
AI-Driven Malware Detection and Uncovering
Anomalous Traffic Patterns with SIEM

Integration

By

Waqas Ahmad
Registration No: 00000401385

Department of Information Security

Military College of Signals

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(September 2024)

AI-Driven Malware Detection and Uncovering
Anomalous Traffic Patterns with SIEM

Integration

By

Waqas Ahmad

(Registration No: 00000401385)

A thesis submitted to the National University of Sciences and Technology, Islamabad,

in partial fulfillment of the requirements for the degree of

Masters in

Information Security

Supervisor: Prof. Dr. Muhammad Faisal Amjad

Military College of Signals
National University of Sciences and Technology (NUST)

Islamabad, Pakistan
(2024)

I

II

III

IV

V

DEDICATION

This thesis is dedicated to my Family, Teachers, and Friends for their unconditional
love, endless support, and continuous encouragement.

VI

ACKNOWLEDGEMENTS

I would like to convey my gratitude to my supervisor, Prof. Dr. Muhammad Faisal
Amjad, for his supervision and constant support. His invaluable help, constructive
comments, and suggestions throughout the experimental and thesis work are major
contributions to the success of this research. I would also like to thank my committee
members, Mr. Ammar Hassan and Dr. Faiz ul Islam, for their useful comments and
suggestions.

VII

Contents

ACKNOWLEDGEMENTS VII

LIST OF TABLES X

LIST OF FIGURES XI

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS XII

ABSTRACT XIV

1 INTRODUCTION 1
1.1 Introduction . 1
1.2 Problem Statement . 2
1.3 Objective . 3
1.4 Relevance to National Needs . 5
1.5 Contributions . 6

2 LITERATURE REVIEW 8
2.1 Overview . 8
2.2 Related Work . 9
2.3 Summary . 14

3 PROPOSED RESEARCH METHODOLOGY 16
3.1 Dataset . 16
3.2 Working of Isolation Forest and K-means in Proposed Solution 18
3.3 Integration of Anomaly Detection with SIEM 20
3.4 Features Extraction from HTTP logs 21
3.5 Scaling Strategies for the proposed solution 22
3.6 System Design . 23
3.7 System Design of the HTTP malicious files detection 27

VIII

4 RESULTS AND FINDINGS 30
4.1 Experimental Setup . 30
4.2 Visualization and Analysis of Anomalous HTTP Logs 33
4.3 Results and findings of HTTP Malicious Files Detection 39

5 CONCLUSIONS AND FUTURE RECOMMENDATION 44

REFERENCES

IX

47

List of Tables

2.1 Overview of Datasets Used in the Study 14

3.1 Key Features and their description . 18
3.2 Summary of Key Points: Isolation Forest vs. K-means Clustering . . . 20
3.3 Integration of Anomaly Detection with SIEM Solution Using ELK Stack 22
3.4 Extracted Features from Zeek HTTP Logs 22
3.5 Apache Kafka’s Data Management and Processing Workflow 25
3.6 System Design and Data Flow . 27
3.7 Random Forest Model Details . 28
3.8 System Overview and Data Flow . 29
3.9 Random Forest Model Details . 29

4.1 Features of HTTP Logs in Elasticsearch Index Pattern 35
4.2 Key Performance Metrics & Anomaly Detection Techniques 37
4.3 Key Performance Metrics for Anomaly Detection Models 37
4.4 Overview of Anomaly Detection Techniques 38
4.5 Silhouette Score Interpretation . 38
4.6 Silhouette Score Interpretation . 39

X

List of Figures

3.1 Flowchart of the Solution and the SIEM Network Diagram 24
3.2 Flowchart of HTTP malicious files detection 27

4.1 HTTP Logs and Anomalous HTTP Logs 31
4.2 Cluster Groups of Anomalous HTTP Logs 32
4.3 Decision Function of the Proposed Machine Learning Model) 32
4.4 HTTP Logs Overview in Elasticsearch 35
4.5 Anomalous HTTP Logs Clustering & Analysis 36
4.6 Details of HTTP Files Logs and Anomalous HTTP File 40
4.7 Heatmap of confusion matrix . 42

XI

LIST OF SYMBOLS,
ABBREVIATIONS AND
ACRONYMS

SIEM Security Information and Event Management
SOC Security Operations Center
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDS Intrusion Detection System
UNC Unsupervised Niche Clustering
PCA Principal Component Analysis
MDE Maximal Density Estimator
KDD Knowledge Discovery in Databases
UNIDS Unsupervised Network Intrusion Detection System
SSC Sub-Space Clustering
PE Files Portable Executable Files
ML Machine Learning
EAC Electronic Access Control
NIDS Network Intrusion Detection System
NADS Network Anomaly Detection System
SVM Support Vector Machine
DLLs Dynamic-Link Libraries
API Application Programming Interface
CNN Convolutional Neural Network
LightGBM Light Gradient Boosting Machine
EDR Endpoint Detection and Response
NDR Network Detection and Response
SOAR Security Orchestration, Automation, and Response
TI Threat Intelligence
WAF Web Application Firewall

XII

VMS Virtual Memory System (commonly also Video
Management System depending on context)

ETL Extract, Transform, Load
IPS Intrusion Prevention System
DPI Deep Packet Inspection
IP Internet Protocol
SSL Secure Sockets Layer
TLS Transport Layer Security

XIII

ABSTRACT

The amount of network traffic continuously rises, and network services are
becoming increasingly more complex and vulnerable. Intrusion detection
systems are employed to safeguard these networks. Signature-based
intrusion detection cannot detect new attacks, so anomaly detection is
necessary. Also, most of the traditional Security Information and Event
Management (SIEM) doesn’t have any live dataset creation and anomalous
data logs detection. In this solution, we propose a framework for detecting
anomalies in Hypertext Transfer Protocol (HTTP) logs which would enable
fast detection of anomalies, visualization of network traffic, and integration
with SIEM solutions. This solution gets HTTP logs from the network
and preprocesses them. Then, the solution checks the traffic for anomaly
detection by applying the Isolation Forest algorithm using unsupervised
learning. Later, we will then explore those anomalies with clustering using
the K-means method. The proposed the solution uses no predefined dataset
file. But, it trains on the live data logs, where the user checks for any
anomalous data logs within a given timestamp. The logs from this specified
timestamp serves as the dataset for the model’s training. The solutions are
on live network HTTP logs, but in this thesis, we are using this solution on
a test network where we have 153 logs, of which 32 are declared anomalous
by our proposed solution and after that, the clustering on those anomalous
data logs were applied. Finally, the results are sent to the SIEM solution,
which visualizes the network and the anomalous traffic. Besides this, the
solution is quick to detect intrusion attempts. This method is significant in
the sense that it contributes to proactive cybersecurity strategies specifically
designed to meet the requirements of Security Operations Center (SOC)

XIV

analysts and threat-hunting teams.

XV

Chapter 1

INTRODUCTION

1.1 Introduction

Cyberattacks have become increasingly varied and large-scale in recent
years, resulting in significant losses and adverse impacts. Consequently, the
importance of network intrusion detection has grown significantly. There
are two primary types of network intrusion detection systems [1, 2].
The most popular method of intrusion detection remains signature based.
This signature based method involves searching for invasive behavior
using pre-set attack rules. A rule is something that can be applied to the
network traffic or some other action, and an alarm will be generated once
the rule is matched. Signature-based detection operates a fast and wide
range of attacks that predefined rules can detect [3][4][5]. In addition, it
usually results in a low false alarm rate. The downside of this approach is
that signatures for attacks need to be defined manually. For example, if
attackers quickly find and exploit a new vulnerability before appropriate
rules are created, unknown vulnerabilities can still be exploited until
Intrusion Detection rule (IDS) rule has been improved.
Anomaly-based systems work on a different principle. Whenever new
behavior or traffic tips in, it is compared with the normal profile, and
all the discrepant behaviors are considered as anomalies. This approach
enables the detection of fresh and unknown attack attempts [6][7][8].
Moreover, the network profile can be updated in real-time, thus adjusting
it to variations in network traffic. [9].

1

However, a significant challenge arises when deploying these systems
on networks: there is a lack of proper monitoring systems to check the
alerts generated by this kind of system. The system state can always be
monitored. The implementation of such solutions (e.g., security information
and event management (SIEM) solutions) has been challenging due to the
prohibitive costs, high computational resource requirements, and continual
needs for highly-trained analysts or threat-hunting teams manning most
organizations security operations center (SOC)s directly round-the-clock
[10].
Also most malware detection solutions use static or dynamic analysis
techniques, while some use both techniques [11]. To construct a strong
malware detection mechanism, machine learning (ML) techniques employ
static analysis methods to derive a feature set. Windows utilizes a type of
executable format known as the Portable Executable (PE). Some examples
of executable file types are SYS, SCR, DLL, EXE, APP, BAT, etc. [12].
For the Windows OS loader to manage all wrapped executable code, a
PE is a data structure that includes every essential piece of information
it needs. [13]. A PE file has three headers: the file optional header, the
MS-DOS header, and an optional header [12].

1.2 Problem Statement

Traditional Security Information and Event Management (SIEM) solutions
play a crucial role in security monitoring by aggregating and analyzing
log data from various network components to detect anomalies that may
indicate malicious activities. Within these systems, Security Operations
Center (SOC) analysts are tasked with the crucial responsibility of reviewing
daily logs for potential threats. SIEM solutions incorporate various modules
designed to detect unusual patterns and generate alerts based on these
observations. However, the efficacy of these modules is often constrained
by their reliance on static datasets, which are pre-configured to recognize
known threats.

2

One significant limitation of traditional SIEM solutions is their
dependence on static datasets. These datasets are designed to identify
previously recognized threats and patterns, but as the cyber threat
landscape evolves, such datasets can quickly become outdated. As new
strains of malware and sophisticated cyber threats emerge, traditional SIEM
solutions may lack the necessary information to identify these novel threats
effectively. This limitation can lead to an increased risk of undetected
malware and emerging attacks, thereby compromising the overall security
posture of the organization.

Furthermore, the sheer volume of data that SOC analysts are required
to manage poses an additional challenge. With the continuous growth of
data generated by network activities, the workload on SOC analysts has
intensified. Analysts are tasked with sifting through vast amounts of logs
and alerts on a daily basis. This overwhelming volume of information
can lead to analyst fatigue, resulting in slower response times and a
higher likelihood of missing critical security incidents. The increased
workload exacerbates the difficulty of distinguishing genuine threats from
false positives, further stressing the need for more efficient and scalable
solutions.

In summary, while traditional SIEM solutions offer a foundational level
of security monitoring, their reliance on static datasets and the escalating
burden on SOC analysts underscore the need for more dynamic and adaptive
approaches to threat detection. To address these challenges, there is a
pressing need for advanced detection techniques that leverage machine
learning and adaptive algorithms to enhance the ability to identify emerging
threats and reduce the manual workload on security analysts.

1.3 Objective

The following are the objectives of this research
Develop a Framework for Integration: The primary goal of this

research is to design and develop a comprehensive and robust framework
that seamlessly integrates K-means clustering with Zeek HTTP logs and

3

historical data from a Security Information and Event Management (SIEM)
solution. This framework aims to streamline the process of anomaly
detection by combining the real-time data captured by Zeek with historical
data stored in SIEM systems. By achieving this integration, the framework
will enhance the efficiency and accuracy of detecting abnormal traffic
patterns and potential security threats.

Implement Real-Time Anomaly Detection: A crucial aspect of
this research is the application of K-means clustering to Zeek HTTP logs in
real time. The objective is to enable the immediate detection of abnormal
behaviors as they occur, thereby allowing for swift responses to potential
security incidents. This real-time capability is essential for maintaining
an effective security posture, as it facilitates the early identification of
anomalies that could indicate malicious activities or network intrusions.

Support Threat Hunting Efforts: This research seeks to provide a
tool that supports and enhances threat-hunting activities by automating
a significant portion of the anomaly detection process. By leveraging the
K-means clustering approach, the tool will assist security professionals
in identifying and investigating unusual patterns in network traffic. This
automation will free up valuable time for security analysts, enabling them to
concentrate on more complex and strategic aspects of threat identification
and mitigation. The ultimate goal is to improve the overall efficiency and
effectiveness of threat-hunting efforts.

Integrate with Existing SOC Tools: Ensuring that the proposed
solution integrates seamlessly with existing Security Operations Center
(SOC) tools and workflows is a key objective of this research. The
integration aims to minimize the learning curve for SOC analysts by aligning
the new anomaly detection system with established SOC practices. By
facilitating smooth adoption and integration, the solution will enhance the
overall functionality of SOC operations and ensure that analysts can leverage
the new tool without significant disruptions to their current workflows.

4

1.4 Relevance to National Needs

Following are the objectives for this research
National Defense and Intelligence: National defense and intelligence
agencies rely heavily on secure and resilient communication networks to
protect sensitive operations and data from adversaries. The detection
of anomalies in web traffic is crucial, as such anomalies can serve as
indicators of potential cyber threats targeting these critical networks. This
research contributes to enhancing the security of national defense and
intelligence systems by providing a robust method for identifying anomalous
activities in HTTP logs. By implementing the proposed anomaly detection
framework, agencies can maintain the integrity and confidentiality of their
communication channels, thereby strengthening their overall defensive
posture against cyber-attacks.

Protection of Sensitive Information: Government entities manage
extensive volumes of sensitive and classified information, which are prime
targets for unauthorized access and malicious activities. Anomalies observed
in HTTP logs may signal early warnings of such security breaches. This
research offers a proactive approach to safeguarding sensitive data by
enabling the detection of potential threats before they manifest into more
severe incidents. By leveraging machine learning techniques to analyze
HTTP traffic, this study aids in protecting information from espionage,
unauthorized access, and data manipulation, thereby ensuring that critical
information remains secure and intact.

Mitigating Cyber Espionage: Cyber espionage poses a significant
threat to national security, often perpetrated by state-sponsored actors
seeking to acquire valuable and confidential information. The detection of
anomalies within HTTP logs is essential for identifying patterns indicative
of espionage activities. This research addresses this challenge by providing
tools and methodologies for uncovering potential spy operations through
detailed analysis of web traffic anomalies. By effectively recognizing and
addressing these anomalies, the proposed approach contributes to mitigating
cyber espionage threats, both domestically and internationally, enhancing

5

national security efforts against sophisticated adversarial tactics.
Data Breach Prevention: Data breaches can have far-reaching

consequences across both public and private sectors, impacting
organizational integrity, public trust, and national security. The research
focuses on preventing such breaches by detecting anomalies in real-time
and utilizing historical data to anticipate and counteract potential threats.
The framework developed in this study enhances the capability to identify
and address data breaches before they escalate into significant incidents.
By implementing this anomaly detection approach, organizations can
improve their preparedness and response strategies, thus reducing the
risk of data breaches and minimizing their potential impact on national
and organizational security.

1.5 Contributions

This research introduces a method for detecting anomalies in HTTP logs
using advanced machine learning techniques, aimed at identifying unusual
traffic patterns efficiently. The core contribution of this research lies in
its ability to swiftly detect anomalies, which enables rapid responses to
potential threats. By integrating this method with Security Information and
Event Management (SIEM) solutions, the research enhances the visibility
and quick detection of network anomalies, thereby providing a robust
defense mechanism against emerging threats.

One of the key advantages of the proposed solution is its speed in
anomaly detection. This capability ensures that potential threats can
be identified quickly, allowing for timely responses and mitigating risks
associated with network anomalies. Unlike traditional approaches that rely
heavily on predefined datasets, the proposed solution operates without the
need for such datasets. Instead, it utilizes the Isolation Forest algorithm
to detect anomalies by training on live data logs collected over a specified
period. This approach significantly reduces reliance on historical datasets
and improves the system’s ability to handle novel and evolving attack
vectors, offering a stronger defense against new and emerging threats.

6

Following the identification of anomalies, the solution employs K-means
clustering to categorize the detected anomalies. This clustering process
provides a deeper understanding of the nature of the anomalies, offering
valuable insights that aid in addressing potential security issues more
effectively. By grouping similar anomalies together, the system helps in
analyzing patterns and trends, which enhances the overall security posture
and response strategies.

Moreover, the integration with SIEM solutions facilitates the
visualization of network traffic and other relevant variables. This feature
is particularly beneficial for Security Operations Center (SOC) analysts
and threat-hunting teams, as it provides them with comprehensive insights
during monitoring and investigative processes. The platform’s compatibility
with SIEM solutions ensures that network traffic is displayed in an accessible
manner, aiding in real-time analysis and decision-making.

The solution is designed with scalability and flexibility in mind, making
it suitable for various network sizes and configurations. It is specifically
tailored for SOC analysts and threat-hunting teams, aiming to improve their
efficiency in detecting and responding to multiple intrusion attempts. By
enhancing visualization and reporting capabilities, the platform supports
these teams in managing and mitigating security threats more effectively.

In addition to the anomaly detection solution, this research also proposes
a method for detecting malicious executable files through a thorough
analysis of Portable Executable (PE) files using a Random Forest (RF)
classifier. This machine learning model demonstrates exceptional accuracy,
achieving 99.45% in distinguishing between malware and benign files. The
dataset utilized for this classification consists of 70% malware and 30%
benign files. Deployed on the network side, this solution detects malicious
PE files and forwards the detection details to the SIEM solution. This
integration supports SOC analysts and threat-hunting teams by providing
precise and timely information regarding potential malware threats, further
enhancing the security infrastructure.

7

Chapter 2

LITERATURE REVIEW

2.1 Overview

In the field of cybersecurity, detecting anomalies in network traffic is critical
for identifying and mitigating threats. Recent research has focused on
developing advanced machine learning and clustering techniques to enhance
intrusion detection systems (IDS) and network anomaly detection systems
(NADS). Various approaches have been explored, including Unsupervised
Niche Clustering (UNC), which automatically identifies the number of
clusters and employs a fuzzy membership function alongside Principal
Component Analysis (PCA) to improve detection accuracy. Additionally,
methods like the Unsupervised Network Intrusion Detection System
(UNIDS) use a combination of clustering techniques to detect outlying
flows in network traffic without relying on labeled data. Other studies
have introduced real-time unsupervised NIDS that leverage algorithms
like DBSCAN and employ specialized engines to detect botnets and other
threats in high-speed networks. These methodologies have been evaluated
using datasets such as KDD Cup 1999, DARPA, and ISCX, demonstrating
high detection rates and low false positive rates.

Across various studies, machine learning techniques such as Isolation
Forests, Random Forests, and hybrid algorithms have been applied to
network traffic data, often yielding impressive results. However, challenges
remain, particularly regarding the outdated nature of commonly used

8

datasets like KDD99 and NSL-KDD. Despite these challenges, researchers
continue to refine anomaly detection methods, incorporating deep learning
approaches, feature extraction techniques, and hybrid models to improve
the accuracy and efficiency of intrusion detection systems.

This body of research highlights the ongoing efforts to enhance the
detection of anomalies and potential threats in network traffic. By
employing a diverse range of machine learning algorithms, clustering
methods, and feature selection techniques, these studies contribute to
the development of more robust and effective IDS and NADS. Although the
reliance on outdated datasets presents a limitation, the continuous evolution
of these approaches shows promise in adapting to the ever-changing
landscape of cybersecurity threats.

2.2 Related Work

An innovative approach to identifying outliers using Unsupervised Niche
Clustering (UNC) has been presented in [14], which is mainly used
for identifying alien presence in computer networks. The UNC is an
automatic genetic niching procedure for clustering that automatically
identifies the number of clusters. The authors use a fuzzy membership
function to characterize each predicted cluster. Additionally, they employ
principal component analysis (PCA) to simplify the dataset and improve
the performance of the suggested method while refining the Maximal
Density Estimator (MDE) to refine the quality of the solution. The
knowledge discovery in databases (KDD) Cup 1999 dataset was used
to test the model, and the results show a 99.2% detection rate and a
2.2% false alarm rate. [15] presented an Unsupervised Network Intrusion
Detection System (UNIDS) have the ability to detect undisclosed network
attacks without using any type of signatures, labeled traffic, or training.
There are three sequential steps in UNIDS. It first applies a standard
change-detection algorithm to three basic and traditional volume metrics
(bytes, packets, and flows per time slot) to find an unusual interval for
the clustering examination. Second, in order to detect outlying flows,

9

it employs a strong multi-clustering algorithm that combines Sub-Space
Clustering (SSC), Density-based Clustering, and Evidence Accumulation
Clustering (EAC) approaches. Ultimately, the anomalies can be identified
using a predetermined threshold. They evaluate the system on the dataset
which is KDD Cup 1999 where the recognition rate is more than 90%,
and the false positive rate is less than 1%. [16] presented a real-time
unsupervised NIDS for speedy networks. Two well defined engines are
added in this NIDS to enable network intrusion detection. The first engine
uses DBSCAN with an automated self-adaptive threshold to continuously
monitor network behavior and identify intrusions. The internal botnet
is to be found by the second engine. To identify both centralized and
decentralized botnet C&C communication, it clusters particular network
features. The suggested method was assessed using two datasets: DARPA
and ISCX [17]. The accuracy of the suggested model was 98.39%, with
a false positive rate of 3.61%. For the unsupervised Network Anomaly
Detection Systems (NADSs), [18] provides a linear metric learning approach
that uses distance-based clustering or classification techniques. The
training and testing stages are included in the unsupervised clustering-based
NADS. There are five steps in the training phase: boundary estimation,
transformation, filtering, clustering, and metric learning. They perform
the boundary estimation using a one-class SVM. Additionally, there are
three steps in the testing phase: transformation, division, and classification.
Using the Kyoto 2006+ [11] and NSL-KDD [12] datasets, they assess
their NADS. The algorithms can perform better with metric learning. To
find anomalies and potential attacks, [19] network traffic-based anomaly
detection model, isolation forest, was employed. The anomaly score was
used to assess the outcomes. Furthermore, the unsupervised machine
learning algorithm known as Isolation Forest was trained using the KDD
data set. [20] presented the hybrid ML algorithms, K-means algorithms,
and Random Forest algorithms, which produce good results and where
the accuracy level is ideal for anomaly detection. This idea is good for
fixed data sets, not for real-time data. [21] overcome its tree rules NIDS’s
visibility problems. Based on a decision tree, the pruning algorithms are

10

changed. This framework’s first benefit is that privacy is preserved by
carefully choosing which rules are crucial, and its second benefit is that
minor adjustments have an impact on system performance rather than the
process selection approach. [22] explains the impacts of autoencoder-based
feature learning on network data performance are the subject of this research.
Three machine learning techniques, PCA, variational autoencoder, and
autoencoder, are applied in this work. It offers high-dimensional data and
a decent outcome. However, employing three distinct machine-learning
approaches adds to the system’s complexity. The work [23] covered outlier
detection in unstructured data and illustrated it with a graph. Although
this study primarily focuses on graph-based approaches, it also surveys
dynamic, static, and machine-learning procedures for anomaly detection.
Its drawback is the utilization of several graph scenarios, which adds
complexity to the system. A research study [24] has proposed an approach
of deep learning for developing an IDS that is dependent on recurrent
neural networks that possess strong modeling powers in intrusion detection
with high precision rates. The training data used was a popularly utilized
data set termed NSL-KDD, which is a modified and polished copy of
the earlier KDD99 data set. Besides [25] study, other referenced works
used a deep learning-based approach with the aid of autoencoders and
random forest algorithm combination for intrusion detection with both
KDD99 and NSL-KDD data sets involved in the training process. [26]
study built a fast-learning network for intrusion detection based on particle
swarm optimization, and this was validated and tested using the KDD99
dataset [26]. [27] study also validated using KDD99 and NSL-KDD datasets.
The detection method introduced in [13] involved changing the original
Random Forest algorithm and its relationship to Information Gain for the
feature vector. After that, the files in the dataset are PE files only, so
feature extraction is relatively easy to some extent. This means that
in self-assembled cells, the accuracy was 97%, and the end outcome
was a 0.03 false-positive (FP) rate. [28] provided potential extraction
procedures based on specified PE headers, DLLs (Dynamic-link Libraries),
and API (Application Programming Interface) functions. They previously

11

developed a static malware detection procedure based on information gain
and Principal Component Analysis (PCA) with three classifiers: SVM, J48
Decision Tree, and Naive Bayes. In the end, the J48 algorithm got the
highest accuracy with 99% accuracy from the researchers. 17% with PE
header feature, where 88.72% had only hybrid PE header and API functions
feature type and 10.92% with only hybrid PE header and API functions
feature. 1% with API functions. [29] introduced different methods for
selecting features and explained the significance of n-grams in detecting
static malware. These methods aim to minimize the computation time
required by extracting characteristics of unknown malicious software using
n-gram features. The most effective approach involved combining PCA and
SVM; it employed only a few attributes instead of all other classifier models.
[30] perform optimal k-means clustering concerning malware size and build
the executable. Promising features were classified into different groups and
used as training data for five classifiers, which could recognize unknown
malware, were expressed. At last, this approach detected unknown malware
with 99.11% accuracy.

[31] presented an ML method that can either show if a sample is clean or
infected with high precision, and little computation effort was introduced.
Their technique produced an integrated feature from the PE header fields
raw values and derived values. They chose six different classifiers in their
approach. Later, they compared how these two classifiers perform when
raw features and the suggested combined one are used. Using 10-fold
cross-validation, the random forest classifier gains an accuracy of 98.4%.
[32] suggested identifying malware by examining the characteristics of
network traffic like port numbers and protocols, from which they seized
a collection comprising thirty-five characteristics to represent an average
example containing the desired property. They also experimented with
various methods such as SVM, Convolutional Neural Networks (CNN), and
Multilayer Perceptrons (MLPs), among which some worked better than
others. In particular, CNN or RF with CNN or RF having an accuracy
rate greater than 85% yielded the best results. [33] proposed yet further
solution that attained a very high detection rate, averaging 98.8%, coupled

12

with an incredibly low false positive rate, in which they utilize both
artificial immune systems and deep learning technologies. [34] proposing
the employment of LightGBM (Light Gradient-Boosting Machine), one
of the gradient-boosting decision tree models in forecasting the Bodmas
dataset and examining the findings. LightGBM demonstrated an accuracy
level greater than 98% on only top-2 and top-3 PE file malware families,
which are already known, whereas, for all other algorithms employed,
there was a lower accuracy value compared to what was obtained with
LightGBM regarding results. [35] have been involved in designing ML
techniques useful for detecting previously unseen malware. Moreover,
several models used in this study were cross-validated after performing
feature extraction and feature selection procedures with a random forest
method. The researchers employed many classifiers, including KNN, SVM,
and others, which were known to work well even though the decision tree
had higher accuracy among them. [36] presents an approach to identify
harmful executables by meticulously examining the PE files. It utilizes the
static analysis procedure to acquire features from Portable Executable files.
In classifying the malware, various supervised learning algorithms utilize
these characteristics. [37] curated the dataset called Ransomary, which
comprises 2871 ransom and 4208 benign PE files and is intended to enable
researchers to build their algorithms that can detect Ransomary quickly
and accurately. The authors then investigated feature extraction and raw
data approaches in static analysis using the Ransomary dataset. Effective
feature selection in EMBER, DeepDetectNet, and Ransomary datasets
through the LightGBM model produced greater than 0.99 AUC. Lastly,
it was shown that the finest model achieved an AUC (Area Under the
Curve) of 1 in EMBER and DeepDetectNet. [38] aimed at researching the
effectiveness of hybrid machine learning algorithms in detecting malware
PE Files. The voting classifier and LightGBM, XGBoost (eXtreme
Gradient Boosting), and Logistic Regression are the base models of this
research. The research demonstrates that these hybrid ML algorithms
perform better than the ensemble method LightGBM regarding recall.
This algorithm has a recall rate of 99.5026% compared to LightGBM,

13

with a recall rate of 99.4480%. [39] proposed a new method of classifying
malware from large PE files with deep neural decision trees by combining
neural nets with decision trees for a hybrid approach where each node is
essentially a neural net that has been trained to recognize only one binary
output kind as is done in a decision tree. The data set used has 7196
benign and 16698 malicious files being analyzed to classify 14 features
taken from the headers of PE files. 0.88 Precision and 0.32 Recall are
recorded, the Matthew Coefficient Correlation (MCC) stands at 0.302
While the AUC of Receiving Operating Characteristic (ROC) indicates
0.63 AUC value, and the average precision score reflects 0.69 is thus used
for evaluating the classifier. It is evident from the outcome that the binary
classifier differentiates between two categories: malware and benign.

The main issues with these datasets include the existence of a huge number
of redundant and identical records. Also, many of these datasets were
built over a decade ago, meaning they do not include instances of modern
network attacks [40]. As a result, the datasets used in the literature
review are largely outdated. While using a newer dataset might offer some
short-term improvements, it will eventually become outdated and unable
to detect new anomalous traffic patterns. Below is a Table 2.1 listing the
datasets and their creation dates used in the above literature review:

Table 2.1. Overview of Datasets Used in the Study

Dataset Date
KDD Cup 1999 1999

DARPA 1999
ISCX 2012

Kyoto 2006+ 2006
NSL-KDD 1999

2.3 Summary

Recent advancements in network anomaly detection and intrusion detection
systems (IDS) have increasingly leveraged machine learning and clustering

14

techniques to enhance threat detection capabilities. The exploration of
methods such as Unsupervised Niche Clustering (UNC) and Unsupervised
Network Intrusion Detection Systems (UNIDS) has demonstrated notable
progress in identifying anomalous activities. Additionally, real-time network
intrusion detection systems (NIDS) utilizing algorithms like DBSCAN
have been rigorously evaluated using established datasets, including KDD
Cup 1999, DARPA, and ISCX. These evaluations have consistently shown
high detection rates coupled with low false positive rates, indicating the
effectiveness of these approaches in recognizing and responding to network
threats.

Despite these promising outcomes, a significant challenge persists within
the field. Many studies and systems rely on outdated datasets that may
not fully capture the spectrum of contemporary network threats. As
cyber threats continue to evolve, there is a growing need for datasets that
accurately reflect current attack vectors and tactics.

Moreover, the landscape of network anomaly detection is continually
evolving with the development of advanced methodologies. Recent
advancements in deep learning techniques and the integration of hybrid
models offer new avenues for enhancing detection capabilities. Deep learning
approaches, with their ability to learn complex patterns and features from
large volumes of data, hold the potential to significantly improve detection
accuracy and adaptability. Hybrid models, which combine various machine
learning techniques, are also being explored to leverage the strengths of
different approaches and address their limitations.

In conclusion, while current methodologies and technologies in network
anomaly detection and IDS have shown commendable performance, ongoing
research and development are crucial to keep pace with the evolving
threat landscape. Future work will likely benefit from incorporating more
up-to-date datasets and exploring innovative approaches such as deep
learning and hybrid models to further improve detection capabilities and
effectively combat emerging network threats.

15

Chapter 3

PROPOSED RESEARCH
METHODOLOGY

In this chapter, we explain the proposed solution framework for anomaly
detection in HTTP logs. We start with the discussion of the dynamic
dataset generation process. Next, we will discuss that how machine learning
algorithms are used to recognize and cluster anomalies within the logs. We
also figure out the integration of anomaly detection with the existing SIEM
solutions, focusing on its role in strengthening the network security. In
the end, the section provides an overview of the system design and the
strategies implemented to ensure scalability and reliability.

3.1 Dataset

A key advantage of the proposed solution is its ability to generate specific
datasets in real-time, tailored to user-defined timeframes, rather than relying
on static, pre-defined datasets. Traditional anomaly detection systems often
depend on static datasets that may not reflect the current network activity,
leading to potential gaps in detection accuracy and relevance. In contrast,
the proposed solution dynamically gathers HTTP logs based on the exact
timestamps specified by the user.

When a user selects a particular timeframe, the solution automatically
retrieves the HTTP logs from that period, creating a customized dataset
directly relevant to the specified timeframe. This approach ensures that

16

the dataset used for analysis mirrors the actual network traffic during that
period, allowing for training and evaluation that aligns closely with the
network conditions and activities of that specific moment.

The real-time dataset generation process enhances the precision and
relevance of anomaly detection. By working with the most current and
contextually appropriate data, the solution addresses the limitations of
conventional methods that may rely on outdated or generic information.
This ensures that the machine learning models are continuously exposed to
fresh, relevant data, improving their accuracy and effectiveness in detecting
anomalies.

The solution leverages advanced machine learning algorithms, specifically
Isolation Forest and K-means clustering, to identify anomalies and potential
security threats within these customized datasets. Isolation Forest is
employed to detect anomalies by isolating observations in the data, while
K-means clustering groups similar data points to highlight deviations
from typical patterns. By focusing specifically on logs from user-defined
timeframes, the solution trains its models on the network traffic occurring
during that period, enhancing its ability to recognize unusual patterns,
potential intrusions, or other security issues as they emerge.

The adaptability of this procedure is a significant benefit. As network
conditions evolve and new threats emerge, the solution remains responsive
and effective by continuously updating its training with fresh data. This
ongoing adaptation ensures that the solution remains capable of identifying
and mitigating security threats in an ever-changing landscape. The dynamic
nature of this approach makes it particularly well-suited for modern,
dynamic network environments where conditions and threats can shift
rapidly. By providing real-time adaptability and continuous updates, the
proposed solution offers a robust and resilient tool for modern network
security management.

17

Table 3.1. Key Features and their description

Feature Description

Dynamic Dataset
Generation

Automatically generates datasets based on user-defined
timestamps, ensuring real-time, context-specific data
analysis.

User-Defined
Timeframes

Users specify the timeframe for analysis, allowing for
tailored data collection from relevant HTTP logs.

On-the-Fly Data
Collection

Collects HTTP logs from the specified period, creating
datasets that reflect current network activity.

Precision in Anomaly
Detection

By focusing on relevant, up-to-date data, the solution
enhances the precision of identifying anomalies.

Machine Learning
Algorithms

Utilizes Isolation Forest and K-means clustering to
detect anomalies and potential security threats in the
logs.

Adaptability Continuously adapts to changing network conditions
and evolving threats by training on fresh data.

Improved Network
Scanning

Offers more accurate network scanning by analyzing
data that reflects real-time conditions.

3.2 Working of Isolation Forest and K-means in
Proposed Solution

Anomaly detection in data often uses this method called the Isolation Forest
algorithm. It is based on an assumption that outliers are few and very
different from other points which make it easier to separate them[41, 42].
The Isolation Forest algorithm operates by creating numerous decision
trees from random subsets of data. Each tree is constructed by recursively
splitting the data into smaller partitions. The core principle behind this
algorithm is that anomalies, which are inherently different from normal
data points, require fewer splits to be isolated. In contrast, normal data
points, which are more similar to each other, are found deeper within the
tree structure and thus require more splits. As a result, anomalies tend to
be isolated closer to the root of the tree, leading to shorter path lengths
compared to normal points. The algorithm averages the path lengths across
all trees for a given data point; a shorter average path length typically
indicates that the point is an anomaly.

18

An important consideration in implementing Isolation Forest is the
selection of the number of trees to be created. The accuracy of the anomaly
detection can be significantly influenced by this parameter. Too few trees
may not capture the data’s nuances adequately, while too many trees might
lead to diminishing returns in accuracy and increased computational cost.

While Isolation Forest is highly effective in detecting anomalies, it does
not inherently group these anomalies into meaningful clusters. This is where
the K-means clustering algorithm complements it. K-means clustering
divides the data into a predefined number of clusters, k, by assigning
each data point to the cluster whose centroid is closest. This approach
ensures that data points within the same cluster are similar to each other,
while points in different clusters are more distinct. After the Isolation
Forest identifies anomalies in HTTP traffic data, K-means clustering can be
employed to group these anomalies based on their similarity. This grouping
process facilitates the identification of patterns, such as anomalies that
originate from the same IP range or involve similar types of HTTP requests.

The benefit of clustering anomalies for SOC analysts is substantial.
Instead of sifting through a long list of individual anomalies, analysts can
focus on clusters of related anomalies. This clustering helps in recognizing
trends, understanding the nature of outliers, and taking appropriate actions.
For instance, if a cluster of anomalies shows a pattern related to a particular
type of HTTP request or a specific IP range, it can indicate a potential
security threat or an ongoing attack that requires targeted investigation
and response.

In summary, the proposed solution leverages the strengths of Isolation
Forest for its effective and precise anomaly detection capabilities. Once
anomalies are detected, K-means clustering is applied to group these
anomalies into clusters, making it easier for SOC analysts to investigate and
address potential security threats by focusing on clusters of similar incidents
rather than isolated data points. This combined approach enhances the
efficiency and accuracy of anomaly detection and response in the context
of HTTP traffic data.

19

Table 3.2. Summary of Key Points: Isolation Forest vs. K-means Clustering

Aspect Isolation Forest K-means Clustering

Purpose Detects anomalies in data Groups detected anomalies into
clusters

Underlying
Principle

Anomalies are rare and
distinct, making them
easier to isolate

Data points within the same
cluster are similar, and different
clusters are distinct

Method
Builds multiple decision
trees by randomly
splitting the data

Divides data into k predefined
clusters based on proximity to
centroids

Key Feature

Anomalies are isolated
near the root of the tree,
resulting in short path
lengths

Each data point is assigned to the
nearest cluster, ensuring similar
points are grouped together

Calculation
Average path length
across trees determines
anomaly status

Centroids represent the mean
value of each cluster

Outcome Short path lengths
indicate anomalies

Clusters of anomalies highlight
patterns or shared characteristics

Use Case Initial detection of
anomalies in HTTP traffic

Grouping anomalies for easier
analysis by SOC analysts

Advantages
Efficient and accurate in
identifying rare and
distinct data points

Simplifies analysis by organizing
anomalies into meaningful groups

Parameter
Selection

Number of trees affects
accuracy

Predefined k value determines
the number of clusters

3.3 Integration of Anomaly Detection with SIEM

The proposed solution in this thesis, anomaly detection, is effective in
identifying unusual patterns in network traffic. However, integrating this
anomaly detection framework with a SIEM system enhances its functionality
and provides a more comprehensive security solution. SIEM systems play
a crucial role in aggregating, analyzing, and visualizing security-related
data from various sources, offering valuable insights and facilitating rapid
incident response.

There are numerous SIEM solutions available on the market, each with

20

its own features and capabilities. These solutions can be broadly categorized
into open-source and commercial options. Open-source SIEM solutions offer
flexibility and cost-effectiveness, while commercial solutions often provide
advanced features and dedicated support. Notable examples include Wazuh,
FortiSIEM, and Splunk SIEM, among others.

For this thesis, we opted to utilize the ELK stack for building our
SIEM solution. The ELK stack, an acronym for Elasticsearch, Logstash,
and Kibana, is a powerful set of tools designed to handle large volumes
of log data and provide real-time analysis and visualization capabilities.
Although the ELK stack itself is not a complete SIEM solution, it serves
as a foundational component for constructing one.

In our implementation, we used Filebeat to forward HTTP logs and logs
of detected anomalous clusters to Elasticsearch. Filebeat is a lightweight
shipper for forwarding and centralizing log data, ensuring that logs are
transmitted efficiently and reliably. Once the data reaches Elasticsearch, it
is indexed and stored, making it readily accessible for search and analysis.

Kibana, the visualization component of the ELK stack, is used to create
interactive dashboards and visualizations of the data. By visualizing HTTP
logs and anomalous cluster logs in Kibana, we can gain insights into network
behavior, identify trends, and detect potential security incidents. This
integration not only enhances the anomaly detection framework but also
provides a user-friendly interface for monitoring and investigating network
anomalies.

Overall, the integration of anomaly detection with the ELK stack SIEM
solution significantly enriches the analysis and response capabilities, offering
a robust platform for managing and securing network traffic.

3.4 Features Extraction from HTTP logs

We used Zeek to get the HTTP traffic. The Zeek can be used to log all
HTTP traffic from your network to the http.log file. This file can then be
used for analysis and auditing purposes. when we are getting the HTTP
traffic, Zeek gives around twelve features, but we only extract five features

21

Table 3.3. Integration of Anomaly Detection with SIEM Solution Using ELK Stack

Step Description
Select SIEM Solution Choose a SIEM solution, such as ELK

Stack (Elasticsearch, Logstash, Kibana)
for integration.

Use Filebeat to Send Logs Configure Filebeat to send HTTP
logs and anomalous cluster logs to
Elasticsearch.

Store Logs in Elasticsearch Logs are stored in Elasticsearch for
indexing and searching.

Visualize Logs in Kibana Use Kibana to create visualizations and
dashboards for the logs and detected
anomalies.

for our use, and they are ts, id.resp_p, method, resp_mime_types,
request_body_len. Below is the table that shows the extracted features:

Table 3.4. Extracted Features from Zeek HTTP Logs

Feature Name Description
ts Timestamp of the HTTP request.
id_resp_p Response port of the HTTP request.
method HTTP method used (e.g., GET, POST).
resp_mime_types MIME types of the response.
request_body_len Length of the HTTP request body.

3.5 Scaling Strategies for the proposed solution

In our proposed solution, as displayed in Fig 3.2, we leverage Apache Kafka’s
robust capabilities to efficiently manage increasing network traffic. Apache
Kafka excels at handling large volumes of data through its distributed
architecture. By partitioning topics, Kafka can spread data across multiple
servers, allowing for parallel processing of data streams. This partitioning
is key to achieving high throughput and low latency, as it enables producers
to push data to different partitions simultaneously while consumers can
read from them concurrently.

22

Kafka’s design ensures that each partition can be replicated across
multiple brokers. This replication mechanism is crucial for maintaining
data durability and availability. When data is replicated, each piece is
stored on several brokers, which protects against potential server failures.
If one broker becomes unavailable, the system can continue to function
using the replicated data from other brokers, thus enhancing the resilience
and robustness of the data processing pipeline.

The distributed nature of Kafka not only supports high efficiency and
reliability but also provides scalability. As network traffic grows, additional
brokers can be added to the Kafka cluster, allowing it to handle even larger
volumes of data without a significant impact on performance. This scalable
architecture ensures that our solution remains effective and responsive
as the data load increases, making it a powerful tool for managing and
processing large-scale data streams in real time.

3.6 System Design

Uses of a security information and event management system (SIEM)
include risk scoring, threat detection and response, and security monitoring.
SIEM gathers security event data from application, network, and endpoint
sources.
The Fig. 3.1(b) shows the overall network of the SIEM, which contains many
modules like EDR, NDR, SIEM, SOAR, and TI, but we will only focus on
the Network Detection and Response (NDR). Because our solution will be
deployed in that module where the whole network traffic is passed, and we
need that network traffic, that’s why we deployed the solution in that space.
We explain Fig 3.1(b) that how the whole network works. We start with
SIEM, and then we discuss each module. Security Information and Event
Management System (SIEM) is a solution used for the gathering of security
information from various components belonging to the information system
and presents it as actionable information through a single interface. SIEM
collects data from servers, networks, and devices and then transforms,
aggregates and correlates the data for potential threats. After these

23

((a)) Flowchart of the System

((b)) Security Information and Event Management (SIEM) Network Diagram

Figure 3.1: Flowchart of the Solution and the SIEM Network Diagram
24

Table 3.5. Apache Kafka’s Data Management and Processing Workflow

Step Description
Data Ingestion Apache Kafka efficiently manages rising

network traffic by handling large volumes
of data via a distributed structure.

Produce Data to Topics Producers send data to different topics
within Kafka.

Topics Split into Partitions Each topic is divided into multiple
partitions for parallel processing.

Distribute Partitions Across Servers Partitions are spread across multiple
servers to enable parallel data processing.

Parallel Data Processing Enables simultaneous processing of data
from different partitions to achieve high
efficiency.

Data Replication to Multiple Brokers Data is replicated across several brokers
to ensure durability and availability.

Ensure Data Durability and Availability Replication ensures that data remains
accessible and robust even in the event of
server failures.

Handle Server Failures Replication mechanism provides
flexibility and reliability against server
failures.

processes, the next step is to discover vulnerabilities and generate alerts and
Reports. So when gathering the security logs from the different components,
such as the network and different devices, the Network side, NDR, the
Network Detection and Response solution, is used. The NDR focuses on
detecting and responding to threats to the network. Integrating NDR with
SIEM can achieve a more holistic and effective threat detection and response
approach. NDR provides additional visibility into network traffic, also
allowing SIEM solutions to detect threats that may otherwise go unnoticed.
So, on the endpoint side, the EDR, which is Endpoint Detection and
Response, helps the SIEM by giving detailed endpoint visibility, improving
threat detection and response capabilities, and enabling detailed incident
analysis. Integrating EDR with SIEM ensures a robust and coordinated
defense against a wide range of threads. Also, on the SIEM correlation side,

25

SOAR strengthens the SIEM in detecting and correlating security events
with the orchestration and automation capabilities of SOAR. SOAR provides
an effective means of automating and managing all related events. The
Threat Intelligence integration with SIEM solutions converts large amounts
of unprocessed data into useful intelligence, improving the functionality
of security operations and simplifying them while increasing productivity.
Lastly, the Web Application Firewall (WAF) and Vulnerability Management
System (VMS) have been integrated into the SIEM to provide safety for
web applications employing filtering and monitoring HTTP traffic between
them and the internet. Also, VMS helps identify, assess, prioritize, and fix
vulnerabilities in systems, networks, applications, and software.

Fig 3.2 shows our system’s design; means how our system works and
that system will be the part of NDR in SIEM.4 we set up the Zeek, which
is a traffic analyzer on the network, to get all the traffic. The Zeek can
be used to log all HTTP traffic from your network to the http.log file.
This file can then be used for analysis and auditing purposes. So, for
getting these hypertext transfer protocol (HTTP) logs and sending them
to Elasticsearch. Elasticsearch is a decentralized, open-source search as
well as analytics system that can quickly save, search, and examine massive
volumes of information. So, we used Filebeat, which is the data shipper, to
send these HTTP logs to Kafka using a defined topic. We used Kafka for
clustering, which is designed to manage massive processing and real-time
data feeds. If the network traffic increases, the Kafka clusters we defined
can handle this traffic. After receiving the traffic on the Kafka, we then
send the traffic to the NiFi to parse the traffic. At that stage, we can also
see how much traffic we received, and after parsing the traffic, we then
send it to the Elasticsearch Index pattern. At that time, all the HTTP
traffic is shown on the Kibana, and then we make a query request to that
index pattern on Elasticsearch to get all the required data and save it in a
CSV file, and give it to the machine learning model. In that, the Isolation
Forest algorithm detects anomalous logs. After the detection of anomalous
logs, the K-means create clusters from these anomalous logs, and these
clusters data will be shown on the new index pattern on Elasticsearch.

26

Figure 3.2: Flowchart of HTTP malicious files detection

Component Description
SIEM System equipped with EDR, SOAR, NDR, SIEM, and

TI components; NDR is the focus where network traffic
passes.

Zeek Traffic analyzer that logs all HTTP files to files.log.
ClickHouse Open-source column-oriented database for online

analytical processing; stores HTTP file logs.
Filebeat Data shipper used to send HTTP file logs to ClickHouse.
ML Model Random Forest (RF) algorithm analyzes data for

anomalies in PE files.
Output Anomalies detected by RF model are recorded in the

SIEM system with node IP, timestamp, file hash, etc.

Table 3.6. System Design and Data Flow

3.7 System Design of the HTTP malicious files
detection

The Fig. 3.1(b) displays the entire system of the SIEM, which is
equipped with various components such as EDR (Endpoint Detection and
Response), SOAR (Security Orchestration, Automation, and Response),
NDR (Network Detection and response), SIEM (Security Information and
Event Management) and TI (Threat Intelligence), but we will only look into

27

Aspect Details
Algorithm Random Forest (RF)
Dataset Size 150,000 records
Dataset Distribution 70% malicious and 30% benign
Accuracy 99.45%
Output Classification of files as either ‘Malicious’ or ‘not

Malicious’
Log Details Node IP, timestamp of file download, file hash value, and

other relevant fields recorded in the SIEM system.

Table 3.7. Random Forest Model Details

the NDR because it is the module in which our system will be implemented
where all network traffic passes through and since in this network traffic,
we require HTTP (Hypertext Transfer Protocol) files, and therefore, is
installed there.
Fig 3.2 shows our system’s design; we set up the Zeek, a traffic analyzer on
the network, to get all the traffic. One of the Zeek properties is to log all
the HTTP files from the network to the Zeek files.log file. This file can then
be used for analysis and auditing purposes. So, to get these HTTP file logs,
send them to the Clickhouse. A real-time analytical report on SQL would
be generated by users using ClickHouse, an open-source column-oriented
database management system made for online analytical processing. So,
we used Filebeat, the data shipper, to send these HTTP file logs to the
Clickhouse table. At that time, all the HTTP file logs are shown on the
Clickhouse user interface, and then we make a query request to that table
on Clickhouse to get all the required data with a required timestamp, save
it in a CSV file, and give it to the ML model. There, the Random Forest
(RF) algorithm detects the anomalous PE files. Additionally, the RF model
is trained with the dataset containing 150,000 records of both malicious
and benign PE files, with a distribution of 70% malicious and 30% benign
records in the dataset. Also, the accuracy we got is 99.45%. When the
model analyzes a file, it produces a result of either ‘Malicious’ or ‘not
Malicious’. If identified as malicious, the system records such information
on the SIEM system. This log contains fields such as node IP (Internet

28

Protocol) and timestamp of when the file was downloaded, along with the
file’s hash value and any other relevant fields.

Component Description
NDR (Network
Detection and
Response)

Module where the system is implemented, handling all
network traffic including HTTP files.

Zeek Traffic analyzer logging HTTP files to ‘zeek_files.log‘.
Filebeat Data shipper sending HTTP file logs to Clickhouse.
Clickhouse Column-oriented database management system for

real-time analytics; stores HTTP file logs.
ML Model
(Random Forest)

Analyzes HTTP file logs to detect anomalies; trained
with 150,000 records.

Table 3.8. System Overview and Data Flow

Detail Value
Training Dataset Size 150,000 records
Malicious Records 70%
Benign Records 30%
Accuracy 99.45%
Outcome ’Malicious’ or ’Not Malicious’

Table 3.9. Random Forest Model Details

29

Chapter 4

RESULTS AND FINDINGS

4.1 Experimental Setup

The experimental setup for the anomaly detection system involves a detailed
configuration of both hardware and software components to ensure efficient
processing and analysis of HTTP logs.

On the hardware side, the system is equipped with a 40 GB hard disk to
accommodate the storage needs of the data and logs. The memory capacity
is set at 24 GB, which provides ample space for handling and processing
large volumes of data. The computational power is supported by four
processor cores, enabling the system to perform complex computations and
handle multiple tasks simultaneously.

For the software setup, the system utilizes several key technologies.
Elasticsearch and Kibana, both at version 7.16.3, are deployed using Docker
containers. Elasticsearch serves as the core search and analytics engine,
while Kibana provides the visualization layer, allowing for interactive
exploration of the data. Apache Kafka, version 3.6.0, is also configured
using Docker to facilitate real-time data streaming. Kafka’s role is crucial in
managing and processing the incoming data streams efficiently. Additionally,
Apache NiFi, version 2.0.0, is employed to automate the flow of data between
systems and ensure smooth data ingestion and processing.

For log shipping, Filebeat version 7.17.8 is used to forward and centralize
log data. Filebeat is lightweight and efficient, making it suitable for shipping

30

((a)) HTTP Logs of Network

((b)) Anomalous HTTP Logs

Figure 4.1: HTTP Logs and Anomalous HTTP Logs

31

Figure 4.2: Cluster Groups of Anomalous HTTP Logs

Figure 4.3: Decision Function of the Proposed Machine Learning Model)

32

logs to the central processing system. On the network traffic analysis front,
Zeek version 6.0 is implemented to monitor and analyze network traffic.
Zeek’s capabilities in network monitoring and security event detection are
leveraged to gain insights into the traffic patterns and identify potential
anomalies.

In terms of coding and development, Python 3.10 is the programming
language of choice, providing a robust environment for writing and executing
the anomaly detection algorithms. The code is developed using Visual
Studio Code (VSCode) version 1.92, which offers a versatile and user-friendly
interface for coding and debugging.

The performance of the system in detecting anomalies and clustering
data is notable, with the process typically taking around 2 to 3 seconds.
However, when the network traffic volume increases, the system’s capacity
is scaled up by configuring three Kafka brokers to handle the increased
load efficiently.

Overall, this experimental setup combines powerful hardware and
a well-chosen software stack to deliver a robust solution for detecting
anomalies and analyzing network traffic.

4.2 Visualization and Analysis of Anomalous HTTP
Logs

We begin with Fig. 4.1(a), which shows HTTP logs across the network on
the Elasticsearch index pattern. The Index pattern contains benign and
anomalous HTTP logs at a certain timestamp. It gives a comprehensive
view of all HTTP activities happening around the network. These
logs contains many features like timestamp, resource IP, resource port,
destination IP, destination port, log file path and many other features.
This Index pattern shows all the HTTP logs in a timestamp given by the
user.
Next, Fig. 4.1(b) where the index pattern contains only anomalous HTTP
logs. These anomalous logs with their cluster numbers and other relevant
details are visually depicted in this figure. The cluster also categorize the

33

anomalous logs for better and deeper understanding of their nature. Also
these clusters giving more insights into dealing with possible/imminent
security problems. The clustering of anomalous HTTP logs detected using
the Isolation Forest algorithm is shown in Fig. 4.2. The data points
represent logs that were flagged as being anomalous, which appears in
different color-coded according to the cluster it belongs to after applying
K-means clustering. The axes jx and jy correlate with jittered principal
components got from PCA, hence making it possible to distinguish
overlapping points for clarity. These clusters enable one to identify various
kinds of anomalous HTTP logs hence leading to better categorization and
assessment. These details help the SOC analyst and threat-hunting team
in the detection and investigation of security threats. By isolating and
examining these anomalous logs, the threat hunting teams can effectively
pinpoint malicious activities and take appropriate action.
The decision function in the Isolation Forest model is, which provides an
anomaly score for each of the data samples. As shown in Fig. 4.3, the
values of the anomalous score indicate where the individual data points lie
with respect to the calculated anomalies. In the Isolation Forest algorithm,
higher scores mean that there are actually normal data points, and lower
scores (negative in most cases) signify anomalies.
In histogram, frequency refers to the number of data points which goes a
long way in informing the extent of the present anomalies.
Also, these 4.3 and 4.4 shows the Key Performance Metrics for Anomaly
Detection Models and also as well shows the Overview of Anomaly
Detection Techniques. Also, the 4.4 4.5

34

Figure 4.4: HTTP Logs Overview in Elasticsearch

Tables

Table 4.1. Features of HTTP Logs in Elasticsearch Index Pattern

Feature Description

Timestamp The time at which the log was recorded.
Resource IP IP address of the resource generating the log.
Resource Port The port number used by the resource.
Destination IP IP address to which the HTTP request is directed.
Destination Port The port number used at the destination.
Log File Path Path to the log file in the system.
Other Features Additional attributes, such as HTTP method, status code, user agent, etc.

Silhouette Score: We obtain a 0.3803 silhouette score from our results.
It’s a metric used to analyze the standard of clustering results. It is used

35

Figure 4.5: Anomalous HTTP Logs Clustering & Analysis

to decide how adjancent an object aligns with its own clusters as compared
to other clusters. The silhouette score ranges from -1 to 1, where:
1: They provide information that shows that a data point is fairly balanced
with its own cluster but badly matched with adjacent clusters.
0: This suggests that the data point is lies on or very near to the line
between two adjacent clusters.
Negative values: This implies that the specific content of the data point
may have been assigned to the incorrect cluster.

Why do we need Silhouette Score

36

Table 4.2. Key Performance Metrics & Anomaly Detection Techniques

Metric/Technique Description

Anomaly Score
(Isolation Forest)

A numerical score indicating the likelihood of a log being
anomalous.

Frequency in
Histogram

The count of data points that fall within certain anomaly
score ranges, indicating the extent of anomalies.

Cluster
Categorization

The division of anomalous logs into clusters based on
K-means, aiding in the understanding of anomaly types.

Principal Component
Analysis (PCA)

A dimensionality reduction technique used to
differentiate overlapping data points in visualizations.

SOC Analyst &
Threat Hunting

The process of analyzing and investigating the anomalies
to detect and mitigate potential security threats.

Metric Definition Importance Calculation
Precision Proportion of true

positives among all
positive detections

Accuracy in
identifying
threats

True Positives
True Positives+False Positives

Recall Proportion of true
positives among all
actual positives

Ability to detect
all threats

True Positives
True Positives+False Negatives

F1-Score Harmonic mean of
precision and recall

Balance between
precision and
recall

2× Precision×Recall
Precision+Recall

FP Rate Proportion of false
positives among all
negative cases

Likelihood of
false alarms

False Positives
False Positives+True Negatives

Det Time Time taken to
identify and
respond to a threat

Crucial for
real-time
mitigation

Time of Detection −
Time of Threat Occurrence

Table 4.3. Key Performance Metrics for Anomaly Detection Models

Evaluate Cluster Quality: A higher value of the Silhouette Score means
data points are close to their cluster center and far from the other cluster
center. It is nice in the case of anomaly detection since it tells you that
there is a clear separation between ’normal’ data and ’anomalies.’
Validation of the Clustering Algorithm: The Silhouette Score

37

Technique Description Advantages Disadvantages
Signature-Based Matches

patterns against
a database
of known
signatures to
identify threats

High accuracy
for known
threats

Ineffective
against zero-day
attacks

Anomaly-Based Detects
deviations from
normal behavior
to identify
potential threats

Can detect
unknown threats

High false
positive rate

ML Based Uses ML models
to classify
behavior as
normal or
anomalous

Adaptive and
scalable

Requires large
amounts of
labeled data

Heuristic-Based Applies
rule-based
systems
to identify
suspicious
activities

Flexible and
customizable

Can miss
sophisticated
attacks

Table 4.4. Overview of Anomaly Detection Techniques

measures how well the clustering algorithm (K-means here) is performing
in segmenting the data points with good signals.

Silhouette Score Interpretation
1 Data point is well aligned with its own cluster and poorly

aligned with other clusters.
0 Data point lies on or near the boundary between two

neighboring clusters.
-1 Data point is poorly aligned with its own cluster and

may be closer to another cluster.

Table 4.5. Silhouette Score Interpretation

38

Silhouette Score Interpretation
1 Data point is well aligned with its own cluster and poorly

aligned with other clusters.
0 Data point lies on or near the boundary between two

neighboring clusters.
-1 Data point is poorly aligned with its own cluster and

may be closer to another cluster.

Table 4.6. Silhouette Score Interpretation

4.3 Results and findings of HTTP Malicious Files
Detection

The results and findings section presents all the outcomes from our analysis.
This solution is deployed in the NDR module because Zeek directly gets all
the benign and malicious HTTP files. After getting these files, our solution
decides whether they are malicious and shows the results on Clickhouse.
We start from Fig. 4.6(a), which shows all the logs of those HTTP files
downloaded in the given timestamp. These logs show the overall details
of each HTTP file that has been downloaded. The details contain a
timestamp, fuid, uid, id origin host, id origin port, and all other relevant
details.
The next Fig. 4.6(b) shows the detail of a malicious file that is detected
and that shows on the separate table of clickhouse. The table containing
malicious file details helps the SOC analyst and threat-hunting teams
detect and investigate security threats.
The model was trained on a dataset of 150,000 records encompassing
malicious and benign PE files, with a distribution of 70% malicious and
30% benign records. The model achieved an accuracy of 99.45%. To create
a confusion matrix, we have to understand the confusion matrix and the
classification results in terms of True Positives, True Negatives, False
Positives, and False Negatives.

Confusion Matrix:
A confusion matrix can depict how effective a classification model is. True

39

((a)) HTTP Files of both benign and malicious Logs

((b)) Details of Anomalous HTTP File Log

Figure 4.6: Details of HTTP Files Logs and Anomalous HTTP File

40

Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN) are displayed to give an in-depth analysis of what is
happening. Each element of the confusion matrix corresponds to the actual
versus predicted classifications made by the model.

Elements of the Confusion Matrix:
True Positive: The model correctly predicts a certain amount of positive
instances. Here, it refers to the quantity of malevolent files accurately
identified by the model as harmful.
True Negative: This represents the amount of true negative instances.
Referring to the benign files that the model correctly classified as
non-malicious.
False Positive: This refers to the number of false positives in prediction
where benign files are wrongly characterized as malicious as per the model’s
judgment. It is also referred to as a false alarm in some statistical contexts.
Also known as Type I error.
False Negative: This indicates several incorrectly predicted negative
instances. These are malicious files that were incorrectly recognized as not
malicious by the model. Also known as Type II error.

Predicted Labels
Malicious Benign

Actual
Labels

Malicious 103, 950 1, 050
Benign 450 44, 550

True Positives: 103,950
True Negatives: 44,550
False Positives: 450
False Negatives: 1,050

The Fig. 4.7 shows a confusion matrix represented as a heatmap. Four
items – True Positives, True Negatives, False Positives, and False Negatives

41

Figure 4.7: Heatmap of confusion matrix

42

– reveal how the Random Forest model has been performing on the dataset
visually.

• Axes

X-axis (Predicted): This axis represents the predictions made by the
model.

• Predicted Malicious: refers to how often a model determines malicious.

• Predicted Not Malicious: refers to the number of instances that the
model predicted as not malicious.

Y-axis (Actual): This axis represents the actual classifications of the
instances.

• Actual Malicious: refers to the number of truly malicious instances.

• Actual Not Malicious: refers to the number of truly benign instances.

• Color Intensity

The intensity of color in a cell relates to instances. Dark colors usually
mean it has a higher count, therefore enabling one to tell areas of model
success or failure easily:

• Darker Blue Cells: Indicate higher counts, this is where the model
makes most accurate predictions (TP and TN).

• Lighter Blue Cells: Indicate lower counts; this is where the model
has fewer incorrect predictions (FP and FN).

43

Chapter 5

CONCLUSIONS AND FUTURE
RECOMMENDATION

In this thesis, we presented a comprehensive solution aimed at enhancing
anomaly detection in network traffic, with a particular focus on analyzing
HTTP logs. This work leverages advanced machine learning techniques,
specifically Isolation Forest and K-means clustering, to tackle the complex
challenge of identifying real intrusion attempts within large-scale, real-world
network environments. Both algorithms are utilized in an unsupervised
learning context, meaning they do not rely on predefined labels or patterns,
which is crucial in scenarios where new or unknown threats may emerge.
The success of these algorithms in our solution demonstrates their efficacy
in distinguishing between normal and abnormal network behaviors, which
is essential for detecting sophisticated cyber threats.

Once anomalies are identified, the information is fed into a Security
Information and Event Management (SIEM) system. The integration with
SIEM is a pivotal aspect of our solution, as it facilitates the visualization of
network traffic patterns and anomalies, enabling security teams to monitor,
analyze, and respond to potential threats in real-time. The visualization
capabilities provided by SIEM are invaluable in enhancing the situational
awareness of security operations centers (SOCs), allowing analysts to quickly
identify and investigate suspicious activities. This integration not only
streamlines the detection process but also bolsters the overall efficiency of
cybersecurity operations, reducing the time and effort required to manage

44

and mitigate threats.
Our solution places a strong emphasis on HTTP traffic analysis, with a

specific focus on the examination of files downloaded over HTTP. To achieve
this, we employed Zeek, a powerful and widely used network monitoring
and analysis tool. Zeek’s ability to parse and analyze network protocols,
including HTTP, allows us to delve deeper into the content of network
traffic, providing a granular level of insight into potential threats. This focus
on downloaded files is particularly important, as it addresses a common
vector for malware delivery and other malicious activities. By scrutinizing
the content of these files, our solution can detect anomalies that might
otherwise go unnoticed, thereby enhancing the detection of threats that
exploit HTTP traffic.

The approach we have developed is highly beneficial for SOC analysts and
threat-hunting teams. One of the key advantages is the ability to identify
intrusions without requiring extensive manual intervention or prolonged
analysis. The use of unsupervised machine learning algorithms means
that the system can autonomously detect deviations from normal behavior,
flagging potential threats for further investigation. This automation not
only reduces the workload on security teams but also allows them to focus
on more strategic tasks, such as threat hunting and incident response. By
providing a means to quickly and accurately identify intrusions, our solution
enhances the overall effectiveness of cybersecurity operations.

Looking ahead, we see significant potential in further enhancing our
solution by integrating an SSL (Secure Sockets Layer) offloader. SSL
offloading involves terminating SSL or Transport Layer Security (TLS)
connections at a dedicated device or service, effectively offloading the burden
of encryption and decryption from other security components. This is
particularly important in modern network environments, where a significant
portion of traffic is encrypted using HTTPS. Without SSL offloading,
security systems may struggle to inspect encrypted traffic, potentially
allowing threats to bypass detection. By incorporating SSL offloading into
our solution, we can ensure that HTTPS traffic is thoroughly examined,
eliminating this blind spot and enhancing the overall security posture of

45

the network.
The integration of SSL offloading is a forward-looking enhancement

that aligns with the evolving landscape of network security threats. As
encryption becomes more prevalent, the ability to inspect encrypted traffic
without compromising performance becomes increasingly important. SSL
offloading not only improves the efficiency of traffic inspection but also
ensures that our solution remains effective in the face of emerging threats.
By addressing the challenges posed by encrypted traffic, we elevate our
solution to a new level of comprehensiveness, making it a robust tool
capable of protecting against a wide range of cyber threats.

In conclusion, this thesis presents a multifaceted approach to anomaly
detection in network traffic, combining the strengths of machine learning,
network analysis, and SIEM integration to create a powerful tool for
cybersecurity. The successful implementation of Isolation Forest and
K-means clustering, coupled with the detailed analysis of HTTP traffic
using Zeek, demonstrates the effectiveness of our approach in real-world
scenarios. The proposed integration of SSL offloading further enhances
the solution, ensuring that it can adapt to the changing landscape of
network security. Overall, our work contributes to the ongoing efforts to
protect network environments from cyber threats, providing a scalable and
adaptable solution that meets the needs of modern security operations.

46

Bibliography

[1] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
Symposium on Security and Privacy, 2010, pp. 305–316.

[2] N. Moustafa, J. Hu, and J. Slay, “A holistic review of network
anomaly detection systems: A comprehensive survey,” Journal of
Network and Computer Applications, vol. 128, pp. 33–55, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1084804518303886

[3] S. Jin, J.-G. Chung, and Y. Xu, “Signature-based intrusion detection
system (ids) for in-vehicle can bus network,” in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), 2021,
pp. 1–5.

[4] A. H. Almutairi and N. T. Abdelmajeed, “Innovative signature
based intrusion detection system: Parallel processing and minimized
database,” in 2017 International Conference on the Frontiers and
Advances in Data Science (FADS), 2017, pp. 114–119.

[5] F. Massicotte and Y. Labiche, “On the verification and validation of
signature-based, network intrusion detection systems,” in 2012 IEEE
23rd International Symposium on Software Reliability Engineering,
2012, pp. 61–70.

[6] D. A. M. Villalba, D. F. M. Varon, F. G. Pórtela, and O. A. D.
Triana, “Intrusion detection system (ids) with anomaly-based detection
and deep learning application,” in 2022 V Congreso Internacional en

47

Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y
Móvil (AmITIC), 2022, pp. 1–4.

[7] S. Goel, K. Guleria, and S. N. Panda, “Anomaly based intrusion
detection model using supervised machine learning techniques,” in 2022
10th International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions) (ICRITO), 2022, pp.
1–5.

[8] U. Kumari and U. Soni, “A review of intrusion detection using
anomaly based detection,” in 2017 2nd International Conference on
Communication and Electronics Systems (ICCES), 2017, pp. 824–826.

[9] A. Juvonen and T. Hamalainen, “An efficient network log anomaly
detection system using random projection dimensionality reduction,”
in 2014 6th International Conference on New Technologies, Mobility
and Security (NTMS), 2014, pp. 1–5.

[10] A. Khudoyarova, M. Burlakov, and M. Kupriyashin, “Using machine
learning to analyze network traffic anomalies,” in 2021 IEEE
Conference of Russian Young Researchers in Electrical and Electronic
Engineering (ElConRus), 2021, pp. 2344–2348.

[11] S. Saad, W. Briguglio, and H. Elmiligi, “The curious case of machine
learning in malware detection,” in International Conference on
Information Systems Security and Privacy, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:88467864

[12] M. Pietrek, “Peering inside the pe: a tour of the win32 (r) portable
executable file format,” Microsoft Systems Journal-US Edition, vol. 9,
no. 3, pp. 15–38, 1994.

[13] P. Singhal and N. Raul, “Malware detection module using machine
learning algorithms to assist in centralized security in enterprise
networks,” International Journal of Network Security Its Applications,
vol. 4, 02 2012.

48

[14] E. Leon, O. Nasraoui, and J. Gomez, “Anomaly detection based on
unsupervised niche clustering with application to network intrusion
detection,” in Proceedings of the 2004 congress on evolutionary
computation (IEEE Cat. No. 04TH8753), vol. 1. IEEE, 2004, pp.
502–508.

[15] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge,”
Computer Communications, vol. 35, no. 7, pp. 772–783, 2012.

[16] P. V. Amoli, “Unsupervised network intrusion detection systems for
zero-day fast-spreading network attacks and botnets,” 2015. [Online].
Available: https://api.semanticscholar.org/CorpusID:37499143

[17] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection,” Computers Security, vol. 31, no. 3, pp.
357–374, 2012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404811001672

[18] R. Aliakbarisani, A. Ghasemi, and S. Felix Wu, “A data-driven
metric learning-based scheme for unsupervised network anomaly
detection,” Computers Electrical Engineering, vol. 73, pp. 71–83, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0045790617332664

[19] A. Vikram and Mohana, “Anomaly detection in network traffic using
unsupervised machine learning approach,” in 2020 5th International
Conference on Communication and Electronics Systems (ICCES), 2020,
pp. 476–479.

[20] Y. Y. Aung and M. M. Min, “An analysis of random forest algorithm
based network intrusion detection system,” Advances in Science,
Technology and Engineering Systems Journal, vol. 3, no. 1, pp. 496–501,
2018.

49

[21] Y. J. Chew, S. Y. Ooi, K.-S. Wong, and Y. H. Pang, “Decision
tree with sensitive pruning in network-based intrusion detection
system,” in Computational Science and Technology, R. Alfred, Y. Lim,
H. Haviluddin, and C. K. On, Eds. Singapore: Springer Singapore,
2020, pp. 1–10.

[22] D. Pérez, S. Alonso, A. Morán, M. A. Prada, J. J. Fuertes, and
M. Domínguez, “Evaluation of feature learning for anomaly detection
in network traffic,” Evolving Systems, vol. 12, no. 1, pp. 79–90, 2021.

[23] D. J. D’Souza and K. Uday Kumar Reddy, “Anomaly detection for big
data using efficient techniques: A review,” in International Conference
on Artificial Intelligence and Data Engineering. Springer, 2019, pp.
1067–1080.

[24] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for
intrusion detection using recurrent neural networks,” IEEE Access,
vol. 5, pp. 21 954–21 961, 2017.

[25] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning
approach to network intrusion detection,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp.
41–50, 2018.

[26] M. Ali, B. Almohammed, A. Ismail, and M. Zolkipli, “A new intrusion
detection system based on fast learning network and particle swarm
optimization,” IEEE Access, vol. PP, pp. 1–1, 03 2018.

[27] Y. Jia, M. Wang, and Y. Wang, “Network intrusion detection
algorithm based on deep neural network,” IET Information Security,
vol. 13, no. 1, pp. 48–53, 2019. [Online]. Available: https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/iet-ifs.2018.5258

[28] U. Baldangombo, N. Jambaljav, and S.-J. Horng, “A static malware
detection system using data mining methods,” 2013.

50

[29] B. Mohammed, A. Monemi, S. Joseph, I. Ismail, S. Nor, and M. N.
Marsono, “Feature selection and machine learning classification for
malware detection,” Jurnal Teknologi, vol. 77, 10 2015.

[30] S. K. Sahay and A. Sharma, “Grouping the executables to
detect malwares with high accuracy,” Procedia Computer Science,
vol. 78, pp. 667–674, 2016, 1st International Conference on
Information Security Privacy 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050916001174

[31] A. Kumar, K. Kuppusamy, and G. Aghila, “A learning model to
detect maliciousness of portable executable using integrated feature
set,” Journal of King Saud University - Computer and Information
Sciences, vol. 31, no. 2, pp. 252–265, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1319157817300149

[32] M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park,
“Flow-based malware detection using convolutional neural network,” in
2018 International Conference on Information Networking (ICOIN),
2018, pp. 910–913.

[33] V. T. Nguyen, L. Dung, and T. Le, “A combination of artificial immune
system and deep learning for virus detection,” International Journal
of Applied Engineering Research, vol. 13, no. 22, pp. 15 622–15 628,
2018.

[34] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang,
“Bodmas: An open dataset for learning based temporal analysis of
pe malware,” in 2021 IEEE Security and Privacy Workshops (SPW),
2021, pp. 78–84.

[35] I. Shhadat, B. Al-bataineh, A. Hayajneh, and Z. Al-Sharif, “The
use of machine learning techniques to advance the detection and
classification of unknown malware,” Procedia Computer Science, vol.
170, pp. 917–922, 01 2020.

51

[36] S. Tyagi, A. Baghela, K. M. Dar, A. Patel, S. Kothari, and S. Bhosale,
“Malware detection in pe files using machine learning,” in 2022 OPJU
International Technology Conference on Emerging Technologies for
Sustainable Development (OTCON), 2023, pp. 1–6.

[37] O. Barut, T. Zhang, Y. Luo, and P. Li, “A comprehensive study
on efficient and accurate machine learning-based malicious pe
detection,” in 2023 IEEE 20th Consumer Communications Networking
Conference (CCNC), 2023, pp. 632–635.

[38] F. H. Ramadhan, V. Suryani, and S. Mandala, “Analysis study
of malware classification portable executable using hybrid machine
learning,” in 2021 International Conference on Intelligent Cybernetics
Technology Applications (ICICyTA), 2021, pp. 86–91.

[39] R. S. Santos and E. D. Festijo, “Classifying portable executable
malware using deep neural decision tree,” in 2022 IEEE
International Conference on Cybernetics and Computational
Intelligence (CyberneticsCom), 2022, pp. 162–167.

[40] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke,
“Deep learning for cyber security intrusion detection: Approaches,
datasets, and comparative study,” Journal of Information Security
and Applications, vol. 50, p. 102419, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2214212619305046

[41] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008
Eighth IEEE International Conference on Data Mining, 2008, pp.
413–422.

[42] F. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, mar 2012.
[Online]. Available: https://doi.org/10.1145/2133360.2133363

52

