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ABSTRACT

Protecting patient privacy in the era of digital health records is a major challenge while
allowing healthcare data to be useful. The study of differential privacy as a strong privacy-
preserving method for medical data is examined in this thesis. Differential privacy is a
mathematical framework that prevents sensitive information from being disclosed while
preserving data utility for analysis. It does this by introducing controlled noise to the data.
Thus, the main objective of this thesis is privacy preserving of healthcare data in internet of
things by using differential privacy. This research aims to propose a secure, privacy-preserving
scheme to ensure maximum privacy of an individual by also maintaining its utility and allowing
to perform queries based on sensitive attributes under differential privacy. This mechanism
guarantees the individual's privacy by consuming minimum computation and communication
costs. We have designed a basic framework that tries to achieves differential privacy guarantee
and evaluate the results regarding the level of privacy can be achieved in electronic healthcare
data. For this purpose, we have practically implemented differential privacy on two different
publicly available datasets such as Breast Cancer Prediction Dataset and the Nursing Home
COVID-19 Dataset. By applying differential privacy mechanisms to these datasets, it evaluates
the balance between privacy and data utility, demonstrating the effectiveness of differential
privacy in real-world healthcare scenarios. Additionally, we have conducted time comparison
by performing multiple complex queries on these datasets to analyze the computational
overhead introduced by differential privacy. The outcomes demonstrate that, despite a slight
increase in query processing time, it remains within reasonable bounds, ensuring the
practicality of differential privacy for real-time applications. A significant part of this study
involves the selection of the privacy parametere, which determines the degree of privacy
protection. Moreover, we have examined the impact of varying € values on both the privacy
and utility of the data. Our experiments demonstrate that a lower ¢ value enhances privacy at
the cost of reduced data utility, whereas a higher ¢ value offers better utility but with less
privacy protection. This trade-off analysis provides crucial insights into optimizing € for
different healthcare data use cases.

The findings of this thesis contribute to the increasing corpus of information on privacy-
preserving data analysis in the healthcare industry by providing useful suggestions and insights
for using differentiated privacy in various healthcare data scenarios. This work underscores the
importance of adopting advanced privacy-preserving techniques to foster trust and compliance
in healthcare data sharing and analytics.

Keywords: Differential Privacy, Healthcare data, Data sharing, User Privacy, Data Utility.
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Chapter 1
INTRODUCTION

1. Overview

The healthcare sector has changed dramatically in recent years, due to depending more and
more on big data to improve patient care, enhance or improve operational effectiveness, and
forward medical researches. Even if it's a good thing, the quick rise of electronic healthcare
records but it presents serious obstacles to protecting patient privacy. With the increasing
integration of electronic healthcare records and other forms of health data into the healthcare
ecosystem, safeguarding patient’s sensitive or personal data from breaches and unauthorized
access has taken on paramount importance.

One of the main challenges for the protection of electronic healthcare record is the inherent
contradiction between data accuracy and privacy. In order to facilitate progress in
epidemiological researches, advance public health initiatives and health information needs to
be readily available and functional. Storing and sharing this data publicly even in anonymized
forms, it can still be violated patient’s privacy by disclosing such information.

Differential privacy has emerged as a strong and provable privacy guarantee model to
address this paradox by safeguarding data privacy and preserving the analytical usefulness of
datasets. Differential privacy preserves individual personal identifiable information by proving
mathematically that output distribution of a query remains independent of whether an
individual record is present or not in the datasets. By adding calibrated noise to the query output
or data, the balance between the data privacy and data accuracy can be established without
compromising the overall insights that can be derived from the information.

The application of differential privacy in healthcare sector is particularly appealing as

healthcare sector requires accurate and comprehensive data for research and industrial



purposes. In healthcare organizations trusting environment can be built among researchers,
patients, doctors and other participants by implementing differential privacy to ensures the
protection of data shared publicly or with any other third party for research purposes, policy
making and collaborative initiatives.

Despite of its potential, implementation of differential privacy also faces challenges in
healthcare industry. These include the potential impact on the accuracy of clinical and research
findings, the challenges of precisely calibrating noise to preserve data utility, and the need for
robust legal and ethical frameworks to oversee its deployment. To solve these concerns, a
multidisciplinary approach is required that considers moral dilemmas, robust policy
development, and other advancements.

This thesis aims to implement privacy preservation mechanism in healthcare using
differential privacy, it further explores differential privacy's theoretical foundations, practical
applications in healthcare data, and broader implications for privacy preservation. Through
practical implementations of differential privacy in healthcare data, this research will provide
insights into best practices and potential risks. It will support the development of safer and
more effective data privacy preservation and data sharing technique within the healthcare
sector. Through detailed study, this paper seeks to demonstrate the critical need for privacy-

preserving mechanism and to push for their integration into electronic health data management.

1.1.Motivation

The increase in the digitalization of healthcare data has brought about a dramatic
transformation in the collection, storing and utilization of medical data. Electronic health
records (EHRS), health information systems, and wearable technologies are generating vast
quantity of medical data nowadays. This offers a great chance to enhance patient outcomes,

advancement in medical research, and improve the efficiency of healthcare services with the



utilization of this healthcare data. However, this digital transformation raises major concerns
regarding the security and privacy of sensitive health data.

The growing number of cyberattacks and data breaches aimed at health information systems
emphasizes how critical it is to deal privacy issues in the healthcare sector. In addition to
putting private information at risk, these privacy violations undermine public trust in healthcare
organizations, which may deter patients from sharing critical information that might help them
to receive treatment. Additionally, there can be major consequences from the unauthorized
disclosure of health information, including identity theft, discrimination, and psychological
distress.

It has been noticed that standard methods of de-identification and anonymization are not
adequate to fully protect patient privacy. Technological advances in data re-identification have
demonstrated that datasets that are apparently anonymized may often be re-linked to individual
users given the correct auxiliary information. This vulnerability necessitates the development
of more sophisticated privacy-preserving techniques in order to provide a stronger guarantee
against re-identification while maintaining the useful use of data.

Differential Privacy offers an acceptable solution to these problems. Differential privacy is
a mathematically rigorous framework that ensures either the presence or absence of any
individual's data will have a negligible impact on the study as a whole by protecting individual's
privacy. By introducing calibrated noise into the data, differential privacy maintains the
datasets utility for statistical and analytical purposes without compromising privacy.
Maintaining this balancing is particularly crucial in the healthcare sector, where accurate and
comprehensive data are essential for advance research purposes, public health surveillance, and
clinical decision-making.

The goal of this research is to preserve data utility while also finding solutions to current

privacy concerns. It aims to examine differential privacy's practical use in real-world scenarios,



its potential issues and solutions and evaluate its effectiveness. Healthcare data management

relies heavily on privacy preservation, and the concepts and methods derived from this research

will be essential as the healthcare industry absorbs ever-more complex technology and data

Sources.

1.2. Research Objectives

The thesis primary goals are:

To achieve individual's data privacy by using differential privacy so that it doesn't reveal
any private information of the user by sharing it publicly.

To achieve the maximum security and the utility required in the dataset by varying the
privacy budget.

To perform multidimensional queries on the sensitive attributes under differential privacy.
To develop an efficient and cost-effective scheme in terms of communication and
computation overhead.

To analyze performance comparison by varying matrices that influence the accuracy.

1.3. Contribution

The proposed Privacy Preservation Scheme in Healthcare Data will contribute in following

ways:

Used differential privacy techniques on publicly available healthcare datasets to
demonstrate the practical feasibility and effectiveness of preserving patient privacy.
Demonstrated that differential privacy can effectively balance privacy and utility,
guaranteeing that converted results can still be used for insightful analysis and research.
Examined impact of varying values of the privacy budget (epsilon) on both privacy

protection and data utility.



Conducted a comparative analysis of the Gaussian and Laplace mechanisms within the
differential privacy framework. Evaluated the performance and usefulness of these
mechanisms, emphasizing the situations in which each mechanism operates at its best.

Analyzed the time complexity of applying differential privacy techniques, focusing on the
computational efficiency as the parameters of user queries increase.Provided insights into
the scalability of differential privacy methods, offering guidance on their practical

implementation in real-world healthcare data systems.

1.4. Thesis Outline

The following chapters provide an organization and distribution of this research work:

Chapter 1: An overview is provided, a problem statement is emphasized, the purpose for
the research is explained, and the research objectives are listed. The contributions that this
research made are also highlighted.

Chapter 2: This chapter includes an overview of existing privacy preservation schemes in
electronic healthcare data, followed up by pros and cons of each technique.

Chapter 3:The early approaches for maintaining privacy before the idea of differentiated
privacy emerged are covered in this chapter. It gives a general overview of the syntactic
privacy models that make use of data publication mechanisms to preserve privacy.
Chapter 4: This chapter provides a comprehensive overview of differential privacy,
encompassing its definition, operational principles, mechanisms and techniques available
to implement differential privacy. Additionally, it introduces a mathematical approach for
determining the optimal value for privacy parametere.

Chapter 5: This chapter introduces the framework employed to evaluate differential
privacy, providing details on the algorithms used, experimental results of DP across
different datasets, the impact of varying the privacy parameter, time complexity
comparisons for complex queries on datasets of varying sizes, and comparative analyses

5



of Laplace and Gaussian mechanisms.

e Chapter 6: This chapter covers the conclusions, recommendations, and future work.



Chapter 2

LITERATURE REVIEW

Kumar et al.[1] focus on the necessity of large datasets for training robust deep learning models
in healthcare, while also acknowledging the privacy concerns and regulatory constraints that
restrict data sharing in this field. To address these challenges, the authors highlight the potential
of federated learningto overcome these barriers by allowing data to remain with the local party
(such as a hospital), thus ensuring confidentiality and compliance with data protection
regulations. The authors specifically focus on two algorithms: Federated Averaging (FedAvg)
and FedProx, Using federated learning in healthcare highlights several limitations, privacy
risks still exist as model updates sent to a central server could be intercepted. Communication
costs are also notable due to the frequent data exchanges between clients and the server.

A hybrid strategy is presented by Joshi et al. [2] and is combined with a number of approaches
to protect private patient data from breaches and unwanted access. This research methodology
minimizes the impact on data utility while protecting privacy by integrating two key
techniques: the FP-Growth algorithm for mining frequent patterns and anonymization
processes to conceal sensitive information.

In order to solve privacy problems in healthcare big data, Suneetha et al. [3] offer a novel
system that combines Apache Spark with established anonymization approaches like K-
anonymization and L-diversity. A notable development in the field is the integration of these
techniques with Apache Spark, which offers excellent speed and efficiency for handling
massive datasets.

For the purpose of safeguarding local models in Internet of Things-based healthcare systems,

Zhang et al. [4] suggested integrating homomorphic encryption with federated learning



mechanisms. The model integrates data from many medical facilities, and each participant
trains local models independently, using their own data. Before the local models are
aggregated, homomorphic encryption techniques are performed to safeguard the data. This
stops possible adversaries from using inversion or model reconstruction attacks to deduce
private information.

Seol et al. [5] thoroughly implemented attribute-based access control model to protect the
electronic healthcare data (EHR) on XML based system. Sensitive data is partially encrypted
by the system using XML encryption after access control. Next, it secures the data against
unauthorized changes and access by utilizing XML digital signatures.

This research [6] by Abdullah et al, examined blockchain-based technology with the goal of
improving the security and privacy of medical data. The approach focuses on decentralizing
data storage through the use of blockchain technology, which lessens the vulnerabilities
connected to centralized databases. It uses peer-to-peer (P2P) networks, where data is stored
among numerous nodes. The massive volumes of data that are common in healthcare settings
may make it difficult for the blockchain framework to scale effectively, which could result in
longer transaction times and higher computational cost.

Aminifar, A., et al. [7] implemented machine learning approach by using Extremely
Randomized Trees (ERT) that is specifically designed for distributed structured health data.
This distributed ERT technique modifies traditional approach to adapt a distributed setting,
ensuring that data privacy is upheld by avoiding direct data environment. Instead, data insights
are derived through secure multi-party computation methods that allow entities to collaborate
without exposing their private data.

The studies [8] by Charles, V., et al.used the improved ElGamal and ResNet classifier for
maintaining the heart disease database privacy. The patient uses wearable devices; sensors

connected with these devices will gather data and transfer it to the microprocessor and then



send it to the cloud. The upgraded ElGamal encryption technique will be used by the trusted
cloud to safely protect patient data from outside threats. To accurately predict whether a patient
suffering with heart disease or not, the CNN Classifier with ResNet-50 has been employed for
data categorization and refining. However, key generation and encryption add to the
computation cost, and its implementation depends on the trusted Authority (TA).

For securely detection of heart diseases, Rosy et al. [9] present a sophisticated cryptographic
architecture that uses an Optimized Encryption-Based Elliptical Curve Diffie-Hellman
(OEECDH) technique. To improve data security and privacy in cloud environments, the
methodology combines the Diffie-Hellman mechanism with Elliptical Curve Cryptography
(ECC) for key exchange. Sensitive data is encrypted before being transferred to the cloud using
this optimized technique forcreation of secure keys. This ensures that the information is kept
private both during transferring and storing data. Processed and categorized encrypted data
using deep Convolutional Neural Networks (CNN) in the cloud, enabling effective
management of big datasets without sacrificing privacy. The same elliptical curve
cryptographic techniques are used to safely decrypt the data after processing, guaranteeing that
only authorized users can view the original data.

In order to guarantee privacy protection in loT-enabled healthcare systems, Bi, H., et al. [10]
investigate a deep learning-based solution. The approach protects sensitive data obtained from
wearable devices by combining privacy isolation zones and deep learning techniques. Before
the data is transferred to the cloud, sensitive information is recognized and segregated at the
user's end. By doing this, user privacy is improved and only non-sensitive health-related data
is processed further. After being segregated, the non-sensitive data is examined at the cloud by
utilizing CNN, which is made to carry out secure data analytics without jeopardizing privacy.

However, it is still difficult to discriminate between sensitive and non-sensitive information,



and doing so occasionally results in data distortion or the loss of crucial health-related
information.

Researchby Wang, K., et al.[11] outlines a novel searchable encryption(SE) scheme designed
for loT-enabled healthcare systems, focusing on forward privacy and verifiability. Searchable
encryption allows encrypted data to be searched by authorized users without first decrypting
it. Forward privacy ensures that updates to the dataset do not reveal any information about the
contents of past search queries, thus enhancing the security of dynamically changing databases
like those found in healthcare systems. The solution proposed by Wang et al. improves upon
these by incorporating a trapdoor permutation function, ensuring that newly inserted records
do not compromise the privacy of previously performed searches.

Furthermore Ahmed, J., et al.[12] describes a methodology that combines Federated Learning
(FL) with Physical Layer Security(PLS) to enhance the privacy and efficiency in medical
record. FL is employed to train local models at various nodes without sharing the unprocessed
data among them. Only model parameters are shared with a central server or amongst nodes,
significantly reducing the risk of exposing sensitive health data.

Another approach that Singh, P., et al. [13] describe uses cloud computing to facilitate the
distribution of a Hierarchical Long-Term Memory (HLSTM) architecture among distributed
Dew servers. Before the data is utilized to train the model, it is pre-processed to assure quality
from IoMT devices. The complex series of events in the loMT data flow is intended to be
handled by the HLSTM architecture. In order to preserve the integrity of hierarchical data
structures, it makes use of a two-layered LSTM network, in which the first layer creates a
phrase vector and the second layer collects these into a document vector. Federated learning is
used in the intrusion detection model, which forms the basis of the methodology. Subsets of
the data are used to train local models on Dew servers, which subsequently feed into the

creation of a global model.

10



In research by Shabbir, M., et al. [14] implemented Modular Encryption Standard (MES) for
securing health data in Mobile Cloud Computing (MCC) environments. Health data is
categorized and recognized according to its sensitivity before encryption. Several encryption
modules are employed at different stages of the multi-layered encryption method used by the
MES technique. This approach ensures that data is treated in accordance with its security
classification at every stage, starting with the user's mobile device and continuing to the cloud.
A comprehensive methodology to improve the security of medical sensor data in Internet of
Things environments is outlined by Khan, M. A., et al. [15]. The first step in this strategy is
user registration, when individuals enter their biographical and biometric information. A hash
function is used to validate the user's credentials during the login procedure after registration.
Throughout this procedure, the SHA-512 algorithm is used to ensure the security and integrity
of user data. This framework combines two different encryption techniques. The first
technique, the Substitution Caesar Cipher, is a straightforward character substitution approach
that encrypts sensor data and offers a minimal amount of security. The data is encrypted again
using IECC (Improved Elliptic Curve Cryptography) after the first encryption. Compared to
conventional ECC, this approach is known for its strength in data protection since it uses a
generated secret key that adds an extra layer of security.

Krall et al. [16] explore an innovative way to maintain privacy in predictive healthcare analytics
by utilizing the Mosaic Gradient Perturbation (MGP) technology. Based on differential privacy,
the concept aims to preserve model correctness while reducing the danger of model inversion
attacks. The MGP method is intended to cause more of a perturbation to the gradient parts of
the objective function linked to sensitive characteristics than to non-sensitive characteristics.
Furthermore, the difficulties of accomplishing searchable and privacy-preserving data
exchange in cloud-assisted electronic health environments were examined by Xu et al. [17].

The suggested system makes use of modern cryptographic algorithms to facilitate effective,
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private data sharing and searches. The system enables health service providers (HSPs) to search
encrypted PHI data using keyword range and multi-keyword searches using dynamic
searchable encryption techniques. By using this technique, patient privacy is protected because
it guarantees that the data is encrypted during all operations. Numerical analysis queries on
encrypted data are made possible by the Privacy-Preserving Equality Test (PET) Protocol,
which protects sensitive data. Message Authentication Codes (MACs) are used to eliminate out
erroneous data and confirm the accuracy of PHI files.

Song, J., et al. [18] present another advanced method for secure data organization, in order to
improve privacy of data collectedin healthcare systems. This method guarantees that user data
collection stays private and secure while providing precise data aggregation for healthcare
analytics. The computation of matrix eigenvalues forms the basis of the proposed secure
arrangement technique. Each user’s data is placed in a secret position determined by this
calculation. The process begins with an offline Trusted Authority (TA) distributing initial data
to all users. Matrices are used to represent and manipulate data positions securely. Basic matrix
operations such as addition, multiplication, eigenvalue, and trace calculation over a Galois
Field are employed.

Another, framework proposed by Zhou, X., et al. [19]which makes use of a role-based access
management mechanism where access to EMRs is provided depending on the assigned duties
of medical professionals. Anonymous RBACAnNony Scheme is based on a bilinear group that
has two subgroups, one of which hides the patient'sidentification. The scheme makes sure that
an attacker can't figure out who a patient is by looking at a random string. RBACAnony-F,
Anonymous Strategy based on a four-subgroup bilinear group, enhancing security by hiding
the patient's identity in a composite-order subgroup. EMRs are encapsulated using on-demand
access policies that allow one-to-many encryption. This enables different medical staff

members to access the same EMR based on their roles. Patients and their doctors can search
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for EMRs without revealing their identities. The search mechanism ensures that only
authorized users can access the relevant EMRSs.

A technique of attribute-focused anonymization for publishing healthcare data was proposed
by Onesimu, J. A., et al. [20]. The goal of the Fixed-Interval Anonymization technique is to
safeguard numerical properties. To ensure generalization, the original values are substituted by
computed mean values within predetermined intervals. Sorting the numerical characteristics,
figuring out the interval width by comparing the highest and lowest values, and substituting
the computed mean for the original values within each interval are the steps involved in the
procedure. Sensitive attributes are protected using an enhanced version of the 1-Diverse Slicing
approach.

Zala, K., et al. [22] focuseson the integration of cryptographic and steganographic
methodologies to guarantee the confidentiality and integrity of medical records that are kept
on external cloud platforms. The architecture uses a data security method that consists of five
steps. It employs AES-128 encryption for authentication and authorization in order to protect
user credentials. For steganography, it encrypts patient EHRs using AES-128 and hides them
within images using the LSB (Least Significant Bit) technique. To Access Control, it allows
patients to assign access rights to their EHRs for doctors and relatives. For Data Hiding, it uses
anonymization to protect sensitive EHR data from unauthorized access. Hybrid technique is
further used for combining AES-128 encryption with steganography to provide double-layer
security.

Zhang, M., et al. [23] introduced PPO-CPQ technique in electronic healthcare systems to
preserve privacy for clinical pathway queries. Privacy-Preserving Comparison (PPC) protocol
allows two parties to compare private values by converting input data into binary format and
executes secure bitwise comparisons. Privacy-Preserving Clinical Comparison (PPCC) handles

negative numbers and ensures accurate comparisons in the clinical context. Based on lowest
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cost, the PPSS protocol determines the most suitable stage in the clinical pathway.PPSU
protocol makes sure that only necessary changes are shared between servers, updating the

pathway's stage while protecting privacy.

14



Ref. System model Goals Limitations/ Privacy Trust Model
Weaknesses Preserving
Techniques
Hybrid method Hide sensitive e Increased time FP-Growth e Anonymizatio
Joshi et using FP- patient data in and memory algorithm n and
al. [2] Growth healthcare requirements association
2020 algorithm and datasets using for large rule hiding
anonymization hybrid datasets techniques
approaches
Used Apache Using K- o Potential data K- e Handling
Suneet Spark for anonymity and segregation anonymity, healthcare big
ha et privacy L-diversity for issues for L-diversity data with
al.[3] preservation in the protection transferring to Apache Spark
2020 healthcare big of patient’s HDFS for faster
data data in processing
healthcare
Federated Ensure privacy e Increased Homomorphi e Honest but
Zhang Learning along preservation of computation ¢ Encryption, curious; Semi-
et al. with patient’s data and Shamir honest
(4] combination of in loT-enabled communication Secret participant
2022 Homomorphic healthcare overhead; Sharing,
Encryption systems Dropout clients Diffie-
not handled Hellman Key
Agreement
Attribute- Providing e Increased XML e Assumes semi-
Seol et Based Access restricted complexity and encryption & trusted cloud
al.[5] Control access and computational digital environment
2018 (ABAC) using protect patient overhead due to signatures and authorized
XACML privacy in encryption and users for
EHR systems access control accessing EHR
mechanisms data
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Ref. System model Goals Limitations/ Privacy Trust Model
Weaknesses Preserving
Techniques
Used Ensure Increased o Blockchain, e Decentralized
Abdull MediBchain privacy, complexity and Public Key patient-centric
ah et al. framework security, and computational Encryption model
[6] based on integrity of overhead; (ECO)
2017 Blockchain healthcare data requires secure
using key
blockchain management
Used Ensure Increased e Secure ¢ Semi-honest
Distributed privacy- complexity and Multi-Party model;
Aminif Extremely preserving computational Computation Assumes no
ar, A., Randomized machine overhead; (SMO), collusion
et al. Trees for learning for handling Encryption among k
7] privacy distributed missing values parties
2022 preservation health data
Optimized Ensure privacy Requires secure o  Elliptic e Semi-trusted
Encryption protection for key Curve cloud
Rosy et based predicting management; Cryptograph environment
al.[9] Elliptical heart disease Needs efficient y (ECC),
2021 Curve Diffie- using deep handling of Diffie-
Hellman learning and large datasets Hellman
(OEECDH) encryption
Privacy Providing High e Convolution e Data integrity
Bi, H., Protection and privacy- computational al Neural trust on cloud
et Data Analytics preserving requirements Networks service
al.[10] for IoT- data analytics for deep (CNN), providers and
2021 Enabled and secure learning Secure wearable
Healthcare health algorithms Multi-Party device
using deep monitoring Computation manufacture;
learning using [oT (SMC) assumes secure
devices data
transmission
channels
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Ref. System model Goals Limitations/ Privacy Trust Model
Weaknesses Preserving
Techniques
Usedforward- Ensure Potential Searchable Semi-honest
Wang, privacy privacy and exposure of Encryption adversaries;
K., et searchable security of search patterns; (SE), Pseudo- Trust in
al.[11] encryption in healthcare requires Random cloud service
2021 electronic data while efficient key Function provider to
healthcare data enabling management (PRF), follow
efficient Trapdoor protocol
search and Permutation without
data sharing collusion
Federated Enhance Increased Homomorphic Assumes
Ahmed, Learning (FL) privacy and complexity and Encryption, semi-trusted
J., et combined with security in computational PLS, central server
al.[12] Physical Layer IoMT overhead; Blockchain and devices
2021 Security (PLS) networks by Potential for ina
in [oMT using FL and localized hierarchical
networks PLS eavesdroppers network
Dew-Cloud- Enhance data Complexity in Homomorphic Trust in
Singh, Based privacy, managing Encryption, decentralized
P., et al. Hierarchical availability, hierarchical Federated Dew and
[13] Federated and intrusion models; Learning Cloud
2022 Learning detection potential latency servers;
(HFL) using accuracy in in federated assumes
Hierarchical [oMT learning updates secure
LSTM networks communicati
(HLSTM) for using HFL on channels
[oMT networks and HLSTM
Modular To secure Increased Modular Assumes
Shabbir Encryption health complexity and Encryption trust in cloud
, M., et Standard information in computational Standard service
al.[14] (MES) in mobile cloud cost; layered (MES) providers and
2021 Mobile Cloud computing modeling mobile
Computing environments performance devices
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Ref. System model Goals Limitations/ Privacy Trust Model
Weaknesses Preserving
Techniques
Mosaic Preserving e Increased Differential Semi-trusted
Krall et Gradient privacy and complexity in Privacy, entities
al. [16] Perturbation reducing the fine-tuning Gradient within a
2020 (MGP) in IoT- possibility of trade-offs; Perturbation decentralized
enabled model potential framework;
healthcare inversion computational assumes
systems using attacks with overhead in honest-but-
predictive model large-scale curious
modeling accuracy implementations adversaries
E-healthcare Enable secure e Performance Searchable Trusted
Xu et system with and efficient and efficiency encryption, Authority
al. [17] cloud sharing of of the system Privacy- (TA) is fully
2019 assistance that patient health can be affected Preserving trusted,
includes information by the quantity Equality Test Cloud
wearables, (PHI) using of files saved (PET) servers are
cloud servers, searchable and retrieved, as protocol, honest-but-
IoT gateways, encryption well as the Variant Bloom curious, [oT
and health difficulty of Filter (VBF), gateways and
service managing Message health
providers massive datasets Authenticatio service
(HSPs) in a dynamic n Code providers
manner. (MAC) (HSPs) are
trusted
Publishing Privacy e Increased Enhanced 1- Internal data
Onesim healthcare data preservation computational diverse slicing controllers
u, JA., using l-diverse while data complexity with for grouping are trusted,
et al. slicing and a releasing of large datasets, attributes and Data analysts
[20] fixed-interval EHR and Vulnerability to fixed-interval are
2022 technique for provide certain privacy anonymizatio considered
attribute- maximum attacks with n for potential
focused data utility fixed methods numerical adversaries
anonymization attributes

Table 1Study of Existing Privacy Preservation Mechanisms in Healthcare
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Chapter 3

PRELIMINARIES OF PRIVACY PRESERVATION

3.Privacy Preservation Models

Privacy preservation encompasses various strategies and technologies aimed at protecting
individuals' personal data and information. Formerly, a lot of work have been done for privacy
protection. Followings are the privacy models that have been used for privacy preservation data
release publicly include anonymization, t—closeness, K-anonymity, [-diversity, and many other
techniques.

3.1. Anonymization

It is a method of transforming theinformation that can be uniquely identified (PII) into
unidentifiable form so, that it can’t be to linked again with an individual without having
additional information [32]. The goal is to secure the personal identification of a person while
enabling public data sharing publicly. The data collector removes the particular uniquely
identifiedinformation like as Name, phone number and location. But still there are challenges
in data anonymization even if specific identifiers removed. Sometimes, it is possible to
reidentify anonymized data by data linkage attacks, especially when combined with other
datasets. Data masking techniques are used in data anonymization such as randomization that
replaces identifiable data with random values and pseudonymizationthat substitutes
identifiable information with pseudonyms or tokens that can be reversed only with a specific
key or method. Techniques for anonymization must change to keep up with improvements in

ways for re-identifying data.
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3.2. K-Anonymity

Researchers have proposed multiple other methods for privacy preservation, to overcome the
shortcomings of simple data anonymization.K-anonymity is considered as the widely used
methods for protecting privacy.It ensures that individuals cannot be reidentified from
anonymized datasets by making sure that every person in the record can be distinguished from
at least k -1 other person. [26][30]. Elements of data like age, sex and occupation that could
potentially identify individuals are grouped into categories. Those individuals who have similar
characteristics grouped together. Instead of recording the exact ages, age can be grouped into
ranges like (30 — 35 years). Remember each group should contains at least k individuals. By
organizing the data this way, it's much harder for someone to figure out who a specific person
is.However, this technique is still vulnerable to the homogeneity and background knowledge
attacks.

3.3. I-Diversity

To deal with theabove-mentioned drawbacks, this technique emphasizes the variety of sensitive
attributes (such as ethnicity or medical conditions) within each group of people who share the
same quasi-identifiers (non-sensitive attributes) [24].K-anonymity guarantees that, using
quasi-identifiers, every record may be identified from at least k — 1 other records. It does not
take into consideration how sensitive characteristics are distributed throughout these
groupings. An attacker can still make inferences about individual’s sensitive information, If
there is no variability in the values of the sensitive characteristics within a group. The goal of
this method is to prevent attackers from linking specific sensitive information to individuals
based on their shared characteristics in the dataset.Similar to K-anonymity, individuals are
grouped together based on identical quasi-identifiers. For example, all individuals in a group
might be of the same age range, gender, and living in the same ZIP code. Within each group

formed by identical quasi-identifiers, I-diversity requires that the sensitive attributes are
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diverse. There should be at least £ different conditions of sensitive attribute.This means that no
single sensitive attribute should be overly common within the group. Still even with I-diversity,

datasets can be vulnerable to certain type of privacy attackslike skewness and similarity attack.

3.4. T-Closeness

It is a technique for maintaining privacy that aims to rectify the inadequacies of k-anonymity
and I-diversity, particularly the vulnerabilities related to skewness and similarity attacks [26].
T-closeness guarantees that each equivalency class's sensitive attribute distribution closely
resembles the dataset's general distribution of those attributes.In addition to improving data
privacy, this lowers the chance of attribute exposure. The equivalency class is said to have T-
closeness if there is a threshold t that distinguishes the distribution of the sensitive attribute in

the equivalency class from the distribution of the attribute in the total dataset.

3.5. Cryptographic techniques

Before making the data available to the public, the data curator could encrypt it[50]. However,
it is extremely difficult to encrypt vast amounts of data using standard encryption techniques,
and must only be put into practice when gathering data.By using homomorphic encryption, it
allows to perform calculations on encrypted data, that produces an encrypted output and the
final results will be equivalent to plaintext operation after decrypting it back.Similarly, secure
multiparty computation permits several parties to work together to jointly compute a function
over their private inputs. Moreover, Blockchain technology used in privacy preservation of data
that uses cryptographic hash functions to ensure data integrity and immutability. Cryptographic
hash functions like SHA-256 convert data into a fixed-size hash, guaranteeing that tampering
is readily identifiable by producing a totally distinct hash for every alteration in the input data.
It provides transparency and security in data sharing and transactions. However, encryption

decreases the utility of the data in addition to being difficult to execute.
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3.6. Multidimensional Sensitivity Based Anonymization

It is an improved kind of anonymization that can be used to outperform more conventional
anonymization methods[31]. It identifies which attributes are sensitive in the datasets. It
includes both quasi-identifiers (identify individuals when combined) and direct identifier
attributes. Evaluate the sensitivity of each attribute. Some attributes may be more sensitive than
others, and this sensitivity can be quantified. Implement anonymization strategies to make sure
the data cannot be traced back to individuals, such as generalization, suppression, or noise
addition. The level of anonymization that is used can change depending on how sensitive each
attribute is.Consider the interactions between multiple attributes. Even if individual attributes
are anonymized, make sure the aggregation of attributes prevents re-identification. This is
essential for defending against inference attacks, in which the attacker reidentifies a target
using multiple attributes. It provides the enhanced privacy by considering the sensitivity of
multiple attributes and their interaction. It allows for different level of anonymization based on
the sensitivity of each attribute and minimizes the risk of re-identification through
combinations of attributes. This technique is better suited for large scale with static data.

Moreover, it is not applicable for streaming data.

3.7. Data Distribution technique

This technique involves splitting of data over multiple sites. There are two main methods for
distributing data. Both strategies horizontal distribution and vertical distribution[25]
decentralize data processing and storage in an effort to reduce the possibility of privacy

breaches.

In horizontal distribution, a subset of dataset’s records or rows stores at each site. Each subset
contains the same attributes (columns) but for different individuals or entities. This technique
is frequently employed, when different sites have records for different sets of individuals. For

instance, medical records for various patients may be kept in multiple hospitals. By distributing
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records over different sites, a site can implement its own privacy policies and controls
according to their specific requirements and also there is less chance of single point failure.
Only a single subset of data is compromised regardless of whether a site is compromised.
Queries over the distributed data can be conducted using secure multi-party computation,

which protects individual records from being revealed to unauthorized sites.

Every site in a vertical distribution holds a portion of the dataset's properties, or columns. Each
subset contains different attributes but for the same set of individuals or entities.\WWhen multiple
websites need to maintain various kinds of data on the same people, this approach can be
helpful. For instance, financial data may be stored on one website and personally identifiable
information on another. In case of breach, it reduces the risk of complete data exposure by

separately storing the sensitive attributes.
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Technique Strengths Weaknesses Applications | Attribute Damage | Complexity | Accuracy
Preservation | to Data of Data
Utility Analytics
Results
Anonymization Simple, easy to | Vulnerable to Data sharing, | Low Medium | Low Medium
implement, re-identification | data
widely used. attacks if not publishing.
done properly.
K-Anonymity Reduces risk of | Does not protect | Healthcare Medium Medium | Low Medium
identification, | against attribute | data, census
simple disclosure, data.
concept. selection of k.
L-Diversity Protects Complex to Data High Low Medium High
against achieve with publishing,
homogeneity high I-values. sensitive
and attribute
background protection.
knowledge.
T-Closeness Better More complex Healthcare High Low High High
protection and data,
against computationally | sensitive data
attribute intensive. publishing.
disclosure.
Cryptographic Strong Computationally | Data High Low High High
Techniques protection, intensive, transmission,
widely requires key storage,
accepted, management. secure
mathematically computations.
rigorous.
Multidimensional | Nuanced Complex to Data sharing, | High Low High High
Sensitivity-Based | privacy implement, multi-
Anonymization protection, requires detailed | dimensional
considers sensitivity data
multiple analysis. protection.
factors.
Differential Provides Can reduce data | Statistical High Medium | High High
Privacy strong privacy | utility, requires | databases,
guarantees, careful privacy-
resistant to | calibration of preserving

many types of
attacks.

noise.

data analysis.

Table2 Comparison of Privacy Preservation Techniques
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Chapter 4

DIFFERENTIAL PRIVACY

4.1. Differential Privacy

It is a mathematical mechanism that offers robust privacy guarantee throughout data analysis
and to exchange data publicly [33]. This idea was first presented by Cynthia Dwork and other
associates in the early 2000s.It protects an individual's privacy by making sure that either an
individual present in the dataset or not cannot impact results of any research. It helps to make
guarantee that the private information about an individual is kept hidden upon aggregated data
analysis. Fundamental concept of differential privacy is introducing the controlled randomness
into the data analysis process [49]. Differential Privacy makes guarantee that no single data

point’s privacy is compromised in the output by carefully adding the noise to query results.

4.1.1. Definition: A randomized algorithm Ris (g,8)-differentially private for any two adjacent

datasetsO, and O, for all subsets Qof the output space of R.
Pr[R(0,) €0] < e*Pr[R(0,) €EQ] + &

Neighboring datasets 0, and O, are means to be adjacent datasets that are different by no more
than one element. Here, a positive privacy parameter called € epsilon is used to evaluate the
loss of privacy. Smaller value of epsilon indicates the stronger privacy. While 6 is a positive
parameter, which is usually close to zero, permits a minor relaxation of the strict privacy
guarantee. It is pure differential privacy, if the value of 6 = 0, then we obtain a stricter definition

of e-differential privacy.

PrRODEQ] _ ¢
PrR(02) € Q] ~
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4.1.2. Sensitivity of queries:

Sensitivity is a crucial aspect in the application of differential privacy. The greatest difference
that can exist between the output of a function R for any pair of neighboring inputs 0, and 0,,
is the sensitivity of the function.It measures the highest possible alteration to a query's response
that could come from either including or eliminating a single person's data. Queries with high
sensitivity require more noise to ensure privacy, whereas queries with low sensitivity require

less noise.

A=max,,o, I1RO;) ~ R(O,)I

4.2. The Privacy Budget

The level of privacy guarantee in a mechanism is managed by privacy budget, refer ase[48].It
indicates a limit on how much of information that can be derived from a computation's output
on an individual. Choosing lesser value of epsilon provides more privacy but may result in less
accurate results. Conversely, higher € values yield outcomes that are more precise but with less

privacy protections.

4.2.1. Sequential Composition:

Sequential composition describes the situation in which several operations or searches are
carried out consecutively on the same dataset. Each query introduces a certain amount of
privacy loss which is measured by its privacy parameter. If the queries are run sequentially on
the same dataset, then overall loss in privacy accumulates for each query. Suppose there are
the n number of operations P4, P,, P3,......... , P, performed each with an e-differential

privacy parameter on a dataset consecutively then total privacy loss is equal to:

Privacy Loss roa = Siy €
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In sequential composition, it overall leads to cumulative privacy loss as addition of each query
reduces the overall privacy guarantee. To achieve desired level of accuracy, the total privacy
budget must be carefully managed. If large number of queries are performed or if the individual

€ values are too high, the overall privacy guarantees can be significantly weakened.

4.2.2. Parallel Composition:

On the other hand, parallel composition describes the scenarios in which multiple queries and
operations performed consecutively or independently on disjoint datasets. In parallel
composition, each query or operation executed independently in terms of its privacy loss.
Suppose there are the n number of operations P4, P, P3,......... , P, performed, each applied
to separate datasets with ensuring e-differential privacy individuallythen the entire privacy

remains essentially same as for a single query.
Privacy LoSs 7t = Max(gq, €5, €3,....,€,)

In this case, the total privacy guarantee is determined by the highest £ value among the queries.
This methodology guarantees privacy is maintained across each individual queries, assuming
no association exist between datasets used in each query. In parallel composition, management
of privacy budget becomes more simplified while handling multiple operations or queries that

can be executed simultaneously.

4.3. Mechanisms of Differential Privacy

4.3.1. Laplace Mechanism:

It is used in differential privacy to add controlled amount of noise to the output of computations
[47]. Laplace Mechanism can be applied to achieve differential privacy for making sure that
either presence of an individual or not doesn’twill not significantly alter the result of a

calculation or analysis.The amount of noise added in computation's output is evaluated from
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the Laplace distribution by the Laplace mechanism [35]. The likelihood density function of the
Laplace distribution, which is employed in this mechanism for differential privacy, is

represented by this expression.

€ —é&lul
f@) = oexp(——)

o5 C I - i i i o

p=0. b=1
p=0, h=2

0.4 p=0, b=4
p=-5, b=4

0.3 —

0.2 —

0.1 —

0 J

10 -8 -6 -4
Figure 1 Laplace Distribution

Privacy Budget ¢ is a privacy parameter that responsible for privacy to obtain differential

privacy. Lesser value of ¢, provides a higher privacy protection. Here b is a scale parameter to

determines the spread of distribution (b>0). Larger the value of b, increase in the amount of

added noise more widely, that leading to more fluctuation in final results. |u| defines the

absolute value of u,to ensures the Laplace distribution is symmetric around its mean. The value

b A
of |u| often calculated as |u| = Tf

Here, privacy and utility both are trade-offs larger the amount of |u| provides stronger privacy

but it reduces the utility of the output and vice versa.

The change in the output of a function when it applies to two adjacent datasets, these are
neighboring datasets that varied in by the presence and absence of single individual's record is

known as sensitivity of function Af.
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Af =maxy, a,4,0a,=1 | f(d1) — f(d2) Iy

Definition: Given a function f :0— R that operates on a dataset O, the Laplace mechanism
perturbs the output of f(O) to ensure e-differential privacy. The perturbed output P(O) is defined

as:

P (0) =f(0) + Lap(*))

4.3.2. Gaussian Mechanism:

It is also an alternative way of Laplace mechanism to inject noise into the results of a function
for ensuring privacy while preserving data utility in differential privacy. Because of its bell-
shaped distribution, the Gaussian mechanism smooths out noise and is frequently chosen when

there is a need for more precise control over noise distribution or when sensitivity ¢ is high.

Definition: Given a function f :0— R that operates on a dataset O, the Gaussian mechanism
perturbs the output of f(O) to achieve e-differential privacy. The perturbed output P(O) is

defined as:

P(0)=f(0)+N(c?)
Here f (O) is the exact result of the function f on dataset O.N ( o ?)represents noise that is
evaluated through Gaussian distribution. X refers a parameter that evaluated from sensitivity of

the function f. It measures the change in output of f (O) can change when one element of O is

changed. where s is the sensitivity of the function and log represents the natural logarithm.

2 125
2 _ 25~ log( S

o
82

The privacy parameter that regulates the quantity of noise generated is epsilon. This mechanism

balances privacy and utility by controlling the ¢ and o parameters. Larger ¢ and smaller ¢
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provides weaker privacy guarantees as it adds less noise while provides higher utility. In the
same way smaller ¢ and larger 6 adds more noise that strengthening privacy but potentially

reducing utility.

4.3.3. Exponential Mechanism:

It is well known that not all query functions are able to return numerical values in their output.
A more general approach to handling and responding to qualitative queries was put out by
McSherry and Talwar [28]. So, this mechanism deals with non-quantitative e queries.

Exponential function formally defined as below:

Definition of Exponential Mechanism:
Given a set Nof acceptable outputs, and a utility function u :N x O — Which quantifies the
desirability of every outcome n€N given the dataset O. This Mechanism [37] selects an output

y probabilistically to ensure e-differential privacy.

gu (n,0) )
2Au

P (O) =Pr[n| O] « exp (

Here u(n, O) is the utility of output n given dataset O. Au is the maximum sensitivity which
measures how much the utility function u(n, O) can change when one element of O is changed.
It determines the scale of possible changes in utility across datasets. Similarly, amount of noise

added dependent on the privacy parameter epsilon.

4.4. Methods to Implement Differential Privacy
Bothlocal and global DP approaches adhere to the core principle of differential privacy by

ensuring that an individual's data remains protected as shown in Figure2 [24].The selection
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between local and global differential privacy depends on the specific application, the level of

trust in the central server, and the desired privacy guarantees.

4.4.1. Local Differential Privacy:

In LDP data contributor is responsible for adding noise in data before sharing it with central
aggregator and data collector. So, it doesn’t require any trusted party. In Local DP [45] noise
introduces to the individual data points. Suppose each user has a sensitive bit of

informationb;€{0,1}. Each user perturbs their data locally using a randomized response

1+ 1-
mechanism with probabilityT‘g , report b; or with probabili‘[yT‘g , report 1 — b;.

It ensures that the privacy of each individual’s preserved before aggregation or analysis occurs.
In LDP, noise addition occurs at the individual level. The main advantage of Local DP, it does
not require to trust data aggregator, as it is unaware of the real values. But problem is that every
user will have to introduce noise in personal information that will overall increase the total

amount of added noise. But this problem can be mitigated by using the high values of epsilon
(©).

4.4.2. Global Differential Privacy:

In GDP it generated noise to the final results of query by the central aggregator before sharing
it with any third party [46]. In this model, each user will share their actual data with a central
aggregator without adding noise. To add noise to the entire dataset, the central aggregator will
use a differential privacy method. Global differential privacy make sure either an individual

present in the dataset or not does not alter probability distribution in the final output.

Consider a function f that calculates a sum over a dataset O: f (O) = }i-,.x; . The Laplace
mechanism allows noise taken from the LaPlace distribution to be added in order to achieve

global DP.
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P (0)=f(0) + Lap (J)

As the central aggregator has access to real dataset so, it requires to trust data collector. This
model's primary benefit lies in the fact that low values of epsilon (€) can yield useful results
without requiring a significant amount of noise. But before sharing the data, it must requires
the trust of users on data collector. If in case the data aggregator gets compromised, the data

can be leaked and it increases the risk of privacy failure.
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(a) Local privacy. (b) Global privacy.

Figure 2 Laplace vs Global Differential Privacy

4.5. Differentially Private Data Release

Data release refers to the process of making data accessible for use or analysis by maintaining
the user’s data privacy [44]. The objective is to minimize the possibility of disclosing private
information about any individual in the dataset while yet providing accurate and useful
information. Depending on the sequence of answers for query set, there are two different
arrangements i.e. interactive data release and non-interactive(differentiated in Figure3) [24]can

be utilized to release sensitive data while preserving privacy.
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4.5.1. Interactive Data Release

Interactive data release occurs when a user or data analyst engages with a system or mechanism
to query the data while maintaining privacy. First the user submits a query to the system or
mechanism that holds the private dataset. Then the system applies a differential privacy
mechanism to the query in order to add noise or perturbation to the results to prevent exact data
reconstruction while ensuring statistical accuracy. After this system returns a differentially
private response to the query. The main aim of this response is to maintain privacy while
offering useful statistical information. Iteratively, the user may submit more than one query.
The response of each query depends on the differential privacy guarantees that are applied to

that particular query while taking the cumulative privacy budget into account.

4.5.2. Non-Interactive Data Release

Non-interactive data release [43] involves the pre-calculating differentially private aggregates
or summaries of a dataset without requiring user input is known as non-interactive data release.
The goal is to release useful statistical information by reducing the need for real-time
interaction of user. Before releasing the dataset, differential privacy mechanisms are applied to
aggregate statistics or summaries. Then differential privacy mechanisms add noise or
perturbation to these pre-computed summaries to ensure privacy. After that perturbed statistics
or query results are made available to users or analysts. It reduces the risk of privacy breaches
associated with dynamic interaction as the users access the pre-computed results without

interacting directly with the private dataset but it may limit flexibility.
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Figure 3: Methods of Data Release

4.6. Selection of Privacy Parameter &

Setting the value for epsilon is a challenging task for implementing differential privacy
effectively in any application [35] [42]. Desirable balance between privacy and utility can be
controlled by adjusting the value of epsilon typically values range from 0.01 to 1 are for strong

privacy, but higher values might be used depending on its application or context.

Loss Function (L):

The loss function L(¢,D)for a model with parameters ¢ on datasetO. For example, the mean

square error (MSE) is commonly used as the loss function in linear regression:
_1lgn 5 N2
L(9,0) =~ 2iz1(Z — %)

Where z;are the actual values, andZ;are the predicted values
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Privacy Loss (PL):

The privacy loss PL(¢) quantifies the risk of information leakage as € changes. Generally,

lower € implies higher privacy.
PL(s) =%
&
where K is a constant representing the baseline privacy risk when £=1.
Utility Measure (U):

The utility measure U(¢,0) evaluates the model's performance or effectiveness on dataset O,

typically measured by metrics such as accuracy or predictive performance.

1

U@4.0) =125

To achieve an optimal balance, we need to minimize the combined cost function F(e), which

considers both the privacy loss and the loss function (inversely related to utility).
F(e) = a-PL (¢) + B-L(9,0)
where a and B are weighting factors that balance the importance of privacy and utility.

Combined Cost Function:

Substituting PL(¢) and L(¢,,0) into the cost function:

K
F(e) = a—+ B-L (¢, 0)
Selecting Optimal &:

To find the optimal &, we will calculate the derivative of F(¢):
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dF(e) _ K o dL($e0)_
de a€2+B de 0

Solving for €:

Ca Ky g2k

g2 de

oK = . 21Pe0)

g2 e

2 o-K

- J0L(¢e,0)
B. de

a-K

OL(¢¢€,0)
B. de

This provides a formula for selecting edepending on constant K, weighting factors a &p, and
the sensitivity of the loss function to .
Optimal value of ¢ can be derived as:

a-K

OL(¢¢e,0)
B' de

By using this formula, one can select ¢ in a way that manages both privacy (represented with
a and K) and accuracy (represented with B and the sensitivity of the loss function). A lower
value of & provides stronger privacy guarantees. For selecting lower value of ¢ it requires
increasing the value of a which increases the emphasis on minimizing privacy loss and
decreasing the value of B that reduces the emphasis on preserving the utility or accuracy.By
appropriately choosing a and 3, one can control the emphasis on privacy versus utility, ensuring

an optimal balance tailored to specific application requirements.
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Chapter 5

EXPERIMENTAL STUDY OF DIFFERENTIAL
PRIVACY ON EHRs

Differential Privacy can be practically implemented by using multiple possible
mechanism. In this thesis, we have used two different primary mechanism for the
implementation of differential privacy in healthcare data. These methods are the Laplace and
Gaussian mechanisms, algorithm of used mechanisms have described below in section 5.2.1

and 5.2.2

5.1. Experimental DP Framework in Healthcare
In this proposed scenario, underlying architecture can be used for practical implementation of
DP in electronic healthcare data as demonstrated in the below Figure 4. In this model, Global

differential privacy implemented on sensitive data to achieve privacy.

Medical Staff

Researchers

Scientists

i@ i@ i@

Data User

Cloud / Trusted authority [()]
atientn

Data Owner

Figure 4 Architecture of the system
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In this partof framework, users or data analysts will connect with the database by using user
interface. The user will request the desired data in the form of queries and achieve the
differentially private results. The protected system will receive queries that had made by data
analyst or involved user and then it will pull out the unprocessed information from the stored
database. After this it generates noise in the final outcome using DP in accordance with each
query's global sensitivity. To achieve experimental results, python is selected as programming
language on the basis of processing large datasets within the minimum time period and having
ability to deal with computational tasks. Moreover, to handle large datasets PyDP, Pandas,
Numpy and matplotlib libraries are used. PyDP is differential privacy project from Google, in

which all the computation methods use Laplace noise only.

5.2. Algorithm Details
In this thesis two different primary methods such as Laplace and Gaussian mechanisms used
for purpose of showing how to implement differential privacy. Further both algorithms

described below that have applied in implementing DP.

5.2.1. Algorithm for Laplace Mechanism

1. function LAPLACE(O, Q, g)
2. AQ=GS(Q) // Calculate global sensitivity
3. Y =[0] * k // Initialize noise array of size k
4. for ain range(k):
noise[a] = Lap(AQ / €) // Calculating sampled noise
5. end for
6. return Q(O) + noise[a]// Add noise to the actual count

7. end function
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5.2.2. Algorithm for Gaussian Mechanism

1. function GAUSSIAN MECHANISM(D, Q, &, 6, lower_limit, upper_limit)

2. filtered_data = filter(D, lower_limit, upper_limit) /I Filter the dataset with given query
3. actual_count = count(filtered_data)// Compute the actual count

4. o =sqrt(2 *In(1.25/8)) / &/l Calculate the standard deviation for Gaussian noise

5. noise = sample normal(0, )// Generate Gaussian noise

6. noisy_count = actual_count + noise// Add noise to the actual count

7. return noisy_count

8. end function

5.3. Datasets Description

5.3.1. COVID-19 Home Nursing Dataset

Another dataset “COVID-19HomeNursing Data” has used to perform experiment by applying
differential privacy in electronic healthcare data. This dataset also publicly available on
data.cms.gov and Kaggle [41] websites. It consists of around 510,000 records with 39 number

of attributes.

5.3.2. Breast Cancer Prediction Dataset

In this study, Breast Cancer Prediction dataset used that is publicly available on Kaggle [40].
The following dataset contains information of 20,000 digital and 20,000 film-screen
mammaograms collected against women with age group between 60-89 years for breast cancer

prediction. It has almost 30,000 instances (patient record) with 13 attributes that are as follows:

39


https://data.cms.gov/covid-19/covid-19-nursing-home-data

Attribute Tvpe Values

Age At The Time Of Mammography Numerical | = 53, <90

Radiologists Assessment String Benign findings, highly
suggestive of malignancy,
Needs additional
imaging Megative,
probably benign,
Suspicious abnormality

Iz Binary Indicator Of Cancer Diagnosis Boolean | True, False
Comparizon Mammogram From Mammeography | String Yes, no, Missing
Patients BI RADS Breast Density String Almost entirely fatty,

extremely dense,
heterogeneously dense,

Scattered fibroglandular
densities
Family History Of Breast Cancer String Yes, no, Missing
Current Use Of Hormone Therapy String Yes, no, Missing
Binary_Indicator String Yes, no, Missing
History_Of Breast Biopsy String Yes, ho, Missing
I= Film Or Digital Mammogram Boolean | True, False
Cancer Type String Invasive cancer, ductal

carcinoma in situ, No
cancer diagnosis

Body Masz Index Float
Patients Study 1D Mumercal | 1 - 36713

Figure 5 Breast Cancer Prediction attributes

5.4. Experimental Results on Breast Cancer Prediction Dataset

In this implementation, it presents the comparison difference in the actual count and differential
private outcome. First imported CSV file of breast cancer prediction dataset in IPython (Jupyter
Notebook). After this performed multiple queries on this data to extract count for patients
between different age groups during mammography with having true value of history of breast
biopsy. In Figure 5 it shows the actual count for number of patients with different age groups

without apply differential privacy.
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In [8]: def typical_count_above(column_namel, column_name2, lower_limit, upper_ limit):

number_over_threshold = typical count_above('Age At_The Time_ Of Mammography', 'History Of Breast_Biopsy', 60, 70)
P1 = print(f"Number of Patients with age between 6@ and 78: {number_over_threshold}")

number_over_threshold = typical count_above('Age_ At_The_Time_Of Mammography', 'History Of Breast Biopsy', 76, 80)
P2 = print(f"Number of Patients with age between 78 and 88: {number_over_threshold}")

number_over_threshold = typical count_above('Age_At_The_Time_Of Mammography', 'History Of Breast Biopsy', 80, 90)
P3 = print(f"Number of Patients with age between 8@ and 9@: {number_over_threshold}")

number_over_threshold = typical_count_above('Age_At_The_Time_Of_Mammography', 'History Of_Breast_Biopsy', 90, 18@)
P4 = print(f"Number of Patients with age between %@ and 1€@: {number_over_threshold}")

4

Number of Patients with age between 60 and 70: 5088
Number of Patients with age between 70 and 80: 3857
Number of Patients with age between 80 and 20: 915
Number of Patients with age between 90 and 10@: @

Figure 6 Actual count without DP on Breast Cancer Prediction Dataset

return Patient_Data[(Patient_Data[column_namel] > lower_limit) & (Patient_Data[column_namel] < upper_limit) & (Patient_Data[c

After getting true values Figure 6 shows the count for patients between different age groups

during mammography with having true value of history of breast biopsy with applying

differential privacy. Here differential privacy implemented through PyDP that uses Laplace

mechanism. Experiment performed by selecting different values for Epsilon, here value for

epsilon is € =0.2.

In [2]: def private_count_between(column_namel, column_name2, privacy_budget, lower_limit, upper_limit):
x = Count(privacy_budget, dtype="int")
return x.quick_result(list(Patient_Data[(Patient_Data[column_namel] > lower_limit) & (Patient_Data[column_namel]

print(f"PRIVATE: Number of Patients with age between 6@ and 78: {private_number_between_threshold}")
print(f"PRIVATE: Number of Patients with age between 70 and 86: {private_number_between_threshold}")
print(f"PRIVATE: Number of Patients with age between 80 and 98: {private_number_between_threshold}")
print(f"PRIVATE: Number of Patients with age between 98 and 18@: {private_number_between_threshold}")

PRIVATE: Number of Patients with age between 60 and 76: 5081
PRIVATE: Number of Patients with age between 70 and 80: 3035
PRIVATE: Number of Patients with age between 80 and 96: 911
PRIVATE: Number of Patients with age between 90 and 100: 3

private_number_between_threshold = private_count_between('Age_At_The_Time_Of_Mammography', ‘History Of Breast_Biopsy'
private_number_between_threshold = private_count_between('Age_At_The_Time_Of_Mammography', 'History_ Of Breast_Biopsy’
private_number_between_threshold = private_count_between('Age_At_The_Time_Of_Mammography', 'History Of_Breast_Biopsy'

private_number_between_threshold = private_count_between('Age_At_The_Time_Of Mammography', 'History Of Breast_Biopsy’

<

upper_limi

60, 7

70, ¢

Figure 7 Count with DP on Breast Cancer Prediction Dataset

Table 4 shows the comparison between actual value results and differentially private results.

As it can be seen that noise introduced in actual count to make data private while maintaining

data’s utility and accuracy. So, this data can be used by data analyst for research purposes.
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Actual Results DP Results

5088 5081
3057 3035
915 911
0 3

Table 4 Comparing Results using Breast Cancer Prediction Dataset

For comparison we plotted a graph between true values and differentially private valuesby
setting the € = 0.2. Y-axis shows the count for patients between different age groups during
mammography with having true value of history of breast biopsy and X-axis shows the
patient’s age group.

Differential Privacy

<000 | mm Actual Values
e Differentially Private values

4000

Number of patients

1000

J0-80

60-70
80-90
90.100 4

Patient's Age Group
Figure 8 Results Comparisons using Breast Cancer Prediction Dataset
5.4.1. Varying Privacy Budget using Breast Cancer Prediction Dataset
Experiment performed for different values of epsilon to examine the protection level provided

by DP mechanism with identical attributes but setting different values for privacy parameter.

Here results evaluated by selecting different values for epsilon (0.02, 0.01, 0.2, 0.4, 0.6& 0.8).

It can be seen in figure 8 that by decreasing € value, it added more noise and vice versa.
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X = Count(privacy_budget, dtype="int")
return x.quick_result(list(Patient_Data[(Patient_Data[column_namel] > lower_limit) & (Patient_Data[column_namel] < upper_limi

private_number_between_threshold - private_count_between( 'Age_At_The_Time Of Mammography', ‘History Of Breast_Biopsy', ‘Cancer_Ty

P2 = print(f"PRIVATE:

private_number_between_threshold

Number of Patients with age between 6@ and 72 with Privacy Budget ©.02: {private_number_between_threshold}

= private_count_between('Age_At_The_Time_Of Mammography', ‘History Of Breast_Biopsy', 'Cancer_Ty
P2 = print(f"PRIVATE: Number of Patients with age between 6@ and 78 with Privacy Budget ©.01: {private_number_between_threshold}

private_number_between_threshold - private_count_between('Age At_The_Time Of Mammography', 'History Of Breast_Biopsy', 'Cancer_ Ty
P2 = print(f"PRIVATE: Number of Patients with age between 6@ and 72 with Privacy Budget @.2: {private_number_between_threshold}";

private_number_between_threshold = private_count_between('Age_At_The_Time_Of_Mammography', 'History Of Breast_Biopsy', 'Cancer_Ty
P3 « print(f"PRIVATE: Number of Patients with age between 6@ and 78 with Privacy Budget ©.4: {private_number_between_threshold}"

private_number_between_threshold = private_count_between(’'Age At_The Time Of Mammography', 'History Of Breast Biopsy', 'Cancer Ty
P5 = print(f"PRIVATE: Number of Patients with age between 6@ and 7@ with Privacy Budget ©.6: {private_number_between_threshold}"

private_number_between_threshold = private_count_between('Age_At_The_Time_Of Mammography', ‘History Of Breast_Biopsy', 'Cancer_Ty
PS = print(f"PRIVATE: Number of Patients with age between 60 and 78 with Privacy Budget ©.8: {private_number_between_threshold}";

Number of Patients with age
of Patients
of Patients
of Patients
of Patients
of Patients
of Patients

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

Number
Number
Number
Number
Number
Number

>

between 6@ and 7@:

with
with
with
with
with
with

age
age
age
age
age
age

between 6@ and 70 with Privacy Budget 8.@.
between 60 and 70 with Privacy Budget 0.0
between 60 and 70 with Privacy Budget 6.2: 33
between 60 and 70 with Privacy Budget 0.4:
between 6@ and 70 with Privacy Budget 0.6
between 68 and 70 with Privacy Budget 0.8

Figure 9 Varying Epsilon values on Breast Cancer Prediction Dataset

For further demonstration, a graph plotted between privacy parameter epsilon and results for

queries to compare the exact results and data with introduced noise. In Figure 9 it can be seen

that the actual count for the number of patients between age 60 to 70 at the time of

Mammography with having true value of history of breast biopsy is 36. After decreasing value

for the privacy parameter epsilon by applying DP, the more noise added in actual value data.

Privacy vs. Utility Trade-off

£=0.

140 |

120 1

Number of Patients

100 1

|£=0.40, Count=38 £=0.60, Count=36 £=0.80, Count=38
Count=33 —@

0.0

0.1

02 03 0.4 05 06 0.7 038
Epsilon (Privacy Parameter)

Figure 10 Analysis of privacy parameter using Breast Cancer Prediction Dataset
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5.4.2. Time complexity Analysis with Breast Cancer Prediction Dataset

The execution time of queries will somewhat rise by increasing the conditions in the query.The
first query filters the data to include only patients whose age at the time of the mammograph is
between 60 and 70 years. It involves a simple range filter on one attribute. Second query adds
another condition to the previous query by checking if the patient has a history of breast biopsy.
It involves filtering based on two attributes. Next query is the most complex, combining
multiple conditions across several attributes, including logical operations and comparisons.
The time increases from 0.01544 seconds to 0.01999 seconds and then to 0.03899 seconds by
increasing conditions. Slight rise in execution time observed with each additional attribute but
it is not drastic, suggests that the filtering operations scale reasonably well by applying
differential privacy with increasing the number of conditions. The time complexity in practice

suggests that the operations are manageable within the given execution times.

1. [(Patient Data [Age At The Time Of Mammograph] = 60) & (Patient Data
[Age At The Time Of Mammograph] < 70)]

Execution Time = 0.01544s

2. [(Patient Data [Age At The Time Of Mammograph] > 60) &
(Patient Data[Age At The Time Of Mammograph] < 70) &
(Patient Data[History Of Breast Biopsy] = "Yes")]

Execution Time = 0.01999s

3. (Patient Data[Age At The Time Of Mammograph]] = 60) &
(Patient_Data[Age At The Time Of Mammograph]] < 70) &
(Patient Data[History Of Breast Biopsy] = "Yes") & ((Patient Data[Cancer Type] == "INo
cancer diagnosis”) & (Patient Data[Cancer Type] != "ductal carcinoma in situ”) &
((Patient Data['Body Mass Index'] < BMI limit) &
(Patient Data['Family History Of Breast Cancer'] = No')) &
((Patient Data['Ts Film Or Digital Mammogram'] == "True")
(Patient Data['Current Use Of Hormone Therapy'] == '"Yes"))))

Execution Time = 0.0389%9s

Figure 11 Queries with Time Comparison using Breast Cancer Prediction Dataset
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ort time

rt_time = time.time()

private_count_between(column_namel, privacy_budget, lower_limit, upper_limit):

X = Count(privacy_budget, dtype="int')

return x.gquick_result(list(Patient_Data[(Patient_Data[column_namel] > lower_limit) & (Patient_Data[cclumn_namel] < upper_limit)]

vate_number_between_threshold = private_count_between('Age_at_The_Time_of_Mammcgraphy', @.2, 6@, 79)
= print(f"PRIVATE: Number of Patients with age between 60 and 76: {private_number_between_threshcld}")

_time = time.time()
nt{f"Execution time: {end_time - start_time} seconds")

4 >
PRIVATE: Number of Patients with age between 60 and 7@: 19313
|Execution time: @.61544945401377533 seconds |

Figure 12 Time Comparison Query 1 on Breast Cancer Prediction Dataset

lumn_name2, cclumn_name3, privacy_budget, lower_limit, upper_limit):
a[(Patient_Data[column_namel] > lower_limit) & (Patient_bata[cclumn_namel] < upper_limit) & (Patient_Data[column_name2] == "ves")
_count_between( 'Age_at_The_Time_of_ Mammography', 'History_Of_Breast_Bicpsy', 'Cancer_Type', 8.2, 68, 79)

ith age between 6@ and 78: {private_number_between_threshcld}")

time} seconds”)
4 | »

H i > i 68 and 7@: 5887
Execution time: @.019936166229248@47 seconds

Figure 13 Time Comparison Query 2 on Breast Cancer Prediction Dataset

def private_count_between(column_namel, column_name2, column_name3, privacy_budget, lower_limit, upper_limit, BMI_limit):
x = Count(privacy_budget, dtype="int")
Patient_Data[ 'Body_Mass_Index'] = pd.to_numeric(Patient_Data['Body_Mass_Index'], errorss='coerce’)

condition = (|
(Patient_Datafcolumn_namel] > lower_limit) &
{Patient_Data[column_namel] < upper_limit) &
(Patient_Data[cclumn_name2] == “Yes") &
(
(Patient_Data[cclumn_name3] == "No cancer diagnosis”) &
(Patient_Data[column_name3] != "ductal carcinoma in situ") &

(Patient_Data["Body_Mass_Index'] < BMI_limit) &
(Patient_Data["Family_History_Of_Breast_Cancer’] == 'No')

)
4
(Patient Data["Is_Film Or Digital Mammogram'] == 'True') |
(Patient_Data['Current_Use_Of_Hormone_Therapy'] == 'Yes')
)

)
return x.guick_result(list(Patient_Data[conditicon][column_namel]))

privacy_budget = 2.2
private_number_between_threshold = private_count_between('Age_At_The_Time_Of_ Mammography', 'History Of_Breast_Biopsy’, 'Cancer_T:
print(f"PRIVATE: Number of Patients with age between 6@ and 78: {private_number_between_threshold}")

end_time = time.time()
print(f"Executicn time: {end_time - start_time} seconds")

“« >

PRIVATE: c of Patients with n 62 and 70: 42
Execution time: 2.933299812698364258 seconds

Figure 14 Time Comparison Query 3 on Breast Cancer Prediction Dataset
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5.4.3.Comparison Analysis of Laplace vs Gaussian Mechanism

Implementation of Laplace mechanism using PYDP adds noise sampled from Laplace
distribution based on privacy budget to provide results with provable privacy guarantees under
differential privacy. To generate noise for Gaussian Mechanism it uses Gaussian distribution
based on privacy budget which also provides differentially private results but typically used
for scenarios where smoothness and sensitivity are key considerations. Laplace mechanism
[38] generally efficient due to the simplicity of sampling from a Laplace distribution. While
Gaussian Mechanism [39] slightly more computationally intensive due to the nature of
sampling from a Gaussian distribution, which involves more complex calculations. Laplace
mechanism often provides better accuracy for discrete counting queries. In conclusion, both
Laplace and Gaussian mechanisms offer differential privacy solutions with different trade-offs
in accuracy, implementation ease, and computational complexity. The choice of selection
between them relies on particular needs and conditions of the differential privacy application

and queries nature being performed on the datasets.

import pandas as pd
import time
from pydp.algorithms.laplacian import Count

start_time = time.time()
# Lood dotoset
Patient_pata = pd.read_csv('C:\\Users\\ebryx\\Downloads\\Data_Cancer\\data.csv')
# Define function for Laploce mechanism using PyDP
def laplace_mechanism{column_namel, column_name2, privacy budget, lower limit, upper_limit)
x = Count(privacy_budget, dtype="int'})
return ®.quick_result(list(Patient_Data[(Patient_Cata[column_namel] » lower_limit) &
(Patient_Data[column_namel] < upper_limit) &
(Patient_Data[column_name?] == "ves"}][column_namel])}

# Example usage
privacy_budeget = 2.2
lower_limit = @
upper_limit

78
result_laplace = laplace mechanism('Age_At_The_Time_Of_Mammography', "History_of_Breasi_Biopsy', privacy_budget, lower_limit, up
print(f"PRIVATE (Laplace): Mumber of Patients with age between {lower_limit} and {upper_limit}: {result_laplace}"}

end_time = time.time()

print{f"Execution time (Laplace): {end_time - start_time} seconds")

PRIVATE (Laplace): Number of Patients with age betuween €@ and 78: S@ge
Execution time {Laplace): @.13149495124815895 seconds

Figure 15 Laplace Mechanism
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import time

start_time = time.time()
# Logd dotaset
Patient_Data = pd.read_csv('C:\\Users\\ebryx\\Downloads\\Data_Cancer\‘\data.csv')

# Define function for Goussian mechanism
def gaussian_mechanism({column_namel, column_name2, column_name3, privacy_budget, lower_limit, upper_limit}:
# Filter dota based on conditions
filtered data = Patient_Data[(Patient_pata[cclumn_namel] » lower_limit) &
(Patient_Data[coclumn_namel] < upper_limit) &
(Patient_Data[column_name2] == "ves")][column_name3]

# compute the actual count

actual_count = len{filtered_data)

# Compute the amount of noise to add
std_dev = np.sqrt({2z * np.log(1.25 / privacy_budget)) # st
neise = np.random.normal{loc=@, scale=std_dev) # 5

tandard deviation for Gaussion noise
-
o

# Compute the noisy count

neisy_count = actual_count + noise
return noisy_count

# Example usage
privacy_budget
lower_limit = &
upper_limit

8.2

-
@ @

result_pgaussian = gaussian_mechanism('age_At_The_Time_of_mammography', 'History_of Ereast_Biopsy', 'Cancer_Type', privacy_budget
print{f"PRIVATE (Gaussian): Number of Patients with age between {lower_limit} and {upper_limit}: {result_gaussian}")

end_time = time.time()

print{f"execution time (Gaussian): {end_time - start_time} seconds")}

PRIVATE (Gaussian): Number of Patients with age between 6@ and 78: 5884.744529113658
Execution time (Gaussian): @,23212838172912598 seconds

Figure 16 Gaussian Mechanism

5.5. Experimental Results onCOVID-19HomeNursing Dataset

To implement differential privacy, we performed different queries on this another dataset to
show the comparison of real outcome and differential private outcome of queries. First query
shows the overall count of beds that are in use in facilities of city “RUSSELLVILLE” where
COVID - 19 Confirmed Weekly Staff is zero and COVID — 19 Confirmed Weekly Residents
are less than 6. In Figure 15, it shows the actual count for this query without implementing

differential privacy.
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import pandas as pd

# Load your dataset
Covid pata = pd.read_csv('C:\\Users\\ebryx\\Douwnloads'\\faclevel_2823\\faclevel 2823.c35v")

T Ly

# Function to count the total number of o::u; led beds in focilities Llocated
# where Staff wWeekly Confirmed COVID-1% 15 @ ond Residents Weekly Confirmed
def count_total_occupied_beds_in_city with_ cond ions{column_name, city):
filtered_data = Covid_Data[
(Covid_pata[ 'Provider City'] == city) &
(Covid_pata[ 'staff weekly confirmed COVID-19'] == @) &
(Covid_pata[ 'mResidents weekly Confirmed COVID-13'] < &) # Corrected threshold

£
E

1

return filtered_data[column_name].sum()

# Define parameters
city_name = "RUSSELLVILLE®

# Get the count
total_ecccupied beds_count = count_total occupied beds_in_city_with_conditions('Total number of Occupied Beds', city_name)
print{f"Total number of cccupied beds in facilities in {city_name} with staff weekly confirmed COVID-12 = @ and Residents weskly

3

Total number of cccupied beds in facilities in RUSSELLVILLE with Staff weekly Confirmed COVID-1%9 = @ and Residents weekly Cenfi
rmed COVID-1% less than &: 12491.@

Figure 17 Query 1 Result without DP on COVID-19 Home Nursing Dataset

After getting the actual results, next Figure 16 shows the overall count of beds that are in use
in facilities of city “RUSSELLVILLE” where COVID — 19 Confirmed Weekly Staff is zero
and COVID — 19 Confirmed Weekly Residents are less than 6 with implementing differential

privacy. Here differential privacy implemented through PyDPusing Laplace mechanism with

selected epsilon value is € = 0.2.

Patient Data = pd.read _csv('C:\\Usersy\ebryx 3\ \Downloads\\faclevel 2823 \faclewel 2823.csw")}

def priwvate_total_occupied_beds_in_city_with_conditions{column_names, city, epsilon, lower_bound, upper_bound):

v = BoundedSum({epsilon, lower bound=lower bound, wupper_bound=upper_bound)
Patiemt_pata[ ‘staff weekly confirmed CovID-19°] = pd.to_numeric({Patient_pata[ "staff weekly Confirmed COWID-12°], errors='coel
Patiemt_Datal 'Residents Weekly Confirmed OOWID-12'] = pd.to numeric({Patient_Datal "Residents wWeekly Comfirmed COVID-12%"], err
Patiemt_patal * Total mumber of occupied Beds'] = pd.to_numeric{Patient_pata[ 'Total mumber of Ooccupied Beds'], errors="coerce’

condition =
{Patient_pData[ 'Provider
{Patient_pata[ 'staff weekl
{Patient_Data[ 'Residents b

1 == city) &
Confirmed COVID-1%"] == @) &
ckly Confirmed COVID-19"] < &)

b
# Filter daota based on the conditions and drop Nan values
filtered_data = Patient_pata[condition][cclumn_name].dropnai}

# convert
data_list

#print(f

Filtered data to a List oFf integers
Ffiltered_data.astype(int).tolist()

tered dota List ({len{dota List)}] records): {data List]"™) # Debug print

# Apply differentiol pr CV S
private_sum = v.quick_result{data_list)

return private_sum

# Parometers
epsilon = &.

L ]

lower_boumnd s
upper_bound 92
city_name = 'RUSSELLVILLE'

# Compute the private total occupied beds sum

private_occupied_beds_sum = priwvate_total occupied_beds_im_city_ with_conditions("Total Mumber of occupied Beds', city_name, epsi)

print(f"PRIVATE: Total sum of occupied beds in facilities in {city_name} with Staff weekly Confirmed COWID-1% = @ and Residents
3

CrwusersiebryxdAappDataiLocalTemph ipykernel 19520%1962621815.py:5: Dtypewarning: Ccoclumns (1) have mixed types. specify diype op
ticn on import or set low_memory=False.
Patient_Data = pd.read csw("C:“\Users‘\ebryx\\Downloads'‘\faclevel 2823\ \faclewvel 2823.csv")

PRIVATE: Total sum of occupied beds in facilities in RUSSELLWILLE with staff weekly confirmed COWID-12 = @ and Residents weekly
Confirmed COVID-12 less than 6: 12588

Figure 18 Queryl Result with DP on COVID-19 Home Nursing Dataset
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Second query in Figurel7and Figure 18showsthe overall count of beds that are in use in
facilities of city “ABILENE” where COVID — 19 Confirmed Weekly Staff is zero and COVID
— 19 Confirmed Weekly Residents are less than 6 without and with implementing Differential
Privacy.

import pandas as pd

# Load your datagset
Covid Data = pd.read_csv({"C:\\Usersy\ebryx\\Downloads\\faclevel 2823\\faclevel 2823.csv"}

# Function to count the totol number of occupied beds in focilities locoted im a specific city,
# where Staff Weekly Confirmed COVID-12 1is & and Residents Weekly Confirmed COVID-19 is less than g threshold
def count_total_occupied_beds_in_city with_conditions(column_name, city):
filtered data = Covid_Datal
(Covid_Data[ 'Provider City'] == city) &
(Cowid_pata[ 'staff weekly Confirmed COVID-13'] == @) &
(Covid_Data[ 'Residents Weekly Confirmed COVID-13'] < &)} # Corrected threshold

return filtered data[column_name].sum(}

# Define parameters
city_name = "ABILENE'

# Get the count
total_occupied_beds_count = count_total_occupied_beds_in_city_with_conditions('Total Mumber of Occupied Beds', city_name)}
print{f"Total number of cccupied beds in facilities in {city_name} with Staff Weekly Confirmed COVID-1% = @ and Residents Weekly

3

Total number of cccupied beds im facilities in ABILEME with Staff weekly Confirmed COWID-19 = @ and Residents weekly Confirmed
COVID-19 less than &: 23857.2

Figure 19 Query 2 Result without DP on COVID-19 Home Nursing Dataset

Patient-_Da'ta = pd.read_csv( "C:\\Usersh\ebryx\\Downloads\\faclevel 2823 \\faclevel 2823.csv")

def private_total_occupied_beds_1n_city with_cenditions{column_name, <ity, epsilen, lower bound, upper_bound):
¥ = Boundedsum(epsilon, lower_bound=lower_bound, uwpper_bound=-upper_bound})
Patiemt_bata[ 'staff weekly Confirmed CovID-12"] = pd.to_numeric(Patient_pata[ "staff weekly Confirmed CoOwID-13'], errors='coe|
Patiemt_Data[ 'Residents Weekly Confirmed COVID-19'] = pd.to numeric(Patient_bData[ "Residents Weekly Confirmed COVID-19"], erm
Patiemt_Data[ 'Total Mumber of Occupied Beds'] = pd.to _numeric{Patiemt_Data[ 'Total Mumber of Occupied Beds'], errcrs="coerce'

condition =
{Patient_pata[ 'Provider City"] == city)} &
(Patient_bData[ 'sStaff weekly Confirmed COVID-12°"] == 2) &
{Patient_bData[ 'Residents weekly Confirmed COVID-19"] < 6)
i)

# Filter daoto based on the conditions and drop Nav values
filtered_data = Patient_pata[condition][column_name].dropnal)

# convert filtered dato to o List of integers
data_list = filtered_data.astype(int).tolist()
#print(f"Filtered data List ({len(data _List)} records): {data List}"} # Debug print

# Apply differentiol privacy sum
private_sum = y.quick result{data_list)

return private_sum

# Paroameters
epsilon = @.2
lower_bound = 5
upper_bound = 92
city_name = 'ABILENE"

# Compute the private total occupied beds sum
private_occupied_beds_sum = private_total occupied_beds_in_city with_conditicns('Total Humber of Occupied Beds', ¢ity_name, epsi.
print(f"PRIVATE: Total sum of occupied beds in facilities in {city_name} with sStaff weekly Confirmed COVID-19 = @ and Residents |

»

Cihsersyebryx\appDataiLocal\yTemp ipykernel 16952%1754846723.py:5: DiypewWarning: Columns (1} have mixed types. specify ditype op
tion on import or set low_memory=False.
ratient_Data = pd.read_csv('C:\\Users\\ebryx\\Downloads\\faclevel 2az3%\faclevel 2&23.csv")

PRIVATE: Total sum of occupied beds in facilities in ABILENME with staff weskly Confirmed CowID-12 = @ and Residents weekly conf
irmed COMID-1% less than &: 2357@

Figure 20 Query 2 Result with DP on COVID-19 Home Nursing Dataset
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Third query in Figure 19 and Figure 20represents the overall count of beds that are in use in
facilities of city “YORK” where COVID — 19 Confirmed Weekly Staff is zero and COVID —
19 Confirmed Weekly Residents are less than 6 without and with implementing Differential

Privacy.

import pandas as pd

# Load your dataset
Covid_Data = pd.read_csv("C:\\Users\\ebryx\\Downloads'\faclevel 2823\\faclewvel 2@23.csv"}

# Function to count the total number of occupied beds in focilities Located im g specific city,
# where sStoff Weekly Confirmed COVID-19 is @ ond Residents Weekly Confirmed covID-19 is Less than g threshold
def count_total_occupied_beds_in city_with_conditions{column_name, city):
filtered_data = cowid_pata[
{Covid_pata[ 'Provider City'] == city) &
{Cowid_pata[ 'staff weekly confirmed COVID-19'] == 8) &
{Covid_pata[ 'Residents weekly Confirmed COVID-19'] < &8} # Corrected threshold

1

return filtered_data[column_name].sum{}

# Define porameters
city_name = "YORK®

# Get the count
total_cccupied_beds_count = count_total_occupied_beds_in_city_with_conditions('Total Mumber of Occupied EBeds', city_name}
print{f"Total number of occupied beds in facilities im {city_name} with Staff weekly cConfirmed COVWID-19 = @ and Residents Weekly

3

Total number of cccupied beds in facilities in YORK with Staff Weekly Confirmed COVID-19 = @ and Residents uWeskly Confirmed COV
ID-1% less than &: 41712.4

Figure 21 Query 3 Result without DP on COVID-19 Home Nursing Dataset

T,

Patient Data = pd.read csv('C:“\Wsershh\ebryd\Downloadsh\h\faclevel 2823 \faclewel 2823 .csv")

def private_total_occupied_beds_in_city with_conditions{column_name, city, epsileon, lower_bound, upper_bound}:
y = BoundedSum{epsilen, lower_bound=lower_bound, upper_bound=upper_bound})
patienmt_bData[ 'staff weekly Confirmed COVID-19"] = pd.te numeric(Patient_bData[ "staff Weekly Confirmed COVID-12"], errcrs='coer
Patient_pData[ 'Residents weekly Confirmed COWID-19'] = pd.to _numeric(Patient_pData[ "Residents wWeekly Confirmed COVID-13"], errc
Patient Data[ 'Total mumber of occupied Beds'] = pd.to _numeric{Patient_bData[ 'Total mMumber of Occupied Beds'], errors="coerce']

condition = (
{Patient Data['Provider City"'] == city)} &
{Patient_pata[ 'staff weekly Confirmed COVID-19"] == 2) &
(Patient_pata[ 'Residents wWeekly Confirmed COVID-19"] < B)

)

# Filter data based on the conditions and drop Nan values

filtered_data = Patient_Data[condition][coclumn_name].dropna()

# Convert filtered data to g List of integers

data_list filtered_data.astype(int).tolist{)

#print(f Filtered data List ({len(dota_List)} records): {dota_List}"} # Debug print

# Apply differentiol privacy sum
private_sum = y.quick_result{data_list)

return private_sum

# FParameters
epsilen = 8.2

lower_bound = 39
upper_bound = 364
city_name = 'YORK'

# compute the private total occupied beds sum
private_occupied_beds_sum = private_total occupied beds_in_ city with_conditiens('Total Mumber of Occupied Beds', city_mame, epsil
print(f"PRIVATE: Total sum of occupied beds in facilities in {city _name} with sStaff weekly Confirmed COWID-19 = @ and Residents &

A 4

CUsershebryxdAappDataiLocal Temphipykernel 16952%16748288328.py:5: Diypewarning: Columns (1) have mixed types. specify diype op
ticn on import or set low_memory=False.
Patient_Data = pd.read _csv('C:\\Users\\ebryx\\Downloads\\faclevel 2823\\faclewvel 2823 .csv")

PRIVATE: Total sum of occupied beds in facilities in YORK with Staff Weekly Confirmed COWID-1% = @ and Residents wWeekly Confirm
ed COWID-1%2 less than &: 28282

Figure 22 Query 3 Result with DP on COVID-19 Home Nursing Dataset
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Fourth query in Figure 21 and Figure 22 shows overall count of beds that are in use in facilities
of city “WYNNEWOOD” where COVID — 19 Confirmed Weekly Staff is zero and COVID —

19 Confirmed Weekly Residents are less than 6 without and with Differential Privacy.

import pandas as pd

# Load your dataset
Covid_Data = pd.read_csv('C:\\Users\\ebryx\\Downloads'\faclevel 2823%\\faclevel 2823.csv')

# Function to count the total number of occupied beds in focilities Llocated in a specific city,
# where Staff Weekly Confirmed COVID-19 is @ and Residents weekly Confirmed covID-19 is less tham a threshold
def count_total_occupied beds_in city with_cenditicns{column_name, city):
filtered_data = Covid_Data[
(Covid_patal 'Provider City'] == city) &
(Covid_Datal 'Staff Weekly Confirmed COVID-19'] == 8) &
(Covid_Data[ 'Residents Weekly Confirmed COVID-13'] < &) # Corrected threshold

]

return filtered_data[column_name].sum(}

# Define parameters
city_name = "WYNNEWDOD'

# Get the count
total_cccupied_beds_count = count_total_occupied_beds_in_city_with_conditiens('Total wumber of Occupied Beds', city_name}
print{f"Total number of occupied beds im facilities im {city name} with sStaff weekly Confirmed COVID-19 = @ and Residents weekly

3

Total number of occupied beds in facilities in WYNNEWCOD with Staff wWeekly confirmed COVWID-13 = @ and Residenmts weekly Confirme
d COVWID-19 less than &: 5138.8

Figure 23 Query 4 Result without DP on COVID-19 Home Nursing Dataset

Pat i.enf_Da‘t a2 = pd.read_csv('C:\\Wsers\\ebryx\\Downloads\\faclevel 22822\\faclevel 2822.cCsv")

def private total_ occupled_beds_in_city with_conditions{column_name, city, epsilen, lower bound, wpper_bound):
¥ = Boundedsum{epsilon, lower bound=lcwer bound, wpper_bound=upper bound)
Fatiemt_Data[ 'staff Weekly Confirmed COVID-19"] = pd.to_numeric({Patient_bData[ "Staff Weekly Confirmed COVID-13'], errors='coel
Fatienmt_Data[ 'Residents Weekly Confirmed COVID-19'] = pd.to numeric({Patient_Data[ 'Residemts Weekly Confirmed COVID-13°], erm
Patiemt_Datal ' Total Mumber of Occupied Beds'] = pd.to_numeric{Patiemt_pData['Total Mumber of Occupied Beds'], errcrs="coerce'

condition =
{Patient_pata[ 'Provider City"] == city) &
{Patient_pata[ 'staff weekly Confirmed COVID-1%9°] == @) &
{Patient_pata[ 'rResidents weekly Confirmed COVID-15"] < &)

# Filter dota based on the conditions and drop MaN values
filtered_data = Patient_pata[condition][cclumm_name].dropnal)

# Convert filtered dato to g List of integers
data_list filtered_data.astype(int).tolist()
#orint(f'Filtered data List ({len{dota List)} records): {daota Llist}")} # Debug print

# Apply differentiol privacy sum

private_sum = y.quick_result{data_list)
return private_sum

# Parameters

epsilon = 8.2

lower_bound = 152

upper_bound = 171

city_name = 'WyYNNEWOOD'

# Compute the private total occupied beds sum

private_occupied beds_sum = private_total occupied beds_in city with_conditicns('Total Number of Occupied Beds', city_name, epsil

print(f"PRIVATE: Total sum of occupied beds in facilities in {city_name} with staff wWeekly confirmed COWID-12 = @ and Residents |
3

Ci\Users\ebryxhAppDatatlocal\Temph\ipykernel _16952)2758822161.py:5: Dtypewarning: Columns (1) hawve mixed types. specify diype op
ticn on import or set low_memory=False.
Patient_Data = pd.read csw("C:‘\\Usersi\ebryx\\Downloads\\faclevel 2ez3\\faclewel 2@23.csv")

PRIVATE: Total sum of occupied beds in facilities iIn WyMMEWODD with Staff weekly Confirmed COVID-19 = @ and Residents weekly Co
nfirmed COVID-1% less than 5: 5254

Figure 24 Query 4 Result with DP on COVID-19 Home Nursing Dataset
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Table 5 shows the comparison between actual value results and differentially private results on
multiple queries. It can be noticed that noise added in the actual outcome of queries while

maintaining data utility and data accuracy.

City Overall occupied beds Overall occupied bedswith DP
RUSSELLVILLE 12,491 12,508
ABILENE 23,857 23,570
YORK 41,712 40,800
WYNNEWOOD 5,130 5,254

Table 5 Comparing Results using COVID-19 Home Nursing Dataset

For comparison we again plotted a graph between true values and differentially private values
by setting the € = 0.2. Y-axis shows the count for number of occupied beds where COVID —
19 Confirmed Weekly Staff is zero and COVID - 19 Confirmed Weekly Residents are less

than 6 in different cities while X-axis represents the statistics for different cities.
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Figure 25 Results Comparison using COVID-19 Home Nursing Dataset
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5.5.1. Varying Privacy Budget using COVID-19HomeNursing Dataset

In order to examine how noise affects the same query, we ran an experiment where we varied

the value of epsilon between 0.8, 0.6, 0.4, 0.2, 0.01, and 0.02. In given results, we can notice

that by decreasing the epsilon value, the amount of added noise also increases. Which means

smaller the value of epsilon, greater the privacy required and the more noise is added.

A compromise between privacy and utility exists. Adding more noise increases the privacy but

it also reduces data utility. In differential privacy, parament epsilon (¢) is used to control this

trade-off between privacy and accuracy.

# Parameters

lower_bound
upper_bound
city_name

152

171

= "WYNNEWOOD'

total eccupied_beds_count = count_total occupied beds_in_city with_conditions('Total Mumber of Occupied Beds', city name)

print{f"Total number of occupied beds in facilities of {city_name}: {total occupied beds_count}")

private_occupied_beds_sum = total occupied_beds_in_city_with_conditiens('Total Number
print{f"PRIVATE: Total sum of occupied beds in facilities of {city name} with Privacy

private_occupied_beds_sum = total occupied_beds_in_city_with_conditiens('Total Number of Occupied
print{f"PRIVATE: Total sum of occupied beds in facilities of {city name} with Privacy

private_occupied_beds_sum = total occupied_beds_in_city_with_conditiens('Total Number of Occupied
print{f"PRIVATE: Total sum of occupied beds in facilities of {city _name} with Privacy

private_occupied_beds_sum = total occupied_beds_in_city_with_conditiens('Total Number
print{f"PRIVATE: Tctal sum of occcupied beds in facilities of {city_name} with Privacy

private_occupied_beds_sum = total_occupied_beds_in_city_with_conditiens('Total Number
print{f"PRIVATE: Tctal sum of occcupied beds in facilities of {city_name} with Privacy

private_occupied_beds_sum = total occupied_beds_in_city_with_conditions('Total Number of Occupied
print{f"PRIVATE: Tctal sum of occcupied beds in facilities of {city_name} with Privacy

of occupied Beds', city _name, @.22, lower_E

Budget @.82:

Budget @.81:

Budget

of Occupied

Budget

of Occupied
Budget @.5:

Budget

{private_occupied beds_sum}")

Beds', city name, 8.21, lower_f
{private_occupied beds_sum}")

Beds', city_name, 8.2, lower_ b

: {private_occcupied beds_sum}™}

Beds', city_name, 8.4, lower_b¢

4: {private_cccupied_beds_sum}"}

EBeds', city_name, 8.5, lower_b
{private_cccupied_beds_sum}"}

Eeds', city_name, 8.8, lower_b

1 {private_cccupied_beds_sum}"}

3

C:h\Usershebryx\AppData‘Lecal \Temph\ipykernel_16%9524781267627.py:5: DiypeWarning: Celumns (1) have mixed types. Specify dtype cpt
ion on impert or set low _memory=rFalse.
Patient_Data

Total number of cccupied beds in facilities of WYNNEWOOD: 5138,
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

Total
Total
Total
Total
Total
Total

= pd.read_csv{"C:\\Users\\ebryx\\Downloads\\faclevel_2823\\faclevel 2823.csv")

sum
sum
sum
sum
sum
sum
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of
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of
of

occupiad
occupied
occupied
occupied
occupied
occupied

beds
beds
beds
beds
beds
beds
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in
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in
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facilities
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WYNNEWOCD
WYNNEWOOD
WYNNEWOOD

8

with
with
with
with
with
with

Privacy
Privacy
Privacy
Privacy
Privacy
Privacy

Budget
Budget
Budget
Budget
Budget
Budget

22: 11821
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Figure 26 Varying Epsilon values on Nursing Home COVID-19 Dataset

For further demonstration a graph plotted for different values of Epsilon (¢) in Figure 25. When

value for epsilon is large then differential privacy added less noise which typically provides

higher accuracy and utility as data remains closer to its true value. It helps data analyst to make

informed decision for maintaining privacy level while also considering the usability and
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reliability of the data.

Privacy vs. ULility Trade-off
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Figure 27 Analysis of privacy parameter using Nursing Home COVID-19 Dataset

5.5.2. Time complexity Analysis with Nursing Home COVID-19 Dataset

In differential privacy, the time complexity primarily relates to the computational cost of
executing queries on potentially large datasets while ensuring privacy guarantees. First query
involves filtering the dataset based on a single condition while second and third query involves
complex filtering conditions including logical AND and OR operations across multiple
columns. It can be noticed that by increasing the number of conditions in queries it will also
increases the execution time for queries. The time increases from 0.06563 seconds to 0.35566
seconds and then to 7.34279 seconds due to increasing conditions. Slightly rise in execution
time is typically incremental with each additional condition. However, the actual increase can
also vary depending on the specific dataset characteristics (size, distribution, etc.) and the
efficiency of the data processing system.

For previous dataset “Breast Cancer Prediction” with around 30,000 records and 13 attributes, it
can be noticed that even with more complex queries, the execution times remain relatively low

compared to larger datasets. For another dataset “Nursing Home COVID-19"with around
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510,000 records and 39 attributes, execution times are slightly higher for larger dataset due to

the sheer volume of data being processed.

1. Total sum of occupied beds in facilities
condition = ((Patient Data ['Provider City'] == "EUSSELLVILLE")

Execution Time = 0.06563s

2. Total sum of occupied beds in facilities
condition =1
(Patient Data [Provider City'] = "RUSSELLVILLE") &
(Pattent Data ['Staff Weekly Confirmed COVID-19']=10) &
(Patient Data [Residents Weekly Confirmed COVID-19] < 6))

Execution Time = 0.355606s

3. Total sum of occupied beds in facilities
condition =(
((Patient Data [Provider State'] == 'CA') | (Patient Data [Provider State'] =—="AL")) &
(Patient Data ['Residents Total Confirmed COVID-19']=> 20) &
(
((Patient Data ['Staff Total Confirmed COVID-19'] / Patient Data [Number of All
Healthcare Personnel Eligible to Work 1n this Facility for At Least 1 Day This Week']) ==
0.1) | (Patient Data [Residents Total COVID-19 Deaths'] = 5)
) &
(Patient Data ['Percentage of Current Residents Up to Date with COVID-19 Vaccines'] >=
75.00)

Execution Time = 7.34279:

Figure 28 Queries with Time Comparison using Nursing Home COVID-19 Dataset
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start_time = time.time()

oad your dataset
Fi=

L
#PO nt_bpota = pd.read_csv('C:\\Users\i\ebr \Downloads\\foclevel_2823\\faclevel 2823.csv’')

def private_tetal_cccupied_beds_in_city with_conditions{cclumn_name, city, epsilon, lower_bound, upper_bound):
¥ = BoundedSum{epsilon, lower_bound=lower_bound, upper_bound=upper_bound)

condition = (
(Patient_pata['Provider City"] == city))

# Filter dota based on the conditions and drop NaN values
filtered_data = Patient_pata[condition][column_name].dropnaf)

# convert filtered data to a List of integers

data_list = filtered_data.astype{int).tolist(}

#orint{f"Filtered data Llist ({len(dota_List)} records): {data List}") & Debug print
# Apply differentiol privacy sum

private_sum = y.quick_result{data_list)

return private_sum

# Parameters

epsilon = 2.2

lower_bound = S
upper_bound = 52
city_name = "RUSSELLWILLE®

# Ccompute the private total occupied beds sum
private_occupied_beds_sum = private_total_occcupied_beds_in_city with_conditicns('Total mumber of oOccupied Beds', city_name, epsi
print{f"PRIVATE: Total sum of occupied beds in facilities im {city_name}: {private_occupied_beds_sum}")

end_time = time.time()
print{f"Execution time: {end_time - start_time} seconds"}

4 L3

FRIVATE: Total sum of occupied beds in facilities in RUSSELLVILLE: 15927
IExecution time: 2.86553531957832255 secondsl

Figure 29 Time Comparison Query 1 on Nursing Home COVID-19 Dataset

y = Bouﬁdedsuﬁ(epsilon? lcwEr_EcunﬂzlcweF_bound, upﬁer_bcuﬁd:upber_bbhnd} - T
Patient_Data[ 'Staff Weekly Confirmed COVID-13'] = pd.to_numeric(Patient_bata['staff Weekly Confirmed COWID-13"], errors="coe
Patient_Data[ ‘Residents weekly Confirmed COVID-1%'] = pd.te_numeric(Patient_Data['rResidents weekly Confirmed COVID-1%'], erri

Patient_pata[ 'Total Mumber of occupied Beds'] = pd.to_numeric({Patient_pata[ "Total Mumber of occupied Beds'], errors='coerce'

condition = (
(Patient_pata[ 'Provider City"] city) &
(Patient_pata[ 'staff weekly Cenfirmed COVID-13'] == @) &
(Patient_pata[ 'Residents weekly confirmed COVID-13'] < &)

)

# Filter data based on the conditions and drop NoN values
filtered_data = Patient_pata[condition][column_name].dropnai)

# convert filtered data to g Llist of integers

data_list = filtered_data.astype{int).tolist{}

#print{(f"Filtered data List ({len(dota_List)} records): {data List}") & Debug print
# Apply differential privacy sum

private_sum = y.guick_result{data_list)

return private_sum

# Parameters

epsilon = 8.2

lower_bound = S

upper_bound = 32

city_name = "RUSSELLVILLE®

# Compute the private totel occupied beds sum

private_occupied_beds_sum = private_total_cccupied_beds_in_city with_conditions('Tetal Mumber of Occupied Beds', city_name, epsil
print{f"PRIVATE: Total sum of occupied beds in facilities in {city_name} with staff weekly Confirmed COVID-1% = @ and Residents

end_time = time.time()
print{f"Execution time: {end_time - start_time} seconds")
J L3

PRIVATE: Total sum of occupied beds in facilities in RUSSELLWILLE with staff weekly cConfirmed COvID-19 = @ and Residents weekly
confirmed COVID-19 less tham 6: 13512
[Execution time: @.3556632995685469 seconds |

Figure 30 Time Comparison Query 2 on Nursing Home COVID-19 Dataset
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Patient_Datal "Percentage ot Current Resildents Up to Date with COVID-19 vaccines'| = pd.to_numeric(Patient_Datal 'Percentage of
patient_pata[ "Total Mumber of Occupied Beds'] = pd.to_numeric{Patient_pata[ 'Total Mumber of Occupied Beds'], errors='coerce'

condition =

({Patient_pata[ 'Provider state'] == 'ca') | (Patient_pata['Provider state'] == 'aL')) &
(Patient_Data[ 'Residents Total Confirmed COWID-13'] » 28) &
(

((Patient_Data['staff Total cConfirmed CovIiD-19'] / Patient_pata[ 'Mumber of all Healthcare Personnmel Eligible to wWerk
(Patient_Data[ 'Residents Total COVID-1% Deaths'] » 5)
)&
(Patient_Data[ 'Percentage of Current Residents Up to Date with COVID-19 Vaccines'] »= 75.8)
)

# Filter doto based on the conditions and drop NaN values
filtered_data = Patient_Data[condition][column_name].dropnaf)
# convert filtered data to a List of integers

data_list = filtered_data.astype{int).telist()}

#porint{f"Filtered date List ({len(dota_List)} records): {data_List}") #& Debug print

# Apply differential privacy sum
private_sum = y.guick_result{data_list)

return private_sum

# Example usage:
epsilon = @.2

lower_bound = 5
upper_bound = 22

# compute the private totel occupied beds sum
private_occupied_beds sum = private_total_occupied_beds_in_city with_conditions{'Total Mumber of Occupied Beds', epsilon, lower_t
print(f"PRIVATE: Tctal sum of occupied beds im facilities: {private_occupied_beds_sum}")

end_time = time.time()
print{f"execution time: {end_time - stari_time} seconds™}

L] ]

H i i ilities: S73e2s
Execution time: 7.2427994235125122 seconds

Figure 31 Time Comparison Query 3 on Nursing Home COVID-19 Dataset
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Chapter 6

CONCLUSION AND FUTURE WORK

6. Conclusion

This chapter presented thorough summary of the major points of the thesis as well as possible
future directions for research. This study proposed a differentiated privacy-based method for
protecting healthcare data on the Internet of Medical Things.Initially, this thesis examined
conventional approaches that were employed in the electronic healthcare data privacy process
prior to the application of differential privacy. Then it had performed in-depth analysis of
differential privacy and its core characteristics. The practical implementation showcased
promising experimental results, demonstrating the application of differential privacy
mechanisms across multiple queries. Variations in privacy parameter i.e. Privacy budget were
analyzed to illustrate their impact on preserving privacy while maintaining data utility.
Comparative analyses involving Laplace and Gaussian mechanisms were conducted, by
analyzing both schemes in meeting privacy and security requirements with minimal
computational overhead. Furthermore, the thesis carried out a thorough examination of time
complexity through application of differential privacy to complex queries on datasets of
various sizes.

6.1. Future Work

Even DP mechanism is sufficient effective to provide the necessary protection and privacy in
the data but they are not always adaptable enough to use in every real-world situation, that
could make it more difficult to achieve the required levels of security and usability. As a result,
it would be ideal to examine and customize other mechanisms as well in the future. Applying

data dependency differential privacy to actual datasets which exhibit natural reliance among
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individuals might expose a weak assumption in data dependency differential privacy. In such
cases inference attacks can exists under differential privacy mechanism. Thus, future research

should take into account to create a better mechanism that enhances the current approach.
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