, avoid the quotation marks.

CUDA runtime applications can query the pointer corresponding to a static allo-
cation by calling cudaGetSymbolAddress().

cudaError_t cudaGetSymbolAddress( void **devPtr, char *symbol );

Beware: It is all too easy to pass the symbol for a statically declared device 
memory allocation to a CUDA kernel, but this does not work. You must call 
cudaGetSymbolAddress() and use the resulting pointer.

Driver API
Developers using the driver API can obtain pointers to statically allocated mem-
ory by calling cuModuleGetGlobal().

CUresult CUDAAPI cuModuleGetGlobal(CUdeviceptr *dptr, size_t *bytes, 
CUmodule hmod, const char *name);

Note that cuModuleGetGlobal() passes back both the base pointer and the 
size of the object. If the size is not needed, developers can pass NULL for the 
bytes parameter. Once this pointer has been obtained, the memory can be 
accessed by passing the CUdeviceptr to memory copy calls or CUDA kernel 
invocations.

5.2.5 MEMSET APIS

For developer convenience, CUDA provides 1D and 2D memset functions. Since 
they are implemented using kernels, they are asynchronous even when no 
stream parameter is specified. For applications that must serialize the execu-
tion of a memset within a stream, however, there are *Async() variants that 
take a stream parameter.

CUDA Runtime
The CUDA runtime supports byte-sized memset only: 

cudaError_t cudaMemset(void *devPtr, int value, size_t count);
cudaError_t cudaMemset2D(void *devPtr, size_t pitch, int value, 
size_t width, size_t height);

The pitch parameter specifies the bytes per row of the memset operation.
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Driver API
The driver API supports 1D and 2D memset of a variety of sizes, shown in Table 
5.2. These memset functions take the destination pointer, value to set, and num-
ber of values to write starting at the base address. The pitch parameter is the 
bytes per row (not elements per row!).

CUresult CUDAAPI cuMemsetD8(CUdeviceptr dstDevice, unsigned char uc, 
size_t N);
CUresult CUDAAPI cuMemsetD16(CUdeviceptr dstDevice, unsigned short 
us, size_t N);
CUresult CUDAAPI cuMemsetD32(CUdeviceptr dstDevice, unsigned int ui, 
size_t N);
CUresult CUDAAPI cuMemsetD2D8(CUdeviceptr dstDevice, size_t dstPitch, 
unsigned char uc, size_t Width, size_t Height);
CUresult CUDAAPI cuMemsetD2D16(CUdeviceptr dstDevice, size_t 
dstPitch, unsigned short us, size_t Width, size_t Height);
CUresult CUDAAPI cuMemsetD2D32(CUdeviceptr dstDevice, size_t 
dstPitch, unsigned int ui, size_t Width, size_t Height);

Now that CUDA runtime and driver API functions can peacefully coexist in the 
same application, CUDA runtime developers can use these functions as needed. 
The unsigned char, unsigned short, and unsigned int parameters just 
specify a bit pattern; to fill a global memory range with some other type, such as 
float, use a volatile union to coerce the float to unsigned int.

5.2.6 POINTER QUERIES

CUDA tracks all of its memory allocations, and provides APIs that enable 
applications to query CUDA about pointers that were passed in from some other 
party. Libraries or plugins may wish to pursue different strategies based on this 
information.

Table 5.2 Memset Variations

OPERAND SIZE 1D 2D

8-bit cuMemsetD8 cuMemsetD2D8

16-bit cuMemsetD16 cuMemsetD2D16

32-bit cuMemset32 cuMemsetD2D32
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CUDA Runtime
The cudaPointerGetAttributes() function takes a pointer as input and 
passes back a cudaPointerAttributes structure containing information 
about the pointer. 

struct cudaPointerAttributes {
    enum cudaMemoryType memoryType;
    int device; 
    void *devicePointer;
    void *hostPointer;
}

When UVA is in effect, pointers are unique process-wide, so there is no ambigu-
ity as to the input pointer’s address space. When UVA is not in effect, the input 
pointer is assumed to be in the current device’s address space (Table 5.3).

Driver API
Developers can query the address range where a given device pointer resides 
using the cuMemGetAddressRange() function.

CUresult CUDAAPI cuMemGetAddressRange(CUdeviceptr *pbase, size_t 
*psize, CUdeviceptr dptr);

This function takes a device pointer as input and passes back the base and size 
of the allocation containing that device pointer.

Table 5.3 cudaPointerAttributes Members

STRUCTURE MEMBER DESCRIPTION

enum cudaMemoryType memoryType; Type of memory referenced by the input pointer.

int device; If memoryType== cudaMemoryTypeDevice, the device 
where the memory resides.

If memoryType== cudaMemoryTypeHost, the device whose 
context was used to allocate the memory.

void *devicePointer; Device pointer corresponding to the allocation. If the mem-
ory cannot be accessed by the current device, this structure 
member is set to NULL.

void *hostPointer; Host pointer corresponding to the allocation. If the allocation 
is not mapped pinned memory, this structure member is set 
to NULL.
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With the addition of UVA in CUDA 4.0, developers can query CUDA to get even 
more information about an address using cuPointerGetAttribute().

CUresult CUDAAPI cuPointerGetAttribute(void *data, CUpointer_
attribute attribute, CUdeviceptr ptr);

This function takes a device pointer as input and passes back the information 
corresponding to the attribute parameter, as shown in Table 5.4. Note that for 
unified addresses, using CU_POINTER_ATTRIBUTE_DEVICE_POINTER or 
CU_POINTER_ATTRIBUTE_HOST_POINTER will cause the same pointer value 
to be returned as the one passed in.

Kernel Queries
On SM 2.x (Fermi) hardware and later, developers can query whether a given 
pointer points into global space. The __isGlobal() intrinsic

unsigned int __isGlobal( const void *p );

returns 1 if the input pointer refers to global memory and 0 otherwise.

Table 5.4 cuPointerAttribute Usage

ENUM VALUE PASSBACK

CU_POINTER_ATTRIBUTE_CONTEXT CUcontext in which the pointer was allocated or 
registered.

CU_POINTER_ATTRIBUTE_MEMORY_TYPE cuMemoryType corresponding to the pointer’s memory 
type: CU_MEMORYTYPE_HOST if host memory, CU_MEM-
ORYTYPE_DEVICE if device memory, or CU_MEMORY-
TYPE_UNIFIED if unified.

CU_POINTER_ATTRIBUTE_DEVICE_POINTER
 

ptr is assumed to be a mapped host pointer; data 
points to a void * and receives the device pointer cor-
responding to the allocation. If the memory cannot be 
accessed by the current device, this structure member 
is set to NULL.

CU_POINTER_ATTRIBUTE_HOST_POINTER ptr is assumed to be device memory; data points to a 
void * and receives the host pointer corresponding 
to the allocation. If the allocation is not mapped pinned 
memory, this structure member is set to NULL.
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5.2.7 PEER-TO-PEER ACCESS

Under certain circumstances, SM 2.0-class and later hardware can map mem-
ory belonging to other, similarly capable GPUs. The following conditions apply.

• UVA must be in effect.

• Both GPUs must be Fermi-class and be based on the same chip.

• The GPUs must be on the same I/O hub.

Since peer-to-peer mapping is intrinsically a multi-GPU feature, it is described 
in detail in the multi-GPU chapter (see Section 9.2).

5.2.8 READING AND WRITING GLOBAL MEMORY

CUDA kernels can read or write global memory using standard C semantics 
such as pointer indirection (operator*, operator->) or array subscripting 
(operator[]). Here is a simple templatized kernel to write a constant into a 
memory range. 

template<class T> 
__global__ void
GlobalWrites( T *out, T value, size_t N )
{
    for ( size_t i = blockIdx.x*blockDim.x+threadIdx.x; 

i < N; 
i += blockDim.x*gridDim.x ) {

out[i] = value;
    }
}

This kernel works correctly for any inputs: any component size, any block size, 
any grid size. Its code is intended more for illustrative purposes than maximum 
performance. CUDA kernels that use more registers and operate on multiple 
values in the inner loop go faster, but for some block and grid configurations, its 
performance is perfectly acceptable. In particular, provided the base address 
and block size are specified correctly, it performs coalesced memory transac-
tions that maximize memory bandwidth.

5.2.9 COALESCING CONSTRAINTS

For best performance when reading and writing data, CUDA kernels must 
perform coalesced memory transactions. Any memory transaction that does not 
meet the full set of criteria needed for coalescing is “uncoalesced.” The penalty 
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for uncoalesced memory transactions varies from 2x to 8x, depending on the 
chip implementation. Coalesced memory transactions have a much less dra-
matic impact on performance on more recent hardware, as shown in Table 5.5.

Transactions are coalesced on a per-warp basis. A simplified set of criteria 
must be met in order for the memory read or write being performed by the warp 
to be coalesced.

• The words must be at least 32 bits in size. Reading or writing bytes or 16-bit 
words is always uncoalesced.

• The addresses being accessed by the threads of the warp must be contiguous 
and increasing (i.e., offset by the thread ID).

• The base address of the warp (the address being accessed by the first thread 
in the warp) must be aligned as shown in Table 5.6.

Table 5.5 Bandwidth Penalties for Uncoalesced Memory Access

CHIP PENALTY

SM 1.0-1.1 6x

SM 1.2 2x

SM 2.x (ECC off) 20%

SM 2.x (ECC on) 2x

Table 5.6 Alignment Criteria for Coalescing

WORD SIZE ALIGNMENT

8-bit *

16-bit *

32-bit 64-byte

64-bit 128-byte

128-bit 256-byte

* 8- and 16-bit memory accesses are always uncoalesced.
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The ElementSizeBytes parameter to cuMemAllocPitch()is intended to 
accommodate the size restriction. It specifies the size in bytes of the mem-
ory accesses intended by the application, so the pitch guarantees that a set of 
coalesced memory transactions for a given row of the allocation also will be 
coalesced for other rows.

Most kernels in this book perform coalesced memory transactions, provided 
the input addresses are properly aligned. NVIDIA has provided more detailed, 
 architecture-specific information on how global memory transactions are han-
dled, as detailed below.

SM 1.x (Tesla)
SM 1.0 and SM 1.1 hardware require that each thread in a warp access adjacent 
memory locations in sequence, as described above. SM 1.2 and 1.3 hardware 
relaxed the coalescing constraints somewhat. To issue a coalesced memory 
request, divide each 32-thread warp into two “half warps,” lanes 0–15 and lanes 
16–31. To service the memory request from each half-warp, the hardware per-
forms the following algorithm.

1. Find the active thread with the lowest thread ID and locate the memory 
segment that contains that thread’s requested address. The segment size 
depends on the word size: 1-byte requests result in 32-byte segments; 2-byte 
requests result in 64-byte segments; and all other requests result in 
128-byte segments.

2. Find all other active threads whose requested address lies in the same 
segment.

3. If possible, reduce the segment transaction size to 64 or 32 bytes.

4. Carry out the transaction and mark the services threads as inactive.

5. Repeat steps 1–4 until all threads in the half-warp have been serviced.

Although these requirements are somewhat relaxed compared to the SM 1.0–1.1 
constraints, a great deal of locality is still required for effective coalescing. In 
practice, the relaxed coalescing means the threads within a warp can permute 
the inputs within small segments of memory, if desired.

SM 2.x (Fermi)
SM 2.x and later hardware includes L1 and L2 caches. The L2 cache services the 
entire chip; the L1 caches are per-SM and may be configured to be 16K or 48K 
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in size. The cache lines are 128 bytes and map to 128-byte aligned segments in 
device memory. Memory accesses that are cached in both L1 and L2 are ser-
viced with 128-byte memory transactions, whereas memory accesses that are 
cached in L2 only are serviced with 32-byte memory transactions. Caching in 
L2 only can therefore reduce overfetch, for example, in the case of scattered 
memory accesses. 

The hardware can specify the cacheability of global memory accesses on a 
per-instruction basis. By default, the compiler emits instructions that cache 
memory accesses in both L1 and L2 (-Xptxas -dlcm=ca). This can be changed 
to cache in L2 only by specifying -Xptxas -dlcm=cg. Memory accesses that 
are not present in L1 but cached in L2 only are serviced with 32-byte memory 
transactions, which may improve cache utilization for applications that are per-
forming scattered memory accesses.

Reading via pointers that are declared volatile causes any cached results 
to be discarded and for the data to be refetched. This idiom is mainly useful for 
polling host memory locations. Table 5.7 summarizes how memory requests by 
a warp are broken down into 128-byte cache line requests.

NOTE

On SM 2.x and higher architectures, threads within a warp can access any 
words in any order, including the same words.

Table 5.7 SM 2.x Cache Line Requests

WORD SIZE

128-BYTE 

REQUESTS PER . . . 

8-bit 1 Warp

16-bit 1 Warp

32-bit 1 Warp

64-bit 2 Half-warp

128-bit 4 Quarter-warp

       



147

   5.2 GLOBAL MEMORY 

SM 3.x (Kepler)
The L2 cache architecture is the same as SM 2.x. SM 3.x does not cache global 
memory accesses in L1. In SM 3.5, global memory may be accessed via the texture 
cache (which is 48K per SM in size) by accessing memory via const restricted 
pointers or by using the __ldg() intrinsics in sm_35_intrinsics.h. As when 
texturing directly from device memory, it is important not to access memory that 
might be accessed concurrently by other means, since this cache is not kept coher-
ent with respect to the L2.

5.2.10 MICROBENCHMARKS: PEAK MEMORY BANDWIDTH

The source code accompanying this book includes microbenchmarks that 
determine which combination of operand size, loop unroll factor, and block size 
maximizes bandwidth for a given GPU. Rewriting the earlier GlobalWrites 
code as a template that takes an additional parameter n (the number of writes to 
perform in the inner loop) yields the kernel in Listing 5.5.

Listing 5.5 GlobalWrites kernel.
template<class T, const int n> 
__global__ void
GlobalWrites( T *out, T value, size_t N )
{
    size_t i;
    for ( i = n*blockIdx.x*blockDim.x+threadIdx.x; 
          i < N-n*blockDim.x*gridDim.x; 
          i += n*blockDim.x*gridDim.x ) {
        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            out[index] = value;
        }
    }
    // to avoid the (index<N) conditional in the inner loop, 
    // we left off some work at the end
    for ( int j = 0; j < n; j++ ) {
        size_t index = i+j*blockDim.x;
        if ( index<N ) out[index] = value;
    }
}

ReportRow(), the function given in Listing 5.6 that writes one row of output 
calls by calling a template function BandwidthWrites (not shown), reports the 
bandwidth for a given type, grid, and block size.
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Listing 5.6 ReportRow function.
template<class T, const int n, bool bOffset>
double
ReportRow( size_t N, 
           size_t threadStart, 
           size_t threadStop, 
           size_t cBlocks )
{
    int maxThreads = 0;
    double maxBW = 0.0;
    printf( "%d\t", n );
    for ( int cThreads = threadStart; 
              cThreads <= threadStop; 
              cThreads *= 2 ) {
        double bw;
        bw = BandwidthWrites<T,n,bOffset>( N, cBlocks, cThreads );
        if ( bw > maxBW ) {
            maxBW = bw;
            maxThreads = cThreads;
        }
        printf( "%.2f\t", bw );
    }
    printf( "%.2f\t%d\n", maxBW, maxThreads );
    return maxBW;
}

The threadStart and threadStop parameters typically are 32 and 512, 
32 being the warp size and the minimum number of threads per block that 
can occupy the machine. The bOffset template parameter specifies whether 
 BandwidthWrites should offset the base pointer, causing all memory 
 transactions to become uncoalesced. If the program is invoked with the 
--uncoalesced command line option, it will perform the bandwidth measure-
ments with the offset pointer.

Note that depending on sizeof(T), kernels with n above a certain level will fall 
off a performance cliff as the number of temporary variables in the inner loop 
grows too high to hold in registers.

The five applications summarized in Table 5.8 implement this strategy. They 
measure the memory bandwidth delivered for different operand sizes (8-, 16-, 
32-, 64-, and 128-bit), threadblock sizes (32, 64, 128, 256, and 512), and loop 
unroll factors (1–16). CUDA hardware isn’t necessarily sensitive to all of these 
parameters. For example, many parameter settings enable a GK104 to deliver 
140GB/s of bandwidth via texturing, but only if the operand size is at least 32-bit. 
For a given workload and hardware, however, the microbenchmarks highlight 
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which parameters matter. Also, for small operand sizes, they highlight how loop 
unrolling can help increase performance (not all applications can be refactored 
to read larger operands).

Listing 5.7 gives example output from globalRead.cu, run on a GeForce GTX 
680 GPU. The output is grouped by operand size, from bytes to 16-byte quads; 
the leftmost column of each group gives the loop unroll factor. The bandwidth 
delivered for blocks of sizes 32 to 512 is given in each column, and the maxBW 
and maxThreads columns give the highest bandwidth and the block size that 
delivered the highest bandwidth, respectively.

The GeForce GTX 680 can deliver up to 140GB/s, so Listing 5.7 makes it clear 
that when reading 8- and 16-bit words on SM 3.0, global loads are not the way 
to go. Bytes deliver at most 60GB/s, and 16-bit words deliver at most 101GB/s.11 
For 32-bit operands, a 2x loop unroll and at least 256 threads per block are 
needed to get maximum bandwidth.

These microbenchmarks can help developers optimize their bandwidth-bound 
applications. Choose the one whose memory access pattern most closely 
resembles your application, and either run the microbenchmark on the target 
GPU or, if possible, modify the microbenchmark to resemble the actual work-
load more closely and run it to determine the optimal parameters.

11.  Texturing works better. Readers can run globalReadTex.cu to confirm.

Table 5.8 Memory Bandwidth Microbenchmarks

MICROBENCHMARK 

FILENAME

MEMORY 

TRANSACTIONS

globalCopy.cu One read, one write

globalCopy2.cu Two reads, one write

globalRead.cu One read

globalReadTex.cu One read via texture

globalWrite.cu One write
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Listing 5.7 Sample output, globalRead.cu.
Running globalRead.cu microbenchmark on GeForce GTX 680
Using coalesced memory transactions
Operand size: 1 byte 
Input size: 16M operands
                      Block Size
Unroll  32      64      128     256     512     maxBW   maxThreads
1       9.12    17.39   30.78   30.78   28.78   30.78   128
2       18.37   34.54   56.36   53.53   49.33   56.36   128
3       23.55   42.32   61.56   60.15   52.91   61.56   128
4       21.25   38.26   58.99   58.09   51.26   58.99   128
5       25.29   42.17   60.13   58.49   52.57   60.13   128
6       25.68   42.15   59.93   55.42   47.46   59.93   128
7       28.84   47.03   56.20   51.41   41.41   56.20   128
8       29.88   48.55   55.75   50.68   39.96   55.75   128
9       28.65   47.75   56.84   51.17   37.56   56.84   128
10      27.35   45.16   52.99   46.30   32.94   52.99   128
11      22.27   38.51   48.17   42.74   32.81   48.17   128
12      23.39   40.51   49.78   42.42   31.89   49.78   128
13      21.62   37.49   40.89   34.98   21.43   40.89   128
14      18.55   32.12   36.04   31.41   19.96   36.04   128
15      21.47   36.87   39.94   33.36   19.98   39.94   128
16      21.59   36.79   39.49   32.71   19.42   39.49   128
Operand size: 2 bytes
Input size: 16M operands
                      Block Size
Unroll  32      64      128     256     512     maxBW   maxThreads
1       18.29   35.07   60.30   59.16   56.06   60.30   128
2       34.94   64.39   94.28   92.65   85.99   94.28   128
3       45.02   72.90   101.38  99.02   90.07   101.38  128
4       38.54   68.35   100.30  98.29   90.28   100.30  128
5       45.49   75.73   98.68   98.11   90.05   98.68   128
6       47.58   77.50   100.35  97.15   86.17   100.35  128
7       53.64   81.04   92.89   87.39   74.14   92.89   128
8       44.79   74.02   89.19   83.96   69.65   89.19   128
9       47.63   76.63   91.60   83.52   68.06   91.60   128
10      51.02   79.82   93.85   84.69   66.62   93.85   128
11      42.00   72.11   88.23   79.24   62.27   88.23   128
12      40.53   69.27   85.75   76.32   59.73   85.75   128
13      44.90   73.44   78.08   66.96   41.27   78.08   128
14      39.18   68.43   74.46   63.27   39.27   74.46   128
15      37.60   64.11   69.93   60.22   37.09   69.93   128
16      40.36   67.90   73.07   60.79   36.66   73.07   128
Operand size: 4 bytes
Input size: 16M operands
                      Block Size
Unroll  32      64      128     256     512     maxBW   maxThreads
1       36.37   67.89   108.04  105.99  104.09  108.04  128
2       73.85   120.90  139.91  139.93  136.04  139.93  256
3       62.62   109.24  140.07  139.66  138.38  140.07  128
4       56.02   101.73  138.70  137.42  135.10  138.70  128
5       87.34   133.65  140.64  140.33  139.00  140.64  128
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6       100.64  137.47  140.61  139.53  127.18  140.61  128
7       89.08   133.99  139.60  138.23  124.28  139.60  128
8       58.46   103.09  129.24  122.28  110.58  129.24  128
9       68.99   116.59  134.17  128.64  114.80  134.17  128
10      54.64   97.90   123.91  118.84  106.96  123.91  128
11      64.35   110.30  131.43  123.90  109.31  131.43  128
12      68.03   113.89  130.95  125.40  108.02  130.95  128
13      71.34   117.88  123.85  113.08  76.98   123.85  128
14      54.72   97.31   109.41  101.28  71.13   109.41  128
15      67.28   111.24  118.88  108.35  72.30   118.88  128
16      63.32   108.56  117.77  103.24  69.76   117.77  128
Operand size: 8 bytes
Input size: 16M operands
                      Block Size
Unroll  32      64      128     256     512     maxBW   maxThreads
1       74.64   127.73  140.91  142.08  142.16  142.16  512
2       123.70  140.35  141.31  141.99  142.42  142.42  512
3       137.28  141.15  140.86  141.94  142.63  142.63  512
4       128.38  141.39  141.85  142.56  142.00  142.56  256
5       117.57  140.95  141.17  142.08  141.78  142.08  256
6       112.10  140.62  141.48  141.86  141.95  141.95  512
7       85.02   134.82  141.59  141.50  141.09  141.59  128
8       94.44   138.71  140.86  140.25  128.91  140.86  128
9       100.69  139.83  141.09  141.45  127.82  141.45  256
10      92.51   137.76  140.74  140.93  126.50  140.93  256
11      104.87  140.38  140.67  136.70  128.48  140.67  128
12      97.71   138.62  140.12  135.74  125.37  140.12  128
13      95.87   138.28  139.90  134.18  123.41  139.90  128
14      85.69   134.18  133.84  131.16  120.95  134.18  64
15      94.43   135.43  135.30  133.47  120.52  135.43  64
16      91.62   136.69  133.59  129.95  117.99  136.69  64
Operand size: 16 bytes
Input size: 16M operands
                      Block Size
Unroll  32      64      128     256     512     maxBW   maxThreads
1       125.37  140.67  141.15  142.06  142.59  142.59  512
2       131.26  141.95  141.72  142.32  142.49  142.49  512
3       141.03  141.65  141.63  142.43  138.44  142.43  256
4       139.90  142.70  142.62  142.20  142.84  142.84  512
5       138.24  142.08  142.18  142.79  140.94  142.79  256
6       131.41  142.45  142.32  142.51  142.08  142.51  256
7       131.98  142.26  142.27  142.11  142.26  142.27  128
8       132.70  142.47  142.10  142.67  142.19  142.67  256
9       136.58  142.28  141.89  142.42  142.09  142.42  256
10      135.61  142.67  141.85  142.86  142.36  142.86  256
11      136.27  142.48  142.45  142.14  142.41  142.48  64
12      130.62  141.79  142.06  142.39  142.16  142.39  256
13      107.98  103.07  105.54  106.51  107.35  107.98  32
14      103.53  95.38   96.38   98.34   102.92  103.53  32
15      89.47   84.86   85.31   87.01   90.26   90.26   512
16      81.53   75.49   75.82   74.36   76.91   81.53   32
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5.2.11 ATOMIC OPERATIONS

Support for atomic operations was added in SM 1.x, but they were prohibitively 
slow; atomics on global memory were improved on SM 2.x (Fermi-class) hard-
ware and vastly improved on SM 3.x (Kepler-class) hardware.

Most atomic operations, such as atomicAdd(), enable code to be simplified by 
replacing reductions (which often require shared memory and synchronization) 
with “fire and forget” semantics. Until SM 3.x hardware arrived, however, that 
type of programming idiom incurred huge performance degradations because 
pre-Kepler hardware was not efficient at dealing with “contended” memory 
locations (i.e., when many GPU threads are performing atomics on the same 
memory location).

NOTE 

Because atomic operations are implemented in the GPU memory control-
ler, they only work on local device memory locations. As of this writing, 
trying to perform atomic operations on remote GPUs (via peer-to-peer 
addresses) or host memory (via mapped pinned memory) will not work.

Atomics and Synchronization
Besides “fire and forget” semantics, atomics also may be used for synchroniza-
tion between blocks. CUDA hardware supports the workhorse base abstraction 
for synchronization, “compare and swap” (or CAS). On CUDA, compare-and-
swap (also known as compare-and-exchange—e.g., the CMPXCHG instruction in 
x86) is defined as follows.

int atomicCAS( int *address, int expected, int value);12

This function reads the word old at address, computes (old == expected 
? value : old), stores the result back to address, and returns old. In 
other words, the memory location is left alone unless it was equal to the expected 
value specified by the caller, in which case it is updated with the new value.

A simple critical section called a “spin lock” can be built out of CAS, as follows.

void enter_spinlock( int *address )
{
    while atomicCAS( address, 0, 1 );
}

12.  Unsigned and 64-bit variants of atomicCAS() also are available.
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Assuming the spin lock’s value is initialized to 0, the while loop iterates until 
the spin lock value is 0 when the atomicCAS() is executed. When that happens, 
*address atomically becomes 1 (the third parameter to atomicCAS()) and 
any other threads trying to acquire the critical section spin waiting for the criti-
cal section value to become 0 again.

The thread owning the spin lock can give it up by atomically swapping the 0 
back in

void leave_spinlock( int *address )
{
    atomicExch( m_p, 0 );
}

On CPUs, compare-and-swap instructions are used to implement all manner of 
synchronization. Operating systems use them (sometimes in conjunction with 
the kernel-level thread context switching code) to implement higher-level syn-
chronization primitives. CAS also may be used directly to implement “lock-free” 
queues and other data structures.

The CUDA execution model, however, imposes restrictions on the use of 
global memory atomics for synchronization. Unlike CPU threads, some CUDA 
threads within a kernel launch may not begin execution until other threads in 
the same kernel have exited. On CUDA hardware, each SM can context switch 
a limited number of thread blocks, so any kernel launch with more than 
MaxThreadBlocksPerSM*NumSMs requires the first thread blocks to exit before 
more thread blocks can begin execution. As a result, it is important that devel-
opers not assume all of the threads in a given kernel launch are active.

Additionally, the enter_spinlock() routine above is prone to deadlock if 
used for intrablock synchronization,13 for which it is unsuitable in any case, 
since the hardware supports so many better ways for threads within the same 
block to communicate and synchronize with one another (shared memory and 
__syncthreads(), respectively).

Listing 5.8 shows the implementation of the cudaSpinlock class, which uses 
the algorithm listed above and is subject to the just-described limitations.

13.  Expected usage is for one thread in each block to attempt to acquire the spinlock. Otherwise, 
the divergent code execution tends to deadlock.
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Listing 5.8 cudaSpinlock class.
class cudaSpinlock {
public:
    cudaSpinlock( int *p );
    void acquire();
    void release();
private:
    int *m_p;
};

inline __device__
cudaSpinlock::cudaSpinlock( int *p )
{
    m_p = p;
}

inline __device__ void
cudaSpinlock::acquire( )
{
    while ( atomicCAS( m_p, 0, 1 ) );
}

inline __device__ void
cudaSpinlock::release( )
{
    atomicExch( m_p, 0 );
}

Use of cudaSpinlock is illustrated in the spinlockReduction.cu sample, 
which computes the sum of an array of double values by having each block 
perform a reduction in shared memory, then using the spin lock to synchronize 
for the summation. Listing 5.9 gives the SumDoubles function from this 
sample. Note how adding the partial sum is performed only by thread 0 of 
each block.

Listing 5.9 SumDoubles function.
__global__ void
SumDoubles( 
    double *pSum, 
    int *spinlock, 
    const double *in, 
    size_t N, 
    int *acquireCount )
{
    SharedMemory<double> shared;
    cudaSpinlock globalSpinlock( spinlock );

    for ( size_t i = blockIdx.x*blockDim.x+threadIdx.x; 
i < N; 
i += blockDim.x*gridDim.x ) {
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        shared[threadIdx.x] = in[i];
        __syncthreads();
        double blockSum = Reduce_block<double,double>( );
        __syncthreads();

        if ( threadIdx.x == 0 ) {
            globalSpinlock.acquire( );
            *pSum += blockSum;
            __threadfence();
            globalSpinlock.release( );
        }
    }
}

5.2.12 TEXTURING FROM GLOBAL MEMORY

For applications that cannot conveniently adhere to the coalescing constraints, 
the texture mapping hardware presents a satisfactory alternative. The hard-
ware supports texturing from global memory (via cudaBindTexture()/
cuTexRefSetAddress(), which has lower peak performance than coalesced 
global reads but higher performance for less-regular access. The texture 
cache resources are also separate from other cache resources on the chip. A 
software coherency scheme is enforced by the driver invalidating the texture 
cache before kernel invocations that contain TEX instructions.14 See Chapter 10 
for details.

SM 3.x hardware added the ability to read global memory through the texture 
cache hierarchy without setting up and binding a texture reference. This func-
tionality may be accessed with a standard C++ language constructs: the const 
restrict keywords. Alternatively, you can use the __ldg() intrinsics defined 
in sm_35_intrinsics.h.

5.2.13 ECC (ERROR CORRECTING CODES)

SM 2.x and later GPUs in the Tesla (i.e., server GPU) product line come with the 
ability to run with error correction. In exchange for a smaller amount of mem-
ory (since some memory is used to record some redundancy) and lower band-
width, GPUs with ECC enabled can silently correct single-bit errors and report 
 double-bit errors.

14.  TEX is the SASS mnemonic for microcode instructions that perform texture fetches.
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ECC has the following characteristics.

• It reduces the amount of available memory by 12.5%. On a cg1.4xlarge 
instance in Amazon EC2, for example, it reduces the amount of memory from 
3071MB to 2687MB.

• It makes context synchronization more expensive.

• Uncoalesced memory transactions are more expensive when ECC is enabled 
than otherwise.

ECC can be enabled and disabled using the nvidia-smi command-line tool 
(described in Section 4.4) or by using the NVML (NVIDIA Management Library).

When an uncorrectable ECC error is detected, synchronous error-reporting 
mechanisms will return cudaErrorECCUncorrectable (for the CUDA run-
time) and CUDA_ERROR_ECC_UNCORRECTABLE (for the driver API). 

 5.3 Constant Memory
Constant memory is optimized for read-only broadcast to multiple threads. As 
the name implies, the compiler uses constant memory to hold constants that 
couldn’t be easily computed or otherwise compiled directly into the machine 
code. Constant memory resides in device memory but is accessed using differ-
ent instructions that cause the GPU to access it using a special “constant cache.” 

The compiler for constants has 64K of memory available to use at its discretion. 
The developer has another 64K of memory available that can be declared with 
the __constant__ keyword. These limits are per-module (for driver API appli-
cations) or per-file (for CUDA runtime applications). 

Naïvely, one might expect __constant__ memory to be analogous to the 
const keyword in C/C++, where it cannot be changed after initialization. But
 __constant__ memory can be changed, either by memory copies or by query-
ing the pointer to __constant__ memory and writing to it with a kernel. CUDA 
kernels must not write to __constant__ memory ranges that they may be 
accessing because the constant cache is not kept coherent with respect to the 
rest of the memory hierarchy during kernel execution.
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5.3.1 HOST AND DEVICE __CONSTANT__ MEMORY

Mark Harris describes the following idiom that uses the predefined macro 
__CUDA_ARCH__ to maintain host and device copies of __constant__ 
memory that are conveniently accessed by both the CPU and GPU.15

__constant__ double dc_vals[2] = { 0.0, 1000.0 };
       const double hc_vals[2] = { 0.0, 1000.0 };

__device__ __host__ double f(size_t i)
{
#ifdef __CUDA_ARCH__
    return dc_vals[i];
#else
    return hc_vals[i];
#endif
}

5.3.2 ACCESSING __CONSTANT__ MEMORY

Besides the accesses to constant memory implicitly caused by C/C++ operators, 
developers can copy to and from constant memory, and even query the pointer 
to a constant memory allocation.

CUDA Runtime
CUDA runtime applications can copy to and from __constant__ mem-
ory using cudaMemcpyToSymbol() and cudaMemcpyFromSymbol(), 
respectively. The pointer to __constant__ memory can be queried with 
cudaGetSymbolAddress().

cudaError_t cudaGetSymbolAddress( void **devPtr, char *symbol );

This pointer may be used to write to constant memory with a kernel, though 
developers must take care not to write to the constant memory while another 
kernel is reading it.

Driver API
Driver API applications can query the device pointer of constant memory using 
cuModuleGetGlobal(). The driver API does not include a special memory 
copy function like cudaMemcpyToSymbol(), since it does not have the lan-
guage  integration of the CUDA runtime. Applications must query the address with 
cuModuleGetGlobal() and then call cuMemcpyHtoD() or cuMemcpyDtoH(). 

15.  http://bit.ly/OpMdN5
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The amount of constant memory used by a kernel may be queried with 
cuFuncGetAttribute(CU_FUNC_ATTRIBUTE_CONSTANT_SIZE_BYTES).

 5.4 Local Memory
Local memory contains the stack for every thread in a CUDA kernel. It is used as 
follows.

• To implement the application binary interface (ABI)—that is, the calling 
convention 

• To spill data out of registers

• To hold arrays whose indices cannot be resolved by the compiler

In early implementations of CUDA hardware, any use of local memory was the 
“kiss of death.” It slowed things down so much that developers were encouraged 
to take whatever measure was needed to get rid of the local memory usage. 
With the advent of an L1 cache in Fermi, these performance concerns are less 
urgent, provided the local memory traffic is confined to L1.16

Developers can make the compiler report the amount of local memory needed 
by a given kernel with the nvcc options: -Xptxas –v,abi=no. At runtime, 
the amount of local memory used by a kernel may be queried with

cuFuncGetAttribute(CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES).

Paulius Micikevicius of NVIDIA gave a good presentation on how to determine 
whether local memory usage was impacting performance and what to do about 
it.17 Register spilling can incur two costs: an increased number of instructions 
and an increase in the amount of memory traffic. 

The L1 and L2 performance counters can be used to determine if the memory 
traffic is impacting performance. Here are some strategies to improve perfor-
mance in this case. 

• At compile time, specify a higher limit in –maxregcount. By increasing the 
number of registers available to the thread, both the instruction count and 

16.  The L1 cache is per-SM and is physically implemented in the same hardware as shared 
memory.

17.  http://bit.ly/ZAeHc5
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the memory traffic will decrease. The __launch_bounds__ directive may 
be used to tune this parameter when the kernel is being compiled online by 
PTXAS.

• Use noncaching loads for global memory, such as nvcc –Xptxas -dlcm=cg.

• Increase the L1 size to 48K. (Call cudaFuncSetCacheConfig() or 
cudaDeviceSetCacheconfig().)

When launching a kernel that uses more than the default amount of memory 
allocated for local memory, the CUDA driver must allocate a new local memory 
buffer before the kernel can launch. As a result, the kernel launch may take 
extra time; may cause unexpected CPU/GPU synchronization; and, if the driver 
is unable to allocate the buffer for local memory, may fail.18 By default, the 
CUDA driver will free these larger local memory allocations after the kernel has 
launched. This behavior can be inhibited by specifying the CU_CTX_RESIZE_
LMEM_TO_MAX flag to cuCtxCreate() or calling cudaSetDeviceFlags() 
with the cudaDeviceLmemResizeToMax flag set.

It is not difficult to build a templated function that illustrates the “performance 
cliff” when register spills occur. The templated GlobalCopy kernel in Listing 
5.10 implements a simple memcpy routine that uses a local array temp to stage 
global memory references. The template parameter n specifies the number of 
elements in temp and thus the number of loads and stores to perform in the 
inner loop of the memory copy.

As a quick review of the SASS microcode emitted by the compiler will confirm, 
the compiler can keep temp in registers until n becomes too large.

Listing 5.10 GlobalCopy kernel.
template<class T, const int n> 
__global__ void
GlobalCopy( T *out, const T *in, size_t N )
{
    T temp[n];
    size_t i;
    for ( i = n*blockIdx.x*blockDim.x+threadIdx.x; 
          i < N-n*blockDim.x*gridDim.x; 
          i += n*blockDim.x*gridDim.x ) {
        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            temp[j] = in[index];
        }

18.  Since most resources are preallocated, an inability to allocate local memory is one of the few 
circumstances that can cause a kernel launch to fail at runtime.
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        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            out[index] = temp[j];
        }
    }
    // to avoid the (index<N) conditional in the inner loop, 
    // we left off some work at the end
    for ( int j = 0; j < n; j++ ) {
        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            if ( index<N ) temp[j] = in[index];
        }
        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            if ( index<N ) out[index] = temp[j];
        }
    }
}

Listing 5.11 shows an excerpt of the output from globalCopy.cu on a GK104 GPU: 
the copy performance of 64-bit operands only. The degradation in performance 
due to register spilling becomes obvious in the row corresponding to a loop unroll 
of 12, where the delivered bandwidth decreases from 117GB/s to less than 90GB/s, 
and degrades further to under 30GB/s as the loop unroll increases to 16.

Table 5.9 summarizes the register and local memory usage for the kernels 
corresponding to the unrolled loops. The performance degradation of the copy 
corresponds to the local memory usage. In this case, every thread always spills 
in the inner loop; presumably, the performance wouldn’t degrade so much if 
only some of the threads were spilling (for example, when executing a divergent 
code path).

Listing 5.11 globalCopy.cu output (64-bit only).
Operand size: 8 bytes
Input size: 16M operands
                      Block Size
Unroll  32      64      128     256     512     maxBW   maxThreads
1       75.57   102.57  116.03  124.51  126.21  126.21  512
2       105.73  117.09  121.84  123.07  124.00  124.00  512
3       112.49  120.88  121.56  123.09  123.44  123.44  512
4       115.54  122.89  122.38  122.15  121.22  122.89  64
5       113.81  121.29  120.11  119.69  116.02  121.29  64
6       114.84  119.49  120.56  118.09  117.88  120.56  128
7       117.53  122.94  118.74  116.52  110.99  122.94  64
8       116.89  121.68  119.00  113.49  105.69  121.68  64
9       116.10  120.73  115.96  109.48  99.60   120.73  64
10      115.02  116.70  115.30  106.31  93.56   116.70  64
11      113.67  117.36  111.48  102.84  88.31   117.36  64
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12      88.16   86.91   83.68   73.78   58.55   88.16   32
13      85.27   85.58   80.09   68.51   52.66   85.58   64
14      78.60   76.30   69.50   56.59   41.29   78.60   32
15      69.00   65.78   59.82   48.41   34.65   69.00   32
16      65.68   62.16   54.71   43.02   29.92   65.68   32

Table 5.9 globalCopy Register and Local Memory Usage

UNROLL FACTOR REGISTERS LOCAL MEMORY (BYTES)

1 20 None

2 19 None

3 26 None

4 33 None

5 39 None

6 46 None

7 53 None

8 58 None

9 62 None

10 63 None

11 63 None

12 63 16

13 63 32

14 63 60

15 63 96

16 63 116
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 5.5 Texture Memory
In CUDA, the concept of texture memory is realized in two parts: a CUDA array 
contains the physical memory allocation, and a texture reference or surface 
reference19 contains a “view” that can be used to read or write a CUDA array. The 
CUDA array is just an untyped “bag of bits” with a memory layout optimized for 
1D, 2D, or 3D access. A texture reference contains information on how the CUDA 
array should be addressed and how its contents should be interpreted.

When using a texture reference to read from a CUDA array, the hardware uses a 
separate, read-only cache to resolve the memory references. While the ker-
nel is executing, the texture cache is not kept coherent with respect to the rest 
of the memory subsystem, so it is important not to use texture references to 
alias memory that will be operated on by the kernel. (The cache is invalidated 
between kernel launches.)

On SM 3.5 hardware, reads via texture can be explicitly requested by the devel-
oper using the const restricted keywords. The restricted keyword does 
nothing more than make the just-described “no aliasing” guarantee that the 
memory in question won’t be referenced by the kernel in any other way. When 
reading or writing a CUDA array with a surface reference, the memory traffic 
goes through the same memory hierarchy as global loads and stores. Chapter 
10 contains a detailed discussion of how to allocate and use textures in CUDA.

 5.6 Shared Memory
Shared memory is used to exchange data between CUDA threads within a block. 
Physically, it is implemented with a per-SM memory that can be accessed very 
quickly. In terms of speed, shared memory is perhaps 10x slower than register 
accesses but 10x faster than accesses to global memory. As a result, shared 
memory is often a critical resource to reduce the external bandwidth needed by 
CUDA kernels.

Since developers explicitly allocate and reference shared memory, it can be 
thought of as a “manually managed” cache or “scratchpad” memory. Devel-
opers can request different cache configurations at both the kernel and the 
device level: cudaDeviceSetCacheConfig()/cuCtxSetCacheConfig() 

19.  Surface references can be used only on SM 2.x and later hardware.
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specify the preferred cache configuration for a CUDA device, while 
 cudaFuncSetCacheConfig()/cuFuncSetCacheConfig() specify the 
preferred cache configuration for a given kernel. If both are specified, the 
per-kernel request takes precedence, but in any case, the requirements of 
the kernel may override the developer’s preference.

Kernels that use shared memory typically are written in three phases. 

• Load shared memory and __syncthreads() 

• Process shared memory and __syncthreads() 

• Write results

Developers can make the compiler report the amount of shared memory 
used by a given kernel with the nvcc options: -Xptxas –v,abi=no. At 
runtime, the amount of shared memory used by a kernel may be queried with 
cuFuncGetAttribute(CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES).

5.6.1 UNSIZED SHARED MEMORY DECLARATIONS

Any shared memory declared in the kernel itself is automatically allocated for 
each block when the kernel is launched. If the kernel also includes an unsized 
declaration of shared memory, the amount of memory needed by that declara-
tion must be specified when the kernel is launched.

If there is more than one extern __shared__ memory declaration, they are 
aliased with respect to one another, so the declaration

extern __shared__ char sharedChars[];
extern __shared__ int sharedInts[];

enables the same shared memory to be addressed as 8- or 32-bit integers, as 
needed. One motivation for using this type of aliasing is to use wider types when 
possible to read and write global memory, while using the narrow ones for ker-
nel computations.

NOTE 

If you have more than one kernel that uses unsized shared memory, they 
must be compiled in separate files.
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5.6.2 WARP-SYNCHRONOUS CODING

Shared memory variables that will be participating in warp-synchronous pro-
gramming must be declared as volatile to prevent the compiler from apply-
ing optimizations that will render the code incorrect.

5.6.3 POINTERS TO SHARED MEMORY

It is valid—and often convenient—to use pointers to refer to shared memory. 
Example kernels that use this idiom include the reduction kernels in Chapter 12 
(Listing 12.3) and the scanBlock kernel in Chapter 13 (Listing 13.3).

  5.7 Memory Copy 
CUDA has three different memory types—host memory, device memory, and 
CUDA arrays—and a full complement of functions to copy between them. For 
host�device memcpy, an additional set of functions provide asynchronous memcpy 
between pinned host memory and device memory or CUDA arrays. Additionally, a 
set of peer-to-peer memcpy functions enable memory to be copied between GPUs.

The CUDA runtime and the driver API take very different approaches. For 1D 
memcpy, the driver API defined a family of functions with type-strong param-
eters. The host-to-device, device-to-host, and device-to-device memcpy func-
tions are separate.

CUresult cuMemcpyHtoD(CUdeviceptr dstDevice, const void *srcHost, 
size_t ByteCount);
CUresult cuMemcpyDtoH(void *dstHost, CUdeviceptr srcDevice, size_t 
ByteCount);
CUresult cuMemcpyDtoD(CUdeviceptr dstDevice, CUdeviceptr srcDevice, 
size_t ByteCount);

In contrast, the CUDA runtime tends to define functions that take an extra 
“memcpy kind” parameter that depends on the memory types of the host and 
destination pointers.

enum cudaMemcpyKind
{
 cudaMemcpyHostToHost = 0,
 cudaMemcpyHostToDevice = 1,
 cudaMemcpyDeviceToHost = 2,
 cudaMemcpyDeviceToDevice = 3,
 cudaMemcpyDefault = 4
};
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For more complex memcpy operations, both APIs use descriptor structures to 
specify the memcpy.

5.7.1 SYNCHRONOUS VERSUS ASYNCHRONOUS MEMCPY

Because most aspects of memcpy (dimensionality, memory type) are indepen-
dent of whether the memory copy is asynchronous, this section examines the 
difference in detail, and later sections include minimal coverage of asynchro-
nous memcpy.

By default, any memcpy involving host memory is synchronous: The function does 
not return until after the operation has been performed.20 Even when  operating on 
pinned memory, such as memory allocated with cudaMallocHost(), synchro-
nous memcpy routines must wait until the operation is completed because the 
application may rely on that behavior.21 

When possible, synchronous memcpy should be avoided for performance rea-
sons. Even when streams are not being used, keeping all operations asynchro-
nous improves performance by enabling the CPU and GPU to run concurrently. If 
nothing else, the CPU can set up more GPU operations such as kernel launches 
and other memcpys while the GPU is running! If CPU/GPU concurrency is the 
only goal, there is no need to create any CUDA streams; calling an asynchronous 
memcpy with the NULL stream will suffice.

While memcpys involving host memory are synchronous by default, any memory 
copy not involving host memory (device�device or device�array) is asynchronous. 
The GPU hardware internally enforces serialization on these operations, so there is 
no need for the functions to wait until the GPU has finished before returning.

Asynchronous memcpy functions have the suffix Async(). For example, the driver 
API function for asynchronous host�device memcpy is cuMemcpyHtoDAsync()
and the CUDA runtime function is cudaMemcpyAsync().

The hardware that implements asynchronous memcpy has evolved over time. The 
very first CUDA-capable GPU (the GeForce 8800 GTX) did not have any copy engines, 
so asynchronous memcpy only enabled CPU/GPU concurrency. Later GPUs added 
copy engines that could perform 1D transfers while the SMs were running, and still 

20.  This is because the hardware cannot directly access host memory unless it has been page-
locked and mapped for the GPU. An asynchronous memory copy for pageable memory could 
be implemented by spawning another CPU thread, but so far, the CUDA team has chosen to 
avoid that additional complexity.

21.  When pinned memory is specified to a synchronous memcpy routine, the driver does take 
advantage by having the hardware use DMA, which is generally faster.
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later, fully capable copy engines were added that could accelerate 2D and 3D trans-
fers, even if the copy involved converting between pitch layouts and the block-linear 
layouts used by CUDA arrays. Additionally, early CUDA hardware only had one copy 
engine, whereas today, it sometimes has two. More than two copy engines wouldn’t 
necessarily make sense. Because a single copy engine can saturate the PCI 
Express bus in one direction, only two copy engines are needed to maximize both 
bus performance and concurrency between bus transfers and GPU computation.

The number of copy engines can be queried by calling  cuDeviceGetAttribute() 
with CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, or by examining the 
cudaDeviceProp::asyncEngineCount.

5.7.2 UNIFIED VIRTUAL ADDRESSING

Unified Virtual Addressing enables CUDA to make inferences about memory 
types based on address ranges. Because CUDA tracks which address ranges 
contain device addresses versus host addresses, there is no need to specify 
 cudaMemcpyKind parameter to the cudaMemcpy() function. The driver API 
added a cuMemcpy() function that similarly infers the memory types from the 
addresses.

CUresult cuMemcpy(CUdeviceptr dst, CUdeviceptr src, size_t ByteCount);

The CUDA runtime equivalent, not surprisingly, is called cudaMemcpy():

cudaError_t cudaMemcpy( void *dst, const void *src, size_t bytes );.

5.7.3 CUDA RUNTIME

Table 5.10 summarizes the memcpy functions available in the CUDA runtime. 

Table 5.10 Memcpy Functions (CUDA Runtime)

DEST 

TYPE

SOURCE 

TYPE DIM FUNCTION

Host Device 1D cudaMemcpy( , ...cudaMemcpyHostToDevice);

Host Array 1D cudaMemcpyFromArray( , ...cudaMemcpyDeviceToHost);

Device Host 1D cudaMemcpy(..., cudaMemcpyDeviceToHost);

Device Device 1D cudaMemcpy(..., cudaMemcpyDeviceToDevice);
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Table 5.10 Memcpy Functions (CUDA Runtime) (Continued )

DEST 

TYPE

SOURCE 

TYPE DIM FUNCTION

Device Array 1D cudaMemcpyFromArray

Array Host 1D cudaMemcpyToArray

Array Device 1D cudaMemcpyToArray

Array Array 1D cudaMemcpyArrayToArray

Host Device 2D cudaMemcpy2D(..., cudaMemcpyHostToDevice);

Host Array 2D cudaMemcpy2DToArray(..., cudaMemcpyHostToDevice);

Device Host 2D cudaMemcpy2D(..., cudaMemcpyDeviceToHost);

Device Device 2D cudaMemcpy2D(..., cudaMemcpyDeviceToDevice);

Device Array 2D cudaMemcpy2DToArray(..., cudaMemcpyDeviceToDevice);

Array Host 2D cudaMemcpy2DToArray( , ...cudaMemcpyHostToDevice );

Array Device 2D cudaMemcpy2DToArray( , ...cudaMemcpyHostToDevice );

Array Array 2D cudaMemcpy2DArrayToArray( );

Host Device 3D cudaMemcpy3D

Host Array 3D cudaMemcpy3D

Device Host 3D cudaMemcpy3D

Device Device 3D cudaMemcpy3D

Device Array 3D cudaMemcpy3D

Array Host 3D cudaMemcpy3D

Array Device 3D cudaMemcpy3D

Array Array 3D cudaMemcpy3D
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1D and 2D memcpy functions take base pointers, pitches, and sizes as required. 
The 3D memcpy routines take a descriptor structure cudaMemcpy3Dparms, 
defined as follows.

struct cudaMemcpy3DParms
{
    struct cudaArray *srcArray;
    struct cudaPos srcPos;
    struct cudaPitchedPtr srcPtr;

    struct cudaArray *dstArray;
    struct cudaPos dstPos;
    struct cudaPitchedPtr dstPtr;

    struct cudaExtent extent;
    enum cudaMemcpyKind kind;
};

Table 5.11 summarizes the meaning of each member of the cudaMemcpy3D-
Parms structure. The cudaPos and cudaExtent structures are defined as 
follows.

struct cudaExtent {
    size_t width;
    size_t height;

Table 5.11 cudaMemcpy3DParms Structure Members

STRUCTURE 

MEMBER DESCRIPTION

srcArray Source array, if needed by kind

srcPos Offset of the source

srcPtr Source pointer, if needed by kind

dstArray Destination array, if needed by kind

dstPos Offset into the destination

dstPtr Destination pointer, if needed by kind

extent Width, height, and depth of the memcpy

kind “Kind” of the memcpy: cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, 
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault
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    size_t depth;
};

struct cudaPos {
    size_t x;
    size_t y;
    size_t z;
};

5.7.4 DRIVER API

Table 5.12 summarizes the driver API's memcpy functions.

Table 5.12 Memcpy Functions (Driver API)

DEST 

TYPE

SOURCE 

TYPE DIM FUNCTION

Host Device 1D cuMemcpyDtoH

Host Array 1D cuMemcpyAtoH

Device Host 1D cuMemcpyHtoD

Device Device 1D cuMemcpyDtoD

Device Array 1D cuMemcpyAtoD

Array Host 1D cuMemcpyHtoA

Array Device 1D cuMemcpyDtoA

Array Array 1D cuMemcpyAtoA

Host Device 2D cuMemcpy2D

Host Array 2D cuMemcpy2D

Device Host 2D cuMemcpy2D

Device Device 2D cuMemcpy2D

Device Array 2D cuMemcpy2D

continues
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Table 5.12 Memcpy Functions (Driver API) (Continued )

DEST 

TYPE

SOURCE 

TYPE DIM FUNCTION

Array Host 2D cuMemcpy2D

Array Device 2D cuMemcpy2D

Array Array 2D cuMemcpy2D

Host Device 3D cuMemcpy3D

Host Array 3D cuMemcpy3D

Device Host 3D cuMemcpy3D

Device Device 3D cuMemcpy3D

Device Array 3D cuMemcpy3D

Array Host 3D cuMemcpy3D

Array Device 3D cuMemcpy3D

Array Array 3D cuMemcpy3D

cuMemcpy3D() is designed to implement a strict superset of all previous memcpy 
functionality. Any 1D, 2D, or 3D memcpy may be performed between any host, 
device, or CUDA array memory, and any offset into either the source or destina-
tion may be applied. The WidthInBytes, Height, and Depth members of the 
input structure, CUDA_MEMCPY_3D, define the dimensionality of the memcpy: 
Height==0 implies a 1D memcpy, and Depth==0 implies a 2D memcpy. The 
source and destination memory types are given by the srcMemoryType and 
dstMemoryType structure elements, respectively.

Structure elements that are not needed by cuMemcpy3D() are defined to 
be ignored. For example, if a 1D host�device memcpy is requested, the 
srcPitch, srcHeight, dstPitch, and dstHeight elements are ignored. If 
 srcMemoryType is CU_MEMORYTYPE_HOST, the srcDevice and  srcArray 
elements are ignored. This API semantic, coupled with the C idiom that 
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assigning {0} to a structure zero-initializes it, enables memory copies to be 
described very concisely. Most other memcpy functions can be implemented in a 
few lines of code, such as the following. 

CUresult
my_cuMemcpyHtoD( CUdevice dst, const void *src, size_t N )
{
    CUDA_MEMCPY_3D cp = {0};
    cp.srcMemoryType = CU_MEMORYTYPE_HOST;
    cp.srcHost = srcHost;
    cp.dstMemoryType = CU_MEMORYTYPE_DEVICE;
    cp.dstDevice = dst;
    cp.WidthInBytes = N;
    return cuMemcpy3D( &cp );
}

       



This page intentionally left blank 



173

Chapter 6

Streams and Events

CUDA is best known for enabling fine-grained concurrency, with hardware facil-
ities that enable threads to closely collaborate within blocks using a combination 
of shared memory and thread synchronization. But it also has hardware and 
software facilities that enable more coarse-grained concurrency: 

• CPU/GPU concurrency: Since they are separate devices, the CPU and GPU 
can operate independently of each other. 

• Memcpy/kernel processing concurrency: For GPUs that have one or more 
copy engines, host�device memcpy can be performed while the SMs are 
processing kernels.

• Kernel concurrency: SM 2.x-class and later hardware can run up to 4 kernels 
in parallel.

• Multi-GPU concurrency: For problems with enough computational density, 
multiple GPUs can operate in parallel. (Chapter 9 is dedicated to multi-GPU 
programming.)

CUDA streams enable these types of concurrency. Within a given stream, opera-
tions are performed in sequential order, but operations in different streams may 
be performed in parallel. CUDA events complement CUDA streams by providing 
the synchronization mechanisms needed to coordinate the parallel execution 
enabled by streams. CUDA events may be asynchronously “recorded” into a 
stream, and the CUDA event becomes signaled when the operations preceding 
the CUDA event have been completed.

CUDA events may be used for CPU/GPU synchronization, for synchronization 
between the engines on the GPU, and for synchronization between GPUs. They 
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also provide a GPU-based timing mechanism that cannot be perturbed by sys-
tem events such as page faults or interrupts from disk or network controllers. 
Wall clock timers are best for overall timing, but CUDA events are useful for 
optimizing kernels or figuring out which of a series of pipelined GPU operations 
is taking the longest. All of the performance results reported in this chapter 
were gathered on a cg1.4xlarge cloud-based server from Amazon’s EC2 ser-
vice, as described in Section 4.5.

 6.1  CPU/GPU Concurrency: Covering 
Driver Overhead
CPU/GPU concurrency refers to the CPU’s ability to continue processing after 
having sent some request to the GPU. Arguably, the most important use of CPU/
GPU concurrency is hiding the overhead of requesting work from the GPU.

6.1.1 KERNEL LAUNCHES

Kernel launches have always been asynchronous. A series of kernel launches, 
with no intervening CUDA operations in between, cause the CPU to submit the 
kernel launch to the GPU and return control to the caller before the GPU has 
finished processing.

We can measure the driver overhead by bracketing a series of NULL kernel 
launches with timing operations. Listing 6.1 shows nullKernelAsync.cu, a 
small program that measures the amount of time needed to perform a kernel 
launch.

Listing 6.1 nullKernelAsync.cu.
#include <stdio.h>

#include "chTimer.h"

__global__
void
NullKernel()
{
}

int
main( int argc, char *argv[] )
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{
    const int cIterations = 1000000;
    printf( "Launches... " ); fflush( stdout );

    chTimerTimestamp start, stop;

    chTimerGetTime( &start );
    for ( int i = 0; i < cIterations; i++ ) {
        NullKernel<<<1,1>>>();
    }
    cudaThreadSynchronize();
    chTimerGetTime( &stop );

    double microseconds = 1e6*chTimerElapsedTime( &start, &stop );
    double usPerLaunch = microseconds / (float) cIterations;

    printf( "%.2f us\n", usPerLaunch );

    return 0;
}

The chTimerGetTime() calls, described in Appendix A, use the host oper-
ating system’s high-resolution timing facilities, such as QueryPerformance-
Counter() or gettimeofday(). The cudaThreadSynchronize() call in 
line 23 is needed for accurate timing. Without it, the GPU would still be process-
ing the last kernel invocations when the end top is recorded with the following 
function call.

 chTimerGetTime( &stop );

If you run this program, you will see that invoking a kernel—even a kernel 
that does nothing—costs anywhere from 2.0 to 8.0 microseconds. Most of 
that time is spent in the driver. The CPU/GPU concurrency enabled by kernel 
launches only helps if the kernel runs for longer than it takes the driver to 
invoke it! To underscore the importance of CPU/GPU concurrency for small 
kernel launches, let’s move the cudaThreadSynchronize() call into the 
inner loop.1

chTimerGetTime( &start );
for ( int i = 0; i < cIterations; i++ ) {
    NullKernel<<<1,1>>>();
    cudaThreadSynchronize();
}
chTimerGetTime( &stop );

1.  This program is in the source code as nullKernelSync.cu and is not reproduced here 
because it is almost identical to Listing 6.1.
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The only difference here is that the CPU is waiting until the GPU has finished 
processing each NULL kernel launch before launching the next kernel, as shown 
in Figure 6.1. As an example, on an Amazon EC2 instance with ECC disabled, 
nullKernelNoSync reports a time of 3.4 ms per launch and nullKernelSync 
reports a time of 100 ms per launch. So besides giving up CPU/GPU concurrency, 
the synchronization itself is worth avoiding. 

Even without synchronizations, if the kernel doesn’t run for longer than the 
amount of time it took to launch the kernel (3.4 ms), the GPU may go idle before 
the CPU has submitted more work. To explore just how much work a kernel 
might need to do to make the launch worthwhile, let’s switch to a kernel that 
busy-waits until a certain number of clock cycles (according to the clock() 
intrinsic) has completed.

__device__ int deviceTime;
 
__global__
void
WaitKernel( int cycles, bool bWrite )
{
    int start = clock();
    int stop;
    do {
        stop = clock();
    } while ( stop - start < cycles );

Time

Process kernel Process kernel Process kernel

Launch kernel Launch kernel Launch kernel Launch kernel

Kernel launches (no synchronization)

. . .

. . .

Process kernel Process kernel

Launch kernel Launch kernel

Kernel launches (with synchronization)

. . .

. . .

CPU:

GPU:

Figure 6.1 CPU/GPU concurrency.
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    if ( bWrite && threadIdx.x==0 && blockIdx.x==0 ) {
        deviceTime = stop - start;
    }
}

By conditionally writing the result to deviceTime, this kernel prevents the 
compiler from optimizing out the busy wait. The compiler does not know that we 
are just going to pass false as the second parameter.2 The code in our main() 
function then checks the launch time for various values of cycles, from 0 to 
2500.

for ( int cycles = 0; cycles < 2500; cycles += 100 ) {
    printf( “Cycles: %d - “, cycles ); fflush( stdout );
    chTimerGetTime( &start );
    for ( int i = 0; i < cIterations; i++ ) {
        WaitKernel<<<1,1>>>( cycles, false );
    }
    cudaThreadSynchronize();
    chTimerGetTime( &stop );
    double microseconds = 1e6*chTimerElapsedTime( &start, &stop );
    double usPerLaunch = microseconds / (float) cIterations;

    printf( “%.2f us\n”, usPerLaunch );
 }

This program may be found in waitKernelAsync.cu. On our EC2 instance, the 
output is as in Figure 6.2. On this host platform, the breakeven mark where the 
kernel launch time crosses over 2x that of a NULL kernel launch (4.90 �s) is at 
4500 GPU clock cycles.

These performance characteristics can vary widely and depend on many fac-
tors, including the following.

• Performance of the host CPU 

• Host operating system 

• Driver version

• Driver model (TCC versus WDDM on Windows) 

• Whether ECC is enabled on the GPU3

2.  The compiler could still invalidate our timing results by branching around the loop if bWrite is 
false. If the timing results looked suspicious, we could see if this is happening by looking at the 
microcode with cuobjdump.

3.  When ECC is enabled, the driver must perform a kernel thunk to check whether any memory 
errors have occurred. As a result, cudaThreadSynchronize() is expensive even on platforms 
with user-mode client drivers.
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But the common underlying theme is that for most CUDA applications, develop-
ers should do their best to avoid breaking CPU/GPU concurrency. Only applica-
tions that are very compute-intensive and only perform large data transfers can 
afford to ignore this overhead. To take advantage of CPU/GPU concurrency when 
performing memory copies as well as kernel launches, developers must use 
asynchronous memcpy.

 6.2 Asynchronous Memcpy
Like kernel launches, asynchronous memcpy calls return before the GPU has 
performed the memcpy in question. Because the GPU operates autonomously 
and can read or write the host memory without any operating system involve-
ment, only pinned memory is eligible for asynchronous memcpy.

The earliest application for asynchronous memcpy in CUDA was hidden inside 
the CUDA 1.0 driver. The GPU cannot access pageable memory directly, so the 
driver implements pageable memcpy using a pair of pinned “staging buffers” that 
are allocated with the CUDA context. Figure 6.3 shows how this process works.

To perform a host�device memcpy, the driver first “primes the pump” by copy-
ing to one staging buffer, then kicks off a DMA operation to read that data with 
the GPU. While the GPU begins processing that request, the driver copies more 
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Figure 6.2 Microseconds/cycles plot for waitKernelAsync.cu.
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data into the other staging buffer. The CPU and GPU keep ping-ponging between 
staging buffers, with appropriate synchronization, until it is time for the GPU to 
perform the final memcpy. Besides copying data, the CPU also naturally pages 
in any nonresident pages while the data is being copied.

6.2.1 ASYNCHRONOUS MEMCPY: HOST�DEVICE

As with kernel launches, asynchronous memcpys incur fixed CPU overhead in 
the driver. In the case of host�device memcpy, all memcpys below a certain size 

CPU GPU

CPU GPU

CPU GPU

. . .

CPU GPU

1. “Prime the pump”: CPU copies to first staging buffer

4. Final memcpy by GPU

2. GPU pulls from first, while CPU copies to second

3. GPU pulls from second, while CPU copies to first

Figure 6.3 Pageable memcpy.
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are asynchronous, because the driver copies the source data directly into the 
command buffer that it uses to control the hardware.

We can write an application that measures asynchronous memcpy overhead, 
much as we measured kernel launch overhead earlier. The following code, in a 
program called nullHtoDMemcpyAsync.cu, reports that on a cg1.4xlarge 
instance in Amazon EC2, each memcpy takes 3.3 ms. Since PCI Express can 
transfer almost 2K in that time, it makes sense to examine how the time needed 
to perform a small memcpy grows with the size.

CUDART_CHECK( cudaMalloc( &deviceInt, sizeof(int) ) );
CUDART_CHECK( cudaHostAlloc( &hostInt, sizeof(int), 0 ) );

chTimerGetTime( &start );
   for ( int i = 0; i < cIterations; i++ ) {
      CUDART_CHECK( cudaMemcpyAsync( deviceInt, hostInt, sizeof(int), 
      cudaMemcpyHostToDevice, NULL ) );
   }
CUDART_CHECK( cudaThreadSynchronize() );
chTimerGetTime( &stop );

The breakevenHtoDMemcpy.cu program measures memcpy performance for 
sizes from 4K to 64K. On a cg1.4xlarge instance in Amazon EC2, it generates 
Figure 6.4. The data generated by this program is clean enough to fit to a linear 
regression curve—in this case, with intercept 3.3 �s and slope 0.000170 �s/
byte. The slope corresponds to 5.9GB/s, about the expected bandwidth from PCI 
Express 2.0.
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Figure 6.4 Small host�device memcpy performance.
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6.2.2 ASYNCHRONOUS MEMCPY: DEVICE�HOST

The nullDtoHMemcpyNoSync.cu and breakevenDtoHMemcpy.cu programs 
perform the same measurements for small device�host memcpys. On our 
trusty Amazon EC2 instance, the minimum time for a memcpy is 4.00 �s 
(Figure 6.5).

6.2.3 THE NULL STREAM AND CONCURRENCY BREAKS

Any streamed operation may be called with NULL as the stream parameter, 
and the operation will not be initiated until all the preceding operations on the 
GPU have been completed.4 Applications that have no need for copy engines to 
overlap memcpy operations with kernel processing can use the NULL stream to 
facilitate CPU/GPU concurrency.

Once a streamed operation has been initiated with the NULL stream, the appli-
cation must use synchronization functions such as cuCtxSynchronize() 
or cudaThreadSynchronize() to ensure that the operation has been com-
pleted before proceeding. But the application may request many such opera-
tions before performing the synchronization. For example, the application may 

4.  When CUDA streams were added in CUDA 1.1, the designers had a choice between making the 
NULL stream “its own” stream, separate from other streams and serialized only with itself, 
or making it synchronize with (“join”) all engines on the GPU. They opted for the latter, in part 
because CUDA did not yet have facilities for interstream synchronization.
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Figure 6.5 Small device�host memcpy performance.
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perform an asynchronous host�device memcpy, one or more kernel launches, 
and an asynchronous device�host memcpy before synchronizing with the 
context. The cuCtxSynchronize() or cudaThreadSynchronize() call 
returns once the GPU has performed the most recently requested operation. 
This idiom is especially useful when performing smaller memcpys or launching 
kernels that will not run for long. The CUDA driver takes valuable CPU time to 
write commands to the GPU, and overlapping that CPU execution with the GPU’s 
processing of the commands can improve performance.

Note: Even in CUDA 1.0, kernel launches were asynchronous. As a result, the 
NULL stream is implicitly specified to all kernel launches if no stream is given.

Breaking Concurrency
Whenever an application performs a full CPU/GPU synchronization (having the 
CPU wait until the GPU is completely idle), performance suffers. We can mea-
sure this performance impact by switching our NULL-memcpy calls from asyn-
chronous ones to synchronous ones just by changing the cudaMemcpyAsync() 
calls to cudaMemcpy() calls. The nullDtoHMemcpySync.cu program does 
just that for device�host memcpy.

On our trusty Amazon cg1.4xlarge instance, nullDtoHMemcpySync.cu 
reports about 7.9 �s per memcpy. If a Windows driver has to perform a kernel 
thunk, or the driver on an ECC-enabled GPU must check for ECC errors, full 
GPU synchronization is much costlier.

Explicit ways to perform this synchronization include the following.

• cuCtxSynchronize()/cudaDeviceSynchronize()

• cuStreamSynchronize()/cudaStreamSynchronize() on the NULL 
stream

• Unstreamed memcpy between host and device—for example, 
cuMemcpyHtoD(), cuMemcpyDtoH(), cudaMemcpy()

Other, more subtle ways to break CPU/GPU concurrency include the following.

• Running with the CUDA_LAUNCH_BLOCKING environment variable set

• Launching kernels that require local memory to be reallocated

• Performing large memory allocations or host memory allocations

• Destroying objects such as CUDA streams and CUDA events
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Nonblocking Streams
To create a stream that is exempt from the requirement to synchronize with 
the NULL stream (and therefore less likely to suffer a “concurrency break” 
as described above), specify the CUDA_STREAM_NON_BLOCKING flag 
to cuStreamCreate() or the cudaStreamNonBlocking flag to 
cudaStreamCreateWithFlags(). 

 6.3  CUDA Events: CPU/GPU 
Synchronization
One of the key features of CUDA events is that they can enable “partial” CPU/
GPU synchronization. Instead of full CPU/GPU synchronization where the CPU 
waits until the GPU is idle, introducing a bubble into the GPU’s work pipeline, 
CUDA events may be recorded into the asynchronous stream of GPU com-
mands. The CPU then can wait until all of the work preceding the event has 
been done. The GPU can continue doing whatever work was submitted after the 
cuEventRecord()/cudaEventRecord().

As an example of CPU/GPU concurrency, Listing 6.2 gives a memcpy routine 
for pageable memory. The code for this program implements the algorithm 
described in Figure 6.3 and is located in pageableMemcpyHtoD.cu. It uses two 
pinned memory buffers, stored in global variables declared as follows.

void *g_hostBuffers[2];

and two CUDA events declared as

cudaEvent_t g_events[2];

Listing 6.2 chMemcpyHtoD()—pageable memcpy.
void
chMemcpyHtoD( void *device, const void *host, size_t N ) 
{
    cudaError_t status;
    char *dst = (char *) device;
    const char *src = (const char *) host;
    int stagingIndex = 0;
    while ( N ) {
        size_t thisCopySize = min( N, STAGING_BUFFER_SIZE );
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        cudaEventSynchronize( g_events[stagingIndex] );
        memcpy( g_hostBuffers[stagingIndex], src, thisCopySize ); 
        cudaMemcpyAsync( dst, g_hostBuffers[stagingIndex],
            thisCopySize, cudaMemcpyHostToDevice, NULL );
        cudaEventRecord( g_events[1-stagingIndex], NULL );
        dst += thisCopySize;
        src += thisCopySize;
        N -= thisCopySize;
        stagingIndex = 1 - stagingIndex;
    }
Error:
    return;
}

chMemcpyHtoD() is designed to maximize CPU/GPU concurrency by 
“ping-ponging” between the two host buffers. The CPU copies into one buffer, 
while the GPU pulls from the other. There is some “overhang” where no CPU/
GPU concurrency is possible at the beginning and end of the operation when the 
CPU is copying the first and last buffers, respectively. 

In this program, the only synchronization needed—the  cudaEventSynchronize() 
in line 11—ensures that the GPU has finished with a buffer before starting to 
copy into it. cudaMemcpyAsync()returns as soon as the GPU commands 
have been enqueued. It does not wait until the operation is complete. The 
 cudaEventRecord()is also asynchronous. It causes the event to be signaled 
when the just-requested asynchronous memcpy has been completed.

The CUDA events are recorded immediately after creation so the first 
cudaEventSynchronize() calls in line 11 work correctly.

CUDART_CHECK( cudaEventCreate( &g_events[0] ) );
CUDART_CHECK( cudaEventCreate( &g_events[1] ) );
// record events so they are signaled on first synchronize
CUDART_CHECK( cudaEventRecord( g_events[0], 0 ) );
CUDART_CHECK( cudaEventRecord( g_events[1], 0 ) );

If you run pageableMemcpyHtoD.cu, it will report a bandwidth number much 
smaller than the pageable memcpy bandwidth delivered by the CUDA driver. 
That’s because the C runtime’s memcpy() implementation is not optimized to 
move memory as fast as the CPU can. For best performance, the memory must 
be copied using SSE instructions that can move data 16 bytes at a time. Writing 
a general-purpose memcpy using these instructions is complicated by their 
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alignment restrictions, but a simple version that requires the source, destina-
tion, and byte count to be 16-byte aligned is not difficult.5

#include <xmmintrin.h>
bool
memcpy16( void *_dst, const void *_src, size_t N )
{
    if ( N & 0xf ) {
        return false;
    }
 
    float *dst = (float *) _dst;
    const float *src = (const float *) _src;
    while ( N ) {
    _mm_store_ps( dst, _mm_load_ps( src ) );
        src += 4;
        dst += 4;
        N -= 16;
    }
    return true;
} 

When the C runtime memcpy() is replaced by this one, performance on an 
 Amazon EC2 cg1.4xlarge instance increases from 2155MB/s to 3267MB/s. 
More complicated memcpy routines can deal with relaxed alignment con-
straints, and slightly higher performance is possible by unrolling the inner loop. 
On cg1.4xlarge, the CUDA driver’s more optimized SSE memcpy achieves 
about 100MB/s higher performance than pageableMemcpyHtoD16.cu.

How important is the CPU/GPU concurrency for performance of pageable 
memcpy? If we move the event synchronization, we can make the host�device 
memcpy synchronous, as follows.

 while ( N ) {
 size_t thisCopySize = min( N, STAGING_BUFFER_SIZE );

< CUDART_CHECK( cudaEventSynchronize( g_events[stagingIndex] ) );
 memcpy( g_hostBuffers[stagingIndex], src, thisCopySize ); 
 CUDART_CHECK( cudaMemcpyAsync( dst, g_hostBuffers[stagingIndex], 
 thisCopySize, cudaMemcpyHostToDevice, NULL ) );
 CUDART_CHECK( cudaEventRecord( g_events[1-stagingIndex], NULL ) );
> CUDART_CHECK( cudaEventSynchronize( g_events[1-stagingIndex] ) );
 dst += thisCopySize;
 src += thisCopySize;
 N -= thisCopySize;
 stagingIndex = 1 - stagingIndex;
 }

5.  On some platforms, nvcc does not compile this code seamlessly. In the code accompanying this 
book, memcpy16() is in a separate file called memcpy16.cpp.

       



STREAMS AND EVENTS

186

This code is available in pageableMemcpyHtoD16Synchronous.cu, and it is 
about 70% as fast (2334MB/s instead of 3267MB/s) on the same cg1.4xlarge 
instance. 

6.3.1 BLOCKING EVENTS 

CUDA events also optionally can be made “blocking,” in which they use an 
interrupt-based mechanism for CPU synchronization. The CUDA driver then 
implements cu(da)EventSynchronize() calls using thread synchroniza-
tion primitives that suspend the CPU thread instead of polling the event’s 32-bit 
tracking value.

For latency-sensitive applications, blocking events may impose a performance 
penalty. In the case of our pageable memcpy routine, using blocking events 
causes a slight slowdown (about 100MB/s) on our cg1.4xlarge instance. But 
for more GPU-intensive applications, or for applications with “mixed workloads” 
that need significant amounts of processing from both CPU and GPU, the ben-
efits of having the CPU thread idle outweigh the costs of handling the interrupt 
that occurs when the wait is over. An example of a mixed workload is video 
transcoding, which features divergent code suitable for the CPU and signal and 
pixel processing suitable for the GPU.

6.3.2 QUERIES

Both CUDA streams and CUDA events may be queried with cu(da) StreamQuery() 
and cu(da)EventQuery(), respectively. If cu(da)StreamQuery() returns 
success, all of the operations pending in a given stream have been completed. If 
cu(da)EventQuery()returns success, the event has been recorded.

Although these queries are intended to be lightweight, if ECC is enabled, they do 
perform kernel thunks to check the current error status of the GPU. Addition-
ally, on Windows, any pending commands will be submitted to the GPU, which 
also requires a kernel thunk.

 6.4 CUDA Events: Timing
CUDA events work by submitting a command to the GPU that, when the preced-
ing commands have been completed, causes the GPU to write a 32-bit memory 
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location with a known value. The CUDA driver implements cuEventQuery() 
and cuEventSynchronize() by examining that 32-bit value. But besides 
the 32-bit “tracking” value, the GPU also can write a 64-bit timer value that is 
sourced from a high-resolution, GPU-based clock.

Because they use a GPU-based clock, timing using CUDA events is less subject to 
perturbations from system events such as page faults or interrupts, and the func-
tion to compute elapsed times from timestamps is portable across all operating 
systems. That said, the so-called “wall clock” times of operations are ultimately 
what users see, so CUDA events are best used in a targeted fashion to tune kernels 
or other GPU-intensive operations, not to report absolute times to the user.

The stream parameter to cuEventRecord() is for interstream synchroniza-
tion, not for timing. When using CUDA events for timing, it is best to record them 
in the NULL stream. The rationale is similar to the reason the machine instruc-
tions in superscalar CPUs to read time stamp counters (e.g., RDTSC on x86) are 
serializing instructions that flush the pipeline: Forcing a “join” on all the GPU 
engines eliminates any possible ambiguity on the operations being timed.6 Just 
make sure the cu(da)EventRecord() calls bracket enough work so that the 
timing delivers meaningful results.

Finally, note that CUDA events are intended to time GPU operations. Any syn-
chronous CUDA operations will result in the GPU being used to time the result-
ing CPU/GPU synchronization operations.

CUDART_CHECK( cudaEventRecord( startEvent, NULL ) );
// synchronous memcpy – invalidates CUDA event timing
CUDART_CHECK( cudaMemcpy( deviceIn, hostIn, N*sizeof(int) );
CUDART_CHECK( cudaEventRecord( stopEvent, NULL ) );

The example explored in the next section illustrates how to use CUDA events for 
timing.

 6.5  Concurrent Copying and Kernel 
Processing
Since CUDA applications must transfer data across the PCI Express bus in order 
for the GPU to operate on it, another performance opportunity presents itself in 
the form of performing those host�device memory transfers concurrently with 

6.  An additional consideration: On CUDA hardware with SM 1.1, timing events could only be 
recorded by the hardware unit that performed kernel computation.
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kernel processing. According to Amdahl’s Law,7 the maximum speedup achiev-
able by using multiple processors is 

Speedup

r
r

N

1

s
p

=

+

where rs + rp = 1 and N is the number of processors. In the case of concurrent 
copying and kernel processing, the “number of processors” is the number of 
autonomous hardware units in the GPU: one or two copy engines, plus the SMs 
that execute the kernels. For N = 2, Figure 6.6 shows the idealized speedup 
curve as rs  and rp vary.

So in theory, a 2x performance improvement is possible on a GPU with one copy 
engine, but only if the program gets perfect overlap between the SMs and the 
copy engine, and only if the program spends equal time transferring and pro-
cessing the data.

Before undertaking this endeavor, you should take a close look at whether it 
will benefit your application. Applications that are extremely transfer-bound 
(i.e., they spend most of their time transferring data to and from the GPU) or 
extremely compute-bound (i.e., they spend most of their time processing data on 
the GPU) will derive little benefit from overlapping transfer and compute.

7.  http://bit.ly/13UqBm0
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Figure 6.6 Idealized Amdahl’s Law curve.
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6.5.1 CONCURRENCYMEMCPYKERNEL.CU

The program concurrencyMemcpyKernel.cu is designed to illustrate 
not only how to implement concurrent memcpy and kernel execution but 
also how to determine whether it is worth doing at all. Listing 6.3 gives a 
 AddKernel(), a “makework” kernel that has a parameter cycles to control 
how long it runs.

Listing 6.3 AddKernel(), a makework kernel with parameterized computa-
tional density.
__global__ void
AddKernel( int *out, const int *in, size_t N, int addValue, int 
cycles )
{
    for ( size_t i = blockIdx.x*blockDim.x+threadIdx.x; 
                 i < N;
                 i += blockDim.x*gridDim.x )
    {
        volatile int value = in[i];
        for ( int j = 0; j < cycles; j++ ) {
            value += addValue;
        }
        out[i] = value;
    }
}

AddKernel() streams an array of integers from in to out, looping over each 
input value cycles times. By varying the value of cycles, we can make the 
kernel range from a trivial streaming kernel that pushes the memory bandwidth 
limits of the machine to a totally compute-bound kernel.

These two routines in the program measure the performance of 
AddKernel().

• TimeSequentialMemcpyKernel() copies the input data to the GPU, 
invokes AddKernel(), and copies the output back from the GPU in separate, 
sequential steps.

• TimeConcurrentOperations() allocates a number of CUDA streams and 
performs the host�device memcpys, kernel processing, and device�host 
memcpys in parallel.

TimeSequentialMemcpyKernel(), given in Listing 6.4, uses four CUDA 
events to separately time the host�device memcpy, kernel processing, and 
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device�host memcpy. It also reports back the total time, as measured by the 
CUDA events.

Listing 6.4 TimeSequentialMemcpyKernel() function.
bool
TimeSequentialMemcpyKernel( 
    float *timesHtoD, 
    float *timesKernel, 
    float *timesDtoH, 
    float *timesTotal,
    size_t N, 
    const chShmooRange& cyclesRange,
    int numBlocks )
{
    cudaError_t status;
    bool ret = false;
    int *hostIn = 0;
    int *hostOut = 0;
    int *deviceIn = 0;
    int *deviceOut = 0;
    const int numEvents = 4;
    cudaEvent_t events[numEvents];

    for ( int i = 0; i < numEvents; i++ ) {
        events[i] = NULL;
        CUDART_CHECK( cudaEventCreate( &events[i] ) );
    }
    cudaMallocHost( &hostIn, N*sizeof(int) );
    cudaMallocHost( &hostOut, N*sizeof(int) );
    cudaMalloc( &deviceIn, N*sizeof(int) );
    cudaMalloc( &deviceOut, N*sizeof(int) );

    for ( size_t i = 0; i < N; i++ ) {
        hostIn[i] = rand();
    }

    cudaDeviceSynchronize();

    for ( chShmooIterator cycles(cyclesRange); cycles; cycles++ ) {

        printf( "." ); fflush( stdout );

        cudaEventRecord( events[0], NULL );
        cudaMemcpyAsync( deviceIn, hostIn, N*sizeof(int), 
            cudaMemcpyHostToDevice, NULL );
        cudaEventRecord( events[1], NULL );
        AddKernel<<<numBlocks, 256>>>( 
            deviceOut, deviceIn, N, 0xcc, *cycles );
        cudaEventRecord( events[2], NULL );
        cudaMemcpyAsync( hostOut, deviceOut, N*sizeof(int), 
            cudaMemcpyDeviceToHost, NULL );
        cudaEventRecord( events[3], NULL );
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        cudaDeviceSynchronize();

        cudaEventElapsedTime( timesHtoD, events[0], events[1] );
        cudaEventElapsedTime( timesKernel, events[1], events[2] );
        cudaEventElapsedTime( timesDtoH, events[2], events[3] );
        cudaEventElapsedTime( timesTotal, events[0], events[3] );

        timesHtoD += 1;
        timesKernel += 1;
        timesDtoH += 1;
        timesTotal += 1;
    }

    ret = true;

Error:
    for ( int i = 0; i < numEvents; i++ ) {
        cudaEventDestroy( events[i] );
    }
    cudaFree( deviceIn );
    cudaFree( deviceOut );
    cudaFreeHost( hostOut );
    cudaFreeHost( hostIn );
    return ret;
}

The cyclesRange parameter, which uses the “shmoo” functionality described 
in Section A.4, specifies the range of cycles values to use when invoking 
AddKernel(). On a cg1.4xlarge instance in EC2, the times (in ms) for 
cycles values  from 4..64 are as follows.

CYCLES HTOD KERNEL DTOH TOTAL

4 89.19 11.03 82.03 182.25

8 89.16 17.58 82.03 188.76

12 89.15 24.10 82.03 195.28

16 89.15 30.57 82.03 201.74

20 89.14 37.03 82.03 208.21

24 89.16 43.46 82.03 214.65

28 89.16 49.90 82.03 221.10

continues
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CYCLES HTOD KERNEL DTOH TOTAL

32 89.16 56.35 82.03 227.54

36 89.13 62.78 82.03 233.94

40 89.14 69.21 82.03 240.38

44 89.16 75.64 82.03 246.83

48 89.16 82.08 82.03 253.27

52 89.14 88.52 82.03 259.69

56 89.14 94.96 82.03 266.14

60 89.14 105.98 82.03 277.15

64 89.17 112.70 82.03 283.90

For values of *cycles around 48 (highlighted), where the kernel takes about 
the same amount of time as the memcpy operations, we presume there would 
be a benefit in performing the operations concurrently.

The routine TimeConcurrentMemcpyKernel()divides the computation 
performed by AddKernel() evenly into segments of size streamIncrement 
and uses a separate CUDA stream to compute each. The code fragment in List-
ing 6.5, from TimeConcurrentMemcpyKernel(), highlights the complexity of 
programming with streams.

Listing 6.5 TimeConcurrentMemcpyKernel() fragment.
intsLeft = N;
for ( int stream = 0; stream < numStreams; stream++ ) {
    size_t intsToDo = (intsLeft < intsPerStream) ? 
        intsLeft : intsPerStream;
    CUDART_CHECK( cudaMemcpyAsync( 
        deviceIn+stream*intsPerStream, 
        hostIn+stream*intsPerStream, 
        intsToDo*sizeof(int), 
        cudaMemcpyHostToDevice, streams[stream] ) );
    intsLeft -= intsToDo;
}
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intsLeft = N;
for ( int stream = 0; stream < numStreams; stream++ ) {
    size_t intsToDo = (intsLeft < intsPerStream) ? 
        intsLeft : intsPerStream;
    AddKernel<<<numBlocks, 256, 0, streams[stream]>>>( 
        deviceOut+stream*intsPerStream, 
        deviceIn+stream*intsPerStream, 
        intsToDo, 0xcc, *cycles );
    intsLeft -= intsToDo;
}

intsLeft = N;
for ( int stream = 0; stream < numStreams; stream++ ) {
    size_t intsToDo = (intsLeft < intsPerStream) ? 
        intsLeft : intsPerStream;
    CUDART_CHECK( cudaMemcpyAsync( 
        hostOut+stream*intsPerStream, 
        deviceOut+stream*intsPerStream, 
        intsToDo*sizeof(int), 
        cudaMemcpyDeviceToHost, streams[stream] ) );
    intsLeft -= intsToDo;
}

Besides requiring the application to create and destroy CUDA streams, the 
streams must be looped over separately for each of the host�device mem-
cpy, kernel processing, and device�host memcpy operations. Without this 
“software-pipelining,” there would be no concurrent execution of the different 
streams’ work, as each streamed operation is preceded by an “interlock” oper-
ation that prevents the operation from proceeding until the previous operation in 
that stream has completed. The result would be not only a failure to get parallel 
execution between the engines but also an additional performance degradation 
due to the slight overhead of managing stream concurrency.

The computation cannot be made fully concurrent, since no kernel processing 
can be overlapped with the first or last memcpys, and there is some overhead in 
synchronizing between CUDA streams and, as we saw in the previous section, in 
invoking the memcpy and kernel operations themselves. As a result, the opti-
mal number of streams depends on the application and should be determined 
empirically. The concurrencyMemcpyKernel.cu program enables the num-
ber of streams to be specified on the command line using the -- numStreams 
parameter. 
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6.5.2 PERFORMANCE RESULTS

The concurrencyMemcpyKernel.cu program generates a report on perfor-
mance characteristics over a variety of cycles values, with a fixed buffer size 
and number of streams. On a cg1.4xlarge instance in Amazon EC2, with a 
buffer size of 128M integers and 8 streams, the report is as follows for cycles 
values from 4..64.

CYCLES HTOD KERNEL DTOH TOTAL CONCURRENT SPEEDUP

4 89.19 11.03 82.03 182.25 173.09 1.05

8 89.16 17.58 82.03 188.76 173.41 1.09

12 89.15 24.1 82.03 195.28 173.74 1.12

16 89.15 30.57 82.03 201.74 174.09 1.16

20 89.14 37.03 82.03 208.21 174.41 1.19

24 89.16 43.46 82.03 214.65 174.76 1.23

28 89.16 49.9 82.03 221.10 175.08 1.26

32 89.16 56.35 82.03 227.54 175.43 1.30

36 89.13 62.78 82.03 233.94 175.76 1.33

40 89.14 69.21 82.03 240.38 176.08 1.37

44 89.16 75.64 82.03 246.83 176.41 1.40

48 89.16 82.08 82.03 253.27 176.75 1.43

52 89.14 88.52 82.03 259.69 177.08 1.47

56 89.14 94.96 82.03 266.14 179.89 1.48

60 89.14 105.98 82.03 277.15 186.31 1.49

64 89.17 112.7 82.03 283.90 192.86 1.47
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The full graph for cycles values from 4..256 is given in Figure 6.7. Unfortu-
nately, for these settings, the 50% speedup shown here falls well short of the 3x 
speedup that theoretically could be obtained.

The benefit on a GeForce GTX 280, which contains only one copy engine, is more 
pronounced. Here, the results from varying cycles up to 512 are shown. The 
maximum speedup, shown in Figure 6.8, is much closer to the theoretical maxi-
mum of 2x.
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Figure 6.7 Speedup due memcpy/kernel concurrency (Tesla M2050).
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Figure 6.8 Speedup due to memcpy/kernel concurrency (GeForce GTX 280).
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As written, concurrencyMemcpyKernel.cu serves little more than an illus-
trative purpose, because AddValues()is just make-work. But you can plug 
your own kernel(s) into this application to help determine whether the additional 
complexity of using streams is justified by the performance improvement. Note 
that unless concurrent kernel execution is desired (see Section 6.7), the kernel 
invocation in Listing 6.5 could be replaced by successive kernel invocations in 
the same stream, and the application will still get the desired concurrency.

As a side note, the number of copy engines can be queried by calling-
cudaGetDeviceProperties() and examining cudaDeviceProp:: 
asyncEngineCount, or calling cuDeviceQueryAttribute() with 
CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT.

The copy engines accompanying SM 1.1 and some SM 1.2 hardware could copy 
linear memory only, but more recent copy engines offer full support for 2D 
memcpy, including 2D and 3D CUDA arrays. 

6.5.3 BREAKING INTERENGINE CONCURRENCY

Using CUDA streams for concurrent memcpy and kernel execution introduces 
many more opportunities to “break concurrency.” In the previous section, 
CPU/GPU concurrency could be broken by unintentionally doing something 
that caused CUDA to perform a full CPU/GPU synchronization. Here, CPU/GPU 
concurrency can be broken by unintentionally performing an unstreamed CUDA 
operation. Recall that the NULL stream performs a “join” on all GPU engines, so 
even an asynchronous memcpy operation will stall interengine concurrency if 
the NULL stream is specified.

Besides specifying the NULL stream explicitly, the main avenue for these 
unintentional “concurrency breaks” is calling functions that run in the NULL 
stream implicitly because they do not take a stream parameter. When streams 
were first introduced in CUDA 1.1, functions such as cudaMemset() and 
 cuMemcpyDtoD(), and the interfaces for libraries such as CUFFT and CUBLAS, 
did not have any way for applications to specify stream parameters. The Thrust 
library still does not include support. The CUDA Visual Profiler will call out con-
currency breaks in its reporting.
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 6.6 Mapped Pinned Memory
Mapped pinned memory can be used to overlap PCI Express transfers and 
kernel processing, especially for device�host copies, where there is no need 
to cover the long latency to host memory. Mapped pinned memory has stricter 
alignment requirements than the native GPU memcpy, since they must be 
coalesced. Uncoalesced memory transactions run two to six times slower when 
using mapped pinned memory.

A naïve port of our concurrencyMemcpyKernelMapped.cu program yields 
an interesting result: On a cg1.4xlarge instance in Amazon EC2, mapped 
pinned memory runs very slowly for values of cycles below 64.

CYCLES MAPPED STREAMED SPEEDUP

8 95.15 43.61 0.46

16 96.70 43.95 0.45

24 95.45 44.27 0.46

32 97.54 44.61 0.46

40 94.09 44.93 0.48

48 94.25 45.26 0.48

56 95.18 46.19 0.49

64 28.22 49.29 1.75

72 31.58 52.38 1.66

. . .

208 92.59 104.60 1.13

216 96.11 107.68 1.12
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For small values of cycles, the kernel takes a long time to run, as if cycles were 
greater than 200! Only NVIDIA can discover the reason for this performance anom-
aly for certain, but it is not difficult to work around: By unrolling the inner loop of 
the kernel, we create more work per thread, and performance improves.

Listing 6.6 AddKernel() with loop unrolling.
template<const int unrollFactor>
__device__ void
AddKernel_helper( int *out, const int *in, size_t N, int increment, int cycles )
{
    for ( size_t i = unrollFactor*blockIdx.x*blockDim.x+threadIdx.x; 
                 i < N;
                 i += unrollFactor*blockDim.x*gridDim.x )
    {
        int values[unrollFactor];

        for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) {
            size_t index = i+iUnroll*blockDim.x;
            values[iUnroll] = in[index];
        }
        for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) {
            for ( int k = 0; k < cycles; k++ ) {
                values[iUnroll] += increment;
            }
        }
        for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) {
            size_t index = i+iUnroll*blockDim.x;
            out[index] = values[iUnroll];
        }
    }
}

__device__ void
AddKernel( int *out, const int *in, size_t N, int increment, int cycles, int 
unrollFactor )
{
    switch ( unrollFactor ) {
        case 1: return AddKernel_helper<1>( out, in, N, increment, cycles );
        case 2: return AddKernel_helper<2>( out, in, N, increment, cycles );
        case 4: return AddKernel_helper<4>( out, in, N, increment, cycles );
    }
}

Note that this version of AddKernel() in Listing 6.6 is functionally identical 
to the one in Listing 6.3.8 It just computes unrollFactor outputs per loop 
iteration. Since the unroll factor is a template parameter, the compiler can use 

8.  Except that, as written, N must be divisible by unrollFactor. This is easily fixed, of course, 
with a small change to the for loop and a bit of cleanup code afterward.
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registers to hold the values array, and the innermost for loops can be unrolled 
completely. 

For unrollFactor==1, this implementation is identical to that of Listing 6.3. 
For unrollFactor==2, mapped pinned formulation shows some improvement 
over the streamed formulation. The tipping point drops from cycles==64 to 
cycles==48. For unrollFactor==4, performance is uniformly better than 
the streamed version.

CYCLES MAPPED STREAMED SPEEDUP

8 36.73 43.77 1.19

16 34.09 44.23 1.30

24 32.21 44.72 1.39

32 30.67 45.21 1.47

40 29.61 45.90 1.55

48 26.62 49.04 1.84

56 32.26 53.11 1.65

64 36.75 57.23 1.56

72 41.24 61.36 1.49

These values are given for 32M integers, so the program reads and writes 
128MB of data. For cycles==48, the program runs in 26ms. To achieve that 
effective bandwidth rate (more than 9GB/s over PCI Express 2.0), the GPU is 
concurrently reading and writing over PCI Express while performing the kernel 
processing!

 6.7 Concurrent Kernel Processing
SM 2.x-class and later GPUs are capable of concurrently running multiple 
kernels, provided they are launched in different streams and have block sizes 
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that are small enough so a single kernel will not fill the whole GPU. The code 
in Listing 6.5 (lines 9–14) will cause kernels to run concurrently, provided the 
number of blocks in each kernel launch is small enough. Since the kernels can 
only communicate through global memory, we can add some instrumentation to 
AddKernel() to track how many kernels are running concurrently. Using the 
following “kernel concurrency tracking” structure

static const int g_maxStreams = 8;
typedef struct KernelConcurrencyData_st {
    int mask; // mask of active kernels
    int maskMax; // atomic max of mask popcount
    int masks[g_maxStreams];
    int count; // number of active kernels
    int countMax; // atomic max of kernel count
    int counts[g_maxStreams];
} KernelConcurrencyData;

we can add code to AddKernel() to “check in” and “check out” at the begin-
ning and end of the function, respectively. The “check in” takes the “kernel id” 
parameter kid (a value in the range 0..NumStreams-1 passed to the kernel), 
computes a mask 1<<kid corresponding to the kernel ID into a global, and 
atomically OR’s that value into the global. Note that atomicOR() returns the 
value that was in the memory location before the OR was performed. As a 
result, the return value has one bit set for every kernel that was active when the 
atomic OR operation was performed.

Similarly, this code tracks the number of active kernels by incrementing ker-
nelData->count and calling atomicMax() on a shared global.

// check in, and record active kernel mask and count 
// as seen by this kernel.
if ( kernelData && blockIdx.x==0 && threadIdx.x == 0 ) {
    int myMask = atomicOr( &kernelData->mask, 1<<kid );
    kernelData->masks[kid] = myMask | (1<<kid);
    int myCount = atomicAdd( &kernelData->count, 1 );
    atomicMax( &kernelData->countMax, myCount+1 );
    kernelData->counts[kid] = myCount+1;
}

At the bottom of the kernel, similar code clears the mask and decrements the 
active-kernel count.

// check out
if ( kernelData && blockIdx.x==0 && threadIdx.x==0 ) {
    atomicAnd( &kernelData->mask, ~(1<<kid) );
    atomicAdd( &kernelData->count, -1 );
}
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The kernelData parameter refers to a __device__ variable declared at file 
scope.

__device__ KernelConcurrencyData g_kernelData;

Remember that the pointer to g_kernelData must be obtained by calling 
cudaGetSymbolAddress(). It is possible to write code that references 
&g_kernelData, but CUDA’s language integration will not correctly resolve the 
address.

The concurrencyKernelKernel.cu program adds support for a command 
line option blocksPerSM to specify the number of blocks with which to launch 
these kernels. It will generate a report on the number of kernels that were 
active. Two sample invocations of concurrencyKernelKernel are as follows.

$ ./concurrencyKernelKernel –blocksPerSM 2
Using 2 blocks per SM on GPU with 14 SMs = 28 blocks
Timing sequential operations... Kernel data:
 Masks: ( 0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )
 Up to 1 kernels were active: (0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )

Timing concurrent operations... 
Kernel data:
 Masks: ( 0x1 0x3 0x7 0xe 0x1c 0x38 0x60 0xe0 )
 Up to 3 kernels were active: (0x1 0x2 0x3 0x3 0x3 0x3 0x2 0x3 )

$ ./concurrencyKernelKernel –blocksPerSM 3
Using 3 blocks per SM on GPU with 14 SMs = 42 blocks
Timing sequential operations... Kernel data:
 Masks: ( 0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )
 Up to 1 kernels were active: (0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )

Timing concurrent operations... Kernel data:
 Masks: ( 0x1 0x3 0x6 0xc 0x10 0x30 0x60 0x80 )
 Up to 2 kernels were active: (0x1 0x2 0x2 0x2 0x1 0x2 0x2 0x1 )

Note that blocksPerSM is the number of blocks specified to each kernel 
launch, so a total of numStreams*blocksPerSM blocks are launched in 
numStreams separate kernels. You can see that the hardware can run more 
kernels concurrently when the kernel grids are smaller, but there is no perfor-
mance benefit to concurrent kernel processing for the workload discussed in 
this chapter.
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 6.8  GPU/GPU Synchronization: 
cudaStreamWaitEvent()
Up to this point, all of the synchronization functions described in this chapter 
have pertained to CPU/GPU synchronization. They either wait for or query the 
status of a GPU operation. The cudaStreamWaitEvent()function is asyn-
chronous with respect to the CPU and causes the specified stream to wait until 
an event has been recorded. The stream and event need not be associated with 
the same CUDA device. Section 9.3 describes how such inter-GPU synchroni-
zation may be performed and uses the feature to implement a peer-to-peer 
memcpy (see Listing 9.1).

6.8.1 STREAMS AND EVENTS ON MULTI-GPU: NOTES AND 
LIMITATIONS

• Streams and events exist in the scope of the context (or device). When 
 cuCtxDestroy() or cudaDeviceReset() is called, the associated 
streams and events are destroyed.

• Kernel launches and cu(da)EventRecord() can only use CUDA streams in 
the same context/device.

• cudaMemcpy() can be called with any stream, but it is best to call it from the 
source context/device.

• cudaStreamWaitEvent() may be called on any event, using any stream.

 6.9 Source Code Reference
The source code referenced in this chapter resides in the concurrency 
directory.

FILENAME DESCRIPTION

breakevenDtoHMemcpy.cu Measures the size of an asynchronous device�host mem-
cpy before the amount of data copied “breaks even” with 
the driver overhead.
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FILENAME DESCRIPTION

breakevenHtoDMemcpy.cu Measures the size of an asynchronous host�device mem-
cpy before the amount of data copied “breaks even” with 
the driver overhead.

breakevenKernelAsync.cu Measures the amount of work a kernel must do to “break 
even” with the driver overhead.

concurrencyKernelKernel.cu Measures kernel-kernel concurrency within one GPU.

concurrencyKernelMapped.cu Measures relative speed of concurrent memcpy/kernel 
processing using mapped pinned memory as compared to 
streams.

concurrencyMemcpyKernel.cu Measures speedup due to concurrent memcpy and kernel 
processing for different amounts of work done by the 
kernel.

concurrencyMemcpyKernelMapped.cu Measures speedup due to kernels running concurrently 
using mapped pinned memory.

memcpy16.cpp SSE-optimized memcpy routine.

nullDtoHMemcpyAsync.cu Measures throughput of one-byte asynchronous 
device�host memcpys.

nullDtoHMemcpySync.cu Measures throughput of one-byte synchronous 
device�host memcpys.

nullHtoDMemcpyAsync.cu Measures throughput of one-byte asynchronous 
host�device memcpys.

nullKernelAsync.cu Measures throughput of asynchronous kernel launches.

nullKernelSync.cu Measures throughput of synchronous kernel launches.

pageableMemcpyHtoD.cu Illustrative example of pageable memcpy routine using 
standard CUDA programming constructions. Uses 
memcpy.

pageableMemcpyHtoD16.cu Illustrative example of pageable memcpy routine using 
standard CUDA programming constructions.

continues
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FILENAME DESCRIPTION

pageableMemcpyHtoD16Blocking.cu Identical to pageableMemcpyHtoD16.cu, but uses blocking 
events for synchronization.

pageableMemcpyHtoD16Broken.cu Identical to pageableMemcpyHtoD16.cu, with the event 
synchronization removed.

pageableMemcpyHtoD16Synchronous.cu Identical to pageableMemcpyHtoD16.cu, but with the event 
synchronization in a slightly different place that breaks 
CPU/GPU concurrency.

peer2peerMemcpy.cu Peer-to-peer memcpy that stages through portable 
pinned buffers.

       



205

Chapter 7 

Kernel Execution

This chapter gives a detailed description of how kernels are executed on the 
GPU: how they are launched, their execution characteristics, how they are orga-
nized into grids of blocks of threads, and resource management considerations. 
The chapter concludes with a description of dynamic parallelism—the new 
CUDA 5.0 feature that enables CUDA kernels to launch work for the GPU.

 7.1 Overview
CUDA kernels execute on the GPU and, since the very first version of CUDA, 
always have executed concurrently with the CPU. In other words, kernel 
launches are asynchronous: Control is returned to the CPU before the GPU has 
completed the requested operation. When CUDA was first introduced, there 
was no need for developers to concern themselves with the asynchrony (or lack 
thereof) of kernel launches; data had to be copied to and from the GPU explicitly, 
and the memcpy commands would be enqueued after the commands needed to 
launch kernels. It was not possible to write CUDA code that exposed the asyn-
chrony of kernel launches; the main side effect was to hide driver overhead 
when performing multiple kernel launches consecutively.

With the introduction of mapped pinned memory (host memory that can be 
directly accessed by the GPU), the asynchrony of kernel launches becomes 
more important, especially for kernels that write to host memory (as opposed 
to read from it). If a kernel is launched and writes host memory without 
explicit synchronization (such as with CUDA events), the code suffers from a 
race condition between the CPU and GPU and may not run correctly. Explicit 
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synchronization often is not needed for kernels that read via mapped pinned 
memory, since any pending writes by the CPU will be posted before the kernel 
launches. But for kernels that are returning results to CPU by writing to mapped 
pinned memory, synchronizing to avoid write-after-read hazards is essential.

Once a kernel is launched, it runs as a grid of blocks of threads. Not all blocks 
run concurrently, necessarily; each block is assigned to a streaming multiproc-
essor (SM), and each SM can maintain the context for multiple blocks. To cover 
both memory and instruction latencies, the SM generally needs more warps 
than a single block can contain. The maximum number of blocks per SM cannot 
be queried, but it is documented by NVIDIA as having been 8 before SM 3.x and 
16 on SM 3.x and later hardware.

The programming model makes no guarantees whatsoever as to the order of 
execution or whether certain blocks or threads can run concurrently. Devel-
opers can never assume that all the threads in a kernel launch are executing 
concurrently. It is easy to launch more threads than the machine can hold, and 
some will not start executing until others have finished. Given the lack of order-
ing guarantees, even initialization of global memory at the beginning of a kernel 
launch is a difficult proposition.

Dynamic parallelism, a new feature added with the Tesla K20 (GK110), the first SM 
3.5–capable GPU, enables kernels to launch other kernels and perform syn-
chronization between them. These capabilities address some of the limitations 
that were present in CUDA in previous hardware. For example, a dynamically 
parallel kernel can perform initialization by launching and waiting for a child 
grid.

 7.2 Syntax
When using the CUDA runtime, a kernel launch is specified using the familiar 
triple-angle-bracket syntax.

Kernel<<<gridSize, blockSize, sharedMem, Stream>>>( Parameters… )

Kernel specifies the kernel to launch.

gridSize specifies the size of the grid in the form of a dim3 structure.

blockSize specifies the dimension of each threadblock as a dim3.

       



207

   7.2 SYNTAX 

sharedMem specifies additional shared memory1 to reserve for each block. 

Stream specifies the stream in which the kernel should be launched.

The dim3 structure used to specify the grid and block sizes has 3 members (x, 
y, and z) and, when compiling with C++, a constructor with default parameters 
such that the y and z members default to 1. See Listing 7.1, which is excerpted 
from the NVIDIA SDK file vector_types.h.

Listing 7.1 dim3 structure.
struct __device_builtin__ dim3
{
    unsigned int x, y, z;
#if defined(__cplusplus)
    __host__ __device__ dim3(
    unsigned int vx = 1, 
    unsigned int vy = 1, 
    unsigned int vz = 1) : x(vx), y(vy), z(vz) {}
    __host__ __device__ dim3(uint3 v) : x(v.x), y(v.y), z(v.z) {}
    __host__ __device__ operator uint3(void) { 
        uint3 t; 
        t.x = x; 
        t.y = y; 
        t.z = z; 
        return t;
    }
#endif /* __cplusplus */
};

Kernels can be launched via the driver API using cuLaunchKernel(), though 
that function takes the grid and block dimensions as discrete parameters rather 
than dim3.

CUresult cuLaunchKernel ( 
    CUfunction kernel,
    unsigned int gridDimX,
    unsigned int gridDimY,
    unsigned int gridDimZ,
    unsigned int blockDimX,
    unsigned int blockDimY,
    unsigned int blockDimZ,
    unsigned int sharedMemBytes,
    CUstream hStream,
    void **kernelParams,
    void **extra  
);

1.  The amount of shared memory available to the kernel is the sum of this parameter and the 
amount of shared memory that was statically declared within the kernel.
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As with the triple-angle-bracket syntax, the parameters to  cuLaunchKernel() 
include the kernel to invoke, the grid and block sizes, the amount of shared 
memory, and the stream. The main difference is in how the parameters to the 
kernel itself are given: Since the kernel microcode emitted by ptxas contains 
metadata that describes each kernel’s parameters,2 kernelParams is an array 
of void *, where each element corresponds to a kernel parameter. Since the 
type is known by the driver, the correct amount of memory (4 bytes for an int, 
8 bytes for a double, etc.) will be copied into the command buffer as part of the 
hardware-specific command used to invoke the kernel.

7.2.1 LIMITATIONS

All C++ classes participating in a kernel launch must be “plain old data” (POD) 
with the following characteristics.

• No user-declared constructors 

• No user-defined copy assignment operator 

• No user-defined destructor 

• No nonstatic data members that are not themselves PODs

• No private or protected nonstatic data 

• No base classes  

• No virtual functions

Note that classes that violate these rules may be used in CUDA, or even in 
CUDA kernels; they simply cannot be used for a kernel launch. In that case, the 
classes used by a CUDA kernel can be constructed using the POD input data 
from the launch.

CUDA kernels also do not have return values. They must report their results 
back via device memory (which must be copied back to the CPU explicitly) or 
mapped host memory.

2.  cuLaunchKernel() will fail on binary images that were not compiled with CUDA 3.2 or later, 
since that is the first version to include kernel parameter metadata. 
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7.2.2 CACHES AND COHERENCY

The GPU contains numerous caches to accelerate computation when reuse 
occurs. The constant cache is optimized for broadcast to the execution units 
within an SM; the texture cache reduces external bandwidth usage. Neither of 
these caches is kept coherent with respect to writes to memory by the GPU. For 
example, there is no protocol to enforce coherency between these caches and 
the L1 or L2 caches that serve to reduce latency and aggregate bandwidth to 
global memory. That means two things. 

1. When a kernel is running, it must take care not to write memory that it (or 
a concurrently running kernel) also is accessing via constant or texture 
memory.  

2. The CUDA driver must invalidate the constant cache and texture cache before 
each kernel launch.

For kernels that do not contain TEX instructions, there is no need for the CUDA 
driver to invalidate the texture cache; as a result, kernels that do not use texture 
incur less driver overhead.

7.2.3 ASYNCHRONY AND ERROR HANDLING

Kernel launches are asynchronous: As soon as a kernel is submitted to the 
hardware, it begins executing in parallel with the CPU.3 This asynchrony com-
plicates error handling. If a kernel encounters an error (for example, if it reads 
an invalid memory location), the error is reported to the driver (and the appli-
cation) sometime after the kernel launch. The surest way to check for such 
errors is to synchronize with the GPU using cudaDeviceSynchronize() or 
 cuCtxSynchronize(). If an error in kernel execution has occurred, the error 
code “unspecified launch failure” is returned.

Besides explicit CPU/GPU synchronization calls such as cudaDevice-
Synchronize() or cuCtxSynchronize(), this error code may be returned 
by functions that implicitly synchronize with the CPU, such as synchronous 
memcpy calls.

3.  On most platforms, the kernel will start executing on the GPU microseconds after the CPU has 
finished processing the launch command. But on the Windows Display Driver Model (WDDM), it 
may take longer because the driver must perform a kernel thunk in order to submit the launch 
to the hardware, and work for the GPU is enqueued in user mode to amortize the overhead of 
the user�kernel transition.
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Invalid Kernel Launches
It is possible to request a kernel launch that the hardware cannot perform—for 
example, by specifying more threads per block than the hardware supports. 
When possible, the driver detects these cases and reports an error rather than 
trying to submit the launch to the hardware.

The CUDA runtime and the driver API handle this case differently. When 
an invalid parameter is specified, the driver API’s explicit API calls such as 
cuLaunchGrid() and cuLaunchKernel()return error codes. But when 
using the CUDA runtime, since kernels are launched in-line with C/C++ code, 
there is no API call to return an error code. Instead, the error is “recorded” 
into a thread-local slot and applications can query the error value with 
 cudaGetLastError(). This same error handling mechanism is used for kernel 
launches that are invalid for other reasons, such as a memory access violation.

7.2.4 TIMEOUTS

Because the GPU is not able to context-switch in the midst of kernel execution, 
a long-running CUDA kernel may negatively impact the interactivity of a system 
that uses the GPU to interact with the user. As a result, many CUDA systems 
implement a “timeout” that resets the GPU if it runs too long without context 
switching.

On WDDM (Windows Display Driver Model), the timeout is enforced by the 
operating system. Microsoft has documented how this “Timeout Detection and 
Recovery” (TDR) works. See http://bit.ly/WPPSdQ, which includes the Registry 
keys that control TDR behavior.4 TDR can be safely disabled by using the Tesla 
Compute Cluster (TCC) driver, though the TCC driver is not available for all 
hardware.

On Linux, the NVIDIA driver enforces a default timeout of 2 seconds. No time out 
is enforced on secondary GPUs that are not being used for display. Developers 
can query whether a runtime limit is being enforced on a given GPU by calling 
cuDeviceGetAttribute() with CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_
TIMEOUT, or by examining cudaDeviceProp:: kernelExecTimeoutEnabled.

7.2.5 LOCAL MEMORY

Since local memory is per-thread, and a grid in CUDA can contain  thousands 
of threads, the amount of local memory needed by a CUDA grid can be 

4.  Modifying the Registry should only be done for test purposes, of course.
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considerable. The developers of CUDA took pains to preallocate resources to 
minimize the likelihood that operations such as kernel launches would fail due 
to a lack of resources, but in the case of local memory, a conservative allocation 
simply would have consumed too much memory. As a result, kernels that use 
a large amount of local memory take longer and may be synchronous because 
the CUDA driver must allocate memory before performing the kernel launch. 
Furthermore, if the memory allocation fails, the kernel launch will fail due to a 
lack of resources.

By default, when the CUDA driver must allocate local memory to run a kernel, 
it frees the memory after the kernel has finished. This behavior additionally 
makes the kernel launch synchronous. But this behavior can be inhibited by 
specifying CU_CTX_LMEM_RESIZE_TO_MAX to cuCtxCreate() or by calling 
cudaSetDeviceFlags() with cudaDeviceLmemResizeToMax before the 
primary context is created. In this case, the increased amount of local memory 
available will persist after launching a kernel that required more local memory 
than the default.

7.2.6 SHARED MEMORY

Shared memory is allocated when the kernel is launched, and it stays allocated 
for the duration of the kernel’s execution. Besides static allocations that can be 
declared in the kernel, shared memory can be declared as an unsized extern; 
in that case, the amount of shared memory to allocate for the unsized array is 
specified as the third parameter of the kernel launch, or the sharedMemBytes 
parameter to cuLaunchKernel().

 7.3 Blocks, Threads, Warps, and Lanes
Kernels are launched as grids of blocks of threads. Threads can further be 
divided into 32-thread warps, and each thread in a warp is called a lane. 

7.3.1 GRIDS OF BLOCKS

Thread blocks are separately scheduled onto SMs, and threads within a given 
block are executed by the same SM. Figure 7.1 shows a 2D grid (8W × 6H) of 
2D blocks (8W × 8H). Figure 7.2 shows a 3D grid (8W × 6H × 6D) of 3D blocks 
(8W × 8H × 4D). 
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Grids can be up to 65535 x 65535 blocks (for SM 1.x hardware) or 65535 x 65535 x 
65535 blocks (for SM 2.x hardware).5 Blocks may be up to 512 or 1024 threads in 
size,6 and threads within a block can communicate via the SM’s shared mem-
ory. Blocks within a grid are likely to be assigned to different SMs; to maxi-

5.  The maximum grid size is queryable via CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, CU_
DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, or CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z; or by 
calling cudaGetDeviceGetProperties() and examining cudaDeviceProp::maxGridSize.

6.  The maximum block size is queryable via CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_
BLOCK, or deviceProp.maxThreadsPerBlock.
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blockDim.x
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Figure 7.1 2D grid and thread block.
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Figure 7.2 3D grid and thread block.
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mize throughput of the hardware, a given SM can run threads and warps from 
different blocks at the same time. The warp schedulers dispatch instructions as 
needed resources become available.

Threads
Each threads gets a full complement of registers7 and a thread ID that is unique 
within the threadblock. To obviate the need to pass the size of the grid and 
threadblock into every kernel, the grid and block size also are available for ker-
nels to read at runtime. The built-in variables used to reference these registers 
are given in Table 7.1. They are all of type dim3.

Taken together, these variables can be used to compute which part of a problem 
the thread will operate on. A “global” index for a thread can be computed as 
follows.

int globalThreadId = 
threadIdx.x+blockDim.x*(threadIdx.y+blockDim.y*threadIdx.z);

Warps, Lanes, and ILP
The threads themselves are executed together, in SIMD fashion, in units of 32 
threads called a warp, after the collection of parallel threads in a loom.8 (See 
Figure 7.3.) All 32 threads execute the same instruction, each using its private 
set of registers to perform the requested operation. In a triumph of mixed meta-
phor, the ID of a thread within a warp is called its lane.

7.  The more registers needed per thread, the fewer threads can “fit” in a given SM. The percentage 
of warps executing in an SM as compared to the theoretical maximum is called occupancy (see 
Section 7.4).

8.  The warp size can be queried, but it imposes such a huge compatibility burden on the hardware 
that developers can rely on it staying fixed at 32 for the foreseeable future.

Table 7.1 Built-In Variables

BUILT-IN VARIABLE DESCRIPTION

gridDim Dimension of grid (in thread blocks)

blockDim Dimension of thread block (in threads)

blockIdx Block index (within the grid)

threadIdx Thread index (within the block)
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The warp ID and lane ID can be computed using a global thread ID as follows.

int warpID = globalThreadId >> 5;
int laneID = globalThreadId & 31;

Warps are an important unit of execution because they are the granularity with 
which GPUs can cover latency. It has been well documented how GPUs use 
parallelism to cover memory latency. It takes hundreds of clock cycles to satisfy 
a global memory request, so when a texture fetch or read is encountered, the 
GPU issues the memory request and then schedules other instructions until the 
data arrives. Once the data has arrived, the warp becomes eligible for execution 
again.

What has been less well documented is that GPUs also use parallelism to 
exploit ILP (“instruction level parallelism”). ILP refers to fine-grained paral-
lelism that occurs during program execution; for example, when computing 
(a+b)*(c+d), the addition operations a+b and c+d can be performed in 
parallel before the multiplication must be performed. Because the SMs already 
have a tremendous amount of logic to track dependencies and cover latency, 
they are very good at covering instruction latency through parallelism (which is 
effectively ILP) as well as memory latency. GPUs’ support for ILP is part of the 
reason loop unrolling is such an effective optimization strategy. Besides slightly 
reducing the number of instructions per loop iteration, it exposes more parallel-
ism for the warp schedulers to exploit.

Figure 7.3 Loom.
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Object Scopes
The scopes of objects that may be referenced by a kernel grid are summa-
rized in Table 7.2, from the most local (registers in each thread) to the most 
global (global memory and texture references are per grid). Before the advent 
of dynamic parallelism, thread blocks served primarily as a mechanism for 
 interthread synchronization within a thread block (via intrinsics such as 
__syncthreads()) and communication (via shared memory). Dynamic paral-
lelism adds resource management to the mix, since streams and events created 
within a kernel are only valid for threads within the same thread block.

7.3.2 EXECUTION GUARANTEES

It is important that developers never make any assumptions about the order 
in which blocks or threads will execute. In particular, there is no way to know 
which block or thread will execute first, so initialization generally should be 
performed by code outside the kernel invocation.

Table 7.2 Object Scopes

OBJECT SCOPE

Registers Thread

Shared memory Thread block

Local memory Warp*

Constant memory Grid

Global memory Grid

Texture references Grid

Stream** Thread block

Event** Thread block

* In order to execute, a kernel only needs enough local memory to service 
the maximum number of active warps.

** Streams and events can only be created by CUDA kernels using dynamic 
parallelism.
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Execution Guarantees and Interblock Synchronization
Threads within a given thread block are guaran teed to be resident within the 
same SM, so they can communicate via shared memory and synchronize execu-
tion using intrinsics such as __syncthreads(). But thread blocks do not have 
any similar mechanisms for data interchange or synchronization.

More sophisticated CUDA developers may ask, But what about atomic operations 
in global memory? Global memory can be updated in a thread-safe manner using 
atomic operations, so it is tempting to build something like a __syncblocks() 
function that, like __syncthreads(), waits until all blocks in the kernel launch 
have arrived before proceeding. Perhaps it would do an atomicInc() on a 
global memory location and, if atomicInc() did not return the block count, 
poll that memory location until it did.

The problem is that the execution pattern of the kernel (for example, the map-
ping of thread blocks onto SMs) varies with the hardware configuration. For 
example, the number of SMs—and unless the GPU context is big enough to hold 
the entire grid—some thread blocks may execute to completion before other thread 
blocks have started running. The result is deadlock: Because not all blocks are 
necessarily resident in the GPU, the blocks that are polling the shared memory 
location prevent other blocks in the kernel launch from executing.

There are a few special cases when interblock synchronization can work. If 
simple mutual exclusion is all that’s desired, atomicCAS() certainly can be 
used to provide that. Also, thread blocks can use atomics to signal when they’ve 
completed, so the last thread block in a grid can perform some operation before 
it exits, knowing that all the other thread blocks have completed execution. 
This strategy is employed by the threadFenceReduction SDK sample and 
the reduction4SinglePass.cu sample that accompanies this book (see 
Section 12.2).

7.3.3 BLOCK AND THREAD IDS

A set of special read-only registers give each thread context in the form of a 
thread ID and block ID. The thread and block IDs are assigned as a CUDA kernel 
begins execution; for 2D and 3D grids and blocks, they are assigned in row- 
major order.

Thread block sizes are best specified in multiples of 32, since warps are the 
finest possible granularity of execution on the GPU. Figure 7.4 shows how thread 
IDs are assigned in 32-thread blocks that are 32Wx1H, 16Wx2H, and 8Wx4H, 
respectively. 
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For blocks with a thread count that is not a multiple of 32, some warps are not 
fully populated with active threads. Figure 7.5 shows thread ID assignments for 
28-thread blocks that are 28Wx1H, 14Wx2H, and 7Wx4H; in each case, 4 threads 
in the 32-thread warp are inactive for the duration of the kernel launch. For any 
thread block size not divisible by 32, some execution resources are wasted, as 
some warps will be launched with lanes that are disabled for the duration of the 
kernel execution. There is no performance benefit to 2D or 3D blocks or grids, 
but they sometimes make for a better match to the application. 

0 1 2 3 4 5 6 7 8 9 16 17 18 19 20 2110 11 12 13 14 15 22 23 24 25 26 27 28 29 30 31
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blockDim = (32,1,1)

blockDim = (16,2,1)

blockDim = (8,4,1)

Figure 7.4 Blocks of 32 threads.
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Figure 7.5 Blocks of 28 threads.
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The reportClocks.cu program illustrates how thread IDs are assigned and 
how warp-based execution works in general (Listing 7.2).

Listing 7.2 WriteClockValues kernel.
__global__ void
WriteClockValues( 
    unsigned int *completionTimes, 
    unsigned int *threadIDs 
)
{
    size_t globalBlock = blockIdx.x+blockDim.x* 
        (blockIdx.y+blockDim.y*blockIdx.z);
    size_t globalThread = threadIdx.x+blockDim.x*
        (threadIdx.y+blockDim.y*threadIdx.z);
    
    size_t totalBlockSize = blockDim.x*blockDim.y*blockDim.z;
    size_t globalIndex = globalBlock*totalBlockSize + globalThread;

    completionTimes[globalIndex] = clock();
    threadIDs[globalIndex] = threadIdx.y<<4|threadIdx.x;
}

WriteClockValues() writes to the two output arrays using a global index 
computed using the block and thread IDs, and the grid and block sizes. One 
 output array receives the return value from the clock() intrinsic, which 
returns a high-resolution timer value that increments for each warp. In the 
case of this program, we are using clock() to identify which warp processed 
a given value. clock() returns the value of a per-multiprocessor clock cycle 
counter, so we normalize the values by computing the minimum and subtracting 
it from all clock cycles values. We call the resulting values the thread’s “com-
pletion time.”

Let’s take a look at completion times for threads in a pair of 16Wx8H blocks 
(Listing 7.3) and compare them to completion times for 14Wx8H blocks 
(Listing 7.4). As expected, they are grouped in 32s, corresponding to the 
warp size. 

Listing 7.3 Completion times (16W×8H blocks).
0.01 ms for 256 threads = 0.03 us/thread
Completion times (clocks):
Grid (0, 0, 0) - slice 0:
   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6
   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6
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   8   8   8   8   8   8   8   8   8   8   8   8   8   8   8   8
   8   8   8   8   8   8   8   8   8   8   8   8   8   8   8   8
   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a
   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a   a
Grid (1, 0, 0) - slice 0:
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2
   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2
   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6
   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6   6
Thread IDs:
Grid (0, 0, 0) - slice 0:
   0   1   2   3   4   5   6   7   8   9   a   b   c   d   e   f
  10  11  12  13  14  15  16  17  18  19  1a  1b  1c  1d  1e  1f
  20  21  22  23  24  25  26  27  28  29  2a  2b  2c  2d  2e  2f
  30  31  32  33  34  35  36  37  38  39  3a  3b  3c  3d  3e  3f
  40  41  42  43  44  45  46  47  48  49  4a  4b  4c  4d  4e  4f
  50  51  52  53  54  55  56  57  58  59  5a  5b  5c  5d  5e  5f
  60  61  62  63  64  65  66  67  68  69  6a  6b  6c  6d  6e  6f
  70  71  72  73  74  75  76  77  78  79  7a  7b  7c  7d  7e  7f
Grid (1, 0, 0) - slice 0:
   0   1   2   3   4   5   6   7   8   9   a   b   c   d   e   f
  10  11  12  13  14  15  16  17  18  19  1a  1b  1c  1d  1e  1f
  20  21  22  23  24  25  26  27  28  29  2a  2b  2c  2d  2e  2f
  30  31  32  33  34  35  36  37  38  39  3a  3b  3c  3d  3e  3f
  40  41  42  43  44  45  46  47  48  49  4a  4b  4c  4d  4e  4f
  50  51  52  53  54  55  56  57  58  59  5a  5b  5c  5d  5e  5f
  60  61  62  63  64  65  66  67  68  69  6a  6b  6c  6d  6e  6f
  70  71  72  73  74  75  76  77  78  79  7a  7b  7c  7d  7e  7f

Listing 7.4  Completion times (14W×8H blocks).
Completion times (clocks):
Grid (0, 0, 0) - slice 0:
   6   6   6   6   6   6   6   6   6   6   6   6   6   6
   6   6   6   6   6   6   6   6   6   6   6   6   6   6
   6   6   6   6   8   8   8   8   8   8   8   8   8   8
   8   8   8   8   8   8   8   8   8   8   8   8   8   8
   8   8   8   8   8   8   8   8   a   a   a   a   a   a
   a   a   a   a   a   a   a   a   a   a   a   a   a   a
   a   a   a   a   a   a   a   a   a   a   a   a   c   c
   c   c   c   c   c   c   c   c   c   c   c   c   c   c
Grid (1, 0, 0) - slice 0:
   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   2   2   2   2   2   2   2   2   2   2
   2   2   2   2   2   2   2   2   2   2   2   2   2   2
   2   2   2   2   2   2   2   2   4   4   4   4   4   4
   4   4   4   4   4   4   4   4   4   4   4   4   4   4
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   4   4   4   4   4   4   4   4   4   4   4   4   6   6
   6   6   6   6   6   6   6   6   6   6   6   6   6   6
Thread IDs:
Grid (0, 0, 0) - slice 0:
   0   1   2   3   4   5   6   7   8   9   a   b   c   d
  10  11  12  13  14  15  16  17  18  19  1a  1b  1c  1d
  20  21  22  23  24  25  26  27  28  29  2a  2b  2c  2d
  30  31  32  33  34  35  36  37  38  39  3a  3b  3c  3d
  40  41  42  43  44  45  46  47  48  49  4a  4b  4c  4d
  50  51  52  53  54  55  56  57  58  59  5a  5b  5c  5d
  60  61  62  63  64  65  66  67  68  69  6a  6b  6c  6d
  70  71  72  73  74  75  76  77  78  79  7a  7b  7c  7d
Grid (1, 0, 0) - slice 0:
   0   1   2   3   4   5   6   7   8   9   a   b   c   d
  10  11  12  13  14  15  16  17  18  19  1a  1b  1c  1d
  20  21  22  23  24  25  26  27  28  29  2a  2b  2c  2d
  30  31  32  33  34  35  36  37  38  39  3a  3b  3c  3d
  40  41  42  43  44  45  46  47  48  49  4a  4b  4c  4d
  50  51  52  53  54  55  56  57  58  59  5a  5b  5c  5d
  60  61  62  63  64  65  66  67  68  69  6a  6b  6c  6d
  70  71  72  73  74  75  76  77  78  79  7a  7b  7c  7d

The completion times for the 14Wx8H blocks given in Listing 7.4 underscore 
how the thread IDs map to warps. In the case of the 14Wx8H blocks, every 
warp holds only 28 threads; 12.5% of the number of possible thread lanes are 
idle throughout the kernel’s execution. To avoid this waste, developers always 
should try to make sure blocks contain a multiple of 32 threads.

 7.4 Occupancy
Occupancy is a ratio that measures the number of threads/SM that will run in a 
given kernel launch, as opposed to the maximum number of threads that poten-
tially could be running on that SM.

Warps per SM
Max Warps per SM.

The denominator (maximum warps per SM) is a constant that depends only on 
the compute capability of the device. The numerator of this expression, which 
determines the occupancy, is a function of the following.

• Compute capability (1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 3.0, 3.5)

• Threads per block
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• Registers per thread 

• Shared memory configuration9 

• Shared memory per block

To help developers assess the tradeoffs between these parameters, the CUDA 
Toolkit includes an occupancy calculator in the form of an Excel spreadsheet.10 
Given the inputs above, the spreadsheet will calculate the following results.

• Active thread count

• Active warp count

• Active block count 

• Occupancy (active warp count divided into the hardware’s maximum number 
of active warps)

The spreadsheet also identifies whichever parameter is limiting the occupancy.

• Registers per multiprocessor

• Maximum number of warps or blocks per multiprocessor 

• Shared memory per multiprocessor

Note that occupancy is not the be-all and end-all of CUDA performance;11 often it 
is better to use more registers per thread and rely on instruction-level parallel-
ism (ILP) to deliver performance. NVIDIA has a good presentation on warps and 
occupancy that discusses the tradeoffs.12

An example of a low-occupancy kernel that can achieve near-maximum global 
memory bandwidth is given in Section 5.2.10 (Listing 5.5). The inner loop of 
the GlobalReads kernel can be unrolled according to a template parameter; 
as the number of unrolled iterations increases, the number of needed reg-
isters increases and the occupancy goes down. For the Tesla M2050’s in the 
cg1.4xlarge instance type, for example, the peak read bandwidth reported 
(with ECC disabled) is 124GiB/s, with occupancy of 66%. Volkov reports achieving 

 9.  For SM 2.x and later only. Developers can split the 64K L1 cache in the SM as 16K shared/48K L1 
or 48K shared/16K L1. (SM 3.x adds the ability to split the cache evenly as 32K shared/32K L1.)

10.  Typically it is in the tools subdirectory—for example, %CUDA_PATH%/tools (Windows) or 
$CUDA_PATH/tools.

11.  Vasily Volkov emphatically makes this point in his presentation “Better Performance at Lower 
Occupancy.” It is available at http://bit.ly/YdScNG.

12.  http://bit.ly/WHTb5m
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near-peak memory bandwidth when running kernels whose occupancy is in the 
single digits.

 7.5 Dynamic Parallelism
Dynamic parallelism, a new capability that works only on SM 3.5–class hardware, 
enables CUDA kernels to launch other CUDA kernels, and also to invoke various 
functions in the CUDA runtime. When using dynamic parallelism, a subset of 
the CUDA runtime (known as the device runtime) becomes available for use by 
threads running on the device.

Dynamic parallelism introduces the idea of “parent” and “child” grids. Any 
kernel invoked by another CUDA kernel (as opposed to host code, as done in all 
previous CUDA versions) is a “child kernel,” and the invoking grid is its “parent.” 
By default, CUDA supports two (2) nesting levels (one for the parent and one for 
the child), a number that may be increased by calling cudaSetDeviceLimit() 
with cudaLimitDevRuntimeSyncDepth.

Dynamic parallelism was designed to address applications that previously had 
to deliver results to the CPU so the CPU could specify which work to perform 
on the GPU. Such “handshaking” disrupts CPU/GPU concurrency in the execu-
tion pipeline described in Section 2.5.1, in which the CPU produces commands 
for consumption by the GPU. The GPU’s time is too valuable for it to wait for the 
CPU to read and analyze results before issuing more work. Dynamic parallelism 
avoids these pipeline bubbles by enabling the GPU to launch work for itself from 
kernels.

Dynamic parallelism can improve performance in several cases.

• It enables initialization of data structures needed by a kernel before the ker-
nel can begin execution. Previously, such initialization had to be taken care of 
in host code or by previously invoking a separate kernel.

• It enables simplified recursion for applications such as Barnes-Hut gravita-
tional integration or hierarchical grid evaluation for aerodynamic simulations.

NOTE 

Dynamic parallelism only works within a given GPU. Kernels can invoke 
memory copies or other kernels, but they cannot submit work to other 
GPUs.
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7.5.1 SCOPING AND SYNCHRONIZATION

With the notable exception of block and grid size, child grids inherit most kernel 
configuration parameters, such as the shared memory configuration (set by 
cudaDeviceSetCacheConfig()), from their parents. Thread blocks are a 
unit of scope: Streams and events created by a thread block can only be used by 
that thread block (they are not even inherited for use by child grids), and they are 
automatically destroyed when the thread block exits.

NOTE 

Resources created on the device via dynamic parallelism are strictly 
 separated from resources created on the host. Streams and events cre-
ated on the host may not be used on the device via dynamic parallelism, 
and vice versa.

CUDA guarantees that a parent grid is not considered complete until all of its 
children have finished. Although the parent may execute concurrently with the 
child, there is no guarantee that a child grid will begin execution until its parent 
calls cudaDeviceSynchronize().

If all threads in a thread block exit, execution of the thread block is suspended 
until all child grids have finished. If that synchronization is not sufficient, devel-
opers can use CUDA streams and events for explicit synchronization. As on the 
host, operations within a given stream are performed in the order of submis-
sion. Operations can only execute concurrently if they are specified in different 
streams, and there is no guarantee that operations will, in fact, execute concur-
rently. If needed, synchronization primitives such as __syncthreads() can be 
used to coordinate the order of submission to a given stream.

NOTE

Streams and events created on the device may not be used outside the 
thread block that created them.

cudaDeviceSynchronize() synchronizes on all pending work launched by 
any thread in the thread block. It does not, however, perform any interthread 
synchronization, so if there is a desire to synchronize on work launched by other 
threads, developers must use __syncthreads() or other block-level synchro-
nization primitives (see Section 8.6.2).
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7.5.2 MEMORY MODEL

Parent and child grids share the same global and constant memory storage, but 
they have distinct local and shared memory.

Global Memory
There are two points in the execution of a child grid when its view of memory is 
fully consistent with the parent grid: when the child grid is invoked by the parent 
and when the child grid completes as signaled by a synchronization API invoca-
tion in the parent thread.

All global memory operations in the parent thread prior to the child thread’s 
invocation are visible to the child grid. All memory operations of the child grid 
are visible to the parent after the parent has synchronized on the child grid’s 
completion. Zero-copy memory has the same coherence and consistency guar-
antees as global memory.

Constant Memory 
Constants are immutable and may not be modified from the device during 
kernel execution. Taking the address of a constant memory object from within a 
kernel thread has the same semantics as for all CUDA programs,13 and passing 
that pointer between parents and their children is fully supported.

Shared and Local Memory 
Shared and local memory is private to a thread block or thread, respectively, 
and is not visible or coherent between parent and child. When an object in one 
of these locations is referenced outside its scope, the behavior is undefined and 
would likely cause an error.

If nvcc detects an attempt to misuse a pointer to shared or local memory, 
it will issue a warning. Developers can use the __isGlobal() intrinsic to 
determine whether a given pointer references global memory. Pointers to 
shared or local memory are not valid parameters to cudaMemcpy*Async() or 
cudaMemset*Async().

Local Memory 
Local memory is private storage for an executing thread and is not visible 
outside of that thread. It is illegal to pass a pointer to local memory as a launch 

13.  Note that in device code, the address must be taken with the “address-of” operator (unary 
operator&), since cudaGetSymbolAddress() is not supported by the device runtime.
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argument when launching a child kernel. The result of dereferencing such a 
local memory pointer from a child will be undefined. To guarantee that this rule 
is not inadvertently violated by the compiler, all storage passed to a child kernel 
should be allocated explicitly from the global memory heap.

Texture Memory 
Concurrent accesses by parent and child may result in inconsistent data and 
should be avoided. That said, a degree of coherency between parent and child 
is enforced by the runtime. A child kernel can use texturing to access memory 
written by its parent, but writes to memory by a child will not be reflected in the 
texture memory accesses by a parent until after the parent synchronizes on the 
child’s completion. Texture objects are well supported in the device runtime. 
They cannot be created or destroyed, but they can be passed in and used by any 
grid in the hierarchy (parent or child).

7.5.3 STREAMS AND EVENTS

Streams and events created by the device runtime can be used only within the 
thread block that created the stream. The NULL stream has different semantics 
in the device runtime than in the host runtime. On the host, synchronizing with 
the NULL stream forces a “join” of all the other streamed operations on the 
GPU (as described in Section 6.2.3); on the device, the NULL stream is its own 
stream, and any interstream synchronization must be performed using events. 

When using the device runtime, streams must be created with the cudaStream-
NonBlocking flag (a parameter to cudaStreamCreateWithFlags()). The 
cudaStreamSynchronize() call is not supported; synchronization must be 
implemented in terms of events and cudaStreamWaitEvent(). 

Only the interstream synchronization capabilities of CUDA events are supported. 
As a consequence, cudaEventSynchronize(), cudaEventElapsedTime(), 
and cudaEventQuery() are not supported. Additionally, because timing is not 
supported, events must be created by passing the cudaEventDisableTiming 
flag to cudaEventCreateWithFlags().

7.5.4 ERROR HANDLING

Any function in the device runtime may return an error (cudaError_t). 
The error is recorded in a per-thread slot that can be queried by calling 
 cudaGetLastError(). As with the host-based runtime, CUDA makes a 
distinction between errors that can be returned immediately (e.g., if an invalid 
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parameter is passed to a memcpy function) and errors that must be reported 
asynchronously (e.g., if a launch performed an invalid memory access). If a child 
grid causes an error at runtime, CUDA will return an error to the host, not to the 
parent grid.

7.5.5 COMPILING AND LINKING

Unlike the host runtime, developers must explicitly link against the device 
runtime’s static library when using the device runtime. On Windows, the device 
runtime is cudadevrt.lib; on Linux and MacOS, it is cudadevrt.a. When 
building with nvcc, this may be accomplished by appending -lcudadevrt to 
the command line.

7.5.6 RESOURCE MANAGEMENT

Whenever a kernel launches a child grid, the child is considered a new nest-
ing level, and the total number of levels is the nesting depth of the program. In 
contrast, the deepest level at which the program will explicitly synchronize on 
a child launch is called the synchronization depth. Typically the synchronization 
depth is one less than the nesting depth of the program, but if the program does 
not always need to call cudaDeviceSynchronize(), then it may be substan-
tially less than the nesting depth.

The theoretical maximum nesting depth is 24, but in practice it is governed by 
the device limit cudaLimitDevRuntimeSyncDepth. Any launch that would 
result in a kernel at a deeper level than the maximum will fail. The default max-
imum synchronization depth level is 2. The limits must be configured before the 
top-level kernel is launched from the host. 

NOTE

Calling a device runtime function such as cudaMemcpyAsync() may 
invoke a kernel, increasing the nesting depth by 1.

For parent kernels that never call cudaDeviceSynchronize(), the system 
does not have to reserve space for the parent kernel. In this case, the mem-
ory footprint required for a program will be much less than the conservative 
maximum. Such a program could specify a shallower maximum synchronization 
depth to avoid overallocation of backing store.
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Memory Footprint
The device runtime system software reserves device memory for the following 
purposes.

• To track pending grid launches

• To save saving parent-grid state during synchronization 

• To serve as an allocation heap for malloc() and cudaMalloc() calls from 
kernels

This memory is not available for use by the application, so some applications 
may wish to reduce the default allocations, and some applications may have to 
increase the default values in order to operate correctly. To change the default 
values, developers call cudaDeviceSetLimit(), as summarized in Table 7.3. 
The limit cudaLimitDevRuntimeSyncDepth is especially important, since 
each nesting level costs up to 150MB of device memory.

Pending Kernel Launches
When a kernel is launched, all associated configuration and  parameter 
data is tracked until the kernel completes. This data is stored within a 

Table 7.3 cudaDeviceSetLimit() Values

LIMIT BEHAVIOR

cudaLimitDevRuntimeSyncDepth Sets the maximum depth at which cudaDevice-
Synchronize() may be called. Launches may be 
performed deeper than this, but explicit synchro-
nization deeper than this limit will return the error 
cudaErrorLaunchMaxDepthExceeded. The default 
maximum sync depth is 2.

cudaLimitDevRuntimePendingLaunchCount Controls the amount of memory set aside for buff-
ering kernel launches that have not yet begun to 
execute, due either to unresolved dependencies or 
lack of execution resources. When the buffer is full, 
launches will set the thread’s last error to cudaEr-
rorLaunchPendingCountExceeded. The default 
pending launch count is 2048 launches.

cudaLimitMallocHeapSize Sets the size of the device runtime’s heap that can 
be allocated by calling malloc() or cudaMalloc() 
from a kernel.
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system-managed launch pool. The size of the launch pool is configu-
rable by calling cudaDeviceSetLimit() from the host and specifying 
cudaLimitDevRuntimePendingLaunchCount. 

Configuration Options
Resource allocation for the device runtime system software is controlled via 
the cudaDeviceSetLimit() API from the host program. Limits must be set 
before any kernel is launched and may not be changed while the GPU is actively 
running programs.

Memory allocated by the device runtime must be freed by the device runtime. 
Also, memory is allocated by the device runtime out of a preallocated heap 
whose size is specified by the device limit cudaLimitMallocHeapSize. The 
named limits in Table 7.3 may be set.

7.5.7 SUMMARY

Table 7.4 summarizes the key differences and limitations between the device 
runtime and the host runtime. Table 7.5 lists the subset of functions that may be 
called from the device runtime, along with any pertinent limitations.

Table 7.4 Device Runtime Limitations

CAPABILITY LIMITATIONS AND DIFFERENCES

Events Thread block scope only

No query support

No timing support; must be created with cudaEventCreateWithFlags( 
cudaEventDisableTiming )

Limited synchronization support; use cudaStreamWaitEvent()

Local Memory Local to grid only; cannot be passed to child grids

NULL Stream Does not enforce join with other streams

Shared Memory Local to grid only; cannot be passed to child grids

Streams Thread block scope only

No query support

Limited synchronization support; use cudaStreamWaitEvent()
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Table 7.5 CUDA Device Runtime Functions 

RUNTIME API FUNCTION NOTES

cudaDeviceSynchronize Synchronizes on work launched from thread’s own thread block 
only

cudaDeviceGetCacheConfig

cudaDeviceGetLimit

cudaGetLastError Last error is per-thread state, not per-block

cudaPeekAtLastError

cudaGetErrorString

cudaGetDeviceCount

cudaGetDeviceProperty Can return properties for any device

cudaGetDevice Always returns current device ID as would be seen by the host

cudaStreamCreateWithFlags Must pass cudaStreamNonBlocking flag

cudaStreamDestroy

cudaStreamWaitEvent

cudaEventCreateWithFlags Must pass cudaEventDisableTiming flag

continues

Table 7.4 Device Runtime Limitations (Continued )

CAPABILITY LIMITATIONS AND DIFFERENCES

Textures Texture references (pre–CUDA 5.0, module-scope textures) may be used only from top-
level kernels launched from the host.

Texture and 
Surface Objects

SM 3.x–only texture and surface objects cannot be created or destroyed by the device 
runtime, but they can be used freely on the device.
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RUNTIME API FUNCTION NOTES

cudaEventRecord

cudaEventDestroy

cudaFuncGetAttributes

cudaMemcpyAsync

cudaMemcpy2DAsync

cudaMemcpy3DAsync

cudaMemsetAsync

cudaMemset2DAsync

cudaMemset3DAsync

cudaRuntimeGetVersion

cudaMalloc Only may be freed by device

cudaFree Can free memory allocated by device only

Table 7.5 CUDA Device Runtime Functions  (Continued )
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Chapter 8 

Streaming 

Multiprocessors

The streaming multiprocessors (SMs) are the part of the GPU that runs our 
CUDA kernels. Each SM contains the following.

• Thousands of registers that can be partitioned among threads of execution 

• Several caches:

 – Shared memory for fast data interchange between threads 

 – Constant cache for fast broadcast of reads from constant memory

 – Texture cache to aggregate bandwidth from texture memory

 – L1 cache to reduce latency to local or global memory

• Warp schedulers that can quickly switch contexts between threads and issue 
instructions to warps that are ready to execute

• Execution cores for integer and floating-point operations:

 – Integer and single-precision floating point operations

 – Double-precision floating point

 – Special Function Units (SFUs) for single-precision floating-point transcen-
dental functions
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The reason there are many registers and the reason the hardware can context 
switch between threads so efficiently are to maximize the throughput of the 
hardware. The GPU is designed to have enough state to cover both execution 
latency and the memory latency of hundreds of clock cycles that it may take for 
data from device memory to arrive after a read instruction is executed.

The SMs are general-purpose processors, but they are designed very differently 
than the execution cores in CPUs: They target much lower clock rates; they 
support instruction-level parallelism, but not branch prediction or speculative 
execution; and they have less cache, if they have any cache at all. For suitable 
workloads, the sheer computing horsepower in a GPU more than makes up for 
these disadvantages.

The design of the SM has been evolving rapidly since the introduction of the first 
CUDA-capable hardware in 2006, with three major revisions, codenamed Tesla, 
Fermi, and Kepler. Developers can query the compute capability by calling 
cudaGetDeviceProperties() and examining cudaDeviceProp.major 
and cudaDeviceProp.minor, or by calling the driver API function cuDevice-
ComputeCapability(). Compute capability 1.x, 2.x, and 3.x correspond to 
Tesla-class, Fermi-class, and Kepler-class hardware, respectively. Table 8.1 
summarizes the capabilities added in each generation of the SM hardware.

Table 8.1 SM Capabilities

COMPUTE 

LEVEL INTRODUCED . . . 

SM 1.1 Global memory atomics; mapped pinned memory; debuggable (e.g., breakpoint instruction)

SM 1.2 Relaxed coalescing constraints; warp voting (any() and all() intrinsics); atomic operations 
on shared memory

SM 1.3 Double precision support

SM 2.0 64-bit addressing; L1 and L2 cache; concurrent kernel execution; configurable 16K or 48K 
shared memory; bit manipulation instructions ( __clz(), __popc(), __ffs(), __brev() 
intrinsics); directed rounding for single-precision floating-point values; fused multiply-add; 
64-bit clock counter; surface load/store; 64-bit global atomic add, exchange, and compare-
and-swap; global atomic add for single-precision floating-point values; warp voting (bal-
lot() intrinsic); assertions and formatted output (printf).

SM 2.1 Function calls and indirect calls in kernels
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In Chapter 2, Figures 2.29 through 2.32 show block diagrams of different SMs. 
CUDA cores can execute integer and single-precision floating-point instructions; 
one double-precision unit implements double-precision support, if available; 
and Special Function Units implement reciprocal, recriprocal square root, sine/
cosine, and logarithm/exponential functions. Warp schedulers dispatch instruc-
tions to these execution units as the resources needed to execute the instruction 
become available.

This chapter focuses on the instruction set capabilities of the SM. As such, it 
sometimes refers to the “SASS” instructions, the native instructions into which 
ptxas or the CUDA driver translate intermediate PTX code. Developers are not 
able to author SASS code directly; instead, NVIDIA has made these instructions 
visible to developers through the cuobjdump utility so they can direct optimiza-
tions of their source code by examining the compiled microcode.

 8.1 Memory

8.1.1 REGISTERS

Each SM contains thousands of 32-bit registers that are allocated to threads as 
specified when the kernel is launched. Registers are both the fastest and most 
plentiful memory in the SM. As an example, the Kepler-class (SM 3.0) SMX con-
tains 65,536 registers or 256K, while the texture cache is only 48K.

CUDA registers can contain integer or floating-point data; for hardware capable 
of performing double-precision arithmetic (SM 1.3 and higher), the operands are 
contained in even-valued register pairs. On SM 2.0 and higher hardware, regis-
ter pairs also can hold 64-bit addresses.

Table 8.1 SM Capabilities (Continued )

COMPUTE 

LEVEL INTRODUCED . . . 

SM 3.0 Increase maximum grid size; warp shuffle; permute; 32K/32K shared memory configuration; 
configurable shared memory (32- or 64-bit mode) Bindless textures (“texture objects”); faster 
global atomics

SM 3.5 64-bit atomic min, max, AND, OR, and XOR; 64-bit funnel shift; read global memory via texture; 
dynamic parallelism
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CUDA hardware also supports wider memory transactions: The built-in int2/
float2 and int4/float4 data types, residing in aligned register pairs or 
quads, respectively, may be read or written using single 64- or 128-bit-wide 
loads or stores. Once in registers, the individual data elements can be refer-
enced as .x/.y (for int2/float2) or .x/.y/.z/.w (for int4/float4). 

Developers can cause nvcc to report the number of registers used by a kernel 
by specifying the command-line option --ptxas-options -–verbose. The 
number of registers used by a kernel affects the number of threads that can 
fit in an SM and often must be tuned carefully for optimal performance. The 
 maximum number of registers used for a compilation may be specified with 
--ptxas-options --maxregcount N. 

Register Aliasing
Because registers can hold floating-point or integer data, some intrinsics serve 
only to coerce the compiler into changing its view of a variable. The __int_
as_float() and __float_as_int() intrinsics cause a variable to “change 
personalities” between 32-bit integer and single-precision floating point.

float __int_as_float( int i );
int __float_as_int( float f );

The __double2loint(), __double2hiint(), and __hiloint2double() 
intrinsics similarly cause registers to change personality (usually in-place). 
__double_as_longlong() and __longlong_as_double() coerce register 
pairs in-place; __double2loint() and __double2hiint() return the least 
and the most significant 32 bits of the input operand, respectively; and 
__hiloint2double() constructs a double out of the high and low halves.

int double2loint( double d );
int double2hiint( double d );
int hiloint2double( int hi, int lo );
double long_as_double(long long int i );
long long int __double_as_longlong( double d );

8.1.2 LOCAL MEMORY

Local memory is used to spill registers and also to hold local variables that are 
indexed and whose indices cannot be computed at compile time. Local memory 
is backed by the same pool of device memory as global memory, so it exhibits 
the same latency characteristics and benefits as the L1 and L2 cache hierarchy 
on Fermi and later hardware. Local memory is addressed in such a way that 
the memory transactions are automatically coalesced. The hardware includes 
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special instructions to load and store local memory: The SASS variants are 
LLD/LST for Tesla and LDL/STL for Fermi and Kepler.

8.1.3 GLOBAL MEMORY

The SMs can read or write global memory using GLD/GST instructions (on 
Tesla) and LD/ST instructions (on Fermi and Kepler). Developers can use 
standard C operators to compute and dereference addresses, including pointer 
arithmetic and the dereferencing operators *, [], and ->. Operating on 64- or 
128-bit built-in data types (int2/float2/int4/float4) automatically causes 
the compiler to issue 64- or 128-bit load and store instructions. Maximum 
memory performance is achieved through coalescing of memory transactions, 
described in Section 5.2.9.

Tesla-class hardware (SM 1.x) uses special address registers to hold pointers; 
later hardware implements a load/store architecture that uses the same reg-
ister file for pointers; integer and floating-point values; and the same address 
space for constant memory, shared memory, and global memory.1

Fermi-class hardware includes several features not available on older 
hardware.

• 64-bit addressing is supported via “wide” load/store instructions in which 
addresses are held in even-numbered register pairs. 64-bit addressing is not 
supported on 32-bit host platforms; on 64-bit host platforms, 64-bit address-
ing is enabled automatically. As a result, code generated for the same kernels 
compiled for 32- and 64-bit host platforms may have different register counts 
and performance.

• The L1 cache may be configured to be 16K or 48K in size.2 (Kepler added the 
ability to split the cache as 32K L1/32K shared.) Load instructions can include 
cacheability hints (to tell the hardware to pull the read into L1 or to bypass 
the L1 and keep the data only in L2). These may be accessed via inline PTX or 
through the command line option –X ptxas –dlcm=ca (cache in L1 and L2, 
the default setting) or –X ptxas –dlcm=cg (cache only in L2).

Atomic operations (or just “atomics”) update a memory location in a way that 
works correctly even when multiple GPU threads are operating on the same 

1.  Both constant and shared memory exist in address windows that enable them to be referenced 
by 32-bit addresses even on 64-bit architectures.

2.  The hardware can change this configuration per kernel launch, but changing this state is expen-
sive and will break concurrency for concurrent kernel launches.
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memory location. The hardware enforces mutual exclusion on the memory 
location for the duration of the operation. Since the order of operations is not 
guaranteed, the operators supported generally are associative.3

Atomics first became available for global memory for SM 1.1 and greater and for 
shared memory for SM 1.2 and greater. Until the Kepler generation of hardware, 
however, global memory atomics were too slow to be useful.

The global atomic intrinsics, summarized in Table 8.2, become automatically 
available when the appropriate architecture is specified to nvcc via --gpu- 
architecture. All of these intrinsics can operate on 32-bit integers. 64-bit 
support for atomicAdd(), atomicExch(), and atomicCAS() was added 

3.  The only exception is single-precision floating-point addition. Then again, floating-point code 
generally must be robust in the face of the lack of associativity of floating-point operations; 
porting to different hardware, or even just recompiling the same code with different compiler 
options, can change the order of floating-point operations and thus the result.

Table 8.2 Atomic Operations

MNEMONIC DESCRIPTION

atomicAdd Addition

atomicSub Subtraction

atomicExch Exchange 

atomicMin Minimum

atomicMax Maximum

atomicInc Increment (add 1)

atomicDec Decrement (subtract 1)

atomicCAS Compare and swap

atomicAnd AND

atomicOr OR

atomicXor XOR
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in SM 1.2. atomicAdd() of 32-bit floating-point values (float) was added 
in SM 2.0. 64-bit support for atomicMin(), atomicMax(), atomicAnd(), 
 atomicOr(), and atomicXor() was added in SM 3.5.

NOTE

Because atomic operations are implemented using hardware in the GPU’s 
integrated memory controller, they do not work across the PCI Express 
bus and thus do not work correctly on device memory pointers that corre-
spond to host memory or peer memory.

At the hardware level, atomics come in two forms: atomic operations that return 
the value that was at the specified memory location before the operator was 
performed, and reduction operations that the developer can “fire and forget” at 
the memory location, ignoring the return value. Since the hardware can perform 
the operation more efficiently if there is no need to return the old value, the 
compiler detects whether the return value is used and, if it is not, emits different 
instructions. In SM 2.0, for example, the instructions are called ATOM and RED, 
respectively.

8.1.4 CONSTANT MEMORY

Constant memory resides in device memory, but it is backed by a different, 
read-only cache that is optimized to broadcast the results of read requests to 
threads that all reference the same memory location. Each SM contains a small, 
latency-optimized cache for purposes of servicing these read requests. Making 
the memory (and the cache) read-only simplifies cache management, since the 
hardware has no need to implement write-back policies to deal with memory 
that has been updated.

SM 2.x and subsequent hardware includes a special optimization for memory 
that is not denoted as constant but that the compiler has identified as (1) read-
only and (2) whose address is not dependent on the block or thread ID. The “load 
uniform” (LDU) instruction reads memory using the constant cache hierarchy 
and broadcasts the data to the threads.

8.1.5 SHARED MEMORY

Shared memory is very fast, on-chip memory in the SM that threads can use for 
data interchange within a thread block. Since it is a per-SM resource, shared 
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memory usage can affect occupancy, the number of warps that the SM can keep 
resident. SMs load and store shared memory with special instructions: G2R/
R2G on SM 1.x, and LDS/STS on SM 2.x and later.

Shared memory is arranged as interleaved banks and generally is optimized for 
32-bit access. If more than one thread in a warp references the same bank, a 
bank conflict occurs, and the hardware must handle memory requests consec-
utively until all requests have been serviced. Typically, to avoid bank conflicts, 
applications access shared memory with an interleaved pattern based on the 
thread ID, such as the following. 

extern __shared__ float shared[];
float data = shared[BaseIndex + threadIdx.x];

Having all threads in a warp read from the same 32-bit shared memory location 
also is fast. The hardware includes a broadcast mechanism to optimize for this 
case. Writes to the same bank are serialized by the hardware, reducing perfor-
mance. Writes to the same address cause race conditions and should be avoided.

For 2D access patterns (such as tiles of pixels in an image processing kernel), 
it’s good practice to pad the shared memory allocation so the kernel can ref-
erence adjacent rows without causing bank conflicts. SM 2.x and subsequent 
hardware has 32 banks,4 so for 2D tiles where threads in the same warp may 
access the data by row, it is a good strategy to pad the tile size to a multiple of 
33 32-bit words.

On SM 1.x hardware, shared memory is about 16K in size;5 on later hardware, 
there is a total of 64K of L1 cache that may be configured as 16K or 48K of 
shared memory, of which the remainder is used as L1 cache.6 

Over the last few generations of hardware, NVIDIA has improved the hardware’s 
handling of operand sizes other than 32 bits. On SM 1.x hardware, 8- and 16-bit 
reads from the same bank caused bank conflicts, while SM 2.x and later hard-
ware can broadcast reads of any size out of the same bank. Similarly, 64-bit 
operands (such as double) in shared memory were so much slower than 32-bit 
operands on SM 1.x that developers sometimes had to resort to storing the 
data as separate high and low halves. SM 3.x hardware adds a new feature for 

4.  SM 1.x hardware had 16 banks (memory traffic from the first 16 threads and the second 16 
threads of a warp was serviced separately), but strategies that work well on subsequent hard-
ware also work well on SM 1.x.

5.  256 bytes of shared memory was reserved for parameter passing; in SM 2.x and later, parame-
ters are passed via constant memory.

6.  SM 3.x hardware adds the ability to split the cache evenly as 32K L1/32K shared.
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kernels that predominantly use 64-bit operands in shared memory: a mode that 
increases the bank size to 64 bits. 

Atomics in Shared Memory
SM 1.2 added the ability to perform atomic operations in shared memory. Unlike 
global memory, which implements atomics using single instructions (either 
GATOM or GRED, depending on whether the return value is used), shared mem-
ory atomics are implemented with explicit lock/unlock semantics, and the com-
piler emits code that causes each thread to loop over these lock operations until 
the thread has performed its atomic operation.

Listing 8.1 gives the source code to atomic32Shared.cu, a program spe-
cifically intended to be compiled to highlight the code generation for shared 
 memory atomics. Listing 8.2 shows the resulting microcode generated for SM 
2.0. Note how the LDSLK (load shared with lock) instruction returns a predi-
cate that tells whether the lock was acquired, the code to perform the update 
is  predicated, and the code loops until the lock is acquired and the update 
performed.

The lock is performed per 32-bit word, and the index of the lock is determined 
by bits 2–9 of the shared memory address. Take care to avoid contention, or the 
loop in Listing 8.2 may iterate up to 32 times.

Listing 8.1. atomic32Shared.cu.
__global__ void
Return32( int *sum, int *out, const int *pIn )
{
    extern __shared__ int s[];
    s[threadIdx.x] = pIn[threadIdx.x];
    __syncthreads();
    (void) atomicAdd( &s[threadIdx.x], *pIn );
    __syncthreads();
    out[threadIdx.x] = s[threadIdx.x];
}

Listing 8.2 atomic32Shared.cubin (microcode compiled for SM 2.0).
code for sm_20
    Function : _Z8Return32PiS_PKi
/*0000*/     MOV R1, c [0x1] [0x100];
/*0008*/     S2R R0, SR_Tid_X;
/*0010*/     SHL R3, R0, 0x2;
/*0018*/     MOV R0, c [0x0] [0x28];
/*0020*/     IADD R2, R3, c [0x0] [0x28];
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/*0028*/     IMAD.U32.U32 RZ, R0, R1, RZ;
/*0030*/     LD R2, [R2];
/*0038*/     STS [R3], R2;
/*0040*/     SSY 0x80;
/*0048*/     BAR.RED.POPC RZ, RZ;
/*0050*/     LD R0, [R0];
/*0058*/     LDSLK P0, R2, [R3];
/*0060*/     @P0 IADD R2, R2, R0;
/*0068*/     @P0 STSUL [R3], R2;
/*0070*/     @!P0 BRA 0x58;
/*0078*/     NOP.S CC.T;
/*0080*/     BAR.RED.POPC RZ, RZ;
/*0088*/     LDS R0, [R3];
/*0090*/     IADD R2, R3, c [0x0] [0x24];
/*0098*/     ST [R2], R0;
/*00a0*/     EXIT;
    ...................................

8.1.6 BARRIERS AND COHERENCY

The familiar __syncthreads() intrinsic waits until all the threads in the 
thread block have arrived before proceeding. It is needed to maintain coher-
ency of shared memory within a thread block.7 Other, similar memory barrier 
instructions can be used to enforce some ordering on broader scopes of mem-
ory, as described in Table 8.3.

7.  Note that threads within a warp run in lockstep, sometimes enabling developers to write so-called 
“warp synchronous” code that does not call __syncthreads(). Section 7.3 describes thread and 
warp execution in detail, and Part III includes several examples of warp synchronous code.

Table 8.3 Memory Barrier Intrinsics

INTRINSIC DESCRIPTION

__syncthreads() Waits until all shared memory accesses made by the calling thread are visi-
ble to all threads in the threadblock

threadfence_block() Waits until all global and shared memory accesses made by the calling 
thread are visible to all threads in the threadblock

threadfence() Waits until all global and shared memory accesses made by the calling 
thread are visible to

• All threads in the threadblock for shared memory accesses

• All threads in the device for global memory accesses
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 8.2 Integer Support
The SMs have the full complement of 32-bit integer operations.

• Addition with optional negation of an operand for subtraction

• Multiplication and multiply-add

• Integer division

• Logical operations

• Condition code manipulation

• Conversion to/from floating point 

• Miscellaneous operations (e.g., SIMD instructions for narrow integers, popu-
lation count, find first zero)

CUDA exposes most of this functionality through standard C operators. Non-
standard operations, such as 24-bit multiplication, may be accessed using inline 
PTX assembly or intrinsic functions.

8.2.1 MULTIPLICATION

Multiplication is implemented differently on Tesla- and Fermi-class hardware. 
Tesla implements a 24-bit multiplier, while Fermi implements a 32-bit multi-
plier. As a consequence, full 32-bit multiplication on SM 1.x hardware requires 
four instructions. For performance-sensitive code targeting Tesla-class 

Table 8.3 Memory Barrier Intrinsics (Continued )

INTRINSIC DESCRIPTION

threadfence_system()
(SM 2.x only)

Waits until all global and shared memory accesses made by the calling 
thread are visible to

• All threads in the threadblock for shared memory accesses

• All threads in the device for global memory accesses

• Host threads for page-locked host memory accesses
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hardware, it is a performance win to use the intrinsics for 24-bit multiply.8 
Table 8.4 shows the intrinsics related to multiplication.

8.2.2 MISCELLANEOUS (BIT MANIPULATION)

The CUDA compiler implements a number of intrinsics for bit manipulation, as 
summarized in Table 8.5. On SM 2.x and later architectures, these intrinsics 

8.  Using __mul24() or __umul24() on SM 2.x and later hardware, however, is a performance 
penalty.

Table 8.4 Multiplication Intrinsics

INTRINSIC DESCRIPTION

__[u]mul24 Returns the least significant 32 bits of the product of the 24 least significant bits of the 
integer parameters. The 8 most significant bits of the inputs are ignored.

__[u]mulhi Returns the most significant 32 bits of the product of the inputs.

__[u]mul64hi Returns the most significant 64 bits of the products of the 64-bit inputs.

Table 8.5 Bit Manipulation Intrinsics

INTRINSIC SUMMARY DESCRIPTION

__brev(x) Bit reverse Reverses the order of bits in a word

__byte_perm(x,y,s) Permute bytes Returns a 32-bit word whose bytes were selected from 
the two inputs according to the selector parameter s

__clz(x) Count leading zeros Returns number of zero bits (0–32) before most signif-
icant set bit

__ffs(x) Find first sign bit Returns the position of the least significant set bit. 
The least significant bit is position 1. For an input of 0, 
__ffs() returns 0.

__popc(x) Population count Returns the number of set bits

__[u]sad(x,y,z) Sum of absolute 
differences

Adds |x-y| to z and returns the result
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map to single instructions. On pre-Fermi architectures, they are valid but may 
compile into many instructions. When in doubt, disassemble and look at the 
microcode! 64-bit variants have “ll” (two ells for “long long”) appended to the 
intrinsic name __clzll(), ffsll(), popcll(), brevll().

8.2.3 FUNNEL SHIFT (SM 3.5)

GK110 added a 64-bit “funnel shift” instruction that concatenates two 32-bit 
values together (the least significant and most significant halves are specified as 
separate 32-bit inputs, but the hardware operates on an aligned register pair), 
shifts the resulting 64-bit value left or right, and then returns the most signifi-
cant (for left shift) or least significant (for right shift) 32 bits.

Funnel shift may be accessed with the intrinsics given in Table 8.6. These intrin-
sics are implemented as inline device functions (using inline PTX assembler) in 
sm_35_intrinsics.h. By default, the least significant 5 bits of the shift count 
are masked off; the _lc and _rc intrinsics clamp the shift value to the range 
0..32.

Applications for funnel shift include the following.

• Multiword shift operations 

• Memory copies between misaligned buffers using aligned loads and stores

• Rotate

Table 8.6 Funnel Shift Intrinsics

INTRINSIC DESCRIPTION

__funnelshift_l(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it left by (sh&31) 
bits, and returns the most significant 32 bits 

__funnelshift_lc(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it left by 
min(sh,32) bits, and returns the most significant 32 bits

__funnelshift_r(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it right by 
(sh&31) bits, and returns the least significant 32 bits

__funnelshift_rc(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it right by 
min(sh,32) bits, and returns the least significant 32 bits
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To right-shift data sizes greater than 64 bits, use repeated __ funnelshift_r() 
calls, operating from the least significant to the most significant word. The most 
significant word of the result is computed using operator>>, which shifts 
in zero or sign bits as appropriate for the integer type. To left-shift data sizes 
greater than 64 bits, use repeated __funnelshift_l() calls, operating from 
the most significant to the least significant word. The least significant word of 
the result is computed using operator<<. If the hi and lo parameters are the 
same, the funnel shift effects a rotate operation. 

 8.3 Floating-Point Support
Fast native floating-point hardware is the raison d’être for GPUs, and in many 
ways they are equal to or superior to CPUs in their floating-point implemen-
tation. Denormals are supported at full speed,9 directed rounding may be 
specified on a per-instruction basis, and the Special Function Units deliver 
high-performance approximation functions to six popular single-precision 
transcendentals. In contrast, x86 CPUs implement denormals in microcode 
that runs perhaps 100x slower than operating on normalized floating-point 
operands. Rounding direction is specified by a control word that takes dozens of 
clock cycles to change, and the only transcendental approximation functions in 
the SSE instruction set are for reciprocal and reciprocal square root, which give 
12-bit approximations that must be refined with a Newton-Raphson iteration 
before being used.

Since GPUs’ greater core counts are offset somewhat by their lower clock 
frequencies, developers can expect at most a 10x (or thereabouts) speedup on 
a level playing field. If a paper reports a 100x or greater speedup from porting 
an optimized CPU implementation to CUDA, chances are one of the above- 
described “instruction set mismatches” played a role.

8.3.1 FORMATS

Figure 8.2 depicts the three (3) IEEE standard floating-point formats supported 
by CUDA: double precision (64-bit), single precision (32-bit), and half precision 
(16-bit). The values are divided into three fields: sign, exponent, and mantissa. 

9.  With the exception that single-precision denormals are not supported at all on SM 1.x hardware.
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For double, single, and half, the exponent fields are 11, 8, and 5 bits in size, 
respectively; the corresponding mantissa fields are 52, 23, and 10 bits. 

The exponent field changes the interpretation of the floating-point value. The 
most common (“normal”) representation encodes an implicit 1 bit into the 
mantissa and multiplies that value by 2e-bias, where bias is the value added to the 
actual exponent before encoding into the floating-point representation. The bias 
for single precision, for example, is 127.

Table 8.7 summarizes how floating-point values are encoded. For most exponent 
values (so-called “normal” floating-point values), the mantissa is assumed to 
have an implicit 1, and it is multiplied by the biased value of the exponent. The 
maximum exponent value is reserved for infinity and Not-A-Number values. 
Dividing by zero (or overflowing a division) yields infinity; performing an invalid 
operation (such as taking the square root or logarithm of a negative number) 
yields a NaN. The minimum exponent value is reserved for values too small to 
represent with the implicit leading 1. As the so-called denormals10 get closer 
to zero, they lose bits of effective precision, a phenomenon known as gradual 
underflow. Table 8.8 gives the encodings and values of certain extreme values for 
the three formats.

10.  Sometimes called subnormals.

Double

Sign

Exponent (11 bits)

Mantissa (52 bits)

Single

Sign

Exponent (8 bits)

Mantissa (23 bits)

Half

Sign

Exponent (5 bits)

Mantissa (10 bits)

Figure 8.2 Floating-point formats.
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Table 8.7 Floating-Point Representations

DOUBLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-1022(0.mantissa) Denormal

1 to 2046 Any  ±2e-1023(1.mantissa) Normal

2047 0 ±� Infinity

2047 Nonzero Not-A-Number

SINGLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-126(0.mantissa) Denormal

1 to 254 Any  ±2e-127(1.mantissa) Normal

255 0 ±� Infinity

255 Nonzero Not-A-Number

HALF PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-14(0.mantissa) Denormal

1 to 30 Any  ±2e-15(1.mantissa) Normal

31 0 ±� Infinity

31 Nonzero Not-A-Number
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Table 8.8 Floating-Point Extreme Values 

DOUBLE PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 0...0001 2-1074

Largest denormal 000F...F 2-1022(1-2-52)

Smallest normal 0010...0 2-1022

1.0 3FF0...0 1

Maximum integer 4340...0 253

Largest normal 7F7FFFFF 21024(1-2-53)

Infinity 7FF00000 Infinity

SINGLE PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 00000001 2-149

Largest denormal 007FFFFF 2-126(1-2-23)

Smallest normal 00800000 2-126

1.0 3F800000 1

Maximum integer 4B800000 224

Largest normal 7F7FFFFF 2128(1-2-24)

Infinity 7F800000 Infinity

continues
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Rounding
The IEEE standard provides for four (4) round modes. 

• Round-to-nearest-even (also called “round-to-nearest”)

• Round toward zero (also called “truncate” or “chop”)

• Round down (or “round toward negative infinity”)

• Round up (or “round toward positive infinity”)

Round-to-nearest, where intermediate values are rounded to the nearest repre-
sentable floating-point value after each operation, is by far the most commonly 
used round mode. Round up and round down (the “directed rounding modes”) 
are used for interval arithmetic, where a pair of floating-point values are used to 
bracket the intermediate result of a computation. To correctly bracket a result, 
the lower and upper values of the interval must be rounded toward negative 
infinity (“down”) and toward positive infinity (“up”), respectively.

The C language does not provide any way to specify round modes on a per- 
instruction basis, and CUDA hardware does not provide a control word to implic-
itly specify rounding modes. Consequently, CUDA provides a set of intrinsics to 
specify the round mode of an operation, as summarized in Table 8.9.

HALF PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 0001 2-24

Largest denormal 07FF 2-14(1-2-10)

Smallest normal 0800 2-14

1.0 3c00 1

Maximum integer 6800 211

Largest normal 7BFF 216(1-2-11)

Infinity 7C00 Infinity

Table 8.8 Floating-Point Extreme Values (Continued )
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Conversion
In general, developers can convert between different floating-point representa-
tions and/or integers using standard C constructs: implicit conversion or explicit 
typecasts. If necessary, however, developers can use the intrinsics listed in 
Table 8.10 to perform conversions that are not in the C language specification, 
such as those with directed rounding.

Because half is not standardized in the C programming language, CUDA 
uses unsigned short in the interfaces for __half2float() and 
__float2half(). __float2half() only supports the round-to-nearest 
rounding mode.

float __half2float( unsigned short );
unsigned short __float2half( float );

Table 8.9 Intrinsics for Rounding

INTRINSIC OPERATION

__fadd_[rn|rz|ru|rd] Addition

__fmul_[rn|rz|ru|rd] Multiplication

__fmaf_[rn|rz|ru|rd] Fused multiply-add

__frcp_[rn|rz|ru|rd] Recriprocal

__fdiv_[rn|rz|ru|rd] Division

__fsqrt_[rn|rz|ru|rd] Square root

__dadd_[rn|rz|ru|rd] Addition

__dmul_[rn|rz|ru|rd] Multiplication

__fma_[rn|rz|ru|rd] Fused multiply-add

__drcp_[rn|rz|ru|rd] Reciprocal

__ddiv_[rn|rz|ru|rd] Division

__dsqrt_[rn|rz|ru|rd] Square root
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8.3.2 SINGLE PRECISION (32-BIT)

Single-precision floating-point support is the workhorse of GPU computation. 
GPUs have been optimized to natively deliver high performance on this data 

Table 8.10 Intrinsics for Conversion

INTRINSIC OPERATION

__float2int_[rn|rz|ru|rd] float to int

__float2uint_[rn|rz|ru|rd] float to unsigned int

__int2float_[rn|rz|ru|rd] int to float

__uint2float_[rn|rz|ru|rd] unsigned int to float

__float2ll_[rn|rz|ru|rd] float to 64-bit int

__ll2float_[rn|rz|ru|rd] 64-bit int to float

__ull2float_[rn|rz|ru|rd] unsigned 64-bit int to float

__double2float_[rn|rz|ru|rd] double to float

__double2int_[rn|rz|ru|rd] double to int

__double2uint_[rn|rz|ru|rd] double to unsigned int

__double2ll_[rn|rz|ru|rd] double to 64-bit int

__double2ull_[rn|rz|ru|rd] double to 64-bit unsigned int

__int2double_rn int to double

__uint2double_rn unsigned int to double

__ll2double_[rn|rz|ru|rd] 64-bit int to double

__ull2double_[rn|rz|ru|rd] unsigned 64-bit int to double
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type,11 not only for core standard IEEE operations such as addition and multiplica-
tion, but also for nonstandard operations such as approximations to transcenden-
tals such as sin() and log(). The 32-bit values are held in the same register file 
as integers, so coercion between single-precision floating-point values and 32-bit 
integers (with __float_as_int() and __int_as_float()) is free.

Addition, Multiplication, and Multiply-Add
The compiler automatically translates +, –, and * operators on floating-point values 
into addition, multiplication, and multiply-add instructions. The __fadd_rn() and 
__fmul_rn() intrinsics may be used to suppress fusion of addition and multipli-
cation operations into multiply-add instructions.

Reciprocal and Division
For devices of compute capability 2.x and higher, the division operator is IEEE- 
compliant when the code is compiled with --prec-div=true. For devices of com-
pute capability 1.x or for devices of compute capability 2.x when the code is compiled 
with --prec-div=false, the division operator and __fdividef(x,y) have the 
same accuracy, but for 2126<y<2128, __fdividef(x,y) delivers a result of zero, 
whereas the division operator delivers the correct result. Also, for 2126<y<2128, if x is 
infinity, __fdividef(x,y) returns NaN, while the division operator returns infinity.

Transcendentals (SFU)
The Special Function Units (SFUs) in the SMs implement very fast versions of six 
common transcendental functions. 

• Sine and cosine 

• Logarithm and exponential 

• Reciprocal and reciprocal square root

Table 8.11, excerpted from the paper on the Tesla architecture12 summarizes the 
supported operations and corresponding precision. The SFUs do not implement 
full precision, but they are reasonably good approximations of these functions 
and they are fast. For CUDA ports that are significantly faster than an optimized 
CPU equivalent (say, 25x or more), the code most likely relies on the SFUs.

11.  In fact, GPUs had full 32-bit floating-point support before they had full 32-bit integer support. 
As a result, some early GPU computing literature explained how to implement integer math 
with floating-point hardware!

12.  Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified 
graphics and computing architecture. IEEE Micro, March–April 2008, p. 47.
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The SFUs are accessed with the intrinsics given in Table 8.12. Specifying the 
--fast-math compiler option will cause the compiler to substitute conven-
tional C runtime calls with the corresponding SFU intrinsics listed above.

Table 8.11 SFU Accuracy

FUNCTION ACCURACY (GOOD BITS) ULP ERROR

1/x 24.02 0.98

1/sqrt(x) 23.40 1.52

2x 22.51 1.41

log2x 22.57 n/a

sin/cos 22.47 n/a

Table 8.12 SFU Intrinsics

INTRINSIC OPERATION

__cosf(x) cos x

__exp10f(x) 10x

__expf(x) ex

__fdividef(x,y) x⁄y

__logf(x) ln x

__log2f(x) log
2
 x

__log10f(x) log
10
 x

__powf(x,y) xy

__sinf(x) sin x

__sincosf(x,sptr,cptr) *s=sin(x);
*c=cos(x);

__tanf(x) tan x
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Miscellaneous
__saturate(x) returns 0 if x<0, 1 if x>1, and x otherwise.

8.3.3 DOUBLE PRECISION (64-BIT)

Double-precision floating-point support was added to CUDA with SM 1.3 (first 
implemented in the GeForce GTX 280), and much improved double-precision 
support (both functionality and performance) became available with SM 2.0. 
CUDA’s hardware support for double precision features full-speed denormals 
and, starting in SM 2.x, a native fused multiply-add instruction (FMAD), compli-
ant with IEEE 754 c. 2008, that performs only one rounding step. Besides being 
an intrinsically useful operation, FMAD enables full accuracy on certain func-
tions that are converged with the Newton-Raphson iteration.

As with single-precision operations, the compiler automatically translates stan-
dard C operators into multiplication, addition, and multiply-add instructions. The 
__dadd_rn() and __dmul_rn() intrinsics may be used to suppress fusion of 
addition and multiplication operations into multiply-add instructions.

8.3.4 HALF PRECISION (16-BIT)

With 5 bits of exponent and 10 bits of significand, half values have enough pre-
cision for HDR (high dynamic range) images and can be used to hold other types 
of values that do not require float precision, such as angles. Half precision 
values are intended for storage, not computation, so the hardware only provides 
instructions to convert to/from 32-bit.13 These instructions are exposed as the 
__halftofloat() and __floattohalf() intrinsics.

float __halftofloat( unsigned short );
unsigned short __floattohalf( float );

These intrinsics use unsigned short because the C language has not stan-
dardized the half floating-point type.

8.3.5 CASE STUDY: float�half CONVERSION

Studying the float�half conversion operation is a useful way to learn the 
details of floating-point encodings and rounding. Because it’s a simple unary 

13.  half floating-point values are supported as a texture format, in which case the TEX intrinsics 
return float and the conversion is automatically performed by the texture hardware.
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operation, we can focus on the encoding and rounding without getting distracted 
by the details of floating-point arithmetic and the precision of intermediate 
representations.

When converting from float to half, the correct output for any float too large 
to represent is half infinity. Any float too small to represent as a half (even 
a denormal half) must be clamped to 0.0. The maximum float that rounds 
to half 0.0 is 0x32FFFFFF, or 2.98-8, while the smallest float that rounds 
to half infinity is 65520.0. float values inside this range can be converted to 
half by propagating the sign bit, rebiasing the exponent (since float has an 8-bit 
exponent biased by 127 and half has a 5-bit exponent biased by 15), and rounding 
the float mantissa to the nearest half mantissa value. Rounding is straight-
forward in all cases except when the input value falls exactly between the two 
possible output values. When this is the case, the IEEE standard specifies round-
ing to the “nearest even” value. In decimal arithmetic, this would mean rounding 
1.5 to 2.0, but also rounding 2.5 to 2.0 and (for example) rounding 0.5 to 0.0.

Listing 8.3 shows a C routine that exactly replicates the float-to-half con-
version operation, as implemented by CUDA hardware. The variables exp and 
mag contain the input exponent and “magnitude,” the mantissa and exponent 
together with the sign bit masked off. Many operations, such as comparisons 
and rounding operations, can be performed on the magnitude without separat-
ing the exponent and mantissa.

The macro LG_MAKE_MASK, used in Listing 8.3, creates a mask with a given 
bit count: #define LG_MAKE_MASK(bits) ((1<<bits)-1). A volatile 
union is used to treat the same 32-bit value as float and unsigned int; 
idioms such as *((float *) (&u)) are not portable. The routine first propa-
gates the input sign bit and masks it off the input.

After extracting the magnitude and exponent, the function deals with the special 
case when the input float is INF or NaN, and does an early exit. Note that INF 
is signed, but NaN has a canonical unsigned value. Lines 50–80 clamp the input 
float value to the minimum or maximum values that correspond to represent-
able half values and recompute the magnitude for clamped values. Don’t be 
fooled by the elaborate code constructing f32MinRInfin and f32MaxRf16_
zero; those are constants with the values 0x477ff000 and 0x32ffffff, 
respectively.

The remainder of the routine deals with the cases of output normal and denor-
mal (input denormals are clamped in the preceding code, so mag corresponds to 
a normal float). As with the clamping code, f32Minf16Normal is a constant, 
and its value is 0x38ffffff.

       



255

   8.3 FLOATING-POINT SUPPORT 

To construct a normal, the new exponent must be computed (lines 92 and 93) 
and the correctly rounded 10 bits of mantissa shifted into the output. To con-
struct a denormal, the implicit 1 must be OR’d into the output mantissa and the 
resulting mantissa shifted by the amount corresponding to the input exponent. 
For both normals and denormals, the rounding of the output mantissa is accom-
plished in two steps. The rounding is accomplished by adding a mask of 1’s that 
ends just short of the output’s LSB, as seen in Figure 8.3.

This operation increments the output mantissa if bit 12 of the input is set; if the 
input mantissa is all 1’s, the overflow causes the output exponent to correctly 
increment. If we added one more 1 to the MSB of this adjustment, we’d have ele-
mentary school–style rounding where the tiebreak goes to the larger number. 
Instead, to implement round-to-nearest even, we conditionally increment the 
output mantissa if the LSB of the 10-bit output is set (Figure 8.4). Note that these 
steps can be performed in either order or can be reformulated in many different 
ways.

Listing 8.3 ConvertToHalf().
/*
 * exponent shift and mantissa bit count are the same.
 *    When we are shifting, we use [f16|f32]ExpShift
 *    When referencing the number of bits in the mantissa, 
 *        we use [f16|f32]MantissaBits
 */

Round-to-nearest

1 1 1 1 1 1 1 1 1 1 11

10-bit field

Figure 8.3 Rounding mask (half).

Increment mantissa if output LSB is 1

10-bit field

Figure 8.4 Round-to-nearest-even (half).
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const int f16ExpShift = 10;
const int f16MantissaBits = 10;

const int f16ExpBias = 15;
const int f16MinExp = -14;
const int f16MaxExp = 15;
const int f16SignMask = 0x8000;

const int f32ExpShift = 23;
const int f32MantissaBits = 23;
const int f32ExpBias = 127;
const int f32SignMask = 0x80000000;

unsigned short 
ConvertFloatToHalf( float f ) 
{
    /*
     * Use a volatile union to portably coerce 
     * 32-bit float into 32-bit integer
     */
    volatile union {
        float f;
        unsigned int u;
    } uf;
    uf.f = f;

    // return value: start by propagating the sign bit.
    unsigned short w = (uf.u >> 16) & f16SignMask;
    
    // Extract input magnitude and exponent
    unsigned int mag = uf.u & ~f32SignMask;
    int exp = (int) (mag >> f32ExpShift) - f32ExpBias;

    // Handle float32 Inf or NaN
    if ( exp == f32ExpBias+1 ) {    // INF or NaN

        if ( mag & LG_MAKE_MASK(f32MantissaBits) )
            return 0x7fff; // NaN

        // INF - propagate sign
        return w|0x7c00;
    }

    /*
     * clamp float32 values that are not representable by float16
     */
    {
        // min float32 magnitude that rounds to float16 infinity

        unsigned int f32MinRInfin = (f16MaxExp+f32ExpBias) << 
            f32ExpShift;
        f32MinRInfin |= LG_MAKE_MASK( f16MantissaBits+1 ) << 
            (f32MantissaBits-f16MantissaBits-1);

        if (mag > f32MinRInfin)
            mag = f32MinRInfin;
    }
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    {
        // max float32 magnitude that rounds to float16 0.0

        unsigned int f32MaxRf16_zero = f16MinExp+f32ExpBias-
            (f32MantissaBits-f16MantissaBits-1);
        f32MaxRf16_zero <<= f32ExpShift;
        f32MaxRf16_zero |= LG_MAKE_MASK( f32MantissaBits );

        if (mag < f32MaxRf16_zero) 
            mag = f32MaxRf16_zero;
    }
    
    /*
     * compute exp again, in case mag was clamped above
     */
    exp = (mag >> f32ExpShift) - f32ExpBias;

    // min float32 magnitude that converts to float16 normal
    unsigned int f32Minf16Normal = ((f16MinExp+f32ExpBias)<<
        f32ExpShift);
    f32Minf16Normal |= LG_MAKE_MASK( f32MantissaBits );
    if ( mag >= f32Minf16Normal ) { 
        //
        // Case 1: float16 normal
        //

        // Modify exponent to be biased for float16, not float32
        mag += (unsigned int) ((f16ExpBias-f32ExpBias)<<
            f32ExpShift);

        int RelativeShift = f32ExpShift-f16ExpShift;

        // add rounding bias
        mag += LG_MAKE_MASK(RelativeShift-1);

        // round-to-nearest even
        mag += (mag >> RelativeShift) & 1;

        w |= mag >> RelativeShift; 
    } 
    else { 
        /*
         * Case 2: float16 denormal
         */

        // mask off exponent bits - now fraction only
        mag &= LG_MAKE_MASK(f32MantissaBits);

        // make implicit 1 explicit
        mag |= (1<<f32ExpShift);

        int RelativeShift = f32ExpShift-f16ExpShift+f16MinExp-exp; 

        // add rounding bias
        mag += LG_MAKE_MASK(RelativeShift-1);
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        // round-to-nearest even
        mag += (mag >> RelativeShift) & 1;

        w |= mag >> RelativeShift;
    } 
    return w; 
}

In practice, developers should convert float to half by using the 
__floattohalf() intrinsic, which the compiler translates to a single F2F 
machine instruction. This sample routine is provided purely to aid in under-
standing floating-point layout and rounding; also, examining all the special-case 
code for INF/NAN and denormal values helps to illustrate why these features of 
the IEEE spec have been controversial since its inception: They make hardware 
slower, more costly, or both due to increased silicon area and engineering effort 
for validation.

In the code accompanying this book, the ConvertFloatToHalf() routine in 
Listing 8.3 is incorporated into a program called float_to_float16.cu that 
tests its output for every 32-bit floating-point value.

8.3.6 MATH LIBRARY

CUDA includes a built-in math library modeled on the C runtime library, with 
a few small differences: CUDA hardware does not include a rounding mode 
register (instead, the round mode is encoded on a per-instruction basis),14 so 
functions such as rint() that reference the current rounding mode always 
round-to-nearest. Additionally, the hardware does not raise floating-point 
exceptions; results of aberrant operations, such as taking the square root of a 
negative number, are encoded as NaNs.

Table 8.13 lists the math library functions and the maximum error in ulps for 
each function. Most functions that operate on float have an “f” appended to 
the function name—for example, the functions that compute the sine function 
are as follows.

double sin( double angle );
float sinf( float angle );

These are denoted in Table 8.13 as, for example, sin[f].

14.  Encoding a round mode per instruction and keeping it in a control register are not irreconcil-
able. The Alpha processor had a 2-bit encoding to specify the round mode per instruction, one 
setting of which was to use the rounding mode specified in a control register! CUDA hardware 
just uses a 2-bit encoding for the four round modes specified in the IEEE specification.

       



259

   8.3 FLOATING-POINT SUPPORT 

Table 8.13 Math Library

ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

x+y Addition x+y 01 0

x*y Multiplication x*y 01 0

x/y Division x/y 22 0

1/x Reciprocal 1/x 12 0

acos[f](x) Inverse cosine cos–1 x 3 2

acosh[f](x) Inverse hyperbolic cosine
ln x x 12( )+ +

4 2

asin[f](x) Inverse sine sin–1 x 4 2

asinh[f](x) Inverse hyperbolic sine 
sign(x) ln | x | 1 x2( )+ +

3 2

atan[f](x) Inverse tangent tan–1 x 2 2

atan2[f](y,x) Inverse tangent of y/x

tan x
y

x

1 ⎛
⎝⎜

⎞
⎠⎟

−

3 2

atanh[f](x) Inverse hyperbolic tangent tanh–1 3 2

cbrt[f](x) Cube root
x3

1 1

ceil[f](x) “Ceiling,” nearest integer greater than 
or equal to x x⎡⎢ ⎤⎥

0

copysign[f](x,y) Sign of y, magnitude of x n/a

cos[f](x) Cosine cos x 2 1

cosh[f](x) Hyperbolic cosine e e

2

x x+ − 2

cospi[f](x) Cosine, scaled by � cos �x 2

continues
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

erf[f](x) Error function 2
e t

0

x 2

∫
π

−
3 2

erfc[f](x) Complementary error function
1

2
e t

0

x 2

∫−
π

−
6 4

erfcinv[f](y) Inverse complementary error 
function

Return x 
for which 
y=1-erff(x)

7 8

erfcx[f](x) Scaled error function
ex2

 (erff(x))
6 3

erfinv[f](y) Inverse error function Return x 
for which 
y=erff(x)

3 5

exp[f](x) Natural exponent ex 2 1

exp10[f](x) Exponent (base 10) 10x 2 1

exp2[f](x) Exponent (base 2) 2x 2 1

expm1[f](x) Natural exponent, minus one ex – 1 1 1

fabs[f](x) Absolute value |x| 0 0

fdim[f](x,y) Positive difference
x y, x y

0, x y

NAN, x or y NaN

⎧

⎨
⎪

⎩
⎪

− >

+ ≤

0 0

floor[f](x) “Floor,” nearest integer less than or 
equal to x x⎢⎣ ⎥⎦

0 0

fma[f](x,y,z) Multiply-add xy + z 0 0

fmax[f](x,y) Maximum
x, x y or isNaN(y)

y, otherwise

⎧
⎨
⎩

>
0 0

Table 8.13 Math Library (Continued )
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

fmin[f](x,y) Minimum
x, x y or isNaN(y)

y, otherwise

⎧
⎨
⎩

<
0 0

fmod[f](x,y) Floating-point remainder 0 0

frexp[f](x,exp) Fractional component 0 0

hypot[f](x,y) Length of hypotenuse
x y2 2+

3 2

ilogb[f](x) Get exponent 0 0

isfinite(x) Nonzero if x is not  ±INF n/a

isinf(x) Nonzero if x is  ±INF n/a

isnan(x) Nonzero if x is a NaN n/a

j0[f](x) Bessel function of the first kind (n=0) J0(x) 93 73

j1[f](x) Bessel function of the first kind (n=1) J1(x) 93 73

jn[f](n,x) Bessel function of the first kind Jn(x) *

ldexp[f](x,exp) Scale by power of 2 x2exp 0 0

lgamma[f](x) Logarithm of gamma function
ln (x)( )Γ

64 44

llrint[f](x) Round to long long 0 0

llround[f](x) Round to long long 0 0

lrint[f](x) Round to long 0 0

lround[f](x) Round to long 0 0

log[f](x) Natural logarithm ln(x) 1 1

log10[f](x) Logarithm (base 10) log10 x 3 1

log1p[f](x) Natural logarithm of x+1 ln(x + 1) 2 1

continues

Table 8.13 Math Library (Continued )
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

log2[f](x) Logarithm (base 2) log2 x 3 1

logb[f](x) Get exponent 0 0

modff(x,iptr) Split fractional and integer parts 0 0

nan[f](cptr) Returns NaN NaN n/a

nearbyint[f](x) Round to integer 0 0

nextafter[f](x,y) Returns the FP value closest to x in 
the direction of y

n/a

normcdf[f](x) Normal cumulative distribution 6 5

normcdinv[f](x) Inverse normal cumulative 
distribution

5 8

pow[f](x,y) Power function xy 8 2

rcbrt[f](x) Inverse cube root
1

x3

2 1

remainder[f](x,y) Remainder 0 0

remquo[f]
(x,y,iptr)

Remainder (also returns quotient) 0 0

rsqrt[f](x) Reciprocal
1

x

2 1

rint[f](x) Round to nearest int 0 0

round[f](x) Round to nearest int 0 0

scalbln[f](x,n) Scale x by 2n (n is long int) x2n 0 0

scalbn[f](x,n) Scale x by 2n (n is int) x2n 0 0

signbit(x) Nonzero if x is negative n/a 0

sin[f](x) Sine sin x 2 1

Table 8.13 Math Library (Continued )
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

sincos[f](x,s,c) Sine and cosine *s=sin(x);

*c=cos(x);

2 1

sincospi[f](x,s,c) Sine and cosine *s=sin(πx);

*c=cos(πx);

2 1

sinh[f](x) Hyperbolic sine
e e

2

x x− − 3 1

sinpi[f](x) Sine, scaled by � sin �x 2 1

sqrt[f](x) Square root
x

35 0

tan[f](x) Tangent tan x 4 2

tanh[f](x) Hyperbolic tangent sinh x

cosh x

2 1

tgamma[f](x) True gamma function �(x) 11 8

trunc[f](x) Truncate (round to integer toward 
zero)

0 0

y0[f](x) Bessel function of the second kind 
(n=0)

Y0(x) 93 73

y1[f](x) Bessel function of the second kind 
(n=1)

Y1(x) 93 73

yn[f](n,x) Bessel function of the second kind Yn(x) **

*  For the Bessel functions jnf(n,x) and jn(n,x), for n=128 the maximum absolute error is 2.2×10-6 and 5×10-12, respectively.

**  For the Bessel function ynf(n,x), the error is 2 2.5n⎡⎢ ⎤⎥+  for |x|; otherwise, the maximum absolute error is 2.2×10-6 
for n=128. For yn(n,x), the maximum absolute error is 5×10-12.

1.  On SM 1.x class hardware, the precision of addition and multiplication operation that are merged into FMAD instructions will 
suffer due to truncation of the intermediate mantissa.

2.  On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying --prec-div=true.

3.  For float, the error is 9 ulps for |x|<8; otherwise, the maximum absolute error is 2.2×10-6. For double, the error is 7 ulps for 
|x|<8; otherwise, the maximum absolute error is 5×10-12.

4.  The error for lgammaf() is greater than 6 inside the interval –10.001, –2.264. The error for lgamma() is greater than 4 inside 
the interval –11.001, –2.2637.

5.  On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying --prec-sqrt=true.

Table 8.13 Math Library (Continued )
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Conversion to Integer
According to the C runtime library definition, the nearbyint() and rint() 
functions round a floating-point value to the nearest integer using the “current 
rounding direction,” which in CUDA is always round-to-nearest-even. In the C 
runtime, nearbyint() and rint() differ only in their handling of the INEXACT 
exception. But since CUDA does not raise floating-point exceptions, the func-
tions behave identically.

round() implements elementary school–style rounding: For floating-point 
values halfway between integers, the input is always rounded away from zero. 
NVIDIA recommends against using this function because it expands to eight (8) 
instructions as opposed to one for rint() and its variants. trunc() truncates 
or “chops” the floating-point value, rounding toward zero. It compiles to a single 
instruction.

Fractions and Exponents
float frexpf(float x, int *eptr);

frexpf() breaks the input into a floating-point significand in the range [0.5, 1.0) 
and an integral exponent for 2, such that

x Significand 2Exponent= ⋅

float logbf( float x );

logbf() extracts the exponent from x and returns it as a floating-point value. 
It is equivalent to floorf(log2f(x)), except it is faster. If x is a denormal, 
logbf() returns the exponent that x would have if it were normalized.

float ldexpf( float x, int exp );
float scalbnf( float x, int n );
float scanblnf( float x, long n );

ldexpf(), scalbnf(), and scalblnf() all compute x2n by direct manipula-
tion of floating-point exponents. 

Floating-Point Remainder
modff() breaks the input into fractional and integer parts.

float modff( float x, float *intpart );

The return value is the fractional part of x, with the same sign.
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remainderf(x,y) computes the floating-point remainder of dividing x by y. 
The return value is x-n*y, where n is x/y, rounded to the nearest integer. If |x –
ny| = 0.5, n is chosen to be even.

float remquof(float x, float y, int *quo);

computes the remainder and passes back the lower bits of the integral quotient 
x/y, with the same sign as x/y.

Bessel Functions
The Bessel functions of order n relate to the differential equation

x d y
dx

x dy
dx

x n y( ) 02
2

2
2 2+ + − =

n can be a real number, but for purposes of the C runtime, it is a nonnegative 
integer.

The solution to this second-order ordinary differential equation combines Bes-
sel functions of the first kind and of the second kind.

y x c J x c Y x( ) ( ) ( )n n1 2
= +

The math runtime functions jn[f]() and yn[f]() compute Jn(x) and Yn(x), 
respectively. j0f(), j1f(), y0f(), and y1f() compute these functions for the 
special cases of n=0 and n=1.

Gamma Function
The gamma function � is an extension of the factorial function, with its argu-
ment shifted down by 1, to real numbers. It has a variety of definitions, one of 
which is as follows.

x e t dt( ) t x 1
0∫Γ = − −∞

The function grows so quickly that the return value loses precision for rel-
atively small input values, so the library provides the lgamma() function, 
which returns the natural logarithm of the gamma function, in addition to the 
tgamma() (“true gamma”) function.
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8.3.7 ADDITIONAL READING

Goldberg’s survey (with the captivating title “What Every Computer Scientist 
Should Know About Floating Point Arithmetic”) is a good introduction to the 
topic.

http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

Nathan Whitehead and Alex Fit-Florea of NVIDIA have coauthored a white paper 
entitled “Precision & Performance: Floating Point and IEEE 754 Compliance for 
NVIDIA GPUs.”

http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-
Floating-Point.pdf

Increasing Effective Precision
Dekker and Kahan developed methods to almost double the effective preci-
sion of floating-point hardware using pairs of numbers in exchange for a slight 
reduction in exponent range (due to intermediate underflow and overflow at the 
far ends of the range). Some papers on this topic include the following.

Dekker, T.J. Point technique for extending the available precision. Numer. Math. 
18, 1971, pp. 224–242.

Linnainmaa, S. Software for doubled-precision floating point computations. ACM 
TOMS 7, pp. 172–283 (1981).

Shewchuk, J.R. Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discrete & Computational Geometry 18, 1997, pp. 305–363.

Some GPU-specific work on this topic has been done by Andrew Thall, Da Graça, 
and Defour.

Guillaume, Da Graça, and David Defour. Implementation of float-float operators 
on graphics hardware, 7th Conference on Real Numbers and Computers, RNC7 
(2006).

http://hal.archives-ouvertes.fr/docs/00/06/33/56/PDF/float-float.pdf 

Thall, Andrew. Extended-precision floating-point numbers for GPU computa-
tion. 2007.

http://andrewthall.org/papers/df64_qf128.pdf
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 8.4 Conditional Code
The hardware implements “condition code” or CC registers that contain the usual 
4-bit state vector (sign, carry, zero, overflow) used for integer comparison. These 
CC registers can be set using comparison instructions such as ISET, and they 
can direct the flow of execution via predication or divergence. Predication allows 
(or suppresses) the execution of instructions on a per-thread basis within a warp, 
while divergence is the conditional execution of longer instruction sequences. 
Because the processors within an SM execute instructions in SIMD fashion at 
warp granularity (32 threads at a time), divergence can result in fewer instruc-
tions executed, provided all threads within a warp take the same code path.

8.4.1 PREDICATION

Due to the additional overhead of managing divergence and convergence, the 
compiler uses predication for short instruction sequences. The effect of most 
instructions can be predicated on a condition; if the condition is not TRUE, the 
instruction is suppressed. This suppression occurs early enough that predi-
cated execution of instructions such as load/store and TEX inhibits the memory 
traffic that the instruction would otherwise generate. Note that predication has 
no effect on the eligibility of memory traffic for global load/store coalescing. 
The addresses specified to all load/store instructions in a warp must reference 
consecutive memory locations, even if they are predicated.

Predication is used when the number of instructions that vary depending on 
a condition is small; the compiler uses heuristics that favor predication up to 
about 7 instructions. Besides avoiding the overhead of managing the branch 
synchronization stack described below, predication also gives the compiler 
more optimization opportunities (such as instruction scheduling) when emitting 
microcode. The ternary operator in C (? :) is considered a compiler hint to favor 
predication.

Listing 8.2 gives an excellent example of predication, as expressed in micro-
code. When performing an atomic operation on a shared memory location, the 
compiler emits code that loops over the shared memory location until it has 
successfully performed the atomic operation. The LDSLK (load shared and lock) 
instruction returns a condition code that tells whether the lock was acquired. 
The instructions to perform the operation then are predicated on that condition 
code.
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/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;

This code fragment also highlights how predication and branching sometimes 
work together. The last instruction, a conditional branch to attempt to reacquire 
the lock if necessary, also is predicated. 

8.4.2 DIVERGENCE AND CONVERGENCE

Predication works well for small fragments of conditional code, especially if 
statements with no corresponding else. For larger amounts of conditional 
code, predication becomes inefficient because every instruction is executed, 
regardless of whether it will affect the computation. When the larger number of 
instructions causes the costs of predication to exceed the benefits, the compiler 
will use conditional branches. When the flow of execution within a warp takes 
different paths depending on a condition, the code is called divergent.

NVIDIA is close-mouthed about the details of how their hardware supports diver-
gent code paths, and it reserves the right to change the hardware implementa-
tion between generations. The hardware maintains a bit vector of active threads 
within each warp. For threads that are marked inactive, execution is suppressed 
in a way similar to predication. Before taking a branch, the compiler executes a 
special instruction to push this active-thread bit vector onto a stack. The code is 
then executed twice, once for threads for which the condition was TRUE, then for 
threads for which the predicate was FALSE. This two-phased execution is man-
aged with a branch synchronization stack, as described by Lindholm et al.15

If threads of a warp diverge via a data-dependent conditional branch, the warp 
serially executes each branch path taken, disabling threads that are not on that 
path, and when all paths complete, the threads reconverge to the original execu-
tion path. The SM uses a branch synchronization stack to manage independent 
threads that diverge and converge. Branch divergence only occurs within a warp; 
different warps execute independently regardless of whether they are executing 
common or disjoint code paths.

The PTX specification makes no mention of a branch synchronization stack, so 
the only publicly available evidence of its existence is in the disassembly output 
of cuobjdump. The SSY instruction pushes a state such as the program counter 
and active thread mask onto the stack; the .S instruction prefix pops this state 

15.  Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified 
graphics and computing architecture. IEEE Micro, March–April 2008, pp. 39–55.
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and, if any active threads did not take the branch, causes those threads to exe-
cute the code path whose state was snapshotted by SSY.

SSY/.S is only necessary when threads of execution may diverge, so if the 
compiler can guarantee that threads will stay uniform in a code path, you may 
see branches that are not bracketed by SSY/.S. The important thing to realize 
about branching in CUDA is that in all cases, it is most efficient for all threads 
within a warp to follow the same execution path.

The loop in Listing 8.2 also includes a good self-contained example of diver-
gence and convergence. The SSY instruction (offset 0x40) and NOP.S instruction 
(offset 0x78) bracket the points of divergence and convergence, respectively. 
The code loops over the LDSLK and subsequent predicated instructions, retiring 
active threads until the compiler knows that all threads will have converged and 
the branch synchronization stack can be popped with the NOP.S instruction.

/*0040*/ SSY 0x80;
/*0048*/ BAR.RED.POPC RZ, RZ;
/*0050*/ LD R0, [R0];
/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;
/*0078*/ NOP.S CC.T;

8.4.3 SPECIAL CASES: MIN, MAX, AND ABSOLUTE VALUE

Some conditional operations are so common that they are supported natively 
by the hardware. Minimum and maximum operations are supported for both 
integer and floating-point operands and are translated to a single instruction. 
Additionally, floating-point instructions include modifiers that can negate or take 
the absolute value of a source operand.

The compiler does a good job of detecting when min/max operations are being 
expressed, but if you want to take no chances, call the min()/max() intrinsics 
for integers or fmin()/fmax() for floating-point values.

 8.5 Textures and Surfaces
The instructions that read and write textures and surfaces refer to much more 
implicit state than do other instructions; parameters such as the base address, 
dimensions, format, and interpretation of the texture contents are contained in 
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a header, an intermediate data structure whose software abstraction is called a 
texture reference or surface reference. As developers manipulate the texture or 
surface references, the CUDA runtime and driver must translate those changes 
into the headers, which the texture or surface instruction references as an 
index.16

Before launching a kernel that operates on textures or surfaces, the driver must 
ensure that all this state is set correctly on the hardware. As a result, launching 
such kernels may take longer. Texture reads are serviced through a specialized 
cache subsystem that is separate from the L1/L2 caches in Fermi, and also sep-
arate from the constant cache. Each SM has an L1 texture cache, and the TPCs 
(texture processor clusters) or GPCs (graphics processor clusters) each addi-
tionally have L2 texture cache. Surface reads and writes are serviced through 
the same L1/L2 caches that service global memory traffic.

Kepler added two technologies of note with respect to textures: the ability to 
read from global memory via the texture cache hierarchy without binding a tex-
ture reference, and the ability to specify a texture header by address rather than 
by index. The latter technology is known as “bindless textures.”

On SM 3.5 and later hardware, reading global memory via the texture cache can 
be requested by using const __restrict pointers or by explicitly invoking the 
ldg() intrinsics in sm_35_intrinsics.h.

 8.6 Miscellaneous Instructions
8.6.1 WARP-LEVEL PRIMITIVES

It did not take long for the importance of warps as a primitive unit of execution 
(naturally residing between threads and blocks) to become evident to CUDA pro-
grammers. Starting with SM 1.x, NVIDIA began adding instructions that specifi-
cally operate on warps.

Vote
That CUDA architectures are 32-bit and that warps are comprised of 32 threads 
made an irresistible match to instructions that can evaluate a condition and 

16.  SM 3.x added texture objects, which enable texture and surface headers to be referenced by 
address rather than an index. Previous hardware generations could reference at most 128 
textures or surfaces in a kernel, but with SM 3.x the number is limited only by memory.
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broadcast a 1-bit result to every thread in the warp. The VOTE instruction 
(first available in SM 1.2) evaluates a condition and broadcasts the result to all 
threads in the warp. The __any() intrinsic returns 1 if the predicate is true for 
any of the 32 threads in the warp. The __all() intrinsic returns 1 if the predi-
cate is true for all of the 32 threads in the warp.

The Fermi architecture added a new variant of VOTE that passes back the pred-
icate result for every thread in the warp. The __ballot() intrinsic evaluates 
a condition for all threads in the warp and returns a 32-bit value where each bit 
gives the condition for the corresponding thread in the warp. 

Shuffle
Kepler added shuffle instructions that enable data interchange between threads 
within a warp without staging the data through shared memory. Although these 
instructions execute with the same latency as shared memory, they have the 
benefit of doing the exchange without performing both a read and a write, and 
they can reduce shared memory usage.

The following instruction is wrapped in a number of device functions that use 
inline PTX assembly defined in sm_30_intrinsics.h.

int __shfl(int var, int srcLane, int width=32);
int __shfl_up(int var, unsigned int delta, int width=32);
int __shfl_down(int var, unsigned int delta, int width=32);
int __shfl_xor(int var, int laneMask, int width=32);

The width parameter, w hich defaults to the warp width of 32, must be a power 
of 2 in the range 2..32. It enables subdivision of the warp into segments; if 
width<32, each subsection of the warp behaves as a separate entity with a 
starting logical lane ID of 0. A thread may only exchange data with other threads 
in its subsection.

__shfl() returns the value of var held by the thread whose ID is given by 
srcLane. If srcLane is outside the range 0..width-1, the thread’s own value 
of var is returned. This variant of the instruction can be used to broadcast 
values within a warp.   __shfl_up() calculates a source lane ID by subtracting 
delta from the caller’s lane ID and clamping to the range 0..width-1. 
__shfl_down() calculates a source lane ID by adding delta to the caller’s 
lane ID.

__shfl_up()and __shfl_down()enable warp-level scan and reverse 
scan operations, respectively. __shfl_xor() calculates a source lane ID by 
performing a bitwise XOR of the caller’s lane ID with laneMask; the value of 
var held by the resulting lane ID is returned. This variant can be used to do a 
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reduction across the warps (or subwarps); each thread computes the reduction 
using a differently ordered series of the associative operator. 

8.6.2 BLOCK-LEVEL PRIMITIVES

The __syncthreads() intrinsic serves as a barrier. It causes all threads to 
wait until every thread in the threadblock has arrived at the __syncthreads(). 
The Fermi instruction set (SM 2.x) added several new block-level barriers that 
aggregate information about the threads in the threadblock.

• __syncthreads_count(): evaluates a predicate and returns the sum of 
threads for which the predicate was true

• __syncthreads_or(): returns the OR of all the inputs across the 
threadblock

• __syncthreads_and(): returns the AND of all the inputs across the 
threadblock

8.6.3 PERFORMANCE COUNTER

Developers can define their own set of performance counters and increment 
them in live code with the __prof_trigger() intrinsic.

void __prof_trigger(int counter);

Calling this function increments the corresponding counter by 1 per warp. 
counter must be in the range 0..7; counters 8..15 are reserved. The value of the 
counters may be obtained by listing prof_trigger_00..prof_trigger_07 
in the profiler configuration file.

8.6.4 VIDEO INSTRUCTIONS

The video instructions described in this section are accessible only via the inline 
PTX assembler. Their basic functionality is described here to help developers to 
decide whether they might be beneficial for their application. Anyone intending 
to use these instructions, however, should consult the PTX ISA specification. 

Scalar Video Instructions
The scalar video instructions, added with SM 2.0 hardware, enable  efficient 
operations on the short (8- and 16-bit) integer types needed for video 
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processing. As described in the PTX 3.1 ISA Specification, the format of these 
instructions is as follows. 

vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel}; 
vop.dtype.atype.btype{.sat}.secop d, a{.asel}, b{.bsel}, c; 

The source and destination operands are all 32-bit registers. dtype, atype, 
and btype may be .u32 or .s32 for unsigned and signed 32-bit integers, 
respectively. The asel/bsel specifiers select which 8- or 16-bit value to 
extract from the source operands: b0, b1, b2, and b3 select bytes (numbering 
from the least significant), and h0/h1 select the least significant and most sig-
nificant 16 bits, respectively.

Once the input values are extracted, they are sign- or zero-extended internally 
to signed 33-bit integers, and the primary operation is performed, producing a 
34-bit intermediate result whose sign depends on dtype. Finally, the result is 
clamped to the output range, and one of the following operations is performed.

1. Apply a second operation (add, min or max) to the intermediate result and a 
third operand. 

2. Truncate the intermediate result to an 8- or 16-bit value and merge into a 
specified position in the third operand to produce the final result. 

The lower 32 bits are then written to the destination operand.

The vset instruction performs a comparison between the 8-, 16-, or 32-bit input 
operands and generates the corresponding predicate (1 or 0) as output. The PTX 
scalar video instructions and the corresponding operations are given in Table 8.14.

Table 8.14 Scalar Video Instructions.

MNEMONIC OPERATION

vabsdiff abs(a-b)

vadd a+b

vavrg (a+b)/2

vmad a*b+c

vmax max(a,b)

continues
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Vector Video Instructions (SM 3.0 only)
These instructions, added with SM 3.0, are similar to the scalar video instructions 
in that they promote the inputs to a canonical integer format, perform the core 
operation, and then clamp and optionally merge the output. But they deliver higher 
performance by operating on pairs of 16-bit values or quads of 8-bit values.

Table 8.15 summarizes the PTX instructions and corresponding operations 
implemented by these instructions. They are most useful for video processing 
and certain image processing operations (such as the median filter).

Table 8.14 Scalar Video Instructions. (Continued )

MNEMONIC OPERATION

vmin min(a,b)

vset Compare a and b

vshl a<<b

vshr a>>b

vsub a-b

Table 8.15 Vector Video Instructions

MNEMONIC OPERATION

vabsdiff[2|4] abs(a-b)

vadd[2|4] a+b

vavrg[2|4] (a+b)/2

vmax[2|4] max(a,b)

vmin[2|4] min(a,b)

vset[2|4] Compare a and b

vsub[2|4] a-b
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8.6.5 SPECIAL REGISTERS

Many special registers are accessed by referencing the built-in variables 
threadIdx, blockIdx, blockDim, and gridDim. These pseudo-variables, 
described in detail in Section 7.3, are 3-dimensional structures that specify the 
thread ID, block ID, thread count, and block count, respectively. 

Besides those, another special register is the SM’s clock register, which incre-
ments with each clock cycle. This counter can be read with the __clock() or 
__clock64() intrinsic. The counters are separately tracked for each SM and, 
like the time stamp counters on CPUs, are most useful for measuring relative 
performance of different code sequences and best avoided when trying to calcu-
late wall clock times.

 8.7 Instruction Sets
NVIDIA has developed three major architectures: Tesla (SM 1.x), Fermi (SM 2.x), 
and Kepler (SM 3.x). Within those families, new instructions have been added as 
NVIDIA updated their products. For example, global atomic operations were not 
present in the very first Tesla-class processor (the G80, which shipped in 2006 
as the GeForce GTX 8800), but all subsequent Tesla-class GPUs included them. 
So when querying the SM version via cuDeviceComputeCapability(), the 
major and minor versions will be 1.0 for G80 and 1.1 (or greater) for all other 
Tesla-class GPUs. Conversely, if the SM version is 1.1 or greater, the application 
can use global atomics. 

Table 8.16 gives the SASS instructions that may be printed by cuobjdump when 
disassembling microcode for Tesla-class (SM 1.x) hardware. The Fermi and 
Kepler instruction sets closely resemble each other, with the exception of the 
instructions that support surface load/store, so their instruction sets are given 
together in Table 8.17. In both tables, the middle column specifies the first SM 
version to support a given instruction.
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Table 8.16 SM 1.x Instruction Set

OPCODE SM DESCRIPTION

FLOATING POINT

COS 1.0 Cosine

DADD 1.3 Double-precision floating-point add

DFMA 1.3 Double-precision floating-point fused multiply-add

DMAX 1.3 Double-precision floating-point maximum

DMIN 1.3 Double-precision floating-point minimum

DMUL 1.3 Double-precision floating-point multiply

DSET 1.3 Double-precision floating-point condition set

EX2 1.0 Exponential (base 2)

FADD/FADD32/FADD32I 1.0 Single-precision floating-point add

FCMP 1.0 Single-precision floating-point compare

FMAD/FMAD32/FMAD32I 1.0 Single-precision floating-point multiply-add

FMAX 1.0 Single-precision floating-point maximum

FMIN 1.0 Single-precision floating-point minimum

FMUL/FMUL32/FMUL32I 1.0 Single-precision floating-point multiply

FSET 1.0 Single-precision floating-point conditional set

LG2 1.0 Single-precision floating-point logarithm (base 2)

RCP 1.0 Single-precision floating-point reciprocal

RRO 1.0 Range reduction operator (used before SIN/COS)

RSQ 1.0 Reciprocal square root

SIN 1.0 Sine
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OPCODE SM DESCRIPTION

FLOW CONTROL

BAR 1.0 Barrier synchronization/ __syncthreads()

BRA 1.0 Conditional branch

BRK 1.0 Conditional break from loop

BRX 1.0 Fetch an address from constant memory and branch to it

C2R 1.0 Condition code to data register

CAL 1.0 Unconditional subroutine call

RET 1.0 Conditional return from subroutine

SSY 1.0 Set synchronization point; used before potentially divergent 
instructions

DATA CONVERSION

F2F 1.0 Copy floating-point value with conversion to floating point

F2I 1.0 Copy floating-point value with conversion to integer

I2F 1.0 Copy integer value to floating-point with conversion

I2I 1.0 Copy integer value to integer with conversion

INTEGER

IADD/ IADD32/ IADD32I 1.0 Integer addition

IMAD/ IMAD32/ IMAD32I 1.0 Integer multiply-add

IMAX 1.0 Integer maximum

IMIN 1.0 Integer minimum

IMUL/ IMUL32/ IMUL32I 1.0 Integer multiply

ISAD/ ISAD32 1.0 Integer sum of absolute difference

continues

Table 8.16 SM 1.x Instruction Set (Continued )
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OPCODE SM DESCRIPTION

ISET 1.0 Integer conditional set

SHL 1.0 Shift left

SHR 1.0 Shift right

MEMORY OPERATIONS

A2R 1.0 Move address register to data register

ADA 1.0 Add immediate to address register

G2R 1.0 Move from shared memory to register. The .LCK suffix, used 
to implement shared memory atomics, causes the bank to be 
locked until an R2G.UNL has been performed.

GATOM.IADD/ EXCH/ CAS/ 
IMIN/ IMAX/ INC/ DEC/ 
IAND/ IOR/ IXOR

1.2 Global memory atomic operations; performs an atomic opera-
tion and returns the original value.

GLD 1.0 Load from global memory

GRED.IADD/ IMIN/ IMAX/ 
INC/ DEC/ IAND/ IOR/ IXOR

1.2 Global memory reduction operations; performs an atomic 
operation with no return value.

GST 1.0 Store to global memory

LLD 1.0 Load from local memory

LST 1.0 Store to local memory

LOP 1.0 Logical operation (AND/OR/XOR)

MOV/ MOV32 1.0 Move source to destination

MVC 1.0 Move from constant memory

MVI 1.0 Move immediate

R2A 1.0 Move register to address register

R2C 1.0 Move data register to condition code

R2G 1.0 Store to shared memory. When used with the .UNL suffix, 
releases a previously held lock on that shared memory bank.

Table 8.16 SM 1.x Instruction Set (Continued )
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OPCODE SM DESCRIPTION

MISCELLANEOUS

NOP 1.0 No operation

TEX/ TEX32 1.0 Texture fetch

VOTE 1.2 Warp-vote primitive.

S2R 1.0 Move special register (e.g., thread ID) to register

Table 8.16 SM 1.x Instruction Set (Continued )

Table 8.17 SM 2.x and SM 3.x Instruction Sets

OPCODE SM DESCRIPTION

FLOATING POINT

DADD 2.0 Double-precision add

DMUL 2.0 Double-precision multiply

DMNMX 2.0 Double-precision minimum/maximum

DSET 2.0 Double-precision set

DSETP 2.0 Double-precision predicate

DFMA 2.0 Double-precision fused multiply-add

FFMA 2.0 Single-precision fused multiply-add

FADD 2.0 Single-precision floating-point add

FCMP 2.0 Single-precision floating-point compare

FMUL 2.0 Single-precision floating-point multiply

FMNMX 2.0 Single-precision floating-point minimum/maximum

FSWZ 2.0 Single-precision floating-point swizzle

continues
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OPCODE SM DESCRIPTION

FSET 2.0 Single-precision floating-point set

FSETP 2.0 Single-precision floating-point set predicate

MUFU 2.0 MultiFunk (SFU) operator 

RRO 2.0 Range reduction operator (used before MUFU sin/cos)

INTEGER

BFE 2.0 Bit field extract

BFI 2.0 Bit field insert

FLO 2.0 Find leading one

IADD 2.0 Integer add

ICMP 2.0 Integer compare and select

IMAD 2.0 Integer multiply-add

IMNMX 2.0 Integer minimum/maximum

IMUL 2.0 Integer multiply

ISAD 2.0 Integer sum of absolute differences

ISCADD 2.0 Integer add with scale

ISET 2.0 Integer set

ISETP 2.0 Integer set predicate

LOP 2.0 Logical operation (AND/OR/XOR)

SHF 3.5 Funnel shift

SHL 2.0 Shift left

SHR 2.0 Shift right

POPC 2.0 Population count

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

DATA CONVERSION

F2F 2.0 Floating point to floating point

F2I 2.0 Floating point to integer

I2F 2.0 Integer to floating point

I2I 2.0 Integer to integer

SCALAR VIDEO

VABSDIFF 2.0 Scalar video absolute difference

VADD 2.0 Scalar video add

VMAD 2.0 Scalar video multiply-add

VMAX 2.0 Scalar video maximum

VMIN 2.0 Scalar video minimum

VSET 2.0 Scalar video set

VSHL 2.0 Scalar video shift left

VSHR 2.0 Scalar video shift right

VSUB 2.0 Scalar video subtract

VECTOR (SIMD) VIDEO

VABSDIFF2(4) 3.0 Vector video 2x16-bit (4x8-bit) absolute difference

VADD2(4) 3.0 Vector video 2x16-bit (4x8-bit) addition

VAVRG2(4) 3.0 Vector video 2x16-bit (4x8-bit) average

VMAX2(4) 3.0 Vector video 2x16-bit (4x8-bit) maximum

VMIN2(4) 3.0 Vector video 2x16-bit (4x8-bit) minimum

VSET2(4) 3.0 Vector video 2x16-bit (4x8-bit) set

VSUB2(4) 3.0 Vector video 2x16-bit (4x8-bit) subtraction

continues

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

DATA MOVEMENT

MOV 2.0 Move

PRMT 2.0 Permute

SEL 2.0 Select (conditional move)

SHFL 3.0 Warp shuffle

PREDICATE/CONDITION CODES

CSET 2.0 Condition code set

CSETP 2.0 Condition code set predicate

P2R 2.0 Predicate to register

R2P 2.0 Register to predicate

PSET 2.0 Predicate set

PSETP 2.0 Predicate set predicate

TEXTURE

TEX 2.0 Texture fetch

TLD 2.0 Texture load

TLD4 2.0 Texture load 4 texels

TXQ 2.0 Texture query

MEMORY OPERATIONS

ATOM 2.0 Atomic memory operation

CCTL 2.0 Cache control

CCTLL 2.0 Cache control (local)

LD 2.0 Load from memory

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

LDC 2.0 Load constant

LDG 3.5 Noncoherence global load (reads via texture cache)

LDL 2.0 Load from local memory

LDLK 2.0 Load and lock

LDS 2.0 Load from shared memory

LDSLK 2.0 Load from shared memory and lock

LDU 2.0 Load uniform

LD_LDU 2.0 Combines generic load LD with a load uniform LDU

LDS_LDU 2.0 Combines shared memory load LDS with a load uniform LDU

MEMBAR 2.0 Memory barrier

RED 2.0 Atomic memory reduction operation

ST 2.0 Store to memory

STL 2.0 Store to local memory

STUL 2.0 Store and unlock

STS 2.0 Store to shared memory

STSUL 2.0 Store to shared memory and unlock

SURFACE MEMORY (FERMI)

SULD 2.0 Surface load

SULEA 2.0 Surface load effective address

SUQ 2.0 Surface query

SURED 2.0 Surface reduction

SUST 2.0 Surface store

continues

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

SURFACE MEMORY (KEPLER)

SUBFM 3.0 Surface bit field merge

SUCLAMP 3.0 Surface clamp

SUEAU 3.0 Surface effective address

SULDGA 3.0 Surface load generic address

SUSTGA 3.0 Surface store generic address

FLOW CONTROL

BRA 2.0 Branch to relative address

BPT 2.0 Breakpoint/trap

BRK 2.0 Break from loop

BRX 2.0 Branch to relative indexed address

CAL 2.0 Call to relative address

CONT 2.0 Continue in loop

EXIT 2.0 Exit program

JCAL 2.0 Call to absolute address

JMP 2.0 Jump to absolute address

JMX 2.0 Jump to absolute indexed address

LONGJMP 2.0 Long jump

PBK 2.0 Pre–break relative address

PCNT 2.0 Pre–continue relative address

PLONGJMP 2.0 Pre–long jump relative address

PRET 2.0 Pre–return relative address

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

RET 2.0 Return from call

SSY 2.0 Set synchronization point; used before potentially divergent 
instructions

MISCELLANEOUS

B2R 2.0 Barrier to register

BAR 2.0 Barrier synchronization

LEPC 2.0 Load effective program counter

NOP 2.0 No operation

S2R 2.0 Special register to register (used to read, for example, the 
thread or block ID)

VOTE 2.0 Query condition across warp

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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Chapter 9 

Multiple GPUs

This chapter describes CUDA’s facilities for multi-GPU programming, including 
threading models, peer-to-peer, and inter-GPU synchronization. As an exam-
ple, we’ll first explore inter-GPU synchronization using CUDA streams and 
events by implementing a peer-to-peer memcpy that stages through portable 
pinned memory. We then discuss how to implement the N-body problem (fully 
described in Chapter 14) with single- and multithreaded implementations that 
use multiple GPUs.

 9.1 Overview
Systems with multiple GPUs generally contain multi-GPU boards with a PCI 
Express bridge chip (such as the GeForce GTX 690) or multiple PCI Express 
slots, or both, as described in Section 2.3. Each GPU in such a system is sep-
arated by PCI Express bandwidth, so there is always a huge disparity in band-
width between memory connected directly to a GPU (its device memory) and its 
connections to other GPUs as well as the CPU.

Many CUDA features designed to run on multiple GPUs, such as peer-to-peer 
addressing, require the GPUs to be identical. For applications that can make 
assumptions about the target hardware (such as vertical applications built for 
specific hardware configurations), this requirement is innocuous enough. But 
applications targeting systems with a variety of GPUs (say, a low-power one 
for everyday use and a powerful one for gaming) may have to use heuristics to 
decide which GPU(s) to use or load-balance the workload across GPUs so the 
faster ones contribute more computation to the final output, commensurate with 
their higher performance.
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A key ingredient to all CUDA applications that use multiple GPUs is portable 
pinned memory. As described in Section 5.1.2, portable pinned memory is pinned 
memory that is mapped for all CUDA contexts such that any GPU can read or 
write the memory directly.

CPU Threading Models
Until CUDA 4.0, the only way to drive multiple GPUs was to create a CPU thread 
for each one. The cudaSetDevice() function had to be called once per CPU 
thread, before any CUDA code had executed, in order to tell CUDA which device 
to initialize when the CPU thread started to operate on CUDA. Whichever CPU 
thread made that call would then get exclusive access to the GPU, because the 
CUDA driver had not yet been made thread-safe in a way that would enable mul-
tiple threads to access the same GPU at the same time.

In CUDA 4.0, cudaSetDevice() was modified to implement the semantics that 
everyone had previously expected: It tells CUDA which GPU should perform sub-
sequent CUDA operations. Having multiple threads operating on the same GPU 
at the same time may incur a slight performance hit, but it should be expected 
to work. Our example N-body application, however, only has one CPU thread 
operating on any given device at a time. The multithreaded formulation has each 
of N threads operate on a specific device, and the single-threaded formulation 
has one thread operate on each of the N devices in turn.

 9.2 Peer-to-Peer
When multiple GPUs are used by a CUDA program, they are known as “peers” 
because the application generally treats them equally, as if they were coworkers 
collaborating on a project. CUDA enables two flavors of peer-to-peer: explicit 
memcpy and peer-to-peer addressing.1

9.2.1 PEER-TO-PEER MEMCPY

Memory copies can be performed between the memories of any two different 
devices. When UVA (Unified Virtual Addressing) is in effect, the ordinary family 
of memcpy function can be used for peer-to-peer memcpy, since CUDA can infer 
which device “owns” which memory. If UVA is not in effect, the peer-to-peer 

1.  For peer-to-peer addressing, the term peer also harkens to the requirement that the GPUs be 
identical.
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memcpy must be done explicitly using  cudaMemcpyPeer(), cudaMemcpy-
PeerAsync(), cudaMemcpy3DPeer(), or cudaMemcpy3DPeerAsync(). 

NOTE 

CUDA can copy memory between any two devices, not just devices that can 
directly address one another’s memory. If necessary, CUDA will stage the 
memory copy through host memory, which can be accessed by any device 
in the system.

Peer-to-peer memcpy operations do not run concurrently with any other oper-
ation. Any pending operations on either GPU must complete before the peer-to-
peer memcpy can begin, and no subsequent operations can start to execute until 
after the peer-to-peer memcpy is done. When possible, CUDA will use direct 
peer-to-peer mappings between the two pointers. The resulting copies are 
faster and do not have to be staged through host memory.

9.2.2 PEER-TO-PEER ADDRESSING

Peer-to-peer mappings of device memory, shown in Figure 2.20, enable a kernel 
running on one GPU to read or write memory that resides in another GPU. Since 
the GPUs can only use peer-to-peer to read or write data at PCI Express rates, 
developers have to partition the workload in such a way that

1. Each GPU has about an equal amount of work to do. 

2. The GPUs only need to interchange modest amounts of data.

Examples of such systems might be a pipelined computer vision system where 
each stage in the pipeline of GPUs computes an intermediate data structure 
(e.g., locations of identified features) that needs to be further analyzed by the 
next GPU in the pipeline or a large so-called “stencil” computation in which 
separate GPUs can perform most of the computation independently but must 
exchange edge data between computation steps. 

In order for peer-to-peer addressing to work, the following conditions apply.

• Unified virtual addressing (UVA) must be in effect.

• Both GPUs must be SM 2.x or higher and must be based on the same chip.

• The GPUs must be on the same I/O hub.
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cu(da)DeviceCanAccessPeer ()may be called to query whether the cur-
rent device can map another device’s memory.

cudaError_t cudaDeviceCanAccessPeer(int *canAccessPeer, int device, 
int peerDevice);
CUresult cuDeviceCanAccessPeer(int *canAccessPeer, CUdevice device, 
CUdevice peerDevice);

Peer-to-peer mappings are not enabled automatically; they must be spe-
cifically requested by calling cudaDeviceEnablePeerAccess() or 
cuCtxEnablePeerAccess().

cudaError_t cudaDeviceEnablePeerAccess(int peerDevice, unsigned int 
flags);
CUresult cuCtxEnablePeerAccess(CUcontext peerContext, unsigned int 
Flags);

Once peer-to-peer access has been enabled, all memory in the peer 
device—including new allocations—is accessible to the current device until 
 cudaDeviceDisablePeerAccess() or cuCtxDisablePeerAccess() is 
called.

Peer-to-peer access uses a small amount of extra memory (to hold more page 
tables) and makes memory allocation more expensive, since the memory must 
be mapped for all participating devices. Peer-to-peer functionality enables con-
texts to read and write memory belonging to other contexts, both via memcpy 
(which may be implemented by staging through system memory) and directly by 
having kernels read or write global memory pointers.

The cudaDeviceEnablePeerAccess() function maps the memory belonging 
to another device. Peer-to-peer memory addressing is asymmetric; it is possi-
ble for GPU A to map GPU B’s allocations without its allocations being available 
to GPU B. In order for two GPUs to see each other’s memory, each GPU must 
explicitly map the other’s memory.

// tell device 1 to map device 0 memory
cudaSetDevice( 1 );
cudaDeviceEnablePeerAccess( 0, cudaPeerAccessDefault );
// tell device 0 to map device 1 memory
cudaSetDevice( 0 );
cudaDeviceEnablePeerAccess( 1, cudaPeerAccessDefault );
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   9.3 UVA: INFERRING DEVICE FROM ADDRESS 

NOTE

On GPU boards with PCI Express 3.0–capable bridge chips (such as the 
Tesla K10), the GPUs can communicate at PCI Express 3.0 speeds even if 
the board is plugged into a PCI Express 2.0 slot.

 9.3 UVA: Inferring Device from Address
Since UVA is always enabled on peer-to-peer-capable systems, the address 
ranges for different devices do not overlap, and the driver can infer the owning 
device from a pointer value. The cuPointerGetAttribute()function may be 
used to query information about UVA pointers, including the owning context.

CUresult CUDAAPI cuPointerGetAttribute(void *data, CUpointer_
attribute attribute, CUdeviceptr ptr);

cuPointerGetAttribute() or cudaPointerGetAttributes() may be 
used to query the attributes of a pointer. Table 9.1 gives the values that can 
be passed into cuPointerGetAttribute(); the structure passed back by 
cudaPointerGetAttributes() is as follows.

struct cudaPointerAttributes {
    enum cudaMemoryType memoryType;
    int device;
    void *devicePointer;
    void *hostPointer;
}

Table 9.1 cuPointerGetAttribute() Attributes

ATTRIBUTE PASSBACK TYPE DESCRIPTION

CU_POINTER_ATTRIBUTE_CONTEXT CUcontext Context in which a pointer was 
allocated or registered

CU_POINTER_ATTRIBUTE_MEMORY_TYPE CUmemorytype Physical location of a pointer

CU_POINTER_ATTRIBUTE_DEVICE_POINTER CUdeviceptr Pointer at which the memory 
may be accessed by the GPU

CU_POINTER_ATTRIBUTE_HOST_POINTER void * Pointer at which the memory 
may be accessed by the host
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memoryType may be cudaMemoryTypeHost or cudaMemoryTypeDevice.

device is the device for which the pointer was allocated. For device memory, 
device identifies the device where the memory corresponding to ptr was allo-
cated. For host memory, device identifies the device that was current when the 
allocation was performed.

devicePointer gives the device pointer value that may be used to reference 
ptr from the current device. If ptr cannot be accessed by the current device, 
devicePointer is NULL.

hostPointer gives the host pointer value that may be used to reference ptr 
from the CPU. If ptr cannot be accessed by the current host, hostPointer 
is NULL.

 9.4 Inter-GPU Synchronization
CUDA events may be used for inter-GPU synchronization using cu(da)
StreamWaitEvent(). If there is a producer/consumer relationship between 
two GPUs, the application can have the producer GPU record an event and then 
have the consumer GPU insert a stream-wait on that event into its command 
stream. When the consumer GPU encounters the stream-wait, it will stop 
processing commands until the producer GPU has passed the point of execution 
where cu(da)EventRecord() was called .

NOTE

In CUDA 5.0, the device runtime, described in Section 7.5, does not enable 
any inter-GPU synchronization whatsoever. That limitation may be relaxed 
in a future release.

Listing 9.1 gives chMemcpyPeerToPeer(),2 an implementation of peer-to-
peer memcpy that uses portable memory and inter-GPU synchronization to 
implement the same type of memcpy that CUDA uses under the covers, if no 
direct mapping between the GPUs exists. The function works similarly to the 
chMemcpyHtoD() function in Listing 6.2 that performs host�device memcpy: 

2.  The CUDART_CHECK error handling has been removed for clarity.
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A staging buffer is allocated in host memory, and the memcpy begins by having 
the source GPU copy source data into the staging buffer and recording an event. 
But unlike the host�device memcpy, there is never any need for the CPU to 
synchronize because all synchronization is done by the GPUs. Because both the 
memcpy and the event-record are asynchronous, immediately after kicking off 
the initial memcpy and event-record, the CPU can request that the destination 
GPU wait on that event and kick off a memcpy of the same buffer. Two staging 
buffers and two CUDA events are needed, so the two GPUs can copy to and 
from staging buffers concurrently, much as the CPU and GPU concurrently 
operate on staging buffers during the host�device memcpy. The CPU loops 
over the input buffer and output buffers, issuing memcpy and event-record 
 commands and ping-ponging between staging buffers, until it has requested 
copies for all bytes and all that’s left to do is wait for both GPUs to finish 
processing. 

NOTE

As with the implementations in the CUDA support provided by NVIDIA, our 
peer-to-peer memcpy is synchronous.

Listing 9.1 chMemcpyPeerToPeer().
cudaError_t
chMemcpyPeerToPeer( 
    void *_dst, int dstDevice, 
    const void *_src, int srcDevice, 
    size_t N ) 
{
    cudaError_t status;
    char *dst = (char *) _dst;
    const char *src = (const char *) _src;
    int stagingIndex = 0;
    while ( N ) {
        size_t thisCopySize = min( N, STAGING_BUFFER_SIZE );

        cudaSetDevice( srcDevice );
        cudaStreamWaitEvent( 0, g_events[dstDevice][stagingIndex],0);
        cudaMemcpyAsync( g_hostBuffers[stagingIndex], src, 
            thisCopySize, cudaMemcpyDeviceToHost, NULL );
        cudaEventRecord( g_events[srcDevice][stagingIndex] );

        cudaSetDevice( dstDevice );
        cudaStreamWaitEvent( 0, g_events[srcDevice][stagingIndex],0);
        cudaMemcpyAsync( dst, g_hostBuffers[stagingIndex], 
            thisCopySize, cudaMemcpyHostToDevice, NULL );
        cudaEventRecord( g_events[dstDevice][stagingIndex] );
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        dst += thisCopySize;
        src += thisCopySize;
        N -= thisCopySize;
        stagingIndex = 1 - stagingIndex;
    }
    // Wait until both devices are done
    cudaSetDevice( srcDevice );
    cudaDeviceSynchronize();

    cudaSetDevice( dstDevice );
    cudaDeviceSynchronize();

Error:
    return status;
}

 9.5 Single-Threaded Multi-GPU
When using the CUDA runtime, a single-threaded application can drive multiple 
GPUs by calling cudaSetDevice() to specify which GPU will be operated by 
the calling CPU thread. This idiom is used in Listing 9.1 to switch between the 
source and destination GPUs during the peer-to-peer memcpy, as well as the 
single-threaded, multi-GPU implementation of N-body described in Section 
9.5.2. In the driver API, CUDA maintains a stack of current contexts so that sub-
routines can easily change and restore the caller’s current context.

9.5.1 CURRENT CONTEXT STACK

Driver API applications can manage the current context with the current-
context stack: cuCtxPushCurrent() makes a new context current, pushing 
it onto the top of the stack, and cuCtxPopCurrent() pops the current context 
and restores the previous current context. Listing 9.2 gives a driver API version 
of chMemcpyPeerToPeer(), which uses cuCtxPopCurrent() and cuCtx-
PushCurrent()to perform a peer-to-peer memcpy between two contexts.

The current context stack was introduced to CUDA in v2.2, and at the time, the 
CUDA runtime and driver API could not be used in the same application. That 
restriction has been relaxed in subsequent versions.
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Listing 9.2 chMemcpyPeerToPeer (driver API version).
CUresult
chMemcpyPeerToPeer( 
    void *_dst, CUcontext dstContext, int dstDevice,
    const void *_src, CUcontext srcContext, int srcDevice,
    size_t N ) 
{
    CUresult status;
    CUdeviceptr dst = (CUdeviceptr) (intptr_t) _dst;
    CUdeviceptr src = (CUdeviceptr) (intptr_t) _src;
    int stagingIndex = 0;

    while ( N ) {
        size_t thisCopySize = min( N, STAGING_BUFFER_SIZE );

        CUDA_CHECK( cuCtxPushCurrent( srcContext ) );
        CUDA_CHECK( cuStreamWaitEvent( 
            NULL, g_events[dstDevice][stagingIndex], 0 ) );
        CUDA_CHECK( cuMemcpyDtoHAsync( 
            g_hostBuffers[stagingIndex], 
            src, 
            thisCopySize, 
            NULL ) );
        CUDA_CHECK( cuEventRecord( 
            g_events[srcDevice][stagingIndex], 
            0 ) );

        CUDA_CHECK( cuCtxPopCurrent( &srcContext ) );
        CUDA_CHECK( cuCtxPushCurrent( dstContext ) );
        CUDA_CHECK( cuStreamWaitEvent( 
            NULL, 
            g_events[srcDevice][stagingIndex], 
            0 ) );
        CUDA_CHECK( cuMemcpyHtoDAsync( 
            dst, 
            g_hostBuffers[stagingIndex], 
            thisCopySize, 
            NULL ) );
        CUDA_CHECK( cuEventRecord( 
            g_events[dstDevice][stagingIndex], 
            0 ) );

        CUDA_CHECK( cuCtxPopCurrent( &dstContext ) );

        dst += thisCopySize;
        src += thisCopySize;
        N -= thisCopySize;
        stagingIndex = 1 - stagingIndex;
    }

    // Wait until both devices are done
    CUDA_CHECK( cuCtxPushCurrent( srcContext ) );
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    CUDA_CHECK( cuCtxSynchronize() );
    CUDA_CHECK( cuCtxPopCurrent( &srcContext ) );

    CUDA_CHECK( cuCtxPushCurrent( dstContext ) );
    CUDA_CHECK( cuCtxSynchronize() );
    CUDA_CHECK( cuCtxPopCurrent( &dstContext ) );
    
Error:
    return status;
}

9.5.2 N-BODY

The N-body computation (described in detail in Chapter 14) computes N forces in 
O(N2) time, and the outputs may be computed independently. On a system with k 
GPUs, our multi-GPU implementation splits the computation into k parts.

Our implementation makes the common assumption that the GPUs are identi-
cal, so it divides the computation evenly. Applications targeting GPUs of unequal 
performance, or whose workloads have less predictable runtimes, can divide 
the computation more finely and have the host code submit work items to the 
GPUs from a queue.

Listing 9.3 gives a modified version of Listing 14.3 that takes two additional 
parameters (a base index base and size n of the subarray of forces) to com-
pute a subset of the output array for an N-body computation. This __device__ 
function is invoked by wrapper kernels that are declared as __global__ . It is 
structured this way to reuse the code without incurring link errors. If the func-
tion were declared as __global__, the linker would generate an error about 
duplicate symbols.3

Listing 9.3 N-body kernel (multi-GPU).
inline __device__ void
ComputeNBodyGravitation_Shared_multiGPU( 
    float *force, 
    float *posMass, 
    float softeningSquared, 
    size_t base,
    size_t n,
    size_t N )

3.  This is a bit of an old-school workaround. CUDA 5.0 added a linker that enables the __global__ 
function to be compiled into a static library and linked into the application.
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{
    float4 *posMass4 = (float4 *) posMass;
    extern __shared__ float4 shPosMass[];
    for ( int m = blockIdx.x*blockDim.x + threadIdx.x;
              m < n;
              m += blockDim.x*gridDim.x )
    {
        size_t i = base+m;
        float acc[3] = {0};
        float4 myPosMass = posMass4[i];
#pragma unroll 32
        for ( int j = 0; j < N; j += blockDim.x ) {
            shPosMass[threadIdx.x] = posMass4[j+threadIdx.x];
            __syncthreads();
            for ( size_t k = 0; k < blockDim.x; k++ ) {
                float fx, fy, fz;
                float4 bodyPosMass = shPosMass[k];

                bodyBodyInteraction( 
                    &fx, &fy, &fz, 
                    myPosMass.x, myPosMass.y, myPosMass.z, 
                    bodyPosMass.x, 
                    bodyPosMass.y, 
                    bodyPosMass.z, 
                    bodyPosMass.w, 
                    softeningSquared );
                acc[0] += fx;
                acc[1] += fy;
                acc[2] += fz;
            }
            __syncthreads();
        }
        force[3*m+0] = acc[0];
        force[3*m+1] = acc[1];
        force[3*m+2] = acc[2];
    }
}

The host code for a single-threaded, multi-GPU version of N-body is shown in 
Listing 9.4.4 The arrays dptrPosMass and dptrForce track the device pointers 
for the input and output arrays for each GPU (the maximum number of GPUs is 
declared as a constant in nbody.h; default is 32). Similar to dispatching work 
into CUDA streams, the function uses separate loops for different stages of the 
computation: The first loop allocates and populates the input array for each 
GPU; the second loop launches the kernel and an asynchronous copy of the 
output data; and the third loop calls cudaDeviceSynchronize()on each GPU 
in turn. Structuring the function this way maximizes CPU/GPU overlap. During 

4.  To avoid awkward formatting, error checking has been removed.
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the first loop, asynchronous host�device memcpys to GPUs 0..i-1 can proceed 
while the CPU is busy allocating memory for GPU i. If the kernel launch and 
asynchronous device�host memcpy were in the first loop, the synchronous 
cudaMalloc() calls would decrease performance because they are synchro-
nous with respect to the current GPU.

Listing 9.4 N-body host code (single-threaded multi-GPU).
float
ComputeGravitation_multiGPU_singlethread( 
    float *force, 
    float *posMass,
    float softeningSquared,
    size_t N
)
{
    cudaError_t status;

    float ret = 0.0f;

    float *dptrPosMass[g_maxGPUs];
    float *dptrForce[g_maxGPUs];

    chTimerTimestamp start, end;
    chTimerGetTime( &start );

    memset( dptrPosMass, 0, sizeof(dptrPosMass) );
    memset( dptrForce, 0, sizeof(dptrForce) );
    size_t bodiesPerGPU = N / g_numGPUs;
    if ( (0 != N % g_numGPUs) || (g_numGPUs > g_maxGPUs) ) {
        return 0.0f;
    }

    // kick off the asynchronous memcpy's - overlap GPUs pulling
    // host memory with the CPU time needed to do the memory 
    // allocations.
    for ( int i = 0; i < g_numGPUs; i++ ) {
        cudaSetDevice( i );
        cudaMalloc( &dptrPosMass[i], 4*N*sizeof(float) );
        cudaMalloc( &dptrForce[i], 3*bodiesPerGPU*sizeof(float) );
        cudaMemcpyAsync( 
            dptrPosMass[i], 
            g_hostAOS_PosMass, 
            4*N*sizeof(float), 
            cudaMemcpyHostToDevice );
    }
    for ( int i = 0; i < g_numGPUs; i++ ) {
        cudaSetDevice( i ) );
        ComputeNBodyGravitation_Shared_device<<<
            300,256,256*sizeof(float4)>>>( 
            dptrForce[i],
            dptrPosMass[i],
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            softeningSquared,
            i*bodiesPerGPU,
            bodiesPerGPU,
            N );
        cudaMemcpyAsync( 
            g_hostAOS_Force+3*bodiesPerGPU*i, 
            dptrForce[i], 
            3*bodiesPerGPU*sizeof(float), 
            cudaMemcpyDeviceToHost );
    }
    // Synchronize with each GPU in turn.
    for ( int i = 0; i < g_numGPUs; i++ ) {
        cudaSetDevice( i );
        cudaDeviceSynchronize();
    }
    chTimerGetTime( &end );
    ret = chTimerElapsedTime( &start, &end ) * 1000.0f;
Error:
    for ( int i = 0; i < g_numGPUs; i++ ) {
        cudaFree( dptrPosMass[i] );
        cudaFree( dptrForce[i] );
    }
    return ret;
}

 9.6 Multithreaded Multi-GPU
CUDA has supported multiple GPUs since the beginning, but until CUDA 4.0, 
each GPU had to be controlled by a separate CPU thread. For workloads that 
required a lot of CPU power, that requirement was never very onerous because 
the full power of modern multicore processors can be unlocked only through 
multithreading.

The multithreaded implementation of multi-GPU N-Body creates one CPU 
thread per GPU, and it delegates the dispatch and synchronization of the work 
for a given N-body pass to each thread. The main thread splits the work evenly 
between GPUs, delegates work to each worker thread by signaling an event 
(or a semaphore, on POSIX platforms such as Linux), and then waits for all of 
the worker threads to signal completion before proceeding. As the number of 
GPUs grows, synchronization overhead starts to chip away at the benefits from 
parallelism. 

This implementation of N-body uses the same multithreading library as the 
multithreaded implementation of N-body, described in Section 14.9. The 
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workerThread class, described in Appendix A.2, enables the application thread 
to “delegate” work to CPU threads, then synchronize on the worker threads’ 
completion of the delegated task.

Listing 9.5 gives the host code that creates and initializes the CPU threads. 
Two globals, g_numGPUs and g_GPUThreadPool, contain the GPU count and 
a worker thread for each. After each CPU thread is created, it is initialized by 
synchronously calling the initializeGPU() function, which affiliates the CPU 
thread with a given GPU—an affiliation that never changes during the course of 
the application’s execution.

Listing 9.5 Multithreaded multi-GPU initialization code.
workerThread *g_CPUThreadPool;
int g_numCPUCores;

workerThread *g_GPUThreadPool;
int g_numGPUs;

struct gpuInit_struct
{
    int iGPU;

    cudaError_t status;
};

void
initializeGPU( void *_p )
{
    cudaError_t status;

    gpuInit_struct *p = (gpuInit_struct *) _p;
    CUDART_CHECK( cudaSetDevice( p->iGPU ) );
    CUDART_CHECK( cudaSetDeviceFlags( cudaDeviceMapHost ) );
    CUDART_CHECK( cudaFree(0) );
Error:
    p->status = status;    
}

// ... below is from main()

    if ( g_numGPUs ) {
        chCommandLineGet( &g_numGPUs, "numgpus", argc, argv );
        g_GPUThreadPool = new workerThread[g_numGPUs];
        for ( size_t i = 0; i < g_numGPUs; i++ ) {
            if ( ! g_GPUThreadPool[i].initialize( ) ) {
                fprintf( stderr, "Error initializing thread pool\n" );
                return 1;
            }
        }
        for ( int i = 0; i < g_numGPUs; i++ ) {
            gpuInit_struct initGPU = {i};
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g_GPUThreadPool[i].delegateSynchronous( 
initializeGPU, 
&initGPU );

if ( cudaSuccess != initGPU.status ) {
fprintf( stderr, "Initializing GPU %d failed "

"with %d (%s)\n",
i, 
initGPU.status, 
cudaGetErrorString( initGPU.status ) );

return 1;
}

}
    }

Once the worker threads are initialized, they suspend waiting on a thread 
synchronization primitive until the application thread dispatches work to 
them. Listing 9.6 shows the host code that dispatches work to the GPUs: The 
 gpuDelegation structure encapsulates the work that a given GPU must do, 
and the gpuWorkerThread function is invoked for each of the worker threads 
created by the code in Listing 9.5. The application thread code, shown in List-
ing 9.7, creates a gpuDelegation structure for each worker thread and calls 
the delegateAsynchronous() method to invoke the code in Listing 9.6. The 
waitAll() method then waits until all of the worker threads have finished. 
The performance and scaling results of the single-threaded and multithreaded 
version of multi-GPU N-body are summarized in Section 14.7.

Listing 9.6 Host code (worker thread).
struct gpuDelegation {
    size_t i;   // base offset for this thread to process
    size_t n;   // size of this thread's problem
    size_t N;   // total number of bodies

    float *hostPosMass;
    float *hostForce;
    float softeningSquared;

    cudaError_t status;
};

void
gpuWorkerThread( void *_p )
{
    cudaError_t status;
    gpuDelegation *p = (gpuDelegation *) _p;
    float *dptrPosMass = 0;
    float *dptrForce = 0;

    //
    // Each GPU has its own device pointer to the host pointer.
    //
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    CUDART_CHECK( cudaMalloc( &dptrPosMass, 4*p->N*sizeof(float) ) );
    CUDART_CHECK( cudaMalloc( &dptrForce, 3*p->n*sizeof(float) ) );
    CUDART_CHECK( cudaMemcpyAsync( 

dptrPosMass, 
p->hostPosMass, 
4*p->N*sizeof(float), 
cudaMemcpyHostToDevice ) );

    ComputeNBodyGravitation_multiGPU<<<300,256,256*sizeof(float4)>>>( 
dptrForce,
dptrPosMass,
p->softeningSquared,
p->i,
p->n,
p->N );

    // NOTE: synchronous memcpy, so no need for further 
    // synchronization with device
    CUDART_CHECK( cudaMemcpy( 

p->hostForce+3*p->i, 
dptrForce, 
3*p->n*sizeof(float), 
cudaMemcpyDeviceToHost ) );

Error:
    cudaFree( dptrPosMass );
    cudaFree( dptrForce );
    p->status = status;
}

Listing 9.7 ?Host code (application thread)
float
ComputeGravitation_multiGPU_threaded( 
    float *force, 
    float *posMass,
    float softeningSquared,
    size_t N
)
{
    chTimerTimestamp start, end;
    chTimerGetTime( &start );
    {

gpuDelegation *pgpu = new gpuDelegation[g_numGPUs];
size_t bodiesPerGPU = N / g_numGPUs;
if ( N % g_numGPUs ) {

return 0.0f;
}

size_t i;
for ( i = 0; i < g_numGPUs; i++ ) {

pgpu[i].hostPosMass = g_hostAOS_PosMass;
pgpu[i].hostForce = g_hostAOS_Force;

pgpu[i].softeningSquared = softeningSquared;
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pgpu[i].i = bodiesPerGPU*i;
pgpu[i].n = bodiesPerGPU;
pgpu[i].N = N;

g_GPUThreadPool[i].delegateAsynchronous( 
gpuWorkerThread, 
&pgpu[i] );

}
workerThread::waitAll( g_GPUThreadPool, g_numGPUs );
delete[] pgpu;

    }

    chTimerGetTime( &end );
    return chTimerElapsedTime( &start, &end ) * 1000.0f;
}
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Chapter 10 

Texturing

 10.1 Overview
In CUDA, a software technology for general-purpose parallel computing, texture 
support could not have been justified if the hardware hadn’t already been there, 
due to its graphics-accelerating heritage. Nevertheless, the texturing hardware 
accelerates enough useful operations that NVIDIA saw fit to include support. 
Although many CUDA applications may be built without ever using texture, some 
rely on it to be c ompetitive with CPU-based code.

Texture mapping was invented to enable richer, more realistic-looking objects 
by enabling images to be “painted” onto geometry. Historically, the hardware 
interpolated texture coordinates along with the X, Y, and Z coordinates needed 
to render a triangle, and for each output pixel, the texture value was fetched 
(optionally with bilinear interpolation), processed by blending with interpolated 
shading factors, and blended into the output buffer. With the introduction of 
programmable graphics and texture-like data that might not include color data 
(for example, bump maps), graphics hardware became more sophisticated. The 
shader programs included TEX instructions that specified the coordinates to 
fetch, and the results were incorporated into the computations used to generate 
the output pixel. The hardware improves performance using texture caches, 
memory layouts optimized for dimensional locality, and a dedicated hardware 
pipeline to transform texture coordinates into hardware addresses.

Because the functionality grew organically and was informed by a combination 
of application requirements and hardware costs, the texturing features are 
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not very orthogonal. For example, the “wrap” and “mirror” texture addressing 
modes do not work unless the texture coordinates are normalized. This chapter 
explains every detail of the texture hardware as supported by CUDA. We will 
cover everything from normalized versus unnormalized coordinates to address-
ing modes to the limits of linear interpolation; 1D, 2D, 3D, and layered textures; 
and how to use these features from both the CUDA runtime and the driver API.

10.1.1 TWO USE CASES

In CUDA, there are two significantly different uses for texture. One is to simply 
use texture as a read path: to work around coalescing constraints or to use the 
texture cache to reduce external bandwidth requirements, or both. The other 
use case takes advantage of the fixed-function hardware that the GPU has in 
place for graphics applications. The texture hardware consists of a configurable 
pipeline of computation stages that can do all of the following.

• Scale normalized texture coordinates

• Perform boundary condition computations on the texture coordinates

• Convert texture coordinates to addresses with 2D or 3D locality

• Fetch 2, 4, or 8 texture elements for 1D, 2D, or 3D textures and linearly inter-
polate between them

• Convert the texture values from integers to unitized floating-point values

Textures are read through texture references that are bound to underlying mem-
ory (either CUDA arrays or device memory). The memory is just an unshaped 
bucket of bits; it is the texture reference that tells the hardware how to interpret 
the data and deliver it into registers when a TEX instruction is executed.

 10.2 Texture Memory
Before describing the features of the fixed-function texturing hardware, let’s 
spend some time examining the underlying memory to which texture references 
may be bound. CUDA can texture from either device memory or CUDA arrays.
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10.2.1 DEVICE MEMORY

In device memory, the textures are addressed in row-major order. A 1024x768 
texture might look like Figure 10.1, where Offset is the offset (in elements) from 
the base pointer of the image.

Offset = Y * Width + X (Equation 10.1)

For a byte offset, multiply by the size of the elements.

ByteOffset = sizeof(T) * (Y* Width + X) (Equation 10.2)

In practice, this addressing calculation only works for the most convenient of 
texture widths: 1024 happens to be convenient because it is a power of 2 and 
conforms to all manner of alignment restrictions. To accommodate less conve-
nient texture sizes, CUDA implements pitch-linear addressing, where the width 
of the texture memory is different from the width of the texture. For less con-
venient widths, the hardware enforces an alignment restriction and the width 
in elements is treated differently from the width of the texture memory. For a 
texture width of 950, say, and an alignment restriction of 64 bytes, the width-
in-bytes is padded to 964 (the next multiple of 64), and the texture looks like 
Figure 10.2. 

In CUDA, the padded width in bytes is called the pitch. The total amount of device 
memory used by this image is 964x768 elements. The offset into the image now 
is computed in bytes, as follows.

ByteOffset = Y * Pitch + XInBytes

(1023,0)

Offset=3FF

(0,0)

Offset=0

(1023,767)
Offset 

(hex)=BFFFF

(0,767)
Offset 

(hex)=BFC00

Figure 10.1 1024x768 image.
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Applications can call cudaMallocPitch()/cuMemAllocPitch() to delegate 
selection of the pitch to the CUDA driver.1 In 3D, pitch-linear images of a given 
Depth are exactly like 2D images, with Depth 2D slices laid out contiguously in 
device memory.

10.2.2 CUDA ARRAYS AND BLOCK LINEAR ADDRESSING

CUDA arrays are designed specifically to support texturing. They are allocated 
from the same pool of physical memory as device memory, but they have an 
opaque layout and cannot be addressed with pointers. Instead, memory loca-
tions in a CUDA array must be identified by the array handle and a set of 1D, 2D, 
or 3D coordinates. 

CUDA arrays perform a more complicated addressing calculation, designed so 
that contiguous addresses exhibit 2D or 3D locality. The addressing calculation 
is hardware-specific and changes from one hardware generation to the next. 
Figure 10.1 illustrates one of the mechanisms used: The two least significant 
address bits of row and column have been interleaved before undertaking the 
addressing calculation.

As you can see in Figure 10.3, bit interleaving enables contiguous addresses 
to have “dimensional locality”: A cache line fill pulls in a block of pixels in 
a neighborhood rather than a horizontal span of pixels.2 When taken to the 

1.  Code that delegates to the driver is more future-proof than code that tries to perform allo-
cations that comply with the documented alignment restrictions, since those restrictions are 
subject to change.

2.  3D textures similarly interleave the X, Y, and Z coordinate bits.

  

768

964
950

Figure 10.2 950x768 image, with pitch.
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limit, bit interleaving imposes some inconvenient requirements on the texture 
dimensions, so it is just one of several strategies used for the so-called “block 
linear” addressing calculation. 

In device memory, the location of an image element can be specified by any of 
the following.

• The base pointer, pitch, and a (XInBytes, Y) or (XInBytes, Y, Z) tuple

• The base pointer and an offset as computed by Equation 10.1 

• The device pointer with the offset already applied

In contrast, when CUDA arrays do not have device memory addresses, so mem-
ory locations must be specified in terms of the CUDA array and a tuple (XInBytes, 
Y) or (XInBytes, Y, Z).

Creating and Destroying CUDA Arrays
Using the CUDA runtime, CUDA arrays may be created by calling 
cudaMallocArray().

cudaError_t cudaMallocArray(struct cudaArray **array, const struct 
cudaChannelFormatDesc *desc, size_t width, size_t height __dv(0), 
unsigned int flags __dv(0));

00
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02 03 06 07

08 09 0C 0D

0A 0B 0E 0f

10 11 14 15

12 13 16
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1A 1B 1E 1F

20

37

21 24 25

22 23 26 27

28 29 2C 2D

2A 2B 2E 2F

30 31 34 35

32 33 36

38 39 3C 3D

3A 3B 3E 3F

40..7F

...BFFFF

Figure 10.3 1024x768 image, interleaved bits.
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array passes back the array handle, and desc specifies the number and 
type of components (e.g., 2 floats) in each array element. width specifies the 
width of the array in bytes. height is an optional parameter that specifies the 
height of the array; if the height is not specified, cudaMallocArray() creates 
a 1D CUDA array.

The flags parameter is used to hint at the CUDA array’s usage. As of this writ-
ing, the only flag is cudaArraySurfaceLoadStore, which must be specified 
if the CUDA array will be used for surface read/write operations as described 
later in this chapter.

The __dv macro used for the height and flags parameters causes the decla-
ration to behave differently, depending on the language. When compiled for C, it 
becomes a simple parameter, but when compiled for C++, it becomes a parame-
ter with the specified default value.

The structure cudaChannelFormatDesc describes the contents of a texture.

struct cudaChannelFormatDesc {
    int x, y, z, w;
    enum cudaChannelFormatKind f;
};

The x, y, z, and w members of the structure specify the number of bits in each 
member of the texture element. For example, a 1-element float texture will 
contain x==32 and the other elements will be 0. The cudaChannelFormat-
Kind structure specifies whether the data is signed integer, unsigned integer, or 
floating point.

enum cudaChannelFormatKind
{
    cudaChannelFormatKindSigned = 0,
    cudaChannelFormatKindUnsigned = 1,
    cudaChannelFormatKindFloat = 2,
    cudaChannelFormatKindNone = 3
};

Developers can create cudaChannelFormatDesc structures using the cuda-
CreateChannelDesc function.

cudaChannelFormatDesc cudaCreateChannelDesc(int x, int y, int z, int w, 
cudaChannelFormatKind kind);

Alternatively, a templated family of functions can be invoked as follows.

template<class T> cudaCreateChannelDesc<T>();

where T may be any of the native formats supported by CUDA. Here are two 
examples of the specializations of this template.
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template<> __inline__ __host__ cudaChannelFormatDesc 
cudaCreateChannelDesc<float>(void)
{
    int e = (int)sizeof(float) * 8;

    return cudaCreateChannelDesc(e, 0, 0, 0, cudaChannelFormatKindFloat);
}

template<> __inline__ __host__ cudaChannelFormatDesc 
cudaCreateChannelDesc<uint2>(void)
{
 int e = (int)sizeof(unsigned int) * 8;

 return cudaCreateChannelDesc(e, e, 0, 0, 
cudaChannelFormatKindUnsigned);
}

CAUTION 

When using the char data type, be aware that some compilers assume 
char is signed, while others assume it is unsigned. You can always make 
this distinction unambiguous with the signed keyword.

3D CUDA arrays may be allocated with cudaMalloc3DArray().

cudaError_t cudaMalloc3DArray(struct cudaArray** array, const struct 
cudaChannelFormatDesc* desc, struct cudaExtent extent, unsigned int 
flags __dv(0));

Rather than taking width, height, and depth parameters, cudaMalloc3DAr-
ray() takes a cudaExtent structure.

struct cudaExtent {
    size_t width;
    size_t height;
    size_t depth;
};

The flags parameter, like that of cudaMallocArray(), must be cudaArray-
SurfaceLoadStore if the CUDA array will be used for surface read/write 
operations.

NOTE

For array handles, the CUDA runtime and driver API are compatible 
with one another. The pointer passed back by cudaMallocArray() 
can be cast to CUarray and passed to driver API functions such as 
cuArrayGetDescriptor().
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Driver API

The driver API equivalents of cudaMallocArray() and  cudaMalloc3DArray() 
are cuArrayCreate() and cuArray3DCreate(), respectively.

CUresult cuArrayCreate(CUarray *pHandle, const CUDA_ARRAY_DESCRIPTOR 
*pAllocateArray);
CUresult cuArray3DCreate(CUarray *pHandle, const CUDA_ARRAY3D_
DESCRIPTOR *pAllocateArray);

cuArray3DCreate() can be used to allocate 1D or 2D CUDA arrays by speci-
fying 0 as the height or depth, respectively. The CUDA_ARRAY3D_DESCRIPTOR 
structure is as follows.

typedef struct CUDA_ARRAY3D_DESCRIPTOR_st
{
    size_t Width;
    size_t Height;
    size_t Depth;
    CUarray_format Format;
    unsigned int NumChannels;
    unsigned int Flags;
} CUDA_ARRAY3D_DESCRIPTOR;

Together, the Format and NumChannels members describe the size of each 
element of the CUDA array: NumChannels may be 1, 2, or 4, and Format speci-
fies the channels’ type, as follows.

typedef enum CUarray_format_enum {
    CU_AD_FORMAT_UNSIGNED_INT8 = 0x01,
    CU_AD_FORMAT_UNSIGNED_INT16 = 0x02,
    CU_AD_FORMAT_UNSIGNED_INT32 = 0x03,
    CU_AD_FORMAT_SIGNED_INT8 = 0x08,
    CU_AD_FORMAT_SIGNED_INT16 = 0x09,
    CU_AD_FORMAT_SIGNED_INT32 = 0x0a,
    CU_AD_FORMAT_HALF = 0x10,
    CU_AD_FORMAT_FLOAT = 0x20
} CUarray_format;

NOTE 

The format specified in CUDA_ARRAY3D_DESCRIPTOR is just a convenient 
way to specify the amount of data in the CUDA array. Textures bound to the 
CUDA array can specify a different format, as long as the bytes per element is 
the same. For example, it is perfectly valid to bind a texture<int> refer-
ence to a CUDA array containing 4-component bytes (32 bits per element). 
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Sometimes CUDA array handles are passed to subroutines that need to query 
the dimensions and/or format of the input array. The following cuArray3DGet-
Descriptor() function is provided for that purpose.

CUresult cuArray3DGetDescriptor(CUDA_ARRAY3D_DESCRIPTOR 
*pArrayDescriptor, CUarray hArray);

Note that this function may be called on 1D and 2D CUDA arrays, even those that 
were created with cuArrayCreate().

10.2.3 DEVICE MEMORY VERSUS CUDA ARRAYS

For applications that exhibit sparse access patterns, especially patterns with 
dimensional locality (for example, computer vision applications), CUDA arrays 
are a clear win. For applications with regular access patterns, especially those 
with little to no reuse or whose reuse can be explicitly managed by the applica-
tion in shared memory, device pointers are the obvious choice.

Some applications, such as image processing applications, fall into a gray area 
where the choice between device pointers and CUDA arrays is not obvious. All 
other things being equal, device memory is probably preferable to CUDA arrays, 
but the following considerations may be used to help in the decision-making 
process.

• Until CUDA 3.2, CUDA kernels could not write to CUDA arrays. They were only 
able to read from them via texture intrinsics. CUDA 3.2 added the ability for 
Fermi-class hardware to access 2D CUDA arrays via “surface read/write” 
intrinsics.

• CUDA arrays do not consume any CUDA address space. 

• On WDDM drivers (Windows Vista and later), the system can automatically 
manage the residence of CUDA arrays. They can be swapped into and out 
of device memory transparently, depending on whether they are needed by 
the CUDA kernels that are executing. In contrast, WDDM requires all device 
memory to be resident in order for any kernel to execute.

• CUDA arrays can reside only in device memory, and if the GPU contains copy 
engines, it can convert between the two representations while transferring 
the data across the bus. For some applications, keeping a pitch representa-
tion in host memory and a CUDA array representation in device memory is 
the best fit.
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 10.3 1D Texturing
For illustrative purposes, we will deal with 1D textures in detail and then expand 
the discussion to include 2D and 3D textures.

10.3.1 TEXTURE SETUP

The data in textures can consist of 1, 2, or 4 elements of any of the following 
types.

• Signed or unsigned 8-, 16-, or 32-bit integers

• 16-bit floating-point values 

• 32-bit floating-point values

In the .cu file (whether using the CUDA runtime or the driver API), the texture 
reference is declared as follows.

texture<ReturnType, Dimension, ReadMode> Name;

where ReturnType is the value returned by the texture intrinsic; Dimension is 
1, 2, or 3 for 1D, 2D, or 3D, respectively; and ReadMode is an optional parameter 
type that defaults to cudaReadModeElementType. The read mode only affects 
integer-valued texture data. By default, the texture passes back integers when 
the texture data is integer-valued, promoting them to 32-bit if necessary. But 
when cudaReadModeNormalizedFloat is specified as the read mode, 8- or 
16-bit integers can be promoted to floating-point values in the range [0.0, 1.0] 
according to the formulas in Table 10.1. 

Table 10.1 Floating-Point Promotion (Texture)

FORMAT CONVERSION FORMULA TO FLOAT

char c –1.0, c = = 0x80
c/127.0, otherwise{

short s –1.0, s = = 0x8000
                , otherwises
32767.0{

unsigned char uc uc/255.0

unsigned short us us/65535.0
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The C versions of this conversion operation are given in Listing 10.1.

Listing 10.1 Texture unit floating-point conversion.
float
TexPromoteToFloat( signed char c )
{
    if ( c == (signed char) 0x80 ) {
        return -1.0f;
    }
    return (float) c / 127.0f;
}

float
TexPromoteToFloat( short s )
{
    if ( s == (short) 0x8000 ) {
        return -1.0f;
    }
    return (float) s / 32767.0f;
}

float
TexPromoteToFloat( unsigned char uc )
{
    return (float) uc / 255.0f;
}

float
TexPromoteToFloat( unsigned short us )
{
    return (float) us / 65535.0f;
}

Once the texture reference is declared, it can be used in kernels by invoking 
texture intrinsics. Different intrinsics are used for different types of texture, as 
shown in Table 10.2.

Texture references have file scope and behave similarly to global variables. They 
cannot be created, destroyed, or passed as parameters, so wrapping them in 
higher-level abstractions must be undertaken with care.

CUDA Runtime
Before invoking a kernel that uses a texture, the texture must be bound 
to a CUDA array or device memory by calling cudaBindTexture(), 
 cudaBindTexture2D(), or cudaBindTextureToArray(). Due to the 
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language integration of the CUDA runtime, the texture can be referenced by 
name, such as the following. 

texture<float, 2, cudaReadModeElementType> tex;
...
 CUDART_CHECK(cudaBindTextureToArray(tex, texArray));

Once the texture is bound, kernels that use that texture reference will read from 
the bound memory until the texture binding is changed.

Driver API
When a texture is declared in a .cu file, driver applications must query it using 
cuModuleGetTexRef(). In the driver API, the immutable attributes of the 
texture must be set explicitly, and they must agree with the assumptions used 
by the compiler to generate the code. For most textures, this just means the 
format must agree with the format declared in the .cu file; the exception is 
when textures are set up to promote integers or 16-bit floating-point values to 
normalized 32-bit floating-point values.

The cuTexRefSetFormat() function is used to specify the format of the data 
in the texture.

CUresult CUDAAPI cuTexRefSetFormat(CUtexref hTexRef, CUarray_format 
fmt, int NumPackedComponents);

Table 10.2 Texture Intrinsics

TEXTURE TYPE INTRINSIC

Linear device memory tex1Dfetch( int index );

1D CUDA array tex1D(float x);

2D CUDA array

2D device memory

tex2D(float x, float y);

3D CUDA array tex3D(float x, float y, float z);

1D layered texture tex1DLayered(float x, int layer);

2D layered texture tex2DLayered(float x, float y, int layer);
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The array formats are as follows.

ENUMERATION VALUE TYPE

CU_AD_FORMAT_UNSIGNED_INT8 unsigned char

CU_AD_FORMAT_UNSIGNED_INT16 unsigned short

CU_AD_FORMAT_UNSIGNED_INT32 unsigned int

CU_AD_FORMAT_SIGNED_INT8 signed char

CU_AD_FORMAT_SIGNED_INT16 short

CU_AD_FORMAT_SIGNED_INT32 int

CU_AD_FORMAT_SIGNED_HALF half (IEEE 754 “binary16” format)

CU_AD_FORMAT_SIGNED_FLOAT float

NumPackedComponents specifies the number of components in each texture 
element. It may be 1, 2, or 4. 16-bit floats (half) are a special data type that 
are well suited to representing image data with high integrity.3 With 10 bits of 
floating-point mantissa (effectively 11 bits of precision for normalized numbers), 
there is enough precision to represent data generated by most sensors, and 
5 bits of exponent gives enough dynamic range to represent starlight and sun-
light in the same image. Most floating-point architectures do not include native 
instructions to process 16-bit floats, and CUDA is no exception. The texture 
hardware promotes 16-bit floats to 32-bit floats automatically, and CUDA ker-
nels can convert between 16- and 32-bit floats with the __float2half_rn() 
and __half2float_rn() intrinsics.

 10.4 Texture as a Read Path
When using texture as a read path—that is, using the texturing hardware 
to get around awkward coalescing constraints or to take advantage of the 
texture cache as opposed to accessing hardware features such as linear 

3.  Section 8.3.4 describes 16-bit floats in detail.
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interpolation—many texturing features are unavailable. The highlights of this 
usage for texture are as follows.

• The texture reference must be bound to device memory with cudaBind-
Texture() or cuTexRefSetAddress().

• The tex1Dfetch() intrinsic must be used. It takes a 27-bit integer index.4 

• tex1Dfetch() optionally can convert the texture contents to floating-point 
values. Integers are converted to floating-point values in the range [0.0, 1.0], 
and 16-bit floating-point values are promoted to float.

The benefits of reading device memory via tex1Dfetch() are twofold. First, 
memory reads via texture do not have to conform to the coalescing constraints 
that apply when reading global memory. Second, the texture cache can be a useful 
complement to the other hardware resources, even the L2 cache on Fermi-class 
hardware. When an out-of-range index is passed to tex1Dfetch(), it returns 0.

10.4.1 INCREASING EFFECTIVE ADDRESS COVERAGE

Since the 27-bit index specifies which texture element to fetch, and the texture 
elements may be up to 16 bytes in size, a texture being read via tex1Dfetch() 
can cover up to 31 bits (227+24) worth of memory. One way to increase the amount 
of data being effectively covered by a texture is to use wider texture elements 
than the actual data size. For example, the application can texture from float4 
instead of float, then select the appropriate element of the float4, depend-
ing on the least significant bits of the desired index. Similar techniques can be 
applied to integer data, especially 8- or 16-bit data where global memory trans-
actions are always uncoalesced. Alternatively, applications can alias multiple 
textures over different segments of the device memory and perform predicated 
texture fetches from each texture in such a way that only one of them is “live.”

Microdemo: tex1dfetch_big.cu
This program illustrates using tex1Dfetch() to read from large arrays using 
both multiple components per texture and multiple textures. It is invoked as 
follows.

tex1dfetch_big <NumMegabytes>

4.  All CUDA-capable hardware has the same 27-bit limit, so there is not yet any way to query a 
device for the limit.
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The application allocates the specified number of megabytes of device memory 
(or mapped pinned host memory, if the device memory allocation fails), fills 
the memory with random numbers, and uses 1-, 2-, and 4-component textures 
to compute checksums on the data. Up to four textures of int4 can be used, 
enabling the application to texture from up to 8192M of memory.

For clarity, tex1dfetch_big.cu does not perform any fancy parallel reduc-
tion techniques. Each thread writes back an intermediate sum, and the final 
checksums are accumulated on the CPU. The application defines the 27-bit 
hardware limits.

#define CUDA_LG_MAX_TEX1DFETCH_INDEX 27
#define CUDA_MAX_TEX1DFETCH_INDEX 
(((size_t)1<<CUDA_LG_MAX_TEX1DFETCH_INDEX)-1)

And it defines four textures of int4.

texture<int4, 1, cudaReadModeElementType> tex4_0;
texture<int4, 1, cudaReadModeElementType> tex4_1;
texture<int4, 1, cudaReadModeElementType> tex4_2;
texture<int4, 1, cudaReadModeElementType> tex4_3;

A device function tex4Fetch() takes an index and teases it apart into a texture 
ordinal and a 27-bit index to pass to tex1Dfetch(). 

__device__ int4
tex4Fetch( size_t index )
{
    int texID = (int) (index>>CUDA_LG_MAX_TEX1DFETCH_INDEX);
    int i = (int) (index & (CUDA_MAX_TEX1DFETCH_INDEX_SIZE_T-1));
    int4 i4;
    
    if ( texID == 0 ) {
        i4 = tex1Dfetch( tex4_0, i );
    }
    else if ( texID == 1 ) {
        i4 = tex1Dfetch( tex4_1, i );
    }
    else if ( texID == 2 ) {
        i4 = tex1Dfetch( tex4_2, i );
    }
    else if ( texID == 3 ) {
        i4 = tex1Dfetch( tex4_3, i );
    }
    return i4;
}

This device function compiles to a small amount of code that uses four predi-
cated TEX instructions, only one of which is “live.” If random access is desired, 
the application also can use predication to select from the .x, .y, .z, or .w 
component of the int4 return value.
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Binding the textures, shown in Listing 10.2, is a slightly tricky business. This 
code creates two small arrays texSizes[] and texBases[] and sets them 
up to cover the device memory range. The for loop ensures that all four tex-
tures have a valid binding, even if fewer than four are needed to map the device 
memory. 

Listing 10.2 tex1dfetch_big.cu (excerpt).
int iTexture;
cudaChannelFormatDesc int4Desc = cudaCreateChannelDesc<int4>();
size_t numInt4s = numBytes / sizeof(int4);
int numTextures = (numInt4s+CUDA_MAX_TEX1DFETCH_INDEX)>>

    CUDA_LG_MAX_TEX1DFETCH_INDEX;
size_t Remainder = numBytes & (CUDA_MAX_BYTES_INT4-1);
if ( ! Remainder ) {
    Remainder = CUDA_MAX_BYTES_INT4;
}

size_t texSizes[4];
char *texBases[4];
for ( iTexture = 0; iTexture < numTextures; iTexture++ ) {
    texBases[iTexture] = deviceTex+iTexture*CUDA_MAX_BYTES_INT4;
    texSizes[iTexture] = CUDA_MAX_BYTES_INT4;
}
texSizes[iTexture-1] = Remainder;
while ( iTexture < 4 ) {
    texBases[iTexture] = texBases[iTexture-1];
    texSizes[iTexture] = texSizes[iTexture-1];
    iTexture++;
}
cudaBindTexture( NULL, tex4_0, texBases[0], int4Desc, texSizes[0] );
cudaBindTexture( NULL, tex4_1, texBases[1], int4Desc, texSizes[1] );
cudaBindTexture( NULL, tex4_2, texBases[2], int4Desc, texSizes[2] );
cudaBindTexture( NULL, tex4_3, texBases[3], int4Desc, texSizes[3] );

Once compiled and run, the application can be invoked with different sizes to see 
the effects. On a CG1 instance running in Amazon’s EC2 cloud compute offering, 
invocations with 512M, 768M, 1280M, and 8192M worked as follows.

$ ./tex1dfetch_big 512
Expected checksum: 0x7b7c8cd3
 tex1 checksum: 0x7b7c8cd3
 tex2 checksum: 0x7b7c8cd3
 tex4 checksum: 0x7b7c8cd3
$ ./tex1dfetch_big 768
Expected checksum: 0x559a1431
 tex1 checksum: (not performed)
 tex2 checksum: 0x559a1431
 tex4 checksum: 0x559a1431
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$ ./tex1dfetch_big 1280
Expected checksum: 0x66a4f9d9
 tex1 checksum: (not performed)
 tex2 checksum: (not performed)
 tex4 checksum: 0x66a4f9d9
$ ./tex1dfetch_big 8192
Device alloc of 8192 Mb failed, trying mapped host memory
Expected checksum: 0xf049c607
 tex1 checksum: (not performed)
 tex2 checksum: (not performed)
 tex4 checksum: 0xf049c607

Each int4 texture can “only” read 2G, so invoking the program with numbers 
greater than 8192 causes it to fail. This application highlights the demand for 
indexed textures, where the texture being fetched can be specified as a parame-
ter at runtime, but CUDA does not expose support for this feature.

10.4.2 TEXTURING FROM HOST MEMORY

Using texture as a read path, applications can read from host memory by allo-
cating mapped pinned memory, fetching the device pointer, and then specifying 
that device pointer to cudaBindAddress() or cuTexRefSetAddress(). 
The capability is there, but reading host memory via texture is slow. Tesla-class 
hardware can texture over PCI Express at about 2G/s, and Fermi hardware is 
much slower. You need some other reason to do it, such as code simplicity.

Microdemo: tex1dfetch_int2float.cu
This code fragment uses texture-as-a-read path and texturing from host mem-
ory to confirm that the TexPromoteToFloat() functions work properly. The 
CUDA kernel that we will use for this purpose is a straightforward, blocking- 
agnostic implementation of a memcpy function that reads from the texture and 
writes to device memory.

texture<signed char, 1, cudaReadModeNormalizedFloat> tex;

extern “C” __global__ void
TexReadout( float *out, size_t N )
{
    for ( size_t i = blockIdx.x*blockDim.x + threadIdx.x; 
                 i < N; 
                 i += gridDim.x*blockDim.x )
    {
        out[i] = tex1Dfetch( tex, i );
    }
}
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Since promoting integers to floating point only works on 8- and 16-bit values,
 we can test every possible conversion by allocating a small buffer, texturing 
from it, and confirming that the output meets our expectations. Listing 10.3 
gives an excerpt from tex1dfetch_int2float.cu. Two host buffers are 
allocated: inHost holds the input buffer of 256 or 65536 input values, and 
fOutHost holds the corresponding float-valued outputs. The device pointers 
corresponding to these mapped host pointers are fetched into inDevice and 
foutDevice.

The input values are initialized to every possible value of the type to be tested, 
and then the input device pointer is bound to the texture reference using 
 cudaBindTexture(). The TexReadout() kernel is then invoked to read 
each value from the input texture and write as output the values returned by 
tex1Dfetch(). In this case, both the input and output buffers reside in mapped 
host memory. Because the kernel is writing directly to host memory, we must 
call cudaDeviceSynchronize()to make sure there are no race conditions 
between the CPU and GPU. At the end of the function, we call the TexPromote-
ToFloat() specialization corresponding to the type being tested and confirm 
that it is equal to the value returned by the kernel. If all tests pass, the function 
returns true; if any API functions or comparisons fail, it returns false.

Listing 10.3 tex1d_int2float.cu (excerpt).
template<class T>
void
CheckTexPromoteToFloat( size_t N )
{
    T *inHost, *inDevice;
    float *foutHost, *foutDevice;
    cudaError_t status;

    CUDART_CHECK(cudaHostAlloc( (void **) &inHost, 
                                N*sizeof(T), 
                                cudaHostAllocMapped));
    CUDART_CHECK(cudaHostGetDevicePointer( (void **) &inDevice, 
                                           inHost, 
                                           0 ));
    CUDART_CHECK(cudaHostAlloc( (void **) &foutHost, 
                                N*sizeof(float), 
                                cudaHostAllocMapped));
    CUDART_CHECK(cudaHostGetDevicePointer( (void **) &foutDevice, 
                                           foutHost, 
                                           0 ));

    for ( int i = 0; i < N; i++ ) {
        inHost[i] = (T) i;
    }
    memset( foutHost, 0, N*sizeof(float) );
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    CUDART_CHECK( cudaBindTexture( NULL, 
tex, 
inDevice, 
cudaCreateChannelDesc<T>(), 
N*sizeof(T)));

    TexReadout<<<2,384>>>( foutDevice, N );
    CUDART_CHECK(cudaDeviceSynchronize());

    for ( int i = 0; i < N; i++ ) {
printf( "%.2f ", foutHost[i] );
assert( foutHost[i] == TexPromoteToFloat( (T) i ) );

    }
    printf( "\n" );
Error:
    cudaFreeHost( inHost );
    cudaFreeHost( foutHost );
}

10.5  Texturing with Unnormalized 
Coordinates
All texture intrinsics except tex1Dfetch() use floating-point values to specify 
coordinates into the texture. When using unnormalized coordinates, they fall in 
the range [0, MaxDim), where MaxDim is the width, height, or depth of the tex-
ture. Unnormalized coordinates are an intuitive way to index into a texture, but 
some texturing features are not available when using them.

An easy way to study texturing behavior is to populate a texture with elements 
that contain the index into the texture. Figure 10.4 shows a float-valued 1D 
texture with 16 elements, populated by the identity elements and annotated with 
some of the values returned by tex1D().

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tex1D(1.0-ulp) = 0.0
tex1D(1.0) = 1.0

tex1D(2.0-ulp) = 1.0
tex1D(2.0) = 2.0

tex1D(15.0-ulp) = 14.0
tex1D(15.0) = 15.0

tex1D(16.0-ulp) = 15.0
tex1D(16.0) = 15.0 (clamped)

Figure 10.4 Texturing with unnormalized coordinates (without linear filtering).
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Not all texturing features are available with unnormalized coordinates, but 
they can be used in conjunction with linear filtering and a limited form of texture 
addressing. The texture addressing mode specifies how the hardware should 
deal with out-of-range texture coordinates. For unnormalized coordinates, the 
Figure 10.4 illustrates the default texture addressing mode of clamping to the 
range [0, MaxDim) before fetching data from the texture: The value 16.0 is out of 
range and clamped to fetch the value 15.0. Another texture addressing option 
available when using unnormalized coordinates is the “border” addressing 
mode where out-of-range coordinates return zero.

The default filtering mode, so-called “point filtering,” returns one texture 
element depending on the value of the floating-point coordinate. In contrast, 
linear filtering causes the texture hardware to fetch the two neighboring texture 
elements and linearly interpolate between them, weighted by the texture coor-
dinate. Figure 10.5 shows the 1D texture with 16 elements, with some sample 
values returned by tex1D(). Note that you must add 0.5f to the texture coor-
dinate to get the identity element.

Many texturing features can be used in conjunction with one another; for exam-
ple, linear filtering can be combined with the previously discussed promotion 
from integer to floating point. In that case, the floating-point outputs produced 
by tex1D() intrinsics are accurate interpolations between the promoted float-
ing-point values of the two participating texture elements.

tex1D(0.5) = 0.0
tex1D(0.75) = 0.25

tex1D(1.0) = 0.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0 1.0

0 1 2

2.0

tex1D(2.0) = 1.5
tex1D(14.5) = 14.0

tex1D(14.75) = 14.25
tex1D(15.0) = 14.5
tex1D(16.0) = 15.0

 Figure 10.5 Texturing with unnormalized coordinates (with linear filtering).
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Microdemo: tex1d_unnormalized.cu

The microdemo tex1d_unnormalized.cu is like a microscope to closely 
examine texturing behavior by printing the coordinate and the value returned 
by the tex1D() intrinsic together. Unlike the tex1dfetch_int2float.cu 
microdemo, this program uses a 1D CUDA array to hold the texture data. A 
certain number of texture fetches is performed, along a range of floating-point 
values specified by a base and increment; the interpolated values and the value 
returned by tex1D() are written together into an output array of float2. The 
CUDA kernel is as follows.

texture<float, 1> tex;

extern “C” __global__ void
TexReadout( float2 *out, size_t N, float base, float increment )
{
    for ( size_t i = blockIdx.x*blockDim.x + threadIdx.x; 
                 i < N; 
                 i += gridDim.x*blockDim.x )
    {
        float x = base + (float) i * increment;
        out[i].x = x;
        out[i].y = tex1D( tex, x );
    }
}

A host function CreateAndPrintTex(), given in Listing 10.4, takes the size 
of the texture to create, the number of texture fetches to perform, the base and 
increment of the floating-point range to pass to tex1D(), and optionally the fil-
ter and addressing modes to use on the texture. This function creates the CUDA 
array to hold the texture data, optionally initializes it with the caller-provided 
data (or identity elements if the caller passes NULL), binds the texture to the 
CUDA array, and prints the float2 output.

Listing 10.4 CreateAndPrintTex().
template<class T>
void
CreateAndPrintTex( T *initTex, size_t texN, size_t outN, 
    float base, float increment, 
    cudaTextureFilterMode filterMode = cudaFilterModePoint, 
    cudaTextureAddressMode addressMode = cudaAddressModeClamp )
{
    T *texContents = 0;
    cudaArray *texArray = 0;

    float2 *outHost = 0, *outDevice = 0;
    cudaError_t status;
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<T>();
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    // use caller-provided array, if any, to initialize texture
    if ( initTex ) {

texContents = initTex;
    }
    else {

// default is to initialize with identity elements
texContents = (T *) malloc( texN*sizeof(T) );
if ( ! texContents )

goto Error;
for ( int i = 0; i < texN; i++ ) {

texContents[i] = (T) i;
}

    }

    CUDART_CHECK(cudaMallocArray(&texArray, &channelDesc, texN));

    CUDART_CHECK(cudaHostAlloc( (void **) &outHost, 
outN*sizeof(float2), 
cudaHostAllocMapped));

    CUDART_CHECK(cudaHostGetDevicePointer( (void **) 
&outDevice, 
outHost, 0 ));

    CUDART_CHECK(cudaMemcpyToArray( texArray, 
0, 0, 
texContents, 
texN*sizeof(T), 
cudaMemcpyHostToDevice));

    CUDART_CHECK(cudaBindTextureToArray(tex, texArray));

    tex.filterMode = filterMode;
    tex.addressMode[0] = addressMode;
    CUDART_CHECK(cudaHostGetDevicePointer(&outDevice, outHost, 0));
    TexReadout<<<2,384>>>( outDevice, outN, base, increment );
    CUDART_CHECK(cudaThreadSynchronize());

    for ( int i = 0; i < outN; i++ ) {
printf( "(%.2f, %.2f)\n", outHost[i].x, outHost[i].y );

    }
    printf( "\n" );

Error:
    if ( ! initTex ) free( texContents );
    if ( texArray ) cudaFreeArray( texArray );
    if ( outHost ) cudaFreeHost( outHost );
}

The main() function for this program is intended to be modified to study textur-
ing behavior. This version creates an 8-element texture and writes the output of 
tex1D() from 0.0 .. 7.0.
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int
main( int argc, char *argv[] )
{
 cudaError_t status;
 CUDA_CHECK(cudaSetDeviceFlags(cudaDeviceMapHost));

 CreateAndPrintTex<float>( NULL, 8, 8, 0.0f, 1.0f );
 CreateAndPrintTex<float>( NULL, 8, 8, 0.0f, 1.0f, 
cudaFilterModeLinear );

 return 0;
}

The output from this program is as follows.

(0.00, 0.00)    <- output from the first CreateAndPrintTex() 
(1.00, 1.00)
(2.00, 2.00)
(3.00, 3.00)
(4.00, 4.00)
(5.00, 5.00)
(6.00, 6.00)
(7.00, 7.00)

(0.00, 0.00)    <- output from the second CreateAndPrintTex()
(1.00, 0.50)
(2.00, 1.50)
(3.00, 2.50)
(4.00, 3.50)
(5.00, 4.50)
(6.00, 5.50)
(7.00, 6.50)

If we change main() to invoke CreateAndPrintTex() as follows.

CreateAndPrintTex<float>( NULL, 8, 20, 0.9f, 0.01f, 
cudaFilterModePoint );

The resulting output highlights that when point filtering, 1.0 is the dividing line 
between texture elements 0 and 1.

(0.90, 0.00)
(0.91, 0.00)
(0.92, 0.00)
(0.93, 0.00)
(0.94, 0.00)
(0.95, 0.00)
(0.96, 0.00)
(0.97, 0.00)
(0.98, 0.00)
(0.99, 0.00)
(1.00, 1.00)     <- transition point
(1.01, 1.00)
(1.02, 1.00)
(1.03, 1.00)
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(1.04, 1.00)
(1.05, 1.00)
(1.06, 1.00)
(1.07, 1.00)
(1.08, 1.00)
(1.09, 1.00)

One limitation of linear filtering is that it is performed with 9-bit weighting fac-
tors. It is important to realize that the precision of the interpolation depends not 
on that of the texture elements but on the weights. As an example, let’s take a 
look at a 10-element texture initialized with normalized identity elements—that 
is, (0.0, 0.1, 0.2, 0.3, . . . 0.9) instead of (0, 1, 2, . . . 9). CreateAndPrintTex() 
lets us specify the texture contents, so we can do so as follows.

{
    float texData[10];
    for ( int i = 0; i < 10; i++ ) {
        texData[i] = (float) i / 10.0f;
    }
     CreateAndPrintTex<float>( texData, 10, 10, 0.0f, 1.0f );
}

The output from an unmodified CreateAndPrintTex() looks innocuous 
enough.

(0.00, 0.00)
(1.00, 0.10)
(2.00, 0.20)
(3.00, 0.30)
(4.00, 0.40)
(5.00, 0.50)
(6.00, 0.60)
(7.00, 0.70)
(8.00, 0.80)
(9.00, 0.90)

Or if we invoke CreateAndPrintTex() with linear interpolation between the 
first two texture elements (values 0.1 and 0.2), we get the following.

CreateAndPrintTex<float>(tex,10,10,1.5f,0.1f,cudaFilterModeLinear);

The resulting output is as follows.

(1.50, 0.10)
(1.60, 0.11)
(1.70, 0.12)
(1.80, 0.13)
(1.90, 0.14)
(2.00, 0.15)
(2.10, 0.16)
(2.20, 0.17)
(2.30, 0.18)
(2.40, 0.19)
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Rounded to 2 decimal places, this data looks very well behaved. But if we modify 
CreateAndPrintTex() to output hexadecimal instead, the output becomes

(1.50, 0x3dcccccd)
(1.60, 0x3de1999a)
(1.70, 0x3df5999a)
(1.80, 0x3e053333)
(1.90, 0x3e0f3333)
(2.00, 0x3e19999a)
(2.10, 0x3e240000)
(2.20, 0x3e2e0000)
(2.30, 0x3e386667)
(2.40, 0x3e426667)

It is clear that most fractions of 10 are not exactly representable in floating 
point. Nevertheless, when performing interpolation that does not require high 
precision, these values are interpolated at full precision.

Microdemo: tex1d_9bit.cu

To explore this question of precision, we developed another microdemo, 
 tex1d_9bit.cu. Here, we’ve populated a texture with 32-bit floating-point 
values that require full precision to represent. In addition to passing the base/
increment pair for the texture coordinates, another base/increment pair speci-
fies the “expected” interpolation value, assuming full-precision interpolation.

In tex1d_9bit, the CreateAndPrintTex() function is modified to write its 
output as shown in Listing 10.5.

Listing 10.5 Tex1d_9bit.cu (excerpt).
printf( "X\tY\tActual Value\tExpected Value\tDiff\n" );
for ( int i = 0; i < outN; i++ ) {
    T expected;
    if ( bEmulateGPU ) {

float x = base+(float)i*increment - 0.5f;
float frac = x - (float) (int) x;
{

int frac256 = (int) (frac*256.0f+0.5f);
frac = frac256/256.0f;

}
int index = (int) x;
expected = (1.0f-frac)*initTex[index] + 

frac*initTex[index+1];
    }
    else {

expected = expectedBase + (float) i*expectedIncrement;
    }
    float diff = fabsf( outHost[i].y - expected );
    printf( "%.2f\t%.2f\t", outHost[i].x, outHost[i].y );
    printf( "%08x\t", *(int *) (&outHost[i].y) );
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    printf( "%08x\t", *(int *) (&expected) );
    printf( "%E\n", diff );
}
printf( "\n" );

For the just-described texture with 10 values (incrementing by 0.1), we can use 
this function to generate a comparison of the actual texture results with the 
expected full-precision result. Calling the function

CreateAndPrintTex<float>( tex, 10, 4, 1.5f, 0.25f, 0.1f, 0.025f );
CreateAndPrintTex<float>( tex, 10, 4, 1.5f, 0.1f, 0.1f, 0.01f );

yields this output.

X     Y     Actual Value  Expected Value  Diff
1.50  0.10  3dcccccd      3dcccccd        0.000000E+00
1.75  0.12  3e000000      3e000000        0.000000E+00
2.00  0.15  3e19999a      3e19999a        0.000000E+00
2.25  0.17  3e333333      3e333333        0.000000E+00

X     Y     Actual Value  Expected Value  Diff
1.50  0.10  3dcccccd      3dcccccd        0.000000E+00
1.60  0.11  3de1999a      3de147ae        1.562536E-04
1.70  0.12  3df5999a      3df5c290        7.812679E-05
1.80  0.13  3e053333      3e051eb8        7.812679E-05

As you can see from the “Diff” column on the right, the first set of outputs were 
interpolated at full precision, while the second were not. The explanation for this 
difference lies in Appendix F of the CUDA Programming Guide, which describes 
how linear interpolation is performed for 1D textures.

tex(x) = (1 - 	)T(i) + 	T(i + 1)

where

i = floor(XB), 	 + frac(XB), XB = x - 0.5

and 	 is stored in a 9-bit fixed-point format with 8 bits of fractional value.

In Listing 10.5, this computation in C++ is emulated in the bEmulateGPU case. 
The code snippet to emulate 9-bit weights can be enabled in tex1d_9bit.cu 
by passing true as the bEmulateGPU parameter of CreateAndPrintTex(). 
The output then becomes

X     Y     Actual Value  Expected Value  Diff
1.50  0.10  3dcccccd      3dcccccd        0.000000E+00
1.75  0.12  3e000000      3e000000        0.000000E+00
2.00  0.15  3e19999a      3e19999a        0.000000E+00
2.25  0.17  3e333333      3e333333        0.000000E+00
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X     Y     Actual Value  Expected Value  Diff
1.50  0.10  3dcccccd      3dcccccd        0.000000E+00
1.60  0.11  3de1999a      3de1999a        0.000000E+00
1.70  0.12  3df5999a      3df5999a        0.000000E+00
1.80  0.13  3e053333      3e053333        0.000000E+00

As you can see from the rightmost column of 0’s, when computing the interpo-
lated value with 9-bit precision, the differences between “expected” and “actual” 
output disappear.

 10.6  Texturing with Normalized 
Coordinates
When texturing with normalized coordinates, the texture is addressed by coor-
dinates in the range [0.0, 1.0) instead of the range [0, MaxDim). For a 1D 
texture with 16 elements, the normalized coordinates are as in Figure 10.6. 

Other than having texture coordinates that are independent of the texture dimen-
sion, the texture is dealt with in largely the same way, except that the full range 
of CUDA’s texturing capabilities become available. With normalized coordinates, 
more texture addressing mode besides clamp and border addressing becomes 
available: the wrap and mirror addressing modes, whose formulas are as follows.

Wrap x� = x – [x]

Mirror
x – [x], [x] is even
1 – x – [x], [x] is odd{x� = 

The four texture addressing modes supported in CUDA in Figure 10.7 show 
which in-range texture element is fetched by the first two out-of-range 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0.0

0.0625

0.125 0.375 0.5 0.625

0.1875 0.3125 0.4375

0.25

0.5625 0.6875

0.75

0.8125

0.875

0.9375

1.0

Figure 10.6 Texturing with normalized coordinates.
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coordinates on each end. If you are having trouble visualizing the behavior of 
these addressing modes, check out the tex2d_opengl.cu microdemo in the 
next section.

IMPORTANT NOTE 

In the driver API, changes to the texture reference are codified by the 
cuTexRefSetArray() or cuTexRefSetAddress() function. In other 
words, calls to functions that make state changes, such as cuTexRefSet-
FilterMode() or cuTexRefSetAddressMode(), have no effect until 
the texture reference is bound to memory.

Floating-Point Coordinates with 1D Device Memory
For applications that wish to use floating-point coordinates to address the 
texture or use texturing features that are only available for normalized coor-
dinates, use cudaBindTexture2D() / cuTexRefSetAddress2D() to 
specify the base address. Specify a height of 1 and pitch of N*sizeof(T). The 
kernel can then call tex2D(x,0.0f) to read the 1D texture with floating-point 
coordinates.

Clamp addressing mode

Mirror addressing mode

Wrap addressing mode

Border addressing mode

Figure 10.7 Texture addressing modes.
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 10.7 1D Surface Read/Write
Until SM 2.0 hardware became available, CUDA kernels could access the con-
tents of CUDA arrays only via texturing. Other access to CUDA arrays, includ-
ing all write access, could be performed only via memcpy functions such as 
 cudaMemcpyToArray(). The only way for CUDA kernels to both texture from 
and write to a given region of memory was to bind the texture reference to linear 
device memory.

But with the surface read/write functions newly available in SM 2.x, developers 
can bind CUDA arrays to surface references and use the surf1Dread() and 
surf1Dwrite() intrinsics to read and write the CUDA arrays from a kernel. 
Unlike texture reads, which have dedicated cache hardware, these reads and 
writes go through the same L2 cache as global loads and stores.

NOTE 

In order for a surface reference to be bound to a CUDA array, the CUDA array 
must have been created with the cudaArraySurfaceLoadStore flag.

The 1D surface read/write intrinsics are declared as follows.

template<class Type> Type surf1Dread(surface<void, 1> surfRef, int x, 
boundaryMode = cudaBoundaryModeTrap);
template<class Type> void surf1Dwrite(Type data, surface<void, 1> 
surfRef, int x, boundaryMode = cudaBoundaryModeTrap);

These intrinsics are not type-strong—as you can see, surface references 
are declared as void—and the size of the memory transaction depends on 
 sizeof(Type) for a given invocation of surf1Dread() or surf1Dwrite(). The 
x offset is in bytes and must be naturally aligned with respect to  sizeof(Type). 
For 4-byte operands such as int or float, offset must be evenly divisible by 4, 
for short it must be divisible by 2, and so on.

Support for surface read/write is far less rich than texturing functionality.5 Only 
unformatted reads and writes are supported, with no conversion or interpolation 
functions, and the border handling is restricted to only two modes.

5.  In fact, CUDA could have bypassed implementation of surface references entirely, with the 
intrinsics operating directly on CUDA arrays. Surface references were included for orthogonal-
ity with texture references to provide for behavior defined on a per-surfref basis as opposed to 
per-instruction.
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Boundary conditions are handled differently for surface read/write than for 
texture reads. For textures, this behavior is controlled by the addressing mode 
in the texture reference. For surface read/write, the method of handling out-
of-range offset values is specified as a parameter of surf1Dread() or 
surf1Dwrite(). Out-of-range indices can either cause a hardware exception 
(cudaBoundaryModeTrap) or read as 0 for surf1Dread() and are ignored for 
surf1Dwrite()(cudaBoundaryModeZero).

Because of the untyped character of surface references, it is easy to write a 
templated 1D memset routine that works for all types.

surface<void, 1> surf1D;

template <typename T>
__global__ void
surf1Dmemset( int index, T value, size_t N )
{
    for ( size_t i = blockIdx.x*blockDim.x + threadIdx.x;
                 i < N;
                 i += blockDim.x*gridDim.x )
    {
        surf1Dwrite( value, surf1D, (index+i)*sizeof(T) );
    }
}

This kernel is in the microdemo surf1Dmemset.cu, which creates a 64-byte 
CUDA array for illustrative purposes, initializes it with the above kernel, and 
prints the array in float and integer forms.

A generic template host function wraps this kernel with a call to 
cudaBindSurfaceToArray().

template<typename T>
cudaError_t
surf1Dmemset( cudaArray *array, int offset, T value, size_t N )
{
    cudaError_t status;
    CUDART_CHECK(cudaBindSurfaceToArray(surf1D, array));
    surf1Dmemset_kernel<<<2,384>>>( 0, value, 4*NUM_VALUES );
Error:
    return status;
}

The untyped character of surface references makes this template structure 
much easier to pull off than for textures. Because texture references are both 
type-strong and global, they cannot be templatized in the parameter list of a 
would-be generic function. A one-line change from

CUDART_CHECK(surf1Dmemset(array, 0, 3.141592654f, NUM_VALUES));
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to

CUDART_CHECK(surf1Dmemset(array, 0, (short) 0xbeef, 2*NUM_VALUES));

will change the output of this program from

0x40490fdb 0x40490fdb ... (16 times)
3.141593E+00 3.141593E+00 ... (16 times)

to

0xbeefbeef 0xbeefbeef ... (16 times)
-4.68253E-01 -4.68253E-01 ... (16 times)

 10.8 2D Texturing
In most ways, 2D texturing is similar to 1D texturing as described above. Appli-
cations optionally may promote integer texture elements to floating point, and 
they can use unnormalized or normalized coordinates. When linear filtering is 
supported, bilinear filtering is performed between four texture values, weighted 
by the fractional bits of the texture coordinates. The hardware can perform a 
different addressing mode for each dimension. For example, the X coordinate 
can be clamped while the Y coordinate is wrapped.

10.8.1 MICRODEMO: TEX2D_OPENGL.CU

This microdemo graphically illustrates the effects of the different texturing 
modes. It uses OpenGL for portability and the GL Utility Library (GLUT) to 
minimize the amount of setup code. To keep distractions to a minimum, this 
application does not use CUDA’s OpenGL interoperability functions. Instead, 
we allocate mapped host memory and render it to the frame buffer using 
 glDrawPixels(). To OpenGL, the data might as well be coming from the CPU.

The application supports normalized and unnormalized coordinates and clamp, 
wrap, mirror, and border addressing in both the X and Y directions. For unnor-
malized coordinates, the following kernel is used to write the texture contents 
into the output buffer.

__global__ void
RenderTextureUnnormalized( uchar4 *out, int width, int height )
{
    for ( int row = blockIdx.x; row < height; row += gridDim.x ) {
        out = (uchar4 *) (((char *) out)+row*4*width);
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        for ( int col = threadIdx.x; col < width; col += blockDim.x ) {
            out[col] = tex2D( tex2d, (float) col, (float) row );
        }
    }
}

This kernel fills the rectangle of width × height pixels with values read from 
the texture using texture coordinates corresponding to the pixel locations. For 
out-of-range pixels, you can see the effects of the clamp and border addressing 
modes.

For normalized coordinates, the following kernel is used to write the texture 
contents into the output buffer.

__global__ void
RenderTextureNormalized( 
    uchar4 *out, 
    int width, 
    int height, 
    int scale )
{
    for ( int j = blockIdx.x; j < height; j += gridDim.x ) {
        int row = height-j-1;
        out = (uchar4 *) (((char *) out)+row*4*width);
        float texRow = scale * (float) row / (float) height;
        float invWidth = scale / (float) width;
        for ( int col = threadIdx.x; col < width; col += blockDim.x ) {
            float texCol = col * invWidth;
            out[col] = tex2D( tex2d, texCol, texRow );
        }
    }
}

The scale parameter specifies the number of times to tile the texture into the 
output buffer. By default, scale=1.0, and the texture is seen only once. When 
running the application, you can hit the 1–9 keys to replicate the texture that 
many times. The C, W, M, and B keys set the addressing mode for the current 
direction; the X and Y keys specify the current direction.

KEY ACTION

1–9 Set number of times to replicate the texture.

W Set wrap addressing mode.

C Set clamp addressing mode.

M Set mirror addressing mode.
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KEY ACTION

B Set border addressing mode.

N Toggle normalized and unnormalized texturing.

X The C, W, M, or B keys will set the addressing mode in the X direction.

Y The C, W, M, or B keys will set the addressing mode in the Y direction.

T Toggle display of the overlaid text.

Readers are encouraged to run the program, or especially to modify and run the 
program, to see the effects of different texturing settings. Figure 10.8 shows the 
output of the program for the four permutations of X Wrap/Mirror and Y Wrap/
Mirror when replicating the texture five times.

Y Mirror

X MirrorX Wrap

Y Wrap

Figure 10.8 Wrap and mirror addressing modes.

       



TEXTURING

338

 10.9 2D Texturing: Copy Avoidance
When CUDA was first introduced, CUDA kernels could read from CUDA arrays 
only via texture. Applications could write to CUDA arrays only with memory 
copies; in order for CUDA kernels to write data that would then be read through 
texture, they had to write to device memory and then perform a device�array 
memcpy. Since then, two mechanisms have been added that remove this step 
for 2D textures. 

• A 2D texture can be bound to a pitch-allocated range of linear device memory. 

• Surface load/store intrinsics enable CUDA kernels to write to CUDA arrays 
directly. 

3D texturing from device memory and 3D surface load/store are not supported.

For applications that read most or all the texture contents with a regular access 
pattern (such as a video codec) or applications that must work on Tesla-class 
hardware, it is best to keep the data in device memory. For applications that 
perform random (but localized) access when texturing, it is probably best to 
keep the data in CUDA arrays and use surface read/write intrinsics.

10.9.1 2D TEXTURING FROM DEVICE MEMORY

Texturing from 2D device memory does not have any of the benefits of “block 
linear” addressing—a cache line fill into the texture cache pulls in a horizon-
tal span of texels, not a 2D or 3D block of them—but unless the application 
performs random access into the texture, the benefits of avoiding a copy from 
device memory to a CUDA array likely outweigh the penalties of losing block 
linear addressing.

To bind a 2D texture reference to a device memory range, call 
cudaBindTexture2D().

cudaBindTexture2D(
    NULL,
    &tex,
    texDevice,
    &channelDesc,
    inWidth,
    inHeight,
    texPitch );

The above call binds the texture reference tex to the 2D device memory range 
given by texDevice / texPitch. The base address and pitch must conform to 
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hardware-specific alignment constraints.6 The base address must be aligned with 
respect to cudaDeviceProp.textureAlignment, and the pitch must be aligned 
with respect to cudaDeviceProp.texturePitchAlignment.7 The microdemo 
tex2d_addressing_device.cu is identical to tex2d_addressing.cu, but 
it uses device memory to hold the texture data. The two programs are designed 
to be so similar that you can look at the differences. A device pointer/pitch tuple is 
declared instead of a CUDA array.

< cudaArray *texArray = 0;
> T *texDevice = 0;
> size_t texPitch;

cudaMallocPitch() is called instead of calling cudaMallocArray(). 
cudaMallocPitch() delegates selection of the base address and pitch to 
the driver, so the code will continue working on future generations of hardware 
(which have a tendency to increase alignment requirements).

< CUDART_CHECK(cudaMallocArray( &texArray, 
< &channelDesc, 
< inWidth, 
> CUDART_CHECK(cudaMallocPitch( &texDevice, 
> &texPitch, 
> inWidth*sizeof(T), 
 inHeight));

Next, cudaTextureBind2D() is called instead of 
cudaBindTextureToArray().

< CUDART_CHECK(cudaBindTextureToArray(tex, texArray));
> CUDART_CHECK(cudaBindTexture2D( NULL,
> &tex,
> texDevice,
> &channelDesc,
> inWidth,
> inHeight,
> texPitch ));

The final difference is that instead of freeing the CUDA array, cudaFree() is 
called on the pointer returned by cudaMallocPitch().

< cudaFreeArray( texArray );
> cudaFree( texDevice );

6.  CUDA arrays must conform to the same constraints, but in that case, the base address and pitch 
are managed by CUDA and hidden along with the memory layout.

7.  In the driver API, the corresponding device attribute queries are CU_DEVICE_ATTRIBUTE_TEX-
TURE_ALIGNMENT and CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT.
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10.9.2 2D SURFACE READ/WRITE

As with 1D surface read/write, Fermi-class hardware enables kernels to write 
directly into CUDA arrays with intrinsic surface read/write functions.

template<class Type> Type surf2Dread(surface<void, 1> surfRef, int x, 
int y, boundaryMode = cudaBoundaryModeTrap);
template<class Type> Type surf2Dwrite(surface<void, 1> surfRef, Type 
data, int x, int y, boundaryMode = cudaBoundaryModeTrap);

The surface reference declaration and corresponding CUDA kernel for 2D sur-
face memset, given in surf2Dmemset.cu, is as follows.

surface<void, 2> surf2D;

template<typename T>
__global__ void
surf2Dmemset_kernel( T value, 
                     int xOffset, int yOffset, 
                     int Width, int Height )
{
    for ( int row = blockIdx.y*blockDim.y + threadIdx.y; 
                    row < Height; 
                    row += blockDim.y*gridDim.y ) 
    {
        for ( int col = blockIdx.x*blockDim.x + threadIdx.x;
                  col < Width;
                  col += blockDim.x*gridDim.x )
        {
            surf2Dwrite( value, 
                         surf2D, 
                         (xOffset+col)*sizeof(T), 
                         yOffset+row );
        }
    }
}

Remember that the X offset parameter to surf2Dwrite() is given in bytes.

 10.10 3D Texturing
Reading from 3D textures is similar to reading from 2D textures, but there are 
more limitations.

• 3D textures have smaller limits (2048x2048x2048 instead of 65536x32768).

• There are no copy avoidance strategies: CUDA does not support 3D texturing 
from device memory or surface load/store on 3D CUDA arrays.
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Other than that, the differences are straightforward: Kernels can read from 3D 
textures using a tex3D() intrinsic that takes 3 floating-point parameters, and 
the underlying 3D CUDA arrays must be populated by 3D memcpys. Trilinear 
filtering is supported; 8 texture elements are read and interpolated according 
to the texture coordinates, with the same 9-bit precision limit as 1D and 2D 
texturing.

The 3D texture size limits may be queried by calling  cuDeviceGetAttribute() 
with CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH, CU_DEVICE_
ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT, and CU_DEVICE_ATTRIBUTE_
MAXIMUM_TEXTURE3D_DEPTH, or by calling cudaGetDeviceProperties() 
and examining cudaDeviceProp.maxTexture3D. Due to the much larger 
number of parameters needed, 3D CUDA arrays must be created and manipu-
lated using a different set of APIs than 1D or 2D CUDA arrays.

To create a 3D CUDA array, the cudaMalloc3DArray() function takes a 
cudaExtent structure instead of width and height parameters.

cudaError_t cudaMalloc3DArray(struct cudaArray** array, const struct 
cudaChannelFormatDesc* desc, struct cudaExtent extent, unsigned int 
flags __dv(0));

cudaExtent is defined as follows.

struct cudaExtent {
    size_t width;
    size_t height;
    size_t depth;
};

Describing 3D memcpy operations is sufficiently complicated that both the 
CUDA runtime and the driver API use structures to specify the parameters. The 
runtime API uses the cudaMemcpy3DParams structure, which is declared as 
follows.

struct cudaMemcpy3DParms {
    struct cudaArray *srcArray;
    struct cudaPos srcPos;
    struct cudaPitchedPtr srcPtr;
    struct cudaArray *dstArray;
    struct cudaPos dstPos;
    struct cudaPitchedPtr dstPtr;
    struct cudaExtent extent;
    enum cudaMemcpyKind kind;
};

Most of these structure members are themselves structures: extent gives 
the width, height, and depth of the copy. The srcPos and dstPos members are 
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cudaPos structures that specify the start points for the source and destination 
of the copy.

struct cudaPos {
    size_t x;
    size_t y;
    size_t z;
};

The cudaPitchedPtr is a structure that was added with 3D memcpy to contain 
a pointer/pitch tuple.

struct cudaPitchedPtr
{
    void *ptr; /**< Pointer to allocated memory */
    size_t pitch; /**< Pitch of allocated memory in bytes */
    size_t xsize; /**< Logical width of allocation in elements */
    size_t ysize; /**< Logical height of allocation in elements */
};

A cudaPitchedPtr structure may be created with the function make_
cudaPitchedPtr, which takes the base pointer, pitch, and logical width and 
height of the allocation. make_cudaPitchedPtr just copies its parameters into 
the output struct; however, 

struct cudaPitchedPtr
make_cudaPitchedPtr(void *d, size_t p, size_t xsz, size_t ysz) 
{
    struct cudaPitchedPtr s;

    s.ptr = d;
    s.pitch = p;
    s.xsize = xsz;
    s.ysize = ysz;

    return s;
}

The simpleTexture3D sample in the SDK illustrates how to do 3D texturing 
with CUDA.

 10.11  Layered Textures 
Layered textures are known in the graphics world as texture arrays because they 
enable 1D or 2D textures to be arranged as arrays accessed by an integer index. 
The main advantage of layered textures over vanilla 2D or 3D textures is that 
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they support larger extents within the slices. There is no performance advan-
tage to using layered textures.

Layered textures are laid out in memory differently than 2D or 3D textures, in 
such a way that 2D or 3D textures will not perform as well if they use the lay-
out optimized for layered textures. As a result, when creating the CUDA array, 
you must specify cudaArrayLayered to cudaMalloc3DArray() or specify 
CUDA_ARRAY3D_LAYERED to cuArray3DCreate(). The simpleLayered-
Texture sample in the SDK illustrates how to use layered textures.

10.11.1 1D LAYERED TEXTURES

The 1D layered texture size limits may be queried by calling cuDeviceGet-
Attribute() with CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_
LAYERED_WIDTH and CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_
LAYERED_LAYERS or by calling cudaGetDeviceProperties() and examin-
ing cudaDeviceProp.maxTexture1DLayered.

10.11.2 2D LAYERED TEXTURES

The 2D layered texture size limits may be queried by calling cuDeviceGet-
Attribute() with CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_
LAYERED_WIDTH and CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_
LAYERED_HEIGHT or CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_
LAYERED_LAYERS or by calling cudaGetDeviceProperties() and examin-
ing cudaDeviceProp.maxTexture2DLayered. The layered texture size 
limits may be queried cudaGetDeviceProperties() and examining 
cudaDeviceProp.maxTexture2DLayered.

 10.12   Optimal Block Sizing and 
Performance
When the texture coordinates are generated in the “obvious” way, such as in 
tex2d_addressing.cu

row = blockIdx.y*blockDim.y + threadIdx.y;
col = blockIdx.x*blockDim.x + threadIdx.x;
... tex2D( tex, (float) col, (float) row);

then texturing performance is dependent on the block size. 
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To find the optimal size of a thread block, the tex2D_shmoo.cu and 
 surf2Dmemset_shmoo.cu programs time the performance of thread blocks 
whose width and height vary from 4..64, inclusive. Some combinations of these 
thread block sizes are not valid because they have too many threads.

For this exercise, the texturing kernel is designed to do as little work as possible 
(maximizing exposure to the performance of the texture hardware), while still 
“fooling” the compiler into issuing the code. Each thread computes the float-
ing-point sum of the values it reads and writes the sum if the output parameter 
is non-NULL. The trick is that we never pass a non-NULL pointer to this kernel! 
The reason the kernel is structured this way is because if it never wrote any out-
put, the compiler would see that the kernel was not doing any work and would 
emit code that did not perform the texturing operations at all.

extern “C” __global__ void
TexSums( float *out, size_t Width, size_t Height )
{
    float sum = 0.0f;
    for ( int row = blockIdx.y*blockDim.y + threadIdx.y;
              row < Height;
              row += blockDim.y*gridDim.y )
    {
        for ( int col = blockIdx.x*blockDim.x + threadIdx.x;
                  col < Width;
                  col += blockDim.x*gridDim.x )
        {
            sum += tex2D( tex, (float) col, (float) row );
        }
    }
    if ( out ) {
        out[blockIdx.x*blockDim.x+threadIdx.x] = sum;
    }
}

Even with our “trick,” there is a risk that the compiler will emit code that checks 
the out parameter and exits the kernel early if it’s equal to NULL. We’d have 
to synthesize some output that wouldn’t affect performance too much (for 
example, have each thread block compute the reduction of the sums in shared 
memory and write them to out). But by compiling the program with the --keep 
option and using cuobjdump ---dump-sass to examine the microcode, we 
can see that the compiler doesn’t check out until after the doubly-nested for 
loop as executed.

10.12.1 RESULTS

On a GeForce GTX 280 (GT200), the optimal block size was found to be 128 
threads, which delivered 35.7G/s of bandwidth. Thread blocks of size 32W × 4H 
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were about the same speed as 16W × 8H or 8W × 16H, all traversing a 4K × 4K 
texture of float in 1.88 ms. On a Tesla M2050, the optimal block size was found 
to be 192 threads, which delivered 35.4G/s of bandwidth. As with the GT200, dif-
ferent-sized thread blocks were the same speed, with 6W × 32H, 16W × 12H, and 
8W × 24H blocks delivering about the same performance.

The shmoo over 2D surface memset was less conclusive: Block sizes of at least 
128 threads generally had good performance, provided the thread count was 
evenly divisible by the warp size of 32. The fastest 2D surface memset perfor-
mance reported on a cg1.4xlarge without ECC enabled was 48Gb/s.

For float-valued data for both boards we tested, the peak bandwidth numbers 
reported by texturing and surface write are about ¼ and ½ of the achievable 
peaks for global load/store, respectively.

 10.13 Texturing Quick References
10.13.1 HARDWARE CAPABILITIES

Hardware Limits

CAPABILITY SM 1.X SM 2.X

Maximum width—1D CUDA array 8192 32768

Maximum width—1D device memory 227

Maximum width and number of layers—1D layered texture 8192x512 16384x2048

Maximum extents for 2D texture 65536x32768

Maximum extents and number of layers—2D layered texture 8192x

8192x

512

16384x

16384x

2048

Maximum extents—3D CUDA array 2048x2048x2048

Maximum number of textures that may be bound to a kernel 128

Maximum extents for a 2D surface reference bound to a CUDA 
kernel

n/a 8192x8192

Maximum number of surfaces that may be bound to a kernel 8
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Queries—Driver API
Most of the hardware limits listed above can be queried with cuDevice-
Attribute(), which may be called with the following values to query.

ATTRIBUTE CUDEVICE_ATTRIBUTE VALUE

Maximum width—1D CUDA 
array

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH

Maximum width of 1D lay-
ered texture

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_
LAYERED_WIDTH

Maximum number of layers 
of 1D layered texture

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_
LAYERED_LAYERS

Maximum width of 2D 
texture

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH

Maximum height of 2D 
texture

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT

Maximum width of 2D lay-
ered texture

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_
LAYERED_WIDTH

Maximum height of 2D 
layered texture

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_
LAYERED_HEIGHT

Maximum number of layers 
of 2D layered texture

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_
LAYERED_LAYERS

Maximum width—3D CUDA 
array

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH

Maximum height—3D CUDA 
array

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT

Maximum depth—3D CUDA 
array

CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH

Queries—CUDA Runtime
The following members of cudaDeviceProp contain hardware limits as listed 
above.
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CAPABILITY CUDADEVICEPROP MEMBER

Maximum width—1D CUDA array int maxTexture1D; 

Maximum width and number of layers—1D layered 
texture

int maxTextureLayered[2]; 

Maximum extents for 2D texture int maxTexture2D[2]; 

Maximum extents and number of layers—2D layered 
texture

int maxTextureLayered[2];

Maximum extents—3D CUDA array int maxTexture3D[3];

10.13.2 CUDA RUNTIME

1D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . cudaMalloc() cudaMallocArray()

Free with . . . cudaFree() cudaFreeArray()

Bind with . . . cudaBindTexture() cudaBindTextureToArray()

Texture with . . . tex1Dfetch() tex1D()

2D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . cudaMallocPitch() cudaMalloc2DArray()*

Free with . . . cudaFree() cudaFreeArray()

Bind with . . . cudaBindTexture2D() cudaBindTextureToArray()

Texture with . . . tex2D()

* If surface load/store is desired, specify the cudaArraySurfaceLoadStore flag.
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3D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . (not supported) cudaMalloc3DArray()

Free with . . . cudaFreeArray()

Bind with . . . cudaBindTextureToArray()

Texture with . . . tex3D()

1D Layered Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . (not supported) cudaMalloc2DArray()- 
specify cudaArrayLayered.

Free with . . . cudaFreeArray()

Bind with . . . cudaBindTextureToArray()

Texture with . . . tex1DLayered()

2D Layered Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . (not supported) cudaMalloc3DArray()- 
specify cudaArrayLayered.

Free with . . . cudaFreeArray()

Bind with . . . cudaBindTextureToArray()

Texture with . . . tex1DLayered()

       



349

   10.13 TEXTURING QUICK REFERENCES 

10.13.3 DRIVER API

1D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . cuMemAlloc() cuArrayCreate()

Free with . . . cuMemFree() cuArrayDestroy()

Bind with . . . cuTexRefSetAddress() cuTexRefSetArray()

Texture with . . . tex1Dfetch() tex1D()

Size Limit 227 elements (128M) 65536

The texture size limit for device memory is not queryable; it is 227 elements on 
all CUDA-capable GPUs. The texture size limit for 1D CUDA arrays may be que-
ried by calling cuDeviceGetAttribute() with CU_DEVICE_ATTRIBUTE_
MAXIMUM_TEXTURE1D_WIDTH.

2D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . cuMemAllocPitch() cuArrayCreate()

Free with . . . cuMemFree() cudaFreeArray()

Bind with . . . cuTexRefSetAddress2D() cuTexRefSetArray()

Texture with . . . tex2D()
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3D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . (not supported) cudaMalloc3DArray()

Free with . . . cudaFreeArray()

Bind with . . . cudaBindTextureToArray()

Texture with . . . tex3D()

1D Layered Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . (not supported) cuArray3DCreate()- specify 
CUDA_ARRAY3D_LAYERED

Free with . . . cudaFreeArray()

Bind with . . . cuTexRefSetArray()

Texture with . . . tex1DLayered()

2D Layered Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . (not supported) cuArray3DCreate()- specify 
CUDA_ARRAY3D_LAYERED

Free with . . . cuArrayDestroy()

Bind with . . . cuTexRefSetArray()

Texture with . . . tex2DLayered()
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Chapter 11 

Streaming Workloads

Streaming workloads are among the simplest that can be ported to CUDA: 
computations where each data element can be computed independently of 
the others, often with such low computational density that the workload is 
 bandwidth-bound. Streaming workloads do not use many of the hardware 
resources of the GPU, such as caches and shared memory, that are designed 
to optimize reuse of data.

Since GPUs give the biggest benefits on workloads with high computational 
density, it might be useful to review some cases when it still makes sense for 
streaming workloads to port to GPUs.

• If the input and output are in device memory, it doesn’t make sense to trans-
fer the data back to the CPU just to perform one operation.

• If the GPU has much better instruction-level support than the CPU for the 
operation (e.g., Black-Scholes options computation, which uses Special Func-
tion Unit instructions intensively), the GPU can outperform the CPU despite 
memory transfer overhead.

• The GPU operating concurrently with the CPU can approximately double per-
formance, even if they are the same speed.

• The CUDA code for a given workload may be more readable or maintainable 
than highly optimized CPU code for the same computation.

• On integrated systems (i.e., systems-on-a-chip with CPU and CUDA-capable 
GPU operating on the same memory), there is no transfer overhead. CUDA 
can use “zero-copy” methods and avoid the copy entirely.
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This chapter covers every aspect of streaming workloads, giving different 
formulations of the same workload to highlight the different issues that arise. 
The workload in question—the SAXPY operation from the BLAS library—
performs a scalar multiplication and vector addition together in a single 
operation.

Listing 11.1 gives a trivial C implementation of SAXPY. For corresponding ele-
ments in the two input arrays, one element is scaled by a constant, added to the 
other, and written to the output array. Both input arrays and the output arrays 
consist of N elements. Since GPUs have a native multiply-add instruction, the 
innermost loop of SAXPY has an extremely modest number of instructions per 
memory access.

Listing 11.1 saxpyCPU.

void
saxpyCPU( 
    float *out, 
    const float *x, 
    const float *y, 
    size_t N, 
    float alpha )
{
    for ( size_t i = 0; i < N; i++ ) {
        out[i] += alpha*x[i]+y[i];
    }
}

Listing 11.2 gives a trivial CUDA implementation of SAXPY. This version works 
for any grid or block size, and it performs adequately for most applications. This 
kernel is so bandwidth-bound that most applications would benefit more from 
restructuring the application to increase the computational density than from 
optimizing this tiny kernel.

Listing 11.2 saxpyGPU.

__global__ void
saxpyGPU( 
    float *out, 
    const float *x, 
    const float *y, 
    size_t N, 
    float alpha )
{
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    for ( size_t i = blockIdx.x*blockDim.x + threadIdx.x;
                 i < N;
                 i += blockDim.x*gridDim.x ) {
        out[i] = alpha*x[i]+y[i];
    }
}

The bulk of this chapter discusses how to move data to and from host memory 
efficiently, but first we’ll spend a moment examining how to improve this ker-
nel’s performance when operating on device memory.

 11.1 Device Memory
If the input and output data are in device memory, optimizing a low-density 
computation such as SAXPY is a matter of optimizing the global memory access. 
Besides alignment and coalescing constraints that inform performance, CUDA 
kernels are sensitive to the number of blocks and threads per block. The 
globalRead, globalWrite, globalCopy, and globalCopy2 applications 
(in the memory/ subdirectory of the source code) generate reports for the 
bandwidths achieved for a variety of operand sizes, block sizes, and loop unroll 
factors. A sample report generated by globalCopy2 (which follows a memory 
access pattern similar to SAXPY: two reads and one write per loop iteration) is 
given in Listing 11.3. 

If we reference the globalCopy2.cu application from Chapter 5 (see 
Listing 5.8), running it on a GK104 gets us the output in Listing 11.3 for 4-byte 
operands. The top row (unroll factor of 1) corresponds to the naïve implementa-
tion (similar to Listing 11.2); a slight performance benefit is observed when the 
loop is unrolled. An unroll factor of 4 gives a speedup of about 10%, delivering 
128 GiB/s of bandwidth as opposed to the naïve implementation’s 116 GiB/s. 

Interestingly, using the #pragma unroll compiler directive only increases 
performance to about 118 GiB/s, while modifying the templated kernel 
from globalCopy2.cu to perform SAXPY increases performance to 135 
GiB/s. Listing 11.4 gives the resulting kernel, which is implemented in the 
 stream1Device.cu application (cudahandbook/streaming/).

For most applications, these small performance differences don’t justify rewrit-
ing kernels in this way. But if kernels are written to be “blocking-agnostic” (i.e., 
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to work correctly for any grid or block size), then the optimal settings can be 
determined empirically without too much effort.

Listing 11.3 globalCopy2 output (GK104).

Operand size: 4 bytes
Input size: 16M operands
                      Block Size
Unroll  32      64      128     256     512     maxBW   maxThreads
1       63.21   90.89   104.64  113.45  116.06  116.06  512
2       66.43   92.89   105.09  116.35  120.66  120.66  512
3       87.23   100.70  112.07  110.85  121.36  121.36  512
4       99.54   103.53  113.58  119.52  128.64  128.64  512
5       94.27   103.56  108.02  122.82  124.88  124.88  512
6       100.67  104.18  115.10  122.05  122.46  122.46  512
7       94.56   106.09  116.30  117.63  114.50  117.63  256
8       58.27   45.10   47.07   46.29   45.18   58.27   32
9       41.20   34.74   35.87   35.49   34.58   41.20   32
10      33.59   31.97   32.42   31.43   30.61   33.59   32
11      27.76   28.17   28.46   27.83   26.79   28.46   128
12      25.59   26.42   26.54   25.72   24.51   26.54   128
13      22.69   23.07   23.54   22.50   20.71   23.54   128
14      22.19   22.40   22.23   21.10   19.00   22.40   64
15      20.94   21.14   20.98   19.62   17.31   21.14   64
16      18.86   19.01   18.97   17.66   15.40   19.01   64

Listing 11.4 saxpyGPU (templated unroll).

template<const int n> 
__device__ void
saxpy_unrolled( 
    float *out, 
    const float *px, 
    const float *py, 
    size_t N, 
    float alpha )
{
    float x[n], y[n];
    size_t i;
    for ( i = n*blockIdx.x*blockDim.x+threadIdx.x; 
          i < N-n*blockDim.x*gridDim.x; 
          i += n*blockDim.x*gridDim.x ) {
        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            x[j] = px[index];
            y[j] = py[index];
        }
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        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            out[index] = alpha*x[j]+y[j];
        }
    }
    // to avoid the (index<N) conditional in the inner loop, 
    // we left off some work at the end
    for ( int j = 0; j < n; j++ ) {
        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            if ( index<N ) {
                x[j] = px[index];
                y[j] = py[index];
            }
        }
        for ( int j = 0; j < n; j++ ) {
            size_t index = i+j*blockDim.x;
            if ( index<N ) out[index] = alpha*x[j]+y[j];
        }
    }
}

__global__ void
saxpyGPU( float *out, const float *px, const float *py, size_t N, 
float alpha )
{
    saxpy_unrolled<4>( out, px, py, N, alpha );
}

The stream1Device.cu application reports the total wall clock time needed to 
transfer data from pageable system memory to device memory, operate on the 
data with the kernel in Listing 11.4, and transfer the data back. On a test sys-
tem with an Intel i7 running Windows 7 on a GeForce GTX 680, the output of this 
application is as follows.

Measuring times with 128M floats (use --N to specify number of Mfloats)
Memcpy( host->device ): 365.95 ms (2934.15 MB/s)
Kernel processing : 11.94 ms (134920.75 MB/s)
Memcpy (device->host ): 188.72 ms (2844.73 MB/s)

Total time (wall clock): 570.22 ms (2815.30 MB/s)

The kernel takes a tiny amount of the overall execution time—about 2% of the 
wall clock time. The other 98% of time is spent transferring data to and from the 
GPU! For transfer-bound workloads like this one, if some or all of the data being 
operated on is in host memory, the best way to optimize the application is to 
improve CPU/GPU overlap and transfer performance.
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 11.2 Asynchronous Memcpy
Unless the input and output data can stay resident on the GPU, the logistics of 
streaming the data through the GPU—copying the input and output data to and 
from device memory—become the primary consideration. The two tools best 
suited to improve transfer performance are pinned memory and asynchronous 
memcpy (which can only operate on pinned memory). 

The stream2Async.cu application illustrates the effect of moving the page-
able memory of stream1Device.cu to pinned memory and invoking the 
 memcpys asynchronously.

Measuring times with 128M floats (use --N to specify number of Mfloats)
Memcpy( host->device ): 181.03 ms (5931.33 MB/s)
Kernel processing : 13.87 ms (116152.99 MB/s)
Memcpy (device->host ): 90.07 ms (5960.35 MB/s)

Total time (wall clock): 288.68 ms (5579.29 MB/s)

Listing 11.5 contrasts the difference between the timed portions of stream1-
Device.cu (which performs synchronous transfers) and stream2Async.cu 
(which performs asynchronous transfers).1 In both cases, four CUDA events 
are used to record the times at the start, after the host�device transfers, 
after the kernel launch, and at the end. For stream2Async.cu, all of these 
operations are requested of the GPU in quick succession, and the GPU records 
the event times as it performs them. For stream1Device.cu, the GPU event-
based times are a bit suspect, since for any cudaMemcpy(), calls must wait for 
the GPU to complete before proceeding, causing a pipeline bubble before the 
cudaEventRecord() calls for evHtoD and evDtoH are processed. 

Note that despite using the slower, naïve implementation of saxpyGPU (from 
Listing 11.2), the wall clock time from this application shows that it completes 
the computation almost twice as fast: 289 ms versus 570.22 ms. The combi-
nation of faster transfers and asynchronous execution delivers much better 
performance.

Despite the improved performance, the application output highlights another 
performance opportunity: Some of the kernel processing can be performed 
concurrently with transfers. The next two sections describe two different meth-
ods to overlap kernel execution with transfers.

1.  Error checking has been removed for clarity.
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Listing 11.5 Synchronous (stream1Device.cu) versus asynchronous 
(stream2Async.cu).

//
// from stream1Device.cu
//
cudaEventRecord( evStart, 0 );
cudaMemcpy( dptrX, hptrX, ..., cudaMemcpyHostToDevice );
cudaMemcpy( dptrY, hptrY, ..., cudaMemcpyHostToDevice );
cudaEventRecord( evHtoD, 0 );
    saxpyGPU<<<nBlocks, nThreads>>>( dptrOut, dptrX, dptrY, N, alpha;
cudaEventRecord( evKernel, 0 );
cudaMemcpy( hptrOut, dptrOut, N*sizeof(float), cudaMemcpyDeviceToHost );
cudaEventRecord( evDtoH, 0 );
cudaDeviceSynchronize();

//
// from stream2Async.cu
//
cudaEventRecord( evStart, 0 );
cudaMemcpyAsync( dptrX, hptrX, ..., cudaMemcpyHostToDevice, NULL );
cudaMemcpyAsync( dptrY, hptrY, ..., cudaMemcpyHostToDevice, NULL );
cudaEventRecord( evHtoD, 0 );
    saxpyGPU<<<nBlocks, nThreads>>>( dptrOut, dptrX, dptrY, N, alpha;
cudaEventRecord( evKernel, 0 );
cudaMemcpyAsync( hptrOut, dptrOut, N*sizeof(float), ... , NULL );
cudaEventRecord( evDtoH, 0 );
cudaDeviceSynchronize();

 11.3 Streams
For workloads that benefit from concurrent memcpy and kernel execution 
(GPU/GPU overlap), CUDA streams can be used to coordinate execution. The 
stream3Streams.cu application splits the input and output arrays into k 
streams and then invokes k host�device memcpys, kernels, and device�host 
memcpys, each in their own stream. Associating the transfers and computa-
tions with different streams lets CUDA know that the computations are com-
pletely independent, and CUDA will exploit whatever parallelism opportunities 
the hardware can support. On GPUs with multiple copy engines, the GPU may be 
transferring data both to and from device memory while processing other data 
with the SMs.
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Listing 11.6 shows an excerpt from stream3Streams.cu, the same portion of 
the application as shown in Listing 11.5. On the test system, the output from this 
application reads as follows.

Measuring times with 128M floats
Testing with default max of 8 streams (set with --maxStreams <count>)

Streams  Time (ms)  MB/s
1        290.77 ms  5471.45
2        273.46 ms  5820.34
3        277.14 ms  5744.49
4        278.06 ms  5725.76
5        277.44 ms  5736.52
6        276.56 ms  5751.87
7        274.75 ms  5793.43
8        275.41 ms  5779.51

The GPU in question has only one copy engine, so it is not surprising that the 
case with 2 streams delivers the highest performance. If the kernel execution 
time were more in line with the transfer time, it would likely be beneficial to split 
the arrays into more than 2 subarrays. As things stand, the first kernel launch 
cannot begin processing until the first host�device memcpy is done, and the 
final device�host memcpy cannot begin until the last kernel launch is done. 
If the kernel processing took more time, this “overhang” would be more pro-
nounced. For our application, the wall clock time of 273 ms shows that most of 
the kernel processing (13.87 ms) has been hidden.

Note that in this formulation, partly due to hardware limitations, we are not 
trying to insert any cudaEventRecord() calls between operations, as we did 
in Listing 11.5. On most CUDA hardware, trying to record events between the 
streamed operations in Listing 11.6 would break concurrency and reduce per-
formance. Instead, we bracket the operations with one cudaEventRecord() 
before and one cudaEventRecord()after.

 Listing 11.6 stream3Streams.cu excerpt.
for ( int iStream = 0; iStream < nStreams; iStream++ ) {
    CUDART_CHECK( cudaMemcpyAsync( 
                      dptrX+iStream*streamStep, 
                      hptrX+iStream*streamStep, 
                      streamStep*sizeof(float), 
                      cudaMemcpyHostToDevice, 
                      streams[iStream] ) );
    CUDART_CHECK( cudaMemcpyAsync( 
                      dptrY+iStream*streamStep, 
                      hptrY+iStream*streamStep, 
                      streamStep*sizeof(float), 
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                      cudaMemcpyHostToDevice, 
                      streams[iStream] ) );
}

for ( int iStream = 0; iStream < nStreams; iStream++ ) {
    saxpyGPU<<<nBlocks, nThreads, 0, streams[iStream]>>>( 
        dptrOut+iStream*streamStep, 
        dptrX+iStream*streamStep, 
        dptrY+iStream*streamStep, 
        streamStep, 
        alpha );
}

for ( int iStream = 0; iStream < nStreams; iStream++ ) {
    CUDART_CHECK( cudaMemcpyAsync( 
                      hptrOut+iStream*streamStep, 
                      dptrOut+iStream*streamStep, 
                      streamStep*sizeof(float), 
                      cudaMemcpyDeviceToHost, 
                      streams[iStream] ) );
}

 11.4 Mapped Pinned Memory
For transfer-bound, streaming workloads such as SAXPY, reformulating the 
application to use mapped pinned memory for both the input and output confers 
a number of benefits.

• As shown by the excerpt from stream4Mapped.cu (Listing 11.7), it elimi-
nates the need to call cudaMemcpy().

• It eliminates the need to allocate device memory.

• For discrete GPUs, mapped pinned memory performs bus transfers but min-
imizes the amount of “overhang” alluded to in the previous section. Instead 
of waiting for a host�device memcpy to finish, input data can be processed 
by the SMs as soon as it arrives. Instead of waiting for a kernel to complete 
before initiating a device �host transfer, the data is posted to the bus as soon 
as the SMs are done processing.

• For integrated GPUs, host and device memory exist in the same memory 
pool, so mapped pinned memory enables “zero copy” and eliminates any need 
to transfer data over the bus at all.
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Listing 11.7 stream4Mapped excerpt.
chTimerGetTime( &chStart );
cudaEventRecord( evStart, 0 );
    saxpyGPU<<<nBlocks, nThreads>>>( dptrOut, dptrX, dptrY, N, alpha );
cudaEventRecord( evStop, 0 );
cudaDeviceSynchronize();

Mapped pinned memory works especially well when writing to host memory 
(for example, to deliver the result of a reduction to the host) because unlike 
reads, there is no need to wait until writes arrive before continuing execution.2 
Workloads that read mapped pinned memory are more problematic. If the GPU 
cannot sustain full bus performance while reading from mapped pinned mem-
ory, the smaller transfer performance may overwhelm the benefits of a smaller 
overhang. Also, for some workloads, the SMs have better things to do than drive 
(and wait for) PCI Express bus traffic. 

In the case of our application, on our test system, mapped pinned memory is a 
definite win. 

Measuring times with 128M floats (use --N to specify number of Mfloats)
Total time: 204.54 ms (7874.45 MB/s)

It completes the computation in 204.54 ms, significantly faster than the 273 
ms of the second-fastest implementation. The effective bandwidth of 7.9 GiB/s 
shows that the GPU is pushing both directions of PCI Express.

Not all combinations of systems and GPUs can sustain such high levels of 
performance with mapped pinned memory. If there’s any doubt, keep the data 
in device memory and use the asynchronous memcpy formulations, similar to 
stream2Async.cu.

 11.5 Performance and Summary
This chapter covers four different implementations of SAXPY, emphasizing dif-
ferent strategies of data movement.

• Synchronous memcpy to and from device memory

• Asynchronous memcpy to and from device memory

2.  Hardware designers call this “covering the latency.” 
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• Asynchronous memcpy using streams 

• Mapped pinned memory

Table 11.1 and Figure 11.1 summarize the relative performance of these imple-
mentations for 128M floats on GK104s plugged into two different test systems: 
the Intel i7 system (PCI Express 2.0) and an Intel Xeon E5-2670 (PCI Express 
3.0). The benefits of PCI Express 3.0 are evident, as they are about twice as fast. 
Additionally, the overhead of CPU/GPU synchronization is higher on the E5-2670, 
since the pageable memcpy operations are slower. 

Table 11.1 Streaming Performance

BANDWIDTH (MB/S)

VERSION INTEL I7 INTEL SANDY BRIDGE

stream1Device.cu 2815 2001

stream2Async.cu 5579 10502

stream3Streams.cu 5820 14051

stream4Mapped.cu 7874 17413
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Chapter 12 

Reduction

Reduction is a class of parallel algorithms that pass over O(N) input data and 
generate a O(1) result computed with a binary associative operator 
. Examples 
of such operations include minimum, maximum, sum, sum of squares, AND, 
OR, and the dot product of two vectors. Reduction is also an important primi-
tive used as a subroutine in other operations, such as Scan (covered in the next 
chapter).

Unless the operator 
 is extremely expensive to evaluate, reduction tends 
to be bandwidth-bound. Our treatment of reduction begins with several two-
pass implementations based on the reduction SDK sample. Next, the 
threadFenceReduction SDK sample shows how to perform reduction in 
a single pass so only one kernel must be invoked to perform the operation. 
Finally, the chapter concludes with a discussion of fast binary reduction with the 
__syncthreads_count() intrinsic (added with SM 2.0) and how to perform 
reduction using the warp shuffle instruction (added with SM 3.0).

 12.1 Overview
Since the binary operator is associative, the O(N) operations to compute a reduc-
tion may be performed in any order. 

a a a a a a a a ai
i

0 1 2 3 4 5 6 7∑ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 12.1 shows some different options to process an 8-element array. The 
serial implementation is shown for contrast. Only one execution unit that can 
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perform the 
 operator is needed, but performance is poor because it takes 7 
steps to complete the computation.

The pairwise formulation is intuitive and only requires O(lgN) steps (3 in this 
case) to compute the result, but it exhibits poor performance in CUDA. When 
reading global memory, having a single thread access adjacent memory loca-
tions causes uncoalesced memory transactions. When reading shared memory, 
the pattern shown will cause bank conflicts.

For both global memory and shared memory, an interleaving-based strategy 
works better. In Figure 12.1, the interleaving factor is 4; for global memory, 
interleaving by a multiple of blockDim.x *gridDim.x has good performance 
because all memory transactions are coalesced. For shared memory, best 
performance is achieved by accumulating the partial sums with an interleaving 
factor chosen to avoid bank conflicts and to keep adjacent threads in the thread 
block active.

(a0 (a1 (a2 (a3 (a4 (a5 (a6 a7)))))))Serial

Log-Step 
Reduction 
(pairwise)

(((a0 a1) (a2 a3)) ((a4 a5) (a6 a7)))

(((a0 a1) (a2 a3)) ((a4 a5) (a6 a7)))
Log-Step 
Reduction 

(interleaved)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 12.1. Reduction of 8 elements.
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Once a thread block has finished processing its interleaved subarray, it writes 
the result to global memory for further processing by a subsequent kernel 
launch. It may seem expensive to launch multiple kernels, but kernel launches 
are asynchronous, so the CPU can request the next kernel launch while the GPU 
is executing the first; every kernel launch represents an opportunity to specify 
different launch configurations.

Since the performance of a kernel can vary with different thread and block sizes, 
it’s a good idea to write the kernel so it will work correctly for any valid combina-
tion of thread and block sizes. The optimal thread/block configuration then can 
be determined empirically.

The initial reduction kernels in this chapter illustrate some important CUDA 
programming concepts that may be familiar.

• Coalesced memory operations to maximize bandwidth

• Variable-sized shared memory to facilitate collaboration between threads

• Avoiding shared memory bank conflicts

The optimized reduction kernels illustrate more advanced CUDA programming 
idioms.

• Warp synchronous coding avoids unneeded thread synchronization.

• Atomic operations and memory fences eliminate the need to invoke multiple
kernels.

• The shuffle instruction enables warp-level reductions without the use of
shared memory.

 12.2 Two-Pass Reduction
This algorithm operates in two stages. A kernel performs NumBlocks reductions 
in parallel, where NumBlocks is the number of blocks used to invoke the kernel; 
the results are written to an intermediate array. The final result is generated by 
invoking the same kernel to perform a second pass on the intermediate array 
with a single block. Listing 12.1 gives a two-pass reduction kernel that computes 
the sum of an array of integers.
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Listing 12.1 Two-pass reduction kernel.

__global__ void
Reduction1_kernel( int *out, const int *in, size_t N )
{
    extern __shared__ int sPartials[];
    int sum = 0;
    const int tid = threadIdx.x;
    for ( size_t i = blockIdx.x*blockDim.x + tid;
          i < N;
          i += blockDim.x*gridDim.x ) {
        sum += in[i];
    }
    sPartials[tid] = sum;
    __syncthreads();

    for ( int activeThreads = blockDim.x>>1; 
              activeThreads; 
              activeThreads >>= 1 ) {
        if ( tid < activeThreads ) {
            sPartials[tid] += sPartials[tid+activeThreads];
        }
        __syncthreads();
    }

    if ( tid == 0 ) {
        out[blockIdx.x] = sPartials[0];
    }
}

void
Reduction1( int *answer, int *partial, 
            const int *in, size_t N, 
            int numBlocks, int numThreads )
{
    unsigned int sharedSize = numThreads*sizeof(int);
    Reduction1_kernel<<< 
        numBlocks, numThreads, sharedSize>>>( 
            partial, in, N );
    Reduction1_kernel<<< 
        1, numThreads, sharedSize>>>( 
            answer, partial, numBlocks );
}

The shared memory array is used to accumulate the reduction within each 
thread block. Its size depends on the number of threads in the block, so it must 
be specified when the kernel is launched. Note: The number of threads in the 
block must be a power of 2!
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The first for loop computes the thread’s sum over the input array. If the input 
pointer is properly aligned, all of the memory transactions by this code are 
coalesced, and it will maximize the memory bandwidth. Each thread then writes 
its accumulated sum to shared memory and synchronizes before starting the 
log-step reduction.

The second for loop performs a log-step reduction over the values in shared 
memory. The values in the upper half of shared memory are added to the values 
in the lower half, and the number of participating threads is successively halved 
until one value in shared_sum[0] contains the output for that block. This part 
of the kernel is the one that requires that the thread block size be a power of 2.

Finally, the output value of the thread block is written to global memory. This 
kernel is intended to be invoked twice, as shown in the host function: once with 
N blocks, where N is chosen for maximum performance in performing the 
reduction over the input array, and then with 1 block to accumulate the final out-
put. Listing 12.2 shows the host function that invokes Reduction1_kernel(). 
Note that an array for the partial sums is allocated and passed in separately. 
Also note that since the kernel uses an unsized shared memory array, the 
amount of shared memory needed by the kernel must be specified as the third 
parameter in the <<< >>> syntax. 

The CUDA SDK discusses several optimizations of this kernel that focus on 
reducing the amount of conditional code in the log-step reduction. Part of 
the for loop that performs the log-step reduction—the later part, when the 
thread count is 32 or fewer—can be implemented with warp-synchronous code. 
Since the warps in each thread block execute each instruction in lockstep, the 
__syncthreads() intrinsics are no longer needed when the number of active 
threads in a block drops below the hardware’s warp size of 32. The resulting 
kernel, located in the reduction2.cu source code file, is shown in Listing 12.2.

IMPORTANT NOTE 

When writing warp synchronous code, the volatile keyword must be 
used for the pointers into shared memory. Otherwise, the compiler may 
introduce optimizations that change the order of memory operations and 
the code will not work correctly. 
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Listing 12.2 Reduction with unrolled, warp-synchronous finish.

__global__ void
Reduction2_kernel( int *out, const int *in, size_t N )
{
    extern __shared__ int sPartials[];
    int sum = 0;
    const int tid = threadIdx.x;
    for ( size_t i = blockIdx.x*blockDim.x + tid;
          i < N;
          i += blockDim.x*gridDim.x ) {
        sum += in[i];
    }
    sPartials[tid] = sum;
    __syncthreads();

    for ( int activeThreads = blockDim.x>>1; 
              activeThreads > 32; 
              activeThreads >>= 1 ) {
        if ( tid < activeThreads ) {
            sPartials[tid] += sPartials[tid+activeThreads];
        }
        __syncthreads();
    }
    if ( threadIdx.x < 32 ) {
        volatile int *wsSum = sPartials;
        if ( blockDim.x > 32 ) wsSum[tid] += wsSum[tid + 32];
        wsSum[tid] += wsSum[tid + 16];
        wsSum[tid] += wsSum[tid + 8];
        wsSum[tid] += wsSum[tid + 4];
        wsSum[tid] += wsSum[tid + 2];
        wsSum[tid] += wsSum[tid + 1];
        if ( tid == 0 ) {
            volatile int *wsSum = sPartials;
            out[blockIdx.x] = wsSum[0];
        }
    }
}

The warp synchronous optimization can be taken a step further by lofting the 
thread count into a template parameter, enabling the log-step reduction to be 
unrolled completely. Listing 12.3 gives the complete optimized kernel. Following 
Mark Harris’s reduction presentation,1 the code evaluated at compile time is 
italicized.

1.  http://bit.ly/WNmH9Z 
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Listing 12.3 Templatized, fully unrolled log-step reduction.

template<unsigned int numThreads>
__global__ void
Reduction3_kernel( int *out, const int *in, size_t N )
{
    extern __shared__ int sPartials[];
    const unsigned int tid = threadIdx.x;
    int sum = 0;
    for ( size_t i = blockIdx.x*numThreads + tid;
          i < N;
          i += numThreads*gridDim.x )
    {
        sum += in[i];
    }
    sPartials[tid] = sum;
    __syncthreads();

    if (numThreads >= 1024) { 
        if (tid < 512) { 
            sPartials[tid] += sPartials[tid + 512]; 
        } 
        __syncthreads();
    }
    if (numThreads >= 512) { 
        if (tid < 256) { 
            sPartials[tid] += sPartials[tid + 256]; 
        } 
        __syncthreads();
    }
    if (numThreads >= 256) {
        if (tid < 128) {
            sPartials[tid] += sPartials[tid + 128];
        } 
        __syncthreads();
    }
    if (numThreads >= 128) {
        if (tid <  64) { 
            sPartials[tid] += sPartials[tid +  64];
        } 
        __syncthreads();
    }

    // warp synchronous at the end
    if ( tid < 32 ) {
        volatile int *wsSum = sPartials;
        if (numThreads >=  64) { wsSum[tid] += wsSum[tid + 32]; }
        if (numThreads >=  32) { wsSum[tid] += wsSum[tid + 16]; }
        if (numThreads >=  16) { wsSum[tid] += wsSum[tid +  8]; }
        if (numThreads >=   8) { wsSum[tid] += wsSum[tid +  4]; }
        if (numThreads >=   4) { wsSum[tid] += wsSum[tid +  2]; }
        if (numThreads >=   2) { wsSum[tid] += wsSum[tid +  1]; }
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if ( tid == 0 ) {
out[blockIdx.x] = wsSum[0];

}
    }
}

To instantiate the function template in Listing 12.3, it must be invoked explic-
itly in a separate host function. Listing 12.4 shows how Reduction3_kernel 
is invoked by another function template, and the host function uses a switch 
statement to invoke that template for each possible block size.

Listing 12.4 Template instantiations for unrolled reduction.
template<unsigned int numThreads>
void
Reduction3_template( int *answer, int *partial, 

const int *in, size_t N, 
int numBlocks )

{
    Reduction3_kernel<numThreads><<< 

numBlocks, numThreads, numThreads*sizeof(int)>>>( 
partial, in, N );

    Reduction3_kernel<numThreads><<< 
1, numThreads, numThreads*sizeof(int)>>>( 

answer, partial, numBlocks );
}

void
Reduction3( int *out, int *partial, 

const int *in, size_t N, 
int numBlocks, int numThreads )

{
    switch ( numThreads ) {

case    1: return Reduction3_template<   1>( ... );
case    2: return Reduction3_template<   2>( ... );
case    4: return Reduction3_template<   4>( ... );
case    8: return Reduction3_template<   8>( ... );
case   16: return Reduction3_template<  16>( ... );
case   32: return Reduction3_template<  32>( ... );
case   64: return Reduction3_template<  64>( ... );
case  128: return Reduction3_template< 128>( ... );
case  256: return Reduction3_template< 256>( ... );
case  512: return Reduction3_template< 512>( ... );
case 1024: return Reduction3_template<1024>( ... );

    }
}
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 12.3 Single-Pass Reduction
The two-pass reduction approach is in part a workaround for the inability of 
CUDA blocks to synchronize with one another. In the absence of interblock 
synchronization to determine when processing of the final output can begin, a 
second kernel invocation is needed.

The second kernel invocation can be avoided by using a combination of atomic 
operations and shared memory, as described in the threadfenceReduction 
sample in the CUDA SDK. A single device memory location tracks which thread 
blocks have finished writing their partial sums. Once all blocks have finished, 
one block performs the final log-step reduction to write the output.

Since this kernel performs several log-step reductions from shared memory, 
the code in Listing 12.3 that conditionally adds based on the templated thread 
count is pulled into a separate device function for reuse.

Listing 12.5 Reduction4_LogStepShared.
template<unsigned int numThreads>
__device__ void
Reduction4_LogStepShared( int *out, volatile int *partials )
{
    const int tid = threadIdx.x;
    if (numThreads >= 1024) {

if (tid < 512) { 
partials[tid] += partials[tid + 512];

}
__syncthreads();

    }
    if (numThreads >= 512) {

if (tid < 256) { 
partials[tid] += partials[tid + 256];

}
__syncthreads();

    }
    if (numThreads >= 256) {

if (tid < 128) {
partials[tid] += partials[tid + 128];

}
__syncthreads();

    }
    if (numThreads >= 128) {

if (tid <  64) {
partials[tid] += partials[tid +  64];

}
__syncthreads();

    }
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    // warp synchronous at the end
    if ( tid < 32 ) {

 if (numThreads >= 64) { partials[tid] += partials[tid + 32]; }
 if (numThreads >= 32) { partials[tid] += partials[tid + 16]; }
 if (numThreads >= 16) { partials[tid] += partials[tid +  8]; }
 if (numThreads >=  8) { partials[tid] += partials[tid +  4]; }
 if (numThreads >=  4) { partials[tid] += partials[tid +  2]; }
 if (numThreads >=  2) { partials[tid] += partials[tid +  1]; }
if ( tid == 0 ) {

*out = partials[0];
}

    }
}

The Reduction4_LogStepShared() function, shown in Listing 12.5, 
writes the reduction for the thread block, whose partial sums are given by par-
tials to the pointer to the memory location specified by out. Listing 12.6 gives 
the single-pass reduction using Reduction4_LogStepShared() as 
a subroutine.

Listing 12.6 Single-pass reduction kernel (reduction4SinglePass.cuh).
// Global variable used by reduceSinglePass to count blocks
__device__ unsigned int retirementCount = 0;

template <unsigned int numThreads>
__global__ void 
reduceSinglePass( int *out, int *partial, 

const int *in, unsigned int N )
{
    extern __shared__ int sPartials[];
    unsigned int tid = threadIdx.x;
    int sum = 0;
    for ( size_t i = blockIdx.x*numThreads + tid;

i < N;
i += numThreads*gridDim.x ) {

sum += in[i];
    }
    sPartials[tid] = sum;
    __syncthreads();

    if (gridDim.x == 1) {
Reduction4_LogStepShared<numThreads>( &out[blockIdx.x], 

sPartials );
return;

    }
    Reduction4_LogStepShared<numThreads>( &partial[blockIdx.x], 

sPartials );
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    __shared__ bool lastBlock;

    // wait for outstanding memory instructions in this thread
    __threadfence();

    // Thread 0 takes a ticket
    if( tid==0 ) {

unsigned int ticket = atomicAdd(&retirementCount, 1);

//
// If the ticket ID is equal to the number of blocks, 
// we are the last block!
//
lastBlock = (ticket == gridDim.x-1);

    }
    __syncthreads();

    // One block performs the final log-step reduction
    if( lastBlock ) {

int sum = 0;
for ( size_t i = tid; 

i < gridDim.x; 
i += numThreads ) {

sum += partial[i];
}
sPartials[threadIdx.x] = sum;
__syncthreads();
Reduction4_LogStepShared<numThreads>( out, sPartials );
retirementCount = 0;

    }
}

The kernel starts out with familiar code that has each thread compute a partial 
reduction across the input array and write the results to shared memory. Once 
this is done, the single-block case is treated specially, since the output of the 
log-step reduction from shared memory can be written directly and not to the 
array of partial sums. The remainder of the kernel is executed only on kernels 
with multiple thread blocks.

The shared Boolean lastBlock is used to evaluate a predicate that must be 
communicated to all threads in the final block. The __threadfence()causes 
all threads in the block to wait until any pending memory transactions have 
been posted to device memory. When __threadfence() is executed, writes to 
global memory are visible to all threads, not just the calling thread or threads in 
the block.
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As each block exits, it performs an atomicAdd() to check whether it is the one 
block that needs to perform the final log-step reduction. Since atomicAdd() 
returns the previous value of the memory location, the block that increments 
retirementCount and gets a value equal to gridDim.x-1 can be deemed 
the “last thread” and can perform the final reduction. The lastBlock shared 
memory location communicates that result to all threads in the block, and 
__syncthreads() then must be called so the write to lastBlock will be 
visible to all threads in the block. The final block performs the final log-step 
reduction of the partial sums and writes the result. Finally, retirementCount 
is set back to 0 for subsequent invocations of reduceSinglePass().

12.4 Reduction with Atomics
For reductions whose 
 operator is supported natively by an atomic operator 
implemented in hardware, a simpler approach to reduction is possible: Just loop 
over the input data and “fire and forget” the inputs into the output memory loca-
tion to receive the output value. The Reduction5 kernel given in Listing 12.7 is 
much simpler than previous formulations. Each thread computes a partial sum 
over the inputs and performs an atomicAdd on the output at the end.

Note that Reduction5_kernel does not work properly unless the memory 
location pointed to by out is initialized to 0.2 Like the threadFenceReduction 
sample, this kernel has the advantage that only one kernel invocation is needed 
to perform the operation. 

Listing 12.7 Reduction with global atomics (reduction5Atomics.cuh).
__global__ void
Reduction5_kernel( int *out, const int *in, size_t N )
{
    const int tid = threadIdx.x;
    int partialSum = 0;
    for ( size_t i = blockIdx.x*blockDim.x + tid;

i < N;
i += blockDim.x*gridDim.x ) {

partialSum += in[i];
    }
    atomicAdd( out, partialSum );
}

2.  The kernel itself cannot perform this initialization because CUDA’s execution model does not
enable the race condition to be resolved between thread blocks. See Section 7.3.1.
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void
Reduction5( int *answer, int *partial, 

const int *in, size_t N, 
int numBlocks, int numThreads )

{
    cudaMemset( answer, 0, sizeof(int) );
    Reduction5_kernel<<< numBlocks, numThreads>>>( answer, in, N );
}

12.5 Arbitrary Block Sizes
So far, all of the reduction implementations that use shared memory require 
the block size to be a power of 2. With a small amount of additional code, the 
reduction can be made to work on arbitrary block sizes. Listing 12.8 gives a 
kernel derived from the very first two-pass kernel given in Listing 12.1, modified 
to operate on any block size. The floorPow2 variable computes the power of 2 
that is less than or equal to the block size, and the contribution from any threads 
above that power of 2 is added before continuing on to the loop that implements 
the log-step reduction.

Listing 12.8 Reduction (arbitrary block size) (reduction6AnyBlockSize.cuh).
__global__ void
Reduction6_kernel( int *out, const int *in, size_t N )
{
    extern __shared__ int sPartials[];
    int sum = 0;
    const int tid = threadIdx.x;
    for ( size_t i = blockIdx.x*blockDim.x + tid;

i < N;
i += blockDim.x*gridDim.x ) {

sum += in[i];
    }
    sPartials[tid] = sum;
    __syncthreads();

    // start the shared memory loop on the next power of 2 less
    // than the block size.  If block size is not a power of 2,
    // accumulate the intermediate sums in the remainder range.
    int floorPow2 = blockDim.x;

    if ( floorPow2 & (floorPow2-1) ) {
while ( floorPow2 & (floorPow2-1) ) {

floorPow2 &= floorPow2-1;
}
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        if ( tid >= floorPow2 ) {
            sPartials[tid - floorPow2] += sPartials[tid];
        }
        __syncthreads();
    }

    for ( int activeThreads = floorPow2>>1; 
              activeThreads; 
              activeThreads >>= 1 ) {
        if ( tid < activeThreads ) {
            sPartials[tid] += sPartials[tid+activeThreads];
        }
        __syncthreads();
    }

    if ( tid == 0 ) {
        out[blockIdx.x] = sPartials[0];
    }
}

 12.6 Reduction Using Arbitrary Data Types
So far, we have only developed reduction kernels that can compute the sum of 
an array of integers. To generalize these kernels to perform a broader set of 
operations, we turn to C++ templates. With the exception of the algorithms that 
use atomics, all of the kernels that have appeared so far can be adapted to use 
templates. In the source code accompanying the book, they are in the CUDA 
headers reduction1Templated.cuh, reduction2Templated.cuh, and 
so on. Listing 12.9 gives the templated version of the reduction kernel from 
Listing 12.1.

Listing 12.9 Templated reduction kernel.
template<typename ReductionType, typename T>
__global__ void
Reduction_templated( ReductionType *out, const T *in, size_t N )
{
    SharedMemory<ReductionType> sPartials;
    ReductionType sum;
    const int tid = threadIdx.x;
    for ( size_t i = blockIdx.x*blockDim.x + tid;
          i < N;
          i += blockDim.x*gridDim.x ) {
        sum += in[i];
    }
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    sPartials[tid] = sum;
    __syncthreads();

    for ( int activeThreads = blockDim.x>>1; 
              activeThreads; 
              activeThreads >>= 1 ) {
        if ( tid < activeThreads ) {
            sPartials[tid] += sPartials[tid+activeThreads];
        }
        __syncthreads();
    }
    if ( tid == 0 ) {
        out[blockIdx.x] = sPartials[0];
    }
}

Note that since we want to be able to compute a variety of output types for a 
given type of input (for example, we would like to build kernels that compute any 
combination of the minimum, maximum, sum, or the sum of squares of an array 
of integers), we’ve used two different template parameters: T is the type being 
reduced, and ReductionType is the type used for partial sums and for the final 
result.

The first few lines of code use the += operator to “rake” through the input, accu-
mulating a partial sum for each thread in the block.3 Execution then proceeds 
exactly as in Listing 12.1, except that the code is operating on ReductionType 
instead of int. To avoid alignment-related compilation errors, this kernel uses 
an idiom from the CUDA SDK to declare the variable-sized shared memory.

template<class T>
struct SharedMemory
{
    __device__ inline operator       T*()
    {
        extern __shared__ int __smem[];
        return (T*) (void *) __smem;
    }

    __device__ inline operator const T*() const
    {
        extern __shared__ int __smem[];
        return (T*) (void *) __smem;
    }
};

3.  We just as easily could have defined a function to wrap the binary operator being evaluated by 
the reduction. The Thrust library defines a functor plus.
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Listing 12.10 shows an example of a class intended to be used with templated 
reduction functions such as Reduction_templated. This class computes 
both the sum and the sum of squares of an array of integers.4 Besides defin-
ing  operator+=, a specialization of the SharedMemory template must be 
declared; otherwise, the compiler will generate the following error.

Error: Unaligned memory accesses not supported

The reductionTemplated.cu program in the accompanying source code 
shows how the function templates from the CUDA headers can be invoked.

Reduction1<CReduction_Sumi_isq, int>( … );

Listing 12.10 CReduction_Sumi_isq class.
struct CReduction_Sumi_isq {
public:
    CReduction_Sumi_isq();
    int sum;
    long long sumsq;

    CReduction_Sumi_isq& operator +=( int a );
    volatile CReduction_Sumi_isq& operator +=( int a ) volatile;

    CReduction_Sumi_isq& operator +=( const CReduction_Sumi_isq& a );
    volatile CReduction_Sumi_isq& operator +=( 
        volatile CReduction_Sumi_isq& a ) volatile;

};

inline __device__ __host__
CReduction_Sumi_isq::CReduction_Sumi_isq()
{
    sum = 0;
    sumsq = 0;
}

inline __device__ __host__
CReduction_Sumi_isq&
CReduction_Sumi_isq::operator +=( int a )
{
    sum += a;
    sumsq += (long long) a*a;
    return *this;
}

inline __device__ __host__
volatile CReduction_Sumi_isq&
CReduction_Sumi_isq::operator +=( int a ) volatile

4.  You could compute a whole suite of statistics on the input array in a single pass, but we are 
keeping things simple here for illustrative purposes.
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{
    sum += a;
    sumsq += (long long) a*a;
    return *this;
}

inline __device__ __host__
CReduction_Sumi_isq&
CReduction_Sumi_isq::operator +=( const CReduction_Sumi_isq& a )
{
    sum += a.sum;
    sumsq += a.sumsq;
    return *this;
}

inline __device__ __host__
volatile CReduction_Sumi_isq&
CReduction_Sumi_isq::operator +=( 
    volatile CReduction_Sumi_isq& a ) volatile
{
    sum += a.sum;
    sumsq += a.sumsq;
    return *this;
}

inline int
operator!=( const CReduction_Sumi_isq& a, 
            const CReduction_Sumi_isq& b )
{
    return a.sum != b.sum && a.sumsq != b.sumsq;
}

//
// from Reduction SDK sample:
// specialize to avoid unaligned memory 
// access compile errors
//
template<>
struct SharedMemory<CReduction_Sumi_isq>
{
    __device__ inline operator       CReduction_Sumi_isq*()
    {
        extern __shared__ CReduction_Sumi_isq 
            __smem_CReduction_Sumi_isq[];
        return (CReduction_Sumi_isq*)__smem_CReduction_Sumi_isq;
    }

    __device__ inline operator const CReduction_Sumi_isq*() const
    {
        extern __shared__ CReduction_Sumi_isq 
            __smem_CReduction_Sumi_isq[];
        return (CReduction_Sumi_isq*)__smem_CReduction_Sumi_isq;
    }
};
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 12.7 Predicate Reduction
Predicates or truth values (true/false) can be represented compactly, since 
each predicate only occupies 1 bit. In SM 2.0, NVIDIA added a number of 
 instructions to make predicate manipulation more efficient. The __ballot() 
and __popc() intrinsics can be used for warp-level reduction, and the 
__syncthreads_count() intrinsic can be used for block-level reduction.

int __ballot( int p );

__ballot() evaluates a condition for all threads in the warp and returns a 
32-bit word, where each bit gives the condition for the corresponding thread in 
the warp. Since __ballot() broadcasts its result to every thread in the warp, 
it is effectively a reduction across the warp. Any thread that wants to count the 
number of threads in the warp for which the condition was true can call the 
__popc() intrinsic

int __popc( int i );

which returns the number of set bits in the input word.

SM 2.0 also introduced __syncthreads_count().

int __syncthreads_count( int p );

This intrinsic waits until all warps in the threadblock have arrived, then broad-
casts to all threads in the block the number of threads for which the input condi-
tion was true.

Since the 1-bit predicates immediately turn into 5- and 9- or 10-bit values after a 
warp- or block-level reduction, these intrinsics only serve to reduce the amount 
of shared memory needed for the lowest-level evaluation and reduction. Still, 
they greatly amplify the number of elements that can be considered by a single 
thread block.

 12.8 Warp Reduction with Shuffle
SM 3.0 introduced the “shuffle” instruction, described in Section 8.6.1, that can 
be used to perform a reduction across the 32 threads in a warp. By using the 
“butterfly” variant of the shuffle instruction, the final 5 steps of the log-step 
reduction
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wsSum[tid] += wsSum[tid+16];
wsSum[tid] += wsSum[tid+8];
wsSum[tid] += wsSum[tid+4];
wsSum[tid] += wsSum[tid+2];
wsSum[tid] += wsSum[tid+1];

can be rewritten as

int mySum = wsSum[tid];
mySum += __shuf_xor( mySum, 16 );
mySum += __shuf_xor( mySum, 8 );
mySum += __shuf_xor( mySum, 4 );
mySum += __shuf_xor( mySum, 2 );
mySum += __shuf_xor( mySum, 1 );

All threads in the warp then contain the reduction in mySum. Figure 12.2 illustrates 
the operation of this warp scan primitive. Each thread’s sum is shown as a 4W × 
8H rectangle, with a dark square showing which threads have contributed to each 
thread’s partial sum. (Besides the inset, the top row shows which squares corre-
spond to each thread’s contribution.) With each step in the log-step reduction, the 
number of contributions doubles until every thread has a full reduction.5

5.  The shuffle-up or shuffle-down variants can be used to implement reduction, but they take just 
as long as the butterfly (XOR) variant and only make the reduction value available to a single 
thread.

Figure 12.2 Reduction using shuffle instruction.
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Chapter 13 

Scan

Scan, also known as prefix scan, prefix sum, or parallel prefix sum, is an impor-
tant primitive in parallel programming and is used as a building block for many 
different algorithms, including but not limited to the following.

• Radix sort

• Quicksort

• Stream compaction and stream splitting

• Sparse matrix-vector multiplication

• Minimum spanning tree construction

• Computation of summed area tables

This chapter starts with a description of the algorithm and a few variations, 
discusses an early implementation strategy and how Scan algorithms can be 
described in terms of circuit diagrams, and then provides detailed descriptions 
of Scan implementations for CUDA. The References section covers both the 
Scan algorithm and the parallel prefix sum circuit problem in hardware design.

 13.1 Definition and Variations
Inclusive scan takes a binary associative operator  
 and an array of length N

[a0, a1, . . . aN-1]

       



SCAN

386

and returns the array

[a0, (a0
a1), . . . (a0
a1
 . . . 
aN-1)].

Each element of the output depends on the preceding elements in the input. 

Exclusive scan is defined similarly but shifts the output and uses an identity ele-
ment id
 that has no effect on a value when 
 is performed with it (for example, 
0 for integer addition, 1 for multiplication, etc.).

[id
, a0, a0
a1, . . . a0
a1
 . . . 
aN-2].

Inclusive and exclusive scans can be transformed between each other by adding 
or subtracting the input array element by element, as shown in Figure 13.1.

Stream compaction is an operation that separates elements in an array according 
to a criterion. If a predicate (0 or 1) is computed for each element of the input 
array to determine whether it should be included in the output stream, then an 
exclusive scan on the predicates computes the indices of the output elements. 
A variation of stream compaction, known as stream splitting, writes the compact 
output separately for each value of the predicate. Segmented scan is a variation 
that takes a set of input flags (one per array element) in addition to the array and 
performs scans on the subarrays delineated by the flags.

Due to the importance of the Scan primitive, an enormous amount of effort has 
been put into developing optimized scan implementations for CUDA. A list of ref-
erences is given at the end of this chapter. Both the CUDPP and Thrust libraries 
include families of optimized Scan primitives that use templates for the best 
tradeoff between generality and performance. All that said, however, applica-
tions that use Scan as a primitive usually can benefit from custom implementa-
tions that take advantage of specific knowledge about the problem. 

Input array [a0, a1, … aN-1]

Inclusive scan [a0, (a0 a1), … (a0 a1 …aN-1)]

Exclusive scan [id, a0, a0  a1, … a0 a1…aN-2]

-

=

=

+

Figure 13.1 Inclusive and exclusive scan.
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 13.2 Overview
A simple implementation in C++ looks like Listing 13.1. 

Listing 13.1 Inclusive scan (in C++).

template<class T>
T
InclusiveScan( T *out, const T *in, size_t N )
{
    T sum(0);
    for ( size_t i = 0; i < N; i++ ) {
        sum += in[i];
        out[i] = sum;
    }
    return sum;
}

For these serial implementations in Listings 13.1 and 13.2, the only difference 
between inclusive and exclusive scan is that the lines

out[i] = sum;

and

sum += in[i];

are swapped.1

Listing 13.2 Exclusive scan (in C++).

template<class T>
T
ExclusiveScan( T *out, const T *in, size_t N )
{
    T sum(0);
    for ( size_t i = 0; i < N; i++ ) {
        out[i] = sum;
        sum += in[i];
    }
    return sum;
}

1.  As written, the implementation of exclusive scan does not support an in-place computation. To 
enable the input and output arrays to be the same, in[i] must be saved in a temporary variable.
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The serial implementations of Scan are so obvious and trivial that you are for-
given if you’re wondering what a parallel implementation would look like! The 
so-called prefix dependency, where each output depends on all of the preceding 
inputs, may have some wondering if it’s even possible. But, upon reflection, you 
can see that the operations for neighboring pairs (ai
ai+1 for 0 � i < N – 1) could 
be computed in parallel; for i = 0, ai
ai+1 computes a final output of the Scan, and 
otherwise these pairwise operations compute partial sums that can be used to 
contribute to the final output, much as we used partial sums in Chapter 12. 

Blelloch2 describes a two-pass algorithm with an upsweep phase that com-
putes the reduction of the array, storing intermediate results along the way, and 
followed by a downsweep that computes the final output of the scan. Pseudocode 
for the upsweep as is follows.

upsweep(a, N)
for d from 0 to (lg N) − 1
in parallel for i from 0 to N − 1 by 2d+1

                  a[i + 2d+1 − 1] += a[i + 2d − 1]

The operation resembles the log-step reduction we have discussed before, 
except intermediate sums are stored for later use in generating the final output 
of the scan.

After Blelloch, Figure 13.2 shows an example run of this upsweep algorithm 
on an 8-element array using addition on integers. The “upsweep” terminology 
stems from thinking of the array as a balanced tree (Figure 13.3).

Once the upsweep has been completed, a downsweep propagates intermediate 
sums into the leaves of the tree. Pseudocode for the downsweep is as follows.

2.  http://bit.ly/YmTmGP 

3 1 7 0 4 1 6 3

3 7 4 64 7 5 9

3 4 7 4 5 6 1411

3 4 7 4 5 6 2511

0

1

2

3

Step

Figure 13.2 Upsweep pass (array view).
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downsweep(a, N)
    a[N-1] = 0
    for d from (lg N)-1 downto 0
        in parallel for i from 0 to N-1 by 2d+1

            t := a[i+2d-1]
            a[i+2d-1] = a[i + 2d+1-1]
            a[i+2d+1-1] += t

Figure 13.4 shows how the example array is transformed during the downsweep, 
and Figure 13.5 shows the downsweep in tree form. Early implementations of 
Scan for CUDA followed this algorithm closely, and it does make a good introduc-
tion to thinking about possible parallel implementations. Unfortunately, it is not a 
great match to CUDA’s architecture; a naïve implementation suffers from shared 
memory bank conflicts, and addressing schemes to compensate for the bank 
conflicts incurs enough overhead that the costs outweigh the benefits.

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

Figure 13.3 Upsweep pass (tree view).

3 1 7 0 4 1 6 3

3 7 4 64 7 5 9

3 4 7 4 5 6 1411

3 4 7 4 5 6 011

0

1

2

4

Step

3 4 7 4 5 6 1105

3 0 7 4 11 6 1646

0 3 4 11 15 16 22117

3 4 7 4 5 6 25113
Assign 0

Downsweep

Upsweep

Figure 13.4 Downsweep (array view).

       



SCAN

390

 13.3 Scan and Circuit Design
Having explored one possible parallel algorithm for Scan, it may now be clear 
that there are many different ways to implement parallel Scan algorithms. In 
reasoning about other possible implementations, we can take advantage of 
design methodologies for integer addition hardware that performs a similar 
function: Instead of propagating an arbitrary binary associative operator 
 
across an array, culminating in the output from a reduction, hardware adders 
propagate partial addition results, culminating in the carry bit to be propagated 
for multiprecision arithmetic. 

Hardware designers use directed acyclic, oriented graphs to represent different 
implementations of Scan “circuits.” These diagrams compactly express both 
the data flow and the parallelism. A diagram of the serial implementation 
of Listing 13.1 is given in Figure 13.6. The steps proceed downward as time 
advances; the vertical lines denote wires where the signal is propagated. Nodes 
of in-degree 2 (“operation nodes”) apply the operator 
 to their inputs.

Note that the circuit diagrams show inclusive scans, not exclusive ones. For 
circuit diagrams, the difference is minor; to turn the inclusive scan in Figure 13.6 
into an exclusive scan, a 0 is wired into the first output and the sum is wired into 
the output, as shown in Figure 13.7. Note that both inclusive and exclusive scans 
generate the reduction of the input array as output, a characteristic that we will 
exploit in building efficient scan algorithms. (For purposes of clarity, all circuit 
diagrams other than Figure 13.7 will depict inclusive scans.)

0 3 7 0 11 15 16 22

0 4 11 16

0 11

0

Figure 13.5 Downsweep (tree view).
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The Scan algorithm described by Blelloch corresponds to a circuit design known 
as Brent-Kung, a recursive decomposition in which every second output is fed 
into a Brent-Kung circuit of half the width. Figure 13.8 illustrates a Brent-Kung 
circuit operating on our example length of 8, along with Blelloch’s upsweep 
and downsweep phases. Nodes that broadcast their output to multiple nodes in 
the next stage are known as fans. Brent-Kung circuits are notable for having a 
constant fan-out of 2.

Sum (carry out)

Figure 13.6 Serial scan.

Sum (carry out)

Exclusive scan output

Inclusive scan output

Figure 13.7 Serial scan (inclusive and exclusive).
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The structure of a Brent-Kung circuit becomes clearer on larger circuits; see, 
for example, the circuit that processes 16 inputs in Figure 13.9. Figure 13.9 also 
highlights the spine of the circuit, the longest subgraph that generates the last 
element of the scan output.

The depth of the Brent-Kung circuit grows logarithmically in the number of 
inputs, illustrating its greater efficiency than (for example) the serial algorithm. 
But because each stage in the recursive decomposition increases the depth by 
2, the Brent-Kung circuit is not of minimum depth. Sklansky described a method 
to build circuits of minimum depth by recursively decomposing them as shown 
in Figure 13.10. 

Two (N/2)-input circuits are run in parallel, and the output of the spine of the left 
circuit is added to each element of the right circuit. For our 16-element example, 
the left-hand subgraph of the recursion is highlighted in Figure 13.10.

Upsweep

Downsweep

Figure 13.8 Brent-Kung circuit.

Figure 13.9 Brent-Kung circuit (16 inputs).
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Another minimum-depth scan circuit, known as Kogge-Stone, has a constant 
fan-out of 2, which is a desirable characteristic for hardware implementation, 
but, as you can see in Figure 13.11, it has many operation nodes; software imple-
mentations analogous to Kogge-Stone are work-inefficient.

Any scan circuit can be constructed from a combination of scans (which per-
form the parallel prefix computation and generate the sum of the input array 
as output) and fans (which add an input to each of their remaining outputs). The 
minimum-depth circuit in Figure 13.10 makes heavy use of fans in its recursive 
definition. 

For an optimized CUDA implementation, a key insight is that a fan doesn’t need 
to take its input from a Scan per se; any reduction will do. And from Chapter 12, 
we have a highly optimized reduction algorithm. 

If, for example, we split the input array into subarrays of length b and compute 
the sum of each subarray using our optimized reduction routine, we end up with 

an array of N
b

⎡
⎢⎢

⎤
⎥⎥  reduction values. If we then perform an exclusive scan on 

that array, it becomes an array of fan inputs (seeds) for scans of each subarray. The 
number of values that can be efficiently scanned in one pass over global mem-
ory is limited by CUDA’s thread block and shared memory size, so for larger 
inputs, the approach must be applied recursively.

Figure 13.10 Sklansky (minimum-depth) circuit.

Figure 13.11 Kogge-Stone circuit.
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 13.4 CUDA Implementations
Designing Scan algorithms and studying circuit diagrams is instructive, but in 
order to implement Scan for CUDA, we need to map the algorithms onto reg-
isters, memory and addressing schemes, and correct synchronization. The 
optimal CUDA implementation of Scan depends on the size of the scan being 
performed. Different schemes are best for warp-sized scans, scans that can fit 
in shared memory, and scans that must spill to global memory. Because blocks 
cannot reliably exchange data through global memory, scans too large to fit in 
shared memory must perform multiple kernel invocations.3

Before examining special cases (such as scanning of predicates), we will exam-
ine three (3) approaches to doing Scan on CUDA.

• Scan-then-fan (recursive)

• Reduce-then-scan (recursive) 

• Two-level reduce-then-scan

13.4.1 SCAN-THEN-FAN

The scan-then-fan approach uses a similar decomposition for global and shared 
memory. Figure 13.12 shows the approach used to scan a threadblock: A scan is 
performed on each 32-thread warp, and the reduction of that 32-element sub-
array is written to shared memory. A single warp then scans the array of partial 
sums. A single warp is sufficient because CUDA does not support threadblocks 
with more than 1024 threads. Finally, the base sums are fanned out to each 
warp’s output elements. Note that Figure 13.12 shows an inclusive scan being 
performed in step 2, so the first element of its output must be fanned out to the 
second warp, and so on. 

The code to implement this algorithm is given in Listing 13.3. The input array is 
assumed to have been loaded into shared memory already, and the parameters 
sharedPartials and idx specify the base address and index of the warp to 
scan, respectively. (In our first implementation, threadIdx.x is passed as 
the parameter idx.) Lines 9–13 implement step 1 in Figure 13.12; lines 16–21 
implement step 2; and lines 31–45 implement step 3. The output value written by 
this thread is returned to the caller but is used only if it happens to be the thread 
block’s reduction.

3.  With CUDA 5.0 and SM 3.5 hardware, dynamic parallelism can move most of the kernel 
launches to be “child grids” as opposed to kernel launches initiated by the host.
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Listing 13.3 scanBlock: Block portion of scan-then-fan for thread blocks.
template<class T>
inline __device__ T
scanBlock( volatile T *sPartials )
{
    extern __shared__ T warpPartials[];
    const int tid = threadIdx.x;
    const int lane = tid & 31;
    const int warpid = tid >> 5;

    //
    // Compute this thread's partial sum
    //
    T sum = scanWarp<T>( sPartials );
    __syncthreads();

    //
    // Write each warp's reduction to shared memory
    // 
    if ( lane == 31 ) {
        warpPartials[16+warpid] = sum;
    }
    __syncthreads();

    //
    // Have one warp scan reductions
    //
    if ( warpid==0 ) {
        scanWarp<T>( 16+warpPartials+tid );
    }
    __syncthreads();

1. Scan warps and write each sum (reduction) into shared array of partial sums.

2. Scan the array of partial sums.

3. Fan each base sum into its corresponding subarray.

32 elements

Figure 13.12 Scan-then-fan (shared memory).
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    //
    // Fan out the exclusive scan element (obtained
    // by the conditional and the decrement by 1)
    // to this warp's pending output
    //
    if ( warpid > 0 ) {
        sum += warpPartials[16+warpid-1];
    }
    __syncthreads();

    //
    // Write this thread's scan output
    //
    *sPartials = sum;
    __syncthreads();

    //
    // The return value will only be used by caller if it
    // contains the spine value (i.e., the reduction
    // of the array we just scanned).
    //
    return sum;
}

Figure 13.13 shows how this approach is adapted to global memory. A kernel 
scans b-element subarrays, where b is the block size. The partial sums are 
written to global memory, and another 1-block kernel invocation scans these 
partial sums, which are then fanned into the final output in global memory.

1. Scan subarrays and write each sum (reduction) into global array of partial sums.

2. Scan the array of partial sums.

3. Fan each base sum into the final output array.

b elements

Figure 13.13 Scan-then-fan (global memory).
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Listing 13.4 gives the CUDA code for the Scan kernel in step 1 in Figure 13.13. 
It loops over the threadblocks to process, staging the input array into and out 
of shared memory. The kernel then optionally writes the spine value to global 
memory at the end. At the bottom level of the recursion, there is no need to 
record spine values, so the bWriteSpine template parameter enables the 
kernel to avoid dynamically checking the value of partialsOut.

Listing 13.4 scanAndWritePartials.
template<class T, bool bWriteSpine>
__global__ void
scanAndWritePartials( 
    T *out, 
    T *gPartials, 
    const T *in, 
    size_t N, 
    size_t numBlocks )
{
    extern volatile __shared__ T sPartials[];
    const int tid = threadIdx.x;
    volatile T *myShared = sPartials+tid;

    for ( size_t iBlock = blockIdx.x; 
                 iBlock < numBlocks; 
                 iBlock += gridDim.x ) {
        size_t index = iBlock*blockDim.x+tid;

        *myShared = (index < N) ? in[index] : 0;
        __syncthreads();

        T sum = scanBlock( myShared );
        __syncthreads();
        if ( index < N ) {
            out[index] = *myShared;
        }
        //
        // write the spine value to global memory
        //
        if ( bWriteSpine && (threadIdx.x==(blockDim.x-1)) )
        {
            gPartials[iBlock] = sum;
        }
    }
}

Listing 13.5 gives the host function that uses Listings 13.3 to 13.4 to implement 
an inclusive scan on an array in global memory. Note that the function recurses 
for scans too large to perform in shared memory. The first conditional in the 
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function serves both as the base case for the recursion and to short-circuit 
scans small enough to perform in shared memory alone, avoiding any need to 
allocate global memory. Note how the amount of shared memory needed by the 
kernel (b*sizeof(T)) is specified at kernel invocation time.

For larger scans, the function computes the number of partial sums needed 
N
b

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥

, allocates global memory to hold them, and follows the pattern in 

Figure 3.13, writing partial sums to the global array for later use by the 
scanAndWritePartials kernel in Listing 13.4.

Each level of recursion reduces the number of elements being processed by a 
factor of b, so for b = 128 and N = 1048576, for example, two levels of recursion 
are required: one of size 8192 and one of size 64. 

Listing 13.5 scanFan host function.
template<class T>
void
scanFan( T *out, const T *in, size_t N, int b )
{
    cudaError_t status;

    if ( N <= b ) {
        scanAndWritePartials<T, false><<<1,b,b*sizeof(T)>>>( 
            out, 0, in, N, 1 );
        return;
    }

    //
    // device pointer to array of partial sums in global memory
    //
    T *gPartials = 0;

    //
    // ceil(N/b)
    //
    size_t numPartials = (N1)/b;

    //
    // number of CUDA threadblocks to use.  The kernels are 
    // blocking agnostic, so we can clamp to any number 
    // within CUDA's limits and the code will work.
    //
    const unsigned int maxBlocks = 150;   // maximum blocks to launch
    unsigned int numBlocks = min( numPartials, maxBlocks );

    CUDART_CHECK( cudaMalloc( &gPartials, 
                              numPartials*sizeof(T) ) );
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    scanAndWritePartials<T, true><<<numBlocks,b,b*sizeof(T)>>>( 
        out, gPartials, in, N, numPartials );
    scanFan<T>( gPartials, gPartials, numPartials, b );
    scanAddBaseSums<T><<<numBlocks, b>>>( out, gPartials, N, 
        numPartials );

 Error:
    cudaFree( gPartials );
}

Listing 13.6 completes the picture with a very simple kernel to fan-out results 
from global memory to global memory.

Listing 13.6 scanAddBaseSums kernel.
template<class T>
__global__ void
scanAddBaseSums( 
    T *out, 
    T *gBaseSums, 
    size_t N, 
    size_t numBlocks )
{
    const int tid = threadIdx.x;

    T fan_value = 0;
    for ( size_t iBlock = blockIdx.x; 
                 iBlock < numBlocks; 
                 iBlock += gridDim.x ) {
        size_t index = iBlock*blockDim.x+tid;
        if ( iBlock > 0 ) {
            fan_value = gBaseSums[iBlock-1];
        }
        out[index] += fan_value;
    }
}

At the highest level of recursion, the scan-then-fan strategy performs 4N global 
memory operations. The initial scan performs one read and one write, and then 
the fan in Listing 13.4 performs another read and write. We can decrease the 
number of global memory writes by first computing only reductions on the input 
array.
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13.4.2 REDUCE-THEN-SCAN (RECURSIVE)

Figure 13.14 shows how this strategy works. As before, an array of 
N
b

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥

 partial 

sums of the input is computed and scanned to compute an array of base sums. 
But instead of doing the scan in the first pass, we compute only the partial sums 
in the first pass. The scan of the final output is then performed, adding the base 
sum along the way.

Listing 13.7 gives the code used to compute the array of partial sums, which 
uses the reduction code from Listing 12.3 as a subroutine. As with the reduction 
code, the kernel is templatized according to block size, and a wrapper template 
uses a switch statement to invoke specializations of the template.

Listing 13.7 scanReduceBlocks.

template<class T, int numThreads>
__global__ void
scanReduceBlocks( T *gPartials, const T *in, size_t N )
{
    extern volatile __shared__ T sPartials[];

    const int tid = threadIdx.x;
    gPartials += blockIdx.x;

1. Compute reduction of each subarray and write into global array of partial sums.

2. Scan the array of partial sums.

3. Scan output array in subarrays, adding the corresponding partial sum into the output.

Figure 13.14 Reduce-then-scan.
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    for ( size_t i = blockIdx.x*blockDim.x; 
i < N;
i += blockDim.x*gridDim.x ) {

size_t index = i+tid;
sPartials[tid] = (index < N) ? in[index] : 0;
__syncthreads();

reduceBlock<T,numThreads>( gPartials, sPartials );
__syncthreads();
gPartials += gridDim.x;

    }
}

template<class T>
void
scanReduceBlocks( 
    T *gPartials, 
    const T *in, 
    size_t N, 
    int numThreads, 
    int numBlocks )
{
    switch ( numThreads ) {

case  128: return scanReduceBlocks<T, 128> ... ( ... );
case  256: return scanReduceBlocks<T, 256> ... ( ... );
case  512: return scanReduceBlocks<T, 512> ... ( ... );
case 1024: return scanReduceBlocks<T,1024> ... ( ... );

    }
}

Listing 13.8 gives the kernel used to perform the scans. The main difference 
from Listing 13.4 is that instead of writing the sum of the input subarrays to 
global memory, the kernel adds the base sum corresponding to each subarray 
to the output elements before writing them.

Listing 13.8 scanWithBaseSums.

template<class T>
__global__ void
scanWithBaseSums( 
    T *out, 
    const T *gBaseSums, 
    const T *in, 
    size_t N, 
    size_t numBlocks )
{
    extern volatile __shared__ T sPartials[];
    const int tid = threadIdx.x;
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    for ( size_t iBlock = blockIdx.x; 
iBlock < numBlocks; 
iBlock += gridDim.x ) {

T base_sum = 0;
size_t index = iBlock*blockDim.x+tid;

if ( iBlock > 0 && gBaseSums ) {
base_sum = gBaseSums[iBlock-1];

}
sPartials[tid] = (index < N) ? in[index] : 0;
__syncthreads();

scanBlock( sPartials+tid );
__syncthreads();
if ( index < N ) {

out[index] = sPartials[tid]+base_sum;
}

    }
}

The host code for the reduce-then-scan strategy is given in Listing 13.9. At the 
highest level of recursion, the reduce-then-scan strategy performs 3N global 
memory operations. The initial reduction pass performs one read per element, 
and then the scan in Listing 13.9 performs another read and a write. As with 
fan-then-scan, each level of recursion reduces the number of elements being 
processed by a factor of b. 

Listing 13.9 scanReduceThenScan.

template<class T>
void
scanReduceThenScan( T *out, const T *in, size_t N, int b )
{
    cudaError_t status;

    if ( N <= b ) {
return scanWithBaseSums<T><<<1,b,b*sizeof(T)>>>( 

out, 0, in, N, 1 );
    }

    //
    // device pointer to array of partial sums in global memory
    //
    T *gPartials = 0;

    //
    // ceil(N/b) = number of partial sums to compute
    //
    size_t numPartials = (N1)/b;
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    //
    // number of CUDA threadblocks to use.  The kernels are blocking
    // agnostic, so we can clamp to any number within CUDA's limits
    // and the code will work.
    //
    const unsigned int maxBlocks = 150;
    unsigned int numBlocks = min( numPartials, maxBlocks );

    CUDART_CHECK( cudaMalloc( &gPartials, numPartials*sizeof(T) ) );

    scanReduceBlocks<T>( gPartials, in, N, b, numBlocks );
    scanReduceThenScan<T>( gPartials, gPartials, numPartials, b );
    scanWithBaseSums<T><<<numBlocks,b,b*sizeof(T)>>>( 

out, 
gPartials, 
in, 
N, 
numPartials );

 Error:
    cudaFree( gPartials );

}

13.4.3 REDUCE-THEN-SCAN (TWO PASS)

Merrill4 describes another formulation of Scan that uses a small, fixed-size 
number of base sums. The algorithm is the same as Figure 13.14, except that the 
array in step 2 is a relatively small, fixed size of perhaps a few hundred instead 

of 
N
b

⎡

⎢
⎢
⎢

⎤

⎥
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⎥

 partial sums. The number of partial sums is the same as the number of 

threadblocks to use, both for the reduction pass and for the Scan pass. Listing 
13.10 shows the code to compute these partial sums, which is updated to com-
pute reductions for subarrays of size elementsPerPartial as opposed to the 
thread block size.

Listing 13.10 scanReduceSubarrays.

template<class T, int numThreads>
__device__ void
scanReduceSubarray( 
    T *gPartials, 
    const T *in, 
    size_t iBlock, 

4.  http://bit.ly/ZKtlh1
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    size_t N, 
    int elementsPerPartial )
{
    extern volatile __shared__ T sPartials[];
    const int tid = threadIdx.x;

    size_t baseIndex = iBlock*elementsPerPartial;

    T sum = 0;
    for ( int i = tid; i < elementsPerPartial; i += blockDim.x ) {

size_t index = baseIndex+i;
if ( index < N )

sum += in[index];
    }
    sPartials[tid] = sum;
    __syncthreads();

    reduceBlock<T,numThreads>( &gPartials[iBlock], sPartials );
}

/*
* Compute the reductions of each subarray of size
* elementsPerPartial, and write them to gPartials.
 */
template<class T, int numThreads>
__global__ void
scanReduceSubarrays( 
    T *gPartials, 
    const T *in, 
    size_t N, 
    int elementsPerPartial )
{
    extern volatile __shared__ T sPartials[];

    for ( int iBlock = blockIdx.x; 
iBlock*elementsPerPartial < N; 
iBlock += gridDim.x )

    {
scanReduceSubarray<T,numThreads>( 

gPartials, 
in, 
iBlock, 
N, 
elementsPerPartial );

    }
}

Listing 13.11 gives the Scan code, which has been modified to carry over each 
block’s sum as the Scan of that block is completed. The bZeroPad template 
parameter in Listing 13.11 and the utility function scanSharedIndex that uses 
it are described in more detail in Section 13.5.1.
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Listing 13.11 scan2Level_kernel.
template<class T, bool bZeroPad>
__global__ void
scan2Level_kernel( 
    T *out, 
    const T *gBaseSums, 
    const T *in, 
    size_t N, 
    size_t elementsPerPartial )
{
    extern volatile __shared__ T sPartials[];
    const int tid = threadIdx.x;
    int sIndex = scanSharedIndex<bZeroPad>( threadIdx.x );

    if ( bZeroPad ) {
sPartials[sIndex-16] = 0;

    }
    T base_sum = 0;
    if ( blockIdx.x && gBaseSums ) {

base_sum = gBaseSums[blockIdx.x-1];
    }
    for ( size_t i = 0;

i < elementsPerPartial;
i += blockDim.x ) {

size_t index = blockIdx.x*elementsPerPartial + i + tid;
sPartials[sIndex] = (index < N) ? in[index] : 0;
__syncthreads();

scanBlock<T,bZeroPad>( sPartials+sIndex );
__syncthreads();
if ( index < N ) {

out[index] = sPartials[sIndex]+base_sum;
}
__syncthreads();

// carry forward from this block to the next.
base_sum += sPartials[ 

scanSharedIndex<bZeroPad>( blockDim.x-1 ) ];
__syncthreads();

    }
}

Listing 13.12 gives the host code for Merrill’s two-pass reduce-then-scan algo-
rithm. Since the number of partials computed is small and never varies, the host 
code never has to allocate global memory in order to perform the scan; instead, 
we declare a __device__ array that is allocated at module load time

__device__ int g_globalPartials[MAX_PARTIALS];

and obtain its address by calling cudaGetSymbolAddress().
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status = cudaGetSymbolAddress( 
(void **) &globalPartials, 
g_globalPartials );

The routine then computes the number of elements per partial and number of 
threadblocks to use and invokes the three (3) kernels needed to perform the 
computation.

Listing 13.12 scan2Level.
template<class T, bool bZeroPad>
void
scan2Level( T *out, const T *in, size_t N, int b )
{
    int sBytes = scanSharedMemory<T,bZeroPad>( b );

    if ( N <= b ) {
return scan2Level_kernel<T, bZeroPad><<<1,b,sBytes>>>( 

out, 0, in, N, N );
    }

    cudaError_t status;
    T *gPartials = 0;
    status = cudaGetSymbolAddress( 

(void **) &gPartials, 
g_globalPartials );

    if ( cudaSuccess ==  status )
    {

//
// ceil(N/b) = number of partial sums to compute
//
size_t numPartials = (N+b-1)/b;

if ( numPartials > MAX_PARTIALS ) {
numPartials = MAX_PARTIALS;

}

//
// elementsPerPartial has to be a multiple of b
// 
unsigned int elementsPerPartial = 

(N+numPartials-1)/numPartials;
elementsPerPartial = b * ((elementsPerPartial+b-1)/b);
numPartials = (N+elementsPerPartial-1)/elementsPerPartial;

//
// number of CUDA threadblocks to use.  The kernels are 
// blocking agnostic, so we can clamp to any number within 
// CUDA's limits and the code will work.
//
const unsigned int maxBlocks = MAX_PARTIALS;
unsigned int numBlocks = min( numPartials, maxBlocks );
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scanReduceSubarrays<T>( 
gPartials, 
in, 
N, 
elementsPerPartial, 
numBlocks, 
b );

scan2Level_kernel<T, bZeroPad><<<1,b,sBytes>>>( 
gPartials, 
0, 
gPartials, 
numPartials, 
numPartials );

scan2Level_kernel<T, bZeroPad><<<numBlocks,b,sBytes>>>(
out, 
gPartials, 
in, 
N, 
elementsPerPartial );

    }
}

 13.5 Warp Scans
So far, we’ve focused on constructing our Scan implementations from the top 
down. At the bottom of all three of our Scan implementations, however, lurks an 
entirely different software approach to Scan. For subarrays of size 32 or less, 
we use a special warp scan modeled on the Kogge-Stone circuit (Figure 13.11). 
Kogge-Stone circuits are work-inefficient, meaning they perform many opera-
tions despite their small depth, but at the warp level, where execution resources 
of CUDA hardware are available whether or not the developer uses them, 
 Kogge-Stone works well on CUDA hardware. 

Listing 13.13 gives a __device__ routine that is designed to operate on 
shared memory, the fastest way for threads to exchange data with one another. 
Because there are no shared memory conflicts and the routine executes at warp 
granularity, no thread synchronization is needed during updates to the shared 
memory.

Listing 13.13 scanWarp.
template<class T>
inline __device__ T 
scanWarp( volatile T *sPartials )
{
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    const int tid = threadIdx.x;
    const int lane = tid & 31;

    if ( lane >=  1 ) sPartials[0] += sPartials[- 1];
    if ( lane >=  2 ) sPartials[0] += sPartials[- 2];
    if ( lane >=  4 ) sPartials[0] += sPartials[- 4];
    if ( lane >=  8 ) sPartials[0] += sPartials[- 8];
    if ( lane >= 16 ) sPartials[0] += sPartials[-16];
    return sPartials[0];
}

13.5.1 ZERO PADDING

We can reduce the number of machine instructions needed to implement 
the warp scan by interleaving the warps’ data with 16-element arrays of 
0’s, enabling the conditionals to be removed. Listing 13.14 gives a version of 
 scanWarp that assumes 16 zero elements preceding the base address in 
shared memory.

Listing 13.14 scanWarp0.

template<class T>
__device__ T scanWarp0( volatile T *sharedPartials, int idx )
{
    const int tid = threadIdx.x;
    const int lane = tid & 31;

    sharedPartials[idx] += sharedPartials[idx -  1];
    sharedPartials[idx] += sharedPartials[idx -  2];
    sharedPartials[idx] += sharedPartials[idx -  4];
    sharedPartials[idx] += sharedPartials[idx -  8];
    sharedPartials[idx] += sharedPartials[idx - 16];
    return sharedPartials[idx];
}

Figure 13.15 shows how the interleaving works for a 256-thread block, which 
contains 8 warps. The shared memory index is computed as follows.

const int tid = threadIdx.x;
const int warp = tid >> 5;
const int lane = tid & 31;
const int sharedIndex = 49 * warp + 32 + lane;

The initialization to 0 is then done as follows.

partials[sharedIndex-16] = 0;
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The other area where this change affects the shared memory addressing is in 
the block scan subroutine. The index for each partial sum for each warp must 
be offset by 16 to enable the single warp scan that computes the base sums to 
work. Finally, the kernel invocation must reserve enough shared memory to 
hold both the partial sums and the zeros.

13.5.2 TEMPLATED FORMULATIONS

The faster, zero-padded implementation of Scan requires more shared mem-
ory, a resource requirement that not all applications can accommodate. To 
enable our code to support both versions, Listing 13.15 shows utility functions 
that take a bool template parameter bZeroPad. The scanSharedMemory 
function returns the amount of shared memory needed for a given block size. 
scanSharedIndex returns the shared memory index corresponding to a given 
thread. In turn, Listing 13.16 gives the templated version of scanWarp that 
works for both the zero-padded and non-zero-padded cases.

Listing 13.15 Shared memory utilities for zero padding.

template<bool bZeroPad>
inline __device__ int
scanSharedIndex( int tid )
{
    if ( bZeroPad ) {

const int warp = tid >> 5;
const int lane = tid & 31;
return 49 * warp + 16 + lane;

    }
    else {

return tid;
    }
}

template<typename T, bool bZeroPad>
inline __device__ __host__ int
scanSharedMemory( int numThreads )

a00H 1FH a20H 4FH a40H 5FH a60H 7FH a80H 9FH aA0H BFH aC0H DFH aE0H FFH

0 a00H 1FH a20H 4FH a40H 5FH a60H 7FH a80H 9FH aA0H BFH aC0H DFH aE0H FFH0 0 0 0 0 0 0

Figure 13.15 Interleaved zeros for warp scan.
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{
    if ( bZeroPad ) {

const int warpcount = numThreads>>5;
return (49 * warpcount + 16)*sizeof(T);

    }
    else {

return numThreads*sizeof(T);
    }
}

 Listing 13.16 scanWarp (templated). 

template<class T, bool bZeroPadded>
inline __device__ T
scanWarp( volatile T *sPartials )
{
    T t = sPartials[0];
    if ( bZeroPadded ) {

t += sPartials[- 1]; sPartials[0] = t;
t += sPartials[- 2]; sPartials[0] = t;
t += sPartials[- 4]; sPartials[0] = t;
t += sPartials[- 8]; sPartials[0] = t;
t += sPartials[-16]; sPartials[0] = t;

    }
    else {

const int tid = threadIdx.x;
const int lane = tid & 31;
if ( lane >=  1 ) { t += sPartials[- 1]; sPartials[0] = t; }
if ( lane >=  2 ) { t += sPartials[- 2]; sPartials[0] = t; }
if ( lane >=  4 ) { t += sPartials[- 4]; sPartials[0] = t; }
if ( lane >=  8 ) { t += sPartials[- 8]; sPartials[0] = t; }
if ( lane >= 16 ) { t += sPartials[-16]; sPartials[0] = t; }

    }
    return t;
}

13.5.3 WARP SHUFFLE

The SM 3.0 instruction set added the warp shuffle instruction, which enables 
registers to be exchanged within the 32 threads of a warp. The “up” and “down” 
variants of the warp shuffle can be used to implement scan and reverse scan, 
respectively. The shuffle instruction takes a register to exchange and an offset 
to apply to the lane ID. It returns a predicate that is false for inactive threads or 
threads whose offset is outside the warp.
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Listing 13.17 gives scanWarpShuffle, a device function that implements an inclu-
sive warp scan with the shuffle instruction. The template parameter is an integer, 
and typically the value 5 is passed because 5 is the base 2 logarithm of the warp 
size of 32. scanWarpShuffle uses a utility function  scanWarpShuffle_step, 
implemented in inline PTX, because the compiler does not emit efficient code to 
deal with the predicate returned by the shuffle instruction.

Listing 13.17 scanWarpShuffle device function.
__device__ __forceinline__
int
scanWarpShuffle_step(int partial, int offset)
{
    int result;
    asm(

"{.reg .u32 r0;"
".reg .pred p;"
"shfl.up.b32 r0|p, %1, %2, 0;"
"@p add.u32 r0, r0, %3;"
"mov.u32 %0, r0;}"

: "=r"(result) : "r"(partial), "r"(offset), "r"(partial));
    return result;
}

template <int levels>
__device__ __forceinline__
int
scanWarpShuffle(int mysum)
{
    for(int i = 0; i < levels; ++i)

mysum = scanWarpShuffle_step(mysum, 1 << i);
    return mysum;
}

Listing 13.18 illustrates how to extend scanWarpShuffle to scan the values 
across a thread block using shared memory. Following the same pattern as the 
block scan in Listing 13.3, scanBlockShuffle uses the warp shuffle to scan 
each warp. Each warp writes its partial sum to shared memory, and then the 
warp shuffle is used again, this time by a single warp, to scan these base sums. 
Finally, each warp adds its corresponding base sum to compute the final output 
value.

Listing 13.18 scanBlockShuffle device function.
template <int logBlockSize>
__device__
int
scanBlockShuffle(int val, const unsigned int idx)
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{
    const unsigned int lane   = idx & 31;
    const unsigned int warpid = idx >> 5;
    __shared__ int sPartials[32];

    // Intra-warp scan in each warp
    val = scanWarpShuffle<5>(val);

    // Collect per-warp results
    if (lane == 31) sPartials[warpid] = val;
    __syncthreads();

    // Use first warp to scan per-warp results
    if (warpid == 0) {

int t = sPartials[lane];
t = scanWarpShuffle<logBlockSize-5>( t );
sPartials[lane] = t;

    }

    __syncthreads();

    // Add scanned base sum for final result
    if (warpid > 0) {

val += sPartials[warpid - 1];
    }
    return val;
}

13.5.4 INSTRUCTION COUNTS

To examine the tradeoffs between the different variations of warp scan dis-
cussed in this section, we compiled for SM 3.0 and used cuobjdump to disas-
semble the three implementations.

• The non-zero-padded implementation given in Listing 13.19 is 30 instructions
and includes a great deal of branching (the SSY/.S instruction pairs push and
pop the divergence stack, as described in Section 8.4.2).

• The zero-padded implementation given in Listing 13.20 is 17 instructions
because it does not check the lane ID before performing its shared memory
reads. Note that because the shared memory operations are guaranteed to
be contained within a warp, there is no need for barrier synchronization via
the __syncthreads() intrinsic, which compiles to BAR.SYNC instructions
in SASS.

• The shuffle-based implementation given in Listing 13.21 is only 11
instructions.
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We confirmed that the shuffle-based implementation is, in fact, significantly 
faster (about 2x) than the general case given in Listing 13.19, running on a syn-
thetic workload that isolates the warp scan. 

Listing 13.19 SASS for warp scan (no zero padding).

/*0070*/     SSY 0xa0;
/*0078*/     @P0 NOP.S CC.T;
/*0088*/     LDS R5, [R3+-0x4];
/*0090*/     IADD R0, R5, R0;
/*0098*/     STS.S [R3], R0;
/*00a0*/     ISETP.LT.U32.AND P0, pt, R4, 0x2, pt;
/*00a8*/     SSY 0xd8;
/*00b0*/     @P0 NOP.S CC.T;
/*00b8*/     LDS R5, [R3+-0x8];
/*00c8*/     IADD R0, R5, R0;
/*00d0*/     STS.S [R3], R0;
/*00d8*/     ISETP.LT.U32.AND P0, pt, R4, 0x4, pt;
/*00e0*/     SSY 0x110;
/*00e8*/     @P0 NOP.S CC.T;
/*00f0*/     LDS R5, [R3+-0x10];
/*00f8*/     IADD R0, R5, R0;
/*0108*/     STS.S [R3], R0;
/*0110*/     ISETP.LT.U32.AND P0, pt, R4, 0x8, pt;
/*0118*/     SSY 0x140;
/*0120*/     @P0 NOP.S CC.T;
/*0128*/     LDS R5, [R3+-0x20];
/*0130*/     IADD R0, R5, R0;
/*0138*/     STS.S [R3], R0;
/*0148*/     ISETP.LT.U32.AND P0, pt, R4, 0x10, pt;
/*0150*/     SSY 0x178;
/*0158*/     @P0 NOP.S CC.T;
/*0160*/     LDS R4, [R3+-0x40];
/*0168*/     IADD R0, R4, R0;
/*0170*/     STS.S [R3], R0;
/*0178*/     BAR.SYNC 0x0;

Listing 13.20 SASS for warp scan (with zero padding).

/*0058*/     LDS R4, [R3+-0x4];
/*0060*/     LDS R0, [R3];
/*0068*/     IADD R4, R4, R0;
/*0070*/     STS [R3], R4;
/*0078*/     LDS R0, [R3+-0x8];
/*0088*/     IADD R4, R4, R0;
/*0090*/     STS [R3], R4;
/*0098*/     LDS R0, [R3+-0x10];
/*00a0*/     IADD R4, R4, R0;
/*00a8*/     STS [R3], R4;
/*00b0*/     LDS R0, [R3+-0x20];
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/*00b8*/     IADD R4, R4, R0;
/*00c8*/     STS [R3], R4;
/*00d0*/     LDS R0, [R3+-0x40];
/*00d8*/     IADD R0, R4, R0;
/*00e0*/     STS [R3], R0;
/*00e8*/     BAR.SYNC 0x0;

Listing 13.21 SASS for warp scan (using shuffle).

/*0050*/     SHFL.UP P0, R4, R0, 0x1, 0x0;
/*0058*/     IADD.X R3, R3, c [0x0] [0x144];
/*0060*/     @P0 IADD R4, R4, R0;
/*0068*/     SHFL.UP P0, R0, R4, 0x2, 0x0;
/*0070*/     @P0 IADD R0, R0, R4;
/*0078*/     SHFL.UP P0, R4, R0, 0x4, 0x0;
/*0088*/     @P0 IADD R4, R4, R0;
/*0090*/     SHFL.UP P0, R0, R4, 0x8, 0x0;
/*0098*/     @P0 IADD R0, R0, R4;
/*00a0*/     SHFL.UP P0, R4, R0, 0x10, 0x0;
/*00a8*/     @P0 IADD R4, R4, R0;

 13.6 Stream Compaction
Scan implementations often operate on predicates—truth values (0 or 1) com-
puted by evaluating a condition. As mentioned at the beginning of the chapter, 
an exclusive scan of predicates can be used to implement stream compaction, 
a class of parallel problems where only the “interesting” elements of an input 
array are written to the output. For predicate values where the predicate is 
equal to 1 for “interesting” elements, the exclusive scan computes the output 
index of the element.

As an example, let’s write a Scan implementation that operates on an array of 
int and emits all ints that are odd.5 Our implementation is based on Merrill’s 
reduce-then-scan with a fixed number of blocks b. 

1. A first reduction pass over the input data gives the number of elements in

each 
N
b

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥

 subarray that meets the criteria.

5.  The code is easily modified to evaluate more complicated predicates.
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2. A scan is performed on the array of b counts, giving the base index for the
output of each subarray.

3. A scan is performed on the input array, evaluating the criteria and using the
“seed” value as the base index for each subarray’s output.

Listing 13.22 shows the code for step 1: predicateReduceSubarrays_odd() 
function invokes subroutines predicateReduceSubarray_odd()and 
isOdd()to evaluate the predicate for each array element, compute the reduc-
tion, and write it to the array of base sums.

Listing 13.22 predicateReduceSubarrays_odd.

template<class T>
__host__ __device__ bool
isOdd( T x )
{
    return x & 1;
}

template<class T, int numThreads>
__device__ void
predicateReduceSubarray_odd( 
    int *gPartials, 
    const T *in, 
    size_t iBlock, 
    size_t N, 
    int elementsPerPartial )
{
    extern volatile __shared__ int sPartials[];
    const int tid = threadIdx.x;

    size_t baseIndex = iBlock*elementsPerPartial;

    int sum = 0;
    for ( int i = tid; i < elementsPerPartial; i += blockDim.x ) {

size_t index = baseIndex+i;
if ( index < N )

sum += isOdd( in[index] );
    }
    sPartials[tid] = sum;
    __syncthreads();

    reduceBlock<int,numThreads>( &gPartials[iBlock], sPartials );
}

/*
* Compute the reductions of each subarray of size
* elementsPerPartial, and write them to gPartials.
 */
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template<class T, int numThreads>
__global__ void
predicateReduceSubarrays_odd( 
    int *gPartials, 
    const T *in, 
    size_t N, 
    int elementsPerPartial )
{
    extern volatile __shared__ int sPartials[];

    for ( int iBlock = blockIdx.x; 
iBlock*elementsPerPartial < N; 
iBlock += gridDim.x )

    {
predicateReduceSubarray_odd<T,numThreads>( 

gPartials, 
in, 
iBlock, 
N, 
elementsPerPartial );

    }
}

Computing the scan of the array of base sums is done by invoking the kernel in 
Listing 13.23. Once this is done, each base sum element contains the number of 
preceding array elements for which the predicate is true, which also is the start 
index of the corresponding block’s output array.

Listing 13.23 streamCompact_odd kernel.

template<class T, bool bZeroPad>
__global__ void
streamCompact_odd( 
    T *out, 
    int *outCount,
    const int *gBaseSums, 
    const T *in, 
    size_t N, 
    size_t elementsPerPartial )
{
    extern volatile __shared__ int sPartials[];
    const int tid = threadIdx.x;
    int sIndex = scanSharedIndex<bZeroPad>( threadIdx.x );

    if ( bZeroPad ) {
sPartials[sIndex-16] = 0;

    }
    // exclusive scan element gBaseSums[blockIdx.x]
    int base_sum = 0;
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    if ( blockIdx.x && gBaseSums ) {
base_sum = gBaseSums[blockIdx.x-1];

    }
    for ( size_t i = 0;

i < elementsPerPartial;
i += blockDim.x ) {

size_t index = blockIdx.x*elementsPerPartial + i + tid;
int value = (index < N) ? in[index] : 0;
sPartials[sIndex] = (index < N) ? isOdd( value ) : 0;
__syncthreads();

scanBlock<int,bZeroPad>( sPartials+sIndex );
__syncthreads();
if ( index < N && isOdd( value ) ) {

int outIndex = base_sum;
if ( tid ) {

outIndex += sPartials[
scanSharedIndex<bZeroPad>(tid-1)];

}
out[outIndex] = value;

}
__syncthreads();

// carry forward from this block to the next.
{

int inx = scanSharedIndex<bZeroPad>( blockDim.x-1 );
base_sum += sPartials[ inx ];

}
__syncthreads();

    }
    if ( threadIdx.x == 0 && blockIdx.x == 0 ) {

if ( gBaseSums ) {
*outCount = gBaseSums[gridDim.x-1];

}
else {

int inx = scanSharedIndex<bZeroPad>( blockDim.x-1 );
*outCount = sPartials[ inx ];

}
    }
}

Listing 13.23 shows the code for step 3, which takes the input array and the 
array of base sums, evaluates the predicate again for each input array element, 
and writes the element to the correctly indexed output element if the predicate 
is true. The host code is analogous to Listing 13.12, with minor changes, and is 
not shown here.
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13.7  References (Parallel Scan 
Algorithms)
The recursive scan-then-fan is described in the NVIDIA Technical Report 
NVR-2008-003 by Sengupta et al. The recursive reduce-then-scan algorithm is 
described by Dotsenko et al. The two-level reduce-then-scan algorithm is due 
to Merrill. Merrill’s paper is extremely valuable reading, both for background 
and for an overview of negative results—for example, an attempted formulation 
of Scan modeled on Sklansky’s minimum-depth circuit whose performance was 
disappointing.
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 13.8  Further Reading (Parallel Prefix 
Sum Circuits)
There is a rich literature on circuits to compute parallel prefix sums. Besides 
the Brent-Kung, Sklansky, and Kogge-Stone formulations, other examples of 
scan circuits include Ladner-Fischer and more recent work by Lin and Hsiao. 
Hinze describes an algebra of scans that can be used to reason about Scan 
implementations. The details of his work are outside the scope of this book, but 
his paper is highly recommended reading. 

Sean Baxter’s Web site, http://www.moderngpu.com, is an excellent resource 
for optimized Scan and its applications.

Brent, Richard P., and H.T. Kung. A regular layout for parallel adders. IEEE 
Transactions on Computers C-31, 1982, pp. 260–264.

Hinze, Ralf. An algebra of scans. In Mathematics of Program Construction, 
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Sklansky, J. Conditional sum addition logic. IRE Trans. Electron. Comput. 9 (2), 
June 1960, pp. 226–231. 
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Chapter 14 

N-Body

N-Body computations are a family of computation that models a set of particles 
(known as bodies), each of which must consider all the other bodies during the 
computation. Example applications of N-Body include (but are not limited to) the 
following.

• Gravitational simulation in which stars exert gravitational forces

• Molecular modeling in which ions exert electrostatic forces

• Particle systems in computer graphics to simulate water and fire

• “Boids,” a technique for computer animation designed to simulate flocking
behavior

Typically the paths of the bodies are being simulated per timestep, and com-
puting each timestep costs O(N2) operations for N bodies. In most formulations, 
the forces quickly decrease with distance, leading to hierarchical algorithms in 
which (for example) the mass and location of the center-of-mass for a collec-
tion of bodies are used to avoid performing the full O(N2) computations needed 
otherwise. Barnes-Hut algorithms reduce the runtime to O(NlgN) by introducing 
a spatial hierarchy that approximates the forces between clusters of objects; for 
applications where the “leaf nodes” of the computation contain k bodies, O(k2) 
computations must be performed in a given leaf. It is this O(k2) portion of the 
computation at which GPUs excel.

N-Body workloads have proven the most effective way for GPUs to approach 
their theoretical limit in processing power. In their GPU Gems 3 paper “Fast 
N-Body Simulation with CUDA,”1 Harris et al. frequently cite this theoretical limit 

1 .  http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html
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in explaining why further performance improvements are not possible. The GPU 
in question, NVIDIA GeForce 8800 GTX, was so effective at N-Body computa-
tions that it outperformed custom GRAPE-6 hardware that had been specifically 
designed to perform astrophysics computation.

In the hopes that readers will be able to “plug in” their computation and find the 
fastest method, this chapter illustrates several different ways to implement 
N-Body and related computations using CUDA.

• A naïve implementation illustrates the technique and underscores the effec-
tiveness of caches and the importance of loop unrolling.

• A shared memory implementation (for our gravitational computation, the
fastest) duplicates Harris et al.’s result, tiling the computation over thread-
block-sized collections of bodies to minimize memory latencies in the inner-
most loop.

• A constant memory implementation, inspired by Stone et al.’s implementation
of Direct Coulomb Summation (DCS),2 uses constant memory to hold body
descriptions, freeing shared memory for other uses.

Because readers’ applications may not happen to be gravitational N-Body, these 
different implementations are not presented with the singular goal of optimizing 
that particular computation. It may make sense to adapt a different implemen-
tation, depending on the target SM architecture, problem size, and details of the 
central calculation. 

Since gravitational N-Body has been presented as a poster child for theoret-
ical performance of GPUs, with speedups of up to 400x reported, the chapter 
concludes by presenting an implementation optimized for CPUs. By rewriting 
the calculation to use SSE (Streaming SIMD Extensions) and multithreading, a 
speedup of more than 300x is obtained. Nevertheless, as reported in Section 
14.9, a GK104-based GPU is significantly faster than a high-end server with a 
pair of Intel Xeon E2670 CPUs. The CUDA implementation is faster, more read-
able, and more maintainable than the optimized CPU implementation.

Throughout the chapter, performance results are reported using a server-class 
machine with two Xeon E2670 “Sandy Bridge” CPUs and up to four GK104 GPUs 
that are underclocked to conserve power and minimize heat dissipation. Rather 
than reporting results in GFLOPS, we report performance results in terms of 
body-body interactions per second.

2.  www.ncbi.nlm.nih.gov/pubmed/17894371
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 14.1 Introduction
Given N bodies with positions xi and velocities vi for 1 � i � N, the force vector fij 
on body i caused by body j is given by 
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i j

ij

ij

ij
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where mi and mj are the masses of bodies i and j, respectively; dij is the differ-
ence vector from body i to body j; and G is the gravitational constant. Due to 
divide overflow, this express diverges for dij with small magnitude; to compen-
sate, it is common practice to apply a softening factor that models the interaction 
between two Plummer masses—masses that behave as if they were spherical 
galaxies. For a softening factor �, the resulting expression is
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The total force Fi on body i, due to its interactions with the other N – 1 bodies, is 
obtained by summing all interactions.
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To update the position and velocity of each body, the force (acceleration) applied 
for body i is ai = Fi/mi, so the mi term can be removed from the numerator, as 
follows.
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Like Nyland et al., we use a leapfrog Verlet algorithm to apply a timestep to 
the simulation. The values of the positions and velocities are offset by half a 
timestep from one another, a characteristic that is not obvious from the code 
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because in our sample, the positions and velocities are initially assigned random 
values. Our leapfrog Verlet integration updates the velocity, then the position.
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This method is just one of many different integration algorithms that can be 
used to update the simulation, but an extensive discussion is outside the scope 
of this book.

Since the integration has a runtime of O(N) and computing the forces has a run-
time of O(N2), the biggest performance benefits from porting to CUDA stem from 
optimizing the force computation. Optimizing this portion of the calculation is the 
primary focus of this chapter.

14.1.1 A MATRIX OF FORCES

A naïve implementation of the N-Body algorithm consists of a doubly nested 
loop that, for each body, computes the sum of the forces exerted on that body 
by every other body. The O(N2) body-body forces can be thought of as an N×N 
matrix, where the sum of each row i is the total gravitational force exerted on 
body i.

i ij
j

N

1

F f∑=
=

The diagonals of this “matrix” are zeroes corresponding to each body’s influence 
on itself, which can be ignored.

Because each element in the matrix may be computed independently, there is a 
tremendous amount of potential parallelism. The sum of each row is a reduction 
that may be computed by a single thread or by combining results from multiple 
threads as described in Chapter 12.

Figure 14.1 shows an 8-body “matrix” being processed. The rows correspond 
to the sums that are the output of the computation. When using CUDA, N-Body 
implementations typically have one thread compute the sum for each row.
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Since every element in the “matrix” is independent, they also may be computed 
in parallel within a given row: Compute the sum of every fourth element, for 
example, and then add the four partial sums to compute the final output. Har-
ris et al. describe using this method for small N where there are not enough 
threads to cover the latencies in the GPU: Launch more threads, compute partial 
sums in each thread, and accumulate the final sums with reductions in shared 
memory. Harris et al. reported a benefit for N ≤ 4096.

For physical forces that are symmetric (i.e., the force exerted on body i by body j 
is equal in magnitude but has the opposite sign of the force exerted by body j 
on i), such as gravitation, the transpose “elements” of the matrix have the oppo-
site sign.

f fij ji= −

In this case, the “matrix” takes the form shown in Figure 14.2. When exploiting 
the symmetry, an implementation need only compute the upper right triangle of 
the “matrix,” performing about half as many body-body computations.3

3.  
N N 1

2

( )−
, to be exact.

Figure 14.1 “Matrix” of forces (8 bodies).



N-BODY

426

The problem is that unlike the brute force method outlined in Figure 14.1, when 
exploiting symmetric forces, different threads may have contributions to add 
to a given output sum. Partial sums must be accumulated and either written 
to temporary locations for eventual reduction or the system must protect the 
final sums with mutual exclusion (by using atomics or thread synchronization). 
Since the body-body computation is about 20 FLOPS (for single precision) or 30 
FLOPS (for double precision), subtracting from a sum would seem like a decisive 
performance win.

Unfortunately, the overhead often overwhelms the benefit of performing half as 
many body-body computations. For example, a completely naïve implementa-
tion that does two (2) floating-point atomic adds per body-body computation is 
prohibitively slower than the brute force method.

Figure 14.3 shows a compromise between the two extremes: By tiling the com-
putation, only the upper right diagonal of tiles needs to be computed. For 
a tile size of k, this method performs k2 body-body computations each on 
N k N k 1

2

( )−
 nondiagonal tiles, plus k(k –1) body-body computations each on

Figure 14.2 Matrix with symmetric forces.
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N⁄k diagonal tiles. For large N, the savings in body-body computations are about 
the same,4 but because the tiles can locally accumulate partial sums to contrib-
ute to the final answer, the synchronization overhead is reduced. Figure 14.3 
shows a tile size with k = 2, but a tile size corresponding to the warp size (k = 32) 
is more practical.

Figure 14.4 shows how the partial sums for a given tile are computed. The 
partial sums for the rows and columns are computed—adding and subtracting, 
respectively—in order to arrive at partial sums that must be added to the corre-
sponding output sums.

The popular AMBER application for molecular modeling exploits symmetry of 
forces, performing the work on tiles tuned to the warp size of 32,5 but in exten-
sive testing, the approach has not proven fruitful for the more lightweight com-
putation described here.

4.  For example, with N = 65536 and k = 32, the tiled approach performs 51.5% of the body-body 
computations performed by the brute force algorithm, or 3% more than the ideal symmetric 
algorithm.

5.  Götz, Andreas, Mark J. Williamson, Dong Xu, Duncan Poole, Scott Le Grand, and Ross C. Walker. 
Routine microsecond molecular dynamics simulations with AMBER on GPUs—Part I: General-
ized Born, J. Chem. Theory Comput. 8, no. 5 (2012), pp. 1542−1555.

Figure 14.3 Tiled N-Body (k = 2).
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 14.2 Naïve Implementation
Listing 14.1 gives a function that implements the body-body interaction 
described in the previous section; by annotating it with both the __host__ and 
__device__ keywords, the CUDA compiler knows it is valid for both the CPU 
and GPU. The function is templated so it may be invoked for both float and 
double values (though for this book, only float is fully implemented). It passes 
back the 3D force vector in the (fx, fy, fz) tuple.

Listing 14.1 bodyBodyInteraction.

template <typename T>
__host__ __device__ void bodyBodyInteraction(
    T& ax, T& ay, T& az, 
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Figure 14.4 N-Body tile.



429

14.2 NAÏVE IMPLEMENTATION 

    T x0, T y0, T z0,
    T x1, T y1, T z1, T mass1, 
    T softeningSquared)
{
    T dx = x1 - x0;
    T dy = y1 - y0;
    T dz = z1 - z0;

    T distSqr = dx*dx + dy*dy + dz*dz;
    distSqr += softeningSquared;

    T invDist = (T)1.0 / (T)sqrt(distSqr);

    T invDistCube =  invDist * invDist * invDist;
    T s = mass1 * invDistCube;

    ax = dx * s;
    ay = dy * s;
    az = dz * s;
}

Listing 14.2 gives the function that computes the total gravitational force exerted 
on each body. For each body, it loads that body’s position into (myX, myY, 
myZ) and then, for every other body, calls bodyBodyInteraction<float> 
to compute the force exerted between the two. The “AOS” in the function name 
denotes that the input data comes in the form of an “array of structures”: four 
packed float values that give the (x, y, z, mass) tuple that specifies a body’s 
position and mass. The float4 representation is a convenient size for GPU 
implementation, with native hardware support for loads and stores. Our opti-
mized CPU implementations, described in Section 14.9, use so-called “structure 
of arrays” (SOA) representation where four arrays of float contain packed x, y, z, 
and mass elements for easier processing by SIMD instruction sets. SOA is not a 
good fit for GPU implementation because the 4 base pointers needed by an SOA 
representation cost too many registers.

Listing 14.2 ComputeGravitation_AOS (CPU implementation).

float
ComputeGravitation_AOS( 
    float *force, 
    float *posMass,
    float softeningSquared,
    size_t N
)
{
    chTimerTimestamp start, end;
    chTimerGetTime( &start );
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    for ( size_t i = 0; i < N; i++ )
    {
        float ax = 0.0f;
        float ay = 0.0f;
        float az = 0.0f;
        float myX = posMass[i*4+0];
        float myY = posMass[i*4+1];
        float myZ = posMass[i*4+2];

        for ( size_t j = 0; j < N; j++ ) {
            float acc[3];
            float bodyX = posMass[j*4+0];
            float bodyY = posMass[j*4+1];
            float bodyZ = posMass[j*4+2];
            float bodyMass = posMass[j*4+3];

            bodyBodyInteraction<float>(
                ax, ay, az, 
                myX, myY, myZ,
                bodyX, bodyY, bodyZ, bodyMass,
                softeningSquared );
            ax += acc[0];
            ay += acc[1];
            az += acc[2];
        }

        force[3*i+0] = ax;
        force[3*i+1] = ay;
        force[3*i+2] = az;
    }
    chTimerGetTime( &end );
    return (float) chTimerElapsedTime( &start, &end ) * 1000.0f;
}

Listing 14.3 gives the GPU equivalent to Listing 14.2. For each body, it sums the 
accelerations due to every other body, then writes that value out to the force 
array. The L1 and L2 caches in SM 2.x and later GPUs accelerate this workload 
well, since there is a great deal of reuse in the innermost loop. 

Both the outer loop and the inner loop cast the input array posMass to float4 
to ensure that the compiler correctly emits a single 16-byte load instruction. 
Loop unrolling is an oft-cited optimization for N-Body calculations on GPUs, 
and it’s not hard to imagine why: Branch overhead is much higher on GPUs than 
CPUs, so the reduced instruction count per loop iteration has a bigger bene-
fit, and the unrolled loop exposes more opportunities for ILP (instruction level 
parallelism), in which the GPU covers latency of instruction execution as well as 
memory latency.
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To get the benefits of loop unrolling in our N-Body application, we need only 
insert the line

#pragma unroll <factor>

in front of the for loop over j. Unfortunately, the optimal loop unrolling factor 
must be determined empirically. Table 14.1 summarizes the effects of unrolling 
the loop in this kernel.

In the case of this kernel, in the absence of unrolling, it only delivers 25 billion 
body-body interactions per second. Even an unroll factor of 2 increases this 
performance to 30 billion; increasing the unroll factor to 16 delivers the highest 
performance observed with this kernel: 34.3 billion body-body interactions per 
second, a 37% performance improvement.

Listing 14.3 ComputeNBodyGravitation_GPU_AOS.

template<typename T>
__global__ void
ComputeNBodyGravitation_GPU_AOS( 
    T *force, 
    T *posMass, 
    size_t N, 
    T softeningSquared )
{
    for ( int i = blockIdx.x*blockDim.x + threadIdx.x;

i < N;
i += blockDim.x*gridDim.x )

    {
T acc[3] = {0};
float4 me = ((float4 *) posMass)[i];
T myX = me.x;
T myY = me.y;

Table 14.1 Loop Unrolling in the Naïve Kernel

UNROLL FACTOR

BODY-BODY INTERACTIONS 

PER SECOND (BILLIONS)

1 25

2 30

16 34.3
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T myZ = me.z;
for ( int j = 0; j < N; j++ ) {

float4 body = ((float4 *) posMass)[j];
float fx, fy, fz;
bodyBodyInteraction( 

&fx, &fy, &fz, 
myX, myY, myZ, 
body.x, body.y, body.z, body.w, 
softeningSquared);

acc[0] += fx;
acc[1] += fy;
acc[2] += fz;

}
force[3*i+0] = acc[0];
force[3*i+1] = acc[1];
force[3*i+2] = acc[2];

    }
}

 14.3 Shared Memory
There is enough locality and reuse in the innermost loop of the N-Body 
 calculation that caches work well without any involvement from the program-
mer; but on CUDA architectures, there is a benefit to using shared memory to 
explicitly cache the data6, as shown in Listing 14-4. The inner loop is tiled using 
two loops: an outer one that strides through the N bodies, a thread block at a 
time, loading shared memory, and an inner one that iterates through the body 
descriptions in shared memory. Shared memory always has been optimized 
to broadcast to threads within a warp if they are reading the same shared 
 memory location, so this usage pattern is a good fit with the hardware 
architecture. 

This approach is the same one reported by Harris et al. that achieved the high-
est performance for large N and that approached the theoretical limits of the 
GPU’s performance.

Listing 14.4 ComputeNBodyGravitation_Shared.
__global__ void
ComputeNBodyGravitation_Shared( 
    float *force, 

6.  Shared memory is a must on SM 1.x architectures, which did not include caches. But it turns out
to be a win on all CUDA architectures, albeit a slight one on SM 2.x and SM 3.x. 
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    float *posMass, 
    float softeningSquared, 
    size_t N )
{
    float4 *posMass4 = posMass;
    extern __shared__ float4 shPosMass[];
    for ( int i = blockIdx.x*blockDim.x + threadIdx.x;

i < N;
i += blockDim.x*gridDim.x )

    {
float acc[3] = {0};
float4 myPosMass = posMass4[i];

#pragma unroll 32
for ( int j = 0; j < N; j += blockDim.x ) {

shPosMass[threadIdx.x] = posMass4[j+threadIdx.x];
__syncthreads();
for ( size_t k = 0; k < blockDim.x; k++ ) {

float fx, fy, fz;
float4 bodyPosMass = shPosMass[k];

bodyBodyInteraction( 
&fx, &fy, &fz, 
myPosMass.x, myPosMass.y, myPosMass.z, 
bodyPosMass.x, 
bodyPosMass.y, 
bodyPosMass.z, 
bodyPosMass.w, 
softeningSquared );

acc[0] += fx;
acc[1] += fy;
acc[2] += fz;

}
__syncthreads();

}
force[3*i+0] = acc[0];
force[3*i+1] = acc[1];
force[3*i+2] = acc[2];

    }
}

As with the previous kernel, loop unrolling delivers higher performance. 
Table 14.2 summarizes the effects of loop unrolling in the shared mem-
ory implementation. The optimal unroll factor of 4 delivers 18% higher 
performance.
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 14.4 Constant Memory
Stone et al. describe a method of Direct Coulomb Summation (DCS) that uses 
shared memory to hold potential map lattice points for a molecular modeling 
application7 so it must use constant memory to hold body descriptions. List-
ing 14.5 shows a CUDA kernel that uses the same method for our gravitational 
simulation. Since only 64K of constant memory is available to developers for a 
given kernel, each kernel invocation can only process about 4000 16-byte body 
descriptions. The constant g_bodiesPerPass specifies the number of bodies 
that can be considered by the innermost loop. 

Since every thread in the innermost loop is reading the same body description, 
constant memory works well because it is optimized to broadcast reads to all 
threads in a warp.

Listing 14.5 N-Body (constant memory).
const int g_bodiesPerPass = 4000;
__constant__ __device__ float4 g_constantBodies[g_bodiesPerPass];

template<typename T>
__global__ void
ComputeNBodyGravitation_GPU_AOS_const( 
    T *force, 
    T *posMass, 
    T softeningSquared,

7.  www.ncbi.nlm.nih.gov/pubmed/17894371

Table 14.2 Loop Unrolling in the Shared Memory Kernel

UNROLL FACTOR

BODY-BODY INTERACTIONS 

PER SECOND (BILLIONS)

1 38.2

2 44.5

3 42.6

4 45.2
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    size_t n, 
    size_t N )
{
    for ( int i = blockIdx.x*blockDim.x + threadIdx.x;

i < N;
i += blockDim.x*gridDim.x )

    {
T acc[3] = {0};
float4 me = ((float4 *) posMass)[i];
T myX = me.x;
T myY = me.y;
T myZ = me.z;
for ( int j = 0; j < n; j++ ) {

float4 body = g_constantBodies[j];
float fx, fy, fz;
bodyBodyInteraction( 

&fx, &fy, &fz, 
myX, myY, myZ, 
body.x, body.y, body.z, body.w, 
softeningSquared);

acc[0] += fx;
acc[1] += fy;
acc[2] += fz;

}
force[3*i+0] += acc[0];
force[3*i+1] += acc[1];
force[3*i+2] += acc[2];

    }
}

As shown in Listing 14.6, the host code must loop over the bodies, calling 
cudaMemcpyToSymbolAsync() to load the constant memory before each 
kernel invocation. 

Listing 14.6 Host code (constant memory N-Body).
float
ComputeNBodyGravitation_GPU_AOS_const(
    float *force, 
    float *posMass,
    float softeningSquared,
    size_t N
)
{
    cudaError_t status;
    cudaEvent_t evStart = 0, evStop = 0;
    float ms = 0.0;
    size_t bodiesLeft = N;

    void *p;
    CUDART_CHECK( cudaGetSymbolAddress( &p, g_constantBodies ) );
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    CUDART_CHECK( cudaEventCreate( &evStart ) );
    CUDART_CHECK( cudaEventCreate( &evStop ) );
    CUDART_CHECK( cudaEventRecord( evStart, NULL ) );
    for ( size_t i = 0; i < N; i += g_bodiesPerPass ) {

// bodiesThisPass = max(bodiesLeft, g_bodiesPerPass);
size_t bodiesThisPass = bodiesLeft;
if ( bodiesThisPass > g_bodiesPerPass ) {

bodiesThisPass = g_bodiesPerPass;
}
CUDART_CHECK( cudaMemcpyToSymbolAsync( 

g_constantBodies,
((float4 *) posMass)+i,
bodiesThisPass*sizeof(float4),
0,
cudaMemcpyDeviceToDevice,
NULL ) );

ComputeNBodyGravitation_GPU_AOS_const<float> <<<300,256>>>( 
force, posMass, softeningSquared, bodiesThisPass, N );

bodiesLeft -= bodiesThisPass;
    }
    CUDART_CHECK( cudaEventRecord( evStop, NULL ) );
    CUDART_CHECK( cudaDeviceSynchronize() );
    CUDART_CHECK( cudaEventElapsedTime( &ms, evStart, evStop ) );
Error:
    cudaEventDestroy( evStop );
    cudaEventDestroy( evStart );
    return ms;
}

 14.5 Warp Shuffle
SM 3.x added a warp shuffle instruction (described in Section 8.6.1) that enables 
threads to interchange data between registers without writing the data to 
shared memory. The __shfl() intrinsic can be used to broadcast one thread’s 
register value to all other threads in the warp. As shown in Listing 14.4, instead 
of using tiles sized to the threadblock and using shared memory, we can use 
tiles of size 32 (corresponding to the warp size) and broadcast the body descrip-
tion read by each thread to the other threads within the warp.

Interestingly, this strategy has 25% lower performance than the shared mem-
ory implementation (34 billion as opposed to 45.2 billion interactions per sec-
ond). The warp shuffle instruction takes about as long as a read from shared 
memory, and the computation is tiled at the warp size (32 threads) rather than 
a thread block size. So it seems the benefits of warp shuffle are best realized 
when replacing both a write and a read to shared memory, not just a read. 
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Warp shuffle should only be used if the kernel needs shared memory for other 
purposes.

Listing 14.7 ComputeNBodyGravitation_Shuffle.
__global__ void
ComputeNBodyGravitation_Shuffle( 
    float *force, 
    float *posMass, 
    float softeningSquared, 
    size_t N )
{
    const int laneid = threadIdx.x & 31;
    for ( int i = blockIdx.x*blockDim.x + threadIdx.x;

i < N;
i += blockDim.x*gridDim.x )

    {
float acc[3] = {0};
float4 myPosMass = ((float4 *) posMass)[i];

for ( int j = 0; j < N; j += 32 ) {
float4 shufSrcPosMass = ((float4 *) posMass)[j+laneid];

#pragma unroll 32
for ( int k = 0; k < 32; k++ ) {

float fx, fy, fz;
float4 shufDstPosMass;

shufDstPosMass.x = __shfl( shufSrcPosMass.x, k );
shufDstPosMass.y = __shfl( shufSrcPosMass.y, k );
shufDstPosMass.z = __shfl( shufSrcPosMass.z, k );
shufDstPosMass.w = __shfl( shufSrcPosMass.w, k );

bodyBodyInteraction(
&fx, &fy, &fz, 
myPosMass.x, myPosMass.y, myPosMass.z, 
shufDstPosMass.x, 
shufDstPosMass.y, 
shufDstPosMass.z, 
shufDstPosMass.w, 
softeningSquared);

acc[0] += fx;
acc[1] += fy;
acc[2] += fz;

}
}

force[3*i+0] = acc[0];
force[3*i+1] = acc[1];
force[3*i+2] = acc[2];

    }
}
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14.6 Multiple GPUs and Scalability
Because the computational density is so high, N-Body scales well across multi-
ple GPUs. Portable pinned memory is used to hold the body descriptions so they 
can easily be referenced by all GPUs in the system. For a system containing k 
GPUs, each GPU is assigned N/k forces to compute.8 Our multi-GPU implemen-
tation of N-Body is featured in Chapter 9. The rows are evenly divided among 
GPUs, the input data is broadcast to all GPUs via portable pinned memory, and 
each GPU computes its output independently. CUDA applications that use multi-
ple GPUs can be multithreaded or single-threaded. Chapter 9 includes optimized 
N-Body implementations that illustrate both approaches.

For N-Body, the single- and multithreaded implementations have the same per-
formance, since there is little work for the CPU to do. Table 14.3 summarizes the 
scalability of the multithreaded implementation for a problem size of 96K bodies 
and up to 4 GPUs. The efficiency is the percentage of measured performance as 
compared to perfect scaling. There is room for improvement over this result, 
since the performance results reported here include allocation and freeing of 
device memory on each GPU for each timestep. 

8.  Our implementation requires that N be evenly divisible by k.

Table 14.3 N-Body Scalability

NUMBER 

OF GPUS

PERFORMANCE (BILLIONS OF 

BODY-BODY INTERACTIONS 

PER SECOND) EFFICIENCY

1 44.1 100%

2 85.6 97.0%

3 124.2 93.4%

4 161.5 91.6%



439

14.7 CPU OPTIMIZATIONS 

 14.7 CPU Optimizations
Papers on CUDA ports often compare against CPU implementations that are not 
optimized for highest performance. Although CUDA hardware generally is faster 
than CPUs at the workloads described in these papers, the reported speedup 
is often higher than it would be if the CPU implementation had been optimized 
properly. 

To gain some insight into the tradeoffs between CUDA and modern CPU optimi-
zations, we optimized the N-Body computation using two key strategies that are 
necessary for multicore CPUs to achieve peak performance. 

• SIMD (“single instruction multiple data”) instructions can perform multiple
single-precision floating-point operations in a single instruction.

• Multithreading achieves near-linear speedups in the number of execution
cores available in the CPU. Multicore CPUs have been widely available since
2006, and N-Body computations are expected to scale almost linearly in the
number of cores.

Since N-Body computations have such high computational density, we will not 
concern ourselves with affinity (for example, trying to use NUMA APIs to associ-
ate memory buffers with certain CPUs). There is so much reuse in this compu-
tation that caches in the CPU keep external memory traffic to a trickle.

The Streaming SIMD Extensions (SSE) instructions were added to Intel’s x86 
architecture in the late 1990s, starting with the Pentium III. They added a set of 
eight 128-bit XMM registers that could operate on four packed 32-bit  floating-point 
values.9 For example, the ADDPS instruction performs four  floating-point additions 
in parallel on corresponding packed floats in XMM registers.

When porting N-Body to the SSE instruction set, the AOS (array of structures) 
memory layout that we have been using becomes problematic. Although the 
body descriptions are 16 bytes, just like XMM registers, the instruction set 
requires us to rearrange the data such that the X, Y, Z, and Mass components 
are packed into separate registers. Rather than perform this operation when 

9.  Intel later added instructions that could consider the XMM registers as packed integers (up to 16
bytes) or two packed double-precision floating-point values, but we do not use any of those fea-
tures. We also do not use the AVX (“Advanced Vector Extensions”) instruction set. AVX features 
registers and instructions that support SIMD operations that are twice as wide (256-bit), so it 
potentially could double performance.
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computing the body-body interactions, we rearrange the memory layout as 
structure of arrays: Instead of a single array of float4 (each element being the 
X, Y, Z, and Mass values for a given body), we use four arrays of float, with an 
array of X values, an array of Y values, and so on. With the data rearranged in 
this way, four bodies’ descriptions can be loaded into XMM registers with just 4 
machine instructions; the difference vectors between four bodies’ positions can 
be computed with just 3 SUBPS instructions; and so on.

To simplify SSE coding, Intel has worked with compiler vendors to add cross-
platform support for the SSE instruction set. A special data type __m128 corre-
sponds to the 128-bit register and operand size and intrinsic functions such as 
_mm_sub_ps() that correspond to the SUBPS instruction. 

For purposes of our N-Body implementation, we also need a full-precision 
reciprocal square root implementation. The SSE instruction set has an instruc-
tion RSQRTPS that computes an approximation of the reciprocal square root, 
but its 12-bit estimate must be refined by a Newton-Raphson iteration to achieve 
full float precision.10

x RSQRTSS a
0 ( )=

x
x ax3

21

0 0
2( )

=
−

Listing 14.8 gives an SSE implementation of the body-body computation that 
takes the 2 bodies’ descriptions as __m128 variables, computes the 4 body-body 
forces in parallel, and passes back the 3 resulting force vectors. Listing 14.8 is 
functionally equivalent to Listings 14.1 and 14.2, though markedly less readable. 
Note that the x0, y0, and z0 variables contain descriptions of the same body, 
replicated across the __m128 variable four times.

Listing 14.8 Body-body interaction (SSE version).
static inline __m128 
rcp_sqrt_nr_ps(const __m128 x)
{
    const __m128

nr = _mm_rsqrt_ps(x),
muls    = _mm_mul_ps(_mm_mul_ps(nr, nr), x),
beta    = _mm_mul_ps(_mm_set_ps1(0.5f), nr),
gamma   = _mm_sub_ps(_mm_set_ps1(3.0f), muls);

10.  This code is not present in the SSE compiler support and is surprisingly difficult to find. Our
implementation is from http://nume.googlecode.com/svn/trunk/fosh/src/sse_approx.h.
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    return _mm_mul_ps(beta, gamma);
}

static inline __m128
horizontal_sum_ps( const __m128 x )
{
    const __m128 t = _mm_add_ps(x, _mm_movehl_ps(x, x));
    return _mm_add_ss(t, _mm_shuffle_ps(t, t, 1));
}

inline void
bodyBodyInteraction(
    __m128& f0, 
    __m128& f1, 
    __m128& f2,

    const __m128& x0, 
    const __m128& y0, 
    const __m128& z0,

    const __m128& x1, 
    const __m128& y1, 
    const __m128& z1, 
    const __m128& mass1,

    const __m128& softeningSquared )
{
    __m128 dx = _mm_sub_ps( x1, x0 );
    __m128 dy = _mm_sub_ps( y1, y0 );
    __m128 dz = _mm_sub_ps( z1, z0 );

    __m128 distSq = 
_mm_add_ps( 

_mm_add_ps( 
_mm_mul_ps( dx, dx ), 
_mm_mul_ps( dy, dy ) 

), 
_mm_mul_ps( dz, dz ) 

);
    distSq = _mm_add_ps( distSq, softeningSquared );

    __m128 invDist = rcp_sqrt_nr_ps( distSq );
    __m128 invDistCube = 

_mm_mul_ps( 
invDist, 
_mm_mul_ps( 

invDist, invDist ) 
);

    __m128 s = _mm_mul_ps( mass1, invDistCube );

    f0 = _mm_add_ps( a0, _mm_mul_ps( dx, s ) );
    f1 = _mm_add_ps( a1, _mm_mul_ps( dy, s ) );
    f2 = _mm_add_ps( a2, _mm_mul_ps( dz, s ) );
}
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To take advantage of multiple cores, we must spawn multiple threads and have 
each thread perform part of the computation. The same strategy is used for 
multiple CPU cores as for multiple GPUs:11 Just evenly divide the output rows 
among threads (one per CPU core) and, for each timestep, have the “parent” 
thread signal the worker threads to perform their work and then wait for them 
to finish. Since thread creation can be expensive and can fail, our application 
creates a pool of CPU threads at initialization time and uses thread synchroniza-
tion to make the worker threads wait for work and signal completion. 

The portable CUDA handbook threading library, described in Section A.2, imple-
ments a function processorCount() that returns the number of CPU cores 
on the system and a C++ class workerThread with methods to create and 
destroy CPU threads and delegate work synchronously or asynchronously. After 
delegating asynchronous work with the delegateAsynchronous() member 
function, the static function waitAll() is used to wait until the worker threads 
are finished.

Listing 14.9 gives the code that dispatches the N-Body calculation to worker 
CPU threads. The sseDelegation structures are used to communicate the 
delegation to each worker CPU thread; the delegateSynchronous function 
takes a pointer-to-function to execute and a void * that will be passed to that 
function (in this case, the void * points to the corresponding CPU thread’s 
 sseDelegation structure).

Listing 14.9 Multithreaded SSE (master thread code).
float
ComputeGravitation_SSE_threaded( 
    float *force[3], 
    float *pos[4],
    float *mass,
    float softeningSquared,
    size_t N
)
{
    chTimerTimestamp start, end;
    chTimerGetTime( &start );

    {
sseDelegation *psse = new sseDelegation[g_numCPUCores];
size_t bodiesPerCore = N / g_numCPUCores;
if ( N % g_numCPUCores ) {

return 0.0f;
}

11.  In fact, we used the same platform-independent threading library to implement the multi-
threaded multi-GPU support in Chapter 9.
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for ( size_t i = 0; i < g_numCPUCores; i++ ) {
psse[i].hostPosSOA[0] = pos[0];
psse[i].hostPosSOA[1] = pos[1];
psse[i].hostPosSOA[2] = pos[2];
psse[i].hostMassSOA = mass;
psse[i].hostForceSOA[0] = force[0];
psse[i].hostForceSOA[1] = force[1];
psse[i].hostForceSOA[2] = force[2];
psse[i].softeningSquared = softeningSquared;

psse[i].i = bodiesPerCore*i;
psse[i].n = bodiesPerCore;
psse[i].N = N;

g_CPUThreadPool[i].delegateAsynchronous( 
sseWorkerThread, 
&psse[i] );

}
workerThread::waitAll( g_CPUThreadPool, g_numCPUCores );
delete[] psse;

    }

    chTimerGetTime( &end );

    return (float) chTimerElapsedTime( &start, &end ) * 1000.0f;
}

Finally, Listing 14.10 gives the sseDelegation structure and the delegation 
function invoked by ComputeGravitation_SSE_threaded in Listing 14.9. It 
performs the body-body calculations four at a time, accumulating four partial 
sums that are added together with horizontal_sum_ps()before storing the 
final output forces. This function, along with all the functions that it calls, uses 
the SOA memory layout for all inputs and outputs.

Listing 14.10 sseWorkerThread.
struct sseDelegation {
    size_t i;   // base offset for this thread to process
    size_t n;   // size of this thread's problem
    size_t N;   // total number of bodies

    float *hostPosSOA[3];
    float *hostMassSOA;
    float *hostForceSOA[3];
    float softeningSquared;

};

void
sseWorkerThread( void *_p )
{
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    sseDelegation *p = (sseDelegation *) _p;
    for (int k = 0; k < p->n; k++)
    {

int i = p->i + k;
__m128 ax = _mm_setzero_ps();
__m128 ay = _mm_setzero_ps();
__m128 az = _mm_setzero_ps();
__m128 *px = (__m128 *) p->hostPosSOA[0];
__m128 *py = (__m128 *) p->hostPosSOA[1];
__m128 *pz = (__m128 *) p->hostPosSOA[2];
__m128 *pmass = (__m128 *) p->hostMassSOA;
__m128 x0 = _mm_set_ps1( p->hostPosSOA[0][i] );
__m128 y0 = _mm_set_ps1( p->hostPosSOA[1][i] );
__m128 z0 = _mm_set_ps1( p->hostPosSOA[2][i] );

for ( int j = 0; j < p->N/4; j++ ) {

bodyBodyInteraction( 
ax, ay, az,
x0, y0, z0, 
px[j], py[j], pz[j], pmass[j], 
_mm_set_ps1( p->softeningSquared ) );

}
// Accumulate sum of four floats in the SSE register
ax = horizontal_sum_ps( ax );
ay = horizontal_sum_ps( ay );
az = horizontal_sum_ps( az );

_mm_store_ss( (float *) &p->hostForceSOA[0][i], ax );
_mm_store_ss( (float *) &p->hostForceSOA[1][i], ay );
_mm_store_ss( (float *) &p->hostForceSOA[2][i], az );

    }
}

 14.8 Conclusion
Since instruction sets and architectures differ, performance is measured in 
body-body interactions per second rather than GFLOPS. Performance was mea-
sured on a dual-socket Sandy Bridge system with two E5-2670 CPUs (similar to 
Amazon’s cc2.8xlarge instance type), 64GB of RAM, and four (4) GK104 GPUs 
clocked at about 800MHz. The GK104s are on two dual-GPU boards plugged into 
16-lane PCI Express 3.0 slots.

Table 14.4 summarizes the speedups due to CPU optimizations. All measure-
ments were performed on a server with dual Xeon E2670 CPUs (2.6GHz). On this 
system, the generic CPU code in Listing 14.2 performs 17.2M interactions per 
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second; the single-threaded SSE code performs 307M interactions per second, 
some 17.8x faster! As expected, multithreading the SSE code achieves good 
speedups, with 32 CPU threads delivering 5650M interactions per second, about 
18x as fast as one thread. Between porting to SSE and multithreading, the total 
speedup on this platform for CPUs is more than 300x.

Because we got such a huge performance improvement from our CPU optimi-
zations, the performance comparisons aren’t as pronounced in favor of GPUs 
as most.12 The highest-performing kernel in our testing (the shared memory 
implementation in Listing 14.4, with a loop unroll factor of 4) delivered 45.2 
billion body-body interactions per second, exactly 8x faster than the fastest 
multithreaded SSE implementation. This result understates the performance 
advantages of CUDA in some ways, since the server used for testing had two 
high-end CPUs, and the GPUs are derated to reduce power consumption and 
heat dissipation.

Furthermore, future improvements can be had for both technologies: For CPUs, 
porting this workload to the AVX (“Advanced Vector eXtensions”) instruction set 
would potentially double performance, but it would run only on Sandy Bridge 
and later chips, and the optimized CPU implementation does not exploit symme-
try. For GPUs, NVIDIA’s GK110 is about twice as big (and presumably about twice 
as fast) as the GK104. Comparing the source code for Listings 14.1 and 14.9 (the 
GPU and SSE implementations of the core body-body interaction code), though, 
it becomes clear that performance isn’t the only reason to favor CUDA over 

12.  In fairness, that would be true of many other workloads in this book, like the SAXPY imple-
mentation in Chapter 11 and the normalized cross-correlation implementation in Chapter 15. 
Porting those workloads to multithreaded SIMD would proffer similar tradeoffs in perfor-
mance versus engineering investment, readability, and maintainability as compared to the 
CUDA version.

Table 14.4 Speedups Due to CPU Optimizations

IMPLEMENTATION

BODY-BODY INTERACTIONS 

PER SECOND (IN BILLIONS)

SPEEDUP OVER 

SCALAR CPU

Scalar CPU 0.017 1x

SSE 0.307 17.8x

Multithreaded SSE 5.650 332x
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optimizing CPU code. Dr. Vincent Natoli alluded to this tradeoff in his June 2010 
article “Kudos for CUDA.”13

Similarly, we have found in many cases that the expression of algorithmic parallel-
ism in CUDA in fields as diverse as oil and gas, bioinformatics, and finance is more 
elegant, compact, and readable than equivalently optimized CPU code, preserv-
ing and more clearly presenting the underlying algorithm. In a recent project we 
reduced 3500 lines of highly optimized C code to a CUDA kernel of about 800 lines. 
The optimized C was peppered with inline assembly, SSE macros, unrolled loops, 
and special cases, making it difficult to read, extract algorithmic meaning, and 
extend in the future. By comparison, the CUDA code was cleaner and more read-
able. Ultimately it will be easier to maintain.

Although it was feasible to develop an SSE implementation of this application, 
with a core body-body computation that takes about 50 lines of code to express 
(Listing 14.8), it’s hard to imagine what the source code would look like for an 
SSE-optimized implementation of something like Boids, where each body must 
evaluate conditions and, when running on CUDA hardware, the code winds up 
being divergent. SSE supports divergence both in the form of predication (using 
masks and Boolean instruction sequences such as ANDPS/ANDNOTPS/ORPS 
to construct the result) and branching (often using MOVMSKPS to extract evalu-
ated conditions), but getting the theoretical speedups on such workloads would 
require large engineering investments unless they can be extracted automati-
cally by a vectorizing compiler.

14.9 References and Further Reading
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ous papers on compute-intensive methods such as N-Body.

Gravitational Simulation

Burtscher, Martin, and Keshav Pingali. An efficient CUDA implementation of the 
tree-based Barnes-Hut n-body algorithm. In GPU Gems Emerald Edition, Wen-
Mei Hwu, ed., Morgan-Kaufmann, 2011, Burlington, MA, pp. 75–92. 
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13.  www.hpcwire.com/hpcwire/2010-07-06/kudos_for_cuda.html
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Chapter 15 

Image Processing: 

Normalized Correlation

Normalized cross-correlation is a popular template-matching algorithm in 
image processing and computer vision. The template typically is an image that 
depicts a sought-after feature; by repeatedly computing a statistic between the 
template image and corresponding pixels of a subset of an input image, a search 
algorithm can locate instances of the template that are present in the input 
image.

The popularity of normalized cross-correlation for this application stems from 
its amplitude independence, which, in the context of image processing, essen-
tially means that the statistic is robust in the face of lighting changes between 
the image and the template. Normalized correlation is popular enough, and 
sufficiently compute-intensive enough, that it has prompted companies to 
build custom hardware. This chapter develops an optimized implementation 
of normalized cross-correlation for 8-bit grayscale images, but many of the 
concepts can be extended to other types of image processing or computer vision 
algorithms.

 15.1 Overview
Two 2D images, the image and the template, are compared by computing a cor-
relation coefficient as follows.
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where I and T are the image and template, respectively; T  is the average value 
of the template; and I  is the average value of the image pixels corresponding to 
the template.

The value of this coefficient falls into the range [–1.0, 1.0]; a value of 1.0 corre-
sponds to a perfect match. An optimized implementation of normalized cor-
relation factors out the statistics that may be precomputed and computes sums 
instead of averages to avoid a separate pass over the input data. If N pixels are 

being compared, replacing I  with 
t x y

N

,x y ( )Σ Σ ⎡
⎣

⎤
⎦  and multiplying the  numerator 

and denominator by N yields a coefficient that can be expressed entirely in 
terms of sums. Rewriting without the coordinate notation:
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Assuming the template will be the same for many correlation computations, the 
statistics on the template T∑  and T 2∑  can be precomputed, as can the 

subexpression N T T2 2( )Σ − Σ
⎛
⎝⎜

⎞
⎠⎟

 in the denominator. Translating this notation to

C variable names gives the following.

STATISTIC C VARIABLE NAME

I∑
SumI

T∑
SumT

IT∑
SumIT

I 2∑
SumSqI

T 2∑
SumSqT
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Then a normalized correlation value may be computed using this function.

float
CorrelationValue( float SumI, float SumISq, 
float SumT, float SumTSq, float SumIT, 
float N )
{
    float Numerator = N*SumIT - SumI*SumT;
    float Denominator = (N*SumISq - SumI*SumI)*
   (N*SumTSq – SumT*SumT);
    return Numerator / sqrtf(Denominator);
}

In practical applications for this algorithm, the template is kept fixed across many 
invocations, matching against different offsets into an image. Then it makes sense 
to precompute the template statistics and the denominator subexpression

float fDenomExp = N*SumSqT - SumT*SumT;

In practice, it’s best to use double precision to compute fDenomExp.

float fDenomExp = (float) ((double) N*SumSqT – (double) SumT*SumT);

Note: This computation is done on the CPU, once per template.

It is faster to multiply by the reciprocal square root than to divide by the square 
root, which results in the following CorrelationValue() function.

float
CorrelationValue( float SumI, float SumISq, float SumIT, 
float N, float fDenomExp )
{
    float Numerator = cPixels*SumIT - SumI*SumT;
    float Denominator = fDenomExp*(cPixels*SumISq - SumI*SumI);
    return Numerator * rsqrtf(Denominator);
}

Hence, an optimized implementation of this algorithm need only compute three 
sums over the pixels to compute a given correlation coefficient: I∑ , I 2∑ , and 

IT∑ . Since the SMs include hardware support for integer multiply-add, NVIDIA 
GPUs are able to perform this computation extremely fast.

CUDA offers a number of paths that could be used to deliver the data to the 
streaming multiprocessors.

• Global memory or texture memory for the image, the template, or both

• Constant memory for the template and possibly other template-specific
parameters (up to 64K)

• Shared memory to hold image and/or template values for reuse
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This chapter assumes the pixels are 8-bit grayscale. The hardware works very 
well on images with higher precision, but if anything, that simplifies the problem 
by making it easier to efficiently address global and shared memory.

All of the CUDA implementations in this chapter use texture for the image that is 
being compared with the template. There are several reasons for this.

• The texture units deal with boundary conditions gracefully and efficiently.

• The texture cache aggregates external bandwidth on reuse, which will occur
as nearby correlation values are computed.

• The 2D locality of the texture cache is a good fit with the access patterns
exhibited by correlation search algorithms.

We’ll explore the tradeoffs of using texture versus constant memory for the 
template.

 15.2  Naïve Texture-Texture 
Implementation
Our first implementation of normalized cross-correlation uses the texture unit 
to read both image and template values. This implementation is not optimized; 
it does not even include the optimization to precompute the template statistics. 
But it is simple to understand and will serve as a good basis for more highly 
optimized (but more byzantine) implementations.

Listing 15.1 gives the kernel that performs this computation. It computes the 
five sums, then uses the CorrelationValue() utility function given earlier 
to write the float-valued correlation coefficients into the output array. Note 
that the expression computing fDenomExp will issue a warning on pre–SM 1.3 
architectures, which do not include double precision support. The kernel will 
still work as long as the number of pixels in the template is not too large.

The upper left corner of the image is given by (xUL, yUL); the width and height 
of the search window, and thus the output array of coefficients, is given by w 
and h. If the template is in a texture, the upper left corner of the template in the 
texture image is given by (xTemplate, yTemplate).

Finally, an offset (xOffset, yOffset) specifies how the template will be 
overlaid with the image for comparison purposes. When fetching image pixels, 
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this offset is added to the coordinates of the search rectangle whose upper left 
corner is (xUL, yUL).

It’s instructive to look at how the correlation function “falls off” in the neigh-
borhood of the image from which a template is extracted. The sample program 
normalizedCrossCorrelation.cu writes out the neighborhood around the 
template:

Neighborhood around template:
 0.71 0.75 0.79 0.81 0.82 0.81 0.81 0.80 0.78
 0.72 0.77 0.81 0.84 0.84 0.84 0.83 0.81 0.79
 0.74 0.79 0.84 0.88 0.88 0.87 0.85 0.82 0.79
 0.75 0.80 0.86 0.93 0.95 0.91 0.86 0.83 0.80
 0.75 0.80 0.87 0.95 1.00 0.95 0.88 0.83 0.81
 0.75 0.80 0.86 0.91 0.95 0.93 0.87 0.82 0.80
 0.75 0.80 0.84 0.87 0.89 0.88 0.85 0.81 0.78
 0.73 0.78 0.81 0.83 0.85 0.85 0.82 0.79 0.76
 0.71 0.75 0.78 0.81 0.82 0.82 0.80 0.77 0.75 

In the coins image included in the book, the default template is a 52x52 subim-
age around the dime in the lower right corner (Figure 15.1). The default program 
optionally can write a PGM file as output, with the correlation values converted 
to pixel values in the range 0..255. For the template highlighted in Figure 15.1, 
the resulting image is given in Figure 15.2. The other dimes are very bright, with 
strong matches, while the other coins get less intense responses.

Figure 15.1 Coins.pgm (with default template highlighted).
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Listing 15.1 corrTexTex2D_kernel.

__global__ void 
corrTexTex2D_kernel( 
    float *pCorr, size_t CorrPitch, 
    float cPixels,
    int xOffset, int yOffset,
    int xTemplate, int yTemplate,
    int wTemplate, int hTemplate,
    float xUL, float yUL, int w, int h )
{
    size_t row = blockIdx.y*blockDim.y + threadIdx.y;
    size_t col = blockIdx.x*blockDim.x + threadIdx.x;

    // adjust pCorr to point to row
    pCorr = (float *) ((char *) pCorr+row*CorrPitch);

    // No __syncthreads in this kernel, so we can early-out
    // without worrying about the effects of divergence.
    if ( col >= w || row >= h )

return;

    int SumI = 0;
    int SumT = 0;
    int SumISq = 0;
    int SumTSq = 0;

Figure 15.2 Correlation image with default template.
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    int SumIT = 0;
    for ( int y = 0; y < hTemplate; y++ ) {

for ( int x = 0; x < wTemplate; x++ ) {
unsigned char I = tex2D( texImage, 

(float) col+xUL+xOffset+x, (float) row+yUL+yOffset+y );
unsigned char T = tex2D( texTemplate, 

(float) xTemplate+x, (float) yTemplate+y);
SumI += I;
SumT += T;
SumISq += I*I;
SumTSq += T*T;
SumIT += I*T;

}
float fDenomExp = (float) ( (double) cPixels*SumTSq - 

(double) SumT*SumT);
pCorr[col] = CorrelationValue( 

SumI, SumISq, SumIT, SumT, cPixels, fDenomExp );

    }
}

Listing 15.2 gives the host code to invoke corrTexTex2D_kernel(). It is 
designed to work with the testing and performance measurement code in the 
sample source file normalizedCrossCorrelation.cu, which is why it has 
so many parameters. This host function just turns around and launches the ker-
nel with the needed parameters, but later implementations of this function will 
check the device properties and launch different kernels, depending on what 
it finds. For images of a useful size, the cost of doing such checks is negligible 
compared to the GPU runtime.

Listing 15.2 corrTexTex2D() (host code).

void
corrTexTex2D( 
    float *dCorr, int CorrPitch,
    int wTile,
    int wTemplate, int hTemplate,
    float cPixels,
    float fDenomExp,
    int sharedPitch,
    int xOffset, int yOffset,
    int xTemplate, int yTemplate,
    int xUL, int yUL, int w, int h,
    dim3 threads, dim3 blocks,
    int sharedMem )
{
    corrTexTex2D_kernel<<<blocks, threads>>>( 

dCorr, CorrPitch,
cPixels,
xOffset, yOffset,
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xTemplate+xOffset, yTemplate+yOffset,
wTemplate, hTemplate,
(float) xUL, (float) yUL, w, h );

}

A texture-texture formulation is a very good fit if the application is choosing 
different templates as well as different images during its search—for example, 
applying transformations to the template data while comparing to the image. 
But for most applications, the template is chosen once and compared against 
many different offsets within the image. The remainder of the chapter will 
examine implementations that are optimized for that case.

15.3 Template in Constant Memory
Most template-matching applications perform many correlation computations 
with the same template at different offsets of the input image. In that case, 
the template statistics (SumT and fDenomExp) can be precomputed, and the 
template data can be moved to special memory or otherwise premassaged. For 
CUDA, the obvious place to put the template data is in constant memory so each 
template pixel can be broadcast to the threads computing correlation values for 
different image locations.

Template

(xTemplate, 
yTemplate)

constant  unsigned char g Tpix[]: wTemplate*hTemplate values

wTemplate

hTemplate

Figure 15.3 Template in __constant__ memory.
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  15.3 TEMPLATE IN CONSTANT MEMORY 

The CopyToTemplate function given in Listing 15.3 pulls a rectangular area of 
pixels out of the input image, computes the statistics, and copies the data and 
statistics to __constant__ memory.

Listing 15.3 CopyToTemplate function (error handling removed).
cudaError_t
CopyToTemplate( 

unsigned char *img, size_t imgPitch, 
int xTemplate, int yTemplate,
int wTemplate, int hTemplate,
int OffsetX, int OffsetY

)
{
    cudaError_t status;
    unsigned char pixels[maxTemplatePixels];

    int inx = 0;
    int SumT = 0;
    int SumTSq = 0;
    int cPixels = wTemplate*hTemplate;
    size_t sizeOffsets = cPixels*sizeof(int);
    float fSumT, fDenomExp, fcPixels;

    cudaMemcpy2D( 
pixels, wTemplate,
img+yTemplate*imgPitch+xTemplate, imgPitch,
wTemplate, hTemplate,
cudaMemcpyDeviceToHost );

    cudaMemcpyToSymbol( g_Tpix, pixels, cPixels );

    for ( int i = OffsetY; i < OffsetY+hTemplate; i++ ) {
for ( int j = OffsetX; j < OffsetX+wTemplate; j++) {

SumT += pixels[inx];
SumTSq += pixels[inx]*pixels[inx];
poffsetx[inx] = j;
poffsety[inx] = i;
inx += 1;

}
    }
    g_cpuSumT = SumT;
    g_cpuSumTSq = SumTSq;

    cudaMemcpyToSymbol(g_xOffset, poffsetx, sizeOffsets);
    cudaMemcpyToSymbol(g_yOffset, poffsety, sizeOffsets);

    fSumT = (float) SumT;
    cudaMemcpyToSymbol(g_SumT, &fSumT, sizeof(float));

    fDenomExp = float( (double)cPixels*SumTSq – (double) SumT*SumT);
    cudaMemcpyToSymbol(g_fDenomExp, &fDenomExp, sizeof(float));
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    fcPixels = (float) cPixels;
    cudaMemcpyToSymbol(g_cPixels, &fcPixels, sizeof(float));
Error:
    return status;
}

The corrTemplate2D() kernel given in Listing 15.4 then can read the  template 
values from g_TPix[], which resides in constant memory.  corrTemplate2D() 
is even simpler and shorter than corrTexTex2D(), since it does not have to 
compute the template statistics.

Listing 15.4 corrTemplate2D kernel.

__global__ void 
corrTemplate2D_kernel( 
    float *pCorr, size_t CorrPitch, 
    float cPixels, float fDenomExp,
    float xUL, float yUL, int w, int h,
    int xOffset, int yOffset,
    int wTemplate, int hTemplate )
{
    size_t row = blockIdx.y*blockDim.y + threadIdx.y;
    size_t col = blockIdx.x*blockDim.x + threadIdx.x;

    // adjust pointers to row
    pCorr = (float *) ((char *) pCorr+row*CorrPitch);

    // No __syncthreads in this kernel, so we can early-out
    // without worrying about the effects of divergence.
    if ( col >= w || row >= h )

return;

    int SumI = 0;
    int SumISq = 0;
    int SumIT = 0;
    int inx = 0;

    for ( int j = 0; j < hTemplate; j++ ) {
for ( int i = 0; i < wTemplate; i++ ) {

unsigned char I = tex2D( texImage, 
(float) col+xUL+xOffset+i, 
(float) row+yUL+yOffset+j );

unsigned char T = g_Tpix[inx++];
SumI += I;
SumISq += I*I;
SumIT += I*T;

}
    }
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    pCorr[col] = 
CorrelationValue( 

SumI, SumISq, SumIT, g_SumT, cPixels, fDenomExp );
}

15.4 Image in Shared Memory
For rectangles of correlation values such as the ones computed by our sample 
program, the CUDA kernel exhibits a tremendous amount of reuse of the image 
data as the template matches are swept across the image. So far, our code has 
relied on the texture caches to service these redundant reads without going to 
external memory. For smaller templates, however, shared memory can be used 
to further increase performance by making the image data available with lower 
latency. 

The kernels in Listings 15.1 and 15.3 implicitly divided the input image into 
tiles that were the same size as the threadblocks. For our shared memory 
implementation shown in Listing 15.5, we’ll use the height of the threadblock 
(blockDim.y) but specify an explicit tile width of wTile. In our sample pro-
gram, wTile is 32. Figure 15.4 shows how the kernel “overfetches” a rectangle 
of wTemplate×hTemplate pixels outside the tile; boundary conditions are 
handled by the texture addressing mode. Once the shared memory has been 
populated with image data, the kernel does __syncthreads() and computes 
and writes out the tile’s correlation coefficients.

Listing 15.5 corrShared_kernel().
__global__ void 
corrShared_kernel( 
    float *pCorr, size_t CorrPitch, 
    int wTile,
    int wTemplate, int hTemplate,
    float xOffset, float yOffset,
    float cPixels, float fDenomExp, int SharedPitch,
    float xUL, float yUL, int w, int h )
{ 
    int uTile = blockIdx.x*wTile;
    int vTile = blockIdx.y*blockDim.y;
    int v = vTile + threadIdx.y;

    float *pOut = (float *) (((char *) pCorr)+v*CorrPitch);
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    for ( int row = threadIdx.y; 
row < blockDim.y+hTemplate; 
row += blockDim.y ) {

int SharedIdx = row * SharedPitch;
for ( int col = threadIdx.x; 

col < wTile+wTemplate; 
col += blockDim.x ) {

LocalBlock[SharedIdx+col] = 
tex2D( texImage, 

(float) (uTile+col+xUL+xOffset), 
(float) (vTile+row+yUL+yOffset) );

}
    }

    __syncthreads();

    for ( int col = threadIdx.x; 
col < wTile; 
col += blockDim.x ) {

int SumI = 0;
int SumISq = 0;
int SumIT = 0;
int idx = 0;
int SharedIdx = threadIdx.y * SharedPitch + col;
for ( int j = 0; j < hTemplate; j++ ) {    

for ( int i = 0; i < wTemplate; i++) { 
unsigned char I = LocalBlock[SharedIdx+i];
unsigned char T = g_Tpix[idx++];
SumI += I;
SumISq += I*I;
SumIT += I*T;

}
SharedIdx += SharedPitch;

}
if ( uTile+col < w && v < h ) {

pOut[uTile+col] = 
CorrelationValue( SumI, SumISq, SumIT, g_SumT, 

cPixels, fDenomExp );
}

    }
    __syncthreads();
}

To ensure that shared memory references will avoid bank conflicts from one 
row to the next, the amount of shared memory per row is padded to the next 
multiple of 64.

 sharedPitch = ~63&(((wTile+wTemplate)+63));
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The total amount of shared memory needed per block is then the pitch multi-
plied by the number of rows (block height plus template height).

 sharedMem = sharedPitch*(threads.y+hTemplate);

The host code to launch corrShared_kernel(), shown in Listing 15.6, detects 
whether the kernel launch will require more shared memory than is available. 
If that is the case, it calls corrTexTex2D(), which will work for any template 
size.

(xOffset, 
yOffset)

Image

w

h

Coefficients
(float-valued)

wTile

wTile+wTemplate

Shared memory for one block

blockDim.y blockDim.y+
hTemplate

Figure 15.4 Image in shared memory.



IMAGE PROCESSING: NORMALIZED CORRELATION

462

Listing 15.6 corrShared() (host code).
void
corrShared( 
    float *dCorr, int CorrPitch,
    int wTile,
    int wTemplate, int hTemplate,
    float cPixels,
    float fDenomExp,
    int sharedPitch,
    int xOffset, int yOffset,
    int xTemplate, int yTemplate,
    int xUL, int yUL, int w, int h,
    dim3 threads, dim3 blocks,
    int sharedMem )
{
    int device;
    cudaDeviceProp props;
    cudaError_t status;

    CUDART_CHECK( cudaGetDevice( &device ) );
    CUDART_CHECK( cudaGetDeviceProperties( &props, device ) );
    if ( sharedMem > props.sharedMemPerBlock ) {

dim3 threads88(8, 8, 1);
dim3 blocks88;
blocks88.x = INTCEIL(w,8); 
blocks88.y = INTCEIL(h,8); 
blocks88.z = 1;
return corrTexTex2D( 

dCorr, CorrPitch,
wTile,
wTemplate, hTemplate,
cPixels,
fDenomExp,
sharedPitch,
xOffset, yOffset,
xTemplate, yTemplate,
xUL, yUL, w, h,
threads88, blocks88,
sharedMem );

    }
    corrShared_kernel<<<blocks, threads, sharedMem>>>(

dCorr, CorrPitch,
wTile,
wTemplate, hTemplate,
(float) xOffset, (float) yOffset,
cPixels, fDenomExp, 
sharedPitch, 
(float) xUL, (float) yUL, w, h );

Error:
    return;
}
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 15.5 Further Optimizations
Two more optimizations are implemented in the sample source code: SM-aware 
kernel invocation (since SM 1.x has different instruction set support for multipli-
cation, which is in the innermost loop of this computation) and an unrolled inner 
loop of the kernel.

15.5.1 SM-AWARE CODING

SM 1.x hardware uses a 24-bit multiplier (plenty wide enough to do the multipli-
cations in the inner loop of this computation), yet SM 2.x and SM 3.x hardware 
use 32-bit multipliers. Sometimes the compiler can detect when the partic-
ipating integers are narrow enough that it can use the 24-bit multiply on SM 
1.x–class hardware, but that does not seem to be the case for corrShared_
kernel(). To work around the issue, we can use a template on the kernel 
declaration.

template<bool bSM1>
__global__ void 
corrSharedSM_kernel( ... )

The inner loop of the kernel then becomes

for ( int j = 0; j < hTemplate; j++ ) {    
    for ( int i = 0; i < wTemplate; i++) { 

unsigned char I = LocalBlock[SharedIdx+i];
unsigned char T = g_Tpix[idx++];
SumI += I;
if ( bSM1 ) {

SumISq += __umul24(I, I);
SumIT += __umul24(I, T);

}
else {

SumISq += I*I;
SumIT += I*T;

}
    }
    SharedIdx += SharedPitch;
}

And the host function that invokes the kernel must detect whether the 
device is SM 1.x and, if so, invoke the kernel with bSM1=true. In the sample 
source code, this implementation is given in the corrSharedSM.cuh and 
 corrSharedSMSums.cuh header files.
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15.5.2. LOOP UNROLLING

Since each thread is accessing adjacent bytes in shared memory, the innermost 
loop of these kernels generates 4-way bank conflicts on SM 1.x-class hardware. 
If we rewrite

for ( int j = 0; j < hTemplate; j++ ) {    
    for ( int i = 0; i < wTemplate; i++) { 

unsigned char I = LocalBlock[SharedIdx+i];
unsigned char T = g_Tpix[idx++];
SumI += I;
SumISq += I*I;
SumIT += I*T;

    }
    SharedIdx += SharedPitch;
}

as follows

for ( int j = 0; j < hTemplate; j++ ) {
    for ( int i = 0; i < wTemplate/4; i++) {  

corrSharedAccumulate<bSM1>( ... LocalBlock[SharedIdx+i*4+0], );
corrSharedAccumulate<bSM1>( ... LocalBlock[SharedIdx+i*4+1], );
corrSharedAccumulate<bSM1>( ... LocalBlock[SharedIdx+i*4+2], );
corrSharedAccumulate<bSM1>( ... LocalBlock[SharedIdx+i*4+3], );

    }
    SharedIdx += SharedPitch;
}

where the corrSharedAccumulate() function encapsulates the template 
parameter bSM1

template<bool bSM1>
__device__ void
corrSharedAccumulate( 
 int& SumI, int& SumISq, int& SumIT, 
 unsigned char I, unsigned char T )
{
 SumI += I;
 if ( bSM1 ) {
 SumISq += __umul24(I,I);
 SumIT += __umul24(I,T);
 }
 else {
 SumISq += I*I;
 SumIT += I*T;
 }
}

Although the primary motivation is to decrease bank conflicts due to byte 
reads—an effect that only occurs on SM 1.x hardware—the resulting kernel is 
faster on all CUDA hardware.
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 15.6 Source Code
When working on optimized normalized cross-correlation code, it does not 
take long to realize that it’s surprisingly difficult and error-prone. Converting 
the sums to correlation coefficients, as described in Section 15.1, must be done 
carefully due to the precision characteristics of float versus int (float 
has a greater dynamic range, but only 24 bits of precision). It is good practice 
to develop separate subroutines that report the computed sums to root cause 
whether a given implementation is reporting incorrect coefficients due to 
incorrect sums or an incorrect coefficient computation. Also, the sums can be 
bitwise-compared with CPU results, while the float-valued coefficients must be 
fuzzily compared against an epsilon value.

The different implementations of correlation are broken out into separate 
header (.cuh) files, and the kernels that emit sums as well as correlation coeffi-
cients are separate. 

FILE DESCRIPTION

corrShared.cuh Loads shared memory with texture, then reads 
image from shared memory

corrSharedSums.cuh

corrShared4.cuh corrSharedSM, with innermost loop unrolledx4

corrShared4Sums.cuh

corrSharedSM.cuh corrShared, with SM-aware kernel launches

corrSharedSMSums.cuh

corrTexConstant.cuh Reads image from texture and template from 
constant memory

corrTexConstantSums.cuh

corrTexTex.cuh Reads image and template from texture

corrTexTexSums.cuh

normalizedCrossCorrelation.cu Test program
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The normalizedCrossCorrelation.cu program tests both the functionality 
and the performance of the kernels. By default, it loads coins.pgm and detects 
the dime in the lower right corner. The dime is located at (210,148) and is 52×52 
pixels in size. The program also writes the performance measurements to 
 stdout—for example: 

$ normalizedCrossCorrelation --padWidth 1024 --padHeight 1024 
-wTemplate 16 -hTemplate 16
corrTexTex2D: 54.86 Mpix/s 14.05Gtpix/s
corrTemplate2D: 72.87 Mpix/s 18.65Gtpix/s
corrShared: 69.66 Mpix/s 17.83Gtpix/s
corrSharedSM: 78.66 Mpix/s 20.14Gtpix/s
corrShared4: 97.02 Mpix/s 24.84Gtpix/s

The program supports the following command line options.

--input <filename>: specify the input filename (default: coins.pgm).

--output <filename>:   optionally specify the output filename. If speci-
fied, the program will write a PGM file contain-
ing an intensity map (like Figure 15.3) to this 
filename.

--padWidth <width>:  pad the width of the image.

--padHeight <height>:  pad the height of the image.

--xTemplate <value>:   specify the X coordinate of the upper left corner 
of the template.

--yTemplate <value>:   specify the Y coordinate of the upper left corner 
of the template.

--wTemplate <value>:  specify the width of the template.

--hTemplate <value>:  specify the height of the template.

15.7 Performance and Further Reading
Our sample program uses CUDA events to report the performance of some 
number of consecutive kernel launches (default 100) and reports the rates of 
both output coefficients (which varies with the template size) and the “tem-
plate-pixel” rate, or the number of inner loop iterations per unit time.
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The raw performance of GPUs at performing this computation is astonishing. A 
GeForce GTX 280 (GT200) can perform almost 25 billion template-pixel calcula-
tions per second (Gtpix/s), and the GeForce 680 GTX (GK104) delivers well over 
100 Gtpix/s.

The default parameters of the program are not ideal for performance mea-
surement. They are set to detect the dime in the lower right corner and option-
ally write out the image in Figure 15.3. In particular, the image is too small to 
keep the GPU fully busy. The image is only 300×246 pixels (74K in size), so only 
310 blocks are needed by the shared memory implementation to perform the 
computation. The --padWidth and --padHeight command-line options can 
be used in the sample program to increase the size of the image and thus the 
number of correlation coefficients computed (there are no data dependencies in 
the code, so the padding can be filled with arbitrary data); a 1024×1024 image is 
both more realistic and gets best utilization out of all GPUs tested.

Figure 15.5 summarizes the relative performance of our 5 implementations. 

• corrTexTex: template and image both in texture memory

• corrTexConstant: template in constant memory

• corrShared: template in constant memory and image in shared memory

• corrSharedSM: corrShared with SM-aware kernel invocations

• corrShared4: corrSharedSM with the inner loop unrolled 4x

The various optimizations did improve performance, to varying degrees, as 
shown in Figure 15.6. Moving the template to constant memory had the biggest 
impact on GK104, increasing performance by 80%; moving the image to shared 
memory had the biggest impact on GF100, increasing performance by 70%. The 
SM-aware kernel launches had the most muted impact, increasing performance 
on GT200 by 14% (it does not affect performance on the other architectures, 
since using the built-in multiplication operator is also fastest).

On GT200, corrShared suffered from bank conflicts in shared memory, so 
much so that corrShared is slower than corrTexConstant; corrShared4 
alleviates these bank conflicts, increasing performance by 23%.

The size of the template also has a bearing on the efficiency of this algorithm: 
The larger the template, the more efficient the computation on a per-template-
pixel basis. Figure 15.6 illustrates how the template size affects performance of 
the corrShared4 formulation.
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As the template grows from 8×8 to 28×28, GT200 performance improves 36% 
(19.6 Gtpix/s to 26.8 Gtpix/s), GF100 improves 57% (46.5 Gtpix/s to 72.9 Gtpix/s), 
and GK104 improves 30% (93.9 Gtpix/s to 120.72 Gtpix/s).

For small templates, the compiler generates faster code if the template size 
is known at compile time. Moving wTemplate and hTemplate to be template 

Figure 15.6 Correlation rate versus template size.

Figure 15.5 Performance comparison.



469

15.8 FURTHER READING 

parameters and specializing for an 8×8 template improved performance as 
follows.

RATE (GTPIX/S)

PART CORRSHARED4

CORRSHARED4

(SPECIALIZED) IMPROVEMENT

GT200 19.63 24.37 24%

GF100 46.49 65.08 40%

GK104 93.88 97.95 4%

 15.8 Further Reading
Digital Image Processing includes both a discussion of normalized correlation 
(pp. 583–586) and the logarithmic transform used to compute the output pixels 
in our sample program (pp. 168–169).

Gonzalez, Rafael C., and Richard E. Woods. Digital image processing.  Addison-
Wesley, Reading, MA, 1992.

www.imageprocessingplace.com/root_files_V3/publications.htm

J.P. Lewis has an excellent discussion, including a more asymptotically efficient 
way to accelerate the type of correlation operation implemented by our sam-
ple program, where a template match against every pixel in the input image is 
desired. Lewis uses FFTs to compute the numerators and summed area tables 
to compute the denominators of the coefficients.

Lewis, J.P. Fast template matching. Vision Interface 10, 1995, pp. 120–123. An 
expanded version entitled “Fast Normalized Correlation” may be found online at 
http://bit.ly/NJnZPI.
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Appendix A 

The CUDA Handbook 

Library

As mentioned in Chapter 1, the source code accompanying this book is open 
source under the two-paragraph BSD license. A pointer to the source code is 
available on www.cudahandbook.com, and developers can find the Git reposi-
tory at https://github.com/ArchaeaSoftware/cudahandbook.

This Appendix briefly describes the features of the CUDA Handbook Library 
(chLib), a set of portable header files located in the chLib/ subdirectory of the 
source code project. chLib is not intended to be reused in production software. 
It provides the minimum functionality, in the smallest possible amount of source 
code, needed to illustrate the concepts covered in this book. chLib is portable to 
all target operating systems for CUDA, so it often must expose support for the 
intersection of those operating systems’ features. 

 A.1 Timing
The CUDA Handbook library includes a portable timing library that uses 
 QueryPerformanceCounter() on Windows and gettimeofday() on 
non-Windows platforms. An example usage is as follows.

float
TimeNULLKernelLaunches(int cIterations = 1000000 )
{
    chTimerTimestamp start, stop;
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    chTimerGetTime( &start );
    for ( int i = 0; i < cIterations; i++ ) {

NullKernel<<<1,1>>>();
    }
    cudaThreadSynchronize();
    chTimerGetTime( &stop );
    return 1e6*chTimerElapsedTime( &start, &stop ) / 

(float) cIterations;
}

This function times the specified number of kernel launches and returns the 
microseconds per launch. chTimerTimestamp is a high-resolution timestamp. 
Usually it is a 64-bit counter that increases monotonically over time, so two 
timestamps are needed to compute a time interval.

The chTimerGetTime() function takes a snapshot of the current time. The 
chTimerElapsedTime() function returns the number of seconds that elapsed 
between two timestamps. The resolution of these timers is very fine (perhaps a 
microsecond), so chTimerElapsedTime()returns double.

#ifdef _WIN32
#include <windows.h>
typedef LARGE_INTEGER chTimerTimestamp;
#else
typedef struct timeval chTimerTimestamp;
#endif

void chTimerGetTime(chTimerTimestamp *p);
double chTimerElapsedTime( chTimerTimestamp *pStart, chTimerTimestamp 
*pEnd );
double chTimerBandwidth( chTimerTimestamp *pStart, chTimerTimestamp 
*pEnd, double cBytes );

We may use CUDA events when measuring performance in isolation on the 
CUDA-capable GPU, such as when measuring device memory bandwidth of 
a kernel. Using CUDA events for timing is a two-edged sword: They are less 
affected by spurious system-level events, such as network traffic, but that 
sometimes can lead to overly optimistic timing results.

 A.2 Threading
chLib includes a minimalist threading library that enables the creation of a pool 
of “worker” CPU threads, plus facilities that enable a parent thread to “delegate” 
work onto worker threads. Threading is a particularly difficult feature to abstract, 
since different operating systems have such different facilities to enable it. Some 
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operating systems even have “thread pools” that enable threads to be easily recy-
cled, so applications don’t have to keep threads suspended waiting for a synchroni-
zation event that will be signaled when some work comes along.

Listing A.1 gives the abstract threading support from chLib/chThread.h. It 
includes a processorCount() function that returns the number of CPU cores 
available (many applications that use multiple threads to take advantage of mul-
tiple CPU cores, such as our multithreaded N-body implementation in Chapter 
14, want to spawn one thread per core) and a C++ class workerThread that 
enables a few simple threading operations.

Creation and destruction

• delegateSynchronous(): the parent thread specifies a pointer to function
for the worker to execute, and the function does not return until the worker
thread is done.

• delegateAsynchronous(): the parent thread specifies a pointer to func-
tion for the worker to run asynchronously; workerThread::waitAll must
be called in order to synchronize the parent with its children.

• The member function waitAll() waits until all specified worker threads
have completed their delegated work.

Listing A.1 workerThread class.
//
// Return the number of execution cores on the platform.
//
unsigned int processorCount();

//
// workerThread class - includes a thread ID (specified to constructor)
//
class workerThread
{
public:
    workerThread( int cpuThreadId = 0 );
    virtual ~workerThread();
    bool initialize( );

    // thread routine (platform specific)
    static void threadRoutine( LPVOID );

    //
    // call this from your app thread to delegate to the worker.
    // it will not return until your pointer-to-function has been
    // called with the given parameter.
    //
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    bool delegateSynchronous( void (*pfn)(void *), void *parameter );

    //
    // call this from your app thread to delegate to the worker
    // asynchronously. Since it returns immediately, you must call
    // waitAll later

 bool delegateAsynchronous( void (*pfn)(void *), void *parameter );

    static bool waitAll( workerThread *p, size_t N );

};

A.3 Driver API Facilities
chDrv.h contains some useful facilities for driver API developers: The chCU-
DADevice class, shown in Listing A.2, simplifies management of devices and 
contexts. Its loadModuleFromFile method simplifies the creation of a module 
from a .cubin or .ptx file.

In addition, the chGetErrorString() function passes back a read-only string 
corresponding to an error value. Besides implementing this function declared in 
chDrv.h for the driver API’s CUresult type, a specialization of chGetError-
String() also wraps the CUDA runtime’s cudaGetErrorString() function.

Listing A.2 chCUDADevice class.
class chCUDADevice
{
public:
    chCUDADevice();
    virtual ~chCUDADevice();

    CUresult Initialize( 
int ordinal, 
list<string>& moduleList,
unsigned int Flags = 0,
unsigned int numOptions = 0,
CUjit_option *options = NULL,
void **optionValues = NULL );

    CUresult loadModuleFromFile( 
CUmodule *pModule,
string fileName,
unsigned int numOptions = 0,
CUjit_option *options = NULL,
void **optionValues = NULL );
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    CUdevice device() const { return m_device; }
    CUcontext context() const { return m_context; }
    CUmodule module( string s ) const { return (*m_modules.find(s)).
second; }

private:
    CUdevice m_device;
    CUcontext m_context;
    map<string, CUmodule> m_modules;
};

 A.4 Shmoos
A “shmoo plot” refers to a graphical display of test circuit patterns as two inputs 
(such as voltage and clock rate) vary. When writing code to identify the opti-
mal blocking parameters for various kernels, it is useful to do similar tests by 
varying inputs such as the threadblock size and loop unroll factor. Listing A.3 
shows the chShmooRange class, which encapsulates a parameter range, and 
the chShmooIterator class, which enables for loops to easily iterate over a 
given range.

Listing A.3 chShmooRange and chShmooIterator classes.
class chShmooRange {
public:
    chShmooRange( ) { }
    void Initialize( int value );
    bool Initialize( int min, int max, int step );
    bool isStatic() const { return m_min==m_max; }

    friend class chShmooIterator;

    int min() const { return m_min; }
    int max() const { return m_max; }

private:
    bool m_initialized;
    int m_min, m_max, m_step;
};

class chShmooIterator
{
public:
    chShmooIterator( const chShmooRange& range );
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    int operator *() const { return m_i; }
    operator bool() const { return m_i <= m_max; }
    void operator++(int) { m_i += m_step; };
private:
    int m_i;
    int m_max;
    int m_step;
};

The command line parser also includes a specialization that creates a 
 chShmooRange based on command-line parameters: Prepend “min,” 
“max,” and “step” onto the keyword, and the corresponding range will be 
passed back. If any of the three are missing, the function returns false. The 
 concurrencyKernelKernel sample (in the concurrency/subdirectory), 
for example, takes measurements over ranges of stream count and clock cycle 
count. The code to extract these values from the command line is as follows.

chShmooRange streamsRange;
const int numStreams = 8;
if ( ! chCommandLineGet(&streamsRange, “Streams”, argc, argv) ) {
    streamsRange.Initialize( numStreams );
}
chShmooRange cyclesRange;
{
    const int minCycles = 8;
    const int maxCycles = 512;
    const int stepCycles = 8;
    cyclesRange.Initialize( minCycles, maxCycles, stepCycles );
    chCommandLineGet( &cyclesRange, “Cycles”, argc, argv );
}

And users can specify the parameters to the application as follows.

concurrencyKernelKernel -- minStreams 2 --maxStreams 16 stepStreams 2

A.5 Command Line Parsing
A portable command line parsing library (only about 100 lines of C++) is in 
chCommandLine.h. It includes the templated function chCommandLineGet(), 
which passes back a variable of a given type, and chCommandLineGetBool(), 
which returns whether a given keyword was given in the command line.

template<typename T> T
chCommandLineGet( T *p, const char *keyword, int argc, char *argv[] );
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As described in the previous section, a specialization of chCommandLineGet()
will pass back an instance of chShmooRange. In order for this specialization to 
be compiled, chShmoo.h must be included before chCommandLine.h.

 A.6 Error Handling
chError.h implements a set of macros that implement the goto-based error 
handling mechanism described in Section 1.2.3. These macros do the following.

• Assign the return value to a variable called status

• Check status for success and, if in debug mode, report the error to stderr

• If status contains an error, goto a label called Error

The CUDA runtime version is as follows.

#ifdef DEBUG
#define CUDART_CHECK( fn ) do { \
 (status) = (fn); \
 if ( cudaSuccess != (status) ) { \
 fprintf( stderr, "CUDA Runtime Failure (line %d of file %s):\n\t" \
 "%s returned 0x%x (%s)\n", \
 __LINE__, __FILE__, #fn, status, cudaGetErrorString(status) ); \
 goto Error; \
 } \
 } while (0); 
#else

#define CUDART_CHECK( fn ) do { \
 status = (fn); \
 if ( cudaSuccess != (status) ) { \
 goto Error; \
 } \
} while (0); 
#endif

The do..while is a C programming idiom, commonly used in macros, that 
causes the macro invocation to evaluate to a single statement. Using these 
macros will generate compile errors if either the variable status or the label 
Error: is not defined.

One implication of using goto is that all variables must be declared at the top 
of the block. Otherwise, some compilers generate errors because the goto 
statements can bypass initialization. When that happens, the variables being 
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initialized must be moved above the first goto or moved into a basic block so the 
goto is outside their scope.

Listing A.4 gives an example function that follows the idiom. The return value 
and intermediate resources are initialized to values that can be dealt with by the 
cleanup code. In this case, all of the resources allocated by the function also are 
freed by the function, so the cleanup code and error handling code are the same. 
Functions that will only free some of the resources they allocate must imple-
ment the success and failure cases in separate blocks of code. 

Listing A.4 Example of goto-based error handling.
double
TimedReduction( 
    int *answer, const int *deviceIn, size_t N, 
    int cBlocks, int cThreads,
    pfnReduction hostReduction
)
{
    double ret = 0.0;
    int *deviceAnswer = 0;
    int *partialSums = 0;
    cudaEvent_t start = 0;
    cudaEvent_t stop = 0;
    cudaError_t status;

    CUDART_CHECK( cudaMalloc( &deviceAnswer, sizeof(int) ) );
    CUDART_CHECK( cudaMalloc( &partialSums, cBlocks*sizeof(int) ) );
    CUDART_CHECK( cudaEventCreate( &start ) );
    CUDART_CHECK( cudaEventCreate( &stop ) );
    CUDART_CHECK( cudaThreadSynchronize() );

    CUDART_CHECK( cudaEventRecord( start, 0 ) );
    hostReduction( 

deviceAnswer, 
partialSums, 
deviceIn, 
N, 
cBlocks, 
cThreads );

    CUDART_CHECK( cudaEventRecord( stop, 0 ) );
    CUDART_CHECK( cudaMemcpy( 

answer, 
deviceAnswer, 
sizeof(int), 
cudaMemcpyDeviceToHost ) );

    ret = chEventBandwidth( start, stop, N*sizeof(int) ) / 
powf(2.0f,30.0f);
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    // fall through to free resources before returning
Error:
    cudaFree( deviceAnswer );
    cudaFree( partialSums );
    cudaEventDestroy( start );
    cudaEventDestroy( stop );
    return ret;
}
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Glossary / TLA Decoder

aliasing – Creating more than one way to access the same memory. Examples: A 
mapped pinned buffer in CUDA is aliased by a host pointer and a device pointer; 
a texture reference bound to device memory aliases the device memory.

AOS – See array of structures.

API – Application programming interface.

array of structures – Memory layout in which the elements that describe an 
object are contiguous in memory (as if declared in a structure). Contrast with 
structure of arrays.

asynchronous – Function calls that return before the requested operation has 
been performed. For correct results, CUDA applications using asynchronous 
operations subsequently must perform CPU/GPU synchronization using CUDA 
streams or events.

computational density – Amount of computation relative to external memory 
traffic. 

constant memory – Read-only memory, optimized for broadcast when a single 
memory location is read.

CPU – Central processing unit. The conductor of the orchestra that is a modern 
computer these days, be it x86, x86-64, or ARM.

CUDA array – 1D, 2D, or 3D array whose layout is opaque to developers. Applica-
tions can read or write CUDA arrays using memcpy functions. CUDA kernels can 
read CUDA arrays via texture fetch, or read or write them using surface load/
store intrinsics.

CUDART – CUDA runtime. The “high-level” API that comes with language 
integration.
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DDI – Device driver interface. Examples of DDIs include XPDDM and WDDM.

demand paging – A system where the operating system can mark pages non-
resident such that when an application tries to access a nonresident page, the 
hardware can signal an interrupt. The operating system can use this facility to 
mark pages nonresident that have not been accessed “in a while” according to 
some heuristic, writing their contents to disk to free up more physical memory 
for more active virtual pages.1 If an application accesses the page again, the 
page is reloaded “on demand” (possibly to a different physical page). To date, 
GPUs implement a reasonably competent virtual memory system that decou-
ples virtual and physical addresses, but they do not implement hardware for 
demand paging.

device memory – Memory that is readily accessible to the GPU. CUDA arrays, 
global memory, constant memory, and local memory are all different ways to 
manipulate device memory.

DMA – Direct memory access. When peripherals read or write CPU memory 
asynchronously and independently of the CPU. 

driver – Software that uses OS facilities to expose a peripheral’s hardware 
capabilities.

Driver API – The “low-level” API that enables full access to CUDA’s facilities.

dynamic instruction count – The number of machine instructions actually exe-
cuted by a program. Contrast with static instruction count.

ECC – Error correction code. Some CUDA hardware protects the external mem-
ory interface of the GPU by setting aside 12.5% of video memory (1 bit per 8 bits 
of accessible memory) and using it to detect and sometimes to correct errors in 
the memory transactions. nvidia-smi or the NVIDIA Management Library can 
be used to query whether correctable (single-bit) or uncorrectable (double-bit) 
errors have occurred.

front side bus (FSB) – Chipset interface to memory on non-NUMA system 
configurations.

global memory – Device memory that is read or written by CUDA kernels using 
pointers.

1.  Demand paging hardware can be used to implement many other features, like copy-on-write
and mapped file I/O. For more information, consult a textbook on operating systems.
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GPU – Graphics processing unit.

GPU time – Time as measured by CUDA events, as opposed to the system timer. 
Such times can be used to direct optimization, but they do not give an accurate 
picture of overall performance. Contrast with wall clock time.

HPC – High performance computing.

ILP – See instruction level parallelism.

instruction level parallelism – The fine-grained parallelism between operations 
during program execution. 

intrinsic function – A function that directly corresponds to a low-level machine 
instruction.

JIT – Just-in-time compilation. See also online compilation.

kernel mode – Privileged execution mode that can perform sensitive operations 
such as editing page tables.

kernel thunk – The transition from user mode to kernel mode. This operation 
takes several thousand clock cycles, so drivers running on operating systems 
that require kernel thunks in order to submit commands to the hardware must 
queue up hardware commands in user mode before performing the kernel 
thunk in order to submit them.

lane – Thread within a warp. The lane ID may be computed as threadIdx.x&31.

MMU – Memory management unit. The hardware in the CPU or GPU that 
translates virtual addresses to physical addresses and signals a problem when 
invalid addresses are specified.

node – A unit of memory bandwidth in NUMA systems. In inexpensive NUMA 
systems, nodes typically correspond to physical CPUs.

NUMA – Nonuniform memory access. Refers to the memory architecture of 
AMD Opteron or Intel Nehalem processors, where the memory controller is 
integrated into the CPU for lower latency and higher performance.

occupancy – The ratio of the number of warps executing in an SM as compared 
to the theoretical maximum.

online compilation – Compilation done at runtime, not when the developer builds 
the application.
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opt-in – An API provision where the developer must request a behavior change 
at the interface level. For example, creating a blocking event is an “opt-in” 
because the developer must pass a special flag to the event creation APIs. 
Opt-ins are a way to expose new functionality without running the risk of regres-
sions due to existing applications relying on the old behavior.

opt-out – An API provision to suppress a legacy behavior—for example, creating 
an event with timing disabled.

pageable memory – Memory that is eligible for eviction by the VMM. Operating 
system designers prefer memory to be pageable because it enables the operat-
ing system to “swap out” pages to disk and make the physical memory available 
for some other purpose.

page fault – The execution fault that happens when an application accesses vir-
tual memory that is marked nonresident by the operating system. If the access 
was valid, the operating system updates its data structures (perhaps by pulling 
the page into physical memory and updating the physical address to point there) 
and resumes execution. If the access was not valid, the operating system signals 
an exception in the application.

page-locked memory – Memory that has been physically allocated and marked 
as nonpageable by the operating system. Usually this is to enable hardware to 
access the memory via DMA.

PCIe – PCI Express bus, used by CUDA for data interchange between host and 
device memory.

pinned memory; see page-locked memory.

pitched memory allocation – An allocation where the number of bytes per row is 
specified separately from the row elements multiplied by the element size. Used 
to accommodate alignment constraints that must stay the same from one row of 
the array to the next.

pitch-linear layout – The memory layout used for a pitched memory allocation, 
specified by a “tuple” of a base address and the number of bytes per row (the 
“pitch”).

predicate – A single bit or Boolean true/false value. In C, an integer may be con-
verted to a predicate by evaluating whether it is nonzero (true) or zero (false).

process – Unit of execution in multitasking operating systems, with its own 
address space and lifetime management of resources (such as file handles). 
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When the process exits, all resources associated with it are “cleaned up” by the 
operating system.

PTE – Page table entry.

PTX - Parallel Thread eXecution, the intermediate assembly language and 
bytecode used as input to the driver’s JIT process when compiling onto a specific 
GPU architecture.

SASS – The assembly-level, native instruction set for CUDA GPUs. The meaning 
of the acronym has been lost in the mists of time, but Shader ASSembly lan-
guage seems like a plausible guess!

SBIOS – System BIOS (“basic input/output system”). The firmware that controls 
the most basic aspects of a computer system’s I/O subsystem, such as whether 
to enable CPU or chipset features that may not be supported by certain operat-
ing systems. The SBIOS is lower-level than the operating system.

shared memory – Onboard GPU memory used by CUDA kernels as a fast 
“scratchpad” to hold temporary results.

SIMD – Single instruction, multiple data—a primitive for parallel programming 
that involves performing a uniform operation across different data in parallel. 
The streaming multiprocessors in CUDA hardware operate in SIMD manner 
across 32 threads. SSE instructions in x86 hardware operate in SIMD manner on 
packed data across wide registers.

SM – Streaming multiprocessor—one of the core execution units of the GPU. 
The number of SMs in a GPU may range from 2 to dozens. Additionally, the 
instruction set of a GPU may be designated with a version number—for example, 
“SM 2.0.”

SMX – Streaming multiprocessor, as implemented in Kepler-class (SM 3.x) 
hardware.

SSE – Streaming SIMD extensions. An instruction set extension added to x86 in 
the late 1990s that could perform four single-precision floating point operations 
in a single instruction. Later additions have enabled SIMD operations on integers 
and have widened the operations from 128 bits to 256 bits.

static instruction count – The number of machine instructions in a program; the 
amount of data occupied by the program increases with the static instruction 
count. Contrast with dynamic instruction count.
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structure of arrays (SOA) – Memory layout that uses an array for each data ele-
ment that describes an object. Contrast with array of structures (AOS). 

synchronous – An adjective used to describe functions that do not return until 
the requested operation has completed.

TCC – Tesla Compute Cluster driver, an XPDDM class driver that can run 
on Windows Vista and later. It does not get the benefits of WDDM (Windows 
 Desktop Manager acceleration, graphics interoperability, emulated paging), but 
can submit commands to the hardware without performing a kernel thunk and 
implement the 64-bit unified address space.

Thrust – C++-based productivity library for CUDA, loosely based on the STL.

TLA – Three-letter acronym.

TLS – Thread local storage.

ulp – Unit of last precision—the least significant digit in the mantissa of a float-
ing point value. 

user mode – The unprivileged execution mode, where memory is generally 
pageable and hardware resources can only be accessed through APIs that inter-
act with the operating system’s kernel mode software.

UVA – Unified virtual addressing.

VMM – Virtual memory manager. The part of the operating system that manages 
memory: allocation, page-locking, managing page faults, and so on. 

wall clock time – Time as measured by reading a system clock before and after 
performing a set of operations. The wall clock time includes all system effects 
and gives the most accurate measure of overall performance. Contrast with 
GPU time.

warp – The basic unit of execution for streaming multiprocessors. For the first 
three generations of CUDA hardware, warps have had exactly 32 threads, so the 
warp ID in a 1D threadblock may be computed as threadIdx.x>>5. Also see lane.

WDDM – Windows Display Driver Model. This driver model, new with Windows 
Vista, moved most of the display driver logic from kernel mode into user mode.

XPDDM – Windows XP Display Driver Model. Architecturally, this driver model 
actually dates back to Windows NT 4.0 (c. 1996). This acronym was invented at 
the same time as “WDDM” for contrast.
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64-bit addressing, xxii
device pointers, 132
and UVA, 30–31

A

Absolute value, 260
Address spaces, 22–32
Adobe CS5, 5
Affinity, 15–16, 128–130
__all() intrinsic, 271
Amazon Machine Image (AMI), 113–114
Amazon Web Services, 109–117
AMBER molecular modeling package, 427
Amdahl’s Law, 35–36, 188, 195
AMI, see Amazon Machine Image
__any() intrinsic, 271
ARM, 19
Array of structures (AOS), 429–430
Arrays, CUDA, see CUDA Arrays
Asynchronous operations

kernel launch, 205–206, 209
memory copy, 178–181

atomicAdd()intrinsic, 201, 236
and reduction, 376–377
and single-pass reduction, 373–376

atomicAnd()intrinsic, 151, 236
atomicCAS()intrinsic, 152, 236
atomicExch()intrinsic, 153, 236
atomicOr()intrinsic, 200, 236
Atomic operations

in global memory, 152–155, 216
in host memory, 237
and reduction, 367, 373–377
in shared memory, 239–240

Availability zones, 112
AWS, see Amazon Web Services

B

Ballot instruction, xxii, 271
Barriers, memory, 240–241
Bit reversal, 242

Block ID, 212–213, 275
Block-level primitives, 272
blockDim, 213, 275
blockIdx, 213, 275
Blocking waits, 79, 186
Block-level primitives, 272
Block linear addressing, 308–309
Boids, 421, 447
__brev() intrinsic, 242
Bridge chip, PCI Express, 19–21
Brook, 5
BSD license, 7, 471
Buck, Ian, 5
__byte_perm() intrinsic, 242

C

Cache coherency, 209
Cache configuration, 75
Callbacks, stream, 77
chLib, see CUDA Handbook Library
chTimerGetTime(), 175, 471–472
Clock register, 275
__clock() intrinsic, 275
__clock64() intrinsic, 275
__clz() intrinsic, 242
Coalescing constraints, 143–147
Coherency, 209
Command buffers, 32–35
Concurrency

CPU/GPU, 174–178
inter-engine, 187–196
inter-GPU, 202, 
kernel execution, 199–201

Condition codes, 267
Constant memory, 156–158

and dynamic parallelism, 224
and N-body, 434–436
and normalized cross-correlation, 456–459

Contexts, 67–71
Convergence, 268–269
Copy-on-write, 25

Index
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cuArray3DGetDescriptor(), 313
cuArray3DCreate(), 312
cuArrayCreate(), 312
cuCtxAttach(), 70
cuCtxCreate(), 

and blocking waits, 39
and local memory usage, 159, 211
and mapped pinned memory, 124

cuCtxDestroy(), 70, 202
cuCtxDetach(), 70
cuCtxGetLimit(), 71
cuCtxPopCurrent(), 70, 294–296
cuCtxPushCurrent(), 70, 294–296
cuCtxSetCacheConfig(), 71, 75
cuCtxSetLimit(), 71
cuCtxSynchronize(), 77, 209
CUDA arrays, 82, 308–313

vs. device memory, 313
CUDA By Example, xxi-xxii
CUDA Handbook Library, 471–479

Command line parsing, 476–477
Driver API support, 474–475
Error handling, 477–479
Shmoos, 475–476
Threading, 472–474
Timing, 471–472

CUDA runtime
lazy initialization, 53
memory copies, 166–169
vs. driver API, 87–92

CUDA_MEMCPY3D structure, 92
cudaBindTexture(), 85, 155, 315
cudaBindTexture2D(), 85, 315, 338
cudaBindTextureToArray(), 85, 315
cudaDeviceProp structure, 61–63

asyncEngineCount member, 166
integrated member, 18
kernelExecTimeoutEnabled member, 210
maxTexture1DLayered member, 343
maxTexture2DLayered member, 343
maxTexture3D member, 210
totalGlobalMem member, 75, 137
unifiedAddressing member, 127

cudaDeviceReset(), 202
cudaDeviceSetCacheConfig(), 75, 162–163
cudaDeviceSynchronize(), 77, 209

device runtime, 223
in multi-GPU N-body, 297–299

cudaEventCreate(), 
and blocking waits, 39
and disabling timing, 225

cudaEventCreateWithFlags(), 89–90
cudaEventQuery(), 186
cudaEventRecord(), 183–184, 359
cudaEventSynchonize(), 89–90, 183–184
cudaExtent  structure, 135, 168, 311
cudaFree(), 133

and deferred initialization, 67
cudaFree(0), 67
cudaFuncSetCacheConfig(), 75, 162–163
cudaGetDeviceCount(), 60
cudaGetLastError(), 210

and device runtime, 225
cudaGetSymbolAddress(), 139, 157, 201

and scan, 405
cudaHostAlloc(), 81
cudaHostGetDevicePointer(), 81
cudaHostRegister(), 81, 126
cudaHostUnregister(), 81, 126
cudaMalloc(), 133
cudaMalloc3D(), 75, 134
cudaMalloc3DArray(), 341–343

and layered textures, 343
cudaMallocArray(), 309–310, 341–342
cudaMallocPitch(), 134, 339
cudaMemcpy(), 31, 166
cudaMemcpyAsync(), 165, 359–361
cudaMemcpy3DParms structure, 92, 168
cudaMemcpyFromSymbol(), 138, 157
cudaMemcpyKind enumeration, 164
cudaMemcpyToSymbol(), 138, 157

and notrmalized cross-correlation, 
456–458

cudaMemcpyToSymbolAsync()
and N-body computations, 435–436

cudaMemset(), 139
cudaMemset2D(), 139
cudaPitchedPtr  structure, 134, 342
cudaPointerAttributes structure, 141, 

291–292
cudaPos structure, 169, 342
cudaSetDevice(), 288
cudaSetDeviceFlags()

and blocking waits, 39
and local memory usage, 159, 211
and mapped pinned memory, 124
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cudaDeviceSetLimit(), 135–136
input values, 227–228
and malloc() in kernels, 136
and synchronization depth, 222, 226–227

cudaStreamCreate()
and device runtime, 225
nonblocking streams, 225

cudaStreamQuery(), 186–187
and kernel thunks, 56

cudaStreamWaitEvent(), 41, 202, 
292–293

cuDeviceComputeCapability(), 60
cuDeviceGet(), 60, 66
cuDeviceGetAttribute(), 60

asynchronous engine count, 166
integrated GPU, 18
kernel execution timeout, 210
texturing dimensions, 341
unified addressing, 127

cuDeviceGetCount(), 60, 66
cuDeviceGetName(), 66
cuDeviceTotalMem(), 138
cuDriverGetVersion(), 53
cuEventCreate(), 184

and blocking waits, 39
cuFuncGetAttribute(), 74

and local memory usage, 158
cuFuncSetCacheConfig(), 75, 163
cuInit(), 59, 65–67
cuLaunchGrid(), 210
cuLaunchKernel(), 73–74, 207–208
cuMemAlloc(), 76, 133
cuMemAllocPitch(), 135

and coalescing, 145
cuMemcpy(), 31, 166
cuMemcpy3D(), 91, 166
cuMemcpyDtoD(), 164
cuMemcpyDtoH(), 164
cuMemcpyHtoD(), 164
cuMemcpyHtoDAsync(), 165
cuMemFree(), 76, 133
cuMemGetAddressRange(), 141
cuMemGetInfo(), 76
cuMemHostAlloc(), 124–125, 135

and mapped pinned memory, 124
and write combining memory, 125

cuMemHostGetDevicePointer(), 124
cuMemHostGetFlags(), 80

cuMemHostRegister(), 81, 126
and UVA, 31, 126

cuMemset*(), 139–140
cuModuleGetFunction(), 73
cuModuleGetGlobal(), 73, 139, 157
cuModuleGetTexRef(), 73
cuModuleLoadDataEx(), 103–104
cuobjdump, 105–106, 275
cuPointerGetAttribute(), 142, 291
Current context stack, 69–70
cuStreamAddCallback(), 77
cuStreamCreate(), 89
cuStreamQuery(), 

and kernel thunks, 56
cuStreamSynchronize(), 89
cuTexRefSetAddress(), 85, 155

and state changes, 332
cuTexRefSetAddress2D(), 85
cuTexRefSetArray(), 85

and state changes, 332
cuTexRefSetFormat(), 316–317

D

__dadd_rn() intrinsic, 249
suppressing multiply-add, 253

Demand paging, 25
Device memory

vs. CUDA arrays, 313
Devices, 59–63
dim3 structure, 207
Direct memory access, 27–28,79–80
Direct3D, 3, 86–87
Divergence, 267–269
DMA, see Direct Memory Access
__dmul_rn() intrinsic, 249

suppressing multiply-add, 253
__double2hiint() intrinsic, 234
__double2loint() intrinsic, 234
__double_as_long_long() intrinsic, 234
Driver API

vs. CUDA runtime, 87–92
facilities, 474–475
memory copies, 169–171

Driver models
User mode client driver, 54–55
WDDM (Windows Display Driver Model), 55–56
XPDDM (Windows XP Driver Model), 55

Dynamic parallelism, xxii, 222–230
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E

EBS, see Elastic Block Storage
EC2, see Elastic Compute Cloud
ECC, see Error correcting codes
Elastic Block Storage, 113
Elastic Compute Cloud, 109–117
Error correcting codes (ECC), 155–156
Events, 78–79

and CPU/CPU concurrency, 183
queries, 186
and timing, 186–187

Extreme values, floating point, 247–248

F

__fadd_rn() intrinsic, 249
suppressing multiply-add, 251

False sharing, 15–16
__fdividef_rn() intrinsic, 251
Fermi

comparison with Tesla, 43–46
instruction set, 279–285

__ffs() intrinsic
__float_as_int() intrinsic, 234, 251
float2 structure, 235
float4 structure, 235, 318
_float2half() intrinsic, 253
Floating point

conversion, 249–250
double precision, 253, 
extreme values, 247–248
formats, 245
half precision, 253
intrinsics for conversion, 250
intrinsics for rounding, 249
library, 259–265
representations, 245
rounding, 248–249
single precision, 250–253
streaming multiprocessor support, 244–265

__fmul_rn() intrinsic, 249
suppressing multiply-add, 251

Front-side bus, 12–13
Functions (CUfunction), 73–75
Funnel shift, 243–244

G

Gelsinger, Pat, 4
GL Utility Library, 335

Global memory
allocating, 132–137
and dynamic parallelism, 224
pointers, 131–132
querying total amount, 75–76
static allocations, 138–139

Glossary, 481–486
GLUT, see GL Utility Library
GPGPU (general-purpose GPU programming), 5
Graphics interoperability, 86–87
gridDim, 213, 275

H

__halftofloat() intrinsic, 253
__hiloint2double() intrinsic, 234
Host interface, 39–41
Host memory

allocating, 122–123
mapped, 28–29, 81, 124, 127
pinned, 27–28, 80, 122–123
portable, 29–30, 81, 123–124, 287–288
registering, 81, 125–126
and UVA, 126–127

Host memory registration, see Registration
HT, see HyperTransport
Hyper-Q, 77
HyperTransport, 14–15

I

Integrated GPUs, 17–19
Interleaving, see Memory interleaving

Intra-GPU synchronization, 39–40
Inter-GPU synchronization, 41
Intrinsics

for block-level primitives, 272
for floating point conversion, 250
for rounding, 249
for SFU, 252
for warp shuffle, 271

int2 structure, 235
int4 structure, 235, 319
__int_as_float() intrinsic, 234, 251
I/O hub, 14–17
__isglobal()intrinsic, 142, 224
isochronous bandwidth, 12

K

Kandrot, Edwards, xxi
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Kepler
instruction set, 279–285

Kernel mode
vs. user mode, 26

Kernel thunk, 26
and stream and event queries, 186
and WDDM, 55–56

Kernels, 73–75
declaring, 73
launch overhead, 174–178
launching, 206–208

L

Lanes, PCI Express, 12
Lanes, thread, 213
Layered textures, 342–343
Lazy allocation, 25
Linux

driver model, 54–55
in EC2, 114

Local memory, 158–161
and context creation, 159
and dynamic parallelism, 224–225

__long_as_double() intrinsic, 234
Loop unrolling, 430–431

M

make_cudaPitchedPtr  function, 342
Mapped file I/O, 25
Mapped pinned memory, 81, 124, 361–362
Math library, floating point, 259–265
Maximum, 269
Memset, see Memory set
Memory copy, 27–28, 164–171

asynchronous,165–166
CUDA runtime v. driver API, 90–92 
driver overhead, 179–180
functions, CUDA runtime, 166–169
functions, driver API, 169–170
pageable, 80, 183–184
peer-to-peer, 288–289, 293–296

Memory interleaving, 16
Memory set, 139–140
Microbenchmarks, 6

Kernel launch overhead, 174–178
Memory allocation, 135–137
Memory copy overhead (device®host), 181
Memory copy overhead (host®device), 179–180

Global memory bandwidth, 147–151
Register spilling, 159–161

Microdemos, 7
Concurrency, CPU/GPU, 183–186
concurrency, inter-engine, 189–196
concurrency, intra-GPU, 189–196
concurrency, kernel execution, 199–201
float®half conversion, 253–258
pageable memcpy, 183–186
peer-to-peer memcpy, 293–294
spin locks, 152–155
surface read/write, 1D, 333–335
surface read/write, 2D, 340
texturing: 9-bit interpolation, 329–331
texturing: addressing modes, 335–333
texturing: increasing address space coverage, 

318–321
texturing: unnormalized coordinates, 325–328
thread ID, 216–220

Minimum, 269
Modules, 71–73
Moore’s Law, 4
__mul24() intrinsic, 44, 242
__mul64hi() intrinsic, 242
__mulhi() intrinsic, 242
Multiple GPU programming

with current context stack, 294–296
and multiple CPU threads, 299–303
and inter-GPU synchronization, 292–294
hardware, 19–22
and N-body, 296–302
scalability, 438
and single CPU thread, 294–299

Multithreading
and N-body, 442–444

N

name mangling, 74
N-body, 421–447

and constant memory, 434–436
and multiple GPUs, 296–302
and shared memory, 432–434

Nehalem (Intel i7), 15
Newton-Raphson iteration, 440
Nonblocking streams, 183, 225
Nonuniform memory access (NUMA)

hardware, 14–17
software, 128–130
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Normalized cross-correlation, 449–452
Northbridge, 12–14
NULL stream, 77–78, 178–182

and concurrency breaks, 181, 196
and nonblocking streams, 183

NUMA, see Nonuniform memory access
nvcc, 57–58, 93–100

code generation options, 99–100
compilation trajectories, 94–95
compiler/linker options, 96–97
environment options, 95–96
miscellaneous options, 97–98
passthrough options, 97

nvidia-smi, 106–109

O

Occupancy, 220–222
OpenGL, 86–87, 335–337
Open source, 7–8, 471
Opteron, 14
Optimization journeys, 7

N-body, 428–434
normalized cross-correlation, 452–464
reduction, 367–372
SAXPY (host memory), 358–363
Scan, 394–407

P

Page, memory, 23–24
Page table, 24–25
Page table entry (PTE), 23–25
Parallel prefix sum, see Scan
PCIe, see PCI Express
PCI Express, 12

integration with CPUs, 17
Peer-to-peer, 21, 143

mappings, 31–32
memory copies, 288–289

Performance counters, 272
Pinned memory, 27–28

registering, 125–126
Pitch, 133–135, 307–308
__popc() intrinsic, 242
Pointers, 131–132
Pointer queries, 140–142
Population count, 242
Portable pinned memory, 81, 123–124, 288
__prof_trigger() intrinsic, 272

PTE, see page table entry
PTX (parallel thread execution), 57–59, 100–104, 

411
ptxas, the PTX assembler, 100–104

command line options, 101–103

Q

QPI, see QuickPath Interconnect
Queries

amount of global memory, 75–76
device attributes, 60–63
event, 186
pointer, 140–142
stream, 56, 186

QuickPath Interconnect, 14–15

R

RDTSC instruction, 78
Reciprocal, 251
Reciprocal square root, 251–252, 440

accuracy by SFU, 252
Reduction, 365–383

of arbitrary data types, 378–381
with atomics, 376–377
of predicates, 382
single-pass 373–376
two-pass, 367–372
warps, 382–383

Registers, 233–234
Registration, host memory, 28, 31, 81, 125–126
Rotation (bitwise), 243–244

S

S3, see Simple Storage Service
__sad() intrinsic
__saturate() intrinsic, 253
Sanders, Jason, xxi
SASS, see Streaming Assembly
__saturate() intrinsic, 253
SAXPY (scaled vector addition), 354–363
Scalable Link Interface (SLI), 19–21
Scan (parallel prefix sum), 385–419

and circuit design, 390–393
exclusive v. inclusive, 386, 391
reduce-then-scan (recursive), 400–403
reduce-then-scan (single pass), 403–407
scan-then-fan, 394–400
and stream compaction, 414–417
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warp scan, 407–414
and warp shuffle, 410–414

SDK (Software Development Kit)
SFU, see Special Function Unit
Shared memory, 162–164

atomic operations, 239–240
and dynamic parallelism, 242
and N-body, 432–434
and normalized cross-correlation, 459–460
pointers, 164
and Scan, 395–396
unsized declarations, 163
and the volatile keyword, 164
and warp synchronous code, 164

__shfl() intrinsics, 271–272
Shmoo, 475–477

and kernel concurrency, 191
Shuffle instruction, 271
Simple Storage Service (S3), 112–113
SLI, see Scalable Link Interface
SOC, see System on a Chip
Software pipelining of streams, 76–77, 192–193
Special Function Unit, 251–252 
Spin locks, 152–154
SSE, see Streaming SIMD Extensions
Stream callbacks, 77
Stream compaction, 414–417

Streaming Assembly (SASS), 105, 275–285
for warp scan, 412–414

Streaming Multiprocessors, (SMs),  46–50, 
231–285

Streaming SIMD Extensions (SSE), 4
and N-body, 440–441

Streaming workloads, 353–363
in device memory, 355–357
and mapped pinned memory, 361–362
and streams, 359–361

Streams, 76–78
and software pipelining, 76–77, 359–361
NULL stream, 77–78, 181, 196
queries, 56, 186

string literals
to reference kernels and symbols, 74, 138–139

Structure of Arrays (SOA), 429
Surface load/store

1D, 333–335
2D, 340
SASS instructions, 283–284

Surface references, 85–86,
1D, 333–334
2D, 340

Stream callbacks, 77
Streaming workloads, 353–363
Sum of absolute differences, 242
surf1Dread() intrinsic, 333
surf1Dwrite() intrinsic, 333–335
Synchronous operations

Memory copy, 165–166
__syncthreads() intrinsic, 163, 240

avoiding – see warp synchronous code
and reduction, 368–369
and scan, 395–397

__syncthreads_and() intrinsic, 272
__syncthreads_count() intrinsic, 272, 365
__syncthreads_or() intrinsic, 272
Symmetric multiprocessors, 13–14
System on a chip (SOC), 19

T

TCC, see Tesla Compute Cluster driver
TDR, see Timeout Detection and Recovery
Tesla

comparison with Fermi, 43–46
instruction set, 276–279

Tesla Compute Cluster driver, 57
Texture references, 82–85
tex1Dfetch() intrinsic, 318
Texturing, 305–349, 

1D, 314–317
2D, 335–339
3D, 340–342
and coalescing constraints, 317–318
and normalized cross-correlation, 452–456
from device memory, 155, 338–339
hardware capabilities, 345–347
from host memory, 321–323
from layered textures, 342–343
with normalized coordinates, 331–332
quick reference, 345–350
with unnormalized coordinates, 323–331

Thread affinity, 128–131
__threadfence() intrinsic, 240
__threadfence_block() intrinsic, 240
__threadfence_system() intrinsic, 241
Thread ID, 216
threadIdx, 213, 275
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Threads, CPU, 
and affinity, 128–129
library support, 472–474

Threads, GPU, 213
Timeout Detection and Recovery (TDR), 56–57
Timing, CPU-based, 471–472
Timing, GPU-based

CUDA events, 78–79
hardware, 39

TLB, see Translation Lookaside Buffer
Translation Lookaside Buffer, 25

U

__umul24() intrinsic, 463
__umul64hi() intrinsic, 463
__umulhi() intrinsic, 463
Unified virtual addressing (UVA), xxii, 30–31, 55, 

69, 126–127
and mapped pinned memory, 124, 125
and memcpy functions, 166
inferring device from address, 291–292

__usad() intrinsic, 242
User mode v. kernel mode, 26
UVA, see unified virtual addressing

V

valloc(), 126
Video instructions, scalar, 272–274

Video instructions, vector, 273–274
VirtualAlloc(), 126
VirtualAllocExNuma(), 130
VirtualFreeEx(), 130
volatile keyword

and shared memory, 164

W

Warp-level primitives, 270–272
Warp shuffle, xxii, 271–272

and N-body, 436–437
and reduction, 382–383
and scan, 410–412

Warp synchronous code, 164
for reduction, 369–372
and the volatile keyword, 174

Warps, 213
and occupancy, 220

WDDM, see Windows Display Driver Model
Width-in-bytes, see Pitch
Windows, 55–57, 64–67
Windows Display Driver Model, 55–56
Write combining memory, 18, 124–125

Z

Zero-copy, 19, 361–362
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