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Abstract 
The spatial domain, frequency domain and wavelet based techniques are 
being used independently to detect edges in an image. Spatial filters are very 
good at localization accuracy but do not have any control over the operator’s 
scale. Similarly Fourier transform being global in nature can neither localize sharp 
transients nor differentiate between true and false edges. The problem 
aggravates further under noisy scenario. The classical edge detectors do not yield 
adequate edge maps of the noisy images and malfunction over default threshold 
values. The choice of optimum threshold for edge detection is not generic for 
diverse set of images and noise models. A good threshold assigned to yield a good 
edge map for a particular type of image and noise model may be inappropriate 
for other type of image or the different noise model/intensity in the image. Thus 
it requires user’s intervention to assign suitable threshold value to differentiate 
between true and false edges. Thus the two major dilemmas for edge detection 
are firstly the choice of appropriate threshold to segregate noise and true edges 
and secondly to opt for an appropriate scale for edge detection. 
In this research work a novel edge detection paradigm is envisaged to work 
for various images. The image is decomposed by multilevel wavelet 
decomposition using Quadrature mirror filters and then thresholded. The 
decomposition level is determined by the image resolution. The property that 
image structural details remain present at each level whereas noise is partially 
eliminated within subbands, is being exploited. The lower resolution wavelet 
detail bands are interpolated to the original image size which partially recaptures 
the missing edge pixels besides facilitating matrix multiplications. An innovative 
wavelet synthesis approach is conceived based on wavelet scale correlation of the 
concordant detail bands such that the reconstructed image fabricates an edge 
map of the image. 
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C h a p t e r 1 
Overview 
1 Introduction 
Edge detection is a first step in computer vision . Besides, its an inevitable 
process in image segmentation, feature extraction or scene analysis. Many 
approaches to image interpretation are based on edges, since analysis based on 
edge detection is insensitive to change in the overall illumination level. Edge 
detection highlights image contrast. Detecting contrast, which is difference in 
intensity, can emphasise the boundaries of features within an image, since this is 
where image contrast occurs. This is how human vision can perceive the 
perimeter of an object, since the object is of different intensity to its 
surroundings. Essentially, the boundary of an object is a step change in the 
intensity levels. Differencing adjacent points reveal change in intensity. Vertical 
edge will be marked by differencing adjacent points in horizontal direction 
(horizontal edge detector). Horizontal edge are detected by a a vertical edge 
detector which employs differencing adjacent points in vertical direction. The 
threshold level controls the number of selected points; too high a level can select 
too few points, whereas too low a level can select too much noise. Often, the 
threshold level is chosen by experience or by experiment. 
2 
1.1 Existing Techniques on Edge detection 
The discontinuities, that is abrupt changes in pixel intensity, can be identified in 
spatial, frequency as well as in time‐frequency domain. Each domain has distinct 
advantages. Spatial operators or firstorder operators are good in localization 
accuracy; frequency domain operators tend to bring out global information 
whereas time‐frequency analysis is a compromise between them. First‐order 
edge detection is based on the premise that differentiation highlights change; 
image intensity changes in the region of a feature boundary. The result of 
firstorder edge detection is a peak where the rate of change of the original signal, 
is greatest. There are higher order derivatives; applied to the same cross‐section 
of data, the second‐order derivative. Second‐order derivative is greatest where 
the rate of change of the signal is greatest and zero when the rate of change is 
constant. The rate of change is constant at the peak of the first‐order derivative. 
This is where there is a zero‐crossing in the second‐order derivative, where it 
changes sign. Accordingly, an alternative to first‐order differentiation is to apply 
second‐order differentiation and then find zero‐crossings in the second‐order 



information. 
A diversity of edge detectors exist which are differentiated from each other 
in mathematical or implementation techniques. Hence a generic edge detector is 
required whose performance should remain constant in most of scenarios and 
could captures the details required for high level processing. 
3 
1.1.1 Spatial Operators 
As per Classical methods of edge detection, a 2‐D filter is convolved with an 
image. The filter gives response to large gradients in the image and returns a zero 
in regions having no change in intensity. Many edge detection techniques are 
available [3], each designed to react differently to different edge types. Broadly, 
all these methods can be categorized in two classes, i.e Gradient and Laplacian 
edge detectors [1]. First‐order derivative or the gradient method searches the 
local maximum in first derivate of the image to detect the edges. After having 
calculated the magnitude of the 1st derivative, pixels pertaining to boundary of an 
edge are marked. This is achieved by thresholding the gradient image. It is 
assumed that pixels, with gradients higher than the assumed threshold, are set to 
white (object boundaries) and those below the threshold are set black 
(background). A different method is to search local maxima in the gradient 
image. This will result an edge response of one pixel in width. An algorithmic 
approach to edge detection has been introduced by Canny edge detector [5]. 
Canny described a method of generating edge detectors using an optimization 
approach and showed how to use the technique to generate a robust detector for 
step edges. 
The Laplacian operator is a template which implements second‐order 
differencing. The second‐order differential can be approximated by the 
difference between two adjacent first‐order differences. Laplacian operator is an 
isotropic operator (like the Gaussian operator): it has the same properties in each 
direction. However, it lacks smoothing and will respond to noise, more so than a 
first‐order operator since it is differentiation of a higher order. As such, the 
4 
Laplacian operator is rarely used in its basic form. When this is incorporated with 
the Laplacian we obtain a Laplacian of Gaussian (LoG) operator which is the basis 
of the Marr–Hildreth approach. A clear disadvantage with the Laplacian operator 
is that edge direction is not available. It does, however, impose low 
computational cost, which is its main advantage. Though interest in the Laplacian 
operator abated with rising interest in the Marr–Hildreth approach, a nonlinear 
Laplacian operator was developed and shown to have good performance, 



especially in low‐noise situations. 
Beside noisy environment, another problem which makes edge detection a 
nontrivial task is thresholding; identification of pixels corresponding to an edge. 
The choice of threshold is empirical and depends upon the desired application. 
Further, the size of the kernel for edge detection is fixed and the user has no 
control over its scale. Therefore, the identification of either fine variations or 
smooth variations in an image is not possible through a generic spatial domain 
operator. The compactly supported filters fail to identify the structural variations 
in the image. On the other hand, large size kernels lose fidelity and localization 
accuracy. 
1.1.2 Frequency Domain Filters 
Filtering is a major use of Fourier transforms [7], particularly because we can 
understand signal processing much better in the frequency domain. An analogy is 
the use of a graphic equalizer to control the way music sounds. In images, if we 
want to remove high frequency information (like the hiss on sound) then we can 
filter, or remove, it by inspecting the Fourier transform. If we retain low 
5 
frequency components, then we implement a low‐pass filter. The low‐pass filter 
describes the area in which we retain spectral components, the size of the area 
dictates the range of frequencies retained, and is known as the filter’s bandwidth. 
If we intend to retain components within a circular region centred on the d.c. 
value, and inverse Fourier transform will result in blurred image. Higher spatial 
frequencies exist at the sharp edges of features, so removing them causes 
blurring. But the amount of fluctuation is reduced too; any high frequency noise 
will be removed in the filtered image. 
1.2 Noise Models 
Signal and noise are basic building blocks of data analysis in the real world. The 
signal is usually corrupted by noise, which is often additive and is characterized by 
a Gaussian distribution, Poisson distribution, Rayleigh distribution, Uniform 
distribution or their combination. Segregation of noise and information in the 
signal is a challenging problem. There is a fundamental tradeoff between noise 
reduction and loss of information. 
This thesis implements a novel edge detection paradigm in a noisy scenario 
with following parameters:‐ 
• Gaussian noise has been considered with zero mean. Mat lab GUI 
developed to implement novel edge detector allows to vary standard 
deviation from 0.01 to 0.1. 



• Noise is independent of the pixel values and is spatially uncorrelated; in 
other words it is identically idependently distributed (iid). 
6 
1.3 Objectives 
A large number of spatial domain operators have been developed which are 
working quite satisfactorily and being widely used. They behave differently on 
different images and for different noise models / intensities. There optimality in 
detection is achieved by manual thresholding. There is no generic threshold for 
edge detection that could be optimal in all scenarios. There is a need to develop a 
generic edge detection technique which does not require user intervention and 
could satisfactorily detect edges and improves the results as compared to existing 
techniques under noisy scenario. Edge Detection through Wavelet Scale 
Correlation [11] is a new edge detection paradigm, however, edges are required 
to be enhanced to fill up the missing edge pixels for better results. 
The objective of this research work is to explore under mentioned 
techniques for better edge detection under the umbrella of wavelet scale 
correlation in noisy scenario:‐ 
• Adaptive thresholding instead of default/experimentally derived value. 

• Interpolation of low resolution images to high resolution images. 

• Image reconstruction through wavelet synthesis after processing the 
wavelet coefficients. 
• Non maximal suppression 

• Techniques for capturing missing edge pixels / edge linking. 
7 
1.4 Author’s Contribution 
The contribution of the author in the chosen field of research is summarized as 
below. 
i. Novel wavelet synthesis has been developed such that the 
reconstructed image fabricates the image edge map. 
ii. Adaptive thresholding of low resolution images, formed during image 
decomposition through wavelet scale wavelet scale correlation, 
based on a value derived through mean and standard deviation of 
the image. 
iii. Interpolation techniques have been explored. Since each 
decomposed image is being thresholded based on its statistical 



parameters. The interpolation technique could be better to use in 
image reconstruction to obtain an edge map with merits and 
demerits have been discussed. 
iv. Wavelet Scale Correlation is a new edge detection paradigm. Edge 
map obtained after image synthesis has been processed further, 
since the edges become thick during interpolation. Various edge 
enhancement methods such as used by Canny have been explored. 
1.5 Thesis Organisation 
Chapter 1 defines the edge detection, formulates the problem for classical edge 
detectors and highlights the objectives of the thesis. 
8 
Chapter 2 reviews the edge detectors in general and encompasses both 
gradient and Laplacian operators. Highpass filtering through Fourier analysis is 
highlighted. Implementation of spatial and frequency domain operators have 
been shown on standard (bench) images and their inability to extract edge maps 
of the images under depleted signal to noise ratio (SNR) has been demonstrated. 
The inability of classical edge detectors to extract good edge maps of the images 
under standard threshold values is envisaged. 
Chapter 3 builds up the theory of WT and develops its implementation for 
edge detection. Subband coding and actual implementation of DWT through 
MRA has been discussed. 
Chapter 4 presents a novel wavelet synthesis based on WSC of concordant 
detail bands such that the reconstructed image yields image edge map. The 
proposed scheme is compared with spatial domain classical edge detectors, 
frequency domain operators. The chapter concludes the thesis and indicates 
areas of further research. 
9 
C h a p t e r 2 
Classical Edge Detectors 
2.1 Edge Detection 
The first problem encountered in Edge Detection is defining what is an edge. 
Edges, being step discontinuities in the image intensities, can be recognized by 
finding local maxima in the first derivative [13], or zero‐crossings in the second 
derivative of the image. This idea was first suggested by David Marr, and later 
developed by Marr and Hildreth [14], and many others [2]. 
Finding local maxima in the first derivative requires differencing between 
the pixels intensities next to and behind the pixel under consideration. Areas of 
constant intensities yield a zero and are thus suppressed. All results including any 



number greater or smaller than zero is saved in a separate image, which 
represents parts of the image where changes occur in pixel intensities and parts 
of the images where there is no change at all. 
Edge detection schemes suffer from a number of problems. The main 
problem is thresholding which is a function of edge properties, characteristics of 
smoothing filter and properties of differential operators [12]. In order to detect 
the edges of buildings from an image or to detect the boundaries of bricks of the 
buildings from the same image need different edge detection threshold. Further, 
noise severely affects the choice of threshold. Thus thresholding makes edge 
10 
detection a non trivial task as it varies from image to image [17]. Each operator 
behaves differently for different thresholds and for different noise models. The 
choice of the size of a filter is a compromise between sensitivity to noise and fine 
localization. A large filter is less sensitive to noise but lacks edge localization 
accuracy as compared to small filter. 
2.2 Spatial Domain Filters 
Various edge detection techniques in spatial domain can be classified in to two 
classical algorithms. The first is gradient and second is Laplacian. Popular among 
gradient operators [1], [2] are Robert, Sobel, Prewitt, Frei‐Chen. Among Lapacian, 
popular operators include Laplacian and Laplacian of Gaussian (LoG). 
The gradient method is common and simple operator that detects edges by 
finding local maxima in the first derivative of the image. Finding local maxima in 
the first derivative requires differencing between the pixels intensities next to and 
behind the pixel under consideration. Areas of constant intensities yield a zero 
and are thus suppressed. All results including any number greater or smaller than 
zero is saved in a separate image, which represents parts of the image where 
changes occur in pixel intensities and parts of the images where there is no 
change at all. A graph showing changes in pixel intensities is shown in figure 2.1. 
Where the rate of change is maximum, first derivate will show a maxima or 
location of edge. Calculating the 2nd derivate of the image can highlight its 
location showing zero crossing at the location of maxima in first derivate [18]. 
11 
Figure 2.1 Edge Detection through First and Secord Derivative operators 
2.2.1 Gradient Operators 
Consider a gradient image g(x,y) computed by storing the gradient magnitudes 
resulting from differecing operation on both x and y coordinates of the image. 
Mathematically:‐ 
󲠀󳐀󲠀, 󲠀󳐀 󲠀 󳐀Δ󲠀󲰀 󳀀 Δ󲠀󲰀󳐀 
󳀀 



󳀀 2.1 
where, Δ󲠀 󳀀 󲠀󳐀󲠀 󳀀 1, 󲠀󳐀 󳀀 󲠀󳐀󲠀 󳀀 1, 󲠀󳐀 󲠀󲠀󲠀 Δ󲠀 󳀀 󲠀󳐀󲠀, 󲠀 󳀀 1󳐀 󳀀 󲠀󳐀󲠀, 󲠀 󳀀 
1󳐀. In 
order to reduce the computational complexity, the gradient is approximated as 
󲠀󳐀󲠀, 󲠀󳐀 󳀀 |Δx| 󳀀 |Δ󲠀| 2.2 
Consider θ(x,y) as the gradient direction and can be calculated as :‐ 
12 
󲠀󳐀󲠀, 󲠀󳐀 󳀀 tan󲰀󲰀󳐀 
Δ󲠀 
Δ󲠀 
󳐀 2.3 
Δ󲠀 and Δ󲠀 can be implemented by aligning a 3 x 1 mask with values ‐1 0 1 
with image in x and y axes. To increase the localization accuracy, a 3 x 3 masks 
(Gx and Gy) are used to calculate Δ󲠀 and Δ󲠀. The Gx and Gy masks shown in 
figure 2.2. 
1 2 1 ‐1 0 1 
0 0 0 ‐2 0 2 
‐1 ‐2 ‐1 ‐1 0 1 
Gx 󲐀 Gy 󲐀 
Figure 2.2 Horizontal and Vertical 3 x3 Convolution masks 
The kernel origin is located at the center value and the arrows indicate the 
direction that each kernel measures. That is, Gx calculates Δx and detects 
horizontal edges, and Gy calculate Δy and detects vertical edges. Edge direction is 
considered to be perpendicular to the direction of operation while calculating Gx 
and Gy. If the sum of pixel intensities in a region in the image results a non zero 
while calculating Gx, a horizontal edge is detected. Similarly a non zero value in a 
region while calculating Gy indicates a vertical edge. 
Using equation 2.2 gradient magnitude are calculated. Gradient magnitude 
indicates the difference between pixel’s intensities in the neighborhood. Angles 
of edges are computed using equation 2.3. Both the magnitude and angles of 
edges are usually stored as two separate image frames. 
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2.2.1.1 Sobel Gradient Operator 
The operator consists of a pair of 3×3 convolution kernels as shown in Figure 2.2. 
One kernel is simply the other rotated by 90°. These kernels [8] are designed to 
respond maximally to edges running horizontally and vertically relative to the 
pixel grid, one kernel for each of the two perpendicular orientations. 
2.2.1.2 Prewitt Gradient Operator 



Figue 2.4 shows horizontal and vertical Prewitt operators. 
1 1 1 ‐1 0 1 
0 0 0 ‐1 0 1 
‐1 ‐1 ‐1 ‐1 0 1 
Gx 󲐀 Gy 󲐀 
Figure 2.4 Prewitt Kernels 
The sole difference between Sobel and Prewitt lie in the weighting of the middle 
row/column, vertical and horizontal kernels respectively. Sobel uses a weighting 
of 2/‐2 whereas Prewitt makes use of 1/‐1. This results in smoothing since there is 
more importance to the centre point so it is evident that Sobel operator is more 
immune to noise as compared to Prewitt operator. 
2.2.1.3 Robert’s Cross Operator 
Bothsobel and Prewitt are sensitive to horizontal and vertical edges. Robert 
presents variation to this scheme by introducing a pair of 2 x 2 mask as shown in 
figure 2.5. These masks are designed to repond well to diagonal edges as 
compared to Sobel and Prewitt. 
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1 0 0 1 
0 ‐1 ‐1 0 
Figure 2.5 Robert’s cross Kernels 
One kernel is simply the other rotated by 90°. Being compact, Roberts 
Cross operator results in lesser calculations. It gains in execution speed and loses 
fidelity because of its compact support. Its disadvantage is sensitivity to noise 
and localization errors [3]. 
2.2.2 Second Derivative Operators 
First‐order edge detection is based on the premise that differentiation 
highlights change; image intensity changes in the region of a feature boundary. 
Where rate of change is maximum, 1st derivate shows a maxima in the graph 
between f(x) and x axis of the image resulting a peak. The second‐order 
derivative is greatest where the rate of change of the intensity is greatest and 
zero when the rate of change is constant. The rate of change is constant at the 
peak of the first‐order derivative. This is where there is a zero‐crossing in the 
second‐order derivative, where it changes sign. Accordingly, an alternative to 
first‐order differentiation is to apply second‐order differentiation and then find 
zero‐crossings in the second‐order information. 
2.2.2.1 Laplacian Operator 
The Laplacian operator is a template which implements second‐order 
differencing. The second‐order differential can be approximated by the difference 



between two adjacent first‐order differences [20]: 
󲠀"󳐀󲠀󳐀 󲠀 󲠀󲠀󳐀󲠀󳐀 󳀀 󲠀󲠀󳐀󲠀 󳀀 1󳐀 2.4 
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󲠀󳐀󳐀󲠀󳐀 󳀀 
󲠀󳐀󲠀 󳀀 Δ󲠀󳐀 – 󲠀󳐀󲠀󳐀 
Δ󲠀 
2.5 
󲠀 󲠀"󳐀󲠀󳐀 󲠀 󳀀󲠀󳐀󲠀󳐀 󳀀 2󲠀󳐀󲠀 󳀀 1󳐀 󳀀 󲠀󳐀󲠀 󳀀 2󳐀 2.6 
This gives a horizontal second‐order template as 
‐1 2 ‐1 
When the horizontal second‐order operator is combined with a vertical 
secondorder 
difference we obtain the full Laplacian template, given in figure 2.6 
0 ‐1 0 
‐1 4 ‐1 
0 ‐1 0 
Figure 2.6 Laplacian Template 
An alternative structure to the template in figure 2.6 is one where the 
central weighting is 8 and the neighbors are all weighted as –1. This includes a 
different form of image information, so the effects are slightly different. In both 
structures, the central weighting can be negative and that of the four or the eight 
neighbors can be positive. The only key is the sum of values in the mask must be 
zero, so that areas of constant intensities could be supressed. One advantage of 
the Laplacian operator is that it is isotropic (like the Gaussian operator): it has the 
same properties in each direction. However, it contains no smoothing and will 
respond to noise more than a first‐order operator since it is differentiation of a 
higher order. 
The Laplacian operator is rarely used in its basic form. Smoothing can be 
used by the averaging operator but a more optimal form is Gaussian smoothing. 
16 
When this is incorporated with the Laplacian Laplacian of Gaussian (LoG) operator 
is obtained which is the basis of the Marr–Hildreth [4],[22] approach, to be 
considered next. A clear disadvantage with the Laplacian operator is that edge 
direction is not available. It does, however, impose low computational cost, which 
is its main advantage. 
2.2.2.2 The Marr–Hildreth operator 
󲠀󲰀󳐀󲠀󳐀󲠀, 󲠀󳐀 󲠀 󲠀󳐀 󳀀 󲠀󲰀󳀀󲠀󳐀󲠀. 󲠀󳐀󳀀 󲠀 󲠀 2.7 
where 



󲠀󳐀󲠀, 󲠀󳐀 󳀀 󲠀󲰀󲰀󳀀󲰀 󲰀󳀀 

󲰀󳀀󳀀 2.8 
By differentiation w.r.t x and y:‐ 
󲠀󲠀󳐀󲠀, 󲠀󳐀 󳀀 󳀀 󲰀󳀀 

󳀀󳀀 󲠀󲰀󳀀󳀀󳀀 󳀀󳀀 

󳀀󳀀󳀀 󳀀 󲰀󳀀 

󳀀󳀀 󲠀󲰀󳀀󳀀󳀀 󳀀󳀀 

󳀀󳀀󳀀 2.9 
Equation 2.9 shows how to calculate the values of a mask which is a 
combination of 1st order differentiation and Gaussian smoothing. When equation 
2.9 is again differentiated, it gives Laplacian of Gaussian (LoG) operator: 
󳀀 1/󲠀󲰀 󳐀󲰀󳀀󲰀 󲰀󳀀 

󳀀󳀀 󳀀 2󳐀 󲠀󲰀󳀀󳀀󳀀 󳀀󳀀 

󳀀󳀀󳀀 2.10 
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The operator is shown in figure 2.7 and is called a ‘Mexican hat’ operator, 
since its surface plot is the shape of a sombrero. 
Figure 2.7 Shape of Laplacian of Gaussian operator and its discrete approximation with 󲠀 󳀀 .4 
2.2.3 Canny’s Edge Detection Algorithm 
Canny went on desiging a optimal edge detection paradigm using exsisting edge 
detectors [15]. Canny followed following criterion to improve current methods 
of edge detection [19]:‐ 
• Low error rate. There should be no response to false edges. Similarly there 
must be a response to true edges 
• Localization Accuracy. Unlike a step change in pixel intensities which can 
be considered as a ideal edge, a smooth edge has series of changes that are 
many pixel wide. To mark an location is critical. The distance between the 
actual edge and marked edge is called localization error and is required to 
be minimized. 
18 

• One response to a single edge. As it can be seen, directional operators will 
always respond to a single pixel edge with three pixels. Canny ensured that 
there must be one reponse to any edge. 
With these objectives in mind Canny devised an edge detection paradigm as 
follows:‐ 
• Guassian smoothing to reduce noise. 



• Calculating image gradients in both x and y directions using Sobel masks 
and calculating gradient magnitudes and directions. 
• Relating Edge Directions. Once the edge direction is calculated it is related 
to a direction that can be traced in an image. 
• Tracks along gradients in the related direction of edge and suppresses any 
pixel that is not at the maximum (non‐maximum suppression). 
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2.2.3.1 Step 1: Noise Suppression 
In order to implement Canny edge detector algorithm, a series of steps must be 
followed. The first step is to filter out any noise in the original image before trying 
to locate and detect any edges. And because the Gaussian filter can be computed 
using a simple mask, it is used exclusively in the Canny algorithm. Once a suitable 
mask has been calculated, the Gaussian smoothing can be performed using 
standard convolution methods. A convolution mask is usually much smaller than 
the actual image. As a result, the mask is slid over the image, manipulating a 
square of pixels at a time. The larger the width of the Gaussian mask, the lower is 
the detector's sensitivity to noise. The localization error in the detected edges 
also increases slightly as the Gaussian width is increased. 
2.2.3.2 Step 2: Calculating Edge Strength by Taking the Gradient 
After smoothing the image and eliminating the noise, the next step is to find the 
edge strength by taking the gradient of the image. The Sobel operator performs a 
2‐D spatial gradient measurement on an image. Then, the approximate absolute 
gradient magnitude (edge strength) at each point can be found. 
2.2.3.3 Step 3: Direction of Edge 
The direction of edge is computed using the gradient in the x and y directions. 
Whenever the gradient in the x direction is equal to zero, the edge direction has 
to be equal to 90 degrees or 0 degrees, depending on what the value of the 
gradient in the y‐direction is equal to. If Gy has a value of zero, the edge direction 
will equal 0 degrees. Otherwise the edge direction will equal 90 degrees. 
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2.2.3.5 Step 5: Non‐Maximum Suppression 
After the edge directions are known, non‐maximum suppression has to be 
applied. Non‐maximum suppression is used to trace along the edge in the edge 
direction and suppress any pixel value (sets it equal to 0) that is not considered to 
be an edge. This will give a thin line in the output image. 
2.2.3.6 Step 6: Hysteresis 
Hysteresis is used as a means of eliminating streaking which is the breaking up of 
an edge contour caused by the operator output fluctuating above and below the 
threshold. If a single threshold, T1 is applied to an image, and an edge has an 
average strength equal to T1. Due to noise, there will be instances where the 
edge dips above or below the threshold making an edge look like a dashed line. 
To avoid this, hysteresis uses 2 thresholds, a high and a low; T1 and T2 
respectively. Value greater than T1 is presumed to be an edge pixel, and is 
marked as such. Pixels below T2 are set to zero. Then, any pixels that are 
connected to this edge pixel and that have a value greater than T2 are also 
selected as edge pixels. 
2.2.4 Implementation of Classical Operators 



Edges detected from Bench mark images (attached at Appendix A) that include 
Lena, Building, Boat, House and Cameraman through gradient and second 
derivate operators are shown in figures 2.10 to 2.14. 
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Figure 2.10 Edges detected from Lena image by conventional operators 
Figure 2.11 Edges detected from Building image by conventional operators 
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Figure 2.12 Edges detected from Boat image by conventional operators 
Figure 2.13 Edges detected from House image by conventional operators 
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Figure 2.14 Edges detected from Camera Man image by conventional operators 
2.2.5 Performance of Edge Detection Algorithms 
The figures 2.10 to 2.14 demonstrate the edge detection results of classical edge 
detectors. The behavior of the operators is consistent in all the figures. Few true 
edges are found missing in gradient operators whereas false edges are cluttered 
in second derivative operators. Although, Canny takes on an algorithmic 
approach for edge detection, yet dominance of false edges can be visualized in 
the above figures. The false edges are more prominent for high frequency images 
such as Boat image. The results are further deteriorated under noisy scenario 
that will be demonstrated in section 2.4.2. The good edge detection results 
depend upon selecting an appropriate threshold that is empirical. 
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2.3 Frequency Domain Filters 
Changes in intensities in an image canalso be computed in frequency domain 
using Fourier Analysis. Since edge are high frequency contents, a high pass filter 
will simply extract the desired edges in the image. Fourier transform and inverse 
Fourier transforms are defined [1] as 
󲠀󳐀󲠀, 󲠀󳐀 󳀀 󳀀 󲠀󳐀󲠀, 󲠀󳐀󲠀󲰀󲰀󲰀󳀀󳐀󲰀󲰀󲰀󲰀󲰀󳐀 
󲰀 󲰀 
󲰀󲰀 󲰀󲰀 
󲠀󲠀󲠀󲠀 2.11 
󲠀󳐀󲠀, 󲠀󳐀 󳀀 󳀀 󲠀󳐀󲠀, 󲠀󳐀󲠀󲰀󲰀󳀀󳐀󲰀󲰀󲰀󲰀󲰀󳐀 
󲰀 󲰀 
󲰀󲰀 󲰀󲰀 
󲠀󲠀󲠀󲠀 2.12 
Our interest is in discrete functions, so we will dwell on Fourier transform of 
discrete functions. Equation 2.13 gives Discrete Fourier Transform (DFT) of a two 
dimensional function f(x,y). 
󲠀󳐀󲠀, 󲠀󳐀 󳀀 󲰀 
󲰀󲰀 
Σ Σ󲰀󲰀󲰀 󲠀󳐀󲠀, 󲠀󳐀 



󲰀 󲠀󲰀󲰀󲰀󳀀󳐀󳀀󳀀 
󳀀 󲰀󳀀󳀀 
󳀀 󲰀󲰀󲰀 󳐀 
󲰀 2.13 
for x=0,1,2,…………..,M‐1 and y=0,1,2,……………,N‐1. 
󲠀󳐀󲠀, 󲠀󳐀 󲠀 󲠀󳐀󲠀, 󲠀󳐀 󲠀 󲠀󳐀󲠀, 󲠀󳐀󲠀󳐀󲠀, 󲠀󳐀 2.14 
󲠀󳐀󲠀, 󲠀󳐀󲠀󳐀󲠀, 󲠀󳐀 󲠀 󲠀󳐀󲠀, 󲠀󳐀 󲠀 󲠀󳐀󲠀, 󲠀󳐀 2.15 
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Edge detection in frequency domain is straight forward as shown in figure 2.15 
through high‐pass filtering as following: 
• Compute DFT of the input image. 

• Centre shift the frequencies. 

• Multiply the F(u,v) by a filter function H(u,v). 

• Un‐shift the frequencies. 

• Compute IDFT of step 4 
Figure 2.15 Edge detection in frequency domain 
Edges can be considered as transients in a signal or mathematically defined as 
local singularities. The Fourier transform is global in behavior and not well 
adapted to identify sharp transients. 
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Figure 2.16 Edges detected by highpass filtering from bench images. 
(a) Lena. (b)House. (c) Cameraman. 
2.4 Effects of Noise on Edge Detection 
Noise in digital images arise during image acquisition and/or transmission. 
During acquisition, various factors to include environmental conditions and 
quality of the sensing elements affect the imaging sensors. During transmission, 
images are subject to interference in the channel used [1],[24]. 
Spatial characteristics of noise show whether or not the noise is correlated 
with the image. Frequency properties refer to the frequency content of noise in 
the Fourier sense. 
2.4.1 Noise models 
Various types of noise present in images are photon, thermal and quantization 
noise etc. Photon and thermal noise can be reduced effectively by using accurate 
and controlled ‘sensing‘devices. Quantization noise can be reduced by 
considering additional quantization levels. The error rate thus is reduced and is 
not very significant. The classification of noise is based upon the shape of the 
probability density function or histogram for the discrete case of the noise. 
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2.4.1.1 Gaussian Noise 
Because of its mathematical tractability in both the spatial and frequency 
domains, Gaussian (also called normal) noise models are used frequently in 
practice. In fact, this tractability is so convenient that it often results in Gaussian 
models being used in situations in which they are marginally applicable at best. 
The PDF of a Gaussian random variable, z, is‐given by 
p󳐀z󳐀 󳀀 
1 
√2πσ 
e󲰀 
󳐀󲰀󲰀μ󳐀󳀀 

󲰀󲰀󳀀 2.16 
where ‘z ‘ represents gray level, μ is the mean of average value of z, and σ is its 
standard deviation. A plot of this function is shown in figure 2.17. When ‘z‘ is 
described by equation 2.16, approximately 63% of its values will be in the range 
󳐀󳐀μ 󳀀 σ󳐀, 󳐀μ 󳀀 σ󳐀󳐀, and about 95% will be in the range 󳐀󳐀μ 󳀀 2σ󳐀, 󳐀μ 󳀀 
2σ󳐀󳐀. 
Figure 2.17 Probability Density Function of Gaussian Noise 
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2.4.1.2 Rayleigh Noise 
The PDF of Rayleigh noise is given by 
p󳐀z󳐀 󳀀 󳀀 
2 
b 
󳐀z 󳀀 a󳐀e󲰀󲰀󲰀󲰀 
󲰀 z 󳀀 0 
0 󲠀 󳀀 0 
2.17 
The mean and variance of this density are given by 
μ 󳀀 a 󳀀 󳀀 
πb 
4 
2.18 
and 
σ󲰀 󳀀 
b󳐀4 󳀀 π󳐀 
4 
2.19 



Figure 2.18 shows a plot of the Rayleigh density. Note the displacement 
from the origin and the fact that the basic shape of this density is skewed to the 
right. The Rayleigh density can be quite useful for approximating skewed 
histograms. 
Figure 2.18 Probability Density Function of Rayleigh Noise 
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2.4.1.3 Exponential Noise 
The PDF of exponential noise is given by 
p󳐀z󳐀 󳀀 󳐀 ae󲰀󲰀󲰀 for z 󳀀 0 
0 for z 󳀀 0 
2.20 
where a > O. The mean and variance of this density function are 
μ 󳀀 
1 
a 
2.21 
σ󲰀 󳀀 
1 
a󲰀 2.22 
Figure 2.19 shows a plot of this density function. 
Figure 2.19 Probability Density Function of Exponential Noise 
2.4.1.4 Uniform Noise 
The PDF of uniform noise is given by 
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If b > a, gray‐level b will appear as a light dot in the image. Conversely, level 
a will appear like a dark dot. If either Pa or Pb is zero, the impulse noise is called 
unipolar. If neither probability is zero, and especially if they are approximately 
equal, impulse noise values will resemble salt‐and‐pepper granules randomly 
distributed over the image. For this reason, bipolar impulse noise also is called 
salt‐and‐pepper noise. Shot and spike noise also are terms used to refer to this 
type of noise. 
Figure 2.21 Density Function of Impulse Noise 
Figure 2.21 shows the PDF of impulse noise. Noise impulses can be 
negative or positive. Scaling is part of the image digitizing process. Because 
impulse corruption is large compared with the strength of the image signal, 
impulse noise generally is digitized as extreme (pure black or white) values in an 
image; both a and b are "saturated"' values. They are equal to the minimum and 
maximum allowed values in the digitized image. As a result, negative impulses 
appear as black (pepper) points in an image and positive impulses appear white 
(salt) noise. 
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2.4.2 Implementation of Classical Operators under Noisy Scenario 
Similarly edges detected from noisy bench mark images that include Lena, 
Building, Boat, House and Cameraman through gradient and second derivate 
operators that include Sobel, Prewitt, Robert, Laplacian, LoG and Canny edge 
detectors are shown in figures 2.22 to 2.26 with Guassian noise induced in the 



images is Gaussian with zero mean and variance of 0.01. Figure 2.27 to 2.31 are 
results with Guassian noise of zero mean and variance of 0.02. 
These results can be compared with figures 2.10 to 2.14 and will be 
referred back in the subsequent chapters for comparison of the results. 
Figure 2.22 Edges from Lina image with Gaussian Noise N(0, 0.01) by classical operators 
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Figure 2.23 Edges from Building image with Gaussian Noise N(0, 0.01) by classical operators 
Figure 2.24 Edges from Boat image with Gaussian Noise N(0, 0.01) by classical operators 
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Figure 2.25 Edges from House image with Gaussian Noise N(0, 0.01) by classical operators 
Figure 2.26 Edges from Camera Man image with Gaussian Noise N(0, 0.01) by classical operators 
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Figure 2.27 Edges from Lina image with Gaussian Noise N(0, 0.02) by classical operators 
Figure 2.28 Edges from Building image with Gaussian Noise N(0, 0.02) by classical operators 
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Figure 2.29 Edges from Boat image with Gaussian Noise N(0, 0.02) by classical operators 
Figure 2.30 Edges from House image with Gaussian Noise N(0, 0.02) by classical operators 
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Figure 2.31 Edges from Camera Man image with Gaussian Noise N(0, 0.02) by classical operators 
2.5 Conclusion 
The classical edge kernels are predetermined and lack control over its scale for 
edge detection. The edge detectors are unable to adequately grab moderate 
intensity variations in the image. These kernels are highly localized and have 
compact support. Another problem is lack of standard thresholds for edge 
detection. A good threshold for one image may exhibit verbosities for other 
image. It is therefore difficult to obtain optimum edge detection results without 
user‘s intervention for inputting parameters for the edge operator. Hence it lacks 
automation and cannot be elegantly used in segmentation or in any other 
preprocessing stage in image processing applications. The derivative operators 
are not well immune to noise, especially second derivative operators, and hence 
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do not give adequate edge maps of the images in noisy scenario. On the other 
hand Fourier transform is global in nature and not well adapted to local 
singularities detection. Further that for images with low SNR, high‐pass filtering 
cannot distinguish between true and false edges. Threshold is usually empirical 
and its value is a tradeoff between noise elimination and extraction of true edges. 
Therefore there is a need to build edge operators that do not require user‘s 
intervention for inputting the parameters to obtain the desired results. Further 
that the size of the kernels are fixed. Small scale kernels are good for detecting 
fine variations and coarse scale operator extracts coarse variations. Thus the 
scalability in edge kernels is another issue that can be resolved through MRA 



which is the subject of next chapter. 
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C h a p t e r 3 
Wavelets and Edge Detection 
3 Introduction 
The theory of wavelets can be approached through vector spaces, signal 
processing or by lifting algorithms [6]. The name wavelet implies that they should 
integrate to zero and wave above and below the horizontal axis with compact 
support. Wavelets can be considered as functions that satisfy certain 
mathematical requirements. The biggest gain with wavelets is that they are 
localized in frequency and the space domains simultaneously, thus present stable 
representations in both domains. WT exhibits a compromise between time and 
frequency domain. The advantage they offer for edge detection is their ability to 
accurately locate the discontinuities in the image function. The fact that the edges 
are nothing but the high frequency contents of the image have given the basis for 
the use of wavelets for edge detection. 
3.1 Historical Perspective 
The road towards the wavelets started with Josef Fourier with his research on 
frequency analysis. The term wavelets was first mentioned by Haar in 1909 and 
introduced compactly supported Haar wavelet. However, it was not perceived at 
that time that the wavelets will be established so strongly in mathematics, 
modern physics and engineering disciplines. The researchers in 1930 molded the 
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research direction [26] from frequency analysis into scale analysis. Paul Levy 
found that in order to investigate small and complex details, Haar has more 
flexible and advantageous basis over Fourier. 
Littlewood, Paley, and Stein proved the energy conservation of the signal is 
domain independent led Davis Mar in 1980 to introduce an effective way to use 
numerical integration. The theory of wavelets can be evolved from different 
approaches. Fourier transform constitutes fixed bases with infinite support. It is 
localized in frequency but does not provide space or time information of the 
signal. The widowing approach of Fourier transform known as short time Fourier 
transforms (STFT) is a tradeoff between localization of frequency and time. It does 
not give flexibility to application to change the resolution as per requirements. 
Therefore, it is not well adapted to isolate local singularities. It leads to more 
general and flexible approach in which analysis at different resolution and details 
can be made. A function can be analyzed by taking its projection on a single 
prototype function along its translations and scaling such that the prototype 



function obeys certain mathematical criteria. This phenomenon results in CWT. If 
the said basis function is discretized and then the signal is analyzed, it is termed as 
42 
discrete time wavelet transforms. If the translations are integer multiples of two 
then it results in well known dyadic wavelet transform. Another approach is based 
on multiresolution approach which states that any lower dimensional signal can 
be represented by its higher dimension or a higher dimensional signal can be 
represented by lower dimension signal along its orthogonal complement. The 
appeal of such an approach known as MRA facilitates retention of structural 
contents that might go undetected at one resolution may be easy to spot at 
another. However wavelets could not be effectively used till Mallat discovered 
that dyadic wavelets can be implemented by filter banks. Implementation of 
wavelets has its roots in subband coding. In the subsequent sections each aspect 
of wavelets will be briefly touched and then its implementation for edge 
detection will be envisaged. 
3.2 Short Time Fourier Transform 
Fourier analysis is a useful tool to study stationary periodic signals and is not 
effective to study small changes in dynamic changing signals. STFT analysis a part 
of the signal under a fixed width window and carry out a Fourier analysis. The 
window is then translated and process is repeated again. This results in localized 
information regarding frequency contents in the signal. The problem with STFT is 
that its window width remains constant for all frequencies. Fourier and inverse 
fourier transform of a signal, x(t) are defined by the following two equations: 
X󳐀f󳐀 󳀀 󳀀 󲠀󳐀󲠀󳐀. 󲠀󲰀󲰀󲰀󳀀󲰀󲰀󲠀󲠀 3.2 
󲰀󲰀 
󲰀󲰀 
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󲠀󳐀󲠀󳐀 󳀀 󳀀 󲠀󳐀󲠀󳐀. 󲠀󲰀󲰀󳀀󲰀󲰀󲠀󲠀 3.3 
󲰀󲰀 
󲰀󲰀 
In reality, some portions of non‐stationary signals can be found stationary. 
Signal is analyzed through a window, which is of the size of the stationary part of 
the signal. Narrow windows are required if the signal of interest is very small. 
This approach of researchers ended up with a revised version of the Fourier 
transform, STFT. STFT can be mathematically defined as 
󲠀󳐀󲠀, 󲠀󳐀 󳀀 󳀀 󲠀󳐀󲠀󳐀. 󲠀󲠀󳐀󲠀 󳀀 󲠀󳐀. 
󲰀󲰀 
󲰀󲰀 
󲠀󲰀󲰀󲰀󳀀󲰀󲰀󲠀󲠀 3.4 
The function ω(t) is a windowing function, the simplest of which is a 



rectangular window that has a unit value over a finite interval and is zero 
elsewhere. 
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3.3 Continuous Wavelet Transform (CWT) 
Unlike a sinusoidal function, a wavelet is a small wave whose energy is 
concentrated in time. Wavelets are functions generated from one single function 
called mother wavelet by dilatations and translations in time domain. A wavelet 
denoted by Ψ(t) should have zero average value and unit energy. Equation 3.5 
shows the continuous wavelet transform of a signal x(t):‐ 
󲠀󳐀󲠀, 󲠀󳐀 󳀀 
1 
√s 
󳀀 󲠀󳐀󲠀󳐀󲠀󲰀,󳀀 
󲠀 󳐀󲠀󳐀󲠀󲠀 3.5 
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Thus the wavelet transform of a signal is computed as a collection of inner 
products of the signal and translated and scaled versions of a mother wavelet 
ψ(t). 
3.4 Wavelet Properties 
The most desired conditions of wavelets are the admissibility and the regularity 
46 
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From the admissibility condition 0th moment 󲠀󲰀 󳀀 0, so that the first term 
in the right‐hand side of Equation 3.13 is zero. If the other moments up to 󲠀󲰀 are 
48 
Figure 3.1 Localization of the discrete wavelets in the time‐scale space on a dyadic grid. 
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Figure 3.2 Touching wavelet spectra resulting from scaling of the mother wavelet in the time domain. 
52 
Figure 3.3 How an infinite set of wavelets is replaced by one scaling function 
53 
3.8 Subband Coding 
The wavelets could not be effectively implemented in signal processing 
applications till its linkage with subband coding was explored. In this scheme, the 
image is decomposed into a set of band limited components, called subbands. 
The decomposition is performed in a manner such that the decomposed bands 
can be inverted back to re‐construct the original signal without error. The 
decomposed signal is decimated such that it retains same number of data points 



after decimation as the original signal. Each decomposed band is separately 
upsampled and filtered in such a way that their combination yields back the 
original signal or in other words the combination of lower dimensional space can 
generate the next higher dimensional space. For this purpose; the transfer 
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function of the system should be unity i.e. the synthesis filter bank should be the 
inverse of the analysis filter bank. The process of splitting the spectrum is 
graphically displayed in figure 3.4. 
Figure 3.4 Splitting the signal spectrum with an iterated filter bank 
Another way to say is to factorize unity into two factors. One factor can 
correspond to coefficients of analysis filter bank and the other factor can 
correspond to synthesis filter bank. However these factors are constrained by 
certain mathematical conditions. There is no set procedure or derivations for 
finding these factors. The factors may be termed as magic numbers fulfilling the 
mathematical conditions such as compact support and orthogonality or 
biorthogonality in order to be successful candidate for wavelets. Consider two 
channel perfect reconstruction filter bank as shown in Figure 3.4. The analysis 
filter bank consists of ho[n] and h1[n], is used to break the input sequence f[n] 
into two half length sequence flp[n] and fhp[n], the subbands that represents the 
input. The ho[n] and h1[n] are half band filters. Filter ho[n] is a lowpass filter 
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whose output, subband flp[n], is called an approximation of f[n] while h1[n] is a 
highpass filter whose output, subband fhp[n], is called high frequency or detail 
part of f[n]. These filters are power complementary and FIR Each band is 
decimated by of two so that the amount of data should coincide with original 
signal. For synthesis the signal is up sampled by a factor of two by inserting zeros 
in between consecutive samples. Then it is passed to synthesis filters separately 
and then combined to re‐construct the signal. 
Summarizing, if the wavelet transform has been implemented as an 
iterated filter bank, the wavelets are not specified explicitly. 
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Figure 3.5 Implementation of equations 3.26 & 2.27 as one stage of an iterated filter bank. 
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3.10 Edge Detection 
The image is passed through transform analysis filter bank that constitutes two 
separate one dimensional transforms. Firstly the image is filtered along 
horizontal axis using lowpass and highpass analysis filters that split image into two 
bands followed by decimation by two. 
The lowpass filter corresponds to an averaging operation, extracts the 
coarse information of the signal. The highpass filter corresponds to differencing 
operation, extracts the detail information of the image. 
Figure 3.6 Image Synthesis 
Finally the image has been split into four bands i.e. approximations, horizontal 
details, vertical details and diagonal details and are denoted by LL, HL, LH and HH 
respectively as shown in figure 3.6. The decomposition steps constitute the level 
one or the first scale decomposition. Image edge map can be obtained in the 
lower resolution by adding all the detail bands. The processed image is reverted 
back to its original dimension by upsampling followed by interpolation. The detail 
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bands are synthesized to yield edge map of the image. However for better edge 
vision the analyzed detail bands are appropriately thresholded before synthesis to 
avoid unwanted details. The LL band can be further decomposed by iterating the 
similar filter banks yielding second level decomposition and can be iterated 
further up to the permissible level giving nth level decomposition. This process is 
termed as pyramidal decomposition of the image. The image is decomposed in a 
hierarchy of resolutions, while considering more and more resolution layers, we 
get more and more detailed look at the image. The appeal of such an approach 
facilitates retention of structural contents that might go undetected at one 
resolution may be easy to spot at another which has been exploited for edge 
detection coupled with noise suppression. 
Conclusion 
The wavelets could not be effectively used till Mallat discovered that continuous 
wavelet basis formed by inner products of orthonormal basis can be implemented 
by a band of constant Q filters, the non overlapping bandwidths of which differ 
by an octave. A lot of similarities have been found in FWT and subband coding. 
The highpass h1[n] and lowpass ho[n] used in figure 3.4 for subband coding have 
been used interchangeably as hψ[n] and hφ[n] respectively for clarity where 



needed without the loss of generality in the wavelet implementation through 
filter banks. 
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C h a p t e r 4 
Novel Edge Detector 
4 Introduction 
Different edge detectors in spatial domain, frequency domain and wavelet based 
operators have been explained in the previous chapters. These detectors differ in 
structure and characteristics. One of the major dilemmas in edge detection is the 
choice of optimum threshold which is not generic. There exists no set derivation 
or established procedure to find the optimal threshold, rather it is empirically 
established. It is assumed to be function of edges thickness, structure, 
characteristics of gradient operator and smoothing filter. On the other hand 
coarse scale operator is needed to determine coarse edges. Fine scale edge 
detector is suitable for detecting sharp intensity variations in the image. 
Therefore multiscale approach is an excellent solution to obtain edges at different 
scales and then final edge map is obtained by combining them together. 
Different detector may have explicit characteristics such as an operator may be 
good to determine straight edges like roads and rivers and may not be equally 
good to extract contours in an image. Therefore, it is intricate to find a general 
purpose edge detector which behaves well in all scenarios. 
This chapter presents a novel edge detection paradigm in which innovative 
wavelet synthesis of detail bands based on bilinear interpolation and WSC is 
conceived such that the reconstructed image fabricates its edge map. The 
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proposed edge detector works over noisy images and claims to have better result 
in noisy environment. It works without user intervention for the choice of 
optimum thresholding. Since edge detection through WSC is a novel paradigm, 
the edge map obtained needs post processing optimizations such as hysteresis 
thresholding [16], non maximal suppression, edge thinning and linking. 
4.1 Edge Thinning 
Much work has been done on the thinning of ``thick'' binary images that are 
produced during edge detection, especially in proposed edge detector. Attempts 
have been made to reduce shape outlines which are many pixels thick to outlines 
which are only one pixel thick. Besides, noise in the images results in jaggy and 
discontinued edges and necessities edge enhancement in the form of edge linking 
or truncating noise pixels attached to the edges. 
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Figure 4.1 Examples of the different thinning rules 
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algorithm. 
4.2 Novel Wavelet Synthesis for Edge Detection 
Proposed method of edge detection is a novel paradigm in which image is being 
decomposed by wavelet analysis. An input image is decomposed using 2‐ 
dimensional discrete wavelet transform with decomposition limited to four levels. 
Each level of decomposition produces four images decimated by a factor of 2. 
Filter bank containing two filters (The wavelet function filter and scaling function 
filter) produces vertical, diagnol, horizontal and low pass residual details each 
stored in a decimated image. Low pass image is again fed to filter banks for next 
level of decomposition. Low pass image obtained at the fourth level of 
decomposition is then discarded. Figure 4.2 to figure 4.4 show decomposed 
images containing horizontal, vertical and diagonal details of three test images; 
Lina, House and Camera man. All the decomposed images are then adaptively 
thresholded using employing hysteresis in thresholding with threshold values 
based on statistical parameters .The wavelet coefficients obtained after 
thresholding are then interpolated. 
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Figure 4.2 Lina Image decomposed in to four levels using DWT. H, V and D represent horizontal, 
vertical 
and diagonal respectively. Numbers show the level of decomposition. 
Figure 4.3 House Image decomposed in to four levels using DWT 
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Figure 4.4 Camera man image decomposed in to four levels using DWT 
Scale multiplication of wavelet coefficients is performed with view not only 
to capture details that may be detected on some other resolution but also to 
suppress noise. Resulting images containing horizontal, vertical and diagonal 
details are then fused together to obtain a edge map. Post processing is being 
performed for edge thinning, linking and truncating spurious details attached with 
edges. Detailed procedure is documented below and explained graphically in 
figure 4.5:‐ 
S‐1 Input image is converted to gray scale and size is ensured to be 512 x 512 
pixels. 
S‐2 Using Daubechies wavelet, input image is filtered. Since image is a two 
dimensional signal, filtering will produce two 2‐dimensional signals or four 
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images. As discussed in wavelet theory, the decomposed images will 
contain three images with high frequency details and one image containing 
low pass residue. 
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Figure 4.5 Wavelet analysis filter banks and its synthesis for edge detection for n=4. A, H, V and D 
represent decimated approximations, average, horizontal, vertical and diagonal coefficients. Subscripts 
indicate decomposition level. ψ1, ψ2 and ψ3 represents horizontal, vertical and diagonal interpolated 
edge maps after point wise multiplication of concordant band coefficients up to 4th level. E is the 
resultant edge map of the image. 
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Figure 4.5 shows the practical implementation of proposed algorithm. The 
optimum decomposition level is not generic. Results were compiled up to fourth 
level wavelet decomposition based on subjective analysis. Figure 4.5 shows the 
wavelet analysis filter bank for the input image I followed by its synthesis filter 
bank for edge detection for n=4. E is the resultant image edge map. The 
analytical expression for WSC edge detection is as follows: 
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Where ψ represents the synthesis of all the detail band coefficients by the 



given technique, superscript d=1,2,3 represents interpolated horizontal, vertical 
and diagonal detail bands to the original image size after multiplication of 
concordant bands, subscripts l represents the decomposition level. E is the 
resultant edge map of the image. The decomposition level n depends upon the 
image resolution, noise intensity/ model and its structural parameters which 
includes the edge thickness, length and statistical parameters. 
4.3 Graphical User Interface for Software Development 
Matlab has been used to develop software for the implementation both classical 
edge detectors and wavelet synthesis. Builtin matlab functions have been used to 
implement classical edge detection techniques. A Graphical User Interface (GUI) 
has been designed with a view to tune different parameters, such as noise type 
with control over mean and variance of the noise induced and choice of threshold 
(Default or manual). GUI contains an active X control to load images without the 
need of recompilation required with change in input image. While implementing 
edge detection through wavelet scale correlation, the GUI allows to choose 
various interpolation techniques and comparing the results. GUI also provides 
functionality to view the result of novel technique before and after edge 
enhancement. Snapshots of the GUI has been shown in Appendix B with 
necessary elaboration over various functions used. 
4.4 Experimental Results 
The edges detected by WSC compared with Canny edge detector for bench mark 
image are shown in figure 4.6. 
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N(0, 0.01) Edges through WSC Edges through Canny 
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Figure 4.6 WSC compared with Canny edge detector 
The proposed edge detector has outperformed the classical edge detectors 
at default threshold. Canny failed to produce edge map of Lena at default 
threshold for Gaussian noise of variance .02 or above, whereas proposed scheme 
has given an adequate edge map of Lena with Gaussian noise of variance as high 
as 0.1 as shown in figure 4.7. 
(a) (b) (c) 
Figure 4.7 Edge map obtained by WSC, with Gaussian Noise (a) 0.02, (b) 0.05 and (c) 0.1 
Thick edges are vulnerable at multiple scales, thus are prominent in the 
final edge map dectected by proposed algorithm. Edge enhancement is thus a 
requirement to enhance the edge map. Figure 4.8 shows the comparison of two 
images in which edge map obtained by WSC is shown before and after edge 
enhancement. 
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Figure 4.8 Edge map obtained by WSC (Left) no edge enhancement (Right) Edge thinning followed by 
edge alignment. 
Figure 4.8 shows Lina image edge map before and after edge enhancement. 
Using edge thinning, aligning and suppression of isolated pixels do produce sharp 
edges besides further denoising however, loss of edge pixels is clearly obvious 
during this process. 
4.4 Conclusion 
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4.5 Future Work 
• Establishing dependence of wavelet decomposition level on image resolution, 
statistical parameters, structure or type of image and noise level or model is 
open for future research. 
• Optimal wavelet decomposition level for the image be worked out to 
determine optimal wavelet synthesis by scale correlation for edge detection. 
• Edge enhancement remains a major task to improve / enhance the noisy 
edges. 
• Edge cleaning or edge refinement techniques may be cascaded. 
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Appendix B 
Snapshots of GUI for Software Development 
Figure B-1 GUI developed in Matlab: Left side is the control panel for various options required 
in edge detection. Right side shows edge detection results both on original and noisy images 
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Figure B-2 Snapshot of Control Panel 
Active X control to 
load the images 
Noise Distribution 
panel is used to 
incorporate random 
noise with adjustable 



mean and variance 
Threshold panel 
allows to choose 
both default and 
manual thresholds 
Wavelet Synthesis Panel 
implements the novel 
technique with control over 
interpolation techniques 
required during image 
reconstruction. 
Edge Enhancement 
is performed over 
reconstructed 
image containing 
final edge map 
Edge Detector Panel 
is use to compare 
results of classical 
operators 

 


