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ABSTRACT 

 

Protecting patient privacy in the era of digital health records is a major challenge while 

allowing healthcare data to be useful. The study of differential privacy as a strong privacy-

preserving method for medical data is examined in this thesis. Differential privacy is a 

mathematical framework that prevents sensitive information from being disclosed while 

preserving data utility for analysis. It does this by introducing controlled noise to the data. 

Thus, the main objective of this thesis is privacy preserving of healthcare data in internet of 

things by using differential privacy. This research aims to propose a secure, privacy-preserving 

scheme to ensure maximum privacy of an individual by also maintaining its utility and allowing 

to perform queries based on sensitive attributes under differential privacy. This mechanism 

guarantees the individual's privacy by consuming minimum computation and communication 

costs. We have designed a basic framework that tries to achieves differential privacy guarantee 

and evaluate the results regarding the level of privacy can be achieved in electronic healthcare 

data. For this purpose, we have practically implemented differential privacy on two different 

publicly available datasets such as Breast Cancer Prediction Dataset and the Nursing Home 

COVID-19 Dataset. By applying differential privacy mechanisms to these datasets, it evaluates 

the balance between privacy and data utility, demonstrating the effectiveness of differential 

privacy in real-world healthcare scenarios. Additionally, we have conducted time comparison 

by performing multiple complex queries on these datasets to analyze the computational 

overhead introduced by differential privacy. The outcomes demonstrate that, despite a slight 

increase in query processing time, it remains within reasonable bounds, ensuring the 

practicality of differential privacy for real-time applications. A significant part of this study 

involves the selection of the privacy parameterε, which determines the degree of privacy 

protection. Moreover, we have examined the impact of varying ε values on both the privacy 

and utility of the data. Our experiments demonstrate that a lower ε value enhances privacy at 

the cost of reduced data utility, whereas a higher ε value offers better utility but with less 

privacy protection. This trade-off analysis provides crucial insights into optimizing ε for 

different healthcare data use cases. 

The findings of this thesis contribute to the increasing corpus of information on privacy-

preserving data analysis in the healthcare industry by providing useful suggestions and insights 

for using differentiated privacy in various healthcare data scenarios. This work underscores the 

importance of adopting advanced privacy-preserving techniques to foster trust and compliance 

in healthcare data sharing and analytics. 

Keywords:  Differential Privacy, Healthcare data, Data sharing, User Privacy, Data Utility. 
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Chapter 1 

INTRODUCTION 
 

1. Overview 

The healthcare sector has changed dramatically in recent years, due to depending more and 

more on big data to improve patient care, enhance or improve operational effectiveness, and 

forward medical researches. Even if it's a good thing, the quick rise of electronic healthcare 

records but it presents serious obstacles to protecting patient privacy. With the increasing 

integration of electronic healthcare records and other forms of health data into the healthcare 

ecosystem, safeguarding patient’s sensitive or personal data from breaches and unauthorized 

access has taken on paramount importance. 

One of the main challenges for the protection of electronic healthcare record is the inherent 

contradiction between data accuracy and privacy. In order to facilitate progress in 

epidemiological researches, advance public health initiatives and health information needs to 

be readily available and functional. Storing and sharing this data publicly even in anonymized 

forms, it can still be violated patient’s privacy by disclosing such information. 

Differential privacy has emerged as a strong and provable privacy guarantee model to 

address this paradox by safeguarding data privacy and preserving the analytical usefulness of 

datasets. Differential privacy preserves individual personal identifiable information by proving 

mathematically that output distribution of a query remains independent of whether an 

individual record is present or not in the datasets. By adding calibrated noise to the query output 

or data, the balance between the data privacy and data accuracy can be established without 

compromising the overall insights that can be derived from the information. 

The application of differential privacy in healthcare sector is particularly appealing as 

healthcare sector requires accurate and comprehensive data for research and industrial 
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purposes. In healthcare organizations trusting environment can be built among researchers, 

patients, doctors and other participants by implementing differential privacy to ensures the 

protection of data shared publicly or with any other third party for research purposes, policy 

making and collaborative initiatives.  

Despite of its potential, implementation of differential privacy also faces challenges in 

healthcare industry. These include the potential impact on the accuracy of clinical and research 

findings, the challenges of precisely calibrating noise to preserve data utility, and the need for 

robust legal and ethical frameworks to oversee its deployment. To solve these concerns, a 

multidisciplinary approach is required that considers moral dilemmas, robust policy 

development, and other advancements. 

This thesis aims to implement privacy preservation mechanism in healthcare using 

differential privacy, it further explores differential privacy's theoretical foundations, practical 

applications in healthcare data, and broader implications for privacy preservation. Through 

practical implementations of differential privacy in healthcare data, this research will provide 

insights into best practices and potential risks. It will support the development of safer and 

more effective data privacy preservation and data sharing technique within the healthcare 

sector. Through detailed study, this paper seeks to demonstrate the critical need for privacy-

preserving mechanism and to push for their integration into electronic health data management. 

1.1.Motivation 

The increase in the digitalization of healthcare data has brought about a dramatic 

transformation in the collection, storing and utilization of medical data. Electronic health 

records (EHRs), health information systems, and wearable technologies are generating vast 

quantity of medical data nowadays. This offers a great chance to enhance patient outcomes, 

advancement in medical research, and improve the efficiency of healthcare services with the 
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utilization of this healthcare data. However, this digital transformation raises major concerns 

regarding the security and privacy of sensitive health data. 

The growing number of cyberattacks and data breaches aimed at health information systems 

emphasizes how critical it is to deal privacy issues in the healthcare sector. In addition to 

putting private information at risk, these privacy violations undermine public trust in healthcare 

organizations, which may deter patients from sharing critical information that might help them 

to receive treatment. Additionally, there can be major consequences from the unauthorized 

disclosure of health information, including identity theft, discrimination, and psychological 

distress. 

It has been noticed that standard methods of de-identification and anonymization are not 

adequate to fully protect patient privacy. Technological advances in data re-identification have 

demonstrated that datasets that are apparently anonymized may often be re-linked to individual 

users given the correct auxiliary information. This vulnerability necessitates the development 

of more sophisticated privacy-preserving techniques in order to provide a stronger guarantee 

against re-identification while maintaining the useful use of data. 

Differential Privacy offers an acceptable solution to these problems. Differential privacy is 

a mathematically rigorous framework that ensures either the presence or absence of any 

individual's data will have a negligible impact on the study as a whole by protecting individual's 

privacy. By introducing calibrated noise into the data, differential privacy maintains the 

datasets utility for statistical and analytical purposes without compromising privacy. 

Maintaining this balancing is particularly crucial in the healthcare sector, where accurate and 

comprehensive data are essential for advance research purposes, public health surveillance, and 

clinical decision-making. 

The goal of this research is to preserve data utility while also finding solutions to current 

privacy concerns. It aims to examine differential privacy's practical use in real-world scenarios, 
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its potential issues and solutions and evaluate its effectiveness. Healthcare data management 

relies heavily on privacy preservation, and the concepts and methods derived from this research 

will be essential as the healthcare industry absorbs ever-more complex technology and data 

sources. 

1.2. Research Objectives 

The thesis primary goals are: 

• To achieve individual's data privacy by using differential privacy so that it doesn't reveal 

any private information of the user by sharing it publicly. 

• To achieve the maximum security and the utility required in the dataset by varying the 

privacy budget. 

• To perform multidimensional queries on the sensitive attributes under differential privacy. 

• To develop an efficient and cost-effective scheme in terms of communication and 

computation overhead. 

• To analyze performance comparison by varying matrices that influence the accuracy. 

1.3. Contribution 

The proposed Privacy Preservation Scheme in Healthcare Data will contribute in following 

ways: 

• Used differential privacy techniques on publicly available healthcare datasets to 

demonstrate the practical feasibility and effectiveness of preserving patient privacy. 

• Demonstrated that differential privacy can effectively balance privacy and utility, 

guaranteeing that converted results can still be used for insightful analysis and research. 

• Examined impact of varying values of the privacy budget (epsilon) on both privacy 

protection and data utility. 
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• Conducted a comparative analysis of the Gaussian and Laplace mechanisms within the 

differential privacy framework. Evaluated the performance and usefulness of these 

mechanisms, emphasizing the situations in which each mechanism operates at its best. 

• Analyzed the time complexity of applying differential privacy techniques, focusing on the 

computational efficiency as the parameters of user queries increase.Provided insights into 

the scalability of differential privacy methods, offering guidance on their practical 

implementation in real-world healthcare data systems. 

1.4. Thesis Outline 

The following chapters provide an organization and distribution of this research work: 

• Chapter 1: An overview is provided, a problem statement is emphasized, the purpose for 

the research is explained, and the research objectives are listed. The contributions that this 

research made are also highlighted. 

• Chapter 2: This chapter includes an overview of existing privacy preservation schemes in 

electronic healthcare data, followed up by pros and cons of each technique. 

• Chapter 3:The early approaches for maintaining privacy before the idea of differentiated 

privacy emerged are covered in this chapter. It gives a general overview of the syntactic 

privacy models that make use of data publication mechanisms to preserve privacy. 

• Chapter 4: This chapter provides a comprehensive overview of differential privacy, 

encompassing its definition, operational principles, mechanisms and techniques available 

to implement differential privacy. Additionally, it introduces a mathematical approach for 

determining the optimal value for privacy parameterε. 

• Chapter 5: This chapter introduces the framework employed to evaluate differential 

privacy, providing details on the algorithms used, experimental results of DP across 

different datasets, the impact of varying the privacy parameter, time complexity 

comparisons for complex queries on datasets of varying sizes, and comparative analyses 
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of Laplace and Gaussian mechanisms. 

• Chapter 6: This chapter covers the conclusions, recommendations, and future work.
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Chapter 2 

 

LITERATURE REVIEW 
 

Kumar et al.[1] focus on the necessity of large datasets for training robust deep learning models 

in healthcare, while also acknowledging the privacy concerns and regulatory constraints that 

restrict data sharing in this field. To address these challenges, the authors highlight the potential 

of federated learningto overcome these barriers by allowing data to remain with the local party 

(such as a hospital), thus ensuring confidentiality and compliance with data protection 

regulations. The authors specifically focus on two algorithms: Federated Averaging (FedAvg) 

and FedProx, Using federated learning in healthcare highlights several limitations, privacy 

risks still exist as model updates sent to a central server could be intercepted. Communication 

costs are also notable due to the frequent data exchanges between clients and the server. 

A hybrid strategy is presented by Joshi et al. [2] and is combined with a number of approaches 

to protect private patient data from breaches and unwanted access. This research methodology 

minimizes the impact on data utility while protecting privacy by integrating two key 

techniques: the FP-Growth algorithm for mining frequent patterns and anonymization 

processes to conceal sensitive information.  

In order to solve privacy problems in healthcare big data, Suneetha et al. [3] offer a novel 

system that combines Apache Spark with established anonymization approaches like K-

anonymization and L-diversity. A notable development in the field is the integration of these 

techniques with Apache Spark, which offers excellent speed and efficiency for handling 

massive datasets.  

For the purpose of safeguarding local models in Internet of Things-based healthcare systems, 

Zhang et al. [4] suggested integrating homomorphic encryption with federated learning 
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mechanisms. The model integrates data from many medical facilities, and each participant 

trains local models independently, using their own data. Before the local models are 

aggregated, homomorphic encryption techniques are performed to safeguard the data. This 

stops possible adversaries from using inversion or model reconstruction attacks to deduce 

private information. 

Seol et al. [5] thoroughly implemented attribute-based access control model to protect the 

electronic healthcare data (EHR) on XML based system. Sensitive data is partially encrypted 

by the system using XML encryption after access control. Next, it secures the data against 

unauthorized changes and access by utilizing XML digital signatures. 

This research [6] by Abdullah et al, examined blockchain-based technology with the goal of 

improving the security and privacy of medical data. The approach focuses on decentralizing 

data storage through the use of blockchain technology, which lessens the vulnerabilities 

connected to centralized databases. It uses peer-to-peer (P2P) networks, where data is stored 

among numerous nodes. The massive volumes of data that are common in healthcare settings 

may make it difficult for the blockchain framework to scale effectively, which could result in 

longer transaction times and higher computational cost. 

Aminifar, A., et al. [7] implemented machine learning approach by using Extremely 

Randomized Trees (ERT) that is specifically designed for distributed structured health data. 

This distributed ERT technique modifies traditional approach to adapt a distributed setting, 

ensuring that data privacy is upheld by avoiding direct data environment. Instead, data insights 

are derived through secure multi-party computation methods that allow entities to collaborate 

without exposing their private data.  

The studies [8] by Charles, V., et al.used the improved ElGamal and ResNet classifier for 

maintaining the heart disease database privacy. The patient uses wearable devices; sensors 

connected with these devices will gather data and transfer it to the microprocessor and then 
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send it to the cloud. The upgraded ElGamal encryption technique will be used by the trusted 

cloud to safely protect patient data from outside threats. To accurately predict whether a patient 

suffering with heart disease or not, the CNN Classifier with ResNet-50 has been employed for 

data categorization and refining. However, key generation and encryption add to the 

computation cost, and its implementation depends on the trusted Authority (TA). 

For securely detection of heart diseases, Rosy et al. [9] present a sophisticated cryptographic 

architecture that uses an Optimized Encryption-Based Elliptical Curve Diffie-Hellman 

(OEECDH) technique. To improve data security and privacy in cloud environments, the 

methodology combines the Diffie-Hellman mechanism with Elliptical Curve Cryptography 

(ECC) for key exchange. Sensitive data is encrypted before being transferred to the cloud using 

this optimized technique forcreation of secure keys. This ensures that the information is kept 

private both during transferring and storing data. Processed and categorized encrypted data 

using deep Convolutional Neural Networks (CNN) in the cloud, enabling effective 

management of big datasets without sacrificing privacy. The same elliptical curve 

cryptographic techniques are used to safely decrypt the data after processing, guaranteeing that 

only authorized users can view the original data. 

In order to guarantee privacy protection in IoT-enabled healthcare systems, Bi, H., et al. [10] 

investigate a deep learning-based solution. The approach protects sensitive data obtained from 

wearable devices by combining privacy isolation zones and deep learning techniques. Before 

the data is transferred to the cloud, sensitive information is recognized and segregated at the 

user's end. By doing this, user privacy is improved and only non-sensitive health-related data 

is processed further. After being segregated, the non-sensitive data is examined at the cloud by 

utilizing CNN, which is made to carry out secure data analytics without jeopardizing privacy. 

However, it is still difficult to discriminate between sensitive and non-sensitive information, 
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and doing so occasionally results in data distortion or the loss of crucial health-related 

information. 

Researchby Wang, K., et al.[11] outlines a novel searchable encryption(SE) scheme designed 

for IoT-enabled healthcare systems, focusing on forward privacy and verifiability. Searchable 

encryption allows encrypted data to be searched by authorized users without first decrypting 

it. Forward privacy ensures that updates to the dataset do not reveal any information about the 

contents of past search queries, thus enhancing the security of dynamically changing databases 

like those found in healthcare systems. The solution proposed by Wang et al. improves upon 

these by incorporating a trapdoor permutation function, ensuring that newly inserted records 

do not compromise the privacy of previously performed searches. 

Furthermore Ahmed, J., et al.[12] describes a methodology that combines Federated Learning 

(FL) with Physical Layer Security(PLS) to enhance the privacy and efficiency in medical 

record. FL is employed to train local models at various nodes without sharing the unprocessed 

data among them. Only model parameters are shared with a central server or amongst nodes, 

significantly reducing the risk of exposing sensitive health data. 

Another approach that Singh, P., et al. [13] describe uses cloud computing to facilitate the 

distribution of a Hierarchical Long-Term Memory (HLSTM) architecture among distributed 

Dew servers. Before the data is utilized to train the model, it is pre-processed to assure quality 

from IoMT devices. The complex series of events in the IoMT data flow is intended to be 

handled by the HLSTM architecture. In order to preserve the integrity of hierarchical data 

structures, it makes use of a two-layered LSTM network, in which the first layer creates a 

phrase vector and the second layer collects these into a document vector. Federated learning is 

used in the intrusion detection model, which forms the basis of the methodology. Subsets of 

the data are used to train local models on Dew servers, which subsequently feed into the 

creation of a global model.  
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In research by Shabbir, M., et al. [14] implemented Modular Encryption Standard (MES) for 

securing health data in Mobile Cloud Computing (MCC) environments. Health data is 

categorized and recognized according to its sensitivity before encryption. Several encryption 

modules are employed at different stages of the multi-layered encryption method used by the 

MES technique. This approach ensures that data is treated in accordance with its security 

classification at every stage, starting with the user's mobile device and continuing to the cloud. 

A comprehensive methodology to improve the security of medical sensor data in Internet of 

Things environments is outlined by Khan, M. A., et al. [15]. The first step in this strategy is 

user registration, when individuals enter their biographical and biometric information. A hash 

function is used to validate the user's credentials during the login procedure after registration. 

Throughout this procedure, the SHA-512 algorithm is used to ensure the security and integrity 

of user data. This framework combines two different encryption techniques. The first 

technique, the Substitution Caesar Cipher, is a straightforward character substitution approach 

that encrypts sensor data and offers a minimal amount of security. The data is encrypted again 

using IECC (Improved Elliptic Curve Cryptography) after the first encryption. Compared to 

conventional ECC, this approach is known for its strength in data protection since it uses a 

generated secret key that adds an extra layer of security.  

Krall et al. [16] explore an innovative way to maintain privacy in predictive healthcare analytics 

by utilizing the Mosaic Gradient Perturbation (MGP) technology. Based on differential privacy, 

the concept aims to preserve model correctness while reducing the danger of model inversion 

attacks. The MGP method is intended to cause more of a perturbation to the gradient parts of 

the objective function linked to sensitive characteristics than to non-sensitive characteristics.  

Furthermore, the difficulties of accomplishing searchable and privacy-preserving data 

exchange in cloud-assisted electronic health environments were examined by Xu et al. [17]. 

The suggested system makes use of modern cryptographic algorithms to facilitate effective, 
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private data sharing and searches. The system enables health service providers (HSPs) to search 

encrypted PHI data using keyword range and multi-keyword searches using dynamic 

searchable encryption techniques. By using this technique, patient privacy is protected because 

it guarantees that the data is encrypted during all operations. Numerical analysis queries on 

encrypted data are made possible by the Privacy-Preserving Equality Test (PET) Protocol, 

which protects sensitive data. Message Authentication Codes (MACs) are used to eliminate out 

erroneous data and confirm the accuracy of PHI files.  

Song, J., et al. [18] present another advanced method for secure data organization, in order to 

improve privacy of data collectedin healthcare systems. This method guarantees that user data 

collection stays private and secure while providing precise data aggregation for healthcare 

analytics. The computation of matrix eigenvalues forms the basis of the proposed secure 

arrangement technique. Each user’s data is placed in a secret position determined by this 

calculation. The process begins with an offline Trusted Authority (TA) distributing initial data 

to all users. Matrices are used to represent and manipulate data positions securely. Basic matrix 

operations such as addition, multiplication, eigenvalue, and trace calculation over a Galois 

Field are employed.  

Another, framework proposed by Zhou, X., et al. [19]which makes use of a role-based access 

management mechanism where access to EMRs is provided depending on the assigned duties 

of medical professionals. Anonymous RBACAnony Scheme is based on a bilinear group that 

has two subgroups, one of which hides the patient'sidentification. The scheme makes sure that 

an attacker can't figure out who a patient is by looking at a random string. RBACAnony-F, 

Anonymous Strategy based on a four-subgroup bilinear group, enhancing security by hiding 

the patient's identity in a composite-order subgroup. EMRs are encapsulated using on-demand 

access policies that allow one-to-many encryption. This enables different medical staff 

members to access the same EMR based on their roles. Patients and their doctors can search 
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for EMRs without revealing their identities. The search mechanism ensures that only 

authorized users can access the relevant EMRs.  

A technique of attribute-focused anonymization for publishing healthcare data was proposed 

by Onesimu, J. A., et al. [20]. The goal of the Fixed-Interval Anonymization technique is to 

safeguard numerical properties. To ensure generalization, the original values are substituted by 

computed mean values within predetermined intervals. Sorting the numerical characteristics, 

figuring out the interval width by comparing the highest and lowest values, and substituting 

the computed mean for the original values within each interval are the steps involved in the 

procedure. Sensitive attributes are protected using an enhanced version of the l-Diverse Slicing 

approach.  

Zala, K., et al. [22] focuseson the integration of cryptographic and steganographic 

methodologies to guarantee the confidentiality and integrity of medical records that are kept 

on external cloud platforms. The architecture uses a data security method that consists of five 

steps. It employs AES-128 encryption for authentication and authorization in order to protect 

user credentials. For steganography, it encrypts patient EHRs using AES-128 and hides them 

within images using the LSB (Least Significant Bit) technique. To Access Control, it allows 

patients to assign access rights to their EHRs for doctors and relatives. For Data Hiding, it uses 

anonymization to protect sensitive EHR data from unauthorized access. Hybrid technique is 

further used for combining AES-128 encryption with steganography to provide double-layer 

security.  

Zhang, M., et al. [23] introduced PPO-CPQ technique in electronic healthcare systems to 

preserve privacy for clinical pathway queries. Privacy-Preserving Comparison (PPC) protocol 

allows two parties to compare private values by converting input data into binary format and 

executes secure bitwise comparisons. Privacy-Preserving Clinical Comparison (PPCC) handles 

negative numbers and ensures accurate comparisons in the clinical context. Based on lowest 
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cost, the PPSS protocol determines the most suitable stage in the clinical pathway.PPSU 

protocol makes sure that only necessary changes are shared between servers, updating the 

pathway's stage while protecting privacy.  
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Ref. 

 

System model Goals Limitations/ 

Weaknesses 

Privacy 

Preserving 

Techniques 

Trust Model 

 

Joshi et 

al. [2] 

2020 

• Hybrid method 

using FP-

Growth 

algorithm and 

anonymization 

• Hide sensitive 

patient data in 

healthcare 

datasets using 

hybrid 

approaches 

• Increased time 

and memory 

requirements 

for large 

datasets 

• FP-Growth 

algorithm 

• Anonymizatio

n and 

association 

rule hiding 

techniques 

 

Suneet

ha et 

al.[3] 

2020 

 

• Used Apache 

Spark for 

privacy 

preservation in 

healthcare big 

data 

• Using K-

anonymity and 

L-diversity for 

the protection 

of patient’s 

data in 

healthcare 

• Potential data 

segregation 

issues for 

transferring to 

HDFS 

• K-

anonymity, 

L-diversity 

• Handling 

healthcare big 

data with 

Apache Spark 

for faster 

processing 

 

Zhang 

et al. 

[4] 

2022 

 

• Federated 

Learning along 

with 

combination of 

Homomorphic 

Encryption  

 

 

• Ensure privacy 

preservation of 

patient’s data 

in IoT-enabled 

healthcare 

systems 

• Increased 

computation 

and 

communication 

overhead; 

Dropout clients 

not handled 

• Homomorphi

c Encryption, 

Shamir 

Secret 

Sharing, 

Diffie-

Hellman Key 

Agreement 

• Honest but 

curious; Semi-

honest 

participant 

 

Seol et 

al.[5] 

2018 

• Attribute-

Based Access 

Control 

(ABAC) using 

XACML 

• Providing 

restricted 

access and 

protect patient 

privacy in 

EHR systems 

• Increased 

complexity and 

computational 

overhead due to 

encryption and 

access control 

mechanisms 

• XML 

encryption & 

digital 

signatures 

• Assumes semi-

trusted cloud 

environment 

and authorized 

users for 

accessing EHR 

data 
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Ref. 

 

System model Goals Limitations/ 

Weaknesses 

Privacy 

Preserving 

Techniques 

Trust Model 

 

Abdull

ah et al. 

[6] 

2017 

• Used 

MediBchain 

framework 

based on 

Blockchain 

• Ensure 

privacy, 

security, and 

integrity of 

healthcare data 

using 

blockchain 

• Increased 

complexity and 

computational 

overhead; 

requires secure 

key 

management 

• Blockchain, 

Public Key 

Encryption 

(ECC) 

• Decentralized 

patient-centric 

model 

 

 

Aminif

ar, A., 

et al. 

[7] 

2022 

• Used 

Distributed 

Extremely 

Randomized 

Trees for 

privacy 

preservation 

• Ensure 

privacy-

preserving 

machine 

learning for 

distributed 

health data 

• Increased 

complexity and 

computational 

overhead; 

handling 

missing values 

• Secure 

Multi-Party 

Computation 

(SMC), 

Encryption 

• Semi-honest 

model; 

Assumes no 

collusion 

among k 

parties 

 

 

Rosy et 

al.[9] 

2021 

• Optimized 

Encryption 

based 

Elliptical 

Curve Diffie-

Hellman 

(OEECDH) 

• Ensure privacy 

protection for 

predicting 

heart disease 

using deep 

learning and 

encryption 

• Requires secure 

key 

management; 

Needs efficient 

handling of 

large datasets 

• Elliptic 

Curve 

Cryptograph

y (ECC), 

Diffie-

Hellman 

• Semi-trusted 

cloud 

environment 

 

Bi, H., 

et 

al.[10] 

2021 

• Privacy 

Protection and 

Data Analytics 

for IoT-

Enabled 

Healthcare 

using deep 

learning  

 

• Providing 

privacy-

preserving 

data analytics 

and secure 

health 

monitoring 

using IoT 

devices 

• High 

computational 

requirements 

for deep 

learning 

algorithms 

• Convolution

al Neural 

Networks 

(CNN), 

Secure 

Multi-Party 

Computation 

(SMC) 

• Data integrity 

trust on cloud 

service 

providers and 

wearable 

device 

manufacture; 

assumes secure 

data 

transmission 

channels 
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Ref. 

 

System model Goals Limitations/ 

Weaknesses 
Privacy 

Preserving 

Techniques 

Trust Model 

 

Wang, 

K., et 

al.[11] 

2021 

• Usedforward-

privacy 

searchable 

encryption in 

electronic 

healthcare data 

 

• Ensure 

privacy and 

security of 

healthcare 

data while 

enabling 

efficient 

search and 

data sharing 

• Potential 

exposure of 

search patterns; 

requires 

efficient key 

management 

• Searchable 

Encryption 

(SE), Pseudo-

Random 

Function 

(PRF), 

Trapdoor 

Permutation 

• Semi-honest 

adversaries; 

Trust in 

cloud service 

provider to 

follow 

protocol 

without 

collusion 

 

Ahmed, 

J., et 

al.[12] 

2021 

• Federated 

Learning (FL) 

combined with 

Physical Layer 

Security (PLS) 

in IoMT 

networks 

• Enhance 

privacy and 

security in 

IoMT 

networks by 

using FL and 

PLS 

• Increased 

complexity and 

computational 

overhead; 

Potential for 

localized 

eavesdroppers 

• Homomorphic 

Encryption, 

PLS, 

Blockchain 

• Assumes 

semi-trusted 

central server 

and devices 

in a 

hierarchical 

network 

 

Singh, 

P., et al.  

[13] 

2022 

• Dew-Cloud-

Based 

Hierarchical 

Federated 

Learning 

(HFL) using 

Hierarchical 

LSTM 

(HLSTM) for 

IoMT networks 

• Enhance data 

privacy, 

availability, 

and intrusion 

detection 

accuracy in 

IoMT 

networks 

using HFL 

and HLSTM 

• Complexity in 

managing 

hierarchical 

models; 

potential latency 

in federated 

learning updates 

• Homomorphic 

Encryption, 

Federated 

Learning 

• Trust in 

decentralized 

Dew and 

Cloud 

servers; 

assumes 

secure 

communicati

on channels 

 

Shabbir

, M., et 

al.[14] 

2021 

• Modular 

Encryption 

Standard 

(MES) in 

Mobile Cloud 

Computing 

• To secure 

health 

information in 

mobile cloud 

computing 

environments 

• Increased 

complexity and 

computational 

cost; layered 

modeling 

performance 

• Modular 

Encryption 

Standard 

(MES) 

• Assumes 

trust in cloud 

service 

providers and 

mobile 

devices 
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Table 1Study of Existing Privacy Preservation Mechanisms in Healthcare 

Ref. 

 
System model Goals Limitations/ 

Weaknesses 
Privacy 

Preserving 

Techniques 

Trust Model 

 

Krall et 

al. [16] 

2020 

• Mosaic 

Gradient 

Perturbation 

(MGP) in IoT-

enabled 

healthcare 

systems using 

predictive 

modeling 

• Preserving 

privacy and 

reducing the 

possibility of 

model 

inversion 

attacks with 

model 

accuracy 

• Increased 

complexity in 

fine-tuning 

trade-offs; 

potential 

computational 

overhead in 

large-scale 

implementations 

• Differential 

Privacy, 

Gradient 

Perturbation 

• Semi-trusted 

entities 

within a 

decentralized 

framework; 

assumes 

honest-but-

curious 

adversaries 

 

Xu et 

al. [17]  

2019 

• E-healthcare 

system with 

cloud 

assistance that 

includes 

wearables, 

cloud servers, 

IoT gateways, 

and health 

service 

providers 

(HSPs) 

 

• Enable secure 

and efficient 

sharing of 

patient health 

information 

(PHI) using 

searchable 

encryption 

• Performance 

and efficiency 

of the system 

can be affected 

by the quantity 

of files saved 

and retrieved, as 

well as the 

difficulty of 

managing 

massive datasets 

in a dynamic 

manner. 

• Searchable 

encryption, 

Privacy-

Preserving 

Equality Test 

(PET) 

protocol, 

Variant Bloom 

Filter (VBF), 

Message 

Authenticatio

n Code 

(MAC) 

• Trusted 

Authority 

(TA) is fully 

trusted, 

Cloud 

servers are 

honest-but-

curious, IoT 

gateways and 

health 

service 

providers 

(HSPs) are 

trusted 

 

Onesim

u, JA., 

et al. 

[20]  

2022  

 

• Publishing 

healthcare data 

using l-diverse 

slicing and a 

fixed-interval 

technique for 

attribute-

focused 

anonymization 

 

• Privacy 

preservation 

while data 

releasing of 

EHR and 

provide 

maximum 

data utility 

• Increased 

computational 

complexity with 

large datasets, 

Vulnerability to 

certain privacy 

attacks with 

fixed methods 

 
 

 

• Enhanced l-

diverse slicing 

for grouping 

attributes and 

fixed-interval 

anonymizatio

n for 

numerical 

attributes 

 

• Internal data 

controllers 

are trusted, 

Data analysts 

are 

considered 

potential 

adversaries 
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Chapter 3 

 

PRELIMINARIES OF PRIVACY PRESERVATION 
 

 

3.Privacy Preservation Models 

Privacy preservation encompasses various strategies and technologies aimed at protecting 

individuals' personal data and information.  Formerly, a lot of work have been done for privacy 

protection. Followings are the privacy models that have been used for privacy preservation data 

release publicly include anonymization, t–closeness, K-anonymity, I–diversity, and many other 

techniques. 

3.1. Anonymization 

It is a method of transforming theinformation that can be uniquely identified (PII) into 

unidentifiable form so, that it can’t be to linked again with an individual without having 

additional information [32]. The goal is to secure the personal identification of a person while 

enabling public data sharing publicly. The data collector removes the particular uniquely 

identifiedinformation like as Name, phone number and location. But still there are challenges 

in data anonymization even if specific identifiers removed. Sometimes, it is possible to 

reidentify anonymized data by data linkage attacks, especially when combined with other 

datasets. Data masking techniques are used in data anonymization such as randomization that 

replaces identifiable data with random values and pseudonymizationthat substitutes 

identifiable information with pseudonyms or tokens that can be reversed only with a specific 

key or method. Techniques for anonymization must change to keep up with improvements in 

ways for re-identifying data. 
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3.2. K-Anonymity 

Researchers have proposed multiple other methods for privacy preservation, to overcome the 

shortcomings of simple data anonymization.K-anonymity is considered as the widely used 

methods for protecting privacy.It ensures that individuals cannot be reidentified from 

anonymized datasets by making sure that every person in the record can be distinguished from 

at least k -1 other person. [26][30]. Elements of data like age, sex and occupation that could 

potentially identify individuals are grouped into categories. Those individuals who have similar 

characteristics grouped together. Instead of recording the exact ages, age can be grouped into 

ranges like (30 – 35 years). Remember each group should contains at least k individuals. By 

organizing the data this way, it's much harder for someone to figure out who a specific person 

is.However, this technique is still vulnerable to the homogeneity and background knowledge 

attacks. 

3.3. I-Diversity 

To deal with theabove-mentioned drawbacks, this technique emphasizes the variety of sensitive 

attributes (such as ethnicity or medical conditions) within each group of people who share the 

same quasi-identifiers (non-sensitive attributes) [24].K-anonymity guarantees that, using 

quasi-identifiers, every record may be identified from at least k − 1 other records. It does not 

take into consideration how sensitive characteristics are distributed throughout these 

groupings. An attacker can still make inferences about individual’s sensitive information, If 

there is no variability in the values of the sensitive characteristics within a group. The goal of 

this method is to prevent attackers from linking specific sensitive information to individuals 

based on their shared characteristics in the dataset.Similar to K-anonymity, individuals are 

grouped together based on identical quasi-identifiers. For example, all individuals in a group 

might be of the same age range, gender, and living in the same ZIP code. Within each group 

formed by identical quasi-identifiers, I-diversity requires that the sensitive attributes are 
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diverse. There should be at least ℓ different conditions of sensitive attribute.This means that no 

single sensitive attribute should be overly common within the group. Still even with I-diversity, 

datasets can be vulnerable to certain type of privacy attackslike skewness and similarity attack. 

3.4. T-Closeness 

It is a technique for maintaining privacy that aims to rectify the inadequacies of k-anonymity 

and I-diversity, particularly the vulnerabilities related to skewness and similarity attacks [26]. 

T-closeness guarantees that each equivalency class's sensitive attribute distribution closely 

resembles the dataset's general distribution of those attributes.In addition to improving data 

privacy, this lowers the chance of attribute exposure. The equivalency class is said to have T-

closeness if there is a threshold t that distinguishes the distribution of the sensitive attribute in 

the equivalency class from the distribution of the attribute in the total dataset. 

3.5. Cryptographic techniques 

Before making the data available to the public, the data curator could encrypt it[50]. However, 

it is extremely difficult to encrypt vast amounts of data using standard encryption techniques, 

and must only be put into practice when gathering data.By using homomorphic encryption, it 

allows to perform calculations on encrypted data, that produces an encrypted output and the 

final results will be equivalent to plaintext operation after decrypting it back.Similarly, secure 

multiparty computation permits several parties to work together to jointly compute a function 

over their private inputs. Moreover, Blockchain technology used in privacy preservation of data 

that uses cryptographic hash functions to ensure data integrity and immutability. Cryptographic 

hash functions like SHA-256 convert data into a fixed-size hash, guaranteeing that tampering 

is readily identifiable by producing a totally distinct hash for every alteration in the input data. 

It provides transparency and security in data sharing and transactions. However, encryption 

decreases the utility of the data in addition to being difficult to execute. 
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3.6. Multidimensional Sensitivity Based Anonymization 

It is an improved kind of anonymization that can be used to outperform more conventional 

anonymization methods[31]. It identifies which attributes are sensitive in the datasets. It 

includes both quasi-identifiers (identify individuals when combined) and direct identifier 

attributes. Evaluate the sensitivity of each attribute. Some attributes may be more sensitive than 

others, and this sensitivity can be quantified. Implement anonymization strategies to make sure 

the data cannot be traced back to individuals, such as generalization, suppression, or noise 

addition. The level of anonymization that is used can change depending on how sensitive each 

attribute is.Consider the interactions between multiple attributes. Even if individual attributes 

are anonymized, make sure the aggregation of attributes prevents re-identification. This is 

essential for defending against inference attacks, in which the attacker reidentifies a target 

using multiple attributes. It provides the enhanced privacy by considering the sensitivity of 

multiple attributes and their interaction. It allows for different level of anonymization based on 

the sensitivity of each attribute and minimizes the risk of re-identification through 

combinations of attributes. This technique is better suited for large scale with static data. 

Moreover, it is not applicable for streaming data. 

3.7. Data Distribution technique 

This technique involves splitting of data over multiple sites. There are two main methods for 

distributing data. Both strategies horizontal distribution and vertical distribution[25] 

decentralize data processing and storage in an effort to reduce the possibility of privacy 

breaches. 

In horizontal distribution, a subset of dataset’s records or rows stores at each site. Each subset 

contains the same attributes (columns) but for different individuals or entities. This technique 

is frequently employed, when different sites have records for different sets of individuals. For 

instance, medical records for various patients may be kept in multiple hospitals. By distributing 
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records over different sites, a site can implement its own privacy policies and controls 

according to their specific requirements and also there is less chance of single point failure. 

Only a single subset of data is compromised regardless of whether a site is compromised. 

Queries over the distributed data can be conducted using secure multi-party computation, 

which protects individual records from being revealed to unauthorized sites. 

Every site in a vertical distribution holds a portion of the dataset's properties, or columns. Each 

subset contains different attributes but for the same set of individuals or entities.When multiple 

websites need to maintain various kinds of data on the same people, this approach can be 

helpful. For instance, financial data may be stored on one website and personally identifiable 

information on another. In case of breach, it reduces the risk of complete data exposure by 

separately storing the sensitive attributes. 
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Table2 Comparison of Privacy Preservation Techniques 

 

Technique Strengths 

 

 
 

Weaknesses 

 

 
 

Applications 

 

 
 

Attribute 

Preservation 

 

 
 

Damage 

to Data 

Utility 

Complexity Accuracy 

of Data 

Analytics 

Results 

 

 
 

Anonymization Simple, easy to 

implement, 

widely used. 

Vulnerable to 

re-identification 

attacks if not 

done properly. 

Data sharing, 

data 

publishing. 

Low Medium Low Medium 

K-Anonymity Reduces risk of 

identification, 

simple 

concept. 

Does not protect 

against attribute 

disclosure, 

selection of k. 

Healthcare 

data, census 

data. 

Medium Medium Low Medium 

L-Diversity Protects 

against 

homogeneity 

and 

background 

knowledge. 

Complex to 

achieve with 

high l-values. 

Data 

publishing, 

sensitive 

attribute 

protection. 

High Low Medium High 

T-Closeness Better 

protection 

against 

attribute 

disclosure. 

More complex 

and 

computationally 

intensive. 

Healthcare 

data, 

sensitive data 

publishing. 

High Low High High 

Cryptographic 

Techniques 

Strong 

protection, 

widely 

accepted, 

mathematically 

rigorous. 

Computationally 

intensive, 

requires key 

management. 

Data 

transmission, 

storage, 

secure 

computations. 

High Low High High 

Multidimensional 

Sensitivity-Based 

Anonymization 

Nuanced 

privacy 

protection, 

considers 

multiple 

factors. 

Complex to 

implement, 

requires detailed 

sensitivity 

analysis. 

Data sharing, 

multi-

dimensional 

data 

protection. 

High Low High High 

Differential 

Privacy 

Provides 

strong privacy 

guarantees, 

resistant to 

many types of 

attacks. 

Can reduce data 

utility, requires 

careful 

calibration of 

noise. 

Statistical 

databases, 

privacy-

preserving 

data analysis. 

High Medium High High 
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Chapter 4 

 

DIFFERENTIAL PRIVACY 
 

 

4.1. Differential Privacy 

It is a mathematical mechanism that offers robust privacy guarantee throughout data analysis 

and to exchange data publicly [33]. This idea was first presented by Cynthia Dwork and other 

associates in the early 2000s.It protects an individual's privacy by making sure that either an 

individual present in the dataset or not cannot impact  results of any research. It helps to make 

guarantee that the private information about an individual is kept hidden upon aggregated data 

analysis. Fundamental concept of differential privacy is introducing the controlled randomness 

into the data analysis process [49]. Differential Privacy makes guarantee that no single data 

point’s privacy is compromised in the output by carefully adding the noise to query results. 

4.1.1. Definition: A randomized algorithm Ris (ε,δ)-differentially private for any two adjacent 

datasets𝑂1 and 𝑂2 for all subsets Qof the output space of R. 

Pr[R(𝑂1) ∈Q] ≤ eεPr[R(𝑂2) ∈Q]  + δ 

Neighboring datasets 𝑂1 and 𝑂2 are means to be adjacent datasets that are different by no more 

than one element. Here, a positive privacy parameter called ε epsilon is used to evaluate the 

loss of privacy. Smaller value of epsilon indicates the stronger privacy. While δ is a positive 

parameter, which is usually close to zero, permits a minor relaxation of the strict privacy 

guarantee. It is pure differential privacy, if the value of δ = 0, then we obtain a stricter definition 

of ϵ-differential privacy. 

Pr[𝑅(𝑂1) ∈ 𝑄] 

Pr[𝑅(𝑂2) ∈ 𝑄]  
≤ eε 
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4.1.2. Sensitivity of queries:  

Sensitivity is a crucial aspect in the application of differential privacy. The greatest difference 

that can exist between the output of a function R for any pair of neighboring inputs 𝑂1 and 𝑂2, 

is the sensitivity of the function.It measures the highest possible alteration to a query's response 

that could come from either including or eliminating a single person's data. Queries with high 

sensitivity require more noise to ensure privacy, whereas queries with low sensitivity require 

less noise. 

Δ = 𝑚𝑎𝑥𝑂1,𝑂2
∥R(𝑂1) – R(𝑂2)∥ 

4.2. The Privacy Budget 

The level of privacy guarantee in a mechanism is managed by privacy budget, refer asε[48].It 

indicates a limit on how much of information that can be derived from a computation's output 

on an individual. Choosing lesser value of epsilon provides more privacy but may result in less 

accurate results. Conversely, higher ε values yield outcomes that are more precise but with less 

privacy protections. 

4.2.1. Sequential Composition: 

Sequential composition describes the situation in which several operations or searches are 

carried out consecutively on the same dataset. Each query introduces a certain amount of 

privacy loss which is measured by its privacy parameter. If the queries are run sequentially on 

the same dataset, then overall loss in privacy accumulates for each query. Suppose there are 

the n number of operations 𝑷𝟏, 𝑷𝟐, 𝑷𝟑, . . . . . . . . . , 𝑷𝒏 performed each with an ε-differential 

privacy parameter on a dataset consecutively then total privacy loss is equal to: 

𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 𝑇𝑜𝑡𝑎𝑙 = ∑ ε𝑖
𝑛
𝑖=1  
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In sequential composition, it overall leads to cumulative privacy loss as addition of each query 

reduces the overall privacy guarantee. To achieve desired level of accuracy, the total privacy 

budget must be carefully managed. If large number of queries are performed or if the individual 

ϵ values are too high, the overall privacy guarantees can be significantly weakened. 

4.2.2. Parallel Composition: 

On the other hand, parallel composition describes the scenarios in which multiple queries and 

operations performed consecutively or independently on disjoint datasets. In parallel 

composition, each query or operation executed independently in terms of its privacy loss. 

Suppose there are the n number of operations 𝑷𝟏, 𝑷𝟐, 𝑷𝟑, . . . . . . . . . , 𝑷𝒏 performed, each applied 

to separate datasets with ensuring ε-differential privacy individuallythen the entire privacy 

remains essentially same as for a single query. 

𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 𝑇𝑜𝑡𝑎𝑙 = max(ε1, ε2, ε3, . . . . , ε𝑛) 

In this case, the total privacy guarantee is determined by the highest ε value among the queries. 

This methodology guarantees privacy is maintained across each individual queries, assuming 

no association exist between datasets used in each query. In parallel composition, management 

of privacy budget becomes more simplified while handling multiple operations or queries that 

can be executed simultaneously. 

4.3. Mechanisms of Differential Privacy 
 

4.3.1. Laplace Mechanism: 

It is used in differential privacy to add controlled amount of noise to the output of computations 

[47]. Laplace Mechanism can be applied to achieve differential privacy for making sure that 

either presence of an individual or not doesn’twill not significantly alter the result of a 

calculation or analysis.The amount of noise added in computation's output is evaluated  from 
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the Laplace distribution by the Laplace mechanism [35]. The likelihood density function of the 

Laplace distribution, which is employed in this mechanism for differential privacy, is 

represented by this expression. 

𝑓(𝑢)  =
𝜀

2𝑏
𝑒𝑥𝑝( 

−𝜀|𝑢|

𝑏
) 

 

Figure 1 Laplace Distribution 

Privacy Budget ε is a privacy parameter that responsible for privacy to obtain differential 

privacy. Lesser value of ε, provides a higher privacy protection. Here b is a scale parameter to 

determines the spread of distribution (b>0). Larger the value of b, increase in the amount of 

added noise more widely, that leading to more fluctuation in final results. |u| defines the 

absolute value of u,to ensures the Laplace distribution is symmetric around its mean. The value 

of |u| often calculated as |𝑢| =
b Δ𝑓

𝜀
 

Here, privacy and utility both are trade-offs larger the amount of |u| provides stronger privacy 

but it reduces the utility of the output and vice versa. 

The change in the output of a function when it applies to two adjacent datasets, these are 

neighboring datasets that varied in  by the presence and absence of single individual's record is  

known as sensitivity of function Δf. 
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Δ𝑓 = 𝑚𝑎𝑥𝑑1,𝑑2∶|𝑑1∆𝑑2|=1 ∥ 𝑓(𝑑1)  −  𝑓(𝑑2) ∥1 

Definition: Given a function f :O→ R that operates on a dataset O, the Laplace mechanism 

perturbs the output of f(O) to ensure ϵ-differential privacy. The perturbed output P(O) is defined 

as: 

P (O) = f (O) + Lap(
Δ𝑓

𝜀
) 

 

4.3.2. Gaussian Mechanism: 

It is also an alternative way of Laplace mechanism to inject noise into the results of a function 

for ensuring privacy while preserving data utility in differential privacy. Because of its bell-

shaped distribution, the Gaussian mechanism smooths out noise and is frequently chosen when 

there is a need for more precise control over noise distribution or when sensitivity σ is high. 

Definition: Given a function f :O→ R that operates on a dataset O, the Gaussian mechanism 

perturbs the output of f(O) to achieve ϵ-differential privacy. The perturbed output P(O) is 

defined as: 

P (O) = f (O) + N ( σ 2) 

 
Here f (O) is the exact result of the function f on dataset O.N ( σ 2)represents noise that is 

evaluated through Gaussian distribution. Σ refers a parameter that evaluated from sensitivity of 

the function  f. It measures the change in output of f (O) can change when one element of O is 

changed. where s is the sensitivity of the function and log represents the natural logarithm. 

 σ 2 =  
2𝑠2 log(

1.25

δ
)

𝜀2
 

The privacy parameter that regulates the quantity of noise generated is epsilon. This mechanism 

balances privacy and utility by controlling the ε and σ parameters. Larger ε and smaller σ 
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provides weaker privacy guarantees as it adds less noise while provides higher utility. In the 

same way smaller ε and larger σ adds more noise that strengthening privacy but potentially 

reducing utility. 

4.3.3. Exponential Mechanism: 

It is well known that not all query functions are able to return numerical values in their output. 

A more general approach to handling and responding to qualitative queries was put out by 

McSherry and Talwar [28]. So, this mechanism deals with non-quantitative e queries. 

Exponential function formally defined as below: 

Definition of Exponential Mechanism: 

Given a set Nof acceptable outputs, and a utility function u :N × O → Which quantifies the 

desirability of every outcome n∈N given the dataset O. This Mechanism [37] selects an output 

y probabilistically to ensure ϵ-differential privacy. 

 

P (O) =Pr[n∣ O] ∝ exp (
𝜀𝑢 (𝑛,𝑂) 

2Δ𝑢
) 

 

Here u(n, O) is the utility of output n given dataset O. Δu is the maximum sensitivity which 

measures how much the utility function u(n, O) can change when one element of O is changed. 

It determines the scale of possible changes in utility across datasets. Similarly, amount of noise 

added dependent on the privacy parameter epsilon. 

4.4. Methods to Implement Differential Privacy 

Bothlocal and global DP approaches adhere to the core principle of differential privacy by 

ensuring that an individual's data remains protected as shown in Figure2 [24].The selection 
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between local and global differential privacy depends on the specific application, the level of 

trust in the central server, and the desired privacy guarantees.  

4.4.1. Local Differential Privacy: 

 In LDP data contributor is responsible for adding noise in data before sharing it with central 

aggregator and data collector. So, it doesn’t require any trusted party. In Local DP [45] noise 

introduces to the individual data points.  Suppose each user has a sensitive bit of 

information𝑏𝑖∈{0,1}. Each user perturbs their data locally using a randomized response 

mechanism with probability
1 + 𝜀

2
 , report 𝑏𝑖 or with probability

1− 𝜀

2
 , report 1 −  𝑏𝑖. 

 It ensures that the privacy of each individual’s preserved before aggregation or analysis occurs.  

In LDP, noise addition occurs at the individual level. The main advantage of Local DP, it does 

not require to trust data aggregator, as it is unaware of the real values. But problem is that every 

user will have to introduce noise in personal information that will overall increase the total 

amount of added noise. But this problem can be mitigated by using the high values of epsilon 

(ϵ). 

4.4.2. Global Differential Privacy: 

In GDP it generated noise to the final results of query by the central aggregator before sharing 

it with any third party [46]. In this model, each user will share their actual data with a central 

aggregator without adding noise. To add noise to the entire dataset, the central aggregator will 

use a differential privacy method. Global differential privacy make sure either an individual 

present in the dataset or not does not alter probability distribution in the final output. 

Consider a function f that calculates a sum over a dataset O: f (O) = ∑ . 𝑥𝑖
𝑛
𝑖=1  . The Laplace 

mechanism allows noise taken from the LaPlace distribution to be added in order to achieve 

global DP. 



 

 
 32 

 

P (O) = f (O) + Lap (
Δ𝑓

𝜀
) 

 
 As the central aggregator has access to real dataset so, it requires to trust data collector. This 

model's primary benefit lies in the fact that low values of epsilon (ϵ) can yield useful results 

without requiring a significant amount of noise. But before sharing the data, it must requires 

the trust of users on data collector. If in case the data aggregator gets compromised, the data 

can be leaked and it increases the risk of privacy failure. 

 

Figure 2 Laplace vs Global Differential Privacy 

 

4.5. Differentially Private Data Release 

Data release refers to the process of making data accessible for use or analysis by maintaining 

the user’s data privacy [44]. The objective is to minimize the possibility of disclosing private 

information about any individual in the dataset while yet providing accurate and useful 

information. Depending on the sequence of answers for query set, there are two different 

arrangements i.e. interactive data release and non-interactive(differentiated in Figure3) [24]can 

be utilized to release sensitive data while preserving privacy. 
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4.5.1. Interactive Data Release 

Interactive data release occurs when a user or data analyst engages with a system or mechanism 

to query the data while maintaining privacy. First the user submits a query to the system or 

mechanism that holds the private dataset. Then the system applies a differential privacy 

mechanism to the query in order to add noise or perturbation to the results to prevent exact data 

reconstruction while ensuring statistical accuracy. After this system returns a differentially 

private response to the query. The main aim of this response is to maintain privacy while 

offering useful statistical information. Iteratively, the user may submit more than one query. 

The response of each query depends on the differential privacy guarantees that are applied to 

that particular query while taking the cumulative privacy budget into account. 

4.5.2. Non-Interactive Data Release 

Non-interactive data release [43] involves the pre-calculating differentially private aggregates 

or summaries of a dataset without requiring user input is known as non-interactive data release. 

The goal is to release useful statistical information by reducing the need for real-time 

interaction of user. Before releasing the dataset, differential privacy mechanisms are applied to 

aggregate statistics or summaries. Then differential privacy mechanisms add noise or 

perturbation to these pre-computed summaries to ensure privacy. After that perturbed statistics 

or query results are made available to users or analysts. It reduces the risk of privacy breaches 

associated with dynamic interaction as the users access the pre-computed results without 

interacting directly with the private dataset but it may limit flexibility. 
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Figure 3: Methods of Data Release 

 

4.6. Selection of Privacy Parameter 𝜺 

Setting the value for epsilon is a challenging task for implementing differential privacy 

effectively in any application [35] [42]. Desirable balance between privacy and utility can be 

controlled by adjusting the value of epsilon typically values range from 0.01 to 1 are for strong 

privacy, but higher values might be used depending on its application or context.  

Loss Function (L): 

The loss function L(ϕ,D)for a model with parameters ϕ on datasetO. For example, the mean 

square error (MSE) is commonly used as the loss function in linear regression: 

L(ϕ,O) = 
1 

𝑛
∑ (𝑧𝑖 − ẑ𝑖)2𝑛

𝑖=1  

Where 𝑧𝑖are the actual values, andẑ𝑖are the predicted values 
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Privacy Loss (PL): 

The privacy loss PL(𝜀) quantifies the risk of information leakage as 𝜀 changes. Generally, 

lower 𝜀 implies higher privacy. 

PL(𝜀) = 
𝐾

𝜀
 

where K is a constant representing the baseline privacy risk when 𝜀=1. 

Utility Measure (U): 

The utility measure U(ϕ,O) evaluates the model's performance or effectiveness on dataset O, 

typically measured by metrics such as accuracy or predictive performance. 

U(ϕ,O) = 
1

𝐋(𝛟,O) 
 

To achieve an optimal balance, we need to minimize the combined cost function F(𝜀), which 

considers both the privacy loss and the loss function (inversely related to utility). 

F(𝜀) = α⋅PL (𝜀) + β⋅L(ϕ,O) 

where α and β are weighting factors that balance the importance of privacy and utility. 

Combined Cost Function: 

Substituting PL(𝜀) and L(ϕϵ,O) into the cost function: 

F(𝜀) = α⋅
𝐾

𝜀
+ β⋅L(ϕ𝜀,O) 

Selecting Optimal 𝜺: 

To find the optimal 𝜀, we will calculate the derivative of F(𝜀): 
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𝒅𝐹(𝜀)

𝒅𝜀
 = - α⋅

𝐾

𝜀2
+ β⋅

𝜕𝐿(𝜙𝜖,𝑂)

𝜕𝜀
= 0 

Solving for ϵ: 

- α⋅
𝐾

𝜀2
+ β⋅

𝜕𝐿(𝜙𝜖,𝑂)

𝜕𝜀
= 0 

 

α⋅
𝐾

𝜀2
= β⋅

𝜕𝐿(𝜙𝜖,𝑂)

𝜕𝜀
 

𝜀2 = 
α⋅K

β.  
𝜕𝐿(𝜙𝜖,𝑂)

𝜕𝜀

 

𝜀 =√
α⋅K

β.  
𝜕𝐿(𝜙𝜖,𝑂)

𝜕𝜀

 

This provides a formula for selecting 𝜀depending on constant K, weighting factors α &β, and 

the sensitivity of the loss function to ε. 

Optimal value of 𝜀 can be derived as: 

𝜀 =√
α⋅K

β.  
𝜕𝐿(𝜙𝜖,𝑂)

𝜕𝜀

 

By using this formula, one can select 𝜀 in a way that manages both privacy (represented with 

α and K) and accuracy (represented with β and the sensitivity of the loss function). A lower 

value of 𝜀 provides stronger privacy guarantees. For selecting lower value of 𝜀 it requires 

increasing the value of α which increases the emphasis on minimizing privacy loss and 

decreasing the value of β that reduces the emphasis on preserving the utility or accuracy.By 

appropriately choosing α and β, one can control the emphasis on privacy versus utility, ensuring 

an optimal balance tailored to specific application requirements. 
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Chapter 5 

EXPERIMENTAL STUDY OF DIFFERENTIAL 

PRIVACY ON EHRs 
 

Differential Privacy can be practically implemented by using multiple possible 

mechanism. In this thesis, we have used two different primary mechanism for the 

implementation of differential privacy in healthcare data. These methods are the Laplace and 

Gaussian mechanisms, algorithm of used mechanisms have described below in section 5.2.1 

and 5.2.2 

5.1. Experimental DP Framework in Healthcare 

In this proposed scenario, underlying architecture can be used for practical implementation of 

DP in electronic healthcare data as demonstrated in the below Figure 4. In this model, Global 

differential privacy implemented on sensitive data to achieve privacy. 

 

Figure 4 Architecture of the system 
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In this partof framework, users or data analysts will connect with the database by using user 

interface. The user will request the desired data in the form of queries and achieve the 

differentially private results. The protected system will receive queries that had made by data 

analyst or involved user and then it will pull out the unprocessed information from the stored 

database. After this it generates noise in the final outcome using DP in accordance with each 

query's global sensitivity. To achieve experimental results, python is selected as programming 

language on the basis of processing large datasets within the minimum time period and having 

ability to deal with computational tasks. Moreover, to handle large datasets PyDP, Pandas, 

Numpy and matplotlib libraries are used. PyDP is differential privacy project from Google, in 

which all the computation methods use Laplace noise only. 

5.2. Algorithm Details 

In this thesis two different primary methods such as Laplace and Gaussian mechanisms used 

for purpose of showing how to implement differential privacy. Further both algorithms 

described below that have applied in implementing DP. 

5.2.1. Algorithm for Laplace Mechanism 

1. function LAPLACE(O, Q, ε) 

2. ΔQ = GS(Q)  // Calculate global sensitivity 

3. Y = [0] * k // Initialize noise array of size k 

4. for a in range(k): 

noise[a] = Lap(ΔQ / ε)  // Calculating sampled noise 

5. end for 

6. return Q(O) + noise[a]// Add noise to the actual count 

7. end function 
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5.2.2. Algorithm for Gaussian Mechanism 

1. function GAUSSIAN_MECHANISM(D, Q, ε, δ, lower_limit, upper_limit) 

2. filtered_data = filter(D, lower_limit, upper_limit)                  // Filter the dataset with given query 

3. actual_count = count(filtered_data)// Compute the actual count 

4. σ = sqrt(2 * ln(1.25 / δ)) / ε// Calculate the standard deviation for Gaussian noise 

5. noise = sample_normal(0, σ)//  Generate Gaussian noise 

6. noisy_count = actual_count + noise// Add noise to the actual count 

7. return noisy_count 

8. end function 

 

5.3. Datasets Description 
 

5.3.1. COVID-19 Home Nursing Dataset 

Another dataset “COVID-19HomeNursing Data” has used to perform experiment by applying 

differential privacy in electronic healthcare data. This dataset also publicly available on 

data.cms.gov and Kaggle [41] websites. It consists of around 510,000 records with 39 number 

of attributes.  

 

5.3.2. Breast Cancer Prediction Dataset 

In this study, Breast Cancer Prediction dataset used that is publicly available on Kaggle [40]. 

The following dataset contains information of 20,000 digital and 20,000 film-screen 

mammograms collected against women with age group between 60-89 years for breast cancer 

prediction. It has almost 30,000 instances (patient record) with 13 attributes that are as follows:  

 

 

https://data.cms.gov/covid-19/covid-19-nursing-home-data
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Figure 5 Breast Cancer Prediction attributes 

 

5.4. Experimental Results on Breast Cancer Prediction Dataset 

In this implementation, it presents the comparison difference in the actual count and differential 

private outcome. First imported CSV file of breast cancer prediction dataset in IPython (Jupyter 

Notebook). After this performed multiple queries on this data to extract count for patients 

between different age groups during mammography with having true value of history of breast 

biopsy. In Figure 5 it shows the actual count for number of patients with different age groups 

without apply differential privacy. 
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Figure 6 Actual count without DP on Breast Cancer Prediction Dataset 

After getting true values Figure 6 shows the count for patients between different age groups 

during mammography with having true value of history of breast biopsy with applying 

differential privacy. Here differential privacy implemented through PyDP that uses Laplace 

mechanism. Experiment performed by selecting different values for Epsilon, here value for 

epsilon is ɛ = 0.2. 

 

Figure 7 Count with DP on Breast Cancer Prediction Dataset 

 

Table 4 shows the comparison between actual value results and differentially private results. 

As it can be seen that noise introduced in actual count to make data private while maintaining 

data’s utility and accuracy. So, this data can be used by data analyst for research purposes. 
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Actual Results DP Results 

5088 5081 

3057 3035 

915 911 

0 3 

Table 4 Comparing Results using Breast Cancer Prediction Dataset 

For comparison we plotted a graph between true values and differentially private valuesby 

setting the ɛ = 0.2. Y-axis shows the count for patients between different age groups during 

mammography with having true value of history of breast biopsy and X-axis shows the 

patient’s age group. 

 

Figure 8 Results Comparisons using Breast Cancer Prediction Dataset 

5.4.1. Varying Privacy Budget using Breast Cancer Prediction Dataset 

Experiment performed for different values of epsilon to examine the protection level provided 

by DP mechanism with identical attributes but setting different values for privacy parameter. 

Here results evaluated by selecting different values for epsilon (0.02, 0.01, 0.2, 0.4, 0.6& 0.8). 

It can be seen in figure 8 that by decreasing ɛ value, it added more noise and vice versa. 
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Figure 9 Varying Epsilon values on Breast Cancer Prediction Dataset 

For further demonstration, a graph plotted between privacy parameter epsilon and results for 

queries to compare the exact results and data with introduced noise. In Figure 9 it can be seen 

that the actual count for the number of patients between age 60 to 70 at the time of 

Mammography with having true value of history of breast biopsy is 36. After decreasing value 

for the privacy parameter epsilon by applying DP, the more noise added in actual value data. 

 

Figure 10 Analysis of privacy parameter using Breast Cancer Prediction Dataset 
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5.4.2. Time complexity Analysis with Breast Cancer Prediction Dataset 

The execution time of queries will somewhat rise by increasing the conditions in the query.The 

first query filters the data to include only patients whose age at the time of the mammograph is 

between 60 and 70 years. It involves a simple range filter on one attribute. Second query adds 

another condition to the previous query by checking if the patient has a history of breast biopsy. 

It involves filtering based on two attributes. Next query is the most complex, combining 

multiple conditions across several attributes, including logical operations and comparisons. 

The time increases from 0.01544 seconds to 0.01999 seconds and then to 0.03899 seconds by 

increasing conditions. Slight rise in execution time observed with each additional attribute but 

it is not drastic, suggests that the filtering operations scale reasonably well by applying 

differential privacy with increasing the number of conditions. The time complexity in practice 

suggests that the operations are manageable within the given execution times. 

 

Figure 11 Queries with Time Comparison using Breast Cancer Prediction Dataset 
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Figure 12 Time Comparison Query 1 on Breast Cancer Prediction Dataset 

 

Figure 13 Time Comparison Query 2 on Breast Cancer Prediction Dataset 

 

Figure 14 Time Comparison Query 3 on Breast Cancer Prediction Dataset 
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5.4.3.Comparison Analysis of Laplace vs Gaussian Mechanism 

Implementation of Laplace mechanism using PYDP adds noise sampled from Laplace 

distribution based on privacy budget to provide results with provable privacy guarantees under 

differential privacy. To generate noise for Gaussian Mechanism it uses Gaussian distribution 

based on privacy budget which also provides differentially private results but typically used 

for scenarios where smoothness and sensitivity are key considerations. Laplace mechanism 

[38] generally efficient due to the simplicity of sampling from a Laplace distribution. While 

Gaussian Mechanism [39] slightly more computationally intensive due to the nature of 

sampling from a Gaussian distribution, which involves more complex calculations. Laplace 

mechanism often provides better accuracy for discrete counting queries. In conclusion, both 

Laplace and Gaussian mechanisms offer differential privacy solutions with different trade-offs 

in accuracy, implementation ease, and computational complexity. The choice of selection 

between them relies on particular needs and conditions of the differential privacy application 

and queries nature being performed on the datasets. 

 

Figure 15 Laplace Mechanism 
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Figure 16 Gaussian Mechanism 

 

5.5. Experimental Results onCOVID-19HomeNursing Dataset 

To implement differential privacy, we performed different queries on this another dataset to 

show the comparison of real outcome and differential private outcome of queries. First query 

shows the overall count of beds that are in use in facilities of city “RUSSELLVILLE” where 

COVID – 19 Confirmed Weekly Staff is zero and COVID – 19 Confirmed Weekly Residents 

are less than 6. In Figure 15, it shows the actual count for this query without implementing 

differential privacy. 
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Figure 17 Query 1 Result without DP on COVID-19 Home Nursing Dataset 

 

After getting the actual results, next Figure 16 shows the overall count of beds that are in use 

in facilities of city “RUSSELLVILLE” where COVID – 19 Confirmed Weekly Staff is zero 

and COVID – 19 Confirmed Weekly Residents are less than 6 with implementing differential 

privacy. Here differential privacy implemented through PyDPusing Laplace mechanism with 

selected epsilon value is ɛ = 0.2. 

 

Figure 18 Query1 Result with DP on COVID-19 Home Nursing Dataset 
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Second query in Figure17and Figure 18showsthe overall count of beds that are in use in 

facilities of city “ABILENE” where COVID – 19 Confirmed Weekly Staff is zero and COVID 

– 19 Confirmed Weekly Residents are less than 6 without and with implementing Differential 

Privacy. 

 

Figure 19 Query 2 Result without DP on COVID-19 Home Nursing Dataset 

 

 

Figure 20 Query 2 Result with DP on COVID-19 Home Nursing Dataset 
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Third query in Figure 19 and Figure 20represents the overall count of beds that are in use in 

facilities of city “YORK” where COVID – 19 Confirmed Weekly Staff is zero and COVID – 

19 Confirmed Weekly Residents are less than 6 without and with implementing Differential 

Privacy. 

 

Figure 21 Query 3 Result without DP on COVID-19 Home Nursing Dataset 

 

Figure 22 Query 3 Result with DP on COVID-19 Home Nursing Dataset 
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Fourth query in Figure 21 and Figure 22 shows overall count of beds that are in use in facilities 

of city “WYNNEWOOD” where COVID – 19 Confirmed Weekly Staff is zero and COVID – 

19 Confirmed Weekly Residents are less than 6 without and with Differential Privacy. 

 

Figure 23 Query 4 Result without DP on COVID-19 Home Nursing Dataset 

 

Figure 24 Query 4 Result with DP on COVID-19 Home Nursing Dataset 
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Table 5 shows the comparison between actual value results and differentially private results on 

multiple queries.  It can be noticed that noise added in the actual outcome of queries while 

maintaining data utility and data accuracy. 

 

City Overall occupied beds Overall occupied bedswith DP 

RUSSELLVILLE 12,491 12,508 

ABILENE 23,857 23,570 

YORK 41,712 40,800 

WYNNEWOOD 5,130 5,254 

Table 5 Comparing Results using COVID-19 Home Nursing Dataset 

For comparison we again plotted a graph between true values and differentially private values 

by setting the ɛ = 0.2. Y-axis shows the count for number of occupied beds where COVID – 

19 Confirmed Weekly Staff is zero and COVID – 19 Confirmed Weekly Residents are less 

than 6 in different cities while X-axis represents the statistics for different cities. 

 

Figure 25 Results Comparison using COVID-19 Home Nursing Dataset 
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5.5.1. Varying Privacy Budget using COVID-19HomeNursing Dataset 

In order to examine how noise affects the same query, we ran an experiment where we varied 

the value of epsilon between 0.8, 0.6, 0.4, 0.2, 0.01, and 0.02. In given results, we can notice 

that by decreasing the epsilon value, the amount of added noise also increases. Which means 

smaller the value of epsilon, greater the privacy required and the more noise is added. 

A compromise between privacy and utility exists. Adding more noise increases the privacy but 

it also reduces data utility. In differential privacy, parament epsilon (ɛ) is used to control this 

trade-off between privacy and accuracy. 

 

Figure 26 Varying Epsilon values on Nursing Home COVID-19 Dataset 

For further demonstration a graph plotted for different values of Epsilon (ɛ) in Figure 25. When 

value for epsilon is large then differential privacy added less noise which typically provides 

higher accuracy and utility as data remains closer to its true value. It helps data analyst to make 

informed decision for maintaining privacy level while also considering the usability and 
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reliability of the data. 

 

Figure 27 Analysis of privacy parameter using Nursing Home COVID-19 Dataset 

5.5.2. Time complexity Analysis with Nursing Home COVID-19 Dataset 

In differential privacy, the time complexity primarily relates to the computational cost of 

executing queries on potentially large datasets while ensuring privacy guarantees. First query 

involves filtering the dataset based on a single condition while second and third query involves 

complex filtering conditions including logical AND and OR operations across multiple 

columns. It can be noticed that by increasing the number of conditions in queries it will also 

increases the execution time for queries. The time increases from 0.06563 seconds to 0.35566 

seconds and then to 7.34279 seconds due to increasing conditions. Slightly rise in execution 

time is typically incremental with each additional condition. However, the actual increase can 

also vary depending on the specific dataset characteristics (size, distribution, etc.) and the 

efficiency of the data processing system. 

For previous dataset “Breast Cancer Prediction” with around 30,000 records and 13 attributes,it 

can be noticed that even with more complex queries, the execution times remain relatively low 

compared to larger datasets. For another dataset “Nursing Home COVID-19”with around 
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510,000 records and 39 attributes, execution times are slightly higher for larger dataset due to 

the sheer volume of data being processed. 

 

Figure 28 Queries with Time Comparison using Nursing Home COVID-19 Dataset 
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Figure 29 Time Comparison Query 1 on Nursing Home COVID-19 Dataset 

 

Figure 30 Time Comparison Query 2 on Nursing Home COVID-19 Dataset 
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Figure 31 Time Comparison Query 3 on Nursing Home COVID-19 Dataset 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

 

6. Conclusion 

This chapter presented thorough summary of the major points of the thesis as well as possible 

future directions for research. This study proposed a differentiated privacy-based method for 

protecting healthcare data on the Internet of Medical Things.Initially, this thesis examined 

conventional approaches that were employed in the electronic healthcare data privacy process 

prior to the application of differential privacy. Then it had performed in-depth analysis of 

differential privacy and its core characteristics. The practical implementation showcased 

promising experimental results, demonstrating the application of differential privacy 

mechanisms across multiple queries. Variations in privacy parameter i.e. Privacy budget were 

analyzed to illustrate their impact on preserving privacy while maintaining data utility. 

Comparative analyses involving Laplace and Gaussian mechanisms were conducted, by 

analyzing both schemes in meeting privacy and security requirements with minimal 

computational overhead. Furthermore, the thesis carried out a thorough examination of time 

complexity through application of differential privacy to complex queries on datasets of 

various sizes. 

6.1. Future Work 

Even DP mechanism is sufficient effective to provide the necessary protection and privacy in 

the data but they are not always adaptable enough to use in every real-world situation, that 

could make it more difficult to achieve the required levels of security and usability. As a result, 

it would be ideal to examine and customize other mechanisms as well in the future. Applying 

data dependency differential privacy to actual datasets which exhibit natural reliance among 
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individuals might expose a weak assumption in data dependency differential privacy. In such 

cases inference attacks can exists under differential privacy mechanism. Thus, future research 

should take into account to create a better mechanism that enhances the current approach. 
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