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Abstract

The phenomenon of gravitational lensing in both strong and weak deflection

limits is discussed in this thesis. Solutions of Buchdahl’s ODE in R2 gravity

are considered as spacetimes in this work. Weak deflection angle by the ap-

plication of Gauss Bonnet theorem for asymptotically flat special Buchdahl-

inspired metric was found and the magnification and image distortions are

observed modeling M87* black hole as a lens. Also, analytic expression for

strong deflection angle is determined followed by modeling black holes Sgr

A* and M87* as lens. On the basis of which image positions and separa-

tions are investigated. For the stationary axi-symmetric SBI solution in R2

gravity, weak deflection angle is computed. Magnifications for primary and

secondary images are explored by considering M87* as a lens.
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Chapter 1

Introduction

I worked horribly strenuously,

strange that one can endure

that.

A. Einstein[7]

A global array of synchronized radio telescope known as Event Horizon

Telescope (EHT) employing very-long-baseline interferometry (VLBI), in the

year 2017, started to observe the massive black holes at the center of Milky

Way and Messier 87 galaxies [8, 9]. Mission of the EHT and VLBI collabora-

tion was to get images of the black holes and observe the lensing phenomenon

such as shadows and Einstein rings. On 10th April, 2019 EHT collaboration

captured the image of one of the black hole candidate M87* in the center of

galaxy M87 based on VLBI observations [10, 11]. A prominent aspect of the

images produced is the ring surrounding a dark region in center- a black hole

shadow.

In fact, the observations by EHT are indicating the phenomenon of grav-

itational lensing. According to theory of General Relativity (GR), the cur-

vature of spacetime leads to deviation in straight line trajectory of photons.
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This bending of light is based on the gravitational effect of the massive black

holes. This in turn, makes the photons to orbit around black holes appearing

as a bright ring around dark black hole.

First image of black hole M87* at the center of massive galaxy Messier

87 shows a very bright region-accretion disk around black hole, can be seen

in Figure 1.1. One side of ring appears brighter than other because of the

Doppler effect. The dust/material orbiting around M87*, when moving to-

wards the observer, creates a bright ring. On the other side of ring, the

material is moving away from the observer and consequently the light from

the material appears dimmer. This orbiting of matter in disc like structure

suggests that it (matter) is influenced by the spin of black hole. Thus, the

asymmetry in the brightness also strongly indicates rotation of black hole

M87*. Overall, the image is consistent with the theoretical expectations of

a rotating KBH.

Figure 1.1: First ever image of black hole M87* [1].

The EHT collaboration provides crucial information featuring geometry

of the spacetime of M87*. The mass of central black hole of galaxy M87 is

deduced to be (6.5± 0.7)× 109M⊙.
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After this first successful scientific feat of EHT, the pursuit for the imaging

of the other candidate black hole in the heart of Milky Way galaxy remained

un-achieved until 2022. Direct visual evidence of the Sagittarius A* black

hole of our galaxy for the first time was revealed on 12th May, 2022 [12, 13,

14, 15]. Despite being small in mass relative to the black hole of galaxy

Messier 87, Sgr A* has a very similar picture for shadow as can be seen in

Figure 1.2. The mass of Sgr A* is inferred as 4.1× 106M⊙.

Figure 1.2: First image of Sagittarius A* [2].

The detection of supermassive black holes M87* and Sgr A* located at

the center of Messier 87 and Milky Way galaxies, respectively; have reignited

interest of researchers in black hole astrophysics and Einstein’s theory of

GR. The ground-breaking discoveries by Event Horizon Telescope lead to

fascinating start of era of gravitational lensing together with experimental

tests of gravity.
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Whilst the firsthand observations of astrophysical black holes have re-

cently been established, they have been extensively theoretically researched

for decades.

Einstein’s GR theory was published in the year 1915 which describes

gravity as a consequence of spacetime curvature- due to energy and mass

[16]. Two of the major predictions of Einstein was existence of black hole

phenomenon and bending of light caused by gravity. Einstein gave a set of

differential equations, known as Einstein Field Equations (EFEs). A year

past this development, Karl Schwarzschild produced first solution to the vac-

uum EFEs which described a black hole geometry of a static, spherically

symmetric spacetime [17]. Then came the generalization of Schwarzschild

black hole by Reissner and Nordström, in which electric charge was involved

[18, 19]. Studies of the gravitational sources continued by many researchers.

In the year 1963, marking the beginning of the golden age of black holes

physics, Kerr found an exact solution to EFEs describing a rotating black

hole [20].

Along with the development in solution of EFEs, the detection of black

holes by experiment and theory establishment was carried out. In 1919, the

experiment in solar eclipse was carried out to observe light deflection in the

gravitational field of Sun [21]. Results revealed that in the neighbourhood

of Sun, deflection of light can take place and the angle of deflection can be

similar as demanded by Einstein. Following this detection, phenomenon of

gravitational lensing was further developed by researchers including Liebes

[22] (in 1964) and Refsdal [23] (in 1994) based on the work of Einstein [24].

Gravitational lensing in the vicinity of massive black holes provide av-

enue to test GR. Leveraging gravitational lensing; stars, black holes have

been used as lenses to view/observe distant astronomical entities. This was
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made possible by revolutionary work of Virbhadra and Ellis in the year 2000.

They developed gravitational lens equation which was used to approximate

Schwarzschild lensing numerically [25]. They demonstrated that strong de-

flection angle, in static spherically symmetric spacetimes, approaches infinity

and multiple images are formulated. Bozza corroborated and further told

that in the deflection angle, the divergence is logarithmic [26]. Bozza ex-

tended his works in lensing to compute analytical expression of spherically

symmetric black holes [27]. Later Tsukamoto [28] also studied strong lensing

of a static, asymptotically flat and spherically symmetric spacetime analyti-

cally. These works produced general expression of deflection angle in strong

limits with two analytical lensing coefficients. Strong lensing for KBH with

spin a and Kerr-Newman black hole with spin a and electric charge Q was

studied in [6].

In 2008, weak deflection angle using the Gauss Bonnet theorem was dis-

cussed by Gibbons and Werner for an asymptotically flat spacetime [29]. Few

years later, Werner independently extended this concept to stationary space-

times [30]. He calculated deflection angle of rotating black holes, particularly

Kerr-Randers optical geometry. These works presumed infinite distance of

lens from the source and receiver. Ishihara et al. continued to apply GBT

to the finite distance approach [31].

Einstein ring is a magnificent consequence of gravitational lensing in as-

trophysics. If a luminous source, distant observer and a gravitational lens

are perfectly aligned then the photons bend due to gravitational field of

the massive lens constructing an Einstein ring. It is very rare that an iso-

lated gravitational lens forms a complete Einstein ring. An almost complete

“Canarias Einstein ring” was observed in the year 2016 by M. Bettinelli and

others [3]. The detected image is illustrated in Fig. (1.3). It is approximately
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Figure 1.3: The Canarias Einstein ring [3].

300◦ circular ring.

The scientific feat of Event Horizon Telescope capturing images of black

hole M87* and Sgr A* in the center of massive galaxies Messier 87 and

Milky Way, respectively; provides overwhelming evidence of Einstein’s gen-

eral theory of relativity. Ceaseless development in the theoretical aspects

of gravitational lensing, together with experimental image formulation and

Einstein rings establishment is the true motivation behind this research.

The structure of this thesis is as follows: This chapter focuses on

some definitions and concepts in GR that are related to our work. Chapter

2 contains a comprehensive review of strong and weak deflection angles for

a KBH. Remaining chapters are our new work. In Chapter 3, the analytic

expression of deflection angle for special Buchdahl-inspired metric in strong

and weak field limits is determined. Lensing phenomena such as Einstein

6



rings, angular separation of images and magnification is investigated. In

Chapter 4, expressions for weak deflection angle for a axi-symmetric SBI

metric in pure R2 gravity are found. Magnification of primary and secondary

images modeling M87* as a lens has been investigated. Finally, Chapter 5

concludes the thesis with discussion and future work direction.

1.1 General relativistic dynamics

This section reviews some mathematical tools and techniques that are helpful

to understand the concepts before readers delve into the rest of thesis.

1.1.1 Spacetime

In GR, three dimensional space and one dimensional time are both fused into

a four dimensional entity called spacetime. The mathematical apparatus

needed to describe this spacetime is known as Manifold. To learn about

manifolds, readers can consult the book [32]. An important concern for

any space is to find the distance between two points in it. To do so for a

spacetime, Metric tensor is defined as a type (0, 2) tensor g as

g = gµνdx
µ ⊗ dxν . (1.1)

The line element, which describes invariant distance between points xµ and

xµ + dxµ on a smooth manifold, is often represented by the notation ds2

ds2 = gµνdx
µdxν , (1.2)

where gµν denotes the covariant components of a metric tensor , dxµ and dxν

are the basis one-forms. In this thesis, spacetime as a Lorentzian manifold

M is considered for which the signature of the metric is (−,+,+,+).
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Minkowski spacetime: Einstein’s field equation has simplest vacuum so-

lution known as Minkowski spacetime. In the cartesian coordinates, its line

element can mathematically be represented as

ds2 = ηµνdx
µdxν ≡ −dt2 + dx2 + dy2 + dz2. (1.3)

For the manifold to be locally flat means that the line element gµν metric

reduces to Minkowski spacetime for which metric components attain the form

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.4)

1.1.2 Black holes

In the year 1783, John Michell proposed the concept of a dark star and its

strong gravitational pull [33]. Later in the year 1796, Pierre-Simon Laplace

also introduced the similar concept of compact dark objects with strong

gravitational field [34]. Einstein revolutionized the concept of gravity through

GR, leading to the theoretical existence of black hole.

The region of space where a compact mass (enormous mass tightly packed

in a tiny volume with gravitational radius r = 2M) deforms spacetime into a

dark dense object called black hole. This region has the gravitational pull so

strong that not even electromagnetic radiations, including light, are capable

to escape.

a. Event horizon and the information loss paradox

Event horizon surrounds the black hole; it is the boundary which does not

allow any matter once went inside its premises, to escape beyond into outside
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world [35]. Often it is called as a point of no return with its escape velocity

being equivalent to the speed of light.

The black hole information paradox is a conflict revolving around the

question that what happens to all that matter or objects fallen inside a black

hole. Classical physics suggests that when anything crosses the event horizon,

there is no way out and all the information has then been lost for forever. The

discovery of Stephen Hawking adds complexity with the concept that black

holes emit Hawking radiations [36]. This means black holes gradually lose

mass and thus will possibly evaporate ultimately. It leads to concerns that

the information trapped inside the black hole will be destroyed or retained

since principles of quantum mechanics are strongly in favour of preservation

of physical information.

b. Black hole spacetimes

Some examples of black hole spacetimes in GR are:

Schwarzschild Spacetime: A year after the Einstein’s remarkable the-

ory of GR, in 1916, Karl Schwarzschild gave an exact vacuum solution of

Einstein’s field equations. It described an uncharged and non-rotating black

hole. The line element of a SBH is described in [17] as

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (1.5)

where f(r) = 1 − 2M
r

and dΩ2 = dθ2 + sin2 θdϕ2. Also M is the black hole

mass. The event horizon is defined by the radius rEH = 2M . At r = 0, the

Schwarzschild spacetime has point singularity.

Kerr Spacetime: In 1963, Roy Kerr gave the solution to Einstein’s field

equation which described a rotating Kerr black hole [20]. In Boyer-Lindquist

coordinates, the line element describing the geometry of uncharged, axi-
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symmetric KBH as [37]

ds2 = −∆− a2 sin2 θ

Σ(r, θ)
dt2 − 2

(
a sin2 θ(2Mr)

Σ(r, θ)

)
dtdϕ+

Σ(r, θ)

∆
dr2 + Σ(r, θ)dθ2

+
((

a2 + r2
)2 −∆a2 sin2 θ

) sin2(θ)

Σ(r, θ)
dϕ2,

(1.6)

where ∆ = r2 + a2 − 2Mr, and Σ(r, θ) = r2 + a2 cos2 θ. Also, mass of the

black hole is represented here by M and the spin parameter a is defined by

angular momentum J = aM . For solving ∆(r) = 0, there are two event

horizons, inner (r− ) and outer(r+). Expressions of which are as under

r± = M ±
√
M2 − a2. (1.7)

Moreover, ring-shaped singularity for a KBH occurs when Σ(r, θ) = 0.

1.1.3 Geodesics

Geodesics are described as shortest and straightest paths between two point

in a curved Manifold. In spacetime, a geodesic is a curve γ whose tangent

vector uµ moves in a parallel direction along the curve. This is mathemati-

cally expressed as:

uρ∇ρu
µ = 0. (1.8)

For a curve on a manifold to qualify as a geodesic, it is necessary that

the direction of tangent vector remain constant but its magnitude may vary

as it travels around the curve.

An affinely parameterized geodesic, denoted by γ(λ), can be described

in a particular coordinate system as a curve xµ(λ), where λ is the affine

parameter. The tangent vector to this geodesic is uµ = ẋµ, where the over-

dot denotes differentiation with respect to λ.
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Mathematically, the geodesic equation obtained from Einstein field equa-

tions is used to describe geodesics. It can be expressed as follows:

ẍµ + Γµ
νρẋ

ν ẋρ = 0, (1.9)

here xµ depicts the coordinates of particle, Γµ
νρ represents Christoffel symbol

and the over dots here represents derivative of spacetime coordinates with

respect to proper time.

Types of geodesics

A geodesic γ with tangent vector uµ is classified based on the sign of gµνu
µuν

along γ. It is timelike if gµνu
µuν < 0 everywhere along γ, null if gµνu

µuν =

0 everywhere along γ, and spacelike if gµνu
µuν > 0 everywhere along γ.

Timelike and null geodesics are collectively known as causal geodesics [38].

For a timelike geodesic, the proper time τ measured along the curve is defined

as

τ =

∫
γ

√
−gµνuµuν dτ. (1.10)

The sign under the square root is negative because ds2 < 0 for timelike

geodesics and the proper time is required to be real and positive. For a

spacelike geodesic, the proper length ℓ is defined as

ℓ =

∫
γ

√
gµνuµuν dλ (1.11)

For null geodesics, there is no meaningful definition of proper time or

proper length, and they are considered to have zero proper time and proper

length.

In the case of null geodesics, the norm uµuµ is 0. The norm uµuµ is +1

for spacelike geodesics (parameterised by proper length) and −1 for timelike

geodesics (parameterised by proper time). A massless particle, like a photon,
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follows a null geodesic in general relativity, whereas a freely falling hefty

particle follows a timelike geodesic. Lightlike geodesic, light ray, and null

geodesic are all interchangeable concepts.

1.1.4 Deflection of light

Before the theory of GR was proposed, Einstein in 1911 claimed that prop-

agation of light is influenced by gravity [39].

Light deflection occurs when massive objects, like stars or black holes,

produce a gravitational field that causes the curvature of spacetime. As light

rays approach such a massive body, the curvature of spacetime bends the

path of photons leading to the deflection of light.

This effect has been observed with varying degrees of precision across

distance scales ranging from 1011 to 1023 meters and mass scales from 10−3

to 1013 solar masses [40]. Gravitational lensing, a phenomenon in which

massive objects such as black holes bend light due to curvature of spacetime

from distant sources, is based on this deflection of light.

1.1.5 Gravitational lensing

Gravitational lensing has developed into a powerful tool to analyse dark uni-

verse including black holes. It is a phenomenon that was predicted by theory

of GR. A massive body causes the spacetime curvature due to gravity, which

in turn bends the light around it. The corresponding body is called gravita-

tional lens and the phenomenon is knows as gravitational lensing. In general,

it involves consequences of gravitational field influencing the electromagnetic

radiation, described by light rays, propagation [41].

Gravitational lensing is characterized by three types:

Weak gravitational lensing: The weak gravitational field of the dark
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body produces distortion in the source galaxy. A single, highly deformed

image is produced in weak lensing which has a magnification factor close to

1. It is often due to combination of foreground sources.

Strong gravitational lensing: Strong lensing happens in presence of

highly massive objects. The gravitational filed of the dark object is very

strong that multiple images of distant source of light is produced [42].

Microlensing: Smaller compact objects, such as stars, lead to microlens-

ing. It is a phenomenon when the stars or planets passes by any distant

star and as a consequence, temporary brightness of the latter is observed.

Multiple resolvable images are formed in this type of lensing [43].

Type of GL Main Features Astronomical pur-

poses

Weak GL Slight distortions in

galaxy shapes

Map dark matter and

large-scale structure

Strong GL Einstein rings and mul-

tiple images

Investigate quasars

and distant galaxies

Microlensing Brighten distant stars Detection of dark mat-

ter and exoplanets

Table 1.1: Types of gravitational lensing

1.1.6 Gauss Bonnet theorem

The Gauss Bonnet theorem that connects the topology and geometry of

a surface is defined for a light source S and receiver R. Assume T (be a

polygon) is a two dimensional orientable surface bounded by differentiable

curves represented by ∂Ca with the jump angles θa where a = (1, 2, ..., n)
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[44]. Mathematically the GBT is expressed as∫ ∫
T

KdS +
n∑

a=1

∫
∂Ca

κgdℓ+
n∑

a=1

θa = 2π, (1.12)

hereK is the Gaussian curvature of T with surface element dS, and κg denotes

the geodesic curvature of ∂Ca with line element ℓ along the boundary.

T

Figure 1.4: Schematic diagram of Gauss Bonnet theorem [4]. A polygon T with n

vertices is bounded by n curves namely, C1, C2, ...Cn. The jump angles (external

angles) are represented by θn.

1.1.7 The lens equation

Ellis and Virbhadra introduced the lens equation for the sake of studying

strong gravitational lensing phenomenon [25]. They applied it to investigate

the Schwarzschild black hole lensing and obtained numerical observations.

Later, without the choice of spacetime, exact form of lens equation was pro-

posed by Frittelli et al. [45].
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Figure 1.5: The lens diagram [5] for static and spherically symmetric spacetimes.

The letters O, S and L represents the observer, light source and lens respectively.

The impact parameter is given by b and α is the deflection angle.

Consider the planar light rays case depicted in Fig. (1.6). Assume DS

and DL, respectively, are the distance of light source and the deflector (lens)

to the observer. The lens equation for both static spacetime (depicted in Fig.

1.5) and axi-symmetric spacetime (illustrated in Fig. 1.6) is expressed in the

form [5, 6]:

tan β = tan θ − α, (1.13)

where

α =
DLS

DOS

tan (α̂− θ), (1.14)

here α̂ denotes the deflection angle. The Greek letters θ and β represents

angular image position and angular source position, respectively. DLS sym-

bolizes the distance between source and lens. Also, the distance between

source and observer is denoted by DOS.
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Figure 1.6: The lens diagram [6] for axi-symmetric spacetime. The prograde and

retrograde motion of photons is depicted respectively by red and blue color.
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Chapter 2

Kerr Black Hole - Weak and

Strong Gravitational Lensing

This chapter is dedicated to the review of gravitational lensing, in the weak

and strong field limits, of Kerr black hole. The analytic expressions of deflec-

tion angles for strong deflection and weak deflection are reanalyzed. Section

2.1 focuses on the review of weak gravitational lensing employing Gauss

Bonnet theorem (GBT). Section 2.2 is devoted to the evaluation of strong

gravitational lensing by axi-symmetric KBH. Nearly half a century past the

establishment of Einstein’s field equations, Roy P. Kerr gave the solution to

equations in vacuum [20]. The line element of a Kerr black hole in Boyer-

Lindquist coordinates {t, r, θ, ϕ} is expressed in (1.6).

2.1 Gravitational lensing in WDL

This section is centered on the OIA method to find deflection angle of a

KBH in weak field limit using Gauss Bonnet theorem, readers may refer to

the original reading of OIA [46]. Since Kerr metric is in polar coordinates,
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the general form of line element of stationary axi-symmetric spacetime is

given by [46]

ds2 = −A(r, θ)dt2−2H(r, θ)dtdϕ+B(r, θ)dr2+C(r, θ)dθ2+D(r, θ)dϕ2, (2.1)

where metric coefficients are functions of r and θ only.

2.1.1 Optical metric

The generalized form of optical metric represented by γij, where i and j runs

from 1 to 3, can be obtained using null condition ds2 = 0. Solving this for

the slice of time dt, according to OIA method [46, 47] leads optical metric as

follows

dt =
√

γijdxidxj + βidx
i, (2.2)

here γij is defined as

γijdx
idxj =

B(r, θ)
A(r, θ)

dr2 +
C(r, θ)
A(r, θ)

dθ2 +
A(r, θ)D(r, θ) +H2(r, θ)

A2(r, θ)
dϕ2, (2.3)

and the component βi is given as

βidx
i = −H(r, θ)

A(r, θ)
dϕ. (2.4)

For Kerr spacetime, using (1.6) and (2.1) leads to

A(r, θ) =
∆− a2 sin2 θ

Σ(r, θ)
, B(r, θ) = Σ(r, θ)

∆
, C(r, θ) = Σ(r, θ),

D(r, θ) =
((

a2 + r2
)2 −∆a2 sin2 θ

) sin2 θ

Σ(r, θ)
, H(r, θ) =

(
a sin2 θ(2Mr)

Σ(r, θ)

)
.

(2.5)

Using (2.5) in (2.3), we get

γijdx
idxj =

Σ2

∆(Σ− 2Mr)
dr2 +

Σ2

Σ− 2Mr
dθ2

+
(Σ− 2Mr)(a2 + r2) + 2a2Mr sin2 θ

(Σ− 2Mr)2
Σ sin2 θdϕ2.

(2.6)
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Also substituting expressions of A(r, θ) and H(r, θ) from (2.5) into (2.4), the

component βi has the form

βidx
i = −2Mar sin2 θ

Σ− 2Mr
dϕ. (2.7)

2.1.2 Deflection angle computation

According to OIA method, general expression of deflection angle α̂ for a

source S and receiver R using Gauss Bonnet theorem in axi-symmetric space-

time reads [46, 47]

α̂ = −
∫ ∫

R∞S∞
KdS +

∫ R

S

κgdl, (2.8)

here K represents Gaussian curvature and the geodesic curvature of light rays

is denoted by κg. Further dl and dS represents the arc length and surface

element, respectively. For dl > 0 and dl < 0, the photons orbit around the

black hole respectively in prograde and retrograde direction.

Surface integral of Gaussian curvature

The Gaussian curvature is defined in relation to Riemann tensor as [30]

K =
Rrϕrϕ

γ
=

1
√
γ

[
∂

∂ϕ

(√
γ

γrr
Γϕ
rr

)
− ∂

∂r

(√
γ

γrr
Γϕ
rϕ

)]
. (2.9)

For equatorial lensing, we take θ = π
2
and θ̇ = 0. For a Kerr spacetime

γ = det γij =
r5

(r − 2M)3
. (2.10)

Use of (2.10) and the optical metric (2.6) with θ = π
2
in (2.9) gives Gaussian

curvature for a KBH as below

K =
M [r(6M2 − 7Mr + 2r2)− 6a2(M − r)]

(2M − r)r5
. (2.11)
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Expanding the above into series results in

K = −2M

r3
+O

(
M2

r4
,
a2M

r5

)
. (2.12)

In the expression of Gaussian curvature, we truncate the higher order terms

because of weak gravitational field and slow rotation. Next task is to find

the expression of surface element for a KBH which is

dS =
√
det γijdrdϕ =

√
r5

(r − 2M)3
drdϕ. (2.13)

Since the Gaussian curvature K for a KBH begins with O(M), therefore

linear order of surface element is enough in our computation of deflection

angle. Therefore, we expand the series of (2.13) as follows

dS =

[
3M + r +O

(
M2

r

)]
drdϕ. (2.14)

With the use of Gaussian curvature (2.12) and the surface element (2.14),

the surface integral in the weak deflection limits can be found as

−
∫ ∫

R∞S∞
KdS = −

∫ ∞

rOE

dr

∫ ϕR

ϕS

dϕ

(
−2M

r3

)
(r + 3M) +O

(
M2

r3

)
,

= −
∫ ∞

rOE

dr

∫ ϕR

ϕS

dϕ

(
−2M

r2

)
+O

(
M2

r3

)
,

= 2M

∫ rOE

∞
dr

∫ ϕR

ϕS

dϕ

(
− 1

r2

)
+O

(
M2

r3

)
.

(2.15)

Now that the straight line approximation in zeroth order gives r = b
sinϕ

,

making the substitution u = r−1 implies that u = sinϕ
b
. Surface integral

(2.15) attains the form

−
∫ ∫

R∞S∞
KdS = 2M

∫ sinϕ
b

0

du

∫ ϕR

ϕS

dϕ+O
(
M2u3

)
,

=
2M

b

∫ ϕR

ϕS

sinϕdϕ+O
(
M2u3

)
,

=
2M

b
[cosϕS − cosϕR] +O

(
M2u3

)
,
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=
2M

b

[√
1− b2u2

S +
√

1− b2u2
R

]
+O

(
M2u3

)
.

(2.16)

The last line is obtained by making use of the substitution sinϕS = buS and

sinϕR = buR.

Path integral of geodesic curvature

Geodesic curvature κg for axi-symmetric spacetime, as given by OIA [46]

κg = − 1√
γγθθ

βϕ,r. (2.17)

The component γθθ is the reciprocal of γθθ since the metric γij is purely

diagonal (2.6). Using (2.6), (2.7) and (2.17); κg for Kerr spacetime has the

expression

κg = − 1√(
r8

(2M−r)4

) (
−2M−r

r3

) 2aM

(2M − r)2
,

= − 2aM

r5/2
√
r − 2M

.

Series expansion of the above leads to further simplified form

κg = −2aM

r3
+O

(
aM2

r4

)
. (2.18)

In order to evaluate the path integral, the arc length element dl is required.

The photon orbit has a linear approximation r = b
cosϕ

and l = b tanϕ, which

yields

dl =
b

cos2 ϕ
dϕ. (2.19)
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Using (2.18) and (2.19), path integral of geodesic curvature can be deter-

mined as follows∫ R

S

κgdl =

∫ R

S

−2aM

r3
dl +O

(
aM2

r4

)
,

= −2aM

b2

∫ ϕR

ϕS

cosϕdϕ+O
(
aM2

b3

)
,

=
2aM

b2
[sinϕS − sinϕR] +O

(
aM2

b3

)
,

with the use of sinϕS =
√

1− b2u2
S and sinϕR = −

√
1− b2u2

R as mentioned

in Appendix A of [46]∫ R

S

κgdl = ±2aM

b2

[√
1− b2u2

S +
√

1− b2u2
R

]
+O

(
aM2

b3

)
. (2.20)

Note that ± comes from dl since it has positive sign for prograde motion of

light ray and negative sign for retrograde motion of light ray.

Weak deflection angle

Now that the surface integral and path integral of Gaussian curvature and

geodesic curvature, respectively; have been obtained, it is straightforward to

assess the deflection angle expression in WDL. Through the use of (2.16),

(2.20) in (2.8), the deflection angle in finite distance is determined as follows

α̂ = −
∫ ∫

R∞S∞
KdS −

∫ S

R

κgdℓ. (2.21)

In prograde and retrograde photon orbits, the deflection angles respectively

are:

α̂prog =
2M

b

[√
1− b2u2

S +
√

1− b2u2
R

]
− 2aM

b2

[√
1− b2u2

S +
√

1− b2u2
R

]
,

(2.22)

α̂retro =
2M

b

[√
1− b2u2

S +
√

1− b2u2
R

]
+

2aM

b2

[√
1− b2u2

S +
√

1− b2u2
R

]
.

(2.23)
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This is for the finite distance of source S and observer R. For far distance

limit, there is uR → 0 and uS → 0. Therefore, for infinite distance limit

(2.22) and (2.23) are respectively expressed in the form

α̂prog =
4M

b
− 4aM

b2
. (2.24)

α̂retro =
4M

b
+

4aM

b2
. (2.25)

Note that weak deflection angle for prograde and retrograde motion of light

rays for far distance is given for leading order in weak field approximation.

Higher order terms O
(

M2

b3

)
have been truncated. Now setting spin param-

eter a = 0, the deflection angle in WDL is brought to the form

α̂ =
4M

b
, (2.26)

which is a known deflection angle in WDL for Schwarzschild spacetime [29].

There is no concept of prograde or retrograde motion of light ray here since

SBH is not a rotating black hole. Thus our analysis of deflection angle in

WDL for axi-symmetric KBH is reliable with SBH.

2.2 Gravitational lensing in SDL

This section contains a comprehensive review of computation of strong de-

flection angle of light by a KBH following the article [6]. Here, the geodesic

equations are examined for a KBH. The radius of photon sphere and the

respective critical impact parameter is also discussed as they serve a pri-

mary role in computation of deflection angle. The general deflection angle

expression in SDL for impact parameter b can be described as [6]

α̂(b) = −ā log

(
b

bc
− 1

)
+ b̄+O((b− bc) log(b− bc)), (2.27)
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here bc is the critical impact parameter, ā and b̄ are the coefficients of de-

flection angle. The line element of KBH is given by the equations (1.6),

according to which the metric components are stated as follows

gtt = −∆− a2 sin2 θ

Σ(r, θ)
, grr =

Σ(r, θ)

∆
, gθθ = Σ(r, θ),

gtϕ = −
(
a sin2 θ(2Mr)

Σ(r, θ)

)
, gϕϕ =

((
a2 + r2

)2 −∆a2 sin2 θ
) sin2(θ)

Σ(r, θ)
.

(2.28)

The Lagrangian of a free particle with 4-velocity uµ is defined as

L =
1

2
gµνu

µuν . (2.29)

The Kerr metric admits two Killing vectors, one for time translation sym-

metry and another for axi-symmetry. The conserved energy and angular

momentum are given by 4-velocity of photon together with Killing vectors

as

ε = uµξµ(t) ℓ = uµξµ(ϕ) (2.30)

The time-like Killing vector ξµ(t) = (1, 0, 0, 0) is related to conservation of

energy ε. Conservation of angular momentum ℓ around the axis of symmetry

can be explained by space-like Killing vector ξµ(ϕ) = (0, 0, 0, 1). Since KBH is

rotating, the impact parameter bs is defined as

bs = s

∣∣∣∣ ℓε
∣∣∣∣ = sb, (2.31)

here s tells about direction of light ray relative to the rotation of black

hole. s = +1 specifies prograde orbiting of light whereas s = −1 refers to

retrograde motion of light.

2.2.1 Equations for null geodesics

To find the deflection angle in equatorial plane, set θ = π/2 thereafter θ̇ =

0 in expression (2.28). With the use of Euler-Lagrange equation for null
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geodesics (ds2 = 0), ϕ̇ and ṙ, provided below

ϕ̇ = − εgtϕ + ℓgtt
gtϕ2 − gϕϕgtt

, (2.32)

ṙ =

√
1

grr

(
ε2gϕϕ + ℓ2gtt + 2εℓgtϕ

gtϕ2 − gϕϕgtt

)
. (2.33)

For Kerr spacetime being cognizant of θ = π/2, (2.28) and (2.32) gives

ϕ̇ =
1

r2

[
(l − aε) +

a(ε(r2 + a2)− aℓ)

r2 + a2 − 2Mr

]
. (2.34)

(2.33) for Kerr spacetime is as follows

ṙ2 = ℓ2
[(ε

ℓ

)2
+

a2

r2

(ε
ℓ

)2
+

2Ma2

r3

(ε
ℓ

)2
− 4Ma

r3

(ε
ℓ

)
− 1

r2
+

2M

r3

]
,

= ℓ2
[
1

b2
+

a2

r2b2
+

2Ma2

r3b2
− 4Ma

r3bs
− 1

r2
+

2M

r3

]
.

(2.35)

Simple algebraic manipulation brings the equation of motion for radial di-

rection in the form
1

b2
=

ṙ2

ℓ2
+ Veff(r), (2.36)

where Veff(r) is the effective potential

Veff(r) =
1

r2

[
1− a2

b2
− 2M

r

(
1− a

bs

)2
]
. (2.37)

2.2.2 Impact parameter

Assume that a light ray from region at spatial infinity advances towards the

black hole and returns to an observer in asymptotic region at some “turning

point” rtp. The impact parameter b at rtp can be found [6]

ṙ2

ℓ2

∣∣∣∣
r=rtp

= 0. (2.38)

Solving for b, the desired expression of impact parameter for KBH becomes

b(rtp) =
1

2M − rtp

[
2sMa− rtp

√
a2 + r2 − 2Mr

]
. (2.39)
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2.2.3 Radius of photon sphere

The radius of photon sphere rsc is the minimum distance of a light parti-

cle where the curvature of black hole makes the photon to orbit around it.

Mathematically it can found by the maximum of effective potential as

dVeff

dr

∣∣∣∣
rtp=rsc

= 0, (2.40)

Using (2.37) and (2.40), we get

rsc = 3M

(
1− a

bsc

)
(
1 + a

bsc

) . (2.41)

The expression of critical impact parameter bsc is required, for which (2.38)

reads

rtp
3 − rtp(b(rtp)

2 − a2) + 2M(bs − a)2 = 0, (2.42)

now that rtp → rsc, hence bs → bsc implies

rsc
3 − rsc(b(rsc)

2 − a2) + 2M(bsc − a)2 = 0. (2.43)

Substitution of (2.41) in (2.43) gives

(bsc + a)3 − 27M2(bsc − a) = 0. (2.44)

Separately rewriting (2.44) for prograde motion s = +1 and retrograde or-

biting s = −1:

(b+c + a)3 − 27(b+c + a)M2 + 54M2a = 0,

(b−c − a)3 − 27(b−c − a)M2 − 54M2a = 0,
(2.45)

these are cubic equations and the roots can be found using Vieta method,

b+c = −a+ 6M cos

[
1

3
arccos

(
− a

M

)]
,

b−c = −a− 6M cos

[
1

3
arccos

( a

M

)]
,

(2.46)
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writing together both cases in (2.46) as

bsc = −a+ s6M cos

[
1

3
arccos

(
−sa

M

)]
. (2.47)

This is the critical impact parameter bsc for Kerr spacetime, the plot is given

as in Fig.(2.1). Substitution of (2.47) into (2.44) and then resulting equation

into (2.41) gives the radius of photon sphere

rsc = 2M

[
1 + cos

{
2

3
arccos

(
−sa

M

)}]
. (2.48)

a

b s
c

Figure 2.1: The critical impact parameter bsc is plotted against spin parameter

a. The plot convention reads: Schwarzschild black hole (black), Kerr prograde

(dashed red) and Kerr retrograde (dotted blue).

2.2.4 Deflection angle in SDL

The calculations for the coefficients ā and b̄ of strong lensing are proceeded

by defining the variable [6]

z = 1− rtp
r
. (2.49)
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By chain rule, differentiation of z with respect to ϕ

dz

dϕ
=

dz

dr

dr

dϕ
≡ rtp

r2
ṙ

ϕ̇
. (2.50)

Using geodesic equations ṙ and ϕ̇ from (2.34) and (2.35) into (2.50) yields

dz

dϕ
=

rtp

(
1− 2M

r
+ a2

r2

)
(
1− 2M

r

(
1− a

bs

))√ 1

b2
− 1

r2

(
1− a2

b2

)
+

2M

r3

(
1− a

bs

)2

. (2.51)

Elimination of r from (2.49) and (2.51) leads to the form

dz

dϕ
=

1− 2M
rtp

(1− z) + a2

rtp2
(1− z)2

rtp

[
1− 2M

rtp
(1− z)

(
1− a

bs

)]√B(z, rtp), (2.52)

here B(z, rtp) = c1(rtp)z + c2(rtp)z
2 + c3(rtp)z

3 is a trinomial in z with coef-

ficients c1, c2 and c3 as follows

c1(rtp) = −6Mrtp

(
1− a

bs

)2

+ 2rtp
2

(
1− a2

b2

)
,

c2(rtp) = 6Mrtp

(
1− a

bs

)2

− rtp
2

(
1− a2

b2

)
,

c3(rtp) = −2Mrtp

(
1− a

bs

)2

.

(2.53)

Reciprocating (2.52), one gets

dϕ

dz
= rtp

1− 2M
rtp

(
1− a

bs

)
+ 2M

rtp

(
1− a

bs

)
z[

1− 2M
rtp

+ a2

r2tp
+
(

2M
rtp

− 2 a2

r2tp

)
z + a2

r2tp
z2
]√

B(z, rtp)
, (2.54)

solving by partial fraction leads to the form

dϕ

dz
=

r2tp
a2

[
C−

z − z−
+

C+

z − z+

]
rtp√

B(z, rtp)
, (2.55)

28



where the coefficients C+ and C− and the roots z+ and z− are found respec-

tively as

C+ =
−a2 + 2Mr+

(
1− a

bs

)
2rtp

√
M2 − a2

,

C− =
a2 − 2Mr−

(
1− a

bs

)
2rtp

√
M2 − a2

,

z+ = 1− rtpr+
a2

,

z− = 1− rtpr−
a2

.

(2.56)

The deflection angle is defined as under

α̂(rtp) = I(rtp)− π, (2.57)

where

I(rtp) =

∫ 1

0

f(z, rtp)dz. (2.58)

With the use of (2.55), the integrand becomes

f(z, rtp) =
r2tp
a2

[
C−

z − z−
+

C+

z − z+

]
2rtp√

B(z, rtp)
, (2.59)

for strong deflection limit rtp → rsc implies c1(rtp) → 0. Also then f(z, rtp)

has the term 1
z
which gives rise to the logarithmic divergence for very small

value of z, hence we break the function f into two parts, namely divergent

fD and regular fR by defining

fD(z, rtp) =
r2tp
a2

[
C−

z − z−
+

C+

z − z+

]
2rtp√

c1(rtp)z + c2(rtp)z2
. (2.60)

The regular part which gives finite value of integral develops as

fR(z, rtp) = f(z, rtp)− fD(z, rtp). (2.61)
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The integral of divergent part is first evaluated

ID(rtp) =

∫ 1

0

fD(z, rtp)dz,

=
2r3tp
a2

∫ 1

0

[
C−

z − z−
+

C+

z − z+

]
1√

c1(rtp)z + c2(rtp)z2
dz.

(2.62)

Using WolframAlpha, the above integral is computed as

ID(rtp) =
2r3tp
a2

{
C−√

c1(rtp)z− + c2(rtp)z2−

× log

[√
c1(rtp)z− + c2(rtp)z− +

√
c1(rtp) + c2(rtp)z−√

c1(rtp)z− + c2(rtp)z− −
√

c1(rtp) + c2(rtp)z−

]
+

C+√
c1(rtp)z+ + c2(rtp)z2+

× log

[√
c1(rtp)z+ + c2(rtp)z+ +

√
c1(rtp) + c2(rtp)z+√

c1(rtp)z+ + c2(rtp)z+ −
√

c1(rtp) + c2(rtp)z+

]}
.

(2.63)

In SDL, we know that rtp → rsc implies c1(rtp) → 0. Thus c1(rsc) ≡

c1sc = 0 relates c2sc with c3sc as c3sc = −2
3
c2sc. Also the series expansion of

c1(rtp) and b(rtp) gives (truncating higher order terms)

c1(rtp) = c1sc + c′1sc(rtp − rsc) +O(rtp − rsc)
2, (2.64)

b(rtp) = bsc +
b′′sc
2
(rtp − rsc)

2 +O(rtp − rsc)
3, (2.65)

rewriting c1(rtp) in desired form

lim
rtp→ rsc

c1(rtp) = lim
b→ bsc

c′1sc

(
b

bsc
− 1

)1/2
√

2bsc
b′′sc

. (2.66)

Thereby, applying SDL on (2.63), we get

ID(b) = −

(
r3scC−sc

a2
√

c2scz2−sc

+
r3scC+sc

a2
√

c2scz2+sc

)
log

(
b

bsc
− 1

)
+

r3sc
a2

C−sc√
c2scz2−sc

× log

(
16c22scz

2
−scb

′′
sc

c′21sc2bsc(z−sc − 1)2

)
+

r3sc
a2

C−sc√
c2scz2−sc

log

(
16c22scz

2
−scb

′′
sc

c′21sc2bsc(z−sc − 1)2

)
.

(2.67)
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Now that divergent part has been determined, comparison of (2.67) and right

hand side of (2.27) describes the coefficient ā (plotted in Fig. 2.2) and the

contribution of ID(b) in b̄ respectively as

ā =
r3scC−sc

a2
√
c2scz2−sc

+
r3scC+sc

a2
√

c2scz2+sc

, (2.68)

and

bD = ā log

(
8c22scb

′′
sc

c′21scbsc

)
+

2r3sc√
c2sc

{
C−sc

rscr− − a2
log

(
1− a2

rscr−

)

+
C+sc

rscr+ − a2
log

(
1− a2

rscr+

)} (2.69)

a

ā

Figure 2.2: The spin parameter a is plotted against coefficient ā of deflection

angle. The plot convention reads: Schwarzschild black hole (black) for a = 0, Kerr

prograde (dashed red) and Kerr retrograde (dotted blue).

Now for regular part in SDL, the contribution in b̄ denoted by bR after
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applying strong deflection limit becomes

bR =

∫ 1

0

fR(z, rsc)dz

=
2r3sc
a2

C−sc√
c2scz−sc

log

(
z−scc3sc

4(z−sc − 1)c2sc

√
c2sc + c3sc +

√
c2sc√

c2sc + c3sc −
√
c2sc

)
+

C−sc√
c2sc + c3scz−scz−sc

× 2r3sc
a2

log

(√
c2sc + c3scz−sc +

√
c2sc√

c2sc + c3scz−sc −
√
c2sc

√
c2sc + c3scz−sc −

√
c2sc + c3sc√

c2sc + c3scz−sc +
√
c2sc + c3sc

)
+

2r3sc
a2

C+sc√
c2scz+sc

log

(
z+scc3sc

4(z+sc − 1)c2sc

√
c2sc + c3sc +

√
c2sc√

c2sc + c3sc −
√
c2sc

)
+

C+sc√
c2sc + c3scz+scz+sc

× 2r3sc
a2

log

(√
c2sc + c3scz+sc +

√
c2sc√

c2sc + c3scz+sc −
√
c2sc

√
c2sc + c3scz+sc −

√
c2sc + c3sc√

c2sc + c3scz+sc +
√
c2sc + c3sc

)
.

(2.70)

The coefficient b̄ is defined combining the contribution of regular and diver-

gent part as follows

b̄ = −π + bR + bD. (2.71)

In SDL, c1sc = 0. Thus using c1 from (2.53), we get

3Mrsc

(
1− a

bsc

)2

= rsc
2

(
1− a2

b2

)
. (2.72)

Substitute this in the coefficient c2 of (2.53), we get

c2sc = 3Mrsc

(
1− a

bsc

)2

. (2.73)

Comparison of (2.73) with the coefficient c3 in (2.53) for rtp → rsc yields the

relation as follows

c3sc = −2

3
c2sc. (2.74)

Using this relation (2.74) and expression of z+ and z− in bR and then making
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required substitutions in (2.71), we get

b̄ =
2a

√
3r3scC−sc

(a2 − 2rscr−)
√

c2sc(a2 + 2rscr−)

× log

[√
a2 + 2rscr− − a√
a2 + 2rscr− + a

×
√

a2 + 2rscr− +
√
3a√

a2 + 2rscr− −
√
3a

]

+
2a

√
3r3scC+sc

(a2 − 2rscr+)
√

c2sc(a2 + 2rscr+)

× log

[√
a2 + 2rscr+ − a√
a2 + 2rscr+ + a

×
√

a2 + 2rscr+ +
√
3a√

a2 + 2rscr+ −
√
3a

]

+ ā log

(
36

7 + 4
√
3

8b′′scc
2
2sc

c′21scbsc

)
− π.

(2.75)

For spin a = 0, the expressions of ā and b̄ for Kerr spacetime reduces to

that for Schwarzschild black hole as follows:

ā = 1,

b̄ = −π + log
[
216(7− 4

√
3)
]
≡ −0.40023.

(2.76)

Summary

This chapter contained a comprehensive review of gravitational lensing by a

KBH. In section 2.1, we analyzed the weak gravitational lensing. In weak

field limits, deflection angle of axi-symmetric Kerr spacetime was determined

using Gauss Bonnet theorem. For spin a → 0, the expression of bending

angle can be seen to reduce to that of Schwarzschild spacetime. In section

2.2 assessment of strong gravitational lensing has been done. Equations of

null geodesics are computed and the analytical expressions of strong lensing

coefficients ā and b̄ are also evaluated. Results of deflection angle for Kerr

spacetime successfully match to that of Schwarzschild black hole in strong

deflection limit. The strong deflection angle coefficients are also visually

depicted in figure 2.2 and 2.3 for strong lensing.
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a

b̄

Figure 2.3: The spin parameter a is plotted against coefficient b̄ of deflection

angle, the plot convention reads: Schwarzschild black hole (black) for a = 0, Kerr

prograde (dashed red) and Kerr retrograde (dotted blue).
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Chapter 3

Gravitational Lensing by

Special Buchdahl-Inspired

Metric

The marvellous work of Einstein, namely General Relativity theory , has

been most successful physical theory to study the wide-ranging astronomical

phenomena in over a century now. He predicted about deflection of light due

to spacetime curvature leading to the phenomenon of gravitational lensing.

Recently, the achievement of Event Horizon Telescope to produce the images

of massive M87* black hole at the center of galaxy M87 followed by imaging

of Sgr A* black hole at the heart of Milky Way corroborated Einstein’s

postulate of light deflection phenomenon [10, 48].

The gravitational lensing in the weak deflection limits (WDL) has been

actively explored in the past 25 years by researchers [25, 29, 49]. Gauss Bon-

net theorem (GBT), which relates spacetime geometry to its topology, is one

of the methods to compute deflection angle in WDL. To do so, GBT was first

employed by Gibbons and Werner [29] and was later investigated extensively
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by other researchers in late 2010’s [46, 50]. Gravitational lensing in strong

deflection limits was first investigated in [26] and later in [28]. They gave the

general expressions of the deflection angle defining two strong gravitational

lensing coefficients ā and b̄. Moreover M. Bettinelli, M. Simioni and others

reported a discovery of an optical Einstein ring which led to substantiation of

the luminous source[3]. This instigated the interest of researchers in Einstein

ring observation.

The exclusive pure R2 gravity theory, was discovered by Hans A. Buch-

dahl in early 1960’s. Soon after, he launched a program to seek static spheri-

cally symmetric class of metrics for pureR2 action. Unfortunately, he did not

finish his goal despite being very close to it. His work terminated after formu-

lation of a second-order Buchdahl ODE [51], which was left unnoticed until

recently. The original second order non-linear ordinary differential equation

as given in [51] is as follows:

2t
d2q

dt2
+

(
1 + t

1− t
− 3k2

4q2

)
dq

dt
= 0, (3.1)

where k is the Buchdahl parameter.

Nguyen resumed the work and solved the Buchdahl’s second-order ordi-

nary differential equation questing the metric coefficients [52]. The action in

pure R2 gravity is given by:

S =

∫
d4x

√
−gR2. (3.2)

The vacuo field equations resulting from this action is as follows

R
(
Rµν −

1

4
gµνR

)
+ gµν□R−∇µ∇νR = 0. (3.3)

The analytic vacuum solutions of this 4th order equation which are a novel

class of metrics, named Buchdahl-inspired metrics [52]. Extending his work in

the following year, he found an asymptotically flat solution in the exhaustive
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class of those metrics. Since the metric is Ricci scalar flat and non-Ricci flat,

thus is asymptotically flat and was titled special Buchdahl-inspired (SBI)

metric. This static, asymptotically flat metric is very interesting as it in-

volves a free Buchdahl parameter k̃. For k̃ = 0, the SBI metric reduces to

Schwarzschild spacetime. Moreover, it is mentioned in [53] that for different

real values of Buchdahl parameter, SBI metric corresponding geometries. For

k̃ ∈ (−∞,−1) ∪ (0,+∞), the metric allows the behaviour of naked singu-

larity. For k̃ ∈ (−1, 0), the metric behaves like a traversable Morris–Thorne

wormhole, which is a two way wormhole . For very specific choice k̃ = −1,

the metrics becomes some non- Schwarzschild structure.

This explicit chapter is structured as : Section 3.1 is devoted to the brief

overview of the special Buchdahl-inspired metric. Section 3.2 investigates

weak gravitational lensing of the aforementioned spacetime, deflection angle

is computed making use of Gauss Bonnet theorem. Observables (magnifi-

cation and image distortion) of corresponding images in WDL considering

black hole M87* as a lens will also be discussed. Section 3.3 produces ana-

lytical expression of deflection angle in SDL. Moreover, lensing observables

such as image positions and Einstein rings are also estimated.

3.1 Metric overview

SBI metric characterising a static, spherically symmetric vacuum configura-

tion, is described by [54]

ds2 =

∣∣∣∣1− rs
r

∣∣∣∣k̃{−(1− rs
r

)
dt2 +

(
ρ(r)

r

)4
dr2

1− rs
r

+

(
ρ(r)

r

)2

r2dΩ2

}
, (3.4)

where the function ρ(r) is related to radial co-ordinate following(
ρ(r)

r

)2

=
ζ2
∣∣1− rs

r

∣∣ζ−1(
1− s

∣∣1− rs
r

∣∣ζ)2
(
rs
r

)2

. (3.5)
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The script s is set for ±1 which signifies the sign of
(
1− rs

r

)
. The parameter

k̃ is the re-scaled Buchdahl parameter and rs plays the role of Schwarzschild

radius

k̃ :=
k

rs
, ζ :=

√
1 + 3k̃2, . (3.6)

where both k̃ and the parameter ζ are dimensionless.

Since focus of this research is the computation of deflection angle and

studying lensing observables for SBI metric, the region r > rs is considered.

This means that in the line element (3.4) s = +1 shall be studied onwards.

Henceforth, the metric is represented as

ds2 =

(
1− rs

r

)k̃{
−
(
1− rs

r

)
dt2+

(
ρ(r)

r

)4
dr2

1− rs
r

+

(
ρ(r)

r

)2

r2dΩ2

}
, (3.7)

and ρ(r) is restated as per(
ρ(r)

r

)2

=
ζ2
(
1− rs

r

)ζ−1(
1−

(
1− rs

r

)ζ)2(rs
r

)2

. (3.8)

3.1.1 Asymptotic flatness of SBI metric

In general; a static and spherically symmetric spacetime has the line element

described by [28]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dΩ2 (3.9)

where dΩ2 = dθ2 + sin2 θdϕ2. To check for asymptototic flatness, the be-

haviour of spacetime metric is examined at spatial infinity in the following

manner

lim
r→∞

A(r) = 1,

lim
r→∞

B(r) = 1,

lim
r→∞

C(r) = r2.

(3.10)
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Note that the conditions given in (3.10) ensure asymptotic flatness since

these lead (3.9) to the Minkowski spacetime. In comparison with the SBI

spacetime (3.7) the components of the metric acquire the form

A(r) =
(
1− rs

r

)k̃ (
1− rs

r

)
,

B(r) =
(
1− rs

r

)k̃ (ρ(r)

r

)4
1

1− rs
r

,

C(r) =
(
1− rs

r

)k̃ (ρ(r)

r

)2

r2.

(3.11)

At spatial infinity, (3.11) becomes Minkowski spacetime (3.10) for all the

values of k̃. Therefore SBI metric is categorized now as a asymptotically flat

spacetime.

3.2 Weak gravitational lensing in SBI space-

time

It is discussed in the section (3.1) that the SBI spacetime is static, asymp-

totically flat and spherically symmetric. In order to find deflection angle in

WDL, the GBT is applied on the optical metric of the SBI metric.

3.2.1 The optical metric

Consider SBI metric described by line element in (3.7). Since it is spherically

symmetric, set θ = π
2
to restrict light rays to orbit in the equatorial plane.

This reduces dΩ2 = dθ2 + sin2 θdϕ2 to dϕ2, thereby attaining the new line

element

ds2 =
(
1− rs

r

)k̃ {
−
(
1− rs

r

)
dt2 +

(
ρ(r)

r

)4
dr2

1− rs
r

+

(
ρ(r)

r

)2

r2dϕ2

}
,

(3.12)
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To derive the optical metric dt2 = gijdx
idxj where i, j can be

{
r, ϕ
}
, making

the use of null geodesic condition ds2 = 0 leads to(
1− rs

r

)k̃ {
−
(
1− rs

r

)
dt2 +

(
ρ(r)

r

)4
dr2

1− rs
r

+

(
ρ(r)

r

)2

r2dϕ2

}
= 0.

Algebraic rearranging for dt2 results in

dt2 =

(
ρ (r)

r

)4
dr2(

1− rs
r

)2 +

(
ρ(r)

r

)2
r2

1− rs
r

dϕ2. (3.13)

Therefore, rewriting the optical metric (3.13) for SBI spacetime in the form

dt2 = ḡrrdr
2 + ḡϕϕdϕ

2, (3.14)

where

ḡrr =

(
ρ (r)

r

)4
1(

1− rs
r

)2 and ḡϕϕ =

(
ρ(r)

r

)2
r2

1− rs
r

. (3.15)

3.2.2 Deflection angle computation

Gibbon and Werner demonstrated that weak deflection angle for asymptot-

ically flat spacetime can be calculated for the observer and the source, at

spatial infinity, in the weak field approximation as [29]

α̂ = −
∫ ∫

D∞

KdS, (3.16)

where K represents the Gaussian curvature and dS is a surface element. The

Gaussian curvature provides information about curvature of the spacetime

and its mathematical form can be found in [55] (see page 147) as

K = − 1
√
ḡrrḡϕϕ

[
∂

∂r

(
1√
ḡrr

∂

∂r
(
√

ḡϕϕ)

)
+

∂

∂ϕ

(
1

√
ḡϕϕ

∂

∂ϕ
(
√
ḡrr)

)]
. (3.17)

Since SBI metric is independent of ϕ, thereby Gaussian curvature reads

K = − 1
√
ḡrrḡϕϕ

[
∂

∂r

(
1√
ḡrr

∂

∂r
(
√

ḡϕϕ)

)]
. (3.18)
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Now using the components of optical metric (3.15), K becomes

K = −

(
1− rs

r

)2 [
1−

(
1− rs

r

)ζ]3
r2sζ

3
(
1− rs

r

)ζ/2 . (3.19)

The surface element of the optical metric is defined by the relation

dS =
√
det ḡijdx

idxj ≡
√

ḡrrḡϕϕdrdϕ. (3.20)

Substitution of ḡrr and ḡϕϕ for SBI metric in (3.20) yields

dS =
r3sζ

3
(
1− rs

r

)3ζ/2
r2
(
1− rs

r

)3 [
1−

(
1− rs

r

)ζ]3drdϕ. (3.21)

Now for weak deflection angle make use of the straight line approximation

which is given by r = b
sinϕ

(see [56] and equation (35) in [57]) and 0 ≤ ϕ ≤

π. Also substitution of the optical Gaussian curvature from (3.19) and the

surface element(3.21) into (3.16) yields

α̂ =

∫
π

0

∫
∞

b
sinϕ

rs
(
1− rs

r

)ζ
r2
(
1− rs

r

) drdϕ, (3.22)

which is evaluated in Mathematica to give

α̂ =
π

ζ
−π

ζ
2F1

[
1− ζ

2
,−ζ

2
, 1,

r2s
b2

]
+
2rs
b

PFQ

[{
1,

1− ζ

2
, 1− ζ

2

}
,

{
3

2
,
3

2

}
,
r2s
b2

]
.

(3.23)

Here, 2F1 is the hypergeometric function and PFQ denotes the generalized

hypergeometric function. The deflection angle (3.23) is plotted versus the

impact parameter b in Fig. (3.1). With the decrease in impact parameter,

the deflection angle increases for the considered values of k̃. For Buchdahl

parameter k̃ = 0, the deflection angle in WDL (3.23) transforms into

α̂ =
2rs
b

≡ 4M

b
. (3.24)

This is the weak deflection angle for Schwarzschild spacetime. Thus, the new

finding (3.23) is consistent with Schwarzschild black hole.
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b

α̂
(r
a
d
)

Figure 3.1: The weak deflection angle α̂ of SBI metric is plotted vs impact parame-

ter b for different values of Buchdahl parameter k̃, corresponding to three different

cases. The black curve shows the angle in WDL for Schwarzschild black hole.

3.2.3 Image magnification and distortion

To observe gravitational lensing phenomenon due to deflection of light in

weak deflection limit, the lens equation as expressed in [25] is given by

tan β = tan θ − α, (3.25)

where α is defined as

α =
DLS

DOS

tan (α̂− θ). (3.26)

Here, α̂ is the deflection/bending angle. The symbols β and θ represents

the angular position of the luminous source and position of the image, re-

spectively. Also DLS represents the lens-source distance and DOS signifies

observer-source distance. The impact parameter can be rewritten in relation

with the position of image as

b = DOL sin θ, (3.27)
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where DOL denotes the observer-lens distance. For weak field approximation,

the lens equation (3.25) becomes

β = θ − α̂D, (3.28)

α̂ is the weak deflection angle and parameter D is defined by DLS

DOS
. The

magnification of an image is defined as the ratio of flux of image to that

of unlensed source. Liouville’s theorem tells that brightness of surface is

conserved in the deflection of light. Hence, the aforementioned ratio trans-

forms into the ratio of angle of image to that of unlensed source. Thus, the

total magnification µ, radial magnification and tangential magnification are

respectively described as [49]

µ = µtµr,

µr =

(
dβ

dθ

)−1

,

µt =

(
sin β

sin θ

)−1

.

(3.29)

To verify if there is no image from the particular source missed in obser-

vations, Virbhadra came up with a hypothesis that there exists a distortion

parameter such that the distortions of all images must be summed to obtain

zero. The distortion parameter of images is defined using tangential and

radial magnification as follows [49]

∆ =
µt

µr

, (3.30)

thus the logarithmic distortion parameter can be expressed as [49]

δ = log10 |∆| . (3.31)

Statement of Virbhadra hypothesis can mathematically be delineated as

n∑
i=1

∆i = 0, (3.32)
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here n quantifies the total number of images formed by a single lens and

source.

In this thesis, the massive black hole M87* is modeled as a SBI lens. The

mass of M87* is 6.5 × 109M⊙ and the distance DOL is 16.8Mpc. Therefore,

mass-distance ratio becomes 1.84951 × 10−11 . For gravitational lensing by

SBI spacetime in weak deflection limit, magnification of both primary and

secondary images are investigated here.

Solving the lens equation (3.28) for θ yields the primary and secondary

image positions as θp and θs, respectively. Using these image positions the

radial, tangential and total magnifications are obtained for both primary im-

ages and secondary images. The magnifications of primary and secondary

images are hence plotted in the Figure 3.2 and Figure 3.3. Figure 3.2-(a)

and (b) demonstrates that the primary tangential and absolute secondary

tangential magnification for three different values of Buchdahl parameter k̃

increases with the increase in value of D, all the curves are concave down at

all points in graph. Graph labeled (c) is the plot for primary radial magnifica-

tion versus the parameter D. It can be seen that magnification drops rapidly

and then decrease at a slower rate. The graph (d) is depicting the abso-

lute secondary radial magnification versus the parameter D. It is expressed

that magnification is increasing. These plots show that the magnification

approaches infinity and for small values of distance parameter, very bright

image can be observed. This represents the region of caustics, due to weak

lensing the magnification is not sharp but is defused. The plots labeled as (e)

and (f) respectively are primary total magnification and absolute secondary

total magnification versus D. Curves are close together and magnification is

increasing for all the considered values of k̃.

In Figure 3.3: Respectively in graph (a) and (b), it is shown that primary
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tangential and absolute secondary tangential magnification increases when

plotted against M/DOL for three different values of Buchdahl parameter.

The graph with label (c) shows that the primary radial magnification at first

drops rapidly and then at a slower rate when plotted against dimensionless

parameter ratio M/DOL. Also (d) depicts that the absolute secondary radial

magnification rises promptly and then its increase rate slows down as the

parameter on the x-axis increases. These plots show that the magnification

approaches infinity and for small values of the ratio M/DOL , very bright

image can be observed. This represents the region of caustics, due to weak

lensing the magnification is not sharp but is defused. The total primary mag-

nification µp and the absolute total secondary magnification |µs| is plotted

against M/DOL in (e) and (f), respectively. In graphs it can be seen that

both primary and secondary total magnification increases.

Here if we compare the radial, tangential and total magnification curves

for k̃ = 0 in all the twelve plots with the respective plots in Schwarzschild

lensing in [49], we can clearly see the similar behaviours of all the three

magnifications. Henceforth, our plots are consistent with SBH magnification.

In order to investigate the image distortion, again model the M87* black

hole of massive galaxy M87 as a SBI lens. The distortion parameter for SBI

metric can be obtained in Mathematica using the general expression (3.31).

Next the logarithmic distortion parameter δ is plotted against some parame-

ters in Figure 3.4. In plot (a), (b) and (c) respectively, logarithmic distortion

is graphed against the source position β, the dimensionless parameter D and

the ratio M/DOL. The logarithmic distortion parameter for both primary

and secondary images can be observed to increase for the increase in both D

and M/DOL. However, the parameter δ decreases for the increase in β for

primary images and secondary images. The curves in all the graphs are iden-
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tical for primary and secondary images for corresponding individual values of

Buchdahl parameter. Thus, the values of primary distortion parameter and

secondary distortion parameter (not absolute) are incredibly close but with

opposite sign. Therefore, making the sum of both primary and secondary

distortions nearly zero.
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Figure 3.2: Magnification of images for SBI spacetime is plotted against parameter

D in WDL. For primary images, the tangential magnification µpt, radial magni-

fication µpr and total magnification µp are graphed respectively in (a), (c) and

(e) - against the dimensionless parameter D . For secondary images; the absolute

tangential magnification |µst|, the absolute radial magnification |µsr| and the abso-

lute total magnification |µs| is plotted against the parameter D in (b), (d) and (f),

each in order. Plot convention: The black, green and red curves are respectively

representing the plots for parameter values k̃ = 0, −0.5 and 0.5.
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Figure 3.3: Magnification of images for SBI spacetime is plotted against ratio

M/DOL in WDL. For primary images, the tangential magnification µpt, radial

magnification µpr and total magnification µp are graphed respectively in (a), (c)

and (e) - against ratio M/DOL. For secondary images; the absolute tangential

magnification |µst|, the absolute radial magnification |µsr| and the absolute total

magnification |µs| is plotted against M/DOL in (b), (d) and (f), each in order.

Plot convention: The black, green and red curves are respectively representing the

plots for parameter values k̃ = 0, −0.5 and 0.5.
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Figure 3.4: Logarithmic distortion is plotted for SBI spacetime in WDL. The

logarithmic distortion of the primary images (δp) and the secondary images (δs) is

plotted against angular position of source β, distance parameter D and M/DOL

in (a), (b) and (c), respectively.
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3.3 Gravitational lensing in SDL

In this focused section, deflection angle by SBI metric is determined in the

strong deflection limit. The spacetime described as (3.7) has the components

A(r), B(r) and C(r) as given in (3.11), rewriting those after substitution of

the function ρ(r) from equation (3.8) leads

f(r) := 1− rs
r
,

A(r) = f(r)k̃+1,

B(r) = f(r)k̃−3 ζ4f(r)2ζ[
1− f(r)ζ

]4(rs
r

)4

,

C(r) = f(r)k̃
(
ζ2r2sf(r)

ζ−1[
1− f(r)ζ

]2) = A(r)

(
ζ2r2sf(r)

ζ−2[
1− f(r)ζ

]2).
(3.33)

3.3.1 Equations for null Geodesic

The spacetime under consideration is spherically symmetric which allows to

set θ = π/2. The Lagrangian of a particle with 4-velocity is defined as

L =
1

2
gµν ẋ

µẋν (3.34)

The Euler-Lagrange equation is described by

∂L
∂xµ

=
d

dλ

∂L
∂ẋµ

(3.35)

These equations for SBI metric in case of µ = 0 and µ = 3 yields

ε = A(r)ṫ and ℓ = C(r)ϕ̇, (3.36)

where ε and ℓ are representing the conserved energy of light rays and con-

served angular momentum, respectively. Also, ṫ and ϕ̇ represents derivative

with respect to affine parameter λ. From (3.36), it follows that

ṫ =
ε

A(r)
≡ ε

f(r)k̃+1
, (3.37)

50



ϕ̇ =
ℓ

f(r)k̃
[
ζ2r2sf(r)

ζ−1[
1−f(r)ζ

]2 ] . (3.38)

Now, using the null geodesic condition ds2 = 0, for spherically symmetric

spacetime and introducing the impact parameter b := ℓ/ε,

−A(r)ṫ2 + B(r)ṙ2 + C(r)ϕ̇2 = 0, (3.39)

alternatively,

ṙ2 = Veff(r) ≡
1

B(r)

[
A(r)ṫ2 − C(r)ϕ̇2

]
,

= ℓ2
{ 1

b2
1

A(r)B(r)
− 1

B(r)C(r)

}
.

(3.40)

Use of equations (3.37)-(3.40) for SBI metric (3.33) gives the radial compo-

nent of geodesic equation as

ṙ2 =
ℓ2r4f(r)2−2ζ−2k̃

[
1− f(r)ζ

]4
ζ4r4s

[
1

b2
−

f(r)2−ζ
[
1− f(r)ζ

]2
ζ2r2s

]
. (3.41)

3.3.2 Impact parameter

Consider an incoming light ray from a source at asymptotic region which

reaches at a minimum distance rtp from the black hole and arriving to ob-

server in another direction in asymptotic region. The impact parameter can

be found in terms of this closest distance rtp by using the vanishing kinetic

energy of light particle [6] as follows

ṙ2

ℓ2

∣∣∣∣
r=rtp

= 0, (3.42)

For SBI metric, (3.41) gives

r4
(
1− rs

r

)2−2ζ−2k̃
[
1−

(
1− rs

r

)ζ]4
ζ4r4s

 1

b2
−

(
1− rs

r

)2−ζ
[
1−

(
1− rs

r

)ζ]2
ζ2r2s


r=rtp

= 0.

(3.43)
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Solving for b brings the expression of impact parameter b(r)|r=rtp in the form

b(rtp) =
ζrs
(
1− rs

rtp

) ζ
2(

1− rs
rtp

)(
1−

(
1− rs

rtp

)ζ)2 . (3.44)

3.3.3 Photon sphere

When the closest approach distance rtp is located at the maximum of effective

potential Veff, this distance is called radius of photon sphere rc. Theoreti-

cally, at rc the photons can travel in circular orbits because of strong enough

gravity. This radius of photon sphere can be computed using [6]

dVeff(r)

dr

∣∣∣∣
r=rc

= 0. (3.45)

Using equation (3.40) for the expression of effective potential and evaluate

derivative with respect to r being cognizant of the finding that impact pa-

rameter is a function of rtp

dVeff(r)

dr

∣∣∣∣
r=rc

=
ℓ2

BC
[
(ln C)′ − (lnA)′]

∣∣∣∣
r=rc

= 0. (3.46)

Using the last line in (3.33), (ln C)′ = (lnA)′ + (ζ − 2)
[
ln f(r)

]′ − 2
{
ln
[
1−

f(r)ζ
]}′

, yields (ζ − 2)
[
ln f(r)

]′∣∣
r=rc

= 2
{
ln
[
1− f(r)ζ

]}′∣∣
r=rc

, that is,

ζ − 2 + (ζ + 2)f(rc)
ζ = 0. (3.47)

Knowing that f(rc) > 0 (because rc > rs), this last equation admits a solu-

tion only if1 ζ < 2, yielding the radius of the photon sphere for SBI metric

as

rc =
rs

1−
(

2−ζ
2+ζ

) 1
ζ

=
rs

1− p
, p :=

(
2− ζ

2 + ζ

) 1
ζ

. (3.48)

1Constraints on k̃ [Eur. Phys. J. C (2024) 84, 330,

https://doi.org/10.1140/epjc/s10052-024-12610-2] have shown that ζ is closeer to

unity.
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The corresponding critical impact parameter bc can be determined using

(3.44) for rtp = rc to get

bc =
rs(ζ + 2)

2

(
2− ζ

ζ + 2

) ζ−2
2ζ

. (3.49)

For k̃ = 0, radius of photon sphere (3.48) and critical impact parameter

(3.49) are respectively as follows

rc = 3M, (3.50)

bc = 3
√
3M. (3.51)

These (3.50) and (3.51) are respectively the radius of photon sphere with the

corresponding critical impact parameter for Schwarzschild spacetime. Thus

our general expressions (3.48) and (3.49) are consistent with SBH.

3.3.4 Deflection angle in the strong field limits

From the geodesic equations (3.38) and (3.41), following can easily be ex-

tracted

dϕ

dr
=

ζrs

r2
√

f(rtp)2−ζ
[
1− f(rtp)ζ

]2 − f(r)2−ζ
[
1− f(r)ζ

]2 . (3.52)

As a function of closest approach distance rtp, the deflection angle is defined

in [6] as follows

α̂(rtp) = I(rtp)− π, (3.53)

with

I(rtp) = 2

∫
∞

rtp

ζrs dr

r2
√

f(rtp)2−ζ
[
1− f(rtp)ζ

]2 − f(r)2−ζ
[
1− f(r)ζ

]2 . (3.54)

The analytic evaluation of this integral is quite challenging. It is discussed in

the section 3.1 that SBI metric is asymptotically flat, static and spherically
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symmetric spacetime. Therefore, the methodology given by N. Tsukamoto

in [28] is adopted here to find the coefficients ā and b̄ for the deflection angle

of SBI metric in strong limit. Let us introduce a new variable z and change

the integrand and the integration limits appropriately

z = 1− rtp
r
. (3.55)

Then the integral I(rtp) is expressed [28] generally as

I(rtp) =

∫ 1

0

h(z, rtp)dz, (3.56)

where

h(z, rtp) =
2ζrs
rtp

1√
f(rtp)2−ζ

[
1− f(rtp)ζ

]2 − f(r)2−ζ
[
1− f(r)ζ

]2 . (3.57)

We have f(rtp)
2−ζ
[
1− f(rtp)

ζ
]2 − f(r)2−ζ

[
1− f(r)ζ

]2
has series:

=
rs(rtp − rs)

1−ζ [1− f(rtp)
ζ ][ζ − 2 + (ζ + 2)f(rtp)

ζ ]

r2−ζ
tp

z

−
r2s
( rtp
rtp−rs

)ζ{2[1− f(rtp)
ζ ]2 − 3[1− f(rtp)

2ζ ]ζ + [1 + f(rtp)
2ζ ]ζ2}

2r2tp
z2 + · · · ,

(3.58)

and using (3.48) we see that the coefficient of z vanishes if we replace rtp

by rc. This shows that the integral (3.56) has a divergent term proportional

to ln z in the limit rtp → rc of strong deflection (b → bc). In this limit, we

separate the regular part from the divergent part of the integral as follows

[28]

IR(rc) =

∫ 1

0

[h(z, rc)− hD(z, rc)]dz , (3.59)

where, using (3.33) and (3.58), hD(z, rc) = 2/z. Now, we introduce the new

variable y

y :=

[
1−

(
2− ζ

2 + ζ

) 1
ζ
]
z +

(
2− ζ

2 + ζ

) 1
ζ

= (1− p)z + p, p :=

(
2− ζ

2 + ζ

) 1
ζ

,

(3.60)
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in terms of which we write (3.59) as

IR(rc) = 2ζ

∫ 1

p

{
1√

4ζ2p2

4−ζ2
− y2−ζ (1− yζ)2

− 1

ζ(y − p)

}
dy . (3.61)

This integral cannot be evaluated in terms of elementary functions for all

values of ζ. For ζ = 1 (corresponding to Schwarzschild metric with k̃ = 0),

we obtain the exact value ϕR(1) = 2 ln[6(2−
√
3)].

The coefficient ā has the general expression defined in [28] as

ā =

√
2B(rc)A(rc)

C ′′(rc)A(rc)− C(rc)A′′(rc)
. (3.62)

Using the coefficients A(r), B(r) and C(r) from (3.33), the coefficient ā for

SBI spacetime becomes

ā = 1. (3.63)

The next task is to find the coefficient b̄ which is described in [28] generally

by

b̄ = ā log
[
(rc)

2

(
C ′′(rc)

C(rc)
− A′′(rc)

A(rc)

)]
+ IR(rc)− π, (3.64)

substitution of A(r), C(r) and their second derivatives with respect to r along

with the value of ā followed by the use of radius of photon sphere (3.48) yields

b̄ = −π + log

[
1

2
(2 + ζ)(2− ζ)1−

2
ζ

[
(2− ζ)

1
ζ − (2 + ζ)

1
ζ

]2]
+ IR(rc), (3.65)

where IR(rc) for SBI metric is evaluated in equation (3.61). Therefore the

deflection angle for SBI metric in the strong field limit has been brought to

the form

α̂(b) = −ā log

(
b

bc
− 1

)
+ b̄+O((b− bc) log(b− bc)), (3.66)

where the coefficients ā and b̄ have the expressions as determined in (3.63)

and (3.65), respectively. The plot for deflection angle against the impact
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parameter b is given in Fig. (3.5). The deflection angle decreases when the

impact parameter increases. For Buchdahl parameter k̃ = 0, the expressions

of ā and b̄ reduces to that for Schwarzschild spacetime

ā = 1.

b̄ = −π + log(216(7− 4
√
3)).

(3.67)

Thus our results are consistent with SBH.

b

α̂
(r
a
d
)

Figure 3.5: The deflection angle α̂ of SBI metric is plotted vs impact parameter b

for two different values of Buchdahl parameter k̃ in SDL. The black curve represents

the case of Schwarzschild black hole in SDL.

3.3.5 Observables

Assume that in asymptotically flat SBI spacetime, light source and observer

are aligned, and near the lens curvature affects the deflection angle strongly.

The strong deflection observables can be studied using the famous lens equa-

tion [58]

β = θ − DLS

DOS

∆αn, (3.68)
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where β and θ represent the position of source and the position of image,

respectively. DLS denotes the distance between the black hole lens to be

considered and the light source. DOS symbolizes the distance between the

source and observer. Also, ∆αn is the offset of deflection angle α̂. When the

photon orbits around the lens n- number of times then the offset of deflection

angle is obtained after deflection angle subtracting 2nπ. Thus, ∆αn can be

described as ∆αn = α̂ − 2nπ. Moreover, the impact parameter, in relation

with the image position is given by

b = DOL tan θ ≈ DOLθ, (3.69)

where DOL is the observer-lens distance. In strong deflection limit, small an-

gular position of source β is considered thus expectedly, the angular position

of image θ is also small. Then using small angle identities, impact param-

eter is also small. Substitution of (3.69) into (3.66) modifies expression for

deflection angle as

α̂(b) = −ā log

(
DOLθ

bc
− 1

)
+ b̄. (3.70)

Deflection angle together with (3.68) reads the zeroth order angular position

of the nth image as

θ0n =
bc

DOL

(1 + en) , (3.71)

where

en = exp

(
b̄− 2nπ

ā

)
. (3.72)

Since the source, lens and observer are aligned, the Einstein ring for nth

relativistic image is described by

θEn =
bc

DOL

(1 + en) , (3.73)

Another important observable is the image magnification described in [26] as

µn =
1

β

[
bc(1 + en)

DOL

{
DOSbcen
DOLDLS ā

}]
, (3.74)
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we know that DOS = 2DLS. Thus magnification of n-loop images becomes

µn =
1

β

[
bc(1 + en)

DOL

{
2bcen
DOLā

}]
. (3.75)

Here in this work we consider the case when the outermost image θ1 can be

separated and all the other relativistic images are gathered at asymptotic

image position θ∞, two observable characteristics are described as [26]

θ∞ =
bc

DOL

, (3.76)

and

s = θ1 − θ∞ ≈ θ∞ exp

(
b̄− 2nπ

ā

)
. (3.77)

In the limits n → ∞, photon sphere’s radius is represented by θ∞ . This

tells the asymptotic angular position of set of images. Whereas θ1 expresses

the outermost angular image position. Further s is the angular separation

between the outermost image and the set of images at asymptotic position.

Now we will use these general expressions to see observables for SBI metric.

In order to study gravitational lensing in SDL for SBI metric, two massive

black holes are taken separately as a lens here.

Firstly, the supermassive black hole Sgr A* at the galactic center of Milky

Way galaxy is modeled here as a SBI lens. The mass of Sgr A* is approxi-

mated in recent studies [58] to be 4× 106M⊙ and the observer-lens distance

is 0.008 Mpc. We numerically approximate the angular position of the out-

ermost image θ1, the innermost image θ∞ and angular separation between

the outermost and the relativistic images packed together with the innermost

image. To do so, (3.71), (3.76) and (3.77) are utilized for deflection angle

coefficients we computed in (3.63) and (3.65). The results are tabulated in

the Table 3.1 for six different values of Buchdahl parameter k̃.

Also, we estimate the outermost Einstein ring radius using (3.73) substi-

tuting n = 1 for the coefficients ā and b̄ for the case of SBI spacetime behaving
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k̃ −0.02 −0.01 0 0.01 0.02

bc/rs 2.5826 2.5942 2.5981 2.5942 2.5826

ā 1 1 1 1 1

b̄ −0.40014 −0.40021 −0.40023 −0.40021 −0.40014

θ∞ (µas) 26.1681 25.9049 25.6462 25.3919 25.1419

θ1 (µas) 26.2008 25.9373 25.6783 25.4237 25.1733

s (µas) 0.03275 0.03242 0.03210 0.03178 0.03147

Table 3.1: Some relativistic images observables estimates for SBI spacetime in

strong lensing using Sgr A* as a lens. Also, the lensing coefficients ā and b̄ for

different values of Buchdahl parameter k̃ has been approximated.

like a SBH k̃ = 0, a Morris Thorne wormhole, which is a two-way wormhole,

when k̃ ∈ (−1, 0) and a naked singularity for k̃ ∈ (−∞,−1) ∪ (0,∞). Ar-

bitrarily choosing one value of k̃ for each case, we approximate the value of

Einstein ring radius. For k̃ = 0 (SBH), the Einstein ring radius value is esti-

mated as 25.6783 µas. The Einstein ring radius value for k̃ = 0.03 is 24.9271

µas corresponding to naked singularity case. Also for k̃ = −0.04 the Einstein

ring radius for relativistic outer most image formation is 26.7419 µas. Rings

are depicted in Figure 3.6. The Einsten ring for k̃ = 0 is similar to the ER

in the work [58]. Thus our results are consistent with Schwarzschild black

hole. Also the magnification of the outermost image assuming n = 1 has

been observed for three values of Buchdahl parameter. The graph plotted

in Figure 3.7 shows that magnification is maximum as the angular source

position β → 0. Thereby, the source must be perfectly aligned in order to

maximize the magnification of image.

Next we model the M87∗ black hole of the Messier 87 galaxy as a lens

for SBI spacetime to investigate the lensing observables. The mass of M87∗
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Figure 3.6: Einstein Rings of outermost relativistic images of SBI spacetime for

k̃ = 0 (orange), k̃ = 0.03 (purple) and k̃ = −0.04 (dashed) is depicted modelling

supermassive black hole Sgr A* as a SBI lens.

β (µas)

µ

Figure 3.7: Magnification of the outermost image for SBI spacetime for k̃ = 0

(black), k̃ = 0.03 (green) and k̃ = −0.04 (red) has been plotted versus angular

source position modelling Sgr A* as a SBI lens.
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k̃ −0.02 −0.01 0 0.01 0.02

bc/rs 2.5826 2.5942 2.5981 2.5942 2.5826

ā 1 1 1 1 1

b̄ −0.40014 −0.40021 −0.40023 −0.40021 −0.40014

θ∞ (µas) 20.2491 20.0455 19.8453 19.6485 19.4550

θ1 (µas) 20.2745 20.0706 19.8701 19.6731 219.4794

s (µas) 0.02534 0.02509 0.02484 0.02459 0.02435

Table 3.2: Approximates for observables and strong lensing coefficients of SBIM

in SDL, considering M87* black hole as a lens, for different values of Buchdahl

parameter k̃.

Figure 3.8: Formation of Einstein Rings of outermost relativistic images of SBI

spacetime for k̃ = 0 (orange), k̃ = 0.03 (purple) and k̃ = −0.04 (dashed) is

demonstrated modelling massive black hole M87* as a SBI lens.
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β (µas)

µ

Figure 3.9: Magnification of the outermost image for SBI spacetime for k̃ = 0

(black), k̃ = 0.03 (green) and k̃ = −0.04 (red) has been plotted versus angular

source position modelling M87* as SBI spacetime lens.

is 6.5 × 109M⊙ and the observer to lens distance is 16.8 Mpc [58]. The

angular position of the outermost image represented by θ1, the innermost

image θ∞ and the angular separation between both of them s; are investigated

here for SBI spacetime using the aforementioned black hole as a lens. The

numerical computations are tabulated in the Table 3.2 for six different values

of Buchdahl parameter k̃. Moreover, we estimate the radius of the outermost

Einstein ring for three different values of Buchdahl parameter. For k̃ = 0,

Buchdahl spacetime reduces to SBH and we have Einstein ring radius 19.8701

µas. For k̃ = 0.03 (naked singularity case), the Einstein ring radius becomes

19.2888 µas. The case when SBIM behaves like Morris-Thorne wormhole, we

arbitrarily choose k̃ = −0.04 and have the corresponding numerical value for

acquired radius 20.6932 µas. Thus, the Einstein rings for angular position

of the outermost relativistic images for all these values are illustrated in the

Figure 3.8. The Einsten ring for k̃ = 0 is similar to the ER in the work [58].
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Thus our results are consistent with Schwarzschild black hole. The graph

plotted in Figure 3.9 shows that magnification is maximum as the angular

source position β → 0. Thereby, the source must be perfectly aligned in

order to obtained most magnified image.

Summary

In this chapter, the expressions for deflection angle of Weak and Strong de-

flection for asymptotically flat special Buchdahl-inspired (SBI) metric are de-

termined. In section 3.2, weak gravitational lensing is discussed, and bending

angle α̂ is obtained according to GBT using Gibbons and Werner’s approach.

Also the black hole M87* in the center of galaxy M87 is modeled as a SBI

lens. The mass of considered lens is 6.5×109M⊙ and the source-lens distance

is 16.8 Mpc. Using this, the radial, tangential and total magnifications are

plotted. It is observed that the tangential and total magnification for both

primary and secondary images and radial magnification for secondary images

are increasing for parameter D and M/DOL. Whereas, the radial magnifi-

cation for primary images is seen to be decreasing. Moreover the distortion

parameter’s behaviour for source position, the parameter D, and the ratio

M/DOL is investigated. The sum of distortion parameter of primary and

secondary images vanishes and thus our result aligns with the hypothesis

of Virbhadra [49]. The deflection angle in strong deflection limits is ana-

lytically found in the section 3.3. The graphs of the coefficients ā and b̄ of

the deflection angle is plotted and the results are seen to be consistent with

Schwarzschild black hole for Buchdahl parameter k̃ = 0. Also, the lensing

observables are tabulated that estimates image position for the innermost,

the outermost and the separation between them modeling Sgr A* and M87*

black holes as SBIM lens. Moreover the Einstein rings are also plotted arbi-
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trarily choosing three values for different cases of SBI metric. Magnification

of the outermost relativistic image has been investigated. It can be observed

that for angular source position β → 0, the magnification is maximum.
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Chapter 4

Gravitational Lensing by

axi-symmetric SBI Metric in

Pure R2 Gravity

Buchdahl extended Einstein’s General Relativity theory by introducing pure

R2 gravity theory [59]. R2 gravity stands out being scale-invariant in ghost-

free class of theories. The implication was immediately followed by Buchdahl

when he pioneered a program to quest for static spherically symmetric novel

class of spacetimes using pure R2 action [51]. This action has one single

term 1
2κ

∫
d4x

√
−gR2 with a dimensionless parameter κ. Buchdahl revealed

that due to the higher derivative configuration of theory, the vacua has non

constant scalar curvature in general. He culminated his work producing

a second-order ordinary differential equation which was non-linear. That

equation was unfortunately abandoned to be solved by him.

Later, as mentioned initially in Chapter 3, Nguyen completed unfinished

work of Buchdahl obtaining compact form of exhaustive class of Buchdahl-

inspired metrics in pure R2 gravity [52]. The closed form of the metrics
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representing R2 vacuum solutions leads to generalized axi-symmetric setup.

Therein, an exact stationary vacuum solution involving rotation was estab-

lished [60]. The axi-symmetric SBI solution contains a conformal factor

A(q, θ; a) that was determined numerically but its analytical expression is

not known yet. Also the metric is attributed by new (Buchdahl) parameter,

represented by k̃, and Schwarzschild radius rs.

Study of weak gravitational lensing has been an active area of research in

the domain of astrophysics. One of the approaches to compute weak deflec-

tion angle was given by Gibbons and Werner [29]. They used Gauss Bonnet

theorem on the asymptotically flat spacetimes particularly finding deflection

angle of Schwarzschild black hole in weak deflection limit (WDL). Then,

Werner extended the work on Kerr black hole by applying GBT using Kerr-

Renders optical geometry [30]. Following this, approach of finite distance of

lens to the observer and source was applied by Ishihara, Asada, Ono, and

Suzuki [61]. They computed the deflection angle in WDL for a static, spheri-

cally symmetric and asymptotically flat spacetime. Ono, Ishihara and Asada

(OIA) extended their work by using GBT to analytically find deflection angle

in weak field limits for stationary, axi-symmetric spacetimes [46].

The motivation behind this chapter is the progress in GBT approach for

weak deflection angle computation together with the recent development in

axi-symmetric solution of Buchdahl’s ordinary differential equation. Either

weak or strong gravitational lensing is being investigated by spacetime per-

spective, the use of null geodesic condition is always required. Hence, we

can ignore the conformal factor term A(q, θ; a) and determine the deflection

angle expression of the subject axi-symmetric SBI metric in weak deflection

limit by OIA approach analytically.

The organization of this chapter is as follows: Section 4.1 contains a
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brief overview of stationary axi-symmetric SBI spacetime solution in pure

R2 gravity. Plots for ergosphere and event horizon are given in section 4.2.

Section 4.3 produces analytical expression of deflection angle of the consid-

ered axi-symmetric SBI metric in weak field limits by employing the GBT.

Also, magnification and distortion of images are investigated in WDL.

4.1 Metric overview

An exact stationary, rotating and axi-symmetric SBI solution in pure R2

gravity is described in [62]

dt2 = A(q, θ; a)

[
−∆(q)− a2 sin2 θ

ρ2
dt2 +

2a sin2 θ

ρ2
(
∆(q)− r2(q)− a2

)
dtdϕ

+
ρ2

∆(q)
dq2 + ρ2dθ2 +

Σ

ρ2
sin2 θdϕ2

]
,

(4.1)

where the functions and parameters involved are given below

ρ2(q, θ) = r2(q) + a2 cos2 θ,

Σ(q, θ) = (a2 + r2(q))2 − a2∆(q) sin2 θ,

∆(q) = (q − q−)(q − q+) + a2,

r2(q) = (q − q−)
− 2q−

q+−q− (q − q+)
2q+

q+−q− ,

q± = ±rs
2

(√
1 + 3k̃2 ∓ 1

)
.

(4.2)

Here a represents the spin (rotation), rs =
2M
1+k̃

is the Schwarzschild radius and

k̃ is the Buchdahl parameter defined by k
rs
. The line element of stationary,

axi-symmetric spacetime in polar co-ordinates (q, θ) is generally given by

ds2 = −A(q, θ)dt2 − 2H(q, θ)dtdϕ+B(q, θ)dq2 + C(q, θ)dθ2 +D(q, θ)dϕ2,

(4.3)
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where the metric components are functions of q and θ only. Now the axi-

symmetric spacetime (4.1), in comparison with the general form (4.3) gives

the components as follows

A(q, θ) =
∆(q)− a2 sin2 θ

ρ2
,

B(q, θ) =
ρ2

∆(q)
,

C(q, θ) = ρ2,

D(q, θ) =
Σ

ρ2
sin2 θ,

H(q, θ) =
a sin2 θ

ρ2
×
(
r2(q) + a2 −∆(q)

)
,

(4.4)

here we have ignored the conformal factor A(q, θ; a) throughout our com-

putations since the null geodesic condition is always required to be satisfied

while determining deflection angle.

4.2 Event horizon and ergosphere

The conformal factor A(q, θ; a) has no zeros, the plots of which can be found

in the work [54]. Thus the boundary beyond which not even light can escape,

called as the event horizon, can be found by solving ∆(q) = 0 for q. Using

∆(q) from (4.2) for the axi-symmetric spacetime, we have the roots as follows

q± =
(q− + q+)

2
±
√

(q− − q+)2 − 4a2

2
, (4.5)

where q+ represents outer event horizon and q− represents inner event horizon

(also called as Cauchy horizon) for the considered axi-symmetric spacetime.

Located outside the event horizon, ergosphere is the region which drags

matter (any object) along with the direction of spin of the axi-symmetric

spacetime. Dissimilar from event horizon, ergosphere allows the particles
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to escape from its boundary called ergosurface. Mathematically, it can be

determined by setting time component gtt of considered spacetime zero. For

the axi-symmetric SBI metric in R2 gravity (4.1) we have

gtt =
∆(q)− a2 sin2 θ

ρ2
= 0. (4.6)

The solution of this equation for q reads the radius of ergosphere as

qergo±(θ) =
1

2

(
−rs ±

√
−2a2 + r2s + 3k̃2r2s − 2a2 cos 2θ

)
, (4.7)

where qergo+ and qergo− are the outer and inner ergosphere’s radius, respec-

tively.

The parametric plots for outer ergosphere with radius qergo+ along with

the outer event horizon with radius q+ are present in the graph (4.1), (4.2)

and (4.3) respectively corresponds to the Buchdahl parameter k̃ = 0, k̃ = 0.7

and k̃ = −0.4. For the increase in value of parameter k̃, the radius of event

horizon decreases and the ergoregion increases.

Figure 4.1: Ergosphere is plotted for axi-symmetric spacetime in R2 gravity in

WDL for k̃ = 0. Shaded pink region depicts ergoregion.

69



Figure 4.2: Ergosphere is plotted for axi-symmetric spacetime in R2 gravity in

WDL for k̃ = 0.7. Shaded pink region depicts ergoregion.

Figure 4.3: Ergosphere is plotted for axi-symmetric spacetime in R2 gravity in

WDL for k̃ = −0.4. Shaded pink region depicts ergoregion.
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4.3 Deflection angle in the weak field limit

In this section, main focus is to find the deflection angle in the weak field

approximations of axi-symmetric spacetime (4.1) using finite distance ap-

proach by OIA, methodology as given in the literature review of this thesis

(see section 2.1)

4.3.1 The optical metric

The null geodesic condition ds2 = 0 for finding deflection angle leads to the

optical metric which has the general form

dt =
√

γijdxidxj + βidx
i, (4.8)

where the general expression of γij is described as

γijdx
idxj =

B(q, θ)

A(q, θ)
dq2 +

C(q, θ)

A(q, θ)
dθ2 +

A(q, θ)D(q, θ) +H2(q, θ)

A2(q, θ)
dϕ2, (4.9)

and the component βi is given as

βidx
i = −H(q, θ)

A(q, θ)
dϕ. (4.10)

Now that we have metric components of axi-symmetric SBI solution in R2

defined in (4.4), thereby the metric (4.9) produces

γijdx
idxj =

ρ4

∆(∆− a2 sin2 θ)
dq2 +

ρ4

(∆− a2 sin2 θ)
dθ2

+
Σ(∆− a2 sin2 θ) sin2 θ +

[
a sin2 θ(r2(q) + a2 −∆

]2
(∆− a2 sin2 θ)2

dϕ2.

(4.11)

Also, using the expressions of A(q, θ) and H(q, θ) into (4.10) yields

βidx
i = −a sin2 θ(r2(q) + a2 −∆)

∆− a2 sin2 θ
dϕ. (4.12)
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4.3.2 OIA approach of Gauss Bonnet theorem

For axi-symmetric spacetimes in equatorial plane, the weak deflection angle

for the source S and observer R is defined employing the GBT by OIA [46]

as follows

α̂ = −
∫ ∫

R∞□S∞
KdS +

∫ R

S

κgdℓ, (4.13)

here K represents Gaussian curvature and the geodesic curvature of light rays

is denoted by κg. Further dl and dS represents the arc length element and

surface element, respectively. Note that the sign of arc length ℓ is taken in

accordance with the direction of motion of light, positive meaning prograde

motion and negative depicts retrograde orbiting of light ray.

Surface Integral

The Gaussian curvature gives information about how the surface is curved,

and is mathematically defined by Riemann curvature as follows

K =
Rqϕqϕ

γ
≡ 1

√
γ

[
∂

∂ϕ

(√
γ

γqq
Γϕ
qq

)
− ∂

∂q

(√
γ

γqq
Γϕ
qϕ

)]
. (4.14)

Since the components of the metric γijdx
idxj are not a function of ϕ, therefore

K =
1
√
γ

[
− ∂

∂q

(√
γ

γqq
Γϕ
qϕ

)]
,

= − 1
√
γ

[
∂

∂q

( √
γ

2γqq
γϕϕ ∂

∂q
(γϕϕ)

)]
.

(4.15)

To restrict the light ray in equatorial plane set θ = π
2
implying θ̇ = 0. Using

the metric components of (4.11) , the Gaussian curvature has the form

K =
4rs

(
q − rs

2

(
−1 +

√
1 + 3k̃2

)) 2√
1+3k̃2

(
q + rs

2

(
1 +

√
1 + 3k̃2

))− 2√
1+3k̃2

(−4q2 − 4qrs + 3k̃2r2s)
3

×
[
24a2(2q + rs) + (4q + rs − 3k̃2rs)(4q

2 + 4qrs − 3k̃2r2s)
]
.

(4.16)
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We apply the weak field and slow rotation on (4.16). Therefore expanding

the series brings the simplified form

K = − 2M

(1 + k̃)q3
+O

(
a2M2

q5

)
. (4.17)

Now seeking the surface element dS, the formula is dS =
√

det γijdx
idxj, for

axi-symmetric SBI spacetime

dS =
√

det γijdqdϕ,

=

(
q +

5M

1 + k̃

)
dqdϕ+O(M2).

(4.18)

In the last line: expressions of q+, q− and rs have been substituted. Since

the Gaussian curvature K begins with O(M), therefore linear order of surface

element is enough in our computation of deflection angle.

In weak field limit, surface integral of the Gaussian curvature (4.17) using

the surface element (4.18) thus proceeds as

−
∫ ∫

R∞S∞
KdS = −

∫ ∞

qOE

dq

∫ ϕR

ϕS

dϕ

(
− 2M

(1 + k̃)q3

)(
q +

5M

1 + k̃

)
,

= −
∫ ∞

qOE

dq

∫ ϕR

ϕS

dϕ

(
− 2M

(1 + k̃)q2

)
+O

(
M2

q3

)
,

=
2M

(1 + k̃)

∫ qOE

∞
dq

∫ ϕR

ϕS

dϕ

(
− 1

q2

)
+O

(
M2

q3

)
.

(4.19)

Now that the straight line approximation in zeroth order gives q = b
sinϕ

,

making the substitution u = q−1 implies that u = sinϕ
b
. Surface integral

(4.19) attains the form

−
∫ ∫

R∞S∞
KdS =

2M

(1 + k̃)

∫ sinϕ
b

0

du

∫ ϕR

ϕS

dϕ+O
(
M2u3

)
,

=
2M

(1 + k̃)b

∫ ϕR

ϕS

sinϕdϕ+O
(
M2u3

)
,

=
2M

(1 + k̃)b
[cosϕS − cosϕR] +O

(
M2u3

)
,
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=
2M

(1 + k̃)b

[√
1− b2u2

S +
√

1− b2u2
R

]
+O

(
M2u3

)
.

(4.20)

Path integral

The geodesic curvature measures how far the boundary curve deviates from

the geodesic. For axi-symmetric spacetimes, it has the general expression

[46]

κg = − 1√
γγθθ

βϕ,q. (4.21)

In matrix form, the spacetime (optical) γ is a diagonal 3 × 3 matrix with

entries γqq, γθθ and γϕϕ. The inverse components are determined by recipro-

cating each diagonal entry. Thus

γθθ =
1

γθθ
. (4.22)

For axi-symmetric SBI metric, (4.22) becomes

γθθ =
(∆− a2 sin2 θ)

ρ4
,

= (q − q+)
1− 4q+

q+−q− (q − q−)
1+

4q−
q+−q− .

(4.23)

This is obtained setting θ = π/2 and using expressions of certain parameters.

The term γ in the denominator of (4.21) for optical metric of axi-symmetric

spacetime (4.1) is as follows

γ = det γij = det

∣∣∣∣∣∣∣∣∣
ρ4

∆(∆−a2 sin2 θ)
0 0

0 ρ4

(∆−a2 sin2 θ)
0

0 0
(∆−a2 sin2 θ)Σ sin2 θ+[a sin2 θ(a2+r2(q)−∆]

2

(∆−a2 sin2 θ)2

∣∣∣∣∣∣∣∣∣ .
Using parameters from (4.2), setting θ = π

2
followed by simplification gives

us

γ = (q − q+)
4
2q++q−
q+−q− (q − q−)

−4
q++2q−
q+−q− . (4.24)
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Now that the component βϕ from (4.12) is written as

βϕ =
a sin2 θ(r2(q) + a2 −∆)

∆− a2 sin2 θ
, (4.25)

substitute the expressions of r2(q), ∆ from (4.2) followed by the use of θ = π
2

to get

βϕ = a

[
1− (q − q+)

q++q−
q+−q− (q − q−)

− q++q−
q+−q−

]
. (4.26)

Differentiation of (4.26) with respect to q using Mathematica yields

βϕ,q = −a(q − q+)
2q−

q+−q− (q − q−)
− 2q+

q+−q− (q+ − q−). (4.27)

Substitution of (4.23), (4.24) and (4.27) into (4.21) and simple algebraic

simplification bring geodesic curvature into the form

κg = a(q+ + q−)(q − q−)
− 1

2
+

2q−
−q−+q+ (q − q+)

− 5
2
+

2q−
q−−q+ . (4.28)

After using the parameter q+, q− and rs, (4.28) reads

κg = − 2aM

(1 + k̃)q3
. (4.29)

Linear approximation for the photon orbit q = b
cosϕ

and ℓ = b tanϕ gives

dℓ =
b

cos2 ϕ
dϕ. (4.30)

Path integral of geodesic curvature can now be determined as follows∫ R

S

κgdl =

∫ R

S

− 2aM

(1 + k̃)q3
dl +O

(
aM2

q4

)
,

= − 2aM

(1 + k̃)b2

∫ ϕR

ϕS

cosϕdϕ+O
(
aM2

b3

)
,

=
2aM

(1 + k̃)b2
[sinϕS − sinϕR] +O

(
aM2

b3

)
,

with the use of sinϕS =
√
1− b2u2

S and sinϕR = −
√
1− b2u2

R the ultimate

form of path integral of geodesic curvature becomes∫ R

S

κgdl = ± 2aM

(1 + k̃)b2

[√
1− b2u2

S +
√

1− b2u2
R

]
+O

(
aM2

b3

)
. (4.31)
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In this integral, the sign + indicates prograde case dl > 0 and the sign −

indicates retrograde case of light rays dl < 0.

Weak deflection angle

Now that the path integral of geodesic curvature and the surface integral

of Gaussian curvature have been obtained, it is straightforward to work out

the deflection angle analytically in weak deflection limit. Through the use of

(4.20), (4.31) in (4.13), the deflection angle in finite distance is determined

as follows

α̂ = −
∫ ∫

R∞S∞
KdS −

∫ S

R

κgdℓ, (4.32)

For prograde and retrograde orbits, the deflection angles respectively are:

α̂prog =
2M

(1 + k̃)b

[√
1− b2u2

S +
√
1− b2u2

R

]
− 2aM

(1 + k̃)b2

[√
1− b2u2

S +
√

1− b2u2
R

]
,

(4.33)

α̂retro =
2M

(1 + k̃)b

[√
1− b2u2

S +
√
1− b2u2

R

]
+

2aM

(1 + k̃)b2

[√
1− b2u2

S +
√

1− b2u2
R

]
.

(4.34)

Recall that this is for the source S and observer R at finite distance. Higher

order terms have been truncated. For far limits of both, there is uR → 0 and

uS → 0. Therefore, for infinite distance limit the deflection angle (4.33) and

(4.34) attains the form respectively as

α̂prog =
4M

(1 + k̃)b
− 4aM

(1 + k̃)b2
, (4.35)

α̂retro =
4M

(1 + k̃)b
+

4aM

(1 + k̃)b2
. (4.36)

Note that weak deflection angle for prograde and retrograde motion of light

rays for far distance is given for leading order of weak field approximation.

The weak deflection angle is plotted against the impact parameter b for pro-

grade motion in Fig. (4.4). As the impact parameter increases, the gravita-

tional pull of axisymmetric spacetime weakens and thus the deflection angle
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b

α̂

Figure 4.4: The weak deflection angle α̂prog for prograde light ray is plotted for

different values of Buchdahl parameter k̃ against impact parameter b for axi-

symmetric spacetime. The spin is taken as a = 0.3.

of light decreases. For the Buchdahl parameter k̃ = 0 and the spin a = 0,

the weak deflection angle becomes

α̂ =
4M

b
, (4.37)

which is a known deflection angle in WDL for SBH [29]. Thus our analysis of

deflection angle in WDL for axi-symmetric SBI metric is reliable with SBH.

4.3.3 Image magnification and distortion

Gravitational lens equation to investigate the lensing phenomenon for small

as well as large deflection angles is defined in [25] as

tan β = tan θ − α, (4.38)

where α is given by

α =
DLS

DOS

tan (α̂− θ), (4.39)
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here α̂ is representation for deflection angle. The Greek letters β and θ ex-

press angular source position and angular image position, respectively. DLS

symbolizes the distance between lens and the luminous source. Also, the

distance between observer and light source is characterized by DOS. The dis-

tance parameter is D = DLS

DOS
. Rewriting the impact parameter b in relation

with angular image position

b = DOL sin θ, (4.40)

where DOL represents observer-lens distance. Also the general expression of

circularly symmetric lensing magnification (total) µ is described in [49] as

µ = µtµr, (4.41)

here the tangential magnification µt and radial magnification µr can be de-

fined as

µt =

(
sin β

sin θ

)−1

, µr =

(
dβ

dθ

)−1

. (4.42)

The distortion parameter ∆ and logarithmic distortion parameter δ as ex-

plained in subsection (3.2.3) has the general expressions

∆ =
µt

µr

, δ = log10 |∆|. (4.43)

For the axi-symmetric SBI metric in pure R2 gravity (4.1), consider the

black hole M87* as a lens. The mass of which is 6.5 × 109M⊙ and the

distance DOL is 16.8 Mpc [58]. Therefore, the ratio of mass to distance

becomes 1.84951 × 10−11. Gravitational lensing in weak deflection limit of

axi-symmetric SBI metric in pure R2, magnification of both primary images

and secondary images are investigated here.

The primary image (represented by θp) and the secondary image (repre-

sented by and θs), are the roots of lens equation. Thus can be obtained by
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solving the equation (4.38) for θ. The prograde deflection angle α̂ (4.35) for

axi-symmetric spacetime in R2 gravity in WDL is considered here. The total

µp, tangential µpt and radial µpr magnifications for primary image are com-

puted in Mathematica using expressions of angular primary image position.

Also, with use the of angular secondary image position- the absolute total

µs, absolute tangential µst and absolute radial µsr magnifications are found.

These all magnifications are illustrated in the Figure 4.5. Their behaviour

is checked for three different values of Buchdahl parameter k̃ = 0, k̃ = −0.5

and k̃ = 0.5. The graph labeled as (a) is the plot for primary tangential mag-

nification µpt and absolute secondary tangential magnification |µst| against

the dimensionless distance parameter D. All the curves; three for primary

images and three for secondary images are increasing with increase in D.

Also, the graph in label (d) shows that primary tangential magnification µpt

and absolute secondary tangential magnification |µst| when plotted against

M/DOL , has increasing behaviour for considered values of Buchdahl pa-

rameter k̃. The graphs in the labels (b) and (e) demonstrate the primary

radial magnifications µpr and absolute secondary radial magnifications |µsr|

for three values of k̃. They are graphed against dimensionless parameter D

and the ratio M/DOL. Both plots have similar behaviour, the primary radial

magnifications µpr for k̃ = −0.5 (dashed blue), k̃ = 0 (dashed orange) and

k̃ = 0.5 (dashed green) promptly drops first and then decrease slowly. The

absolute secondary radial magnifications |µsr| for k̃ = −0.5 (black), k̃ = 0

(red) and k̃ = 0.5 (green) can be seen to rise rapidly and later increase with

slower rate. The total primary magnification µp and the absolute total sec-

ondary magnification |µs| is plotted against dimensionless parameter D and

the mass to distance ratio M/DOL in graph labeled (c) and (e), respectively.

Graphs depict that total magnification increases with the increase in param-
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eters on x-axis for k̃ = −0.5, k̃ = 0 and k̃ = 0.5. Here if we compare the

radial, tangential and total magnification curves for k̃ = 0 in all the six plots

with the respective plots in Schwarzschild lensing in [49], we can clearly see

the similar behaviours of all the three magnifications. Henceforth, our plots

are consistent with SBH magnification.

In order to investigate the image distortion, again model M87* black hole

as a lens for the axi-symmetric spacetime in pureR2 gravity. The logarithmic

distortion parameter for secondary δs and primary δp images can be obtained

using Mathematica and are plotted in the Figure 4.6. In plots (a) and (b)

respectively, the primary logarithmic distortion parameter δp and secondary

logarithmic distortion parameter δs against the angular position of source is

plotted for three different values of Buchdahl parameter . The graphs labeled

(c) and (d) is for the plot of δp and δs , respectively, versus the dimensionless

parameter D. The graphs (e) and (f) shows the plot for δp and δs against the

ratio M/DOL. The logarithmic distortion parameter for both primary and

secondary images can be observed to increase for the increase in parameter

D and the ratio M/DOL. However, the logarithmic distortion parameter δp

and δs when graphed against the angular position of luminous source β can

be seen to decrease for considered values of Buchdahl parameter. Also the

curves in graphs for the primary and secondary distortion for corresponding

values of k̃ are very close (or same). Keep in mind that the primary and sec-

ondary distortion parameters have opposite signs. Thus, when the distortion

parameters (not absolute) for primary and secondary images are summed up,

gives answer approximately zero.
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Figure 4.5: Magnification is plotted for axi-symmetric spacetime in R2 gravity in

WDL. Plots for tangential, radial and total magnifications versus the dimensionless

parameter D is given in (a), (b) and (c); each in order. In graphs (c), (d) and

(f) respectively; tangential, radial and total magnifications are plotted against

the ratio M/DOL. Plot convention: Primary magnifications for k̃ = −0.5, k̃ =

0 and k̃ = 0.5 are respectively represented by dashed blue, orange and green

curves. Secondary magnifications for k̃ = −0.5, k̃ = 0 and k̃ = 0.5 are respectively

represented by solid black, red and green curves.
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Figure 4.6: Logarithmic distortion is plotted for axi-symmetric metric in R2 gravity. The

primary logarithmic distortion (δp) and the secondary logarithmic distortion (δs) is plotted

against angular position of source β in (a) and (b). The primary logarithmic distortion (δp)

and secondary logarithmic distortion (δs) is plotted against the dimensionless parameter

D in (c) and (d). The primary(δp) and secondary(δs) logarithmic distortion is plotted

against M/DOL in (e) and (f). Plot convention: Primary logarithmic distortion for k̃ =

−0.5, k̃ = 0 and k̃ = 0.5 are respectively represented by dashed blue, orange and green

curves. Secondary logarithmic distortion for k̃ = −0.5, k̃ = 0 and k̃ = 0.5 are respectively

represented by solid black, red and green curves.
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Summary

In weak deflection limit, the analytical expressions of prograde α̂prog and ret-

rograde α̂retro deflection angle for the stationary, axi-symmetric SBI space-

time in pureR2 gravity is determined in this chapter. To do so, OIA approach

applying Gauss Bonnet theorem has been used here. To investigate the im-

ages formed by weak gravitational lensing, we have modeled M87* located

in the center of Messier 87 as a lens of considered axi-symmetric spacetime.

The black hole has a mass 6.5×109M⊙. The radial, tangential and total mag-

nification for both primary and absolute secondary images has been plotted.

Radial magnification for secondary images, tangential and total magnifica-

tion for both primary and secondary images can be observed increasing for

the dimensionless parameter D and M/DOL. On the other hand radial mag-

nification for primary images decreases with increase in the parameters on

x-axis. Moreover, the behaviour of logarithmic distortion parameter has also

been explored using black hole M87* as a lens. It is seen that sum of distor-

tion parameter (not absolute) is approximately zero satisfying Virbhadra’s

hypothesis [49].
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Chapter 5

Results and Discussions

This dissertation involves the comprehensive exploration of gravitational

lensing for diverse spacetime geometries using the foundational understand-

ing of general relativity. After analyzing gravitational lensing of Kerr metric

in WDL and SDL, we successfully extended the research of gravitational lens-

ing on special Buchdahl-inspired (SBI) metric and axi-symmetric metric in

R2 gravity. First two chapters are based on literature review and the rest of

chapters contain new research.

Chapter 1 established a theoretical framework based on dynamics of gen-

eral relativity with a particular focus on spacetimes, black hole, geodesics,

gravitational lensing and lens equations.

Chapter 2 involves the comprehensive review of gravitational lensing by

axi-symmetric Kerr spacetime. By employing Gauss-Bonnet theorem, de-

flection angle of weak lensing was reduced to that of Schwarzchild spacetime

for spin a = 0. Similarly for very small spin a ≈ 0, coefficients ā and b̄

of strong lensing were evaluated leading to the relevance of deflection angle

with Schwarzchild black hole.

Chapter 3 determined the expression for deflection angle of weak and
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strong deflection for asymptotically flat special Buchdahl-inspired (SBI) met-

ric. Bending angle according to Gauss Bonnet theorem was calculated em-

ploying Gibbons and Werner’s approach in WDL. Tangential and total mag-

nifications for primary and secondary images by model black hole M87* with

mass 6.5 × 109M⊙ are observed increasing when plotted against dimension-

less parameter D and ratio M/DOL . While the radial magnification varies

for primary images (increase) and secondary images (decrease). Moreover,

the sum of distortion parameter of primary and secondary image vanishes as

aligning with hypothesis of Virbhadra[49]. The graphs of the deflection an-

gle in strong field are depicted for three cases supported by SBIM i.e, Morris

Thorne wormhole for k̃ ∈ (−1, 0), SBH for k̃ = 0, and a naked singularity for

k̃ ∈ (−∞,−1)∪ (0,∞). Additionally, learning observables were used to esti-

mate the positions of images and distance between innermost and outermost

image by modelling Sgr A* and M87*, black holes of Milky Way and Messier

87, as SBIM lens. Einstein rings are also plotted choosing three values for

three different cases of SBIM. Magnification of outermost relativistic image

setting n = 1 has been investigated. It can be observed that for angular

source position β → 0, the magnification of images is maximum.

Chapter 4 employs OIA approach to determine analytic expressions of

deflection angle in weak deflection limit for the stationary, axi-symmetric

spacetime in pure R2 gravity. To investigate the images formed by weak

lensing, M87* was modeled as a lens of axi-symmetric spacetime. Radial

magnification for secondary images, tangential and total magnification for

both primary and secondary images can be observed increasing for the di-

mensionless parameter D and ratio M/DOL. On the other hand radial mag-

nification for primary images decreases with increase in the parameters on

x-axis. Moreover, sum of distortion parameter (zero) showed consistency
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with Virbhadra’s hypothesis. This study explores the effect of curvature of

spacetime influenced by massive black hole spin on trajectories of light rays

and characteristics of lensed images.
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