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Abstract 
 

Stress is a common phenomenon that affects individuals from all walks of life and it is associated 

with physical and physiological illness. Brain plays a key role in determining stress. This study 

represents the comprehensive framework for analyzing EEG data to investigate the connectivity and 

network dynamics under stress and normal. Our primary interest is how classifying stress in network 

so this is assessed through effective connectivity in which we use partial directed coherence to 

measure how one region influences other. Connectivity networks are computed using adjacency 

matrix over time and subjected to graph theoretical analysis to focus on degree and betweenness 

Degree highlighted highly connected region and betweenness revealed brain central region that 

facilitate global communication across different brain region. Further analysis in microstate that 

demonstrate the distinct patterns in brain, from this analysis microstate 4 show high duration and 

transition in normal conditions, while microstate 5 show high duration and transition in stress 

condition. Microstate features are used for classification into stress and normal by using three 

machine learning classifiers: random forest (RF), K-nearest neighbors (KNN) and support vector 

machine (SVM). In the classification analysis, Random Forest achieved 94% accuracy followed by 

KNN and SVM. Furthermost, this approach provides valuable insights into brain connectivity and 

demonstrate the utility of microstate features in stress classification. 

Keywords: Stress, Independent Component Analysis, Electroencephalogram (EEG), Effective 

Connectivity, Partial Directed Coherence(PDC),Graph Theoretical Analysis, Microstate Analysis. 
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Chapter 1: Introduction 
 

1.1 Stress 

Stress gained widespread recognition in its biological context through Hans Selye, who described it 

as “the non-specific response of the body to any demand for change” [1].  Stress is a physiological 

and psychological response to pressure or demand from the environment. Stress is a process that 

strains an individual capacity, impacting both physical and mental abilities. It is a risk factor for 

numerous health issues, including heart attack, stroke, hypertension, and even sudden death [2]. 

Additionally, stress is associated with decision-making, performance, and learning. It can stem from 

both positive and negative emotions [3]. However, when stress is prolonged and associated with 

negative emotions, it can lead to more serious emotional states such as depression, sadness and anger.  

According to World health organization, stress impacts both the body and the mind. Excessive stress 

can lead to physical and mental health issues, as 3.6% of the global population experienced  

stress [4].  

Stress is further classified into three types; acute stress, chronic stress and episodic stress [2]. Acute 

Stress is a natural and adaptive response to immediate challenges, typically involving short-term 

stress and this often occurs in response to specific events or situations. Next is Chronic Stress a long-

term form of stress that continues over an extended period. lastly, Episodic Stress arises when 

stressors occur more frequently for a limited duration [2]. 

1.2 Importance of Stress Detection 

Stress trigger behavioral and mental changes due to lack of relief from various challenges. Stress can 

arise from various sources. Here are some common causes of stress and these include: work pressure, 

financial concerns, health concerns, daily hassles and traumatic events. 

Stress can affect the body in variety of ways. These include the nervous system, endocrine system, 

musculoskeletal system, digestive system and mental health further stress symptoms are indicated 

by emotional and physical symptoms. Emotional symptoms include anxiety, depression, anger, 

moodiness, loneliness and forgetfulness whereas physical symptoms include headache, high blood 

pressure, muscle aches, sweating, cramps, fainting and sleeping difficulties. 
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These symptoms also alter the behavior of individuals experiencing stress, such as sudden energy 

outbursts, food craving and frequent crying are important symptoms of stress [4]. Prolonged stress 

can lead to hypertension and contribute to conditions such as bowel disease and cardiovascular 

disorders [5]. Therefore, researchers focus on detecting stress at its early stages to prevent the onset 

of severe health complications. 

Stress detection is important for individuals to recognize the impact of excessive stress on their well-

being. The research community is concentrating on identifying the most effective methods for early 

detection of stress. 

1.3 Methods For Stress Detection 

Stress is now recognized as a societal issue. Stress assessment is typically conducted using two 

primary measures i.e. Subjective and objective. In subjective measure self-report scales, interviews 

and journals are used for stress detection but these are not reliable methods to detect stress. On the 

other hand, objective measure is further classified into physiological, neurological and behavioral. 

Physiological and neurological techniques are also mentioned in table 1 and 2. Heart rate is one of 

the measures for stress using ECG. As we know stress is linked with brain so this can be measure by 

hormones. The human cerebrum is regarded as the main source of stress. Cortisol is the key hormone 

for body response to measure stress. Stress is also detected on the basis of sleep pattern and social 

behavior. When someone is disturbed due to their sleep cycle and the underlying cause can be stress. 

This is not the correct way to detect stress because there is multiple reason behind the disturbed sleep 

and social behavior. So, the method which is discuss in this study to measure stress is 

Electroencephalography (EEG). Two types of responses i.e. physical and physiological measures are 

outlined in tables I and II below [6].  

Table 1 Physical Methods for Stress Measurement 

S. No Technology Name Physical Techniques 

1. Infrared Eye Tracking Eye Activity 

2. Automated Gesture Analysis Body Gesture 

 

Table 2 Physiological Methods for Stress Measurement 

S. No Technology Name Symbol Physiological Techniques 

1. Electrocardiography ECG Electrical activity of the heart 
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2. Electroencephalography EEG Electrical activity of the brain 

3. Electrodermal Activity EDA Skin Reaction 

4. Galvanic Skin Response GSR 

  

Both physical and physiological methods form the basis of traditional stress detection systems. The 

major drawback of physical technologies for measuring stress is affected by external factors, 

including room temperature, anxiety and sweating. The brain waves that humans produce is a 

reflection of these elements. 

According to research [6], stress can be identified using physiological traits of humans derived from 

physiological signals. The features that are physiological in nature, manifesting as electrical activity 

in the brain, serve as the basis for stress detection. In the next, we discuss about 

electroencephalography, how we used this for stress detection. 

1.4 Background 

In the last twenty years, multiple studies have been conducted to detect stress in humans using 

physiological measure. Some of the studies discuss the techniques which are used for stress detection. 

These techniques are further classified into various methods for detecting stress, which can be 

quantified through surveys, questionnaire or the monitoring of individuals to assess changes in 

physiological signals. In real-time applications, these signals can be measured and analyzed to 

evaluate stress levels [7], which are categories into two types: 

I. Invasive methods  

II. Non- invasive methods  

These methods are further divide into two types: 

I. Electrocorticography (ECoG) 

II. Local Field Potential (LFP) 

Both methods are recognized for delivering high precision and resolution along both spatial and time 

axes. Research indicates that electrocorticography (ECoG) involves placing electrode pads directly 

on the brain’s surface to record brain waves. This technique achieves high resolution and wide 

bandwidth; however, it is limited by the need for surgical intervention to position the electrodes [7]. 

Some techniques have drawback of involving invasive procedures like hormone analysis this 

highlights the necessity for non-invasive, effective, reliable and accurate methods [8]. Stress can be 
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measure from physiological signals which used different methods from non-invasive type 

[6],[7],[8].  

Table 3 Comparison of different non-invasive measures 

S. 

No 

Non-Invasive Measures Advantage  Limitations 

1. Functional Magnetic 

Resonance Imaging (fMRI) 

Moderate to high spatial 

resolution 

The temporal response of 

blood flow is gradual. 

2. Magnetic 

Encephalography (MEG) 

High resolution Very expensive  

3. Positron Emission 

Tomography (PET) 

High resolution Limited temporal resolution 

and considerable safety 

restrictions due to radiotracers 

4. Blood Pressure (BP) 

 

Ease of use, measurement 

sensitivity, and availability 

of normotensive data. 

The absence of prospective 

mortality data makes it 

unsuitable for determining 

whether treatment is required. 

5. Blood Volume Pulses 

(BVP) 

 

Non-intrusiveness and 

affordability 

The requirement for 

individual calibration and its 

tendency to drift over short 

periods. 

6. Galvanic Skin Resistance 

(GSR) 

Affordability and immediate 

accessibility 

Diurnal fluctuations affect the 

timing of assessments, 

influencing the results. 

7. Electromyography (EMG) The most accurate, suitable, 

and dependable instrument 

for calculating muscle 

activity 

Decreased clinical yield in 

certain instances, with 

technical challenges from 

obesity, advanced age, and 

signal interpretation 

complexity. 

8. Electrocardiography 

(ECG) 

Equipment is widely 

available, and its accuracy 

Lower sensitivity compared to 

alternative stress imaging 
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has been confirmed across 

various populations 

techniques and low 

specificity. 

9. Electroencephalography 

(EEG) 

Exceptional temporal 

resolution, with no 

significant safety concerns 

Low spatial resolution 

 

EEG is the preferred option for surpassing ECG, EMG, PET and fMRI in providing accessible and 

reasonably priced insights into brain activities with high temporal resolution. It can be concluded 

that EEG is an excellent instrument, as it utilizes a non-invasive technique to receive feedback from 

stress hormones, making it both accurate and reliable for stress detection. 

1.5 Electroencephalogram (EEG) 

Brain is the primary organ that reacts to various feelings and emotions [9]. The brain controls both 

direct and indirect electrical signals that flow through the human body, acting as the central nervous 

system of living things. An electroencephalogram (EEG), a medical procedure, is used to record this 

electrical activity that neurons produce [10]. Electric currents between the brain cells in the cerebral 

cortex generate an EEG signal. Small metal disc connected to thin wires, known as electrodes, are 

placed on the scalp to facilitate the transmission of signals to a device for data recording. These 

electrical changes achieve high temporal resolution on the order of milliseconds or even 

microseconds. [10], [11]. EEG recordings are represented as graphs that illustrate the electrical 

activity produced by the brain over time. 

By measuring the potential difference between two electrodes spaced apart and recording the total 

potential of the neurons, an EEG channel is formed. The 10-20 Standard electrode setup [10] is used 

to measure EEG, as shown in Fig. 1. 
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Figure 1.  10-20 Standard electrode system 

EEG is a useful electrophysiological tool for early detection, assessment, and treatment because it is    

a potent method for tracking the nonlinear electrical activity of the brain’s nerve cells. 

1.6 Research Gap 

To date, the exploration of EEG through effective connectivity for the classification of stress remains 

largely unexplored. Additionally, the analysis and application of microstate analysis in EEG data, 

specifically for stress classification using connectivity measures, represents an uncharted area in the 

field. These gaps highlight the need for further research, as combining effective connectivity with 

microstate analysis could provide deeper insights into brain dynamics and help improve the accuracy 

of stress detection using EEG. 

1.7 Objectives 

• Detection of stress using EEG data identify and investigate different patterns aiming to 

understand the neural connections associated with stress in terms of both dynamic 

connectivity and microstate analysis 
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• Assess the sensitivity and specificity of PDC in capturing stress-related alterations in brain 

connectivity. Examine changes in the occurrence, duration, and topography of microstates 

during stress-inducing tasks or scenarios 

1.8 Structure 

Chapter 1: This section is comprising of the Introduction of Stress and EEG and objectives of the 

proposed system. 

Chapter 2: This section is about literature review where we further discuss the methods by which 

we detect stress  

Chapter 3: This section comprises the major tasks i.e. the methodology of research  

Chapter 4: This segment shows the results of the implemented work.  

Chapter 5: This section contains conclusion.  

References: This section contains the references of the articles and the books we have cited. 

 

Chapter 2: Literature Review 
 

The thorough summary highlights the international efforts undertaken so far in the field of stress 

reduction and deduction methods. It looks at the gathering and evaluation of data that is mostly 

physiological in nature and recognizes the connection between different physiological characteristics 

and felt stress, which was the main emphasis of earlier studies on stress assessment. 

Recent advancements in neuroimaging technology have facilitated the use of electroencephalography 

(EEG) for measuring and recording the electrical activity of the human brain. This technique 

represents a significant advancement in the field of neuroscience, aiding neurologist [12]. Variations 

in brain wave patterns are crucial for diagnosing mental disorders, including stress. 

 According to Saidatul, A et.al. [13] The two main parts of the EEG stress assessment approach are 

feature extraction and stress categorization. EEG features are categories into three types: 

synchronicity-domain, time-domain, and frequency-domain features. By analyzing amplitude in 

connection to energy, variability, coefficient of variation, and features associated with higher-order 

crossings, time-domain features concentrate on temporal information. Conversely, the most 

commonly utilized frequency-domain features derived from EEG signals include delta (0.5-4 Hz), 
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theta (4-8 Hz), alpha (8-13 Hz), beta (14-30 Hz) and gamma (30-50 Hz) bands. These frequency 

bands encompass information pertinent to stress and psychological disorders. 

The authors of [14] discuss in papers that EEG offers high temporal resolution, making it a valuable 

tool for examining fluctuations in mental states. It is used to capture brainwave patterns that 

correspond to stress responses, linking specific EEG bands to different stress levels. Due to their 

cost-effectiveness and non-invasiveness, they make an EEG a valuable tool for stress detection. 

EEG signals encompass information generated by a intricate and densely connected network of 

neurons. Brain connectivity provide us how brain areas interconnect with each other. Brain 

connectivity can be categorized into neuroanatomical (or structural), functional, and effective 

connectivity, as noted by Horwitz B. et.al. [15]. EEG does not provide direct insight into structural 

connections; instead, it is used to estimate functional and effective connectivity. The relationships 

between various brain regions are referred to as functional connectivity, and they are shown by the 

temporal coherence within networks. The methods employed to determine functional connectivity 

can yield varying conclusions, influenced by elements like the kind of stressor, the number and 

arrangements of electrodes, and the degree of connection between brain units. This variability can 

occur even within data from the similar modality or when using the same task [16].  

The authors of [17] mentioned that effective connectivity, refers to the causal influence that one 

neural region exerts over others. It is determined by integrating imaging techniques such as EEG and 

magnetoencephalography (MEG) with mathematical models of interconnected brain regions. 

Effective connectivity represents the most basic circuit that outlines the connection between two 

neurons. It illustrates how neural networks influence one another [18]. Effective connectivity, unlike 

the non-directional and correlational nature of functional connectivity, evaluates the directed 

influences between different brain regions. Connectivity metrics that are both efficient and functional 

are crucial for understanding brain behavior in both stressed and non-stressed conditions. Various 

features are available to detect these connectivity measures [19]. 

 Xi et al. [20] this study investigated Coherence analysis, which seeks to determine the functional 

relationships among various brain areas. This analysis is conducted by examining the amplitude and 

phase of signals recorded from EEG electrodes. The results indicated a significant increase in 

coherence across all frequency bands during multilevel stress assessments. 

Al-Shargie et al. [21] examined that Magnitude Square Coherence (MSC) functions as a 

supplementary indicator of functional connectivity associated with stress. A significant reduction in 
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functional connectivity is observed when comparing control conditions to stress situations within the 

intra-hemispheric prefrontal cortex (PFC). The EEG connectivity maps showed that when sleep 

deprivation was utilized as a stressor, there was a rise in beta coherence throughout the entire scalp 

and a reduction in MSC for the alpha band across the anterior scalp region.  

Zanetti M. et al. [22] Mutual information (MI) is utilized to assess the resemblance of the jointly    

distributed probability between two EEG signals. During stress, MI is reflected in maps of EEG 

connectivity. According to the study in [23], MI did not exhibit a notable increase in the EEG map 

during Stroop task. However, under the physical strain of lack of sleep, the linear area saw a 

significant declines, whereas the nonlinear area in the head’s anterior, central, and temporoparietal 

regions showed a considerable rise. 

Phase lag is utilized to determine the time difference between two EEG readings coming from distinct 

brain areas. Al-Shargie et al. [24] demonstrated that the phase lag technique plays a significant role 

in distinguishing between the conditions of control and stress across various levels. Its primary 

drawback, though, is that it is impacted by the volume conduction problem and fails to reflect the 

directionality of connectivity. 

The Phase-slope index (PSI) is a metric for assessing phase synchronization that is unaffected by 

volume conduction or shared reference influences. Research in [25] shows that chronic stress can 

alter various connectivity patterns among brain regions as one is observing outside stimuli.  Darzi et 

al. [26] demonstrated high performance using PSI features. In contrast, Khosrow Abadi et al. [27] 

reported lower accuracy for the Phase-Slope Index (PSI) compared to the Partial Directed Coherence 

(PDC) features. Additionally, PSI may not accurately represent the directionality of EEG signals. 

Partial directed coherence (PDC) is employed to determine the weight and direction of the 

information flow between multivariate frequency domain datasets. By utilizing multivariate analysis, 

PDC captures the phenomena of stress while preserving the complete information from data 

involving multiple variables. Specifically, PDC can be used to anticipate two distinct coherences 

from the classical coherence function. Granger causality and Akaike information criterion are two of 

the determined parameters that affect the direction of flow within a specific frequency range across 

two channels. According to Al-Shargie et al. [28] the functional coupling diminishes as the amount 

of tiredness rises under stress. To regulate the EEG multichannel analysis’s negative causality, 

Generalized Partial Directed Coherence (GPDC), is a crucial PDC version to provide functional 

connectivity assessment. GPDC traits were employed by Khosrowabadi et al. [29] to identify stress 

and non-stress instances. 
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Al Ezzi A et al. [30] shown that using PDC in conjunction with graph theoretical measures facilitates 

comparison with healthy controls (HCs) and aids in estimating the severity of SAD. This combination 

enhances the ability to detect key features of effective brain networks. A graph theoretical measures 

discuss according to functional connectivity. Xefteris VR et al. [31] this paper suggests an approach 

for combining peripheral physiological information with EEG analysis. The novelty of this research 

stems from the application of graph theory quantifies EEG data for classification of arousal and 

valence. The primary objectives of the analysis are to compute EEG functional connectivity networks 

and extract features based on graph theory from them. Accuracy is the main concern in this study and 

the proposed methodology is not reliable. 

Kim, K et al. [32] shown a demonstration on the usefulness of EEG microstate features in evaluating 

cognitive performance but the limitation here is the limitation of dataset according to their proposed 

methodology. Al-Ezzi A et al. [30] found that the impact of cognitive reevaluation in conjunction 

with upbeat music for controlling emotions was examined by examining the functional connectivity 

of microstates based on EEG. This analysis is on electrophysiological method and these are not 

generalizable. 

Bhatnagar, S et al. [33] in this study EEG microstates identify as biomarkers across multiple mental 

health disorders and treatment interventions. And the limitation is interpretability of features. 

Christoph M. Michel et al. [34] The use of EEG microstate methods in clinical and experimental 

research is growing, with well-established analysis procedures and objective quantifiers. However, 

some key challenges remain unresolved in this study, such as determining the optimal number of 

microstate and the methods for defining them. 

From above studies they conclude that they explored EEG connectivity to understand stress and brain 

dynamics, employing methods like coherence analysis, mutual information, phase lag, and partial 

directed coherence (PDC). While coherence and mutual information show significant changes under 

stress, phase lag and phase-slope index (PSI) have limitations in capturing directionality. PDC, 

combined with graph theoretical measures, provides valuable insights into stress-related 

connectivity, though some methodologies still require refinement. EEG microstate analysis shows 

potential in identifying cognitive and mental health markers, but challenges remain in interpretability 

and dataset limitations. Overall, further research is needed to combine microstate features with 

connectivity measures like effective connectivity to improve accuracy and generalizability. 
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Chapter 3: Methodology 
 

This chapter outlines the methods employed to identify pertinent literature for the study. It consists 

of several sections, as depicted in the figure below and described here:  

 

 

Figure 2 A schematic representation of the process for constructing an effective connectivity 

network from EEG data utilizing graph theory 

3.1 EEG Data Acquisition 

EEG information was obtained using the eegosports amplifier (ANT Neuro, Enschede, Netherlands) 

with 32 gel-based Ag/AgCl arranged on an EEG cap following the Extended International 10-20 

system. The electrodes grounded at AFz and referenced to CPz, as per manufacturer’s guidelines 
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(eemagine Medical Imaging Solutions GmbH, Berlin, Germany), eliminating the need for re-

referencing the EEG data. All electrode reading were kept below 10kΩ during the recording sessions. 

 

Figure 3 Image of EEG device and electrode position schema. 

A) EEG device (eego™sports; ANT Neuro, Enschede, Netherlands) used in this study and (B) 

the electrode position schema following the 10-20 system. 

In above figure, EEG equipment and electrode placement scheme is shown. So here is the 

representation of how these electrodes are shown with according to the brain lobe. Lobes of the brain 

are frontal, parietal, temporal and occipital and in 10-20 standard placement of channel location is 

shown in figure 3.3 
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Figure 4 Channel Location according to 10-20 standard 

3.2 Data Preprocessing  

EEG preprocessing is performed by following procedure which is shown in above Fig 3.1. Raw EEG 

data files stored in .cnt (Continuous) format, imported using EEGLAB toolbox in MATLAB. These 

files are further categories according to gender Male and Female, and after this divide stress into two 

levels, stress and normal. In this study, dataset contains electroencephalography (EEG) recordings 

for 36 subjects, 18 females and 18 males. 

The dataset contains both raw data and cleaned data filtered. To preprocess the raw EEG data, 

independent component analysis (ICA) and bandpass filtering were implemented. The data originally 

contained 64 channels, which are reduced to 35 relevant channels to focus on brain-activity and 

exclude non-essential data. A causal band pass filter is applied using EEGLAB legacy finite impulse 

response (FIR)filter with 1Hz to 50Hz bandwidth to retain the EEG frequencies of interest while 

removing unwanted low-frequency drift and high frequency noise. The causal filter ensured that 

phase delays are not compensated for preserving the causal relationships in the data which is crucial 

for effective connectivity and causal analysis. Fast-ICA is employed to remove noise cause by eye 

blinking artifacts, muscle artifacts and heart rate. Subsequent analyses were conducted using custom 

MATLAB scripts and open-source toolboxes, including the (1) Brain Connectivity Toolbox for graph 

theoretical analysis and (2) EEGLAB for generating topographical maps [35]. Time domain analysis 

is implicitly performed as a part of pre-processing step, where the EEG data is segmented and cleaned 
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for further analysis. The frequency domain analysis is not performed so short-time Fourier transform 

is applied to find out which frequency band is affected by stress.  

3.3 Frequency Domain Analysis 

When analyzing in the frequency domain, EEG data are converted using techniques such as Fourier 

Transform (FFT) to extract power across different frequency bands. The five frequency bands that 

make up an EEG signal are Delta (1-4Hz), Theta (4-7Hz), Alpha(8-15Hz), Beta(16-31Hz) and 

Gamma (>32 Hz). In our study, we apply this to find out which frequency band is affected by stress. 

3.4 Fast Fourier Transform 

A mathematical technique called the Fast Fourier transform is employed to analyze and represent 

data in terms of time, which is then changing within the frequency domain. In the context of EEG 

signals, FFT is utilized to convert signals from the frequency domain to the time domain. This 

transformation helps in identifying and analyzing the different frequency components that associated 

with different mental conditions [36]. 

The Discrete Fourier Transform (DFT)can be computed efficiently using the FFT technique. As a 

result, O (𝑁2) computational complexity is reduced to O (N log N). The FFT algorithm pertains to 

the same formula as DFT but optimizes the computation the breaking down the DFT.  

3.5 Power Spectral Density 

After applying FFT, we compute power spectral density to analyze the power of different power 

frequency bands. The PSD P(f) is computed as: 

                           𝑃(𝑓) =
1

𝑁
|𝑋(𝑓)|2                                                                                (1) 

 

Where: 

P(f) represents the power of signal strength at frequency f. 

X(f) denotes the signal’s Fourier transform at frequency f. 

N indicates the signal’s sample count. 

In this study, the application of FFT helps in study of the EEG signals’ frequency components, which 

is helpful for identifying that brain activity changes in this case i.e. stress. It allows to break down 
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complex time-domain signals into understandable frequency components to analyze brain rhythms 

[35]. In fig it shows how a signal is decomposed into FFT. 

 

 

Figure 5 DFT decompose into FFT. 

3.6 Effective Connectivity 

Effective Connectivity analysis focuses on understanding the directional impact one neural region 

has on another, providing insights into the causal relationships among various brain regions [36]. 

This is particularly useful in EEG studies related to cognitive processes like stress detection, where 

understanding the flow of information across brain regions. Effective connectivity reveals how one 

region influences activity on another, rather than simply identifying correlations or statistical 

dependencies like in functional connectivity [37]. Effective connectivity can help the neural 

mechanism behind stress responses by showing how brain regions interact dynamically over time. 

So, this information is found out by brain lobes on the basis of effective connectivity.   From the four 

lobes of brain, we can get information that which lobe of the brain causes stress. These are frontal, 

parietal, temporal and occipital. In Fig. 4.2 Lobes of the brain are shown. 
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Figure 6 Lobes of the brain 

 

3.7 Partial Directed Coherence (PDC)  

Partial Directed Coherence (PDC) is a frequency-domain measure used to assess effective 

connectivity and is widely used in EEG [36]. PDC provides a way to measure the directed influence 

between brain signals, indicating whether the activity of one part of the brain influences that of 

another, which is a core aspect of effective connectivity. PDC works in the frequency domain to 

analyze how brain regions interact over different frequency brands (e.g. alpha, beta, gamma). PDC 

is applied to multivariate EEG signals and is well-suited to handle complex brain networks with 

multiple interacting regions. Compared to other methods, PDC tends to reduce false interactions or 

cross-talk between signals, making the analysis of brain connectivity more reliable. PDC is robust to 

noise and outliers, which makes it suitable for analyzing real EEG data. Using the approach described 

by Baccala and Sameshima [38] as a spectral measure with several variables for identifying the causal 

relationships that are directed within a multivariate data collection between a certain pair of time 

series signals, the PDC data were utilized in order to evaluate the connectivity. 

PDC is a technique that measures the relationship between two signals out of multiple n signals, 

accounting for the influence of other signals and mitigating the effects of volume conduction. It 
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enhances the concept of partial coherence by measuring directional influence and is calculating using 

a Multivariate Autoregressive (MVAR) model. 

X(t) represents a set of estimated signals from m channels, and the order p model is represented by: 

                                      𝑋(𝑡) = ∑ 𝐴(𝑟)𝑋(𝑡 − 𝑟) + 𝐸(𝑡)

𝑝

𝑟=1

                                                             (2) 

 

Where m denotes the number of nodes and  𝑋(𝑡) is the signal vector with m channels at time t. E(t) 

embodies the estimated error and A(r) is the autoregressive coefficient’s coefficient matrix at lag r. 

The model order p, which was calculated using AsympPDC [39] package to reduce the Akaike’s 

information criterion (AIC) value, determines the fitting outcomes of the MVAR model. 

The frequency domain representation of A(f) can be defined by after obtaining the coefficient matrix 

of the MVAR model containing the values of A(r).   

                                          𝐴(𝑓) = ∑ 𝐴(𝑟)

𝑝

𝑟=1

𝑒−𝑖2𝜋𝑓𝑟                                                                                (3) 

Next, the discrete Fourier transform is used to the autoregressive coefficient matrix A(r): 

                                          𝐴(𝑓) = 𝐼 − 𝐴(𝑓) = [𝑎1(𝑓)𝑎2(𝑓) ⋯ 𝑎𝑚(𝑓)]                                             (4) 

 

where, 𝑎𝑘(𝑓) is the k-th column of the matrix 𝐴(𝑓) ,and the elements of 𝐴(𝑓) are defined as: 

                                           𝐴𝑙𝑘(𝑓) = {
1 − ∑ 𝑎𝑙𝑘(𝑟)

𝑝

𝑟=1
𝑒−𝑖2𝜋𝑓𝑟, if𝑙 = 𝑘

− ∑ 𝑎𝑙𝑘(𝑟)
𝑝

𝑟=1
𝑒−𝑖2𝜋𝑓𝑟 , otherwise

                                      (5)            

Where, the node index is indicated by l and k. 

PDC value, which can be described as follows, indicates the direction and strength of the flow of 

information at frequency between nodes k and l at frequency f, which is defined as: 

                                         𝑃𝐷𝐶𝑙𝑘(𝑓) =
𝐴𝑙𝑘(𝑓)

√𝑎𝑘
𝐻

(𝑓)𝑎𝑘(𝑓)

, 𝑙 ≠ 𝑘                                                                        (6) 

Where, H represents the transposition of a matrix. 
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The adjacency matrix was generated by figuring out a pair of nodes’ PDC values, followed by 

threshold processing. In this step, if the PDC value exceed a threshold T, it indicates a connection 

amongst the nodes; conversely, when the PDC value falls below T, no connectivity is inferred. This 

thresholding technique is commonly employed to eliminate false relationships as well as and create 

the brain network, a sparse connectivity matrix [40]. Variations in the threshold T of the adjacency 

matrix can significantly influence the numerical properties and the causal brain network’s topological 

configuration.  

3.8 Adjacency Matrices 

With the values of PDC between each paired association for each EEG sub-band (delta, theta, alpha 

and beta) for stress, the connectivity matrices are constructed.  Transforming the connection matrices 

into adjacency matrices involved applying a threshold.  

In this study, selecting an appropriate threshold is critical for creating a matrix of adjacency based on 

the association matrix. A significance level-based approach is applied to establish the threshold T. 

Subsequently, the effective network is transformed into an unweighted graph with direction, wherein 

the connection matrix, comprised of PDC values for every pair of directed nodes is transformed into 

an adjacency matrix A using the threshold T. In this network, the strongest interactions are indicated 

by the threshold T, which can be understood as the ratio of the number of real effective connections 

to the total number of connections available. To investigate the characteristics of the efficient 

connectivity networks at varying connection strengths, the threshold T is set within the range of 0.1 

to 0.9 with increments of 0.05. 

For each threshold value, the adjacency matrix derived from PDC are filtered to retain only 

connections stronger than the threshold. So, the resulting connectivity matrices are then used to 

examine network metrics, such as local efficiency. After computing matrices, the topographical 

properties of the adjacency matrix are quantified using graph theoretical analysis.  

3.9 Graph Theoretical Analysis 

Graph theory is a crucial tool for analyzing electrical circuits and chemical structures. Its 

contemporary evolution started with the development of the scale-free network model in the late 

1990s [41], which facilitated the understanding of brain connectivity patterns. During the past two 

decades, the graph theory has been applied to quantifies neurophysiological data gained significant 

interests in the field of biology and neuroscience to diagnose brain disorder like stress. One of the 

objectives of the current study is to bring attention to cognitive neuroscience. 
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Topographical connections patterns are quantified by graph theory, which is then applied to brain 

connectivity networks. The data are shown as a Graph (G), a simple topographical representation 

composed of a set of V vertices (nodes) joined by edges (E) that are linkages, where G = (V, E) as 

shown in Fig.3.3, to help with better understanding of connectivity patterns. The human brain 

network is organized on a large scale is represented by nodes, which correspond to brain regions, and 

edges, which denote statistical associations such as anatomical or effective connections. Graph edges 

can be categorized as weighted or unweighted, and either direct or indirect. Direct edges show a one-

flow of information, where the activity of one node is influenced by the other. Indirect edges indicate 

two-way information flow between connected nodes.  Strong and weak connections are distinguished 

by the line’s weight, which indicates the edge’s connectivity strength between two nodes. 

Thresholding removes weak connections. 

 

Figure 7 A representation of network consisting of nodes and edges. 

In this study, implementing graph theory analysis based on Partial Directed Coherence (PDC) 

involves several steps, including the computation of PDC values from EEG data and the construction 

of a connectivity matrix. Once we have the connectivity matrix, we can apply graph theory to analyze 

the network properties and then calculate Partial Directed Coherence from EEG data to obtain a 

matrix representing the directional connectivity between two electrodes in a specific frequency band. 

Decide on a threshold value in order to create the binary from the connection matrix or weighted 

adjacency matrix. This step determines which connections are considered for further analysis. We 

use a graph library to construct a graph from the binary or weighted adjacency matrix. Each electrode 
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becomes a node, and connections between electrodes become edges. Next step is to explain how we 

apply graph theoretical analysis apply in our study: 

Once we compute the PDC matrices, which represent directional connections between EEG channels, 

these matrices are treated as adjacency matrices in graph theory. In this study we compute 

directionality the index, degree distribution and efficiency indexes: 

3.10 Directionality Index 

Each node in a graph corresponds to an EEG channel, and the degree represent the strength of 

connectivity between them, for these adjacency matrices. Before the directionality index is 

calculated, the node degree is calculated. The quantity of linkages between a node i to other nodes is 

known as its degree.  This number is derived from adjacency matrix created using PDC values, which 

show which way information flows in a directed network. There are two categories for a node’s 

degree: in-degree and out-degree. The in-degree (𝑘𝑖
𝑖𝑛)  represents the quantity of entering 

connections, while the out-degree ( 𝑘𝑖
𝑜𝑢𝑡) denotes the quantity of outbound connections. These 

degrees can be expressed mathematically to quantify the flow of information [42]:  

                                                       𝑘𝑖
𝑖𝑛(𝑡) = ∑ 𝐴𝑗𝑖

𝑗∈𝑁𝑐

(𝑡)                                                       (7)                

                                                  𝑘𝑖
𝑜𝑢𝑡(𝑡) = ∑ 𝐴𝑖𝑗

𝑗∈𝑁𝑐

(𝑡)                                                (8) 

Where  𝐴𝑖𝑗 which denotes the adjacency matrix entry, need not always equal to  𝐴𝑗𝑖. The ability of 

region to affects other is indicated by a node with a high out-degree value. Therefore, a node with a 

high in-degree value indicates that there might be a relationship between one region and another.  

By calculating the difference between the out-degree and in-degree vectors, the directionality index 

(DI), which represents the information flow direction for each frequency band is calculated. 

 

                                              𝐷𝐼𝑖(𝑡) = ∑𝑘𝑖
𝑜𝑢𝑡(𝑡) − ∑𝑘𝑖

𝑖𝑛(𝑡)                                    (9) 

A feature matrix of size 𝑁𝑇 𝑥 𝑁𝑐, where 𝑁𝑇 represents the number of time points and 𝑁𝐶 represents 

the number of channels, was produced by storing the directionality index of the connectivity network 

at each time point in a row vector 𝑉𝑡: 1 𝑥 𝑁𝑐. 
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3.10.1 Degree Distribution 

The distribution of degree P(k) is a function indicates the percentage of nodes in the network with a 

degree k. In a network where nodes i has degree and 𝑘𝑖 and there are nodes N. 

                                          𝑃(𝑘) =
1

𝑁
∑ 𝛿(𝑘 − 𝑘𝑖)𝑁

𝑖=1                                                        (10) 

The Dirac delta function, denoted as 𝛅(.) is 1 if k=𝑘𝑖 and otherwise 0. 

This gives a broad view of the network’s topology and helps identify network types and node roles. 

3.10.2 Efficiency Indexes 

• Global Efficiency (𝐸𝑔𝑙𝑜𝑏𝑎𝑙  ): Represents how effectively information is transferred over the 

whole network.  It is calculated as: 

                           𝐸𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁(𝑁 − 1)
∑

1

𝑑𝑖𝑗

𝑖≠𝑗

                                                    (11) 

• Local Efficiency (𝐸𝑙𝑜𝑐𝑎𝑙 (𝑖)): Reflects the efficiency of information transfer within the local 

neighborhood of node 𝑖. It is calculated as: 

                                       𝐸𝑙𝑜𝑐𝑎𝑙(𝑖) =
1

𝑘𝑖(𝑘𝑖 − 1)
∑

1

𝑑𝑗𝑘
                                           (12)

𝑗≠𝑘∈𝑁(𝑖)

 

Where 𝑁(𝑖) is the set neighbors of node 𝑖 and 𝑑𝑗𝑘is the shortest path length between nodes j and k. 

From this study, they reveal how well information or resources flow through the network, both 

globally and locally. Efficiency metrics are crucial for understanding how stress impacts the 

functional organization of the brain. High or low values indicate by which measure stress affects 

overall and local information processing capability. 

3.11 Microstate Analysis  

The field of microstate analysis was first developed by Lehmann et al. [43] in 1987.They create 

discrete states out of the alpha frequency range(8-12Hz). Two surprising characteristics emerged 

when a multi-channel a state of rest to create a temporal sequence of scalp topographies, EEG data 

was transformed. Multi-channel recordings have more maps depicting the terrain of the scalp. These 

maps have a distinct 60-120ms temporal structure.  A single topography gives way to another after a 

brief period of stability. These stable periods of a certain topography are called ‘microstates. One 

method utilized in the field of electroencephalography (EEG) is microstate analysis is a technique to 
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examine brief, steady patterns of brain activity. Brain electrical activity consisting of a series of brief, 

quasi-stable state known as microstate, which typically last for few milliseconds. The human brain 

operates with complex interaction between various regions, forming networks that change over time. 

The focus of EEG microstate analysis is the temporal evolution to potential topography. 

Topographical transitions and associated characteristics offer connection information.  

The three steps of microstate analysis are parameter calculations, fitting, and clustering. The standard 

deviation of all channel potential at each site is equivalent to scalp potential strength is determined 

by measuring Global field power. Global field power (GFP) is computed for each electrode. To get 

average microstate topography, a modified K-mean clustering approach was used to topographies at 

GFP local minima with excellent signal-to-noise ratio were subjected to a modified version of K-

mean clustering algorithm. Global field power [44] is computed as: 

                                          GFP(𝑡) = √
1

𝑁
∑ (𝑉𝑖(𝑡) − 𝑉(𝑡))2

𝑁

𝑖=1
                                         (13) 

where:  

• N is the number of electrodes 

• 𝑉𝑖(𝑡) represents the potential at time t at electrode 𝑖.   

• 𝑉(𝑡 ) is the average potential at time t across all electrodes. 

This computes the root mean square deviation of the potential of all electrodes from the mean 

potential, providing a measure of how much the EEG field varies across the scalp at a given time.  

From microstate data: the following parameters are extracted: transition probability, occurrence, 

temporal coverage, and duration.  

The average microstate class duration, expressed in milliseconds, is called duration and that is: 

                                          𝐷𝑖 =
∑ 𝑡𝑘

𝑛𝑖
𝑘=1

𝑛𝑖
                                                                                       (14) 

Here, 𝑛𝑖 is the quantity of times the microstate 𝑖 occurs and 𝑡𝑘is the duration of the k-th occurrence 

of microstate 𝑖 

Number of occurrences per second is used to calculate the occurrence rate and refers to how 

frequently a particular microstate appears. The Occurrence 𝑂𝑖 of a microstate 𝑖 is simply the count 

of the number of times microstate observed:  
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                                         𝑂𝑖 = 𝑛𝑖                                                                                               (15) 

The percentage of the entire analysis time that is devoted to time coverage is the proportion of total 

analysis time occupied by a particular set of microstate labels and computed as: 

                                          𝑇𝐶𝑖 =
∑ 𝑡𝑘

𝑛𝑖
𝑘=1

𝑇
                                                                               (16 ) 

Transition probability refers to the likelihood of transitioning from one microstate to another during 

the course of EEG signal. We calculated the probabilities of transition from one microstate to another 

by:  

                                      𝑃𝑖𝑗 =
𝑁𝑖𝑗

∑ 𝑁𝑖𝑘𝑘
                                                                                        (17) 

Where, 𝑃𝑖𝑗is the likelihood that microstate 𝑖 will change to microstate j. 𝑁𝑖𝑗 is the quantity of times 

that microstate 𝑖 changes into microstate j and ∑ 𝑁𝑖𝑘𝑘 is the total quantity of changes from the 

microstate 𝑖 to another state k. 

In this study, microstate analysis provides understanding of the dynamic temporal patterns of brain 

activity, while graph theoretical measures give an understanding of how these patterns manifest as 

network properties during stress and normal conditions. 

3.12 Classification of Stress 

The step after partial directed coherence is classification in the proposed methodology. The main 

contribution after feature extraction, labeled dataset of EEG features are classified into stress and 

normal. Features are used as inputs of classifiers. The classification of stress from EEG data is an 

important step in understanding how the brain reacts to stressful situation. In this study, three machine 

learnings algorithms are employed to classify EEG signals into normal and stress categories. Among 

these classifiers are k-Nearest Neighbors(k-NN), support vector machine (SVM), and Random Forest 

(RF).   

3.12.1 Support Vector Machines (SVM) 

Support Vector Machines (SVM) is an algorithm for machine learning that has recently been 

recognized as an effective categorization technique. SVM separates two classes with a function 

obtained from valuable training data. The objective is to generate classifiers using maximal input 

vectors that divide two regions that are SVM hyperplane functions. SVM is not restricted to 

distinguishing between two types of objects, there are various ways to create decision boundaries 
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that divide the items into two groups. This method’s objective is to find the best classifier function 

that can differentiate between two distinct data sets [45]. The separation function applied in this 

instance is linear. 

                                               g(x)=sign(f(x)                                                                        (18)          

with  𝑓(𝑥) = 𝒘𝑡𝒙 + 𝑏, 𝒘, 𝒙, ∈ 𝑹𝑛 𝑎𝑛𝑑 𝑏 ∈ 𝑹, the two parameters are w and b for which the goal is 

to find. The optimal hyperplane is positioned centrally between two object collections belonging to 

different types. Maximizing the margin or distance is the same as finding the optimal hyperplane 

separating the two groups of items from two classification. Samples positioned on the hyperplane are 

referred to as support vectors. This identification aims to identify the optimal hyperplane or classifier 

function from a set of functions. 

For a linearly separable model, the goal is to find the hyperplane that optimizes the difference 

between two groups of data. In Fig., w represents the normal vector. The equation w.x + b=0 defines 

the maximum margin hyperplane, while w⋅x+b=±1 represents the parallel boundary hyperplanes. 

The distance between these boundary hyperplanes, also known as the margin is 
2

||𝑤||
. Therefore, 

finding the hyperplane with the maximum margin is equivalent to minimizing ||w||. 

 

 

Figure 8 Linear Separable Support Vector Machine 
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3.12.2 Random Forests (RF)  

An ensemble technique called Random Forests (RF) blends several decision trees. It enhances the 

effectiveness of one tree classifier by utilizing bootstrap aggregating method with randomization in 

the selection of data nodes during the classification process. The feature space is divided into M 

regions Rm, 1≤ m ≤ M. by a decision tree with M leaves. The prediction function for every tree is 

defined as:  

                                𝑓(𝑥) = ∑ 𝑐𝑚𝛱(𝑥, 𝑅𝑚)

𝑀

𝑚=1

                                                                               (19) 

In the feature space, where M is the number of regions, 𝑅𝑚is a location suitable for m; 𝑐𝑚is a constant 

that fits with m: 

                          𝛱(𝑥, 𝑅𝑚) = {
1, 𝑖𝑓 𝑥 ∈ 𝑅𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                              (20) 

The majority vote among all the trees determines the final categorization. An ensemble technique 

called Random Forest constructs numerous decision tress using different subsets of training data and 

features. It combines output of these trees to make more robust prediction. It can handle non-linear 

relationships, noisy data and high dimensional data like in our case EEG microstates. 

 

3.12.3 K-Nearest Neighbor (KNN) 

K-Nearest Neighbor operates on the principle that instances of a specific class are usually clustered 

with other instances of the identical class. Given a set of the feature space with labeled training 

examples and a scalar k, labeling an instance that is not labeled allows it to be classed and appears 

most frequently among the k nearest training samples. While various measures can be used to 

determine the space between occurrences, and the most widely utilized distance for this purpose is 

the Euclidean distance. Euclidean distance, which is represented by the following equation, is the 

kind of distance metric utilized in this technique:  

                               𝐿(𝑥𝑖, 𝑥𝑗) = (∑ ((|𝑥𝑖 − 𝑥𝑗|))2
𝑛

𝑖,𝑗=1
)

1

2𝑋 ∈ 𝑅𝑛                                                (21) 
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Figure 9 Representation of k-nearest neighbor 

The above figure shows the representation of k-nearest neighbor, where k represents the nearest 

neighbor when classifying the data. It is an integer that is positive and usually small. 

In this study, three classifiers of machine learning algorithms are used for analysis to take out the 

EEG task’s properties. These classifiers are SVM, RF and KNN. The extracted features are split into 

80-20 ratio for testing and training.  An independent subject test with each classifier for 5-fold cross-

validation is performed and also evaluated with the four-measure matrix. These include accuracy, 

precision, sensitivity and F-measure [46]. The formula displays the mathematical expression for each 

prediction. The outcomes of the confusion matrix are as follows: 

• True Positive (TP): Numbers of labels accurately recognized as stress. 

• True Negative (TN): Number of labels accurately recognized as normal 

• False Positive (FP): Numbers of labels accurately recognized as stress 

• False Negative (FN): Number of labels accurately recognized as rest 

 

Below, formulas of accuracy, precision, recall and F-measure are discussed: 

                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                             (22) 
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                                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                      (23)                                                                                              

                                            𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                       (24)                                                                                                                                                                                  

                                  F-measure = 2
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                           (25)                                                                             

 

Accuracy refers to the proportion of accurate predictions made across the complete dataset in two 

issues: stress and normal. Precision shows the correct measurement of positive prediction. 

Meanwhile, Recall relates to the complete measure of a classifier, that counts the actual stressors that 

are predicted in the dataset. The F-measure is a metric that combines both precision and recall to 

assess the effectiveness of detection results.  
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Chapter 4: Results 

 

In this chapter, results are discussed that’s we get after pre-processing, effective connectivity, graph 

theoretical measurement and after classification. The analysis aims to identifying the difference 

between stress and normal conditions based on brain network properties.  

First, we summarize the outcomes of our preprocessing step: 

4.1 EEG Data Pre-Processing 

EEG data is loaded in the graphical user interface (GUI) of MATLAB i.e. EEGLAB in the file format. 

cnt, which is commonly used for EEG recordings. When we import the file, EEG structure contains 

all the information including the raw data, metadata like the channel information and sampling rate. 

In the preprocessing pipeline, we remove the noise. After removing the noise next step is to apply 

independent component analysis (ICA), where we remove the artifacts that are not relate with brain 

activity. This is important because by removing the non- brain related components that include heart, 

muscle, line noise and others information. We only want to focus on data that is used in our work and 

from which we get brain related information.  

After loading the cnt files, first step is to select the desired channels for data-filtering. For 

connectivity analysis causal filter is used so the causal band-pass filter is applied to the dataset. It is 

used to preserve the temporal relationships in the data, which is important for effective connectivity 

analysis. Filtering is crucial step in preprocessing, as it helps to remove the noise and artifacts outside 
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the frequency band of interest. In this study fig. 10 the signals in red color shows the noise where 

filtering is applied and frequency band is from 0 Hz to 30 Hz.  

 

Figure 10 Noisy Signals 

The low and high cut-off frequency for fir causal filter is set to remove low-frequency drifts and 

high- frequency drifts. The artifacts that are not in use, and that only cause noise are removed in 

fig.11. Moving towards further process, it’s important to clean the data by removing any segment 

that is contaminated with noise or artifacts. In this study, when function identifies a segment where 

the voltage exceeds ±100µV and rejects from the dataset. After noise removal, the next step is to 

apply independent component analysis to identify and eliminate the data’s artifacts that are not related 

to brain activity like muscle activity. All electrodes are reference to CPz and grounded AFz at so 

there is no need to re-reference the data. The sampling rate for this EEG data is 512Hz. Down 

sampling is the option for frequencies which are sampled at a frequency higher than 1000Hz. This 

improves the computational complexity, but when we perform it there are more chances of 
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overlapping frequencies. Down sampling reduces the number of data points which can make it easier 

to perform subsequent analyses. 

 

 

Figure 11 pre-process data 

In Figure 11. Artifacts are shown that are removed after applying ICA due to their non-brain related 

information.  

4.2 Effective Connectivity Results 

Effective connectivity focuses on which brain region influences to other regions and gives insights 

into causal interaction between different brain regions. We employ partial directed coherence (PDC) 

in this work, as a connectivity measure to check which channel provides information about 

directional interaction between different brain region. 

After preprocessing, a sliding window approach is used to break the continuous EEG data into 

smaller segments. Each segment contains a subset of EEG data that is analyzed for effective 

connectivity. 

From the segment, the autoregressive model is fitted to the data to estimate the interaction between 

different channels. This model helps to find the dependencies of the current value of one channel to 
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the past value of another channel. The coefficients from AR models are used to describe the 

relationship between the channels, which are used for computing the effective measure as in this 

study we mentioned PDC. 

After the coefficients, PDC is computed for each window of that data. PDC tells about the 

directionality and strength of the connectivity between different EEG channels. It reveals how 

channel influence each other and in which direction. By PDC values, that is stored in the form of 

adjacency matrix, where elements represent the influence from one channel to another. And the 

values, which are computed is weights. These weights change when the sliding window is moved, 

so they reflect how brain connectivity evolves.  

PDC is applied on 64 channels where they show connection between different brain regions. Weights 

are also shown and they represent the strength of how a channel is connected with another channel. 

When we perform pdc over time we compute adjacency matrices. From matrices of thirty-eight 

subjects file, we compute which channel is showing the maximum connection in their respective 

results. These files are already classified into stress and normal. After getting results on the basis of 

adjacency matrix over time we can compute which channel is connected with other channels in the 

network. In fig. 11 connectivity between different EEG channels is shown with weights and in this 

figure, the threshold is not applied they show connection among all channel. 

 

Figure 12 Connectivity Network with weights 
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In these results, effectivity connectivity analysis with PDC reveals which channel influence another 

channel in network. They show connection with all channel and threshold is not applied on these 

connections. 

4.3 Graph Theoretical Analysis Outcomes 

From effective connectivity where we perform partial directed coherence, we construct an adjacency 

matrix. So, the matrix represents the strength of the connection between different EEG channels, 

where the connection strength between two channels is represented by each entry. By analyzing 

degree centrality, global efficiency and local efficiency which is earlier discussed in chapter 3 of 

methodology where we discuss all these steps in graph theoretical analysis.  

Fig. 12, shows the result of the graph theoretical analysis. In this result channels are differentiated on 

the basis of color that channel is the sink and which is the source. The channel which is shown in the 

blue is source and the channel that is shown in red is the sink. In fig. 11 all connected channels in the 

network are shown with weights. But in Fig. 12 threshold is applied to the weights that have a value 

above 0.90 are shown with their connection. Some of the channels are shown in red and blue dots 

but these are not connected with another channel in the network because the value of their weights 

is less than the threshold value. The channel which is shown in gray color dots are neutrals that are 

either sink or source. 
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Figure 13 Graph theoretical analysis channel connection results 

The above figure shown the results of how channels are connected but, in our study, when we classify 

stress and normal. In PDC we find out how channels show strength and influence between EEG 

signals. In fig. 13 results of the methods which are mentioned in the graph theoretical analysis section 

is shown. In this result we can estimate that in normal and stress which channel give high value. In 

degree centrality where we can tell that which cannel (node) is connected with other channel in this 

case normal and stress is differentiable with respect to the blue and red bar color bar graph. Normal 

channel Pz gives a high degree centrality value that reflects cognitive or normal state condition. But 

in the case of stress channel PO5 shows a high degree of centrality, it plays a significant role in 

receiving and sending a lot of signals.  
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Figure 14 Graph Theory degree and betweenness result 

As in the above process, we apply PDC and graph theoretical analysis where PDC is applied to find 

out the strength and influence of channels and it reveals pairwise connections. On the other hand, 

graph theoretical analysis provides quantitative measurements that summarize the network. 

4.4 Microstate Analysis 

Microstate analysis is a technique for determining the stable patterns of brain activity within a 

continuous EEG recording. This study’s goal is to apply after-graph theoretical analysis is identify 

stable and recurring patterns. Because this approach is helpful in understanding brain activity 

dynamics. The k-means clustering method is used to identify the microstate. These topographic maps 

represent that how state change from one to another state. Results of this study for microstate analysis 

show with respect to normal and stress shown in Fig 14. 
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Figure 15 Occurrence of stress and normal 

Fig. 14, occurrence for normal and stress in microstate is shown. After performing graph theoretical 

analysis, where metrics like degree of centrality and clustering coefficient values are used to 

understand the brain network properties during each microstate. These 8 microstates are determined 

by clustering EEG data into distinct spatial configurations using k-means clustering. In this study 8 

microstates are shown which corresponds to a unique configuration of brain activity and the states 

represent the recurrent patterns that the brain exhibits during EEG recording. In Fig. 14 microstate 4 

shows the highest occurrence among other states for normal conditions this state is linked with 
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baseline cognitive processing. From graph theoretical measures it shows that brain network 

configuration is more stable for non-stressed in this state. 

For stress conditions microstate 5 is shown with a high occurrence value suggesting that this brain 

configuration is more prominent under stress conditions. Microstate 5 represents that brain activity 

is activated during stress response related to emotional processing. 

In fig. 15 duration for normal and stress is shown. Duration is linked with the length of the time brain 

remains in a particular microstate before transitioning to another state. Microstate 4 shows a high 

duration for normal it suggesting that this certain state is a more relaxed, low demand cognitive state. 

On the other hand, microstate 5 shows a high duration value that reflects the activation of neural 

circuits involved in stress response. 

 

Figure 16 Duration of stress and normal 
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Fig. 15 is about the state transition of stress and normal. State transition refers to how often the brain 

shifts from microstate from one state to another. High transition linked with a particular microstate 

in the brain frequently moves from one state to another state. This shows how dynamic and reactive 

the brain is during different conditions.  

In normal conditions, microstate 4 shows frequent transition, which suggests that the brain is actively 

switching to this state during period of low cognitive demand. For stress microstate 5 shows frequent 

transition that suggest the brain is frequently engaging in a state that is related with stress-related 

processing. 

 

 

Figure 17 State Transition of stress and normal 

Figure 18. is about topographies map of normal and stress. This shows the 8 states of normal and 

stress and by these we can estimate that which state is highly occurring and change their transition 

in milliseconds.  
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Figure 18 Topographies Map of Microstates 

Figure 19. shows the states with high duration and occurrence maps for stress and normal. In normal 

state 4 shows high occurrence and in stress microstate 5 shows high occurrence. 

 

Figure 19 Maps with high occurrence states 
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4.5 Classification Accuracy and Performance Metrics 

Random forest shows high accuracy because it is a more adaptable and powerful model to manage 

the complex, non-linear nature of EEG microstate data when the variability is present in normal and 

stress states. 

KNN performs better than SVM because EEG microstate from reasonably distinct clusters, but KNN 

distance- based still struggle with high-dimensionality and noise. SVM is good for linear separations, 

but less suited for complex, noisy and non-linearly separable data like EEG. Random Forest 

outperforms because of its robustness, and capacity to model non-linear relationships, while KNN 

performs reasonably well but struggles with dimensionality. SVM being more sensitive to noise, 

shows the lowest accuracy in the EEG microstate classification task. 

 

 

Figure 20 Confusion matrix of stress and normal 
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Fig 19. Shows these results show the recall, precision and F1_score of the mentioned classifiers. 

 

 Classifier Accuracy Recall Precision F1_Score 

1 SVM 84 0.85 0.85 0.85 

2 KNN 85 0.78 0.82 0.79 

3 RF 96 0.96 0.97 0.96 

 

Figure 21 Classification Results 
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Chapter 5: Discussion 

 

This chapter is about the implementation of the proposed design and future tasks. We first discuss 

our methodology where pre-processing is used to remove the noise and for this filtering is applied. 

After noise, artifacts are removed by independent component analysis. These artifacts include muscle 

and heart activity and line noise that affects the EEG signals. By removing these artifacts partial 

directed coherence, utilized in order to estimate the strength of the channel and directionality among 

network. By PDC measures they allow us to construct effective brain networks in time series. 

Connectivity networks are constructed by adjacency matrix which are computed by PDC. These 

connectivity networks provide insights into channels connection in the network. Next is the graph 

theoretical analysis that quantifies these networks and alters the degree and betweenness. Graph 

theory helps in translate the connectivity information from PDC into matrices and that describe the 

structure of the brain network. Degree and betweenness is computed where degree measure the 

number of connections a channel has in the network and betweenness quantifies the shortest path 

with other channels. Channels with higher betweenness reveal that this is the bridge between 

networks for communicating with other channels. In this study channel 19 shows high degree that 

act as an influential region in term of connectivity and channel 23 show high betweenness that 

indicates as a mediator between different brain regions. It plays an essential role in facilitating a 

communication between different channels in the network that are not directly related to each other. 

PDC and graph theory talks about connectivity patterns between brain region and on the other hand, 

microstate analysis is used to give a dynamic snapshot of brain activity, capturing brain states 

dynamically over time. In microstate analysis, occurrence and duration is the parameters used to 

figure out that this state occurs for stress and normal categories and we then perform classification 

using classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random 

Forest (RF). Among all RF shows high accuracy differentiating stress and normal. In future work 

using effective connectivity measures helps in directionality and shows the strength of channels 

among networks. Using PDC with graph theory and microstate analysis helps in finding the region 

of stress but advanced classifiers used as CNN and deep neural networks are used to capture complex 

patterns in microstate transitions. By using deep learning algorithms where we trained a model for 

stress detection and this can be used in real-time. In real-time we monitor brain activity that induces 

stress and assess it so we can get the root cause of stress. 
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Chapter 6: Conclusion 

 

A comprehensive approach is applied to EEG workflow that integrates the analysis of the 

independent component; this is the step where we perform pre-processing before the independent 

component analysis which is applied to raw EEG data to remove the unwanted frequency component 

using band-pass filters. Down sample the data from 512 to 64 to make the data more manageable and 

reduce computational load. After down sampling, channel selection is another task but in the initial 

steps work with 64 channels. ICA is applied to remove the noise sources and separate the neural 

signals from non-neural artifacts. After the cleaning process, EEG data is used to apply partial 

directed coherence to quantify the direction of information flow between brain regions and how one 

region influences the other, these directions are shown by constructing the effective connectivity 

networks where the adjacency network shows which channel influences the other. These networks 

were then quantified using graph theoretical analysis to compute key metrices such as degree 

centrality and betweenness. In graph theoretical analysis, from channel direction, we can compute 

which channel is connected with another channel in the network. Their connection is shown with 

weights and based on these the channels that have high weight values after applying thresholding we 

can compute these are the channels in the network that influence others. Other key points are degree 

and betweenness which measures how well the node(channels) is connected with others in the 

network. A high degree indicates that the node is central to the network and show their direct 

connections and betweenness is about a node lies on the shortest path between two other nodes. 

Graph theory is all about direction and interaction among networks. The next step is to pass that 

graph theoretical results to microstate analysis by which based on states we can figure out which 

relate to stress and normal. In this study, microstate 4 relates to the normal state, and the microstate 

5 refers to the stress state, and these states are formed on the results we compute from graph theory. 

The next step is to classify stress and normal from the classifiers which are above mentioned. RF, 

kNN and SVM give the 94 %, 90% and 87% accuracy, respectivel
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