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Abstract

Malicious URLs have become major threat vectors over the Internet, with attackers
using URLs to launch attacks such as phishing campaigns, malware distribution, or
even data exfiltration. Naturally, since malicious URLs are modeled after real ones,
they can be difficult for users to spot and identify as frauds. A single attack can target
an organization with thousands of malicious URLs, costing in data loss, financial losses
and reputation damages. Even worse, cyber criminals are fast at revising their tactics
and this makes the identification a frustration, which requires effective countermea-
sures. This thesis presents a novel hybrid model of machine learning and serverless
computing to tackle the challenge of detecting malicious URLs. In this research, I
am using a well-balanced dataset of 48,000 consistent URLs, from reputable sources
such as PhishTank and VirusTotal. Using such a varied dataset achieves the purpose
of training on benign as well as malicious URLs, thereby assisting the model to learn
better and generalize well across various cyber threats. Through features extracting
process, I have selected 54 different features (25 from the URL strings and 29 from
the content of respective web pages) for identification of malicious URLs. Multiple
machine learning model were tested and evaluated including Decision tree, Random
Forest, AdaBoost. In the end, XGBoost emerged as the standout performer, achieving
an impressive accuracy of 98.14%. The testing showed the potential of hybrid model
in a high detection rate regarding malicious URLs and improved amount in processing
time that was saved significantly by the serverless architecture. Serverless computing
also provided sandbox like environment for securely extraction of features from web-
page content. This research exhibits the efficiency of my hybrid model in precisely
identifying malicious URLs and showcases the potential of merging machine learning
with serverless computing to bolster our defenses against evolving cyber threats.

Keywords: Malicious URL Detection, Machine learning, Serverless com-
puting, Cybersecurity, Feature Extraction, Scalability, Real-time Analysis
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Chapter 1

Introduction

1.1 Background

The rapid rise and subsequent effect of the internet and digital services on nearly all
aspects of our lives from living to working and communicating is quite evident. These
advancements opened numerous opportunities for various forms of innovation and effi-
ciency. At the same time, tectonic changes naturally engender numerous complications
in terms of internet security. One of the most highlighted of these was the rise of mali-
cious URLs. Essentially, a malicious URL is a fraudulent website address constructed
in such a way as to encourage user visits to a harmful website where malware can
be downloaded, phishing can be successfully carried out, or other forms of harmful
influence can be propagated. The methods of creating such URLs have become quite
sophisticated and intricate, allowing the criminals to develop elaborate websites that
cannot be easily recognized as harmful.

On one hand, these changes made the methods of URL identification difficult – they no
longer can be deemed as obviously bad and avoided. On the other hand, these changes
made the existing layers of internet security measures, such as blacklisting URLs with
negative reputations and the employment of signature-based URL detection, increas-
ingly irrelevant. These changes suggest the necessity of unveiling increasingly new
forms of URL detection algorithms immune to the development of intricate new forms
of malware. In this context, the evolution of URL detection methods towards machine
learning solutions is hardly surprising. Unlike traditional rules-based systems, these
solutions are predicated on massive volumes of recordings and the ability of the ma-
chine learning algorithm to recognize vastly more intricate patterns of what is initially
deems dangerous, especially as the nature of cyber-activity becomes more and more
sophisticated.
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Furthermore, machine learning-based systems provide a level of flexibility and pre-
cision that can be upgraded as new data is added to the system. This helps them get
better and better at dealing with never-seen-before threats. But with internet usage
booming out of proportion and online users and traffic growing at an exponential rate,
then that is not the only challenge modern detection systems have to face. With mil-
lions – or billions – of URLs accessed every single day only to grow to hundreds of
billions more, detection systems have to be not only precise but also extremely scal-
able in order to accommodate the volume and manage data efficiently. This means
having a sturdy infrastructure that allows for scaling without affecting performance,
latency, or precision. As such, ensuring that the ML model remains effective at clas-
sifying URLs despite the insane growth of data is key to any real-world deployed model.

Serverless computing is a relatively recent technological advancement that has become
a key driver in addressing the scalability and resource issues that modern systems face.
It is an architecture in which a cloud provider pushes all server and infrastructure man-
agement to cloud service providers. This essentially allows a developer to focus solely
on their application’s core functionality and optimize them for better efficiency. In a
serverless infrastructure, developers are not required to manage and configure servers
– they simply have to deploy the code, and everything else, from server allocation to
load balancing and automatically scaling, will be managed and adjusted according to
the traffic demand by the cloud provider.

Apply this, and the scaling process is greatly simplified because there is no need to
deal with the intricacies of managing hardware and even lesser so with the complex-
ities of various infrastructures. And this is especially true in situations where traffic
fluctuates. Serverless applications provide an event-driven model that is elastic and
on-demand; they automatically adjust to allocate and deallocate resources required
by the application at any given time. This means applications can scale in real-time
automatically without having to worry about over provisioning and wasting money or
under-provisioning and losing time.

Serverless computing does not simply offer flexible scalability but serves as a secu-
rity enhancement as well. For example, when analyzing the nature of URLs to identify
potentially dangerous ones, a serverless function works in the manner of a sandbox.
Each of the functions executed in a serverless environment works in a separate environ-
ment. As a result, if a sample URL was analyzed and proved presumable dangerous,
it directly affects the environment in which the specific function was executed. In
the present instance, the concern about failing to determine whether or not a URL
is harmful will not result in any strain between other functions or affect the rest of
the system. Thus, the serverless architecture “protects misbehaving / buggy / mali-
cious functions from themselves, or the system” through the protection of underlying
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resources. It should be noted that such an approach results in a win-win situation. On
the one hand, serverless architecture is impeccable in providing the necessary flexibility
to adjust the scalability of the system in case of varying workloads. On the other hand,
protection of resources through isolation allows systems to remain safe, unaffected by
malicious intent and secure in the context of security malware.

The other essential argument in favor of serverless architecture, as the technology to be
used for the detection of URL-based malware, is its low cost. Specifically, in the case of
serverless architecture, the pay-as-you-go model implies that a system analysis of URLs
to detect malicious intent only costs the company as much as the resources that the
specified analysis materials consume during their execution. In other words, they are
not required to pay for the servers that sit idle, readying to implement large machine
learning algorithms and perform real-time data analysis. Thus, since the serverless
architecture model genuinely implies cost-effectiveness, it can be safely assumed that
the implementation of machine learning as the basis for cybersecurity systems will help
achieve a new level of anti-malware protection.

1.2 Problem Statement

Cyber threat landscape is rapidly changing, especially in terms of malicious URLs.
Thus, conventional detection approaches are no longer effective due to the dynamic
nature of URL threats. As many malicious URL developers continuously develop new
URLs, there is no fixed detection rule to use the URL-based rule. Additionally, with
billions of URLs online, URL detection becomes a task that requires accurate results
at vast data. On the one hand, machine learning systems are designed to analyze pat-
terns and exploit unusual subtleties that could not be detected by conventional systems.
Models are also modified in parallel with new even defined URL threats. However, such
implementations also have downsides. For example, the training process for machine
learning models is resource intensive. By integrating machine learning algorithms with
large datasets, the system faces a huge challenge in maintaining a secure and accu-
rate infrastructure. However, serverless computing appears as an opportunity to solve
the challenges that can be generated because serverless applications do not manage
infrastructures. Personal and secure platforms that also include models can be cre-
ated using simple cloud services. However, the combination of serverless computing
and machine learning is a new research area. There is a limited number of studies in
which serverless architecture and machine learning are used together in cyber secu-
rity. Thus, among these studies, especially URL threat detection is very few. Overall,
within these limitations, there is currently no study focusing on the security and scal-
ability of malicious URL detecting machine learning models with serverless computing.

3



This research highlights the primary research question which investigates whether it is
feasible to create a cost- and energy-efficient solution that can detect malicious URLs
using the serverless computing-based machine learning model. Overall, the primary
aims of the research are to create an implementation of a machine learning model and,
at the same time, URL feature extraction using serverless computing applications. The
research has significance because there are no studies in the literature that examine the
feasibility and create a model. The created implementation will evaluate not only cal-
culated storage and memory practices but also the robustness and scalability properties
of different serverless platforms. The environment will also be designed with completely
secure and clean platforms. As the first step, related literatures and current cases in
the field were searched. Later, for system design and implementation, Python, Google
Cloud Function and Google Cloud Storage were chosen. To summarize, it is possible to
create secure and scalable URLs with machine learning training and machine learning
model applications using serverless computing applications. At the end of the research,
an architecture of machine learning models that can work with serverless applications
will be created.

1.3 Research Questions

This research seeks to answer the following key questions:

1.3.1 RQ1: To what extent do machine learning approaches
assist in recognizing malicious URLs utilizing character-
izing URL strings and extracting data from the web?

The primary target of the proposed research is to estimate the efficacy of numerous
machine learning models and feature extraction methods regarding the precision of
recognizing malicious URLs.

1.3.2 RQ2: What benefits can be identified with the imple-
mentation of the malicious URL detection system that
is operated based on serverless computing technologies
regarding its scalability, efficiency and security of the op-
eration?

This question is far more related to the research design due to the high probability of
identifying such benefits as high compensational patterns, energy efficiency of compu-
tations, scalability, accessibility of operations, and cost-effectiveness of the analyses.
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Thus, the implementation of such algorithms for the detection of malicious content
within URL strings that may cause damage to the statistical performance of serverless
systems requires a profound investigation of wits advantages.

1.3.3 RQ3: How can the performance of the proposed system
be defined against the application of blacklistings, heuris-
tic analyses, and signatures or combination thereof?

This research question will be associated with the comparative analysis between the
proposed system and its application and such mainstream methods of detection like
blacklisting, the combination of decision-making, heuristic methods, and signature-
based technologies.

1.3.4 RQ4: What issues are encountered when using machine
learning in combination with serverless computing with
the purpose of creating a cyber defense system?

Finally, it is possible to state that the following research will help in gaining a no-
tion regarding IT using, as well as the possible issues associated primarily with data
management, model deployment, and safeguarding the models.

1.4 Research Objectives

The primary objectives of this research are as follows:

1.4.1 Objective 1: Develop a machine learning-based approach
for feature extraction from URL strings and content anal-
ysis of website data to detect malicious URLs.

This objective concerns developing, designing, and implementing feature extraction
techniques that are capable of precisely distinguishing between benign and malicious
URLs. To recognize the latter, the system has to capture many types of data. The first
feature extraction step is focused on obtaining features from the URL strings: those
include the length of URL, the number of ‘special’ characters, the structure of domain
name and domain level, or the presence of suspicious keywords. Such features – also
called lexical – are especially important as the malicious intentions of the URL owner
are typically masked many ways, such as through URL shortening or domain spoofing.
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The content-based features, in turn, are features that can be extracted only from
the website which the URL refers to. Such characteristics can include the structure of
a webpage – such as the presence of forms, iframes, or scripts – the metadata, or the
content itself. In the latter case, one might want to implement searching for malware
specific writing style or several types of hyperlinks to suspicious websites or supporting
illegal actions. The vast amount of such lexical and content-based features will allow
the act to use modern learning algorithms and notice even the most subtle signs of
malicious behavior that are usually beyond the reach of classical malware detection
algorithms.

1.4.2 Objective 2: Implement the malicious URL detection sys-
tem on a serverless computing architecture to enhance
scalability, efficiency, and security.

This objective focuses on activating the machine learning – based malicious URL de-
tection system on a serverless computing platform. Serverless computing offers the
ability to implement an elastic infrastructure that reacts and scales itself in correla-
tion with a sporadical URL traffic. The serverless deployment automatically scales
to the number of URLs that need analysis with no server volume limit or applause
from the administrator. This ensures that the system can handle large datasets and
cannot fail to cover the real – time URL traffic. Moreover, the sand boxed execution
of workloads on servers can significantly improve security. This type of security offers
a clean space between the code and the operating system, releasing the possibility of
cross – infections. Therefore, since the URLs can be harmful on this system, the sand
boxed environment isolates the threat from the environment in which the actual work
is performed.

1.4.3 Objective 3: Evaluate the performance of the proposed
solution in terms of detection accuracy, false positive/neg-
ative rates, scalability, and resource efficiency.

The purpose of this objective is to perform a comprehensive evaluation of the perfor-
mance of the detection system based on several crucial metrics. The first and most
crucial factor that will be assessed is the rate of the detection system in terms of de-
tecting the URL as either malicious or benign.

Second, the evaluation will also test the scalability of the system in terms of handling
an extensive amount of URLs and ensure that the changes in the scope of analyzed
pages does not influence the performance, speed, or rate of detection.
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1.4.4 Objective 4: Assess the effectiveness of integrating ma-
chine learning models with serverless computing for ma-
licious URL detection compared to traditional detection
methods.

This study will highlight the advantages of fusing machine learning with serverless
computing for real-time handling, moderately priced development capacity and supe-
rior detection accuracy, while also revealing areas that could be further improved. The
target of this system is to prove that not only can the proposed method of detection
exceed traditional methods in effectiveness, but it delivers a reliable and expandable
one which can cope with the steady growth of hacking threats. By tackling these prob-
lems, the research aims to establish a more secure and effective framework for practical
field tests variable environment abuses, fraudulent URLs.

1.5 Thesis Structure

The thesis is structured as follows:

1.5.1 Chapter 1: Introduction

Offers a comprehensive overview of the research, describing its background, stating the
problem clearly, and defining key objectives and research questions. This chapter also
explains thesis construction principles guiding readers through subsequent sections.

1.5.2 Chapter 2: Literature Review

Surveys current literature about how malicious URL detection methods machine learn-
ing technology and serverless computer systems are deployed in sequence. The re-
searchers hope that their work will fill in some critical gaps in current knowledge,
building the foundation for their Shudder to think.

1.5.3 Chapter 3: Methodology

Details how the research is carried out, including study design, data collection methods
and the procedures for feature extraction. In addition, this chapter explains how ma-
chine learning models were deployed on a serverless platform and describes its technical
implementation step by step.
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1.5.4 Chapter 4: Results and Analysis

Reports all of the experimental results, this part presents the performance of different
machine learning models in detecting malicious URLs. In this chapter these results are
compared with traditional methods, pointing out key performance indicators such as
accuracy, scalability and efficiency.

1.5.5 Chapter 5: Discussion

Within a broader cybersecurity context, this part interprets the findings of the study
and discusses their implications for detecting changing threats. This chapter looks
back on the contributions to the field in light of what it has found, then it per specu-
lates improvements possible from here and identifies parts of study which need further
research effort or practical application.

1.5.6 Chapter 6: Conclusion

In conclusion, the chapter provides the final evaluation based on the key findings, con-
cluding the system’s effectiveness in addressing the identified issues. It incorporates the
issues identified and the related discussion to emphasize the proposed system’s value
for cybersecurity and explorations of its mean performance. Additionally, the study
proposes further research based on the issues identified and enclosed in the chapter, as
well as applicable recommendations to improve the system and cybersecurity on the
whole. Thus, the conclusion chapter’s cybersecurity implication includes recommen-
dations to improve detection tools and defenses in cybersecurity to withstand modern
cyber threats, contributing to the development of a safe online environment.
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Chapter 2

Literature Review

2.1 Background

Cybersecurity continues to be a pressing issue on the digital frontier, as cyberattacks
such as phishing become increasingly sophisticated. Among many attack paths utilized
malurls have emerged as one of the most common means to deliver a phish or malware
program. The literature indicates that traditional methods of detection are no longer
adequate and further, machine learning techniques can disable these threats more ef-
fectively. In addition, serverless computing is being seen increasingly for its ability to
create more scalable and flexible systems in cybersecurity settings. In this chapter, we
trace the history of phishing attacks, introduce both traditional and advanced methods
for detecting malware-laden URLs or harmful entities bearing malintentions disguised
in net code, look closely at just how machine learning can aid in maintaining safety
online, and take a long savory bite into whether–and if so how!–serverless computing
promises us at last with all this convenience meant for somewhat slower times (if not
sometimes only now in its proper immediacy) an infrastructure that is scalable, cost-
effective even for development work by students. We also offer case studies and real
examples that show how ML and serverless computing can be integrated to create a
secure detection system.

2.2 Phishing and Malicious URLs

2.2.1 Evolution of Phishing Attacks

Originally simply low-level network attack form phishing, now grow up to be exert
increasingly cunning attacks mainly by the unnoticed manipulation through social en-
gineering techniques or new technology. In those days, phishing merely entailed scam
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mails concentrating on individual users. But today’s phishing is highly individualized,
gathering information from social networks as well as other digital platforms which will
enable a message to resemble what trick scam victims into clicking on dangerous URLs.

Years later, the attackers learned to bypass conventional detection systems by using
makeshift links to disguise their malicious URLs. In other words, these URLs showed
up on the outside like normal Internet addresses with abbreviated endings-e.g. dz.ru
or co.kr. These are hard for even the old-school detection programs to recognize as
threats. As domain generation algorithms began to take hold, the identification issue
became more complicated still. As attackers were now able to produce fresh domain
names in real-time, blacklists lost their effectiveness [3]. Spear phishing is a new type of
phishing, which is particularly targeted and difficult to detect. For example, high value
company staff who might be part of this effort are under someone’s careful surveillance
before they are made even targets for attack.

2.2.2 Traditional Detection Methods

The traditional techniques for Identifying malicious URLs are blacklisting, heuristic
analysis, and signature-based detection. These techniques depend on static details
to discover phishing attacks and, as a result, are vulnerable to increasingly dynamic
phishing attacks. The disadvantage is that all these methods depend on the static
information that exists; hence is limited by its reliability. The three traditional forms
are as follows:

1. Blacklisting: It works by learning the information of the known malware host
URL. The list contains multiple hosts URL. When the URL typed by the user
indicates a match, the corresponding search engine console terminates the search
for the user. However, it is not applicable to the daily interaction of URL short-
ening services because short URLs deal with newly generated website content
daily. The method is computationally expensive as the time for execution is high
[30].

2. Heuristic Analysis: The process is to identify unusual behaviors among the
websites. Multiple methods for detecting phishing URLs include the likes of
using an unusually long URL, the use of unusual top-level domains, the presence
of multiple digits of characters, or the use of certain characters such as “@”. There
is the possibility of multiple false positives due to the exception that few malicious
URLs share the same characteristic as both heuristic analysis frequencies. It is
about batch learning on training examples [17].

3. Heuristic Analysis: The constant monitoring of the phrases or symbols of mal-
ware or malicious URLs which indicate webpages as suspicious is an example of
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using predefined rules. The identifiable objects can be webpages as they contain
spam comments of some sort. The dictionary of the signs or symbols is respon-
sible for retrieving them. As a result of the system crashes, the signature-based
detection technique is required. Finally, the effect of any external factor such as
a new kind of spam would thwart the weakness of the above methods [8].

Aspect Blacklisting Heuristic Anal-
ysis

Signature-Based
Detection

Detection
Method

Checks against
a list of known
threats

Analyzes behavior
and characteristics

Compares against
known malware
signatures

Efficiency Fast for known
threats

Slower due to
complex pattern
matching

Fast for known
signatures

Protection
Against

Known threats Zero-day and un-
known threats

Known threats

False Positives Low risk (depends
on list quality)

Higher risk due to
pattern overlap

Low risk when sig-
nature is accurate

Updates Re-
quired

Frequently Not as frequent Frequently

Strengths Simple and fast Can detect un-
known variants

Very effective for
known threats

Weaknesses Useless against
new threats

Can result in false
positives

Cannot detect
new or modified
threats

Use Cases Blocking known
phishing or mal-
ware URLs

Spotting new mal-
ware or suspicious
behavior

Antivirus and in-
trusion detection
systems

Table 2.1. Comparison of Traditional Detection Techniques

2.2.3 Advanced Detection Techniques

To overcome the shortcomings inherent in traditional approaches, researchers are in-
creasingly using ML and deep learning (DL), characteristics of URLs URL-based in-
dicator of maliciousness. To this day these techniques are still quite mistaken in real
time analysis of the URL, so it can detect previously unknown threats.

1. Machine Learning-Based URL Detection: By applying ML methods such
as decision trees, SVMs and logistic regression to URL detection, has already
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done much analysis on not only the lexical structure of the URL but also domain
age and WHOIS data. These machines learning based models train themselves
with large numbers of both legitimate and malicious URLs, allowing them to spot
these suspicious formations according to some rather subtle pattern not visible
at all to traditional systems’ ways of working [14].

Figure 2.1: Machine Learning-Based URL Detection

2. Deep Learning Techniques: As per many of the more recent research work
reports, deep learning models have been included in URL detection systems,
particularly the CNNs and the RNNs. More specifically, CNNs are better suited
to evaluating the lexical characteristics of URLs. On the other hand, RNNs
can capture whole sequences of data and McCall, especially where it refers to
this, i.e. content available on websites linked to URLs that are suspected in the
creation of attacks. These models have shown far better performance levels than
the traditional ML technologies in the context of identifying new threats as the
existing ones are all known [18].

3. Natural Language Processing (NLP): NLP techniques are being integrated
with ML models to crack the content of websites connected with URLs. These
models, by analyzing text and site structure, can judge whether a URL service
constitutes a scam or other type of harmful activity [19].
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2.3 Machine Learning and Cybersecurity

2.3.1 Insight into Machine Learning Frameworks

ML has gained widespread adoption among cybersecurity solutions as it can process
and analysis high amounts of data. ML-based URL detection models. Several methods
of machine learning algorithms are proposed for identifying Malicious URLs.

1. Random Forests: Random forests message in when ensemble learning is used
to create multiple decision trees during training and output the class that sees
(Classification) or mean (regression/mean/mode) prediction of individual tree.
This method is used for avoiding overfitting and more performant in cases with
a large amount of data or if the dataset is complex.

2. Gradient Boosting: The latter class of effective algorithms have become proven
the most accurate ones and consequently taking the first place as the most used in
standard ML problems competition, such as XGBoost. His iterative feature helps
with improving the existing models as saving the failures of the previous version
of the development; therefore, making them more proficient in URL finding [3].

3. Convolutional Neural Networks (CNNs): There are two major ways of
implementing image classification in our URL problem, such as Convolutional
Neural Networks and the use of more simple ML algorithms. The models are
adjusted to learning more complicated URL-patterns, and as a result, have ulti-
mately shown better performance over standard ML algorithms [14].

4. Recurrent Neural Networks (RNNs): In NLP, such models are frequently
used, and in this case, they are applied to analyzing URL sequences. RNNs see
URLs as sequences of characters and can learn the patterns of “bad” URLs on
time, consequently, are the most useful in the fight with unusual attacks, or just
as transient attacks [18].

Table 2.2. Comparison and Analysis of ML Algorithms

Aspect Random
Forests

Gradient
Boosting

CNNs RNNs

Data Type Structured/
tabular data

Structured/
tabular data

Image, spatial
data

Sequential
data (time-
series, text,
speech)
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Aspect Random
Forests

Gradient
Boosting

CNNs RNNs

Training
Time

Fast for small
datasets

Slower due
to sequential
model build-
ing

Slow, espe-
cially with
large datasets

Slow, particu-
larly for long
sequences

Handling
Overfitting

Better than
decision trees
(ensemble)

Prone to over-
fitting if not
tuned

Can overfit
on small data;
regularization
required

Prone to van-
ishing gradi-
ents in long
sequences

Computational
Complexity

Moderate (de-
pends on the
number of
trees)

High due to
sequential
nature

High (re-
quires GPUs
for large
datasets)

High, espe-
cially with
LSTMs/-
GRUs

Performance
on Structured
Data

High (good
baseline
model)

High (can
outperform
Random
Forests)

Poor Poor

Performance
on Image
Data

Poor Poor Excellent Poor

Performance
on Sequential
Data

Poor Poor Poor Excellent

Model Inter-
pretability

High (easy to
interpret)

Medium (re-
quires more
tuning)

Low (deep
networks are
hard to inter-
pret)

Low (LSTM-
s/GRUs are
black-box
models)

2.3.2 Feature Engineering for URL Identification

Feature selection is fundamentally important in a machine learning model’s success
or failure. Features are often driven by human intuition and hard-won knowledge.
Many modern predictive models–in particular nonlinear models– are designed to work
even if it is complete or nearly lists all useful features on which they operate. As
far as determining the likely danger presented by a given URL is concerned, URL
feature engineering means you are extracting relevant characteristics from URLs and
associated data. URL detection involves extracting relevant characteristics from URLs
and associated data to identify potential malicious activity.. Common features used in
URL detection include:
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1. Lexical Features: These are some of the simplest and most straightforward fea-
tures to examine. This includes the URL’s length, whether it uses an uncommon
TLD, and whether it contains special characters. It is particularly effective at
identifying phishing URLs, where obfuscation of the domain name is a common
occurrence or URL shortening services are used [30].

2. Host-Based Features: These are based on data about the domain or server
that is hosting the URL. Some examples might include the age of domain registra-
tion, available WHOIS data, and the existence of SSL certificates for host-based
features. The aim of this type of features is to differentiate between legitimate
and outright malicious URLs by examining the behaviour of the website based
on the features available about where the site is registered or hosted [17].

3. Content-Based Features: These are based on the mined contents of the web-
site that is URL is pointing to, such as the presence of suspicious scripts or
iframes. This is extremely effective when trying to discover the work of phishing
websites, that frequently look like a regular website, but also host malware which
can be identified through the features available on the site [18].

2.3.3 Challenges in Applying Machine Learning to Cybersecu-
rity

Machine learning in cybersecurity applications posed several challenges. Nearly all
issues are related to processing and updatability due to the development of attackers’
phishing and malware:

• Data Quality and Availability: As described, human learning algorithms re-
quire large and high-quality datasets. Developing malware and phishing demands
an even bigger sequence of data for proper functioning. For example, training hu-
man recognition to distinguish potentially malicious URLs from legitimate ones,
a labeled dataset of such URLs is required. However, the problem is that this
data is not the easiest to obtain, especially in the case of new kinds of phishing
schemes [17].

• Adversarial Attacks: This issue urges security measures that work properly
but in the wrong way. Adversarial attacks are a significant problem with machine
learning. If attackers refuse proper human use of tools, at least they should be
able to bypass them. An adversarial attack is a situation where the attacker delib-
erately makes targeted changes to input data, misleading human understanding
or specifics of the tool [6].

• Model Maintenance and Retraining: Developing cyber threat evolution en-
sures that attack methods that machine learning knows about today will be
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completely different tomorrow. To detect new malware and phishing acts, and
to resist old ones by creating new logs, the model must be constantly trained
and renewed. Such actions require a lot of computational resources and human
resources [18].

2.4 Serverless Computing in Cybersecurity

2.4.1 Overview of Serverless Computing

Serverless computing is a service provided by a cloud computing provider, which per-
mits the deployment of code without the need for managing infrastructure. In this
type of architecture, the cloud provider manages and dynamically allocates resources
for the client, scaling the application by the minute. This cloud computing model
would be particularly useful in the development process of an event-driven application
with needs of high fluctuation in use. This includes a significant part of cybersecurity
applications, as the workload may vary over intensely during a day cycle or across a
week. Serverless computing in general has numerous benefits and might be considered
more secure and effective for cybersecurity applications [11].

Figure 2.2: Serverless Computing in General
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Serverless computing offers several advantages for cybersecurity applications. Among
the benefits of serverless computing are scalability, cost efficiency, and lesser operational
complexity.

• Scalability: Scalability is rather a needed feature of cybersecurity applications,
which can expect a high number of attempts and transactions over the use. The
applications driven by serverless platforms can handle a great amount of traffic,
scaling their resources effectively.

• Cost Efficiency: Cost efficiency reduced expenses on infrastructure in the mi-
cromanaged programs where users pay only for the resources used and in active
use [24].

• Reduced Operational Complexity: Less operational complexity for cyberse-
curity and network security applications, where the need for infrastructure man-
agement is eliminated and the developers can focus on the improvement and the
development of the security applications [25].

2.4.2 Benefits of Serverless Computing for Cybersecurity

Serverless computing can be advantageous when developing recording integration so-
lutions for utilities as with it, developers could focus on solving business problems
using already provided instruments and tools. For instance, instead of concentrating
on server scaling and configuring security settings, a security developer could work on
detecting malicious URLs and have more time to refine the results. Since the serverless
architecture automatically scales with the incoming requests, the high traffic during
periods when phishing attacks are the most likely will not overload the system. The
serverless platform includes diverse security tools such as encryption and automatic
patching and offers integration with other cloud services like databases and machine
learning APIs. Thus, solutions for utility customer recording could benefit from such
an approach [11].

2.4.3 Challenges and Limitations of Serverless Computing

Below is a list of difficulties connected with serverless computing:

• Cold Start Latency: A Serverless computing system requires a cloud provider
to allocate the resources and boot the function’s environment at the first invo-
cation of a function. It increases the latency of getting the function running.
Moreover, if there is much time between the invocation of functions, there is the
possibility that the cloud provider may stop the instance that ran the functions.
In this situation, there will be a time period when the system needs to start all
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over again. This time period is also referred. It is not desirable in time-sensitive
applications, especially when it comes to cybersecurity [11].

• Security Risks: There are some categories of attacks that target infrastructure
of types of the action itself. It concerns the following types of attacks: code
injection, privilege escalation, Denial-of- Wallet: the model is based on the system
being paid due to the number of invocations of the functions. Attackers send too
many requests to the system and in this way, the owner of the system needs to
pay for it [6].

2.5 Integrating Machine Learning with Serverless Com-
puting

2.5.1 Architectural Considerations

When blending machine learning with serverless computing, careful planning is es-
sential to ensure performance and cost-effectiveness. On one side, it is well known
that serverless platforms are most efficient for hosting very lightweight ML models and
perform real-time inference, while model training can be done on a more efficient in-
frastructure, which usually involves more resources. A paper titled Serving DL models
on a serverless platform was highly effective in its implementation of a credit card fraud
detection system through using the proposed architecture. It demonstrated a high level
of security and efficiency of this system in performing an event-driven cybersecurity
task in real time. I have also recently read a similar paper that concluded that the de-
veloped ML algorithm was effective in real-time object recognition and tracking where
the platform was the star of the show [5].

2.5.2 Case Studies and Applications

In cyber security, case studies show how machine learning’s successful integration with
serverless computing. One example is the HealthFaaS system, a service for real time
health monitoring. It’s designed with a serverless architecture to let scales up or down
dynamically based on what kind of demand there is from its users [11]. In another
example, systems for credit card fraud detection have been moved onto serverless plat-
forms. Working like this exposes information that can be analyzed in real time and
can cut down on fraud [5].
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Table 2.3. Literature Review Summary

Paper
Title

Methods Algorithms Results Future
Work

Limitations

Survey on
Malicious
URL
Detection
Tech-
niques [3]

Survey of
blacklist-
ing,
rules-
based, ML,
and DL
methods

SVM,
Random
Forest,
CNN

Accuracy:
Up to 99%
for some
ML models

Integrating
new URL
features,
enhance
real-time
perfor-
mance

Content-
based
features
not utilized

Performance
Evalua-
tion of
Serverless
Edge
Comput-
ing for
ML [16]

Serverless
frameworks
(Kubeless,
OpenFaaS)

CNN,
LSTM

Kubeless:
Lowest
response
time,
Fission
struggled

Optimizing
autoscaling
and
reducing
latency

Auto
scaling of
modules
not tested

URL
Based
Malicious
Activity
Detection
Using ML
[8]

Comparative
analysis of
ML
algorithms
on URL
data

Random
Forest,
LightGBM,
XGBoost

Random
Forest
accuracy:
94.5%,
XGBoost:
93.2%

Incorporating
dynamic
features for
improved
detection

High
processing
time; no
use of
serverless
computing

ML Sup-
ported
Malicious
URL
Detection
[19]

Feature
engineering
and ML
classifica-
tion

SVM,
Random
Forest

Random
Forest
accuracy:
96%, SVM:
93%

Including
dynamic
analysis of
URL
content/be-
havior

Only
lexical
features
used;
content
features
missing

Hybrid
Approach
for
Malicious
URL
Detection
[10]

Hybrid
model
combining
blocklists,
ML, and
DL

SVM, CNN Accuracy:
98%, out-
performed
blocklist-
only
methods

Reducing
false
positives,
improving
real-time
capabilities

High
processing
time; lacks
serverless
computing
for
scalability
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Malicious
Short
URLs
Detection
Technique
[30]

Rule-based
feature
extraction
and ML
classifica-
tion

Random
Forest,
SVM

Random
Forest
accuracy:
92.3%,
SVM:
89.8%

Focus on
URL
shortening
services
and
evasion
techniques

No
content-
based
features;
lacks
scalability
analysis

New
Heuristics
Method
for
Malicious
URL
Detection
[17]

Heuristics-
based
feature
extraction
combined
with ML

Decision
Tree,
Random
Forest

Heuristics
+ Random
Forest
accuracy:
93%

Optimization
for
scalability
and
complex
threats

High time
of
processing;
lacks
serverless
computing

Malicious
URL
Linkage
Analysis
and
Common
Pattern
Discovery
[15]

Linkage
and
pattern
analysis
using
statistical
methods

Statistical
analysis

No specific
accuracy
provided

Integrating
patterns
with ML
for
predictive
models

Does not
focus on
ML
techniques;
lacks
real-time
applicabil-
ity

CNN-
Based
Model for
Detecting
Malicious
URLs [14]

CNN-based
classifica-
tion

CNN CNN
accuracy:
99.2%

Focus on
handling
complex
URL
structures

High
processing
time; no
content-
based or
serverless
approach

2.6 Summary

The chapter supplies us with a wide literature review on the evolution of phishing
attacks and the increasing complexity of malicious URLs. It also has addressed the
applicable limitations of older detection methods, such as blacklisting & signature-
based detection, which are incapable of keeping pace with the growing complexity of
cyber threats. For these reasons, new detection methods had to be developed, such
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as ML and DL, able to provide real-time analysis and identify previously unknown
sources of danger. It also noted that serverless computing can be quite beneficial as far
as this type of activity concerned because it was deemed more scalable, cost-effective,
and capable of handling real-time data processing. By combining serverless and ML
systems, it is possible to develop more adaptive and thus safer systems, which would
be followed by a number of appropriate case studies.
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Chapter 3

Methodology

3.1 Introduction

This chapter will give a comprehensive, methodologcal analysis of how to design and
implement a ML system for identifying malicious URLs running on serverless comput-
ing platforms. This system not only draws on lexical features such as URL structure or
physical properties of web hosts is traversable by our system, but also uses the content-
based scores that come from mining all corresponding web page segments, to track and
catch unsafe URLs leading off towards fake web shops downloading malware and other
potential threats. The methodology involves a number of stages. One of the most
important steps is the collection of the dataset and in-depth feature engineering work
which follows. With just over 5 dozen or so extracted features of this kind, the process
involves looking for anything that could be any kind hint anything like an fingerprint
perhaps. Some ranges of these characteristics and fingerprinting elements range from
obvious URL properties to the more advanced content analysis based on structure and
web page components.

System was install in traditional local mode, entirely on a serverless architecture and
by combining the above two methods, achieve still higher cost of availability. By de-
ploying the solution on scalable, real-time processing-capable cloud-based serverless
architecture (Google Cloud Functions etc) this twitch is achieved. Yet this serverless
framework lets you scale upwards and downwards dynamically according to workload
and needs no manual resource management for high volumes.
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Figure 3.1: General Architecture

Multiple machine learning models were also trained and tested to identify malicious
URLs. Methods such as boosting and ensemble models were among those implemented
and then subjected to strict, cross-validated evaluations for accuracy and generalizabil-
ity in a variety of situations. Cross-validation was important for preventing overfitting
and ensuring that the models performed well across a variety of datasets, including
new real-world data sets that had never been seen before.

3.2 Research Design

3.2.1 Overview of the Research Process

The research route makes use of these three key stages to approach: building Method-
ology. Deploying Methodology. Evaluation machine learning-based malicious URL
detection system:

1. Data Collection: Vast amount of data were gathered from many sources in-
cluding the live base metal repositories PhishTank [21] and VirusTotal [31], as
well as various other live bases like OpenPhish [20]. Benign URLs came from
established repositories to ensure balance in the dataset.

2. Data Cleaning: Only the live URL from hundreds of thousands to millions.
In this way one may gradually weed out some bad choices; moreover it is also
certain that one can ensure correct analysis results through model.
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3. Feature Engineering: With 54 features in all, both lexical and content- based
ones were extracted from the URLs and their hosting web pages. Some features
were generated from URL structures, whereas others originated in the text of
such pages.

4. Model Development: Then I tried several machine learning methods, including
boosting and ensemble modelling, with this feature-engineered dataset. Although
I aimed at increasing correct detection rates still further while reducing false
alarms down to some acceptable minimum level, Multiple models were added to
maximize chances that the system could also achieve a high level of precision in
identifying what is good or bad in an unknown web page-even if at first glance
it looks totally innocent.

5. System Deployment: The core malicious URL detection system is imple-
mented and run on a local system, which gave full control over model training,
classification and performance evaluation. To enable the extensive demands of
feature extraction, Google Cloud Functions [7] were used. By allocating only
feature extraction to cloud-based functions, the system realized an almost per-
fect balance of scalability in preprocessing–while still giving good results locally.
This hybrid approach saved serverless computing for power demanding chores,
while continuing with using the local environment for better control of system
processes and resources.

6. Performance Evaluation: The performance of the machine learning models
was evaluated with various key metrics, such as accuracy rate vs. recall rate.
K-fold cross-validation was applied to test robustness and generalizability, which
meant that results would probably continue to hold true across different datasets
and not just for whatever set you happened get first (or last!).

Figure 3.2: Google Cloud Function and Storage
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3.2.2 Data Collection

The dataset used in this study has been carefully prepared from multiple sources to
ensure diversity, reliability and comprehensive coverage of both malicious and benign
URLs [13]. An objective of this research was to build a dataset large enough to be
representative and balanced to train a machine learning model detecting malicious
URLs with sufficient accuracy. The sources of the malicious URLs were trusted and
reputable platforms specializing in cyber security and phishing discovery. The sources
of the confirmed and far from being malicious URLs were various, and it is appropriate
to list only several of the most representative ones.

3.2.2.1 Malicious URLs

Malicious URLs were obtained from trusted, reputable platforms that specialize in
cybersecurity and phishing detection. The following sources were utilized to compile a
rich collection of confirmed malicious URLs:

• PhishTank: An open-source community-driven platform that collects the re-
ports of phishing activities and verifies phish URLs. Due to the open nature of
this project, the number of users submitting the reports, and the methodology of
verification, this resource is one of the most reliable real-time sources of confirmed
phishing URLs [21].

• VirusTotal: A web-based service that allows checks for malicious URLs using
multiple antivirus engines, and other tools for scanning websites. Each URL check
returns the type of threat found – malware, phishing, or any other suspicious
activities, – and provides a detailed report: “VirusTotal is a free service, and can
handle URLs, files up to 128MB in size, and even shortened URLs [31].

• OpenPhish: A real-time service that detects phishing URLs and constantly
monitors them in order to keep a current list of the malicious URLs [20].

3.2.2.2 Benign URLs

In order to help guarantee that the data set would be balanced and complete, benign
URLs were taken from very recognized web repositories which have long held trust.
Selecting these URLs was based on their credibility and verified legitimacy. Inclusion
of clean URLs is essential if you expect your model to accurately distinguish between
safe URLs and dangerous ones. Examples of sources for clean URLs include:

• Safe Browsing Lists: Trusted sites that maintain clean and safe websites.

• Whitelisted Domains: Domains known to host legitimate content like govern-
ment web sites, well established enterprises, verified online service providers.
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3.2.3 Data Cleaning and Preprocessing

A data cleaning and preprocessing phase was carried out to ensure that the dataset
was of high quality and could be used to train and test a machine learning model.
This step was pivotal because it minimized the quantity of noise in the data, reduced
detrimental sources of bias, and enhanced the model’s performance and generalizability.
Data cleaning was performed as follows:

3.2.3.1 Live URL Validation

The first step in data cleaning was to ensure that the URLs in the raw dataset were
functional. This is an integral step because the presence of broken or inoperative URLs
in the dataset will evidence being used to train the model, and introduces large amounts
of noise into the data, thus, severely weakening the functionality and the robustness
of the model. Thus, the following steps were taken to validate the functionality of the
URLs:

• HTTP Status Code Check: Each URL was checked individually to ascertain
its functional status. To facilitate this, the requests library in Python was used to
access each URL via the HTTP protocol. URLs that returned an HTTP status
code of 200 were considered to be functional and valid, and were retained for the
next step of the analysis [26].

• Filtering Out Inactive URLs: URLs returning status codes of 404 or 403,
or a status code of 500 and other error codes, were discarded. Thus, the final
dataset or module was used to train machine learning models that were free of
broken and unusable URLs.

This process ensured that the machine learning models were trained only on active
URLs, improving both the quality and reliability of the dataset.

3.2.3.2 Duplicate Removal

As repeated instances of the same URLs are present into the dataset hence it could
also generate bias into the dataset because a single URL could appear multiple time
and it could highly influence model to learn from those ones. It was rectified as:

• Duplicate Detection: I checked the URL file which contains all the links for
the webpages against duplicates. As it was identified all URLs which appear
more than once and hence removed from the dataset.
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• Impact of Duplicate Removal: Due to its removal each the URL whereby the
index which holds the URL has duplicates, eliminated. I took this step to make
sure my dataset is not skewed towards a single or few URLs because if a URL is
repeated greatly so it will be learned greatly by the model and this will be a bias
for the model. Thus the model will learn from a wider range of URL.

By eliminating duplicates, the model could focus on learning unique patterns and
features in the URLs rather than being skewed by repeated examples.

3.2.3.3 Balancing the Dataset

In machine learning systems, imbalanced datasets, or datasets with one class being
overtaking another in terms of their number representation in the dataset, can become
the reason for the poor performance of the model on the completion of the task on the
under-represented class. In our case, if an imbalance is found between the benign and
malicious URLs numbers, the system might develop the readiness to label any site as
benign, thus missing the majority of malicious URLs in the testing sets. In order to
prevent this, the following step was included:

• Class Distribution Check: At this step, the number of examples for both
benign and malicious URL classes is checked in the dataset; if there was an
imbalance, the result of this step would be as follows.

• Equalization of Class Distribution: In case of an imbalance, different meth-
ods of balancing the class representations across the dataset, e.g. under sampling
of benign URL class, or oversampling of malicious URL class, are utilized to re-
move such imbalance and ensure unbiased representations of both classes. This
step will lead to the restriction of the imbalance effect, enabling the resulting
model to process malicious URLs without the predisposition to accept all URLs
as benign.

Balancing the dataset improved the model’s ability to accurately detect malicious URLs
without being biased toward benign ones, resulting in a more robust system.

3.3 Feature Engineering

Feature engineering was vital to achieving the development of a high performing detec-
tion system capable of accurately identifying malicious URLs. This included extracting
meaningful factors from the URL and the content of the web page that serve as sig-
nals to distinguish between benign and malicious behavior. This part threatens the
processing system because malicious content of webpages was need to be analyzed. To
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address this issue, google cloud function (serverless computing) was used. It provided
sandbox like environment and extracted features securely. It also expedited the pro-
cess by extracting features rapidly by using large resources of serverless computing.
Features were extracted into two main categories, lexical features, and content-based
features. Total 54 features were extracted, detail is as under:-

Figure 3.3: Google Cloud Function and Storage

3.3.1 Lexical Features

Lexical features were extracted solely from the URL structure without needing to access
the webpage’s content [29]. These features provided valuable information regarding
the URL’s construction and potential indicators of malicious intent. Below are the key
lexical features and their explanations.

1. Length of URL: Total number of characters in the URL.
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2. Number of Dots: Number of periods (.) in the URL, indicating subdomains
or complex structures.

3. Number of Slashes: The count of slashes (/) in the URL, often indicating
deeper paths.

4. Number of Params: Number of query parameters in the URL (after "?").

5. Has https: Whether the URL uses HTTPS for secure communication (True/-
False).

6. Has www: Whether the URL contains "www" (True/False).

7. Domain Length: The total number of characters in the domain name.

8. Path Length: The number of characters in the path section of the URL.

9. Subdomain Length: The length of the subdomain part of the URL.

10. Is IP: Whether the URL contains an IP address instead of a domain name
(True/False).

11. Number of Digits: Number of numeric characters in the URL.

12. Has Query: Whether the URL contains a query string (True/False).

13. Number of Special Chars in URL: Number of special characters (e.g., @, %,
&) in the URL.

14. Number of Uppercase in URL: Number of uppercase letters in the URL.

15. Shortened URL: Whether the URL is shortened (True/False).

16. URL Entropy: Measure of randomness in the URL string (higher values indicate
suspiciousness).

17. Top Level Domain: The top-level domain (e.g., .com, .org).

18. URL Depth: Number of directories or slashes in the URL path.

19. Has @ Symbol: Whether the URL contains an "@" symbol, often used in
phishing URLs (True/False).

20. Has Hash Symbol: Whether the URL contains a "#" symbol (True/False).

21. Has Subdomain: Whether the URL contains a subdomain (True/False).

22. Has Port: Whether the URL specifies a port number (True/False).
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23. Number of Alphabets in URL: Number of alphabetic characters in the URL.

24. URL Encoded: Whether the URL is encoded (True/False).

25. Is Long URL: Whether the URL length exceeds a certain threshold (True/-
False). (e.g., 75 characters).

3.3.2 Content-Based Features

Content-based features were derived by analyzing the actual content of the webpage
to which the URL points [27]. These features provided insights into the nature of
the webpage and its potential to be malicious, helping to identify phishing or harmful
websites by examining the elements present on the page. Below are the key content-
based features:

1. Number of Images: Number of images present on the webpage associated with
the URL.

2. Number of Links: Number of hyperlinks on the webpage.

3. Number of Words: Total number of words on the webpage.

4. Number of Headings: Number of heading tags (e.g., <h1>, <h2>) on the web-
page.

5. Number of Meta: Number of meta tags (e.g., <meta>) on the webpage.

6. Has Meta Description: Whether the webpage includes a meta description tag
(True/False).

7. Meta Description Length: Length of the content in the meta description.

8. Has Meta Keywords: Whether the webpage contains meta keywords (True/-
False).

9. Meta Keywords Length: Length of the content in the meta keywords tag.

10. Title Length: Number of characters in the webpage’s title.

11. Number of Scripts: Number of script tags (e.g., <script>) on the webpage.

12. Number of Styles: Number of style tags (e.g., <style>) or inline styles.

13. Number of iframes: Number of iframes (e.g., <iframe>) on the webpage.

14. Number of Buttons: Number of buttons on the webpage.
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15. Number of Forms: Number of form elements (e.g., <form>) on the webpage.

16. Number of Inputs: Number of input fields on the webpage.

17. Average Word Length: Average length of words on the webpage.

18. Number of Uppercase Words: Number of uppercase words on the webpage.

19. Number of Digits in Text: Number of numeric characters within the web-
page’s content.

20. Number of Special Chars: Number of special characters in the webpage con-
tent.

21. Has Video: Whether the webpage contains video elements (True/False).

22. Number of Bold: Number of bold tags (e.g., <b>, <strong>) on the webpage.

23. Number of Italic: Number of italic tags (e.g., <i>, <em>) on the webpage.

24. Number of Tables: Number of table elements (e.g., <table>) on the webpage.

25. Number of Lists: Number of list elements (e.g., <ul>, <ol>) on the webpage.

26. Has Canonical Tag: Whether the webpage includes a canonical tag (True/-
False).

27. Has Favicon: Whether the webpage includes a favicon (True/False).

28. Number of Embeds: Number of embedded elements (e.g., <embed>) on the
webpage.

29. Has Open Graph: Whether the webpage includes Open Graph meta tags for
social media sharing (True/False).

3.4 Machine Learning Model Development

The newly prepared dataset was used to train different machine learning models. The
conclusions were drawn based on the models’ corresponding points of minimums. For
each algorithm, there is a certain aspect of its classification performance on the basis
of which it can be both an asset and a potential drawback. Below is a detailed analysis
of the algorithms, considering the results presented above.
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Figure 3.4: Machine Learning Model

3.4.1 AdaBoost

AdaBoost is short for adaptive boosting. It is a type of ensemble learning method
that focuses on building a strong classifier by aggregating multiple weak classifiers [4].
AdaBoost is conducted in an iterative way during which the training model of every
round of iteration pays more attention to those training samples that were misclassified
by the previous round’s weak classifiers.

Specifically, it shifts the focus onto the samples that are hard to classify by increas-
ing the weights of the misclassified samples, pushing the next weak classifier to pay
more attention to it. The final prediction is made depending on the aggregate of the
weighted prediction of all weak classifiers who are the learners of weak classifiers.

AdaBoost is particularly suitable to handle the binary classification and the boost-
ing mechanism of AdaBoost benefits accuracy by focusing on hard instances in every
round. In addition, it has an adaptive feature which indicates that the training of each
weak classifier is based on the learning experience from the previous classifiers.

• Weak Classifiers: The weak learners used in AdaBoost normally are simple deci-
sion stumps which are single-level decision trees.
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• Boosting Mechanism: AdaBoost is a type of ensemble learning algorithm that
trains the weak learners sequentially with the sample weights tune up in every
round.

• Final Prediction: Every weak classifier gives a prediction for which the results
are then combined into a weighted sum with different capability classifiers weigh
differently.

3.4.2 XGBoost

XGBoost, or Extreme Gradient Boosting, is an advanced implementation of the gradi-
ent boosting method. It is considered one of the best algorithms due to its efficiency,
scalability, and high performance in many ML problems [32]. Like AdaBoost, XGBoost
utilizes an ensemble of sequential decision trees. However, it applies the gradient boost-
ing approach, as every new tree focuses on reducing the errors of the previous trees,
based on the greedy algorithm that minimizes a differentiable loss function. On the
other hand, the advantages of XGBoost include more features and the capacity to han-
dle data imbalance.

The other main strengths of XGBoost are: missing data handling, regularization sup-
port, parallel computation use, and high performance that makes it one of the widest-
used algorithms for structured data and classification tasks.

• Gradient Boosting: every new decision tree seeks to predict the mistakes of the
previous trees, known as residual errors.

• Regularization: XGBoost applies both L1 and L2 regularization methods, or
lasso and ridge penalties, to penalize large weights and, therefore, control the
occurrence of overfitting.

• Handling Missing Values: the algorithm uses the differentiation method of learn-
ing which direction to go if the data is missed, or the splits should be done, taking
into account the missing values.

In addition, XGBoost applies other techniques, such as shrinkage or the way of reduc-
ing the importance of every tree by a scaling factor, column subsampling, where the
algorithm uses not all but a random subset of the available features to build each new
tree, and heatrows or the application of filters to focus only on the most growing leaves.

3.4.3 Random Forest

Random Forest is an ensemble learning method that constructs multiple decision trees
during training. Each tree is built from a random subset of the training data and a
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random subset of the features. Finally, the predictions from all the trees are aggregated
to make the final prediction, usually through voting for classification. Random Forest
is designed to reduce overfitting by computing the means of many decision trees esti-
mators, where each tree is slightly different due to the application of random sample
on both samples of data and features to train the trees [22]. Consequently, Random
Forest is not specifically tuned to real datasets and is very robust against noise. The
two key mechanics of Random Forest are.

• Bagging: Random Forest uses bagging; this means creating multiple datasets
through re-sampling. The re-sampling is done by randomly choosing training
data with replacement from the original set and generating a dataset. A decision
tree will be trained on every dataset.

• Random Feature Selection: At each node, the algorithm selects a random set
of features to make a decision, leading to development of decision trees with
different features. This will reduce the correlation between the trees By averag-
ing the prediction and using Majority for classification the final Random Forest
prediction is made.

3.4.4 Extra Trees

Another Random Forest classifier is the Extra Trees, which is more random. It applies
extra randomization to the tree-building process. The Extra Trees method selects the
random threshold on which to split its nodes instead of selecting the optimal and best
threshold [9]. Therefore, the primary sources of randomness in Extra Trees are the
following:

• Randomized Node Splitting: It does not look for the best-value split along each
feature but selects a random one.

• Feature Randomization: It selects random features in each node.

• Extra Trees has a slightly better generalization performance on specific data
sets. In practice, it reduces the high variance of Random Forest. The Extra Tree
method is widely used with the help of sklearn.ensemble library.

3.4.5 K-Nearest Neighbors (KNN)

K-Nearest Neighbors KNN is a non-parametric, simple classification algorithm. The
classification is done such that the classes are assigned to the samples that are in
close proximity to other points in the feature space. The sample’s class is determined
by a majority vote of the samples that are closest to it. Here, k is the user-defined
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parameter which determines the number of nearest neighbors to consider. The user-
defined parameter is k which determines the number of samples to be considered to
classify a given instance [1]. KNN is an intuitive classifier but is computationally
expensive as it needs to compute the distance between every test sample to every
sample in the training dataset. The performance of KNN is sensitive to the choice
of k and the distance metric, for example, Euclidean distance is one of the common
distance metrics. KNN is exclusively used for numerical prediction through regression.

• Distance-Based Voting: KNN assigns the class label based on the majority class
for the nearest neighbors in the feature space.

• Non-Parametric: KNN has the advantage that it needs to assume no underlying
distribution for the data, thus, it can be used in a variety of classification tasks.

One of the challenges is that the KNN is a slow algorithm especially for the large
dataset because it needs to compute the distance of every training instance with the
test instance.

3.4.6 Stochastic Gradient Descent (SGD) Classifier

Stochastic Gradient Descent is an optimization technique used to train linear classi-
fiers, such as Support Vector Machines and logistic regression. The method consists
of computing the gradient of the loss function for a random mini-batch of the data
instead of computing the gradient for the entire dataset. As a result, SGD is faster
and more scalable for large datasets. SGD is highly computationally efficient, but
due to its speed, it is often sensitive to hyperparameters, especially the learning rate
and the regularization terms [23]. This method is only suitable for datasets that are
linearly separable and usually requires performing feature scaling to ensure its good
performance.

• Gradient Descent: The Gradient Descent method iteratively updates the model
parameters by moving them in the direction which minimizes the loss function
and does so using only a subset of the data, which is characteristic of many types
of gradient descent. One of the few exceptions is so-called “full-batch” gradient
descent, where the method uses the entire dataset to estimate the gradient.

• Regularization: The SGD can also support a number of regularization techniques
to prevent overfitting. It is often used with L2 or L1 regularization, which are
also known as ridge and lasso respectively. Normally, it is a very commonly used
technique for very large-scale machine learning tasks, because it is very fast and
computationally efficient, although due to the number of hyperparameters it may
need some amount of time to adjust.

SGD is widely used for large-scale machine learning tasks due to its speed and efficiency,
though it requires careful tuning of hyperparameters to achieve optimal performance.
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3.4.7 Naive Bayes

Naive Bayes classifier is a probabilistic model adopted in machine learning founded on
the basis of Bayes’ theorem. Though it assumes that all the features are independent,
which might not be true, hence making it naive, the model performs quite well in a
good number of classification instances, more so in text classification or categorical
data. It performs this task by evaluating all the posterior probabilities of each class
assigned, given the features [2]. The priors of the class and the likelihood of these
features are then taken into consideration, while operating under the knowledge of the
conditional class independence of the features.

Naive Bayes works by calculating the posterior probability of a class given the fea-
tures, using the prior probabilities of the class and the likelihood of the features, under
the assumption of feature independence.

• Bayesian Theorem: It relies on Bayes’ theorem to evaluate the probability of
each class, and the class that comprises the highest posterior probability is then
returned.

• Independence Assumption: Naive Bayes classifier assumes that the data features
are all independent when restricted with the class label. Therefore, this will make
it easy to calculate the probabilities, while making a rather unrealistic prediction
regarding the features.

Naive Bayes performs well in data with a high dimension such as text classification,
and it is also computationally efficient; however, when these features are correlated,
the model might not be very useful in data.

Table 3.1. Comparison of Machine Learning Algorithms

Algorithm Strengths Weaknesses Performance
on Large
Data

Performance
on Small
Data

Overfitting

XGBoost Highly
accurate,
handles
large data

Requires
careful
tuning

Excellent
for large,
complex
datasets

Works fine
but better
for large
data

Can overfit,
but
manageable

Naive Bayes Simple,
fast, works
well on
small data

Makes
naive inde-
pendence
assump-
tions

Struggles
with very
large
datasets

Performs
well on
small
datasets

Prone to
underfitting
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Algorithm Strengths Weaknesses Performance
on Large
Data

Performance
on Small
Data

Overfitting

SGD
Classifier

Efficient for
large
datasets

Sensitive to
feature
scaling

Performs
well for
large,
sparse data

Performs
well on
large
datasets

Low risk if
tuned
properly

K-Nearest
Neighbors
(KNN)

Simple and
intuitive for
small data

Slow for
large
datasets,
sensitive to
outliers

Not
efficient,
scales
poorly with
large
datasets

Good for
small
datasets

Low risk
with proper
tuning

Extra Trees Less prone
to
overfitting,
fast
predictions

Computationally
expensive

Performs
well but
requires
more
resources

Performs
well on
small
datasets

Less prone
to
overfitting

AdaBoost Boosts
weak
learners’
perfor-
mance

Prone to
overfitting
with noisy
data

Performs
well but
slower to
train

Works well
on small
data but
can overfit

Can overfit
with noisy
data

Random
Forest

Reduces
overfitting,
good with
unbalanced
data

Requires
more
memory
and compu-
tational
resources

Good for
large
datasets

Performs
well on
small
datasets

Reduces
overfitting

Decision
Tree

Easy to
interpret,
handles
non-linear
data

Prone to
overfitting

Tends to
overfit on
large
datasets

Good for
small
datasets

Highly
prone to
overfitting

3.5 System Deployment

To deploy the system for detection of the malicious URL, I have chosen to have the
model implementation in both local and serverless environment to optimize the ability
to scale, performance, and resource utilization. At the same time, the feature extraction
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part was deployed on Google Cloud Functions based on serverless architecture to ensure
better flexibility, scalability, and efficiency in resource utilization without taking care
of the underlying infrastructure. Hence, the system uses a combination of local and
serverless environments to ensure a balance between flexibility and better scalability.

Figure 3.5: GUI Interface of Web based Flask Applications

3.5.1 Local System Deployment

The deployment of the localization of the majority of the detection system was made
to ensure complete control over model training, classification, and performance evalua-
tion. Some benefits were accomplished from the deployment of the core of the current
detection system as follows:

• Full Computational Control: The complete hardware and software control
enabled us to carry out more computationally demanding machine learning mod-
els, ensure real-time analysis and control the flow of the process without any
other system to rely on.

• Efficient Resource Management: Model training and evaluation regarding
adequate computational resources were executed in the local environment that
was especially helpful when having high-level computational processes being exe-
cuted. At the same time, the latency is lower compared to the more cloud-based
approach.
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• Security: The components related to model training and evaluation were kept
more secure in the local system and the risk of having a potential threat was
minimized.

3.5.2 Google Cloud Functions for Feature Extraction

Google Cloud Functions for Feature Extraction That stage of the system was realized by
using Google Cloud Functions to perform feature extraction, which allowed deployment
of lexical and content-based features in real-time. Google Cloud Functions was chosen
as a serverless platform because it had several advantages:

• Automatic Scalability: Google Cloud Functions automatically expanded ac-
cording to the number of requests and could cope with large volumes of URLs in
real-time without manual intervention.

• Cost-efficiency: As a “pay for what you use” service, it only incurred charges
when one of the features that it provided had been executed. This dramatically
reduced the costs of over-provisioning.

• No Infrastructure Management: This approach meant that developers were
not required to manage servers or infrastructure, leaving the focus on feature ex-
traction logic itself. Reducing operational complexity while processing efficiently
at scale.

3.5.3 System Components in Google Cloud Functions:

• Google Cloud Functions: Managed the scalable extraction of both lexical and
content-based features from live URLs in real time. This ensured that feature
extraction was adaptable to varying traffic conditions without sacrificing perfor-
mance [28].

• Cloud Storage (GCS): Used to store features extracted and intermediate re-
sults during the feature extraction process. This allowed seamless integration
between functions that extract features and locally deployed components respon-
sible for model training and classification [12].

3.5.4 API Gateway and Routing

• Google Cloud API Gateway: Managed incoming HTTP requests and routed
them to the appropriate Google Cloud Functions for feature extraction. The API
Gateway provided secure, efficient handling of requests from the web interface or
external systems, enabling reliable routing to cloud functions.
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• Load Balancing: Traffic in Cloud Functions was automatically distributed,
which meant thatall the incoming URLs were processed in real-time without any
bottlenecks. This improved system performance overall.

3.5.5 Data Storage and Integration

The results of feature extraction were stored in Google Cloud Storage after the process
for subsequent retrieval by locally deployed systems GCS provided are liable and scal-
able storage solution Organizing the huge volumes of features extracted together with
local parts for analytics and classification also was simple.

3.5.6 Integration with Local System

After extracting the features on Google Cloud Functions, we now have the data in the
local environment where our machine learning models were deployed. Such a configu-
ration or deployment is based in a hybrid or mix and match model that has both cloud
and local implementations. Thus, feature extraction that is more resource-intensive
operation including natural language processing occurred in the Cloud platform. On
the other hand, the model training and classification took place in the local environ-
ment. Not only is the local environment much more flexible, but it also provides the
compute power necessary for this strategy.

3.5.7 Hardware Specifications

Following hardware was used for the implementation of the hybrid system:-

• Local System: Core i5 1.8 GHz CPU with 8 GB RAM

• Serverless (Google Cloud Function): 1 GHz CPU and 256 MB RAM

3.5.8 Key Benefits of Hybrid Deployment

• Flexibility and Control: The model training and evaluation were maintained
locally to ensure a high degree of flexibility and control over the most important
components in the system. The deployment model also provided flexibility to
move such key functions to the Cloud at a later stage.

• Improved Scalability: Caters to the number of incoming URLs, the feature
extraction was offloaded to Google Could Functions. As this process was run on
a serverless architecture, the feature extraction process automatically scaled up
the capacity when there was a need for more resources to handle increasing load
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of incoming URLs. Furthermore, serverless offered the flexibility to allow the
deployed system to remain offline as tens or hundreds of thousands of requests
had been processed. Such scalability was not possible because of compute costs
associated with the servers and manual intervention required to monitor the
current traffic and add resources when the current configuration could not handle
the traffic.

• Cost-Effectiveness: Lastly, cost advantage was realized through the use of the
serverless model on the Google Cloud Functions. Since the deployed Google
Function only ran when there was a URL to process, the resource consumption
was optimized to avoid additional overheads that are attributed by the always-on
costs with most server implementations.

3.6 Cross-Validation

Cross-validation is a widely adopted technique used to assess the robustness of machine
learning models. It is especially helpful if overfitting may have a detrimental impact on
the capability of the model to capture the unseen data. This study utilized the k-fold
cross-validation where k = 5, meaning that the data was split into five equal subsets.
However, it could be done with different numbers of subsets. This method was one of
the most accurate solutions to evaluate the performance of the model because, during
the process, every observation in this data set is used to train a model and will have
an opportunity to be used to test a model.

Figure 3.6: Cross-Validation Steps
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3.6.1 Cross-Validation Process

The cross-validation process in this study involved several steps, designed to ensure
that the models were tested rigorously:

1. Splitting the Data: The first stage is splitting the data into n equal subsets,
which depends on the adopted value. As for this case, the data set was split into
five subsets, equal by size. Further, the first subset is used to test the model, and
the other four subsets are used to train the model. This is to be implemented
before every subset is used as a test set.

2. Training and Testing: For each iteration, the model was trained using four of
the five folds. In other words, 80% of the data was used to feed the model, and the
other 20% was used for testing purposes. It was done five times; moreover, every
time, one of the subsets was chosen as a test set. As a result, the model was tested
five times, which differed from all subsets. The difference lies in which subset was
used for the test at a specific time, allowing evaluating the performance of the
model in multiple scenarios and minimizing the impacts of deviations and errors
that one of the subsets could include.

3. Average Performance Metrics: After each iteration, I calculated the perfor-
mance metric of the model, including accuracy, precision, recall, and F1-score.
By using the model’s performance on various metrics from each iteration, I was
able to conclude about the model based on various dimensions of how correctly it
classified malicious and benign URLs. In the end, I calculated the average of the
performance metrics after the five iterations. This provided a more stable view
of the model’s performance, compared to relying on a single train-test split.

4. Mitigating Overfitting: Cross-validation, especially when used in the form of
k-fold, can help in mitigating the problem of overfitting. Since the information
about a test set was used only for evaluation, instead of training, the model
was unable to learn from it, which also decreased the risk of overfitting. At the
same time, the use of multiple training and testing phases provided by the k-fold
process, the model was exposed to different fraud test samples at various times,
ensuring that the learned patterns will be regarding commonalities and differences
between the malicious and benign URLs, as opposed to merely memorizing test
sets. In this way, it became more constrained in terms of the kinds of functions
it would learn, instead of being guided in its learning towards generalization
through various test sets. There was a risk of overfitting in this study as well.
However, with the use of cross-validation, I was able to test the model on diverse
test sets. This way, the model would be more encouraged to generalize and make
generalizable predictions for a wider range of test samples.
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Figure 3.7: Cross-Validation Accuracy Comparison

3.6.2 Performance Metrics Calculated

During each fold of cross-validation, the following performance metrics were calculated:

1. Accuracy: The ratio of correctly predicted instances to the total instances.

2. Precision: The ratio of true positive predictions to the total positive predictions.

3. Recall: The ratio of true positives to the actual positive instances in the data.

4. F1-Score: The harmonic mean of precision and recall. It tells us how precise
the classifier is and how much it confuses.

By applying 5-fold cross-validation, the system achieved a high performing and
fair assessment of the approach in question. The process of 5-fold cross-validation
guaranteed that the estimates were relevant to a situation in which the model had to
be used to classify malicious URLs. The increased assessment process also facilitated
the assurance that the trained model was resilient, maintaining a high level of accuracy
while consistently generalizing to out-of-sample data.
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Chapter 4

Results and Analysis

4.1 Model Performance

Each ML model’s performance was assessed based on key metrics: accuracy, precision,
recall, and F1-score. These metrics provided a thorough understanding of how well the
models differentiated between benign and malicious URLs.

Table 4.1. Performance Assessment of Machine Learning Techniques

Model Accuracy Precision Recall F1-Score
Decision Tree 96.59% 96.59% 96.59% 96.59%
Random Forest 98.00% 98.01% 98.00% 98.00%
AdaBoost 96.18% 96.19% 96.18% 96.18%
Extra Trees 98.08% 98.10% 98.08% 98.08%
KNN 96.10% 96.10% 96.10% 96.10%
SGD 80.97% 83.02% 80.97% 80.69%
Naive Bayes 89.88% 91.04% 89.88% 89.81%
XGBoost 98.14% 98.36% 97.93% 98.14%

4.1.1 Detailed Observations

1. The best performing model was XGBoost with the highest scores in Accuracy,
Precision, Recall and F1-score. Due to its prowess in handling complex feature
interactions and overfitting counter-measures, it seems like the most eligible one
for final implementation. The gradient boosting technique of XGBoost iteratively
improves on prediction errors, making it highly effective in identifying malicious
URLs.
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Figure 4.1: XGBoost – Confusion Matrix

2. Random Forest and Extra Trees also performed exceptionally well, with accu-
racy scores close to that of XGBoost. These models leveraged ensemble learning
techniques to reduce variance and improve generalization, particularly in noisy
datasets. Moreover size of pkl file of these also was also very high.

Figure 4.2: Random Forest – Confusion Matrix
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Figure 4.3: Extra Trees – Confusion Matrix

3. AdaBoost performed well, achieving 96.18% accuracy. Although its accuracy
is slightly more than XGBoost, but it was not selected because it took more
execution time than XGboost .

Figure 4.4: AdaBoost – Confusion Matrix

4. Decision Tree and KNN showed good performance but were outclassed by ensem-
ble methods like XGBoost. Decision Tree was prone to overfitting, while KNN
struggled with computational efficiency, particularly with large datasets.
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Figure 4.5: Decision Tree – Confusion Matrix

Figure 4.6: KNN – Confusion Matrix

5. Naive Bayes and SGD Classifier delivered lower performance, particularly in ac-
curacy and F1-score, due to the limitations of linear models and assumptions of
feature independence.
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Figure 4.7: Naive Bayes – Confusion Matrix

Figure 4.8: SGD – Confusion Matrix

4.2 Feature Importance

An analysis of feature importance was conducted to determine the most influential
features in the classification process. XGBoost’s feature importance analysis identified
the following top 5 features:
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Figure 4.9: Features Importance Score for XGBoost

4.2.1 Key Findings

• Structural Features: Features such as number of links and number of words
were highly significant, indicating that URLs with a high number of links or
words were more likely to be malicious.

• Security Indicators: Features like encoded URLs and presence of www were
important in distinguishing between benign and malicious URLs. Attackers often
manipulate these features to bypass security filters.

• Content-Based Features: Number of scripts was identified as another key
feature, reflecting how malicious websites often embed suspicious scripts.

4.3 Scalability and Security Evaluation

The system was deployed using a hybrid approach, leveraging both local and server-
less environments. The core system, including model training and classification, was
deployed locally, while feature extraction was handled via Google Cloud Functions for
scalability and cost-efficiency.
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4.3.1 Benefits of Using Google Cloud Functions

1. Efficient Scaling: Google Cloud Functions dynamically scaled based on the
number of URLs being processed. This allowed for seamless scaling during high-
traffic periods, ensuring that feature extraction could be handled efficiently with-
out manual intervention.

2. Security: Google Cloud Functions operated in isolated environments, providing
an additional layer of security during the feature extraction phase. This reduced
the potential risk of malicious content affecting the system’s core components.

3. Cost Efficiency: The pay-per-use model of Google Cloud Functions significantly
reduced costs. Resources were only consumed when processing URLs, minimizing
idle resource costs.

4. Reduced Processing Time: By offloading the feature extraction process to
Google Cloud Functions, the average time per URL was reduced for large numbers
of URLs, enabling faster processing and improved throughput. It is pertinent to
mention that the time for single URL processing is much higher in the hybrid
model compared to traditional local processing methods due to cold start latency
and network delays. For instance, the time for single URL processing is 2.26
seconds for local processing and 11.09 seconds for the hybrid model (Google
Cloud Function). Below is the average feature extraction time:-

Figure 4.10: Average Feature Extraction Time
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Table 4.2. Local vs Google Cloud Function Processing

Metric Traditional Local
Processing

Google Cloud
Functions (Serverless)

Scalability Limited by hardware Dynamically scales with
workload

Resource Management Manual provisioning Automatic resource
allocation

Cost (1 million URLs) High due to fixed costs Lower, pay-as-you-go
model

Security Exposed to local threats Isolated execution in
serverless environment

Maintenance High, manual updates Low, managed by cloud
provider

By utilizing serverless computing for feature extraction, the system became more
scalable and cost-effective, while reducing processing times and maintaining high per-
formance.

4.3.2 Final Model Selection

Based on the performance analysis, XGBoost was selected as the final model for imple-
mentation due to its outstanding accuracy, scalability, and ability to handle complex
feature interactions. Its gradient boosting technique, which iteratively refines predic-
tions by correcting errors, made it ideal for detecting malicious URLs in real-time
scenarios.

Figure 4.11: Classifiers Execution Time Comparison
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4.3.2.1 Why XGBoost Was Chosen

• Superior Accuracy and F1-Score: XGBoost consistently outperformed other
models in both accuracy and F1-score, ensuring fewer false positives and nega-
tives.

• Computational Efficiency: With a time per prediction of 14 milliseconds,
XGBoost maintained a good balance between speed and performance, making it
suitable for real-time URL classification.

• Scalability: XGBoost’s ability to scale efficiently with large datasets further
cemented its suitability for the final implementation.

By leveraging the superior performance of XGBoost, the system effectively handled
real-time malicious URL detection, making it highly suitable for large-scale, real-world
applications. The hybrid approach, using both local deployment for model training
and Google Cloud Functions for feature extraction, provided an optimal solution for
scalability, cost-efficiency, and security.
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Chapter 5

Conclusion

5.1 Implications of Findings

The integration of machine learning models with serverless computing provides a ro-
bust, scalable solution for detecting malicious URLs. This research highlights several
key implications for cybersecurity:

• High Accuracy and Precision with XGBoost: The XGBoost model emerged
as the top-performing algorithm, achieving the highest accuracy (98.14%) and
F1-score. This suggests that XGBoost can effectively detect malicious URLs in
real-world applications, reducing false positives and improving detection rates.
The model’s capacity to handle complex interactions between features, as well as
its robustness to overfitting, makes it highly suitable for large-scale cybersecurity
systems.

• Scalability via Google Cloud Functions: The use of serverless computing,
specifically Google Cloud Functions, enabled efficient and scalable feature extrac-
tion without the need for manual resource management. This approach allowed
the system to dynamically scale with incoming URL traffic, ensuring responsive-
ness and cost-efficiency. The ability to process high volumes of URLs in real-time
demonstrates the system’s potential for deployment in environments such as In-
ternet Service Providers (ISPs), security operations centers, and enterprise-level
networks where large-scale URL monitoring is necessary.

• Feature Importance in Malicious URL Detection: Feature importance
analysis revealed critical attributes such as numbers of links, numbers of words,
number of scripts, encoded URLs, and presence of www as the most significant
predictors of malicious behavior. These findings offer valuable insights for refining
detection systems, highlighting that a combination of lexical and content-based
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features can significantly improve detection accuracy. Focusing on these key fea-
tures allows the system to distinguish between benign and malicious URLs more
effectively, even in dynamic environments where attackers continuously evolve
their methods.

• These findings reinforce that combining machine learning models like XGBoost
with a serverless infrastructure can create a highly efficient, scalable, and accurate
solution for cybersecurity applications, particularly in detecting and mitigating
threats posed by malicious URLs.

5.2 Limitations

Despite the system’s strong performance, several limitations must be addressed:

• Dataset Quality: The model’s performance is directly influenced by the qual-
ity and diversity of the dataset. While the dataset used was carefully curated
and balanced, real-world URL datasets can be significantly noisier, containing
outdated or misclassified entries. These inaccuracies may impact the system’s
effectiveness when deployed in live environments. To mitigate this, continual
data updates and improvements in labeling processes are necessary to maintain
optimal model performance.

• Feature Extraction Complexity and Latency: Although using Google Cloud
Functions for feature extraction significantly reduced processing time, content-
based features (e.g., HTML parsing and script analysis) are computationally
intensive. During peak traffic periods, this could introduce delays. While server-
less computing mitigates resource allocation concerns, further optimization of the
feature extraction pipeline is needed to ensure faster and more efficient processing
at scale.

• Cold Start Latency: One drawback of serverless computing is the "cold start"
issue, where functions experience a delay during initial execution after being idle.
In real-time detection systems, this latency could impact the system’s respon-
siveness, particularly when handling sporadic or infrequent traffic. Future im-
plementations could explore function warming techniques or optimize invocation
patterns to reduce cold start latency and improve real-time performance.

5.3 Future Work

Several areas for future research and development can further enhance the performance
and applicability of the system:
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• Real-Time URL Detection with Streaming Technologies: Implementing
real-time URL detection using streaming platforms like Google Cloud Pub/Sub,
Apache Kafka, or AWS Kinesis would significantly improve the system’s ability
to handle high-traffic environments. This would allow the model to process URLs
in real-time, offering faster and more responsive threat detection capabilities.

• Expanding the Feature Set: Incorporating additional features, such as network-
based indicators (e.g., IP reputation, DNS analysis) or user behavior patterns
(e.g., browsing habits or interaction with URLs), could provide a more com-
prehensive detection framework. These extended features would improve the
model’s ability to identify and classify more sophisticated phishing schemes and
other malicious activities.

• Advanced Model Optimization: Further optimizations could include hyper-
parameter tuning, model stacking, and even the integration of DL techniques for
better detection of complex URL structures. Exploring neural network architec-
tures, such as CNNs or RNNs, could lead to further improvements in handling
highly dynamic and evolving threats.

• Adversarial Attack Mitigation: As cyber attackers constantly evolve their
techniques, future work should focus on improving the system’s robustness against
adversarial attacks. Strategies that could be used to make the model more robust
against URL manipulation techniques that are designed to bypass detection such
as adversarial training or defensive distillation.

• Deploying in Cloud-Native and Edge Environments: Future work could
explore the deployment of the system in cloud-native architectures or at the
network edge. This would bring the detection system closer to end-users, reducing
latency and improving threat detection for IoT devices and other decentralized
networks.

5.4 Summary of Key Contributions

This research demonstrated the viability of combining advanced machine learning mod-
els like XGBoost with serverless computing infrastructure to build an efficient, scalable,
and highly accurate system for malicious URL detection. The key contributions of this
study include:

• Development and Evaluation of Machine Learning Models: The study
rigorously developed and evaluated several machine learning models, with XG-
Boost, Random Forest, and Extra Trees emerging as the top performers. XG-
Boost, in particular, demonstrated superior accuracy (98.14%) and F1-scores,
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showcasing its ability to handle complex feature interactions and detect mali-
cious URLs with high precision and minimal false positives.

• Utilization of Serverless Computing (Google Cloud Functions): By
leveraging Google Cloud Functions for feature extraction, the system achieved
substantial improvements in scalability and reduced processing time, demonstrat-
ing the effectiveness of serverless computing for handling high volumes of data
without the need for managing underlying infrastructure. The use of cloud func-
tions allowed for real-time URL classification while maintaining cost-efficiency
and ensuring dynamic resource allocation based on workload demands.

• Combining Machine Learning and Serverless Architecture: The integra-
tion of machine learning models with serverless computing resulted in a system
that is not only accurate but also scalable, secure, and capable of real-time de-
ployment in diverse environments. The system’s dynamic scaling ability, paired
with its strong predictive power, makes it an ideal candidate for large-scale URL
monitoring in industries such as cybersecurity firms, ISPs, and corporate security
networks.

• Provided a clear pathway for future work to enhance real-te detection capabilities,
model robustness, and adversarial defense mechanisms.

This research demonstrated that the combination of machine learning and serverless
computing can yield a practical, cost-effective, and scalable solution for detecting cyber
threats, particularly those posed by malicious URLs.

5.5 Final Thoughts

The findings of this thesis underscore the potential of combining machine learning
models with serverless computing infrastructure to address the growing challenges of
malicious URL detection. This system, which leverages the strengths of both technolo-
gies, offers a powerful tool for real-time identification of phishing attempts, malware
distribution, and other online threats. As cyberattacks grow more sophisticated, the
importance of maintaining cutting-edge detection mechanisms cannot be overstated.
This research lays the groundwork for future developments, highlighting several areas
for enhancement:

• Model Optimization: Future efforts should focus on refining the machine learn-
ing models used, through techniques such as hyperparameter tuning, model en-
sembling, or even the exploration of deep learning approaches.
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• Real-Time Detection Enhancements: By integrating streaming technologies
such as Google Cloud Pub/Sub, the system could be enhanced to handle high-
throughput environments with real-time URL detection capabilities.

• Expanded Feature Sets: Additional data sources, such as network-based fea-
tures and behavioral analytics, could further enhance the system’s ability to
detect more sophisticated or emerging forms of malicious URLs.

• Robustness Against Adversarial Attacks: Implementing defenses against
adversarial attacks, where attackers modify URLs to evade detection, will be
crucial for improving the system’s long-term effectiveness in real-world applica-
tions.

With continued refinement and deployment, this system has the potential to become
a critical component of organizations’ cybersecurity infrastructures, providing robust,
scalable, and real-time protection against the ever-evolving landscape of online threats.
By addressing the challenges
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