
Quantum-Safe Key Management System for
Cloud Computing Using a Hybrid

Framework

By

Mariya Amin
(Registration No: 00000328960)

Department of Information Security

Military College of signals

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(2024)

1

Quantum-Safe Key Management System for
Cloud Computing Using a Hybrid

Framework

By

Mariya Amin

(Registration No: 00000328960)

A thesis submitted to the National University of Science and Technology, Islamabad,

in partial fulfillment of the requirements for the degree of

Masters in

Information Security

Supervisor: Assoc. Prof. Dr. Shahzaib Tahir

Co-Supervisor: Asst. Prof. Dr. Fawad

Military College of Signals

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(2024)

i

ii

iii

iv

v

DEDICATION

I dedicated this thesis to my Family, Teachers and Friends for their sincere love,
support and continuous encouragement.

vi

ACKNOWLEDGEMENT

Praise and glory be to the Glorious and Merciful Almighty Allah. I am very grateful to
Almighty Allah for blessing me with the ability and confidence to pursue this research,
despite the hindrances that tried to shake my courage. I am deeply thankful to my
family, especially my parents, for being the driving force behind me and encouraging me
to grow further in life. I extend my hearty vote of thanks to my Supervisor, Assoc. Prof.
Dr. Shahzaib Tahir, who supervised me in such a polite, humble, and helpful manner
throughout this research. His facilitation and counseling have been an invaluable source
of support, and I will continue to value them in the coming years. I am also deeply
thankful to my esteemed committee members, Asst. Prof. Dr. Fawad Khan and Major
Bilal Ahmed, for their insightful feedback.

vii

Contents

ACKNOWLEDGEMENT vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS xiii

ABSTRACT xiv

1 INTRODUCTION 1
1.1 Background and Motivation For the Research 1
1.2 Problem Statement and Research Objectives 2
1.3 Overview of the Proposed Key Management System (KMS) using

Lattice Shamir Secret Sharing Scheme 3
1.3.1 Thesis Organization . 3

2 LITERATURE REVIEW 5
2.1 Survey of Existing Cloud-Based Key Management Systems 5
2.2 Key Management Systems . 7

2.2.1 Centralized . 7
2.2.2 Distributed . 7

2.3 Data Security Issues to the Cloud Data 8
2.4 Challenges for Cloud-Based Cryptographic Key Management 10
2.5 Current State of Insider Threats and Quantum Attacks in Crypto-

graphic Systems . 11
2.6 Quantum-Resilient Cryptography-Why a Necessity Now? 12
2.7 Conclusion . 13

3 THEORETICAL FOUNDATIONS 14
3.1 Shamir Secret Sharing Scheme . 14

3.1.1 Algorithm for Shamir’s Secret Sharing Scheme 15
3.1.2 Key Attributes of Shamir Secret Sharing Scheme 16

viii

3.1.3 Critical Security Features of Shamir Secret Sharing Scheme . . . 17
3.2 Potential Quantum Threats to Classical Shamir Secret Sharing Scheme 18
3.3 Lattice-Based Cryptography . 19

3.3.1 Lattice . 20
3.3.2 Cryptographic Assumptions on Lattices 21

3.4 Lattice-Based Shamir Secret sharing scheme 22
3.4.1 How Lattice-Based Shamir Secret Sharing Scheme Strengthens

Security of the Scheme . 22
3.5 Key Management Functions . 24
3.6 Key Management - Generic Security Requirements 26
3.7 Conclusion . 27

4 PROPOSED KEY MANAGEMENT SYSTEM 28
4.1 Architecture and Components of the KMS 28

4.1.1 Architectural Components . 28
4.1.2 Overview of the KMS . 29

4.2 Authentication Between Different Modules of the Framework 31
4.2.1 Why mutual authentication is needed 31

4.3 High-level Algorithm of Proposed KMS 32
4.4 Implementation Details of the Lattice-Based Shamir Secret Sharing

Scheme . 35
4.4.1 Mutual TLS (mTLS) Certificate 37
4.4.2 Lenstra–Lenstra–Lovász (LLL) Algorithm 39

4.5 How Security Is Enhanced Against Insider And Quantum Threats . . . 41
4.6 Conclusion . 42

5 ANALYSIS OF LATTICE-BASED SHAMIR SECRET SHARING SCHEME
(LBSSS) AND PROPOSED KMS 43
5.1 Description Of Experiments And Evaluation Metrics 44
5.2 Comparative Analysis of Experimental Findings 44

5.2.1 Classical Shamir Secret Sharing Scheme 44
5.2.2 Lattice-Based Shamir Secret Sharing Scheme 45

5.3 Security Analysis of Proposed KMS Based on LBSSS 47
5.4 Threat Model of Proposed Key Management System 50
5.5 Conclusion . 52

6 DISCUSSION 53
6.1 Addressing Potential Future Improvements 53
6.2 Considerations For Real-World Deployment and Scalability 54
6.3 Conclusion . 55

7 SUMMARY OF RESEARCH WORK 56

ix

8 CONCLUSION 58

BIBLIOGRAPHY 59

A APPENDIX: CODE IMPLEMENTATION OF LATTICE-BASED SHAMIR
SECRET SHARING SCHEME(LBSSS) 64
A.1 Overview . 64
A.2 Explanation of Code Components . 65
A.3 Pseudo-Code . 65
A.4 Annotated Code Implementation of LBSSS 66
A.5 Code Snippet for Performance Analysis 67

A.5.1 Libraries Used in Implementation 69
A.5.2 Subcomponents Used from sage.all Library 69

x

List of Tables

2.1 Involvement of Insiders in Attacks . 11
2.2 NIST’s First Post-Quantum Standards 13

5.1 Performance Analysis of Shamir Secret Sharing Scheme 45
5.2 Performance Analysis of Lattice-Based Shamir Secret Sharing Scheme . 47
5.3 LBSSS - Common Attacks and Defense Mechanisms (Part 1) 48
5.4 LBSSS - Common Attacks and Defense Mechanisms (Part 2) 49
5.5 STRIDE Threat Categorization for Proposed KMS 52

xi

List of Figures

2.1 ISC2 2024 Report, Barriers to Cloud Adoption 9
2.2 Issues to Security of Data in the Cloud 9
2.3 Top Cyber Threats Over The Next 12 Months 10

3.1 A 2-Dimensional Lattice Structure . 21
3.2 State Diagram of Keys Life-Cycle . 26

4.1 Architectural Components of Proposed KMS 29
4.2 Authentication b/w User and Key Provider 32
4.3 User Registration . 33
4.4 Encryption Process of Proposed KMS 34
4.5 Decryption Process of Proposed KMS 35
4.6 Secret Generation and Distribution Algorithm 36
4.7 Secret Reconstruction Algorithm . 37
4.8 mTLS Handshake . 38

5.1 Memory and Time Consumption Analysis of SSS 45
5.2 Memory and Time Consumption Analysis of LBSSS 47

xii

LIST OF SYMBOLS,
ABBREVIATIONS AND
ACRONYMS

SVP Shortest Vector Problem
DKMS Distributed Key Management System
SSS Shamir Secret Sharing Scheme
LBC Lattice Based Cryptography
LBSSS Lattice Based Shamir Secret Sharing Scheme
NIST National Institute of Standards and Technology
LWE Learning with Error
QSC Quantum Secure Cryptography
CVP Closest Vector Problem
CSP Cloud Service Provider
DEK Data Encryption Key
SSH Secure Shell/Secure Socket Shell
mTLS Mutual Transport Layer Security
ABE Attribute Based Encryption
IBE Identity Based Encryption
PKC Public Key Cryptography
ECC Elliptic Curve Cryptography
PQC Post Quantum Cryptography
Zn N-dimensional integer lattice/set of integers modulo n
Λ/L Lattice structure
Rn N-dimensional Euclidean space over the real numbers
∥ · ∥ Norm of vector
γ Approximation factor or the Hermite constant

xiii

Abstract

Advantages of Cloud Computing include its flexibility, scalability, cost savings, and
around-the-clock availability with the latest features. It’s a cloud-based remote access
paradigm that allows users to access computer resources like servers, storage, and apps.
Storage service, a key offering in cloud computing, provides secure and backed-up data
across the globe, making it ideal for client organizations. However, cloud environments
are often multi-tenant, raising concerns about data security, as both internal and
external attacks can target confidential data stored in the cloud.Cloud computing
providers do not guarantee complete data security, so client organizations prefer to
secure data at their end by encrypting it before storing it in the cloud, requiring them
to manage the encryption and decryption keys. A Key Management System (KMS) is
essential for managing these keys and their associated metadata, including generation,
distribution, storage, backup, recovery, and destruction. However, security issues
like data confidentiality and unauthorized user access may arise.In my thesis, I have
worked on a distributed Key Management System (KMS), including premise-based and
cloud-based KMS, for managing cryptographic keys. My research combines traditional
cryptographic algorithms with quantum cryptography primitive (Lattices)to secure keys
against classical as well as quantum attacks while minimizing security concerns related
to cloud-based KMS.

Keywords: Lattice Based Cryptography, Distributed KMS, Insider threats, Shortest
Vector Problem, Quantum cryptography, Shamir Secret Sharing.

xiv

Chapter 1

INTRODUCTION

1.1 Background and Motivation For the Research

[23]There are a few concerns to consider when adopting the cloud paradigm. One of
these is information safety, which is an essential part of the quality of service. The issue
with security in public clouds is that due to the cloud’s multi-tenant nature, where
users share resources with many others, it’s harder to keep things confidential.[26]
Traditional security methods like encryption, digital signatures, and access control may
not be enough to protect information in public clouds because of some limitations. IDC
predicts [52] that by 2025, 59% of the world’s data will be stored in public clouds. With
more devices and people accessing the cloud, the chances of a data breach increase.
When control of data is given to the cloud, more people can access it, making a breach
more likely. With more parties, devices, and applications relying on the cloud than
ever before, data is exposed to a greater risk of being compromised at various points
of access. As more people gain access to the data, data breaches are more likely as
a result of businesses giving the cloud access over their data.[41] The main challenge
of cloud storage is ensuring that data owners can maintain control and management
of outsourced data, as this responsibility often lies with service providers or third
parties.[44] Verizon’s 2024 Data Breach Investigation Report states that third-party
providers, including hosting partners, software supply chains, and data custodians such
cloud computing, were involved in 15 percent of breaches.

[19] Shor presented a quantum technique for tackling ’discrete logarithm’ and ’integer
factorization’ issues in polynomial time, posing a challenge to the security of traditional
public key cryptosystems. Consequently, Cloud-based Key Management Systems (KMS)
have become crucial as they are also prone to distinct security challenges, notably
concerning key storage vulnerabilities from insider attacks.Therefore, there’s a need to
build such KMS which can reduce these security concerns and also regain the trust of
client organizations providing them with a partial role in key management.Based on the

1

examination of prior research conducted on cloud-based key management systems, there
arises a necessity to construct key management systems that not only eleminate reliance
on a single entity for key generation and administration but also thwart key hijacking
and attacks initiated by quantum computers. This aim can be achieved by employing
algorithms that exhibit resilience against threats related to quantum computing.

The proposed approach allows organizations to leverage the benefits of cloud-based
key management while also maintaining control over certain critical aspects of key
management within their own environment.This architecture also provides a balance
between the convenience and scalability of cloud services and the security and control
offered by on-premise solutions.

The proposed KMS uses hybrid approach by incorporating classical algorithm
(Shamir Secret Sharing Scheme) with post-quantum primitive (Lattices) to improve the
security of KMS. Post-quantum primitive is based on lattices whose security is believed
to be hard to break even by using quantum computing.[19] Based on the difficulties of
lattice problems such Ring Learning with Error (LWE), Closest Vector Problem (CVP),
and Shortest Vector Problem (SVP), lattice-based cryptosystems are provably secure in
the worst scenario.

By using lattice-based techniques into the Shamir’s Secret Sharing scheme, we can
enhance its resistance to potential future quantum attacks. Since, the Shamir Secret
Sharing Scheme (SSS) depends on the hardness of solving particular mathematical
problems—like the challenge of reconstructing the original polynomial from a subset of
points—there is a chance that these these problems could be solved more quickly using
quantum computers, lowering the scheme’s security margin.

1.2 Problem Statement and Research Objectives

Centralizing key storage and generation in a single entity creates a high-value target
for attackers. If this entity is compromised, all keys managed by the KMS could be
at risk. It also increases the risk of insider threats as an insider with malicious intent
could abuse their access to compromise keys, manipulate key generation processes, or
even leak sensitive information. The reason why Shamir’s Secret Sharing is considered
to be secure because linear equations over a finite field are difficult to solve for classical
computers. However, with the use of quantum algorithms and a quantum oracle, a
quantum computer could solve these systems efficiently, potentially allowing a quantum
adversary to recover the secret from a smaller subset of shares. In Shamir Secret Sharing
scheme(SSS) generation of shares and the polynomial coefficients involve randomness and
it is these random values that makes the scheme’s security because of its unpredictability.
If an attacker can predict the random values used in generating shares, they might be
able to gain information about the secret.

The main objectives of the thesis are as follows:

2

• Develop a quantum secure distributed key management approach instead of relying
on a centralized system.

• To reduce the concentration of keys in a single location or entity as well as
dependency on the central entity.

• To ensure users’ participation in key generation as well as Key management
process.

• Devising a more robust cryptographic scheme to prevent attacks from quantum
computers by incorporating lattice-based cryptographic primitive into Shamir
Secret Sharing (SSS) scheme to enhance its resistance to potential future quantum
attacks.

1.3 Overview of the Proposed Key Management Sys-
tem (KMS) using Lattice Shamir Secret Sharing
Scheme

Key Management systems are not only responsible to manage the cryptographic keys
used for the encryption and decryption of the data to be stored on the cloud and
ensuring security of those keys from adversaries, be it insider or external.The proposed
DKMS used improved version on Lattice Based Shamir Secret Sharing (LBSS) to
enhance robustness of traditional SSS scheme for the shares residing at the key storage.
DKMS employes strong cryptographic protocol such as mTLS to establish authenticated
and encrypted communication channels between the on-premise and cloud- based KMS
that prevents unauthorized entities from participating in the key transfer process.

1.3.1 Thesis Organization

The following is the arrangement of the thesis: The research is briefly summarized in
Chapter 1, which includes objjetives and motivation of research, a brief description,
background, and details about the proposed Key Management System (KMS) that uses
the Lattice Shamir Secret Sharing Scheme (LBSSS). A literature review of cloud-based
key management systems, security vulnerabilities, and quantum-resilient cryptography
is provided in Chapter 2. Chapter 3 ensures the theoretical groundwork, discussing
Shamir Secret Sharing, lattice-based cryptography, and how these are integrated into
LBSSS. Chapter 4 describes the proposed DKMS, focusing on design and security
considerations. Chapter 5 compares Lattice Based Shamir Secret Sharing Scheme
(LBSSS) with classical schemes and evaluates its security against insider and quantum
threats. Chapter 6 covers research results, deployment considerations, and future

3

improvements. Chapter 7 summarizes the research work, while Chapter 8 brings the
thesis to a conclusion..

4

Chapter 2

LITERATURE REVIEW

This chapter explores and reviews the existing literature on key management approaches
in cloud environments. It critically examines the limitations of current Key Management
Systems (KMSs) concerning key security, particularly in the context of insider threats
and attacks. The chapter provides a evaluation of various existing schemes and protocols,
discussing their advantages and disadvantages, along with a comprehensive analysis of
their security and performance characteristics.

2.1 Survey of Existing Cloud-Based Key Management
Systems

[7] Relies on the trustworthiness of the adapter (a separate entity from the cloud
provider)and requires complex co-ordination and communication among the entities
that share the parts of the encryption key, which can introduce additional overhead and
latency. [9]Uses verifiable secret sharing schemes to distribute and manage cryptographic
keys in a cloud environment by depend on main instance(dealer) at cloud side for
reconstructing and holding the keys temporarily. Also, the proposed scheme is complex
and computationally unfeasible for handling many users’ keys because the shares are
dispersed over several servers, resulting to latency.

[16] Uses a combination of symmetric and asymmetric encryption techniques to
secure the data and keys in the cloud by relying on a third party Key Management
Server (KMS) for the generation and distribution of encryption keys which may lead to
insider attacks.

[24] The hyperelliptic curve cryptosystem-based approach partitions the key ma-
trix into several sub-matrices based on user identity, hence resolving the large-scale
key management and storage difficulties in cloud storage. [37] Relies on multi-cloud
deployment to ensure the security of keys by distributing the data and keys among

5

multiple clouds which leads to the computation and latency problems. This framework
enables users to store only mandatory key fragments and make use of encryption key
as optional key fragments (private keys) are scattered throughout the user’s mobile
device’s storage. Proposed framework does not support scalability and is not suitable
for large number of users and also doesn’t serve the purpose of being Cloud KMS. [3]
describes a distributed key management system for single-tenant environments that
manages keys particular to each user and splits the key into shares and then combines
keys on runtime using XOR operation. Scheme works by fully trusting the Tenant
Admin for splitting and combining the keys. [34]Distributes the shares of the encryption
key among multiple cloud providers, which gives rise to data availabilty and security
concerns as if the adapter is compromised or malicious, it can leak or tamper with
the encryption key or the data which means anyone who has access to the shares can
reconstruct the secret and decrypt the data. This may pose a risk of unauthorized
access or leakage of sensitive data.

Using Attribute-Based Encryption, enabling fine-grained access control based on
user-defined attributes [2] presents a key management system Ucloud that, unlike
centralized KMS solutions which entail trust in a single authority, distributes trust
among users, enhancing resilience against insider threats and single points of failure
where the user is in the control of master key which then encrypts the data encryption
keys(DEK). [4] Uses Shamir Secret Sharing to guarantee the privacy and security of the
data kept in cloud storage systems by distributing the share among multiple CSPs to
avoid risk of unauthorized access and single point of failure but the proposed scheme is
computationally complex and also is prone to the possibility of insider attacks as well
using Lagrange Interpolation which relies on classical number theory concepts, such as
polynomial evaluation and modular arithmetic are not quantum-resilient.

[10]Incorporates STRIDE approach to prevent security threats to the data in cloud
computing This works well to identify the attack’s impact vector before it happens.
This method has been applied in the literature before to obtain cloud computing threat
capability. [11] points out the flaws of the traditional secret sharing from a security
perspective and proposes a distributed mechanism where shares are distributed at
different Cloud Service Providers so as to avoid dependence on central master server.
[29] employs key access control scheme for a key management system using Shamir
secret sharing algorithm and polynomial interpolation for group based access to another
group’s data where a Credential Generator is responsible for the construction of the
secret key and then forwards the key to Client Management Cloud.The scheme lacks
security protocols for secure communication and transfer of keys.

[13] presents secure secret-sharing scheme by incorporating Malicious checker analysis
where users are verified based on their previous performance to get authorized. Blocks
harmful virtual machines (VMs) if they can be found before they are executed, while
this is very difficult to do in real-time scenarios. as when it comes to the reconstruction
of secret when decrypting data only those shareholders are allowed to take part in

6

key that are part of qualified set based on their non-malicious performance which
makes it hard to compute when malicious shareholders are detected to be equal or
greater than the threshold (t). An alternate approach "Variable Elimination" is used
in [31] to reconstruct secret instead of langrange interpolation using SSS schemme.
Variable Elimination can be more complex than Lagrange interpolation, leading to
potential implementation errors. [15] utilizes an authenticated key tansfer protocol
using SSS sheme where a Key Generation enter broadast group key info to all the group
members instantly requiring only authoruized group member to recover.The protocol
includes an authentication mehanism to verify identity. [21] makes use of Diffie-Hellman
distribution scheme for key distribution where Public part of the key pair is divided
into two parts one to be sent to user and the other to be kept at CKMS. By using
long-term keys with the CKMS, any two parties can create a secure communication
channel without physically exchanging any type of keying material.The CKMS functions
as a key translation center (KTC), making this possible. For the safe preservation of
sensitive material, [23] employs a secret split technique whereby portions of the secret
are kept on separate disks or places.

2.2 Key Management Systems

[17] Businesses must use encryption in their cloud environment and make sure that their
encryption keys are safely kept off-site in order to secure them. It is never a good idea
to store keys next to encrypted data. In modern networks, key management schemes
generally fall into two major paradigms:

2.2.1 Centralized

As a result, centralized key management solutions have problems like, the KMS acts
as a centralized control point hence making it a single point of failure, cross-domain
key transfer is hampered since the key management is done centrally making it very
slow hence very inefficient since it relies too much on centralization. Automated key
management is a communication method that was formulated to address the problems
of risks and trust inherent in traditional key management, which relies on centralisation
to distribute keys to many members or organisations. The traditional key management
methods present problems like, key distribution and security issues and key management
complexity adding to the security risks and management problems of the system.

2.2.2 Distributed

A decentralized governance approach disperses key management responsibilities among
multiple entities or nodes in the network. [17]However, a dishonest dealer could distribute

7

a fake shadow to a participant, preventing them from ever obtaining the true secret,
and a central KDC could still act as a single point of failure. Managing decentralized
key management systems (DKMS) tends to be more complex than centralized ones, as
handling multiple nodes and ensuring synchronization and consistency across them can
be challenging among other chanllenges as mentioned below:

• Latency and Performance: Distributed systems may introduce latency, especially
if nodes are geographically dispersed. The time required to reconstruct a key or
perform cryptographic operations may increase.

• Coordination and Trust: DKMS often require coordination between multiple
nodes or parties. This introduces the need for trust mechanisms to ensure that
nodes operate correctly and do not act maliciously.

• Network Reliability: The performance and reliability of a DKMS depend on the
underlying network. Network failures or partitions can temporarily prevent the
system from functioning properly.

2.3 Data Security Issues to the Cloud Data

[41] The widespread adoption of edge computing, Internet-of-Things(IoT), and fifth-
generation (5G) technologies have generated vast amounts of data. IDC projects that
by 2025, there will be 175 zeta bytes of data worldwide. The need for data storage is
getting crucial. Cloud storage may efficiently combine and make use of the conventional
fragmented and isolated data and information as the comprehensive value contained
in the data can have a significant impact. When data is outsourced to cloud servers,
consumers are relieved of intricate upkeep and control of local storage. But it can cause
users to lose ownership of their data and pose serious threat to data security.

[47] According to the ISC2 2024 Cloud Security Report, among other primary
barriers to cloud adoption by the organization security and compliance is at the top,
(shown in figure 2.1) [17]One of the most important aspects of cloud computing is the
secure management of resources (including the data residing there) that are associated
with cloud services . There are various challenges and vulnerabilities associated with
securing data that is stored, processed, or transmitted within cloud environments.
Proper encryption is crucial, if the data is not adequately encrypted at rest or in transit,
it is vulnerable to interception and unauthorized access. According to CrowdStrike’s
Global threat report 2024 cloud environment intrusions increased by 75% from 2022 to
2023.

Another major issue to the data outsourced on the cloud is the risk of data loss. Data
stored in the cloud can be lost for multiple reasons, such as failure of hardware, human
errors, or activities with malicious intent. Data loss can be disastrous, particularly if

8

Figure 2.1: ISC2 2024 Report, Barriers to Cloud Adoption

Figure 2.2: Issues to Security of Data in the Cloud

backup solutions and disaster recovery plans are not in place, especially for organizations
that rely on their data for daily operations. Also, misconfigured or weak access controls
can let unauthorized person to have access to sensitive data.

[17] On cloud platforms, there’s always a risk of insider attacks, as cloud architectures
may not be fully protected against threats from within. [11] In virtual environments,
a malicious user could potentially get access into nearby virtual machines which are
hosted on the same hardware and then can compromise the integrity and availability of
the data. [11]Different factors contribute to risks to data integrity, confidentiality, and
availability, including insider attacks as shown in Figure 2.2. [56]According to PWC’s
Global Digital Trust Insights Survey Report-2024 cloud threats are going to be at the
top of the list in coming years as shown in Figure 2.3.

9

Figure 2.3: Top Cyber Threats Over The Next 12 Months

2.4 Challenges for Cloud-Based Cryptographic Key
Management

Traditional key management faces several challenges, including difficulties in key distri-
bution, security threats, management complexity, and trust issues, all of which have
worsen the security risks and system’s complexity. [43] Resource security is considered
as crucial components of cloud computing. Although cloud services are more affordable
and provide scalable, elastic, and self-configurable resources, they also necessitate a
lot of cryptographic operations from cloud consumers’ perspetive. These are required
for safe communication with different services as well as for the securiyt of data creat-
ed/proessed by those services.

The Key Management System needed to facilitate these cryptography operations
may be challenging to build due to differences in ownership and management of the
infrastructures housing secured assets and KMS. For example, although the data
is owned by the cloud customer, the cloud provider manages the storage resources
that house the data. For cloud customers looking to guarantee security from these
cryptographic activities, this presents a dilemma because frequently, the KMS needed
to maintain the cryptographic keys protecting this data also needs to operate on the
cloud provider’s infrastructure.

Key management in cloud computing presents additional issues, such as ensuring
that key stores are protected like any other sensitive data. Key stores need to be
safeguarded in storage, during transit, and through backup. Failing to secure key
storage can compromise all encrypted data. Access to key stores must be restricted to
authorized entities, and policies should be in place to separate roles, ensuring that the
entity using a key is not the one storing it. Losing keys means losing the data they
protect, which could be disastrous for a business. Therefore, secure storage, backup,
and recovery solutions must be implemented to safeguard critical data.

10

2.5 Current State of Insider Threats and Quantum
Attacks in Cryptographic Systems

Malicious insider attacks have long been overlooked, but they are among the most
destructive attacks, impacting all layers of cloud infrastructure. Insider threats typically
refer to individuals who have legitimate access to an information system and misuse
their privileges. [58] The worst-case scenario is when insiders operate within the cloud
environment, such as a system administrator with maliious intent working for a cloud
provider. This person, by virtue of their role, can use their authorized access to retrieve
sensitive data. For example, an authorized administrator who is responsible for system
backups (virtual machines, data stores) could take use of this access to obtain private
user data. Such indirect access can be very difficult to detect.

An insider attack on the cloud infrastructure could have substantial impact on the
cloud provider’s business, ranging from data leakage to significant system and data
corruption, depending on the insider’s motivations. Any kind of cloud service, such as
IaaS, PaaS, or SaaS, that is accessible to data centres or cloud Management Systems is
susceptible to insider assaults. Verizon’s [44] DBIR (Data Breach Investigation Report)
reports that while external attackers continue to be the dominant cause of breaches
(65%), internal threats have increased significantly to 35% from 20% in 2023 as shown
in table 2.1.

Table 2.1. Involvement of Insiders in Attacks

ATTACK EXTERNAL INTERNAL
VECTORS THREAT ACTORS THREAT ACTORS
Privilege Misuse 1% 99%
Social Engineering 100% -
Web Application Attacks 99% 1%
Miscellaneous Errors - 100%
DOS Attacks 100% -
Lost and Stolen assets 12% 88%
System Intrusion 100% -

[46] When malicious insider threats occur, authorised users take use of their access
and organisational knowledge, which makes them very challenging to find. By eluding
security standards and procedures, these insiders combine their malicious activity with
legitimate activities. Their knowledge of security procedures along with the confidence
they’re given and the emergence of remote work, have made it more difficult to distinguish
between benign and actions with malicious intent. In contrast to external threats, which
frequently exhibit distinct signs of insider threats requires more sophisticated detection

11

techniques in order to detect hidden threats. Firewalls and intrusion detection systems
often overlook these attacks, since they consider these actions to be acceptable and
don’t present a risk of being discovered.

Verizon’s 2023 report highlights that 99% of threat actors are insiders. The Verizon
Data Breach Investigations Report (DBIR) for 2021 reveals the involvement of the
insiders in external attacks which is around 22% of security incidents, showing that a
significant portion of attacks on cloud or cloud key management systems.

2.6 Quantum-Resilient Cryptography-Why a Neces-
sity Now?

We are aware that the Internet depends on encryption for private emails, security and
privacy of the communication, as well as finance-related transactions. If encryption
is breached, these crucial could be jeopardized. [54] Today’s encryption relies heavily
on complex problems in mathematics, such as factoring really big numbers, that are
incomprehensible to conventional computers. If quantum computing hadn’t been
developed, we might still be relying on conventional cryptography for many more years.
These gadgets employ the ideas of quantum mechanics to carry out specific calculations
significantly more effectively than conventional computers. Regretfully, these intricate
computations involve solving the mathematical hard problems that are the basis of
majority of the cryptography in broad usage in the modern era.

There are no large and stable quantum computers at present which can break
today’s cryptography but experts are sure that a Cryptographically-Relevant Quantum
Computers (CRQC) will be built soon. However, in a threat model known as the
harvest now, decrypt later type of threat model, an attacker can capture encrypted
data now and wait for the day he gets access to an advanced quantum computer to
decrypt the information. This means that the communication implemented today is
already vulnerable from a potential quantum attacker and it is crucial to switch to
implementing post-quantum key agreements as soon as possible.

Mathematical difficulties like the discrete logarithm problem and factoring huge
integers are the foundation for the security of elliptic curve cryptography (ECC) and
other public-key cryptography systems. The RSA and Diffie-Hellman cryptosystems,
as well as their elliptic-curve-based variations, are totally broken by Shor’s quantum
computing method [53].

In O(n3) time, Peter Shor’s quantum method can solve prime factorization for a
n-bit integer. It is estimated that the general number field sieve, the quickest classical
approach for integer factorization, executes in O(n1/3) time. Using the Pollard-Strassen
algorithm, the best rigorously proved upper bound on the classical complexity of
factoring is O(2n/4+o(1)). If small factors exist, a quantum algorithm employing Grover

12

search can outperform Shor’s algorithm in accelerating the factorisation of elliptic curves.
It is thought that certain traditional public-key cryptosystems are immune to quantum
attacks. Order finding, the foundation of Shor’s factoring algorithm, which reduces
to the Abelian hidden subgroup problem, can be solved by using Quantum Fourier
Transform (QFT) and Other hardness problems, among which few are membership
problem for matrix groups over odd order fields and diophantine problems whih is
related to quantum circuit creation, also reduce to integer factorization.

[54] The final standards for three post-quantum algorithms—ML-KEM for key
agreement, ML-DSA and SLH-DSA for digital signatures—were published by NIST on
August 13, 2024. The FFT (fast-Fourier transform) over NTRU-Lattice-Based Digital
Signature Algorithm (FN-DSA) will be the main emphasis of the fourth standard, which
will be introduced in late 2024 and is based on the FALCON algorithm.

Table 2.2. NIST’s First Post-Quantum Standards

OLD NAME NEW NAME BRANCH
Kyber ML-KEM (FIPS 203) Lattice-Based

Module lattice-based key-encapsulation Mechanism
Dilithium ML-DSA (FIPS 204) Lattice-Based

Module lattice-based Digital Signature Standard
SPHINCS SLH-DSA (FIPS 205) Hash-Based

Stateless Hash-based Digital Signature Standard
Falcon FN-DSA Lattice-Based

FFT over NTRU lattices Digital Signature Standard

2.7 Conclusion

This chapter reviewed some of the existing techniques for secure management of keys
and to provide data security over the cloud environment.It also discussed existing data
security issues along with the current state of insiders/internal threats and quantum
attacks in cryptographic systems.

13

Chapter 3

THEORETICAL FOUNDATIONS

This chapter comprehends a detailed explanation of lattice-based cryptography and
Shamir Secret Sharing scheme and how the lattice-based version of Shamir Secret
Sharing scheme ensures enough security to be resilient against Quantum computers
generated attacks.

3.1 Shamir Secret Sharing Scheme

[42] Efficient threshold schemes play a crucial role in managing cryptographic keys. The
usual way to protect data is to enrypt it, but we need a different approach to secure the
encryption key—increasing the number of encryption levels just makes the issue worse
by shifting and complicating it further. A computer, a person’s brain, or a safe can all
be considered secure locations for the key to be kept in the most secure key management
system. This approach, however, is extremely unreliable since the knowledge might
become permanently inaccessible due to a single error (such as a computer malfunction,
an unexpected death, or sabotage).

Maintaining many copies of the key in different locations is a more obvious approach,
but doing so raises the possibility of security breaches (due to hacking, betrayal, or
human mistake). With n = 2k−1, we implement a (k, n) threshold technique to build a
very robust key management system. While adversaries cannot reconstruct the key even
if
⌊
n
2

⌋
= k − 1 of the remaining k pieces are compromised, adversary would not able

to retrieve the original key in the event that
⌊
n
2

⌋
= k − 1 of the n pieces are lost or

destroyed.
One of the very first threshold algorithms was Shamir’s Secret Sharing Scheme,

which was created by Adi Shamir in 1979 [57]. The plan uses polynomial interpolation as
its foundation. There are t different points (xi,yi) that uniquely define any polynomial
y = f(x) of degree t-1. The Dealer selects a finite field polynomial that is suitable and
shares n different locations on the polynomial’s graph with n users. The Dealer is

14

responsible for key generation, distribution, and reconstruction. The polynomial can
then be reconstructed by any group consisting of at least t users.

A key feature of Shamir’s Secret Sharing is that in order to reconstruct a secret
all the shares are not required, instead, the pieces are combined to recover the secret.
The threshold value must be smaller than the total number of shares, which prevents
decryption failures if a few parties are unavailable. Given that Shamir’s scheme provides
a efficient solution to the problems of key-sharing it is employed in the protection of
the keys for Data that is in an encrypted form and protected with other algorithms or
other tools

A simple example is a vault accessible only to a company’s board and the passode of
vault’s is made encrypted using SSS, and a quorum, also known as threshold, of board
members is needed to display or release the passcode. Even if one board member is
absent, Shamir’s Secret Sharing scheme makes it sure that the vault remains secure
while still meeting the access requirement.

3.1.1 Algorithm for Shamir’s Secret Sharing Scheme

Input: t and n represent threshold and total partiipants, respectively, secret means S
Output: Shares (i, Si) for 1 ≤ i ≤ n, reconstructed secret S

Step 1: Secret Sharing (Generation of Shares) A secret S is generrated by
the dealer D, where S ≥ 0. D selects a prime p such that p > max(S, n).This prime
p must be larger than both the secret S and the total number of participants n. The
condition p > max(S, n) ensures that all operations performed during the secret sharing
process are well-defined within the finite field Fp.

D sets a0 = S, where a0 is the constant term of the polynomial f .This means that
the secret S will be the value of the polynomial when evaluated at x=0 (i.e., f(0)= S).

D randomly selects t − 1 coefficients a1, a2, . . . , at−1, where 0 ≤ aj < p for 1 ≤
j ≤ t− 1. The number of coefficients t− 1 is determined by the threshold t, which is
the minimum number of shares required to reconstruct the secret. In total, there are
t coefficients (including a0) which correspond to the degree of the polynomial.These
coefficients define a random polynomial f(x) over the finite field Fp:

f(x) = a0 + a1x+ a2x
2 + · · ·+ at−1x

t−1 =
t−1∑
j=0

ajx
j

D computes the shares Si for each participant Pi by evaluating the polynomial f at
x = i:

Si = f(i) mod p, for 1 ≤ i ≤ n

D securely distributes the share (i, Si) to each participant Pi.

15

Step 2: Secret Reconstruction To reconstruct the secret S, at least t participants
must combine their shares (xi, Si). Each participant Pi provides their share (xi, Si) =
(i, Si). Using the t shares, the participants reconstruct the polynomial f(x) by Lagrange
interpolation. The polynomial f(x) is calculated as:

f(x) =
t∑

i=1

Si · Li(x)

Where Li(x) is the Lagrange basis polynomial associated with the point xi defined as:

Li(x) =
∏

1≤j≤t
j ̸=i

x− xj

xi − xj

The secret S represents the constant term of the polynomial, which is f(0):

S = f(0) =
t∑

i=1

Si · Li(0)

Expanding Li(0) gives:

S =
t∑

i=1

ci · Si, where ci =
∏

1≤j≤t
j ̸=i

xj

xj − xi

Once f(0) is computed, the secret S is successfully reconstructed.

3.1.2 Key Attributes of Shamir Secret Sharing Scheme

Some properties of Shamir Secret Sharing scheme are discussed as under:

Secure: The scheme ensures that the secret remains confidential and secure. Even if
some participants collude, they cannot uncover the secret unless they have the
required number of shares. This is known as information-theoretic security.

Minimal: Each share is exactly the same size as the secret itself. This efficiency tells
that the scheme does not need large storage or transmission. resources.

Extensible: The security of the plan is unaffected by the addition or removal of existing
shares. Because of its flexibility, the system can change to meet new demands.

Dynamic: This security level can be manipulated by varying with the threshold size
of shares required to rebuild the secret. At the same, this means that the scheme
can be made more secure if needed.

16

Convenience: Sharing and rebuilding the secret is a simple process that makes it
simple to utilize and implement in practice.

Flexible: The scheme can also be applied to any data and can be used in different
application and in different use cases,thus, it can be applied to the majority of
practice situations.

3.1.3 Critical Security Features of Shamir Secret Sharing Scheme

[5]If there are less than t individuals in a group trying to reconstruct the shared
secret, Shamir’s Secret Sharing technique is completely safe. Here, the interpolation is
unsuccessful, and the smaller group remains ignorant of the shared secret. Though this
is only true if the polynomials are consistently selected arbitrarily and aren’t used later
to share numerous secrets. The best and most effective method is the Shamir Secret
Sharing scheme, where share size is equal to the secret. Shamir’s Secret Sharing system
is secure because of a number of important factors that work together to withstand
different types of attacks and unauthorized efforts to decipher the secret. The following
are the primary factors that guarantee the scheme’s security:

• Information-Theoretic Security: Perfect secrecy, commonly referred to as information-
theoretic security, is attained by Shamir’s Secret Sharing. Accordingly, the system
offers more than just computational security; it offers absolute security. Without
the necessary quantity of shares, an attacker possessing any level of computing
power is unable to learn anything about the secret.

• Polynomial Interpolation: The idea is closely connected with the polynomial
interpolation in the finite field. The secret is represented as the coefficient of the
polynomial based on which the bit and shares are constructed. The security of
the SSS scheme is based on the computation of polynomial and its constant term
the secret from a subset of the points.

• Randomness and Unpredictability: The generation of shares and polynomial
coefficients contain a certain level of randomisation. The randomness of these
values is the major determining factor of the scheme’s security. The problem
encountered with the random numbers is that if an attacker manages to guess
these random values then they may have some insight into the secret.

• Threshold Requirement: One of the security standards is the threshold requirement.
The secret is further divided into multiple shares and a mandatory (threshold)
number of shares are needed to reconstruct the secret. Lacking this threshold,
even if an attacker obtains certain shares, he can not restore the secret.

17

• Shares Independence: The security of the scheme is associated with the fact that
shares are generated with equal probability to the number of users. When the
shares are created randomly it is hard to gain information on the secret if one has
some of the shares, but does not have the shares needed to meet the threshold
level.

• Difficulty of Reconstruction: It is indicated that the polynomial interpolation
problem, which is defined as reconstructing the original polynomial from a subset
of points, is hard.The scheme’s security relies on the difficulty of reconstructing
the secret using fewer shares than the predetermined threshold.

• Large Finite Fields: This work shows that using large finite fields improves the
security of the scheme. The larger the field, the more complex for an attacker to
infer the remaining information out of the available shares.

• Adversary Model: The passive adversary model, in which the attacker can only
view the shares and not alter or affect their creation, is the basis for the security
study of Shamir Secret Sharing. In practical situations, any attempts to alter
the shares themselves or the creation of the shares process might cause greater
challenges.

Even though, as a result of implementing these security features, Shamir Secret
Sharing is supposedly invulnerable to this type of attack. For instance, it may fail
in situations where generation of shares is under threat or where a certain number
of malicious shares are produced. Furthermore, the scheme can be threatened by
quantum attacks if and when large scale quantum computers are made available.

3.2 Potential Quantum Threats to Classical Shamir
Secret Sharing Scheme

Quantum computers have been found to pose a potential threat to the Shamir Secret
Sharing scheme’s security, though the exact degree of that vulnerability will largely rely
on how the system is configured and parameterized.

• Faster Reconstruction: In particular, polynomials that are sorely required for the
primary polynomial interpolation operation in SSS may benefit from quantum
computing. When using quantum computer it is likely to perform polynomial
interpolation over finite fields faster than classical computer and therefore recon-
struct the secret.

• Reduced Security: The difficulty to recover the original polynomial from a number
of random points is one of the mathematical issues that are presented as proof of

18

the effectiveness and security of SSS. Quantum computers may actually be able
to address these issues more quickly, reducing the scheme’s security weakness.

• Attacks on Key Generation: Quantum computers could potentially attack the key
generation process in SSS. If the random number generation or key generation
process is vulnerable to quantum algorithms, an attacker could predict or manip-
ulate the generated shares, leading to the compromise of the secret.

3.3 Lattice-Based Cryptography

In the course of the technological development, there is also an increased need for
the protection of information and data transfer. As attacking power increases and
data expands, security has to become simultaneously more powerful and demand less
resources. Post all of these, Public Key Cryptography (PKC) is now being implemented
in most communication systems. However, more recent developments in mathematics
with the advent of Shor’s Algorithm, show that public key cryptographic schemes will
become ineffective once large scale quantum computers are built for such problems are
solvable in poly time. This has led to bring the attention towards post-quantum, or
quantum-safe, cryptography (QSC).

In 2016, the international cryptography community , National Institute of Standards
and Technology, also known as NIST, initialized the process to transition from classical
ryptography to Post Quantum Cryptography(QSC). Initially, lattice-based, code-based,
multivariate-based, hash-based, and isogeny-based QSCs were the five primary types
that were being considered. The fact that quantum-safe cryptography requires more
processing power and bandwidth than existing cryptography is a known drawback. On
August 13, 2024, NIST announced the First Post-Quantum Cryptographic Standards,
and three of the four standards were lattice-based due to the comparatively high
efficiency of lattice-based cryptography. par

Lattice-based cryptography offers several advantages, including strong security
guarantees based on the hardness of lattice problems, resistance to quantum computer
attacks, and provable security under well-established assumptions. [19] Additionally, it
uses linear computations on relatively small integers. Since the secret sharing algorithm
must align with the lattice-based public key infrastructure, Shamir’s secret sharing
scheme should be replaced with a lattice-based secret sharing scheme.

[1]The use of lattice-based cryptography (LBC) offers a viable substitute for the
conventional techniques used today. It is thought that lattice issues cannot be solved in
a practical amount of time, not even by quantum computers. Ajtai proved in 1995 that
the intricacy of these problems in their average situation is at least as challenging as
addressing them in their worst scenario. Moreover, in the NIST process, lattice-based

19

schemes remain the only candidate to offer fundamental primitives such as encryption,
key encapsulation, and digital signature techniques.

The analysis of lattice-based cryptography is analyzed from the following aspects as
mentioned below

1. Security: Lattice-based cryptography provides robust security assurances derived
from the intricate nature of lattice problems, including challenges like the Shortest
Vector Problem (SVP) and the Learning With Errors (LWE) problem. These
inherent security properties offer a robust defense against both classical and
quantum attacks, rendering lattice-based schemes highly appealing for post-
quantum cryptography purposes.

2. Efficiency: Recent improvements in lattice-based cryptography have focused
on making cryptographic tools work better. This means trying to make it faster
to create keys, make the encrypted messages smaller, and reduce the amount of
computing power needed. Structured lattices and smarter ways of doing things
with algorithms are really important for making lattice-based cryptography more
practical and useful.

3. Versatility: Lattice-based cryptography offers versatility and flexibility in de-
signing various cryptographic primitives, including encryption, digital signatures,
identity-based encryption (IBE), and homomorphic encryption. These primitives
enable secure communication, authentication, and privacy-preserving computa-
tions in diverse application domains.

3.3.1 Lattice

[48,49]Modern cryptography includes lattice-based cryptography, whose security depends
on solving unsolvable lattice theory challenges. In mathematical terms, a lattice is a
collection of vectors. A lattice can be seen of as a vector space created by a collection of
vectors that are linearly independent in cryptography. n Linearly independent vectors
can be used to define a lattice b1,b2, . . . ,bn ∈ Rm.The lattice generated by these
vectors is:

L(B) = L(b1,b2, . . . ,bn) =

n∑

i=1

xibi | xi ∈ Z

Here, b1,b2, . . . ,bn are known as the basis vectors of the lattice L(B). We can also
define B as an m × n matrix, where each column vector is one of the basis vectors
b1,b2, . . . ,bn. The lattice that this matrix creates is:

L(B) = L(b1,b2, . . . ,bn) = {Bx | x ∈ Zn}

20

Figure 3.1: A 2-Dimensional Lattice Structure

Here, m and n are integers, where m ≥ n. The dimension of the lattice is denoted by m,
whereas the rank is denoted by n. Full-rank lattices are those in which m = n. λ(L(B)),
which is the length of the shortest non-zero lattice vector, is the shortest distance in
the lattice L(B). It is the smallest distance between any two different lattice points.

3.3.2 Cryptographic Assumptions on Lattices

Lattice-based cryptography uses problems in mathematics with lattice structures as a
foundation to build cryptographic techniques including key exchange, encryption, and
signatures. latticess often rest on complex problems like the Closest Vector Problem
(CVP), the Shortest Vector Problem (SVP), and Learning with Errors (LWE). Lattice-
based cryptographic systems provide strong security because these challenges are
usually computationally challenging. Lattice-based encryption has a number of benefits,
including the ability to provide provable security under well-established assumptions,
resistance to attacks utilizing quantum computers, and strong security guarantees based
on the hardness of specific lattice issues.

1. Small Integer Solution Definition 2 (SIS). Take a matrix A ∈ Zn×m
q with

a norm satisfying ∥z∥ ≤ β formed by m uniformly distributed random vectors
ai ∈ Zn

q .

2. Learning with Errors Definition 3 (LWE). A random matrix A ∈ Zm×n
q and

(A,As+ x) are involved in the LWE problem for a prime number q, a positive
integer n, and a Gaussian distribution χm on Zm

q . Here, x ∈ χm. The LWE
problem presents a substantial probability challenge that is to locate s ∈ Zq.

3. Shortest Vector Problem Definition 4 (SVP). For a lattice L(B) ⊆ Rn of
dimension d, with a basis B ∈ Zn×m, the SVP problem requires finding a non-zero

21

vector x in L(B) such that ∥x∥ ≤ λ(L(B)). Definition 5 (SVPγ). Given a
lattice L(B) ⊆ Rn of dimension d, with a basis B ∈ Zn×m, the SVPγ problem
involves finding a non-zero vector x in L(B) such that ∥x∥ ≤ γ · λ(L(B)), where
γ ≥ 1 is an approximation factor. Definition 6 (GapSVPγ). In this problem,
for a lattice L(B) ⊆ Rn of dimension d, with a basis B ∈ Zn×m, the GapSVPγ

problem requires judging whether r · γ < λ(L(B)) or r ≥ λ(L(B)), where r is a
rational number.

4. Closest Vector Problem Definition 7 (CVP). For a lattice L(B) ⊆ Rn

of dimension d, with a basis B ∈ Zn×m, the CVP problem requires finding a
non-zero vector v such that, for any non-zero vector u ∈ L(B), the inequality
∥v − t∥ ≤ ∥u− t∥ holds, where t is a target vector.

Definition 8 (CVPγ). Similar to CVP, but with an approximation factor
γ ≥ 1, the CVPγ problem involves finding a non-zero vector v in L(B) such that
∥v − t∥ ≤ γ · ∥u − t∥ for any non-zero vector u. Definition 9 (GapCVPγ).
Given a lattice L(B) ⊆ Rn and a basis B, the GapCVPγ problem involves deciding
whether rγ ≤ ∥u − t∥ or r ≥ ∥u − t∥, with r being a rational number and t a
target vector.

3.4 Lattice-Based Shamir Secret sharing scheme

Using a lattice-based version of Shamir Secret Sharing can potentially provide better
security compared to the traditional Shamir Secret Sharing scheme that works using
polynomial interpolation. In a lattice-based variant of Shamir Secret Sharing, instead
of using polynomial interpolation, the operations are performed within the lattice
framework. The shares and reconstruction process involve operations on lattice points,
leveraging lattice problems like the Shortest Vector Problem(SVP),and also the other
problems known as Ring Learning With Errors (RLWE) or Learning With Errors (LWE)
problem.

3.4.1 How Lattice-Based Shamir Secret Sharing Scheme Strength-
ens Security of the Scheme

The Lattice-Based Shamir Secret Sharing Scheme significantly strengthens the secu-
rity of traditional Shamir Secret Sharing (SSS) schemes by integrating lattice-based
cryptographic techniques, which offer several advantages, particularly in the context of
quantum computing threats. Here’s a comprehensive overview of how this integration
enhances the security of the scheme:

1. Post-Quantum Security:

22

• Lattice-Based Advantage: On the other hand, lattice-based systems rely on
the difficulty of lattice problems, such Learning With Errors (LWE) and
the Shortest Vector Problem (SVP). It is thought that these issues are
immune to quantum algorithms, guaranteeing that the security of the shared
secret will endure even in the presence of quantum computers. Lattice-based
SSS provides a future-proof solution against changing cryptographic threats
because of this post-quantum security.

2. Threshold Flexibility: Another advantage of using lattice-based methods is thatit
is possible to change the thresholds, and no other communication is needed
with the dealer or shareholders. By this flexibility, security within the scheme
can be changed as a result of changing security demands or threat levels in the
environment and this makes security even better. Since the number of shares that
is required to reconstruct the secret can be changed to meet the current security
requirements, the protocol remains rather immune to the attacks.

3. Robustness Against Collusion:

• Common Risk: If shareholders control a significant enough number of shares
in a typical SSS, there is a chance that they will collaborate to reconstruct
the secret.

• Lattice-Based Strength: The method based on lattice, on the other hand,
offers better protection from collusion into such schemes. The security of
the lattice problems makes it much more difficult for a part of shareholders
to reconstruct the secret in case of reaching the required threshold only.
This way guarantees that even if some of the participants are involved in
conspiracy they cannot garner back the secret without meeting the minimum
number of shares apart from compromising the secret.

4. Efficient Verification:In lattice based schemes, for example, various techniques for
reconstruction and distribution include efficient checks on the shares to detect
authenticity.They help prevent manipulation so that the secret can only be rebuilt
using the correct shares. This improves security and gives the secret exchange
procedure an extra degree of security.

5. Enhanced Privacy: According to such a lattice, the privacy of individual shares is
greatly enhanced through transforming mathematical representations of shares
into other equivalent forms. The mathematical form of lattices allows it that the
potential opponent has no chance to obtain any information about the secret from
single shares if he succeeded in getting one or more of the shares.This enhanced
privacy is crucial in maintaining the confidentiality of the secret in a distributed
environment.

23

6. Resilient Key Generation: The lattice-based approach also fortifies the key gener-
ation process. Quantum computers could potentially attack the key generation
process in traditional SSS, but lattice-based schemes are designed to withstand
such attacks, ensuring that the shares and the secret remain secure.

7. Long-Term Security Assurance: As the cryptographic landscape continues to
evolve, lattice-based schemes offer a future-proof approach to securing secrets. By
preparing for the potential capabilities of quantum computers, the lattice-based
Shamir Secret Sharing Scheme provides long-term security assurances, making it
a robust choice for both current and future cryptographic needs.

3.5 Key Management Functions

[43]The key management life cycle/phases are the operations that govern the creation,
use, storage and destruction of keys. The primary key management functions operations
are discussed as follows:

• Generate Key: A vital component of security is the creation of high-quality keys.
Cryptographic modules that have been authorised to create keys for a given
algorithm should be used to produce the keys for that algorithm.

• Generate Domain Parameters: These establish the fundamental parameters and
guidelines in which cryptographic operations will take place. Before the keys
or shares are formed, lattice-based algorithms need the development of domain
parameters, such as lattice dimension and basis vectors, which are generated
using authorised cryptographic modules. The domain parameters are then used
to construct the keys.

• Bind Key and Metadata: An associated Access Control List (ACL) that identifies
which users, entities, or processes are authorised to access or use the key or share,
as well as usage constraints (like authentication, encryption, or key establishment)
and the key’s owner’s identification, are bound to the key.

• Key Activation: During key generation, this step often activates a key.

• Key Deactivation: This is usually done after a key has expired or been replaced
by another, making it unusable for cryptographic protection.

• Key Backup: In the case where a key is accidently deleted or hets unavailable, it
can still be restored from where the backup is stored.

24

• Key Recovery: When a key is lost but still required by authorised persons, this
feature is used in addition to key backup. Both symmetric and private keys are
often covered by key backup and recovery.

• Metadata Modification: When a key’s associated metadata needs to be updated,
this function is called. Examples include updating the validity period of a public
key certificate or adding or removing a person or device from the ACL of a key or
share.

• Rekeying: This operation replaces an existing key with a new one or its updated
version Typically, the current key is used for authentication and authorization for
the replacement of key .

• Key Suspension: This feature, which is comparable to reversible revocation,
temporarily halts the use of a key. It can be used when the owner of a key wants
to temporarily halt using it (for example, while on a prolonged absence) or when
the key’s status is unknown. This can also be accomplished for secret keys by
deactivating the key. Suspension of public keys and their matching private keys is
often accomplished by sending out a suspension notification for the public key.

• Key Restoration:As soon as the secure status of a locked key is determined, this
function allows the user to unlock it. Key activation with secret keys is another
way to accomplish it. This is mostly handled by a revocation notification for
the public key and any associated companion private identifiers; otherwise, the
revoked public key item is simply removed using the unique identifier that certifies
the key’s validity.

• Key Revocation: This feature notifies the parties that are dependent on the public
key to stop utilising it. The owner discontinuing to utilise the private linked with
it and the treachery of a companion companion private key are two possible causes
of this.

• Key Archival: After a key has been deactivated, expired, or compromised, this
function allows it to be saved in the long-term memory.

• Key Destruction: If a key is not needed any longer, this function is used to destroy
it.

A symmetric key or public/private key pair being used in proposed Key Management
System can undergo different states as shown in figure 3.2.

25

Figure 3.2: State Diagram of Keys Life-Cycle

3.6 Key Management - Generic Security Requirements

[28]Managing keys is crucial in a cloud environment to ensure data flow synchronization
in networks. Encryption provides security but requires significant computational power.
Storing encryption keys presents challenges because of clouds’ dynamic nature. to the
dynamic nature of the cloud. Keeping keys with the consumer, rather than in the
cloud, avoids excessive computations for decryption during data retrieval, ensuring
security and efficiency. Here are some security requirements regarding key management,
discussed as under:

1. Appropriately authenticated and authorizations parties are allowed to perform
the key management functions for a given key.

2. Concerning the major management commands together with the related in-
formation all protected from spoofing, i. e. the methods involved in source
authentication are done before a command is to be issued.

3. Since any alterations to information, even those made by an unauthorized person,
are referred to as unlawful modifications, all crucial management commands and
pertinent data are protected against sneak attacks, guaranteeing the integrity.

4. The private and secret keys are kept hidden to prevent unauthorised use.

5. Integrity protection is offered in distributed environments to protect all keys and
metadata from unauthorised and undetected modifications.

26

3.7 Conclusion

The chapter discussed the core principles of Shamir Secret Sharing and Lattice-based
Cryptography, highlighting their strengths in secure information distribution and
quantum-resistant security. By merging these two frameworks, Lattice-based Shamir
Secret Sharing offers a robust and future-proof approach to cryptography, ensuring
both the efficient sharing of secrets and protection against quantum attacks.

27

Chapter 4

PROPOSED KEY MANAGEMENT
SYSTEM

This chapter, we will discusses the architecture and working of the proposed scheme
using an improved version of Lattice Based Shamir Secret Sharing Scheme as an efficient
solution for existing security related concerns in key Management System (KMS).

4.1 Architecture and Components of the KMS

As the pattern of proposed KMS is distributed, therefore, some of the components lie
at the cloud-side and while some are functioning at the on-premise based KMS. The
figure 4.1 shows the architectural components of Cloud-Based KMS and Premise-Based
KMS and interactions amongst them.

4.1.1 Architectural Components

1. On-premise KMS Components:

• Authorization System: Responsible for handling authentication tasks for
users, ensuring secure access control. Could implement multifactor authenti-
cation (MFA) and monitor session activity.

• Encryption/Decryption Application: Uses keys provided by the KMS for
encrypting and decrypting user files. Likely integrated with the enterprise
user interface for seamless operations.

• Dealer: Performs the lattice-based Shamir secret sharing tasks. Handles
the distribution of shares to the key provider on both on-premise and cloud
KMS.

28

Figure 4.1: Architectural Components of Proposed KMS

• Key Provider: Stores and manages key shares locally. Works with the dealer
to distribute and reconstruct secret shares for user operations.

• Enterprise User Interface: A user-facing component where users interact
to encrypt/decrypt files. Can be designed to allow users to manage access
control, key versions, etc.

2. Cloud-based KMS Components:

• Key Provider: Stores keys or key shares that are mirrored or distributed
from the on-premise system and Act as a backup or redundancy in case of
on-premise system failure.

• Authorization System: Does mutual authentication with the on-premise
KMS using mTLS and also ensures only authorized communication occurs
between cloud and local systems.

4.1.2 Overview of the KMS

The proposed key management system is based on lattice-based Shamir Secret Sharing
scheme(based on Shortest vector problem hardness problem). The Key Management
System (KMS) is distributed and has two sub KMSs , one is the local/on-premise
based and other one is cloud based. The premise-based has 5 components namely

29

authorization system who performs authentication related task, encryption/decryption
application that performs the encryption/decryption of the files using the keys provided
to it, dealer is the entity that will perform all the secret sharing activities, key provider
has the keys and the shares of the keys and enterprise user interface through which
user interact with the encryption-decryption application to encrypt or decrypt the files
. On the other hand, the components at the cloud side has the key provider where
the rest of the keys are stored and the authorization system which helps in the mutual
authentication between the cloud KMS and premised-based KMS.

First of all at the start of each session the cloud KMS and Enterprise KMS mutually
authenticate each other using mTLS and then a secure channel is established between
the two. When a user wants to send an encrypted file to any other user 2, he first login
using the Enterprise User Interface(EUI) to access the enryption/decryption application,
he is then navigated to authorization system to get access to key provider in order
to select the keys he is authorized to use, after he selects the key, the key is sent to
the encryption application after mutual authentication of key provider and encryption
application. If the user is not registered already then user is first registered and then
process of enryption/decryption starts as explained in Section: High-Level Algorithm
of Proposed KMS.

The proposed Key Management System is designed to ensure confidentiality, integrity,
and proper authentication throughout the file encryption and decryption stages. Below
is a generalized overview of how the process works:

1. User Authentication for Key Access: The user gets a chance to login into the
system an identify himself through a secured method. After user authentication
the user communicates with the authorization system to obtain the required
cryptographic keys. If the user is not registered, he proceeds through a secure
registration to connect the account to a smart key.

2. File Encryption Using Session and Master Key: To encrypt the file there is a
session key and to maintaining the master key, the system uses improved method
like Lattice-Based Shamir Secret Sharing(LBSSS). The master key then generated
and divided into shares and stored securely. They then utilizes this master key
later to further encrypt the session key enhancing the level of security.

3. Secure Exchange of Public Key: The system receivers the receivers’s public key
and encrypt the file with that so it may be readable only by the recipient. This
public key encryption ensure secure transfer of the encrypted file.

4. Secure Communication using Mutual Authenticaton: In the proposed KMS, each
of the system components are authenticated mutually, allowing only administrative
entities to engage in the encryption, key management and files transfer. There is
a pub/pri key pair for each component which is stored at key Provider.

30

4.2 Authentication Between Different Modules of the
Framework

1. Authentication between User and key provide
Adapted Public Key Authentication in proposed Framework works as explained
below:

• Key Pair Generation and Storage:
The user’s public/private key pair is generated by the key provider. Both
the public key and the private key are stored securely by the key provider.

• Request for Authentication:
When the user wants to authenticate, they send an authentication request to
the Authorization System. This request can be initiated, for example, when
the user logs in or requests access to certain services.

• Challenge-Response Mechanism:
The Authorization System generates a challenge (a random piece of data)
and forwa it to the key provider. The key provider, holding the user’s private
key, signs the challenge using the private key.

• Verification Process:
The signed challenge is sent back to the Authorization System. The Autho-
rization System uses the stored public key (which it retrieves from the key
provider or its own secure store) to verify the signature. If the signature is
valid, the Authorization System authenticates the user.

• Access granted:
Upon successful authentication, the Authorization System authorizes the user
to access the key provider. The Authorization System then securely passes
an authentication token or a temporary access credential to the key provider,
indicating that the user has been authenticated. The key provider can then
trust that the user has been properly authenticated by the Authorization
System and grant access to the requested cryptographic services.

In the same manner, mutual-authentication is done between En/Dec app and Key
Provider, and between Dealer and the Enc/Dec app.

4.2.1 Why mutual authentication is needed

• To authorize the dealers to generate and share the shares of the secret and logging
of events starts after the dealer’s authentication.

31

Figure 4.2: Authentication b/w User and Key Provider

• To keep record of the secrets being generated and for whom and also with whom
the shares are shared.

• To prevent any rogue dealer from impersonating a legitimate dealer and perform
reconstruction of the secret by retrieving shares.

4.3 High-level Algorithm of Proposed KMS

1. User Registration:

• User Request: A new user (e.g., User 3) initiates the registration process by
submitting a request through the Enterprise User Interface (EUI). The user
provides required information such as name, ID, etc.

• Authorization Check: The request is passed to the Authorization System.
The system validates the user’s details to ensure that the user is authorized
to register (is an employee of the enterprise).

• Smart Key Generation: Once the authorization check is successful, the Key
Provider generates a set of keys for the user such as Public/Private Key Pairs
for authentication and encryption/decryption, Team Keys, Contingency Keys
for collaborative and backup purposes, Key Versions for future updates of
the keys and the ACLs specifying the permissions.

• Access Control Lists (ACLs): The Key Provider creates an Access Control
List (ACL) for the new user. This ACL defines Which keys the user can access,
the user can use the keys (e.g., for encryption only, or both encryption and

32

Figure 4.3: User Registration

decryption) and list of users who can access the same keys (for collaborative
or team-based tasks).

• User Authentication: The new user is required to authenticate with the
Authorization System to bind the smart key with their account. The system
may use multi-factor authentication (MFA) for added security during this
step.

• Registration Complete: After completing the registration, the user can
now access the Encryption/Decryption Application and perform secure file
transfers. The user’s smart key will be used to encrypt/decrypt files, and all
operations will be logged for auditing purposes.

2. Encryption Algorithm: After the user gets authenticated and selects a key to be
used for encryption of the file as explained earlier the encryption/decryption app
receives the key selected by the user from the key provider and the unencrypted
file to be encrypted along with the ID of the receiver from the user through EUI,
the process of encrypting the file starts. Firstly, Enc/Dec app creates Session
key and encrypt file with Session key and place it in .zip file. To create Master
key using the LBSSS (Lattice Based Shamir Secret Sharing)mechanism, Dealer
authenticates itself to get access to the encryption-decryption application and
local-key provider and initializes LBSSS process(as explained in Section 4.4).
The shares of Master key are stored at local Key provider (with master key ID).
Dealer reconstruct Master key and sends it to encryption-decryption application
application which then uses Master key to encrypt the session key, places it into
.zip file. Encryption-decryption application must prove it has access to the cloud

33

Figure 4.4: Encryption Process of Proposed KMS

based key provider in order to get the public key of the recepient depending on
the ID mentioned by the sender and use it to encrypts the.zip file. Based on the
above steps, figure 4.4 illustrate the process of encrypting in proposed KMS.

3. Decryption Algorithm: The recipient (User2) request Encryption-decryption
application to decrypt file using Enterprise User Interface. User2 get authenticated
and granted access to Key Pprovider to select the key to be used for decryption.
Encryption-decryption application app request Key provider for the receiver’s
Smart key. Key provider provides all the keys ID to user and user selects the one
to be used for decryption of file which is kept in .zip file along with the encrypted
file. Key provider sends key info. to the Encryption-Decryption application which
then requests for the smartkey against the ID to the Cloud-based key provider.

Encryption-Decryption application gets authenticated to get the services of Key
provider which sends the smartkey back to Encryption-Decryption application.
Encryption-decryption application uses private Key (Kpri) of receiver and decrypts
.zip file. Encryption-decryption application app authenticates itself to Dealer
to reconstruct Master key by providing ID Of the Master key. Dealer forwards
Master key to Encryption-decryption application app after reconstruction so
Encryption-decryption application may use Master key to decrypt Session key.
Encryption-decryption application use encrypted session key to decrypt file and
The decrypted file is sent to User2. Encryption-decryption application terminates
session with User2. Figure 4.5 shows the decryption process of proposed KMS.

34

Figure 4.5: Decryption Process of Proposed KMS

4.4 Implementation Details of the Lattice-Based Shamir
Secret Sharing Scheme

In the proposed KMS, an improved version of lattice based Shamir secret sharing is used
for constructing Master Key, where shares are not stored as received but there is stored a
computed share which is called Pseudo-secret which is sent back to the dealer/combiner
at the time of reconstruction, the reason is to improve security of the shares at the
time of rest and also Participants should not divulge the initial shares while trying to
retrieve the secret or secrets. In the worst scenario, lattice-based cryptosystems can be
proven to be secure based on the hardness of the lattice issues.

• Threshold Requirement: The correct reconstruction of B requires at least t linearly
independent λi vectors. This ensures that the threshold t is respected, meaning
that fewer than t participants cannot reconstruct the secret.

• Security: The security of this process is based on the hardness of reconstructing
the lattice basis B without sufficient information (i.e., fewer than t shares).

The use of lattice problems, such as the Shortest Vector Problem (SVP), ensures that
the scheme is resistant to unauthorized reconstruction. use of Permutation matrix The
permutation matrix P transforms the matrix E into a new matrix =Ei=EP.

35

Figure 4.6: Secret Generation and Distribution Algorithm

This operation essentially reorders the rows or columns (depending on whether P
is applied to the left or right of E) of the matrix E. This reordering adds an extra
layer of complexity for anyone trying to infer the structure or properties of E just from
observing the public matrices Ei. Since P is a permutation matrix, the rows or columns
are merely shuffled, not altered in value. Still, this shuffling can prevent certain attacks
by making it harder to correlate Ei directly with the underlying secret.

By introducing a permutation matrix P, the scheme becomes more resistant to
attacks that exploit predictable structures in the matrix E. For instance, without the
permutation, if E has certain patterns, an attacker might use these to deduce the secret
more easily. The permutation obscures such patterns. Instead of generating a new
matrix Ei for each share or each participant, the same matrix E can be used across
different parts of the scheme by simply applying different permutations via P. This
reduces the memory footprint because you only need to store one base matrix E and
the permutation matrix P, rather than multiple distinct matrices Ei. The permutation
matrix effectively allows the same base matrix E to serve multiple roles or be associated
with different participants or secrets, thereby reducing the overall amount of public
information that needs to be stored and managed.

36

Figure 4.7: Secret Reconstruction Algorithm

Figure 4.6 and 4.7 explains how the secret is generated, distributed and reconstruction
of the Lattice-Based Shamir Secret Sharing Scheme with its improved version which
involves pseudo-secret at the time of reconstructing the secret.

The modulo operation in both the algorithms ensures that the vector is correctly
aligned with the original lattice basis. As we are using the Shortest Vector Problem
(SVP), after the dealer reconstructs the secret S ′, it uses a lattice reduction algorithm
known as (LLL) algorithm or BKZ (Block Korkin-Zolotarev), in order to approximate
the shortest vector in the lattice in order to retrieve the actual secret S. The shortest
vector vshort found from the lattice reduction process should be very close to the original
secret S.

The reconstructed secret S ′ is obtained by taking the shortest vector and adjusting
it if necessary to account for any small errors introduced by the noise vectors vi. The
relation is:

S ≡ vshort mod B

4.4.1 Mutual TLS (mTLS) Certificate

At the start of each session, the KMSs at the local/On-Premise and at the Cloud-Based
are mutually authenticated to make the transfer of the key material secure using the
mTLS protocol. With the help of digital certificates, the client and server authenticate
one another using the mTLS handshake, which expands on the basic TLS (Transport
Layer Security) protocol. For the proposed system mTLS ensures secure transfer of key
material between the local KMS and the Cloud-Based KMS.

37

Figure 4.8: mTLS Handshake

Here are some details for the mTLS Handshake:

• Local-KMS Hello: For the handshake to initiate, the Local-KMS first sends
a "Local-KMS Hello" message containing information about the supported TLS
version(s), cipher suites (sets of encryption algorithms), a nonce value (a random
number used to generate session keys), and, if it’s desired, the Local-KMS’s public
key.

• Cloud-KMS Hello: The Cloud-KMS then sends a "Cloud-KMS Hello" message
that contains the selected TLS version, the cipher suite, a nonce that aids in the
generation of session keys, and any extensions that provide further configuration
data.

• Cloud-KMS Certificate: To authenticate itself, the Local-KMS uses the digital
certificate that the server transmits along with public key. A reliable Certificate
Authority (CA) has signed the certificate.

• Cloud-KMS Certificate Request: To ensure mutual authentication, the Cloud-
KMS makes a request for the Local-KMS’s certificate. This is a key difference
between mTLS and standard TLS.

• Cloud-KMS Hello Done: The Cloud-KMS indicates it has finished its portion
of the handshake and is waiting for the Local-KMS’s response by sending a
"Cloud-KMS Hello Done" message.

38

• Local-KMS Certificate: For authentication, the client transmits the Cloud-
KMS a digital copy of its certificate.

• Local-KMS Key Exchange: Making use of Cloud-KMS’s public key, a "pre-
master secret" is created by the Local-KMS and is sent to the Cloud-KMS
encrypted. To generate session keys, both sides utilise the nonces and pre-master
secret.

• Certificate Verify: Possession of the private key associated with the certificate
is demonstrated by the Local-KMS signing and sending to the Cloud-KMS a hash
of all previous handshake messages.

• Local-KMS Finished: With the session key encrypted, the client sends a
"Finished" message that is a hash of all prior handshake messages.

• Cloud-KMS Finished: When the server replies with a "Finished" response of
its own, the handshake is complete. Along with being encrypted with the session
key, this message also contains a hash of previous communications.

• After the Handshake: After the handshake, a secure, encrypted communication
channel has been formed and both the client and server have verified one another.
To maintain secrecy and integrity, all upcoming communications will be encrypted
using session keys that are generated from the pre-master secret.

4.4.2 Lenstra–Lenstra–Lovász (LLL) Algorithm

An orthogonal, virtually structured lattice basis can be obtained by applying the
polynomial-time LLL method to a given lattice basis. One can tackle issues such as
these using a reduced basis:

• The Shortest Vector Problem (SVP) is the task of determining the shortest possible
non-zero lattice vector

• A lattice vector’s closest match to a given vector is found using the Closest Vector
Problem (CVP).

The LLL algorithm doesn’t always find the exact shortest vector but provides a good
approximation of the shortest vector. This makes it practical for many cryptographic
applications where exact solutions are not necessary but good approximations are
sufficient.

How Does the Lattice-Based Shamir Secret Sharing Scheme Benefit from LLL? The
initial secret is encoded as a lattice vector in our lattice-based Shamir secret sharing
system, and shares are generated by appending noise to this vector. The objective of

39

the reconstruction phase is to solve the Shortest Vector Problem (SVP) on the lattice
made up of the shares in order to retrieve the original secret. Here’s where the LLL
algorithm comes into play:

1.

2. Lattice Reduction for Reconstruction: The LLL algorithm can reduce the lat-
tice basis formed by the shares. This reduced basis makes it easier to find an
approximate solution to the SVP. Lattice reduction techniques like LLL provide
a good approximation to the shortest vector. Since exact solutions to SVP are
computationally expensive, LLL offers a balance between efficiency and accuracy.

3. Noise Tolerance: The LLL algorithm helps reduce the impact of the noise added
to the shares during the splitting process. By reducing the basis, it removes
redundant and noisy components, bringing the reconstructed vector closer to the
original secret vector. This reduction minimizes the errors that arise from noise
during the reconstruction phase.

4. Efficient Approximation: Exact solutions to SVP are NP-hard, and attempting
to solve them directly for large lattices is computationally infeasible. The LLL
algorithm provides an approximation to the shortest vector in polynomial time,
making it practical for cryptographic applications.

In our case, using LLL during the reconstruction phase helps to efficiently approximate
the secret vector from noisy shares. Steps involved using LLL for Reconstruction:

• Construct the Lattice:

During the reconstruction phase, the shares form the lattice. We construct a
lattice using the given shares (vectors), which will serve as the basis for the LLL
algorithm.

• Apply LLL Reduction:

The LLL algorithm is applied to reduce the lattice basis. This step transforms the
shares into a more structured form, helping us recover the approximate shortest
vector, which corresponds to the original secret. Reconstruct the Secret:

After applying LLL, the secret is recovered by solving the SVP on the reduced lattice.
The reduced lattice allows us to efficiently approximate the original secret vector.

40

4.5 How Security Is Enhanced Against Insider And
Quantum Threats

The proposed Key Management System (KMS) using Lattice-Based Shamir Secret
Sharing Scheme (LBSSS) strengthens security against both insider and quantum threats
through several critical design features:

• Decentralization to Counter Insider Threats: The proposed KMS decentralizes key
storage and generation across both on-premise and cloud components, reducing
the reliance on any single entity. Insider threats, such as malicious administrators
with elevated privileges, are mitigated since no single insider can access enough
information to reconstruct the master key. The keys are split into multiple
shares distributed across independent systems, and only a predefined threshold
number of shares can reconstruct the key. This division ensures that even if an
insider accesses some shares, they cannot compromise the entire system without
controlling the majority.

• Quantum-Resistant Cryptography: LBSSS leverages lattice-based cryptographic
techniques that are resistant to quantum attacks. Lattice problems, such as the
Shortest Vector Problem (SVP), are considered hard even for quantum computers.
This ensures that cryptographic secrets remain secure against adversaries using
quantum algorithms, such as Shor’s algorithm, which can break classical crypto-
graphic schemes. By employing post-quantum cryptography, LBSSS future-proofs
the KMS against the inevitable rise of quantum computing.

• Threshold-Based Security: In the proposed scheme, LBSSS divides the master
key into a number of shares and a threshold value is set in order to reconstruct
original secret, this means that even though a quantum adversary or insider gains
access to fewer than the threshold number of shares, they cannot reconstruct
the key. The difficulty of the lattice problems further enhances the security to
reconstruct key ensures it remains resilient against attacks that exploit quantum
computing power.

• Mutual Authentication and Secure Communication: The KMS employs mutual
Transport Layer Security (mTLS) to ensure secure communication between the
cloud-based and on-premise components. This prevents unauthorized entities
from intercepting or tampering with key transfer processes, further enhancing
the security of the system against insider and external threats. Additionally, the
authorization system ensures that only authenticated users and processes can
access the key provider and encryption/decryption applications.

41

• Noise-Resilient Key Reconstruction: The LBSSS enhances resilience by using
lattice reduction algorithms, such as Lenstra-Lenstra-Lovász (LLL), during the
key reconstruction process. These algorithms provide robustness against noise
and errors that may arise from insider manipulation or external quantum-based
attempts to reconstruct the key. Even in the presence of noisy or compromised
shares, the LBSSS can accurately reconstruct the original secret.

• Access Control: Associating an access control policy with each key to permit,
deny or restricts the access to the keys resolves the security issues as no other
than the authorized person can have access to the key material.

• Shortest Vector Problem(SVP): Using SVP with lattices makes the algorithm
computationally difficult to solve, especially in high dimensions, which makes it a
strong foundation for cryptographic schemes. The hardness of SVP is thought to
be immune to even quantum computing.

4.6 Conclusion

The chapter provided a detailed explanation of the working and implementation of the
proposed Lattice-Based Shamir secret sharing scheme-based Key Management System.
The chapter also discussed the authentication mechanism used to authenticate the
different modules/components of the proposed Key Management System.

42

Chapter 5

ANALYSIS OF LATTICE-BASED
SHAMIR SECRET SHARING
SCHEME (LBSSS) AND PROPOSED
KMS

Using lattice-based Shamir Secret Sharing not only enhances security, also efficiency is
improved as there’s no need to make the key size larger to achieve better security.

We may now summarise the results in the following context if we wish to look into
the secrecy, integrity, and availability:

• Secrecy: To find out the secret, an eavesdropper must get hold of at least t
shareholders and take their shares.

• Integrity: To destroy or change the secret, an eavesdropper must corrupt at least
n-t + 1.

• Availability: If the adversary knows threshold value (t) is known, then the
probability of secret availability will grow as n increases. Secrecy and integrity
will be improved with the increases in t and n (number of shareholders).

The suggested technique uses r+n memory to store the size of public values for each
secret size.

The memory used by proposed scheme regarding the size of public values per secret
size is r+n and size of each share per secret is equal to r/(t log q), which approximately
equals to 0.5, if rmaxtlogt, n ≈ tlogt.

43

5.1 Description Of Experiments And Evaluation Met-
rics

In the context of complexity, secret recovery consists of two steps:

• The side of the participants: Each member calculates his pseudo-secret share from
his share in this stage. Since the shares are binary vectors, we only need to do a
simple column addition in matrix (Ei) in order to get the pseudo-secret shares.
For every participant in this process, the complexity is O(tr), which is less than
the modular exponentiation complexity found in other techniques. As such, this
technique is appropriate for applications that are not too complex.

• The combiner’s side: The complexity of the step is O(t3), which includes two
operations, one is matrix inversion and other one is matrix multiplication. The
complexity of inverting a general t x t matrix is O(t³) using standard algorithms
such as Gaussian elimination or LU decomposition. This complexity arises
because matrix inversion involves multiple steps, including row reductions and
back substitutions, which require t² operations for each of the t rows in the matrix.
Thus, the overall complexity of inverting a matrix is proportional to t³.

5.2 Comparative Analysis of Experimental Findings

5.2.1 Classical Shamir Secret Sharing Scheme

1. Complexity Analysis:

• Secret Splitting (Polynomial Evaluation): The time complexity for polyno-
mial evaluation is O(k), where each share represents a value generated by
evaluating the degree k − 1 polynomial at some point x.

• Reconstruction (Lagrange Interpolation): The time complexity of Lagrange
interpolation is O(k2), where k represents the total number of shares which
are used for reconstruction. For each share, it needs to run a nested loop over
all other shares and compute the Lagrange basis polynomial. This process
involves computing modular inverses and performing multiplications.

2. Performance Analysis: Secret sharing scheme has been implemented on a 1.00GHz
Intel m3-7Y30, running Windows 10 pro 64 Bit (the code can be found in the
Appendix). The performance results of the implementation reported for n=100
and t=15, p = 7919, where P is prime number larger than the secret and larger
than all intermediate values, of Shamir Secret Sharing scheme, is shown in Table
5.1.

44

Table 5.1. Performance Analysis of Shamir Secret Sharing Scheme

Algorithm Memory Consumption Computational time
Secret, share generation 0.011719 MB 0.220823 seconds
Secret Reconstruction 0.031250 MB 0.204482 seconds

Figure 5.1: Memory and Time Consumption Analysis of SSS

5.2.2 Lattice-Based Shamir Secret Sharing Scheme

1. Complexity Analysis:

• Secret Creation and Distribution Phase:
The computational complexity in the distribution phase is centered around
matrix Ai, which is pivotal for generating and distributing shares. The
computational complexities include:
- O(t2n): Represents the complexity of generating shares for n participants,
where t is the threshold for secret reconstruction.
- O(tn(r−n)): Accounts for the matrix multiplications involved in computing
shares using lattice encoding.
- O(n3): Comes from matrix inversion, which is the most computationally
intensive operation in this phase, making it the dominant cost.
- O(tn2): Represents the matrix multiplications during the distribution
process to ensure shares are properly encoded within the lattice framework.
Summing these complexities, the overall computational complexity for share
distribution is O(n3) per secret, primarily due to matrix operations, particu-
larly matrix inversion. While this phase is computationally expensive, the
lattice structure offers strong security against quantum threats. For the pro-
posed KMS, the use of pseudo-secrets introduces an additional computation

45

step, as the original secret must first be obfuscated before generating the
shares. However, this step does not impose significant overhead, as pseudo-
secret generation can be performed efficiently using standard cryptographic
primitives.

• Share Distribution: Distributing shares to participants requires securely
transmitting them over a network. This process introduces minimal com-
putational overhead since it mainly involves communication protocols. The
complexity for share generation and distribution remains O(n ∗ k), making
it scalable for a moderate number of participants.

• Secret Reconstruction Phase:
In the reconstruction phase, participants compute the pseudo-secret shares
to reconstruct the original secret. The binary nature of the shares simplifies
operations in this phase, making computations more efficient:
- Binary representations allow participants to perform simple bitwise opera-
tions, which reduces the overall computational cost. - Unlike the distribution
phase, where matrix operations dominate, the recovery phase involves sim-
pler computations, making it less computationally intensive. The system
ensssures that even though the distribution phase is complex, the recovery
process remains efficient for participants.

2. Performance Analysis:

• Memory Usage:
In the first phase of the Lattice-Based Shamir secret sharing scheme, memory
usage is primarily dominated by the matrices Ai, which are crucial for the
operations of the Lattice-Based Shamir Secret Sharing Scheme. These matri-
ces are used with the purpose to create shares for multiple participants and
occupy a significant portion of available memory resources. Each participant
receives a share, sj, which also contributes to memory usage.
The size of each share sj is optimized to r · t log q, where:
- q is defined as t2

2
, - r is t log t.

These optimizations help reduce memory overhead, which is vital when
managing many shares and participants. By limiting the share sizes, the
system ensures scalability, even in resource-constrained environments.
In the second phase, after the shares are distributed, the matrices Ai are
updated to A′

i. At this stage, only additional vectors s′′j are transmitted to
participants. This step is designed to minimize the amount of data sent over
secure channels, reducing bandwidth consumption and improving system
efficiency—especially in distributed cloud environments where communication
costs are key.

46

Figure 5.2: Memory and Time Consumption Analysis of LBSSS

For n=3 and t=3, p = 11 where P is prime number larger than the secret
and larger than all intermediate values, analysis of computational speed and
memory consumption of Lattice-Based Shamir Secret Sharing scheme (the
code implementation can be found in Appendix), is shown in Table 5.2

Table 5.2. Performance Analysis of Lattice-Based Shamir Secret Sharing Scheme

Algorithm Phase Memory Consumption Computational time
Secret Generation and Distribution 0.007188 B 8.318776 seconds
Secret Reconstruction 0.003906 B 7.201234 seconds

The figure below shows the memory and time consumed during the secret generation,
share distribution and secret reonstrution phases of the LBSSS. Memory graph shows
the memory consumption of the scheme in Bytes, as the process consumed ignorable
memory whih is less than a Byte, therefore, graph does not show any value.

5.3 Security Analysis of Proposed KMS Based on
LBSSS

The combination of the proposed key management system (KMS) and LBSSS ensures
a robust, future-proof, and tamper-resistant security model.

1. Quantum Resistance: LBSSS mitigates quantum threats, which traditional cryp-
tosystems are vulnerable to.

2. Confidentiality and Integrity: Both systems ensure that sensitive data, keys, and
secrets remain protected, valid, and only accessible to authorized participants.

47

3. Collusion and Insider Threat Mitigation: The use of thresholds and distributed
shares in LBSSS, along with the KMS’s role-based access, prevents collusion and
insider attacks.

4. Availability and Fault Tolerance: The distributed nature of both the KMS and
LBSSS ensures the availability of keys and secrets during system failures or
unavailability of participants.

This integrated security framework offers significant resilience against both tradi-
tional and emerging threats, ensuring long-term security and reliability for the
key management system as shown below in table 5.3 and 5.4.

Attack Type Threat Defense How LBSSS
Helps

Quantum Attacks
(Shor’s Algorithm)

Quantum comput-
ers can efficiently
break traditional
cryptosystems
such as RSA and
ECC using Shor’s
algorithm.

Lattice-based cryp-
tography is resis-
tant to quantum
attacks because
the underlying
problems (e.g.,
SVP and LWE)
are believed to be
quantum-resistant.

Hard lattice prob-
lems make it in-
feasible to solve
encoded and re-
constructed shares,
even with quan-
tum computing
power.

Brute Force At-
tacks

The attacker tries
all possible combi-
nations of shares
or secrets to re-
cover the original
secret.

With a large mod-
ulus q and prop-
erly generated ma-
trices, the search
space is exponen-
tially large, mak-
ing brute force
infeasible.

High-dimensional
lattices and mod-
ular arithmetic
make brute-forcing
computationally
infeasible.

Eavesdropping
(Man-in-the-
Middle Attack)

An attacker in-
tercepts commu-
nication between
parties to collect
shares and recon-
struct the secret.

Modular arith-
metic with a large
prime q makes it
difficult to derive
the secret. Com-
munication can
also be encrypted
or authenticated.

Intercepted shares
are useless unless
the attacker ob-
tains at least t
shares.

Table 5.3. LBSSS - Common Attacks and Defense Mechanisms (Part 1)

48

Attack Type Threat Defense How LBSSS
Helps

Collusion Attacks Some participants
collaborate to re-
construct the se-
cret without meet-
ing the threshold.

The threshold t
ensures that fewer
than t participants
cannot successfully
reconstruct the
secret, even if they
collude.

Lattice encoding
ensures partial in-
formation from
collusion does not
reveal the com-
plete secret.

Insider Attacks
(Malicious Partici-
pants)

A dishonest par-
ticipant tries to
manipulate their
share or provide
incorrect data to
disrupt reconstruc-
tion.

Modular arith-
metic and lattice-
based encoding
ensure that tam-
pered or incorrect
shares fail the re-
construction pro-
cess.

Matrix inversion
and consistency
checks ensure only
valid shares are
accepted during
reconstruction.

Key Compromise
Attack (Single
Point of Failure)

In traditional sys-
tems, the compro-
mise of a single
key or share can
expose the secret.

LBSSS distributes
the secret across
multiple shares,
and the thresh-
old t ensures that
fewer than t shares
reveal no useful
information.

The distributed
nature of LBSSS
eliminates the risk
of a single point of
failure.

Replay Attacks An attacker in-
tercepts a share
during distribution
and tries to reuse
it to access the se-
cret later.

Time-sensitive or
session-specific se-
crets can be used,
and shares can be
recomputed with
different lattice
bases per session.

Randomized share
generation en-
sures uniqueness,
preventing reuse
across sessions.

Fault Injection
Attacks

The attacker ma-
nipulates input or
computations (e.g.,
matrices or shares)
to produce incor-
rect results.

Redundancy and
verification dur-
ing reconstruction
(e.g., matrix in-
version checks)
ensure tampered
data fails to pass.

If any share or ma-
trix is tampered
with, the recon-
structed matrix
and secret will not
match, ensuring
fault detection.

Table 5.4. LBSSS - Common Attacks and Defense Mechanisms (Part 2)

49

5.4 Threat Model of Proposed Key Management Sys-
tem

The threat model for proposed KMS uses lattice-based cryptography, mutual authentica-
tion, and threshold-based key sharing to identify and mitigate potential threats. Secure
key management across cloud and on-premise components is maintained, and strong
resistance against insider threats, external attacks, and quantum threats is enforced.

1. Assets in the System

• Master Keys and Session Keys: Critical for encryption and decryption of
sensitive data.

• Key Shares: Parts of the secret key distributed across cloud and on-premise
systems.

• Lattice-based Parameters: Includes public matrix E, lambda vectors, and
lattice basis B.

• Access Control Policies: Define which users or components have permission
to access keys and perform operations.

2. Threat Actors

• Malicious Insiders: Employees with access to key shares who may attempt
unauthorized reconstruction.

• External Attackers: Hackers or adversaries targeting cloud components to
access shares or keys.

• Quantum Adversaries: Attackers using quantum computing to break classical
cryptographic protections.

• Man-in-the-Middle (MitM) Attackers: Adversaries attempting to intercept
communication between cloud and on-premise systems.

• Rogue Administrators or Trusted Third-Party Misuse: System administrators
misusing elevated privileges to reconstruct secrets.

3. Attack Vectors

• Unauthorized Key Reconstruction: Insiders gaining access to a subset of
shares in an attempt to reconstruct the full key.

• Compromised Communication Channels: Intercepting data transferred be-
tween cloud and on-premise systems.

50

• Compromise of Cloud Storage: Attackers gaining unauthorized access to key
shares stored in the cloud.

• Quantum Threats: Exploiting quantum algorithms (e.g., Shor’s algorithm)
to break classical encryption used for securing key material.

• Side-Channel Attacks: Extracting information through timing analysis, cache
access, or power consumption during encryption and decryption operations.

4. Vulnerabilities in the System

• Single Point of Failure at Key Providers: If cloud or on-premise key providers
are compromised, partial key information may be leaked.

• Matrix Inversion Operations: Matrix inversion can be computationally ex-
pensive, leaving the system vulnerable to timing-based side-channel attacks.

• Complexity of Access Control Lists (ACLs): Incorrectly configured ACLs
may lead to unauthorized users gaining access to key material.

• Noisy or Tampered Shares: If attackers modify shares, key reconstruction
may fail, resulting in denial of service.

5. Mitigation Strategies

• Decentralization of Key Storage: The use of threshold-based reconstruction
ensures that no single entity (cloud or on-premise) has full control over the
key.

• Lattice-Based Cryptography: The use of lattice-based encryption (SVP and
LLL algorithms) ensures quantum resistance and noise tolerance in key
reconstruction.

• Secure Communication via mTLS: Mutual TLS (mTLS) ensures encrypted
communication between cloud and on-premise systems, preventing MitM
attacks.

• Access Control Policies: ACLs are used to strictly define access permissions,
reducing the risk of unauthorized access to key material.

• Audit Logging and Monitoring: Log every access attempt to key material to
detect potential insider threats or rogue administrators.

• Noise-Tolerant Key Reconstruction: The use of the LLL algorithm ensures
that the system can still function even if some shares are noisy or tampered
with.
The STRIDE framework provides a structured way to identify, classify, and
mitigate potential security threats to proposed KMS, as shown in Table 5.5.

51

Threat Type (STRIDE) Description Mitigation

Unauthorized key reconstruction Elevation of Privilege (E) Insider attempts to gather
enough shares to reconstruct
the key.

Threshold reconstruction (t-out-
of-n).

Compromised cloud storage Information Disclosure (I) Cloud-based key shares are ac-
cessed by attackers.

Decentralized storage and ACLs.

Man-in-the-Middle attack Spoofing (S) Attacker intercepts communi-
cation between cloud and on-
premise systems.

Use mTLS for secure channels.

Quantum computing attack Tampering (T) Quantum algorithms attempt to
break classical encryption.

Lattice-based cryptography
(post-quantum).

Rogue administrator access Elevation of Privilege (E) Admin misuses access to retrieve
and reconstruct keys.

ACLs and audit logs.

Noisy or tampered shares Denial of Service (D) Shares are modified, causing
reconstruction to fail.

LLL algorithm to tolerate noise.

Table 5.5. STRIDE Threat Categorization for Proposed KMS

5.5 Conclusion

The Lattice-Based Shamir Secret Sharing Scheme (LBSSS) strengthens security while
improving efficiency, without the need for larger key sizes. Its lattice-based structure
provides strong post-quantum resistance, ensuring secrecy, integrity, and availability,
with enhanced protection as the number of participants increases. Although LBSSS
involves higher computational complexity due to matrix operations, it remains highly
efficient for modern cryptographic requirements. Experimental results confirm its
scalability and suitability for lightweight, secure applications, making it a strong
candidate for future cryptographic systems.

52

Chapter 6

DISCUSSION

Certain aspects has to be examined for potential future enhancements to improvise the
security of the proposed Key Management System (KMS) based on the Lattice-Based
Shamir Secret Sharing Scheme (LBSSS). Issues including user authentication, data
leakage measures, access control, and the location of key material is unavoidable to
have a strong system. This chapter explains specific changes that could be made to
augment security and scalability of the framework so that it can meet new cryptographic
challenges in the future.

6.1 Addressing Potential Future Improvements

A few major security concerns in the Key Management System are thought to be user
authentication, access control, data loss, key material availability, and key management.
. Some of the improvements to bolster the security of these concerns are suggested as
below:

• Verifiability in the Lattice-Based Shamir Secret Sharing Scheme A key improve-
ment for the framework is adding verifiability to the lattice-based Shamir secret
sharing scheme. This would allow participants to verify the correctness of their
shares, enhancing security by preventing potential malicious behavior and ensuring
trust in distributed environments.

• Expanding Beyond Enterprise Applications Currently focused on enterprise-based
applications, the framework can be expanded to broader contexts, such as cloud
environments and multi-organizational collaborations. This would increase its
flexibility and scalability, making it applicable to a wider range of modern crypto-
graphic needs.

53

• Evaluating the Framework Against Common KMS Attacks Another important
future step is to evaluate the framework against common attacks on Key Manage-
ment Systems (KMSs). By rigorously testing the framework’s resilience to these
attacks, any potential vulnerabilities can be identified and addressed, further
strengthening the overall security of the system.

• Integrating Post-Quantum Standards By incorporating the post-quantum cryp-
tographic standards for key encryption and digital signatures the security of
the proposed Key Management System will offer a high level of efficiency and
protection in the future for authentication, key management, and key exchange
processes.

6.2 Considerations For Real-World Deployment and
Scalability

When deploying the LBSSS-based KMS in real-world applications, several important
factors must be considered:

1. Performance Overhead: The scheme introduces some overhead, especially during
the reconstruction phase, where lattice reduction algorithms like LLL or BKZ
are used. Ensuring the system can efficiently handle this overhead is crucial,
particularly in high-traffic environments or those requiring frequent encryption
and decryption operations.

2. Scalability: LBSSS is well-suited for scalable systems. With increase in number
of participants or shares, the system can manage larger workloads. However,
larger enterprises will need to allocate sufficient resources, such as memory and
computational power, to ensure smooth operation.

3. Security in Distributed Systems: The proposed KMS distributes key management
between on-premise and cloud-based systems, offering redundancy and enhanced
security. Ensuring secure communication between these systems is essential.
The use of mTLS for mutual authentication helps address this, but continuous
monitoring is needed to prevent insider threats and misconfigurations.

4. Adoption of Post-Quantum Standards: As post-quantum cryptography advances,
integrating LBSSS into existing infrastructures will require adherence to emerging
standards. Ensuring that the system can adapt to future updates in cryptographic
protocols is key to maintaining long-term viability.

5. Cost and Resource Management: In practice, deploying LBSSS will require
investment in hardware, software, and regular maintenance. Organizations need

54

to plan for both the initial setup and ongoing resource management, ensuring
there is enough computational power to handle the complexity of cryptographic
operations. A cost-benefit analysis will be essential to balance the enhanced
security against the additional resources required for large-scale implementation.

6.3 Conclusion

This chapter identifies the major issues that could affect security in the proposed
system and also indicates possible future changes for increasing the system reliability
for implementation. These enhancements are designed to enhance the security of
Lattice-Based Shamir Secret Sharing Scheme (LBSSS) and to expand the framework’s
capabilities to go beyond enterprise systems, to consider the verifiability of the scheme,
and to lay the ground work for post-quantum standards.

55

Chapter 7

SUMMARY OF RESEARCH WORK

The objective of the thesis is to develop a quantum-safe KMS for cloud-based computing
with the use of a combined cryptographic environment. The service of cloud computing
paradigms has incorporated various security issues, particularly when data is managed
through the multi-tenant environment in public cloud services. There are extra security
threats from the internal and the external environment these include the insider threat
and the quantum threat that threatens to overshadow the traditional cryptographic
models. This work aims to address these problems using a proposed Future-oriented
Distributed Key Management System (FDKMS), and implementing the Lattice-Based
Shamir Secret Sharing Scheme (LBSSS) as part of the post-quantum cryptography.

The research is driven by the existing drawbacks of conventional centralised systems,
where key generation and storage are frequently handled by the single controlling
centre/entity, making it a possible target for hackers. The cryptography key management
hierarchical structures can be threatened by internal attackers who have high-level
accesses and threaten the encrypted information by corrupting the central key managing
entity, also centralized management systems are also prone to external quantum threats
that could exploit the classical cryptographic algorithms. This thesis introduces the
utilization of LBSSS for decentralized key management within cloud or on-premise
KMS components as presented in Figure 4.1. The proposed Key Management System
incorporate lattice-based cryptography which is post-quantum secure to encrypt and
protect the keys from both classical and quantum threats thereby minimizing on the
issue of single point failure concession.

One key innovation introduced is the integration of Lattice-Based cryptography into
classical Shamir Secret Sharing Scheme, that combines the robustness of lattice-based
cryptographic techniques with the threshold-based security model of Shamir’s Secret
Sharing Scheme (SSS). The system splits cryptographic keys into many shares, which
are distributed among different entities/users and to reonstruct the key a threshold
number of shares is required, which ensures that unauthorized access is prevented even if
some shares are compromised. Lattice-based cryptography further enhances this scheme

56

by making it resistant to algorithms of Post Quantum Cryptography (PQC), such as
Shor’s algorithm, which is capable to, otherwise break traditional SSS. By combining
these approaches, the system ensures that keys remain secure even in a future where
quantum computing becomes a reality.

The thesis outlines the architecture of the proposed DKMS as consisting of the
authorization system, the system for encryption/decryption application, dealer for
key sharing, key provider, and the integrated enterprise user interface. It is mostly
integrated in a hybrid form with some elements at the Local/ On-Premise side and
others in cloud environment as it is both secure and elastic. The mTLS (Mutual
Transport Layer Security) protocol is used to authenticate the on-premise and cloud
components when exchanging information and encrypt when the system performs key
transfer to make it less vulnerable to attacks. Furthermore, the LLL reduction developed
for the Lenstra-Lenstra-Lovász (LLL) algorithm improves the key-sharing process to be
immune to inside attackers and quantum cryptanalysis. In terms of security analysis,
the thesis evaluates the performance of the Lattice-Based Shamir Secret Sharing Scheme
in comparison to the classical Shamir Secret Sharing Scheme. The system’s performance
is assessed based on key generation, distribution, and reconstruction times, as well as its
ability to withstand quantum adversaries. The results demonstrate that the proposed
system enhances security while maintaining efficient performance, making it suitable
for deployment in real-world cloud environments.

Lastly, the thesis discusses potential future improvements to the system. One focus
is the scalability of the DKMS, as it must handle large numbers of users and keys
in cloud environments. The study also explores challenges of real-world deployment,
including integration with cloud infrastructure and compliance with security regulations.
The thesis concludes that the proposed Quantum-Safe Distributed Key Management
System offers a robust solution to the security challenges of cloud computing, providing
long-term protection against insider threats and quantum computing. Future research
directions include optimizing the system for large-scale cloud deployments and exploring
additional post-quantum cryptographic techniques to further enhance key management
security.

57

Chapter 8

CONCLUSION

This section of the thesis presents the key insights and highlights the novel architecture of
the proposed Quantum-Safe Key Management System (KMS), which uses the extremely
secure Lattice-Based Shamir Secret Sharing Scheme (LBSSS) in particular. The study
focused on security flaws in cloud-based key management, particularly those related
to insider threats and the increasing danger of quantum attacks. By eliminating the
chance for one point of failure ,decentralising key management across on-premise and
cloud components improves overall security.

By splitting up cryptographic keys among multiple parties i.e. On-Premise KMS
and Cloud-Based KMS, requiring a threshold of shares for key reconstruction and
lattice-based cryptography combined with Shamir Secret Sharing enhances robustness
against quantum adversaries. Improved security against quantum adversaries and
efficiency in large-scale cloud deployments were validated by experimental results. The
LLL algorithm fully supports the system in ensuring secure communication and key
distribution via the mTLS protocol.

In order to solve present and future cryptographic issues, the research presents a
next-generation, quantum-safe DKMS that provides a scalable, secure solution for cloud
environments. This study establishes a solid basis for future research on distributed
key management systems and quantum-safe cryptography.

58

Bibliography

[1] McCarthy, S. (2020). Practical Lattice-Based Cryptography over Structured Lattices,
Queen’s University Belfast (United Kingdom).

[2] Kao, Y.-W., et al. (2013). "uCloud: a user-centric key management scheme for cloud
data protection." IET Information Security 7(2): 144-154.

[3] Varalakshmi, P., et al. (2014). A framework for secure cryptographic key management
systems. 2014 Sixth International Conference on Advanced Computing (ICoAC),
IEEE.

[4] Lin, C.-T. (2015). A Secret-Sharing-Based Method for Cloud Storage System,
NSYSU.

[5] Pundkar, S. N. and N. Shekokar(2016). Cloud computing security in multi-clouds
using Shamir’s secret sharing scheme. 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT), IEEE.

[6] Naik R, M. and S. Sathyanarayana (2017). "Key management infrastructure in
cloud computing environment-a survey." ACCENTS Transactions on Information
Security 2: 52-61.

[7] Schiefer, G., et al. (2017). Security in a distributed key management approach. 2017
IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS),
IEEE.

[8] Huang, X. and R. Chen (2018). A survey of key management service in cloud. 2018
IEEE 9th International Conference on Software Engineering and Service Science
(ICSESS), IEEE.

[9] Bentajer, A.,et al. (2021). Secure Cloud Key Management based on Robust Secret
Sharing. CS IT Conference Proceedings, CS IT Conference Proceedings.

[10] Abdulsalam, Y. S. and M. Hedabou (2022). "Security and Privacy in Cloud
Computing: Technical Review." Future Internet 14(1): 11.

59

[11] Attasena, V., et al. (2017). "Secret sharing for cloud data security: a survey." The
VLDB Journal 26(5): 657-681.

[12] Celiktas, B., et al. (2021). "A higher-level security scheme for key access on cloud
computing." IEEE Access 9: 107347-107359.

[13] Chhabra, S. and A. Kumar Singh (2020). "Security enhancement in cloud environ-
ment using secure secret key sharing." Journal of Communications Software and
Systems 16(4): 296-307.

[14] Evertsson, D. (2013). Cloud computing from a privacy perspective. UMNAD.
Independent thesis Basic level (degree of Bachelor).

[15] Harn, L. and C. Lin (2010). "Authenticated group key transfer protocol based on
secret sharing." IEEE transactions on computers 59(6): 842-846.

[16] Jeya, J. J., et al. (2023). An Efficient Algorithm for Secure Key Management in
Cloud Environment. 2023 Eighth International Conference on Science Technology
Engineering and Mathematics (ICONSTEM), IEEE.

[17] Mishra, A. (2014). Data security in cloud computing based on advanced secret
sharing key management scheme.

[18] Naik R, M. and S. Sathyanarayana (2017). "Key management infrastructure in
cloud computing environment-a survey." ACCENTS Transactions on Information
Security 2: 52-61.

[19] Pilaram, H., et al. (2021). "An efficient lattice-based threshold signature scheme
using multi-stage secret sharing." IET Information Security 15(1): 98-106.

[20] Li, W., et al. (2019). "Design of secure authenticated key management protocol
for cloud computing environments." IEEE Transactions on Dependable and Secure
Computing 18(3): 1276-1290.

[21] Pradeep, K. V., et al. (2019). "An Efficient Framework for Sharing a File in a Secure
Manner Using Asymmetric Key Distribution Management in Cloud Environment."
Journal of Computer Networks and Communications 2019: 9852472.

[22] Huang, J.-Y., et al. (2011). Efficient identity-based key management for configurable
hierarchical cloud computing environment. 2011 IEEE 17th International Conference
on Parallel and Distributed Systems, IEEE.

[23] Fakhar, F. and M. A. Shibli (2013). Management of symmetric cryptographic
keys in cloud based environment. 2013 15th International Conference on Advanced
Communications Technology (ICACT), IEEE.

60

[24] Song, N. and Y. Chen (2014). "Novel hyper-combined public key based cloud
storage key management scheme." China Communications 11(14): 185-194.

[25] Chhabra, S. and A. Kumar Singh (2020). "Security enhancement in cloud environ-
ment using secure secret key sharing." Journal of Communications Software and
Systems 16(4): 296-307.

[26] Nikhade, M. and T. Hiwarkar (2022). "A Study on Key Management Infrastructure
in Cloud Computing Environmental Survey for Secured Communication." Interna-
tional Journal of Innovations in Engineering and Science 7: 12-19.

[27] Nikhade, G. and T. Hiwarkar (2022). "A Study on Techniques for Access Control
and Key Management in the Cloud for Secured Communication." International
Journal of Innovations in Engineering and Science 7: 1-3.

[28] Karanam, P. and V. Varadarajan (2015). "Survey on the Key Management for
Securing the Cloud." Procedia Computer Science 50.

[29] Dr, R. P., et al. (2023). "A Higher-Level Security Scheme For Key Access Man-
agement On Cloud Computing." International Journal Of Scientific Research In
Engineering and Management.

[30] Fatima, S. and S. Ahmad (2020). "Secure and effective key management using
secret sharing schemes in cloud computing." International Journal of e-Collaboration
(IJeC) 16(1): 1-15.

[31] Gupta, V. and S. Bedekar "Alternative to Shamir’s secret sharing scheme Lagrange
interpolation over finite field." Int. J. Tech. Res. Sci.

[32] Han, J., et al. (2021). A decentralized document management system using
blockchain and secret sharing. Proceedings of the 36th Annual ACM Symposium on
Applied Computing.

[33] Jäger, H., et al. (2013). "A novel set of measures against insider attacks–sealed
cloud." Open Identity Summit 2013.

[34] Kannan, N. R. and N. Salian (2016). "Cloud Computing Security in Multi-Clouds
using Shamir’s Secret Sharing Scheme." International Journal of Computer Applica-
tions 975: 8887.

[35] Ravi, P., et al. (2021). "Lattice-based key-sharing schemes: A survey." ACM
Computing Surveys (CSUR) 54(1): 1-39.

[36] Schiefer, G., et al. (2017). Security in a distributed key management approach.
2017 IEEE 30th International Symposium on Computer-Based Medical Systems
(CBMS), IEEE.

61

[37] Yoo, S., et al. (2013). User-Centric Key Management Scheme for Personal Cloud
Storage. 2013 International Conference on Information Science and Applications
(ICISA)..

[38] Gupta, V. and S. Bedekar "Alternative to Shamir’s secret sharing scheme Lagrange
interpolation over finite field." Int. J. Tech. Res. Sci.

[39] Han, J., et al. (2021). A decentralized document management system using
blockchain and secret sharing. Proceedings of the 36th Annual ACM Symposium on
Applied Computing.

[40] Pilaram, H. and T. Eghlidos (2015). "An efficient lattice based multi-stage secret
sharing scheme." IEEE Transactions on Dependable and Secure Computing 14(1):
2-8.

[41] Jiang, J., et al. (2023). "QPause: Quantum-Resistant Password-Protected Data
Outsourcing for Cloud Storage." IEEE Transactions on Services Computing.

[42] Shamir, A. (1979). "How to share a secret." Communications of the ACM 22(11):
612-613.

[43] Chandramouli, R., et al. (2013). "Cryptographic key management issues and
challenges in cloud services." Secure Cloud Computing: 1-30.

[44] https://www.verizon.com/business/resources/T3dc/reports/2024-dbir-data-
breach-investigations-report.

[45] https://go1.gurucul.com/2023-Insider-Threat-Report.

[46] https://www.cybersecurity-insiders.com/2024-insider-threat-report-trends-
challenges-and-solutions.

[47] https://www.isc2.org/-/media/Project/ISC2/Main/Media/Marketing-
Assets/CCSP/2023-Cloud-Security-Report

[48] Chen, J., Deng, H., Su, H., Yuan, M., Ren, Y. (2024). Lattice-Based Threshold
Secret Sharing Scheme and Its Applications: A Survey. Electronics, 13(2), 287.

[49] Khalid, A.; McCarthy, S.; O’Neill, M.; Liu, W. Lattice-based cryptography for
IoT in a quantum world: Are we ready? In Proceedings of the 2019 IEEE 8th
International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto,
Italy,13–14 June 2019; pp. 194–199.

[50] El Bansarkhani, R., Meziani, M., 2012. An Efficient Lattice-Based Secret Sharing
Construction, in: Lecture Notes in Computer Science. Lecture Notes in Computer
Science, pp. 160–168.. https://doi.org/10.1007/978-3-642-30955-7-14

62

[51] https://www.datauniverseevent.com/en-us/blog/general/AI and the Global Datas-
phere, how much information will humanity have by 2025.

[52] https://www.readkong.com/page/the-digitization-of-the-world-from-edge-to-core-
8666239

[53] https://quantumalgorithmzoo.org/

[54] https://blog.cloudflare.com/nists-first-post-quantum-standards

[55] https://blog.cloudflare.com/pq-2024

[56] https://PWC-Global-Digital-Trust-Insights-Report-2024.pdf

[57] Čuřík, P., Ploszek, R., Zajac, P. (2022). Practical use of secret sharing for enhancing
privacy in clouds. Electronics, 11(17), 2758.

[58] Kandias, M., Virvilis, N., Gritzalis, D. (2013). The insider threat in cloud computing.
Critical Information Infrastructure Security: 6th International Workshop, CRITIS
2011, Lucerne, Switzerland, September 8-9, 2011.

63

Appendix A

APPENDIX: CODE
IMPLEMENTATION OF
LATTICE-BASED SHAMIR SECRET
SHARING SCHEME(LBSSS)

This section is a write-up for the Python and SageMath implementation of the Lattice-
Based Shamir Secret Sharing Scheme (LBSSS).

A.1 Overview

The LBSSS secret sharing scheme shares a single secret among several participants,
dividing the secret between multiple shares. The participants must combine these so
they can fully reconstruct it. A quorum/threshold of a pre-set number of shares is
required, and only those shares can recreate the secret. This scheme follows these steps:

1. Generate a Lattice Basis and Participant Vectors.

2. Shares are distributed according to the generated lattice basis.

3. Find the Modular Inverse:** Reassemble the secret from the combined shares.

4. Performance Analysis:** Conduct memory profiling and time measurement.

The implementation contains (1) Secret Generation and Share Distribution, and (2)
Secret Reconstruction algorithm.

64

A.2 Explanation of Code Components

• Lattice Basis Generation: The B matrix is created as a n x n matrix, with
randomness added by computing each element using a modulus operation.

• Lambda Vectors: A distinct lambda vector produced in a manner akin to the
lattice basis is given to every participant.

• Modular Inverse: To make secret reconstruction easier, the modular_ inverse()
function calculates the lambda matrix’s inverse.

• Generating Secrets and Shares: The participants’ secret and shares are calculated
using the generate_ secret_ and_ shares() function.

• Secret Reconstruction: The secret is reconstructed using the lambda matrix
inverse by the reconstruct_ secret_ exact() method.

A.3 Pseudo-Code

Algorithm: LBSSS Implementation Input: Lattice basis B, secret vector v, prime
modulus q, lambda vectors Output: Secret S and reconstructed secret S’

1. Generate lattice basis B (n x n matrix).

2. Generate lambda vectors for participants.

3. Compute secret: S = (B * v) mod q

4. Compute shares: Ci = (B * lambdai) mod q for all i.

5. To reconstruct the secret:

• Compute d vectors: di= (E * Ci) mod q.

• Compute the modular inverse of lambda matrix.

• Reconstruct lattice basis B’ = (lambda−matrix−1 ∗D) mod q.

• Compute reconstructed secret: S’ = (B’* v) mod q.

6. Compare S and S’ to verify the reconstruction.

65

A.4 Annotated Code Implementation of LBSSS

Below is the code implementation of the LBSSS scheme. The code is written in Python
using the SageMath library for matrix operations.

1 from sage.all import Matrix , vector , ZZ, gcd , inverse_mod
2

3 # Fixed values based on the matching configuration
4 B = Matrix(ZZ, [[4, 10, 4], [10, 4, 9], [8, 3, 7]])
5 lambdas = [vector(ZZ, [9, 9, 3]), vector(ZZ, [2, 3, 2]), vector(ZZ ,

[1, 6, 9])]
6 v = vector(ZZ, [3, 4, 4])
7 E = Matrix(ZZ, [[9, 10, 10], [5, 10, 11], [5, 3, 6]])
8 q = 11 # Modulus
9

10 # Precomputed shares
11 shares = [(B * lambdas[i]) % q for i in range (3)]
12 print(f"Lattice_Basis_(B):\n{B}")
13 print(f"Lambda_Vectors:_{lambdas}")
14 print(f"Vector_(v):_{v}")
15 print(f"Public_Matrix_(E):\n{E}")
16 print(f"Shares_(Ci):_{shares}")
17

18 # Original secret
19 S = (B * v) % q
20 print(f"Original_Secret(S=B*v_mod{q}):{S}")
21

22 # Function to compute modular inverse
23 def modular_inverse(matrix , q):
24 print(f"Computing_modular_inverse_of_matrix :\n{matrix}")
25 matrix_sage = Matrix(ZZ, matrix)
26 det = matrix_sage.det() % q
27 print(f"Determinant_(mod{q}):{det}")
28

29 if gcd(det , q) != 1:
30 raise ValueError(f"Matrix_not_invertible_mod{q}(det={det})")
31

32 det_inv = inverse_mod(det , q)
33 print(f"Inverse_of_determinant_(mod{q}):{ det_inv}")
34

35 adjugate = matrix_sage.adjugate () % q
36 print(f"Adjugate_of_matrix_(mod{q}):\n{adjugate}")
37

38 modular_inv = (det_inv * adjugate) % q
39 print(f"Modular_Inverse_(mod{q}):\n{modular_inv}")
40

41 return modular_inv
42

43 # Secret reconstruction

66

44 def reconstruct_secret_exact(shares , E, v, q):
45 print("Starting_reconstruction ...")
46

47 # Step 1: Compute d_vectors = E * Ci mod q
48 d_vectors = [(E * shares[i]) % q for i in range (3)]
49 print(f"d_vectors(E*Ci_mod{q}):{ d_vectors}")
50

51 D = Matrix(ZZ, d_vectors) % q
52 print(f"D_Matrix(mod{q}):\n{D}")
53

54 # Step 2: Create Lambda matrix from lambda vectors
55 lambda_matrix = Matrix(ZZ , lambdas) % q
56 print(f"Lambda Matrix(mod_{q}):\n{lambda_matrix}")
57

58 # Step 3: Compute the inverse of the lambda matrix
59 B_inverse = modular_inverse(lambda_matrix , q)
60

61 # Step 4: Compute reconstructed B = B_inverse * D mod q
62 B_reconstructed = (B_inverse * D) % q
63 print(f"Reconstructed_Lattice_Basis(B ')(mod{q}):\n{B_reconstructed

}")
64

65 # Step 5: Compute the reconstructed secret S' = B' * v mod q
66 S_reconstructed = (B_reconstructed * v) % q
67 print(f"Reconstructed_Secret(S'=B'*v_mod{q}):{ S_reconstructed}")
68

69 return S_reconstructed
70

71 # Reconstruct the secret
72 reconstructed_secret = reconstruct_secret_exact(shares , E, v, q)
73

74 # Print final comparison
75 print(f"\nFinal_Reconstructed_Secret :{ reconstructed_secret}")
76 print(f"Original_Secret :{S}")

A.5 Code Snippet for Performance Analysis

1 import time # For time measurement
2 from memory_profiler import memory_usage # For memory profiling
3 import matplotlib.pyplot as plt # For plotting graphs
4

5 # Performance analysis for secret/share generation
6 def profile_generation(generate_secret_and_shares):
7 start_time = time.time() # Start time measurement
8 mem_gen = memory_usage((generate_secret_and_shares,), interval=0.01) # Profile memory usage
9 shares, S = generate_secret_and_shares() # Execute the function

67

10 time_gen = time.time() - start_time # End time measurement
11

12 print(f"Secret and Share Generation:")
13 print(f"Secret: {S}")
14 print(f"Time: {time_gen:.6f} seconds | Memory: {max(mem_gen) - min(mem_gen):.2f} MiB")
15

16 return shares, S, time_gen, max(mem_gen) - min(mem_gen)
17

18 # Performance analysis for secret reconstruction
19 def profile_reconstruction(reconstruct_secret_exact, shares):
20 start_time = time.time() # Start time measurement
21 mem_recon = memory_usage((reconstruct_secret_exact, (shares,)), interval=0.01) # Profile memory usage
22 reconstructed_secret = reconstruct_secret_exact(shares) # Execute the function
23 time_recon = time.time() - start_time # End time measurement
24

25 print(f"\nSecret Reconstruction:")
26 print(f"Reconstructed Secret: {reconstructed_secret}")
27 print(f"Time: {time_recon:.6f} seconds | Memory: {max(mem_recon) - min(mem_recon):.2f} MiB")
28

29 return time_recon, max(mem_recon) - min(mem_recon)
30

31 # Plotting the results
32 def plot_analysis(time_gen, mem_gen, time_recon, mem_recon):
33 labels = ['Secret/Share Generation', 'Secret Reconstruction']
34 times = [time_gen, time_recon]
35 memories = [mem_gen, mem_recon]
36

37 # Plotting time analysis
38 plt.figure(figsize=(12, 5))
39 plt.subplot(1, 2, 1)
40 plt.bar(labels, times, color=['blue', 'green'])
41 plt.xlabel('Process')
42 plt.ylabel('Time (seconds)')
43 plt.title('Time Analysis')
44

45 # Plotting memory analysis
46 plt.subplot(1, 2, 2)
47 plt.bar(labels, memories, color=['red', 'purple'])
48 plt.xlabel('Process')
49 plt.ylabel('Memory (MiB)')
50 plt.title('Memory Usage Analysis')
51

52 # Show the plots
53 plt.tight_layout()
54 plt.show()
55

56 # Example usage (replace these with actual function calls from your main code)
57 def generate_secret_and_shares():
58 time.sleep(0.01) # Simulate a delay

68

59 shares = [(i, i + 1, i + 2) for i in range(3)] # Example shares
60 S = (2, 5, 9) # Example secret
61 return shares, S
62

63 def reconstruct_secret_exact(shares):
64 time.sleep(0.01) # Simulate a delay
65 return (2, 5, 9) # Example reconstructed secret
66

67 # Run the analysis
68 shares, S, time_gen, mem_gen = profile_generation(generate_secret_and_shares)
69 time_recon, mem_recon = profile_reconstruction(reconstruct_secret_exact, shares)
70 plot_analysis(time_gen, mem_gen, time_recon, mem_recon)

A.5.1 Libraries Used in Implementation

The performance of the scheme is analyzed by making use of python and SageMath
libraries/dependencies such as:

• memory_ profiler to monitor and profile memory usage of functions.

• matplotlib plots graphs to visualize the results for time and memory consumption.

• tracemalloc for advanced memory tracking by tracking memory allocations.

• sage.all provides access to the core functionalities of SageMath like matrices,
vectors, and modular arithmetic.

A.5.2 Subcomponents Used from sage.all Library

• Matrix creates and manipulates matrices over the integer ring (Z).

• Vector creates and manipulates vectors over the integer ring (Z).

• Z represents the ring of integers in SageMath, ensuring all matrix and vector
operations occur over the correct field.

• gcd computes the gcd to determine if a matrix is invertible under modular
arithmetic.

• Inverse_ mod Computes the modular inverse of a determinant modulo q.
Essential for modular arithmetic in matrix inversion.

69

	ACKNOWLEDGEMENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS
	ABSTRACT
	INTRODUCTION
	Background and Motivation For the Research
	Problem Statement and Research Objectives
	Overview of the Proposed Key Management System (KMS) using Lattice Shamir Secret Sharing Scheme
	Thesis Organization

	LITERATURE REVIEW
	Survey of Existing Cloud-Based Key Management Systems
	Key Management Systems
	Centralized
	Distributed

	Data Security Issues to the Cloud Data
	Challenges for Cloud-Based Cryptographic Key Management
	Current State of Insider Threats and Quantum Attacks in Cryptographic Systems
	Quantum-Resilient Cryptography-Why a Necessity Now?
	Conclusion

	THEORETICAL FOUNDATIONS
	Shamir Secret Sharing Scheme
	Algorithm for Shamir’s Secret Sharing Scheme
	Key Attributes of Shamir Secret Sharing Scheme
	Critical Security Features of Shamir Secret Sharing Scheme

	Potential Quantum Threats to Classical Shamir Secret Sharing Scheme
	Lattice-Based Cryptography
	Lattice
	Cryptographic Assumptions on Lattices

	Lattice-Based Shamir Secret sharing scheme
	How Lattice-Based Shamir Secret Sharing Scheme Strengthens Security of the Scheme

	Key Management Functions
	Key Management - Generic Security Requirements
	Conclusion

	PROPOSED KEY MANAGEMENT SYSTEM
	Architecture and Components of the KMS
	Architectural Components
	Overview of the KMS

	Authentication Between Different Modules of the Framework
	Why mutual authentication is needed

	High-level Algorithm of Proposed KMS
	Implementation Details of the Lattice-Based Shamir Secret Sharing Scheme
	Mutual TLS (mTLS) Certificate
	Lenstra–Lenstra–Lovász (LLL) Algorithm

	How Security Is Enhanced Against Insider And Quantum Threats
	Conclusion

	ANALYSIS OF LATTICE-BASED SHAMIR SECRET SHARING SCHEME (LBSSS) AND PROPOSED KMS
	Description Of Experiments And Evaluation Metrics
	Comparative Analysis of Experimental Findings
	Classical Shamir Secret Sharing Scheme
	Lattice-Based Shamir Secret Sharing Scheme

	Security Analysis of Proposed KMS Based on LBSSS
	Threat Model of Proposed Key Management System
	Conclusion

	DISCUSSION
	Addressing Potential Future Improvements
	Considerations For Real-World Deployment and Scalability
	Conclusion

	SUMMARY OF RESEARCH WORK
	CONCLUSION
	BIBLIOGRAPHY
	APPENDIX: CODE IMPLEMENTATION OF LATTICE-BASED SHAMIR SECRET SHARING SCHEME(LBSSS)
	Overview
	Explanation of Code Components
	Pseudo-Code
	Annotated Code Implementation of LBSSS
	Code Snippet for Performance Analysis
	Libraries Used in Implementation
	Subcomponents Used from sage.all Library

