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IT WOULD BE POSSIBLE TO DESCRIBE EVERYTHING 

SCIENTIFICALLY, BUT IT WOULD MAKE NO SENSE; IT 

WOULD BE WITHOUT MEANING, AS IF YOU 

DESCRIBED A BEETHOVEN SYMPHONY AS A 

VARIATION OF WAVE PRESSURE. 

 

Albert Einstein 
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ABSTRACT 

A Biometric system utilizes biological characteristics like DNA, Voice, Ear, Face, 

Finger prints to uniquely establish user identity. Brain Computer Interface (BCI) 

based Biometric system relies on unique neural structure and mental activity signals 

commonly known as Electroencephalogram (EEG) signals to authenticate the user 

and are inherently immune to impersonation.   

Details learned from existing applications of Fractional Fourier Transform (FRFT) 

were used to devise an algorithm that utilized fractional coefficients extracted from 

subject specific EEG patterns for various tasks performed by the user. The advantage 

of using Fractional Fourier Transform is that it offers improved performance for 

systems that are based on Fourier Transform with little additional cost and as it’s a 

linear one dimensional Time-Frequency distribution it is more suitable for time-

varying EEG signals than Fourier Transform. Exact Radial Basis (RBE) Neural 

Network was used for classification due to its advantage of low training time. A 

special one dimensional case of k-means clustering was used to calculate the 

threshold in order to accept the user as a client or reject him as an imposter. The 

proposed system works on signals recorded from multiple channels, therefore Weight 

Adjustment was carried out for each electrode and task performed by the user.  

The performance improvements as a result of weight adjustment and the efficiency of 

the proposed algorithm were tested on pre-recorded dataset available from Colorado 

University and another dataset was self-recorded using the indigenously designed 

hardware prototype. The average accuracy achieved for both the datasets was more 

than 75% with response time of less than two seconds. 
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Chapter 1 

 

INTRODUCTION 

1.1 Background 

Brain (Encephalon) is a complex vital structure of nerve cells more or less similar, 

which interact with each other to control all the functions of the human body by 

means of electrical activity commonly known as Electroencephalogram (EEG) signal. 

EEG signals can be recorded at the scalp by means of very high input impedance 

electrodes but are time-varying, inherently noisy with amplitude that is almost 

negligible, distorted by artifacts (eye blinks and muscular movement etc.) and are 

highly unpredictable in nature. The information retrieval or decoding of these signals 

by means of efficient signal processing techniques for smooth control of a machine or 

man-made devices is referred to as Brain Computer Interface (BCI). BCI offers one 

means of restoring communication for severely paralyzed people deprived of any 

motor functions, or patients in a “locked-in” syndrome [1]. 

A popular approach to implementing EEG based BCI system involves the use of 

Fourier Transform (FT) to extract features based on either energy or power spectral 

coefficients in different frequency bands. FT has a limitation that it represents any 

instantaneous changes in the signal by infinite number of frequencies with no 

information about the time location of the change that is poor time resolution. One 

solution to this problem is the use of Short Time Fourier Transform (STFT) that 

utilizes windowing function to analyze local sections of a signal for frequency content 

as it changes over time. The problem with STFT is that it has a fixed resolution and is 

dependent upon characteristics of windowing function like for example a wide 

windowing function gives better frequency resolution but poor time resolution and 

vice versa. To overcome the problem of fixed resolution is to use Wavelet Transform 

(WT) which is a multi-resolution technique but it provides for extremely poor results 

if Mother Wavelet does not closely represent the characteristics of the EEG signal. 
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Person authentication system involves one to one mapping of features of an 

individual claiming identity and either the individual will be accepted and referred to 

as a client or rejected as an imposter. Research in the field of BCI system indicates 

that EEG signals vary from one individual to another [30]. The underlying reason for 

the difference is the varying neural structure from one user to another. This leads to 

the possibility of usage of EEG signals for person authentication. 

1.2 Statement of Problem 

The performance of existing systems based on Fourier Transform can be further 

improved by the use of Fractional Fourier Transform (FRFT) as it provides the 

advantage of controlling the frequency & time content in the signal through fractional 

order. The Brain Computer Interface (BCI) via the FRFT results from the 

generalization of works carried out on Mental and Motor Imagery thought 

classification through the Fourier Transform (FT) [2], [3], given that the FT is a 

specific case of the FRFT, thus adding a new degree of freedom that improves the 

accuracy of the correct thought classification [4]. In my previous work as part of 

another team and reported in [4]; use of feature vectors made of Fractional Fourier 

coefficients as input to neural network for mental thought classification was proposed. 

The algorithm achieved an overall accuracy of correct thought classification ≈85%. 

The problem with utilization of FRFT is that it is a relatively new area of research and 

as such has many computational algorithms and each with different implementation 

details. Another problem with FRFT is the question that what criterion defines the 

optimum order for a particular application and then how to find it. One of the 

approaches previously employed in BCI based control system was the use of 

exhaustive search which render the process of identifying the optimum order (defined 

as the order that provides the best system accuracy) to be quite slow. 

EEG Signals in most BCI applications are acquired through multi-channel signal 

acquisition device. Existing approaches either concatenates the features extracted 

from each electrode into one feature vector or a parallel structure is employed and 

final classification decision is made on the basis of simple majority rule. In both of 

these approaches it is assumed that all the electrodes will exhibit same fidelity for 

various mental tasks which is usually not the case. Each electrode network 
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corresponds to a different region of the brain, and signals recorded from these 

locations vary for different subjects and tasks. 

1.3 Objective 

The main aim of research is to propose an algorithm and model capable of extracting 

such features from EEG signals that can authenticate a user with reasonable accuracy, 

low response time and computational complexity based on FRFT that will replace the 

existing FT based Feature Extractor. The algorithm will have lower computational 

complexity for order optimization than existing approaches based on exhaustive 

search. Also an automated approach to weight adjustment based on individual 

channel performance will be developed. 

1.4 Research Methodologies and Goals 

In order to achieve the desired objectives, the idea was to carryout review of existing 

literature and applications of Fractional Fourier Transform and to verify its 

implementation details through simulations in phase-1. On the basis of the 

information gained from the previous review, tests were run on the EEG signal 

database comprising multiple users and individual channel performances were 

obtained. Probabilities of correct classification for panel comprising the multiple 

channels with and without weight adjustment were carried out to predict the 

performance of the classifier and the proposed approach for various mental and motor 

imagery tasks. 

1.5 Scope of the Research 

The research work covers the analysis of a few existing applications of Fractional 

Fourier Transform and provides insight into their implementation details. The work 

culminated in development of an algorithm capable of optimizing the fractional orders 

and weight adjustment for EEG based person authentication. The initial tests run on 

multiple databases provided reasonable accuracy for a lower training data and 

response time compared to existing approaches. 
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1.6 Document Organization 

Chapter 2 gives a review of Chirp Signal, Fourier Transform, Wigner Distribution, 

Fractional Fourier Transform and Brain Computer Interface. Chapter 3 discusses 

various applications of FRFT and provides insight into its implementation for a 

specific problem and lays out the basis for its utilization in an EEG based Biometric 

System. Chapter 4 provides comprehensive details of Algorithm and experimental 

setup. Chapter 5 details the results obtained from offline testing on recorded datasets. 

Chapter 6 concludes the research work and highlights the future work on the 

proposed system. 
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Chapter 2 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter starts with a basic review of Chirp Signals and Fourier Transform (FT). 

The various limitations of FT are pointed out and the Fractional Fourier Transform 

(FRFT) as a generalization of FT with some of its properties is introduced. The 

chapter ends with the details of Brain Computer Interface (BCI) for 

Electroencephalogram (EEG) based Person Authentication System. 

2.2 Chirp Signal and Fourier Transform 

Human Speech, Sound, Electromagnetic waves transmission through wired or 

wireless media and Biological potentials etc. are all examples of one dimensional 

signals represented in time. Plot of such signals will provide us information about the 

various trends present with in the signal like its peak amplitude, shape of the 

waveform (Sinusoid, Square or Ramp etc.) or when a particular spike occurs. An 

example of signal x(t) expressed mathematically is given below: 

 ( )      ( ( ))   ( )   (   ) 

Where A is the amplitude, θ(t) is the phase and W(t) is the noise usually assumed to 

be Additive White Gaussian Noise (AWGN). Phase determines the type of the signal: 

 ( )  {

        
(     )

(     
       )

   (   ) 

Here                                   is known as either Fundamental or 

Initial or Central Frequency in literature.    is known as Chirp Rate or Modulated 

Frequency Ratio and is defined as: 

    
 

  

   ( )

   
   (   ) 
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In general, Instantaneous Frequency (IF) is defined as: 

    
 

  

  ( )

  
   (   ) 

In Eq. (2.1), constant phase results in zero frequency (IF = 0, DC signal), linear phase 

results in constant frequency (IF =   , Sinusoid signal shown in Figure 2.1) and 

quadratic phase results in linearly increasing frequency with time (IF =       , 

Linear Frequency Modulation or Chirp signal shown in Figure 2.2). To create a chirp 

signal of duration T and a frequency change equal to          , the equation of a 

line        can be used to obtain an equation for the instantaneous frequency: 

 ( )   
     
 

     
  (   ) 

Fourier Transform (FT) of a signal provides the information about the spectral 

content of a signal. Mathematically, 

 (   )  
 

  
∫  ( )        
 

  

   (   ) 

Transformation of  (   ) back to original signal i.e. the inverse Fourier Transform is 

given by: 

   (   )   ( )   ∫  ( )       
 

  

   (   ) 

In Eq. (2.6), 2π is the Transformation Factor (TF). TF in most applications in signal 

processing is distributed in both forward and backward transformations that is: 

 (   )  
 

√  
∫  ( )        
 

  

   (   ) 

And 

   (   )   ( )  
 

√  
∫  ( )       
 

  

 
  (   ) 

For ω = 0, Eq. (2.6) simply becomes area under a signal. 

 ( )  ∫  ( )
 

  

     (    ) 
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Fourier Transform of a signal  ( ) exists, if and only if the integral of   ( )  from -∞ 

to ∞ exists and any discontinuities in  ( )are finite. In case  ( ) is discontinuous the 

left hand side should be replaced by 
 

 
[ (  )   (  )], that is by using unequal 

limits of  ( ) as t is approached from above and below. The waveforms like a 

sinusoidal signal    ( ) implies an AC signal which has to be switched on infinite 

time ago, Unit Step  ( ) means a signal switched on and maintained steady forever 

and the Impulse Function δ(t) has to be a signal that has to be infinitely large for an 

infinitely small time [5]. None of these signals are physically realizable in the strictest 

sense and their FT does not exist. But the approximations to these signals are used in 

almost all signal processing applications and therefore their FT is defined in the 

limiting sense. An AC sinusoidal signal sin (t) and its Fourier Transform are shown in 

Figure 2.1.  

 

Figure 2.1–Signal sin(t) and it’s Fourier 

Transform 

In Figure 2.1 the top portion displays time domain representation of signal sin(t). 

Fourier Transform of the signal results in an Impulse function with amplitude shown 

in the title of the frequency domain representation displayed in the bottom portion of 
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the Figure 2.1. As evident, Fourier Transform does not provide any information about 

time i.e., instantaneous changes in the signal. In order to elaborate the previous 

statement, a signal sin(t) distorted with an unit impulse occurring at time t= 0secs and 

its Fourier Transform representation is shown in Figure 2.2. 

 

Figure 2.2–Signal ‘sin(t) + δ(t)’ and it’s 

Fourier Transform 

In Figure 2.2 the spike occurring in the signal at t = 0sec is represented by infinite 

number of frequencies that does not provide any information about the location of the 

spike that is all information about time domain is lost as such it is impossible to tell 

when a particular event took place. On the other hand the signal itself provides 

information about the location of the spike but fails to provide any information about 

the various frequency components that are present in the signal. 

Let’s consider a chirp signal    (    )  Close inspection of the signal reveals that it 

can be written as    (    )  Since    (  ) contains a single frequency harmonic 

then (    ) represents a linearly increasing frequency but FT returns a continuum of 

frequencies. A chirp signal    (  ) and its Fourier Transform representation is 

depicted in  Figure 2.3.
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Figure 2.3–Signal sin(t
2
) and it’s Fourier 

Transform 

In Figure 2.3 the top portion displays time domain representation of signal    (  ) 

Fourier Transform of the signal results in an another chirp function with amplitude 

shown in the title of the frequency domain representation displayed in the bottom 

portion of the Figure 2.3. This is because of the fact that conventional Fourier 

harmonic analysis views frequency and time as orthogonal variables and subsequently 

is only appropriate for the study of signals with stationary frequency content [6]. 

2.3 Fractional Fourier Transform 

It is a common observation that FT applied twice to a signal returns flipped version of 

the original signal, applied thrice results in the flipped spectral contents and four times 

application returns the original signal back. This corresponds to the periodic nature of 

the Fourier operator and can be easily imagined by placing the time domain 

representation of the signal along x-axis and spectral content representation along y-

axis in a two dimensional rectangular co-ordinate system as shown in Figure 2.4.  
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Figure 2.4–Rotation of the signal by 

Fractional Angle α 

As evident, Fourier operator provides the signal representation along the axes only 

which raises an important question about what happens in between the axis. The 

answer lies in Fractional Fourier Transform (FRFT). Precisely as the Fourier analysis 

utilizes sinusoidal function to decompose periodic signals, Fractional Fourier 

techniques uses chirp harmonics for the time-varying periodicity signals 

decomposition [7]. It can be construed as the illustration of a signal in neutral domain 

by means of the rotation of the signal by the origin in counter-clockwise direction 

with rotational angle   in time-frequency domain [8], as shown in Figure 2.4, [4]. 

FRFT is a one dimensional time frequency distribution, with FT as a particular case.  

The FRFT of a signal  (  )can be given as 

  [ (  )]   ( )   ∫   (    ) (  ) (  )
 

  

   (    ) 

Where  (  )  is the derivative with respect to    and kernel function is defined by: 

  (    )     
   (  

   

   ( )
   (     

 )    ( ))
 

With   √      ( ),    
  

 
 and ‘p’ is order of the FRFT. If order p = 0 or 4, 

then    
  

 
          and 

  [ (  )]   ( )   ∫ √      ( ) 
   ( 

   

   ( )
 (     

 )    ( ))
 (  ) (  )

 

  

 

Frequency Axis, α =  900 

9090o 

Time Axis, α = 00 

000o 

 

α 
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Where√      ( ) 
   ( 

   

   ( )
 (     

 )    ( ))
  
 

 
, so limit is applied and the 

resultant equals to δ(x1 - x). This implies F
0
=F

4
= I, where I is an identity operator. If 

order p = 1, then    
  

 
 
 

 
  and 

  [ (  )]   ( )   ∫ √      (
 

 
)  
   ( 

   

   (
 
 
)
 (     

 )    (
 

 
))

 (  ) (  )
 

  

 

 ( )   ∫     (     ) (  ) (  )
 

  

                   

Where √      (
 

 
)    and   

   ( 
   

   (
 
 
)
 (     

 )    (
 

 
))

     (     ) 

Similarly, F
2
=P and F

3
=FP=PF, where P is a parity operator. According to this 

definition, the zero-order transform of a function is the same as the function itself 

s(x1), the first order transform is the Fourier transform of s(x1), and the ±2
nd 

order 

transform equals s(-x1). It satisfies important properties such as linearity, Unitary (F
a
)
-

1 
= (F

a
)
*
, Index Additivity F

a
F

b
= F

a+b
, Commutativity F

a
F

b
= F

b
F

a
, and Associativity 

(F
a
F

b)
 F

c
= F

a
 (F

b
F

c
). 

A rectangular pulse centered at X having a duration of Y is defined as 

Where U(t) is unit step function. FT of rectangular pulse is Sinc function.  

Figure 2.5 depicts real and imaginary parts of fractional transformation of rectangular 

pulse centered at 0sec with duration of 4secs for various orders. In Figure 2.5, the y-

axis represents the amplitude and x-axis depicts normalized neutral axis. The 

discussion for normalized neutral axis is included in subsequent chapters. Notice how 

the rectangular pulse is gradually converted into Sinc function with increasing 

transform order. Periodic nature of FRFT operator implies that the range of α and the 

order of the transform can be restricted to α ∈ [0, 2π) and order ∈ [0, 4) respectively. 

Since the FRFT is a rotation operation on the time frequency distribution, the range of 

α can be further reduced to [0, π] for even symmetric signals. This result holds for 

most real signals since we can assume that  (   )    (    ) for      . 

 ( )      (
   

 
)   (    

 

 
)   (    

 

 
)  

  (    ) 
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Figure 2.5–FRFT of Rectangular Pulse for 

Orders 0, 0.2, 0.4, 0.6, 0.8 and 1 
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2.4 Fractional Fourier Transform Numerical Computation 

Conventional Fourier Transform has the advantage of clear physical interpretation, 

Fast Algorithm (Fast Fourier Transform, FFT) and complexity equal to (N/2) log2 

(N). Fractional Fourier Transform on the other hand has many computation methods 

and each method satisfies some of the properties mentioned earlier.  First method 

involves direct computation in which input and output can be directly sampled. 

Although it is easier to implement but it lacks closed form properties, additive, 

unitary, reversible property and has limited applications. Another method is using 

chirp convolution method which is implemented by two chirp multiplications and a 

chirp convolution.  

Another method is similar to DFT computation in which signal is first multiplied by a 

chirp signal, then scaled. Fourier Transform of the scaled signal is taken and finally 

again it is multiplied by a chirp signal. Complexity of Chirp Convolution method is 

2P (required for 2 chirp multiplications) + Plog2P (required for 2 DFTs) Plog2P (P 

= 2M+1 = the number of sampling points). 1 chirp convolution needs to 2DFTs. 

Complexity of DFT like method is 2 M-points multiplication operations and 1 DFT 

i.e., 2P (two multiplication operations) + (P/2)log2P (one DFT)    (P/2)log2P. In 

chirp like method there is no constraint on sampling interval while DFT like method 

puts some constraint for the sampling intervals to be            where time 

interval is    and    is bandwidth. 

Discrete Fractional Fourier Transform can be computed by sampling the continuous 

FRFT and computing it directly which is the simplest way. Ozaktas and Arikan [9] 

proposed improved sampling type DFRFT. It has the advantage of being a fast 

algorithm but kernel function is not orthogonal and additive. Santhanam and 

MaClellan [10] proposed linear combination type DFRFT based on four bases DFT, 

IDFT, Identity and Time inverse. It has the advantage of orthogonal transform matrix, 

additive property and reversible property but loose the 'fracionalization'. Pei et. al. 

[11] proposed eigenvectors decomposition type DFRFT which is good in removing 

chirp noise. Richman and Parks proposed group theory type DFRFT in which DFT 

and periodic chirps were multiplied and it satisfied the rotation property of Wigner 

distribution, additive and reversible property. Its biggest limitation is that it works 

only for some specified angles and number of points N should be prime. Arikan, 
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Kutay and Ozaktas proposed another algorithm known as impulse train type DFRFT. 

Constraints include signal is normalized but many properties of the FRFT exists. Pei 

and Ding further improved sampling type of DFRFT, their algorithm is known as 

closed form DFRFT. 

2.5 Wigner Distribution 

For a given signal x(t), the corresponding Wigner distribution is defined as 

 (   )   
 

  
∫   (  

 

 
 )  (  

 

 
 )        

  

  

   (    ) 

Or 

 (   )   
 

  
∫   (  

 

 
 ) (  

 

 
 )        

  

  

   (    ) 

where  ( ) is the spectrum of the given signal x(t). 'Wigner-Ville Distribution' is 

defined as the Wigner Distribution where x(t) is the analytic signal of s(t). The 

analytic signal x(t) of a signal s(t) is defined as x(t)=s(t)+iH[s(t)], where H[s(t)] is the 

Hilbert Transform of the signal s(t) [12]. Wigner Distribution (WD) of single 

component chirp signal is given by: 

 (   )   (        ) 

Wigner-Ville Distribution of a chirp signal as an image and its 2-D representation in 

time-frequency plane is shown in Figure 2.6a while the Wigner-Ville representation 

of Fractional transformation of the same signal to orders 0.3 and 0.5 is shown in 

Figure 2.6b and Figure 2.6c respectively.  

(a) Representation for Fractional Order = 0 
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(b) Representation for Fractional Order = 0.3 

(c)  Representation for Fractional Order = 0.5 

Figure 2.6–Rotation of Time-Freq. 

Representation of Chirp Signal  

Notice how the signal’s frequency is linearly increasing and also being rotated 

corresponding to various fractional orders. If we apply FRFT on the example signal 

shown for fractional order 0.3, the chirp signal will be transformed into a peaked 

function and can be easily detected even in the presence of unwanted signals and 

interferences. A detailed analysis of this concept is provided in subsequent chapters. 

2.6 EEG based BCI System for Person Authentication 

Brain Computer Interface (BCI) is a system that enables users to control devices by 

means of electrical activity, caused by neuronal interactions in the brain, known as 
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Electroencephalogram (EEG). The amplitude of EEG signal typically lies in the range 

of 1µV to 100µV for a normal adult when recorded at the scalp and is improved to 

2mV to 10mV if recorded at sub-Dural level. The frequency band is typically taken in 

the range of 0.1 to 100Hz. This frequency band is sub-divided into delta band (0.1-

3Hz), theta band (4-7Hz), alpha band (8-12Hz), low beta band (12-15Hz), midrange 

beta band (16-20Hz), high beta band (21-30Hz) and gamma band (30-100Hz). A BCI 

system in essence records EEG signals using electrodes; user envisions performing a 

task and resultant EEG signals are interpreted by BCI system to perform control 

action. 

For instance if a user imagines moving his right hand, a BCI system will similarly  

move a wheel chair in right direction. There are generally two types of BCI systems; 

Synchronous BCIs and Asynchronous BCIs. Synchronous BCIs detect user activity 

spontaneously and consequently performs the control action [13]. User is not required 

to follow cues by the system which provides for a more user friendly interface but is 

considerably more difficult to build. Main issues fuelling this difficulty are sensitivity 

of the sensors and efficiency of algorithm to detect between significant and trivial 

brain activity. Asynchronous BCIs on the other hand requires regular system cues for 

the user to perform activity. System only responds to activity during cue time. Online 

BCI systems work in real time; users have to maintain a continuous connection to a 

signal acquisition machine whereas offline analysis is performed on pre-recorded 

datasets to test efficiency of algorithms. Current trends in online BCI approach 

indicates the use of unipolar electrode to capture EEG signals for electric wheel chair 

control through Bluetooth interface [14], use of eye blinks (major artifact in EEG) as 

a control signal to control Virtual Keyboard using the LabVIEW platform [15] and 

online spelling interface based on P300 wave in EEG signal [16]. 

2.6.1 Biometric System 

A Biometric system is a system used to uniquely recognize humans based on their 

physical and biological characteristics like DNA, Ear, Face, Finger print etc. A 

Biometric system is generally either used for Person Identification or Authentication. 

Person Identification involves matching a single person’s EEG features from a set of 

many templates corresponding to different users in the database, whereas an 
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Authentication / Verification system verifies claimed identity of an individual against 

a single user template. 

2.6.2 Brain Computer Interface Composition 

Brain Computer Interface (BCI) based Biometric system comprises of five main 

parts. The block diagram of a typical Brain Computer Interface system is shown in 

Figure 2.7. 

 

Figure 2.7–Block Diagram of typical BCI 

Based Biometric System 

First part is multi-channel signal acquisition system, which records and amplifies 

Electroencephalogram (EEG, Brain Signals) or any other signals from the brain. It 

also performs common mode noise elimination and artifact processing etc.  

Then a pre-processing block is used with the aim to bring the signals into a suitable or 

compatible form for feature extraction block. The feature extraction block in BCI 

based Biometric System extracts such features that are unique for an individual; the 

pattern is repeatable, universal, not time dependent and is acquirable. Existing EEG 

systems used for user identification includes, Poulos et al. [17] who tried to 

differentiate four subjects individually from a pool of different individuals using 

autoregressive (AR) models to model EEG signal and then using the parameters of the 

AR model for the identification. Palaniappan et al. [18] investigated features based on 

the spectral power of the signal. Se´bastien et al. [19] proposed an approach based on 
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Gaussian Mixture Models and Maximum A Posteriori model adaptation from features 

based on Fourier Transform for person authentication. 

Feature vectors formed by Feature extraction block, are used by classification block, 

in classifying the signals. When designing a BCI, the feature extraction and the 

classification algorithm is vitally important as the behaviour of BCI is decided by the 

classification algorithm directly [20]. However advances in technology have made it 

possible to record and process EEG data from 128 different electrodes and brain 

locations. This has raised an important issue of selection of appropriate number of 

relevant channels for a particular brain activity and how the information from these 

channels will be processed.  

The automated approach to selection of relevant channel for motor imagery tasks 

based on support vector machine (SVM) and for person identification based on 

independent component analysis (ICA) were proposed in [21], [22] respectively. As 

for information processing from multi-channel EEG, one approach is to concatenate 

the features from multiple electrodes into one feature vector after feature reduction 

and input the resultant vector to a classifier [2], [3]. Another approach is to use 

parallel structure of electrodes where each electrode is connected to an independent 

classifier, and final classification decision is made on the results of individual 

classifiers using simple majority rule [23]. After the classification block there is the 

Identifier / Verifier block which translates the classification of the previous block into 

identifying or authenticating the user. 

2.7 Summary 

To summarize, in this chapter an introduction to chirp signal was provided in relation 

to the drawbacks of Fourier Transform. FRFT was introduced and transform of 

rectangular window for various fractional orders was carried out to demonstrate how 

rectangular pulse signal is transformed into a Sinc function. Brain Computer Interface 

and its various blocks especially the existing work carried out in the feature extraction 

were also discussed. Subsequent chapters will build up on the information presented 

in this chapter. 
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Chapter 3 

 

FRACTIONAL FOURIER TRANSFORM 

APPLICATIONS 

3.1 Introduction 

In this chapter, summarized work and analysis of various research papers that 

includes Filtering in Fractional Fourier Domain by Ozaktas et. al. [24], Practical 

Normalization Techniques by Xinghao et. al. [25], Maximum Amplitude Method for 

Compact Fractional Fourier Domain (MACF) Algorithm by Zheng et. al. [26], and 

FRFT for Biomedical Signal Detection by Zhang et. al. [27], is presented and 

discussed in detail. Results shown in this chapter are all Mathworks Matlab® 

simulations carried out of the research papers mentioned above. 

3.2 Filtering in Fractional Fourier Domain 

Signals passing through electronic equipment suffer from distortion due to noise. In 

some cases conventional filtering techniques applied either fail to completely remove 

the noise from the signal or causes degradation to the original signal since both the 

noise signal and original signal components overlap in time and frequency domain. In 

such cases FRFT can be used to recover the original signal by finding an optimum 

order which results in separation of noise and signal components.  

Consider the Gaussian pulse signal  ( )      (   )
 
distorted additively by  ( )  

     
 
    (    ) where     (    ) is rectangular function with time width 16 

centered at origin. The original signal, magnitude of the sum of original signal and 

distortion, original and noise signal overlap representation in frequency domain, 

signal separation in Fractional domain for order 0.5, application of masking filter  and 

original vs. recovered signal are shown in part (a) to (f) of Figure 3.1 respectively. 
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(a) Original Signal      (b) Distorted Signal 

 

(c) FT of Distorted Signal  (d) FRFT of Distorted Signal, (p = 0.5) 

 

(e) Masking Filter Applied             (f) Original Signal vs. Recovered Signal 

Figure 3.1–Filtering in Fractional Domain 

Example 1 
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(a) Original Signal (b) Distorted Signal 

(c) FT of Distorted Signal (d) FRFT of Distorted Signal, 

(Order p = 0.5) 

(e) Masking Filter Applied (f) Another FRFT,  (Order p = -1) 
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(g) Original Signal vs. Recovered Signal 

Figure 3.2–Filtering in Fractional Domain 

Example 2 

Figure 3.2 illustrates another example for filtering in fractional domain. Consider 

another signal     
 
 is again distorted additively but this time by a real 

signal     [  (
  

 
   )]    (

 

 
). Since original signal in this example suffers from 

greater distortion compared to the previous example as shown in Figure 3.2b, 

multiple FRFT have been applied to recover the original signal back. FRFT of order 

0.5 is applied on the distorted signal shown in Figure 3.2d, one component of cosine 

chirp distortion is transformed into a peaked function without any significant overlap 

with the original signal and is masked out as shown in Figure 3.2e. Another FRFT of 

order -1 (inverse FT) is applied to transform the signal to p = -0.5
th

 domain, which 

separates out the remaining distortion in the signal and is masked out and another 

FRFT of order 0.5 is applied to recover the original signal back without any 

discernible distortion. 

The results obtained in Figure 3.1 and Figure 3.2 can only be achieved for sampling 

frequency of 50Hz and signal time duration of [-25 25]. These values were not 

mentioned in the research work implemented and were only discovered on the basis 

of hit and trial. This raised an obvious question about the relationship between 

frequency and time duration of the signal and its impact on the Fractional order. 
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3.3 Dimensional Normalization 

As mentioned earlier, FRFT rotates the Wigner distribution of a signal from time to 

frequency axis and is a linear distribution hence the horizontal axis in fractional 

domain represented in Figure 3.1 and Figure 3.2 is dimensionless. Let us consider that 

intervals [ 
  

 

  

 
] and [ 

  

 

  

 
] confines time domain and frequency domain 

representations of our signal respectively that is ∆t and ∆f are significantly large so 

that the signal energy outside of this interval approaches zero. The length of both 

these intervals is made equal to a dimensionless quantity      √     by selecting a 

scaling parameter    √      with the dimension of time. The scaling results in 

new dimensionless coordinates (   ) with 

      ,         (   ) 

The signal is confined to a new interval [ 
  

  
 
  

  
]  [ 

    

 
 
    

 
]  [ 

  

 
 
  

 
]. 

Applying the sampling theorem to normalized signal provides us             

samples with sampling interval equal to     , where N is the time bandwidth 

product.  

The whole process defined above is known as Dimensional Normalization and is a 

prerequisite to the application of FRFT to a signal. However in most practical 

situations only observation time and sampling frequency for the discrete observation 

data of the original signal is known which limits the use of normalization in its current 

form. To mitigate this problem there exist two techniques in literature and both of 

them are described below.  

3.3.1 Discrete Scaling Method (DSM): 

The essential condition in DSM is to select time width ∆t, bandwidth ∆f, scaling 

factor S and normalized width ∆x in such a manner that the total number of samples N 

(Time-Bandwidth Product) before and after the normalization remains the same. This 

is achieved through equating time width ∆t equal to observation time T (where 

midpoint of the observation data is taken as time origin) and bandwidth ∆f equal to 

sampling frequency fs, resulting in time domain and frequency domain representations 
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of the signal to be confined to [ 
 

 
  
 

 
] and [ 

  

 
  
  

 
] interval respectively. Once time 

width and bandwidth are known scaling factor S and normalized width ∆x can be 

deduced as follows: 

  √
  

  
 √

 

  
 

  (   ) 

    √     √       (   ) 

It is obvious that by applying the scaling factor found above to observation data using 

Eq. (3.1) changes the sampling interval to      and confines the data 

to[ 
  

 
 
  

 
].interval. 

3.3.2 Data Zero Padding/Interception Method (DZPIM): 

The signal deformity and distortion caused as a result of normalization in the previous 

method can be avoided by setting the scaling factor S equal to 1 and both the 

normalized width ∆x and the bandwidth ∆f are made equal to sampling frequency fs 

which is only possible if and only if time width ∆t = fs. But in most practical 

situations ∆t = T ≠ fs so in order to satisfy the condition ∆t = fs we can have two 

possible scenarios i.e. either fs> T or fs< T. 

Case I: (fs> T) 

In this case the original signal is confined to [ 
 

 
 
 

 
] and in order to make it equal to 

[ 
  

 
 
  

 
]  [ 

  

 
 
  

 
] interval, time width of the data is increased artificially by 

padding it with zeros in the interval [ 
  

 
  

 

 
] and [

 

 
 
  

 
].with sampling interval equal 

to the orginal sampling interval. This method of normalization is known as data zero 

padding method (DZPM). 

Case II: (fs< T) 

Here time range of the original signal which lies in the interval [ 
 

 
 
 

 
] is decreased to 

the interval [ 
  

 
 
  

 
]  [ 

  

 
 
  

 
]by discarding the data outside of this interval. This 

method of normalization is known as data interception method (DIM). 
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In both the examples demonstrated in Figure 3.1 & Figure 3.2 the sampling 

frequency        . Using DZPM the interval of the signals is artificially 

increased by padding zeros in the intervals [      ] and [    ] in case of example 1 

increasing the original sample size from 800 to 2500 samples and [      ] and 

[    ] in case of example 2 increasing the original sample size from 400 to 2500 

samples making the intervals equal to -25:0.02:25.  

As evident from these examples, this method of normalization does not introduce 

distortion in the signal but has the disadvantage of huge interception of data values or 

padding of zeros that are required if the difference between sampling frequency fs and 

time width T is large making it impossible to use for real time applications due to 

excessive computational load of FRFT. 

3.4 Chirp Signal Parameter Estimation and Optimum Order 

A chirp signal can be estimated if the Fundamental Frequency fo and Chirp Rate μo of 

the signal are known. Both of these parameters can be determined using FRFT since a 

chirp signal with specific chirp rate has maximum amplitude for the corresponding 

fractional domain and the resultant fractional order is termed as optimum order.  

In order to determine the optimum order FRFT of the signal for the entire range of 

fractional order  ∈ [   ] is evaluated and a 2-dimensional parametric 

plane (   ) consisting of distribution of signal energy along fractional domain   and 

fractional order    is obtained. Then second-order central Fractional FT moment is 

used to estimate  ̂  and  ̂  defined by Eq. (3.4) and Eq. (3.5) which is associated with 

principle axis with fractional angle ‘α’ [1]. 

    ∫    ( ) 
 (     )

   
 

  

   (   ) 

Where     is the first order moment and is defined as: 

    ∫    ( ) 
    

 

  

   (   ) 

    ∫    ( ) 
 (    )

   
 

  

   (   ) 

Where     is the first order moment and is defined as: 
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    ∫    ( ) 
    

 

  

   (   ) 

The parameters  ̂  and  ̂  has a relationship with Chirp Rate   
  and Fundamental 

Frequency   
  of the dimensionally normalized signal and is defined as: 

{
  
      (

 ̂  

 
)

  
   ̂    (

 ̂  

 
)

   (   ) 

If     and    are Chirp Rate and Fundamental Frequency of the signal before 

normalization respectively, then using Eq. (3.1) and Eq. (3.2) they can be estimated 

as: 

{
  
  
 

 
 
   

   
     

        

  
         √    

   (   ) 

Therefore Eq. (3.9) provides a relationship for Chirp Rate and Fundamental 

Frequency of the signal before and after the dimensional normalization.An example of 

DSM normalization with parameter estimation is shown in Figure 3.3. 

 

(a) Real and Imaginary Parts of  Original and 

Dimensionally Normalized Chirp Signal 

distorted by AWGN noise 
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(b) Two Dimensional Parametric Plane (   ) 
containing    ( ) 

  

(c)     to estimate  ̂  
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(d)    to estimate  ̂  

Figure 3.3–Effect of Dimensional 

Normalization (DSM) on Chirp Parameters 

Example 1 

Let’s consider a chirp signal with Observation Time   = 2s, Sampling Frequency   = 

800Hz, Fundamental Frequency    = 100Hz and Chirp Rate   = 100Hz/s and SNR = 

0dB ‘measured’. The signal is dimensionally normalized with DSM since    . 

Using Eq. (3.2) we get Scaling Factor         and from Eq. (3.3) we get    

   which provides dimensionless interval equal to [      ]. From Eq. (3.9) we 

calculate the Chirp Rate   
       and Fundamental Frequency   

    of the 

dimensionally normalized signal. 

Figure 3.3a shows a small portion of Original and Dimensionally Normalized Chirp 

Signal. Two dimensional parametric plane (   ) representing FRFT for order 

 ∈ [     ] and   [      ] with  ̂      and  ̂       is shown in Figure 3.3b – 

3.3d respectively. Using Eq. (3.8) Normalized Chirp Rate   
         and 

Fundamental Frequency   
   .0589. Therefore, using Eq. (3.9) actual chirp 

parameters are estimated to be      = 101.178Hz and   = 102.72Hz/s. 

Anothere example of chirp signal but with DZPM normalization and parameter 

estimation is shown in Figure 3.4. 
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(a) Real and Imaginary Parts of Original and 

Dimensionally Normalized Chirp Signal 

 

(b) Two Dimensional Parametric Plane (   ) 
containing    ( ) 
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(c)     to estimate  ̂  

(d)    to estimate  ̂  

Figure 3.4–Effect of Dimensional 

Normalization (DZPM) on Chirp Parameters 

Example 2 
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Lets consider a Chirp Signal with Observation Time   = 4s, Sampling Frequency   = 

20Hz, Fundamental Frequency    = 4Hz and Chirp Rate   = 2Hz/s and SNR = 0dB. 

In this example      but the difference is not too large therefore we will 

dimensionally normalize the original chirp signal using DZPM. Here Scaling Factor 

     and       which provides dimensionless interval equal to[      ].  The 

interval [     ] and [    ] is padded with zeros at the sampling interval     . 

DZPM does not affect the Chirp Rate   
  and Fundamental Frequency   

  of the 

original chirp signal. Figure 3.4a shows Original and Dimensionally Normalized 

Chirp Signal. Two dimensional parametric plane (   ) representing FRFT for order 

 ∈ [   ] and   [      ] with  ̂        and  ̂       is shown in Figure 3.4b 

– 3.4d respectively. Therefore, using Eq. (3.9) actual chirp parameters are estimated 

to be      = 3.9778Hz and   = 2.0413Hz/s. 

3.5 Maximum Amplitude Method for Compact FRFT Domain 

(MACF) 

In the examples discussed so far, a two dimensional parametric plane was obtained 

through exhaustive search i.e. after evaluating the FRFT of the signal for each order in 

the range [0 2] making this approach time consuming. Since FRFT is a unitary 

transformation and is continuous with respect to the transform order, Zheng et. al. 

proposed a coarse to fine algorithm in order to reduce the computational time and 

used this approach to estimate compact Fractional Fourier domain. 

Using the Time-Frequency representation rotation property and its periodic nature, 

order of the transform is first reduced to [0 4]. Using the Index Additivity property of 

the transform, order is further reduced to [0 2] i.e., F
a
F

b
= F

a+b
 or as an example 

F
3.5

=F
2+1.5

=F
2
F

1.5
. Authors of the research paper reduced this range even further to [0 

1] by assuming the signal to be even symmetric as in case of most real signals it can 

be presumed that  ( )   (  )for       This assumption by the authors does not 

remain valid if DZPM dimensional normalization is applied on the observation data 

since it takes midpoint of the available data as the time origin which might not 

necessarily be even symmetric. DSM is not considered here as it operates only along 

time dimension thereby not affecting the optimum order. 
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If the signal energy value is zero outside a smallest interval around the origin for a 

particular order than the corresponding fractional domain is considered to be compact. 

Since FRFT satisfies the Parseval’s theorem which states that signal energy is 

independent of fractional order which implies that for a compact Fractional Fourier 

domain         will have maximum value of all the orders. Also Index Additivity 

property implies that    is continuous with respect to α therefore instead of 

evaluating for entire range of orders in the interval [0 2], we begin with a large initial 

step size ∆pi between two consecutive evaluated fractional orders and find the 

maximum energy concentration. Then ∆pi is reduced to a smaller range in a small 

region around the order. These steps are repeated till the difference of energy 

concentration of two consecutive orders is either equal to zero or less than preset 

small value ɛ. This approach has the advantage of lower computational load compared 

to the exhaustive search in the previous technique.FCAM algorithm was applied to 

400 recorded samples of digitized echolocation pulse emitted by the Large Brown Bat 

at sampling period of 7μsecs and the results are shown in Figure 3.5.  

 

(a) Time Domain, Frequency Domain and 

Wigner Time-Frequency Representation 
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(b) Two Dimensional Parametric Plane for 

Digitized Echolocation Pulse of Large Bat 

 

 

(c) Result of Fractional Fourier Transform of 

Order 0.82 for Bat Signal  

Figure 3.5–Optimum Order for Signal emitted 

by Large Brown Bat 
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Real part of the bat signal in Time Domain, Energy Spectral density in Frequency 

Domain and its Wigner-Ville Time-Frequency Representation as an image is shown 

in Figure 3.5a. Figure 3.5b represents the 2-D parametric plane to estimate optimum 

order through exhaustive search. Optimum order p is found to be 0.82 as can be seen 

from Figure 3.5b along y-axis. X-axis represents normalized neutral axis u and z-axis 

represents the amplitude of the two dimensional parametric plane representation. The 

fractional order of the signal was found to be 0.82 using MACF and is similar to the 

results obtained using exhaustive search approach. Figure 3.5c shows the Fractional 

Fourier Transform representation of order 0.82 for the bat signal under 

consideration.The MACF algorithm approach proposed was also tested for all the 

examples presented in previous sections and the results were similar to the ones found 

through exhaustive approach.  

3.6 FRFT for Biomedical Signal Detection 

Biomedical signals are extremely weak signals and are corrupted by external noise 

sources (50Hz mains hum) and other interferences like artifacts (eye blinks). The 

obtained signal x[n] can be modeled as: 

 [ ]   [ ]   [ ]   [ ]   (    ) 

Where s[n] is the original signal, w[n] is the noise usually assumed to be AWGN, and 

I[n] is interferences from surrounding sources independent with s[n] and w[n]. 

Application of FRFT to Eq. (3.10) results in the following expression: 

  (  )    (  )    (  )    (  )   (    ) 

Where   (  ),   (  ),   (  )  and    (  )  represents FRFT of  [ ],  [ ],  [ ] 

and  [ ] respectively.  

As stated earlier, “a signal can be regarded as the linear combination of a set of 

orthonormal chirps functions with high concentration in the principle axis” [27], 

therefore two examples with both single component and multi-component chirp signal 

are demonstrated in the simulations. 

Let  ( ) be composed as in Eq. (2.1) with  ( ) = AWGN with SNR= -9.5dB with 
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Chirp Rate           , Fundamental Frequency         and Sampling 

Frequency = 60Hz within the interval [0 10]. The signal is dimensionally normalized 

and then a two dimensional parametric plane is obtained as shown in Figure 3.6. 

 

 

 

 

 

(a) Two dimensional Parametric Plane 

 

 

 

 

 

 

(b)    to estimate  ̂  

Figure 3.6–Biomedical Signal Detection in 

presence of AWGN noise 

 

As can be seen from the Figure 3.6 chirp signal is transformed into a peak function 

making it easier to detect while AWGN noise energy remains as it is. 
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In the second example x(t) is composed of Multi-Component chirp signals with no 

change in observation time and sampling frequency. 

 ( )    ( )    ( )    ( )    ( )   ( )   (    ) 

Where  ( )        (         
 )    ( )        (         

 )     ( )  

      (         )      ( )     (   ). Using similar approach, as used in the 

earlier example, results are obtained as shown in Figure 3.7. 

 

(a) Real and Imaginary Parts of Multi-

Component Chirp Signal 

 

(b) Two Dimensional Parametric Plane (   ) 
containing    ( ) 
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(c)    to estimate  ̂  

Figure 3.7–Biomedical Signal Detection of 

Multi-Component Chirp Signal in presence 

of AWGN noise 

In Figure 3.7(b), u is the normalized neutral axis and p is the fractional order. The 

four peaks depicted in Figure 3.7(b) and Figure 3.7(c) corresponds to each of the chirp 

signals while AWGN noise energy still remains as it is. With prior knowledge of 

chirp parameters, interfering signals can be easily separated from original signal 

components. 

3.7 Summary 

To summarize this chapter provided a detailed overview of the applications of FRFT 

to filtering in Fractional domain, Chirp signal parameter estimation and utilization of 

FRFT and its effectiveness for biomedical signal detection even in the presence of 

unwanted signals and distortion due to noise. 
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Chapter 4 

 

EXPERIMENTAL SETUP AND ALGORITHM DESIGN 

FOR PERSON AUTHENTICATION 

4.1 Introduction 

As mentioned earlier, a typical BCI system comprises of multichannel EEG signal 

acquisition device, pre-processing, feature extractor, classifier and control interface. 

In this chapter experimental details of each of these blocks are provided. 

4.2 Data Acquisition 

Data Acquisition was carried out through EEG signal acquisition device designed 

indigenously shown in Figure 4.1. 

 

Figure 4.1–EEG Signal Acquisition Device 

Another pre-recorded dataset available from Colorado University website [25] was 

also used for offline analysis to test the efficiency of the algorithm. 

4.2.1 EEG Signal Acquisition Device 

The signal acquisition device is the actual link between the brain and the computer. 

The device captures EEG signals either through electrodes placed at the scalp in 

standard International 10-20 positions, with the help of a conducting gel (non-invasive 
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approach) or through electrodes surgically implanted in the brain (invasive approach). 

Signals recorded through invasive approach offers less noise contamination, lower 

attenuation and higher resolution resulting in higher accuracy BCI systems however 

higher costs and possible risk of operation makes them unfeasible for widespread use. 

In non-invasive approach the activity signals to be detected are greatly attenuated by 

the skull and have typical amplitude of 2-100 microvolts; however with 

improvements in technology non-invasive techniques are becoming increasingly 

efficient.  

Data was recorded using four gold plated passive electrodes placed at standard 

International 10-20 system locations C3, C4, P3 and P4 using ECG conducting gel. 

Another electrode was placed at right ear lobe and was used as reference. Signals 

from the electrodes were amplified by Analog Devices Instrumentation Amplifier (In-

Amp) AD620 with a gain of 11. Gain of the In-Amp was calculated through relation 

           where RG was 5kΩ, 1% tolerance and ½ Watt power rating external 

resistor. For future designs Analog Devices In-Amp AD621 with a pre-set gain of 10 

will be used since it does not require any external components. Since most EEG 

activity occurs within the following frequency bands; delta (0.5 - 4 Hz), theta (4-8 

Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-40 Hz), signals from In-Amp 

are band-limited to 0.5-40Hz [29]. 

In-Amp AD621 has a reference pin for enabling AC and DC coupling. If Ref pin is 

grounded, output of In-Amp AD621 is DC coupled (allows all frequencies to pass). 

However if the output of In-Amp is passed through a low pass filter and returned to 

Ref pin, signal is AC coupled (DC and low frequencies are cutoff). A simple 

operational amplifier (op-amp) integrator circuit based on Analog Devices precision 

operational amplifier OP177 connected between In-Amp output pin and Ref pin with 

1µF feedback capacitor and 330kΩ input resistance at inverting terminal effectively 

provides a cutoff frequency of 0.48Hz approximately. For future designs Texas 

Instruments OPA277 which is an industry upgrade of OPA177 will be used. OPA277 

is also available in Quad Op-Amp IC package (OPA4277).AC coupled output of the 

In-Amp was passed through inverting amplifier with a gain of 60 and a second order 

Multiple Feedback active low pass filter with a gain of 10 and passband frequency ≈ 

40Hz. Low-Pass filter and its frequency response is shown in Figure 4.2.  
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Figure 4.2–Second Order Multiple Feedback 

Low Pass Filter and its Frequency Response 

Overall system gain becomes 6600. Amplified and band limited signals of the four 

channels were then amplitude modulated to approx. 0.974kHz, 3.210kHz, 5.39kHz, 

and 6.42kHz center frequencies and summed to form a composite signal. Analog 

devices AD633 analog multiplier was used for Amplitude modulation and Intersil 

Americas Inc.'s ICL8038 IC was used for carrier generation. The composite signal 

was attenuated below 0.6V and using Line-In mode of PC/Laptop sound card signal 

was acquired. Amplitude Spectrum up to 25kHz of composite signal of four channels 

acquired is shown in Figure 4.3. 
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Figure 4.3–Amplitude Spectrum of 

Composite Signal 

4.2.2 Self-Recorded Dataset – I and II 

Five color coded electrodes were placed at standard International 10-20 brain 

locations. Two datasets were recorded. Task performed included mental imagery of 

right and left movement of both hands and feet. Table 4.1 provides information about 

color coding, location and modulation frequency for each electrode connected.  

Table 4.1–INDIVIDUAL ELECTRODE COLOR 

CODES & LOCATION 

Electrode# 
Electrode 

Color 

Brain 

Locations 

Modulation 

Frequency 

E1 Yellow P3 6.42kHz 

E2 Purple P4 5.39kHz 

E3 Black 
Reference Right 

Ear Lobe 
- 

E4 Brown C4 3.21kHz 

E5 Blue C3 0.974kHz 
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Table 4.2–SYSTEM CUES & MOTOR IMAGERY 

TASKS 

Task Performed Motor Imagery Movement 

Right Right Arm 

Left Left Arm 

Up Left Leg 

Down Right Leg 

Table 4.3–SUBJECTS AND TOTAL TRIALS FOR ALL 

MOTOR IMAGERY TASKS DATASET - I 

Subj # 

Day I Day II 
Total 

Trials 
Session 

1 

Session 

II 

Session 

III 

Session 

I 

Session 

II 

Session 

III 

1 40 40 40 - - - 120 

2 40 40 40 40 40 40 240 

3 40 40 40 40 40 40 240 

4 - - - 40 40 40 120 

Total 120 120 120 120 120 120 720 

Table 4.4–SUBJECTS AND TOTAL TRIALS FOR 

MOTOR IMAGERY TASKS DATASET - II 

Subj # 

Motor Imagery Task 
Total 

Trials  Up-Cue 
Down-

Cue 

Left-

Cue 

Right-

Cue 

1 20 20 20 20 80 

2 20 20 20 20 80 

3 20 20 20 20 80 

4 20 20 20 20 80 

5 20 20 20 20 80 

6 20 20 20 20 80 

7 20 20 20 20 80 

8 20 20 20 20 80 

9 20 20 20 20 80 

10 20 20 20 20 80 

11 20 20 20 20 80 

Total 220 220 220 220 880 

The tasks performed and their corresponding mental imagery movements are provided 

in Table 4.2.Each subject was asked to imagine movement of limbs corresponding to 

a picture of cursor displayed for duration of 1sec and 2sec for Dataset–I and II 

respectively. There was a break of 1sec during the consecutive tasks performed. 

Details of trials performed by each subject of Dataset–I are listed in Table 4.3.



 

 43   

Dataset–I comprised of trials from four subjects performed on two different days in a 

total of six sessions, three on each day for each subject. There was a break of five 

minutes between the three consecutive sessions performed for each subject and the 

electrodes were not removed. In each session five trials for each task were performed. 

Details of trials performed by each subject of Dataset–II are listed in Table 4.4.

Dataset–II comprised of 11 subjects. Each subject was asked to perform tasks similar 

to the ones performed in Dataset–I. Twenty Trials were performed in a single session 

for each task for a total of 880 trials for all the Motor Imagery tasks. Recordings 

were made on two consecutive days. All the subjects were medically fit male 

students of the college with ages between 18 and 24 years. Trials of additional two 

subjects were recorded but were not included in the dataset as they were corrupted 

due to power failure during the recording session.  

4.2.3 Pre-Recorded Colorado University Dataset 

EEG signals were recorded by [29] using seven Non-Invasive active electrodes placed 

at standard International 10-20 system locations C3, C4, P3, P4, O1, O2 and EOG at a 

sampling frequency of 250Hz from seven individuals, six males and one female. 

Mastoids A1 and A2 were electrically linked and used as reference. The electrode 

placed at EOG was used to record the movement of Eye ball. Mental Imagery tasks 

performed were Baseline Task, Multiplication Task, Letter-composition Task, 3-D 

Rotation Task and Counting Task. Recorded EEG signals are shown in Figure 4.4. 

 

Figure 4.4–EEG Signals Recording of 7 

Electrodes 
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In Figure 4.4, EEG signal voltage varied in between -50 to 50 microvolts and 

recording of signals corresponding to rotation task from 7 electrodes are shown. 

Signals were amplified using a bank of Grass 7P511 amplifiers and passed through a 

band pass filter with frequencies set to 0.1 to 100Hz. Signals were digitized through 

Lab Master A/D converter mounted in an IBM-AT computer using 12 quantization 

bits at 250Hz sampling frequency.  

Subject 1, Subject 3, Subject 4 and Subject 6 completed 10 trials for each mental task. 

These trials were conducted on two days. Subject 2 and Subject 7 only completed 5 

trials while Subject 5 completed 15 trials for each mental task. Therefore total trials 

were 325 with 65 trials for each mental task was performed. Each trial was of 10 

seconds duration hence 250×10 = 2500 samples were recorded 

4.3 Pre-Processing 

The purpose of pre-processing block is to bring signals into a suitable form for feature 

extraction by removing to the extent possible variations (noise, artifacts etc.) that 

introduces randomness to the signal. 

4.3.1 Colorado University Dataset 

Each trial in the dataset was initially non-linearly normalized to reduce the range of 

EEG signals between 0 and 1 and each trial was segmented into windows of 1sec with 

an overlap of 0.5sec to reduce the execution time and memory utilization in 

processing 10 seconds of EEG signal [2],[3]. Normalized and segmented data was 

divided into training and testing data with 40 – 60 ratios respectively for client data. 

Since there was an overlap of 0.5sec in segmented data, it was ensured that there were 

no overlapping windows between training and testing data to maintain cross-

validation. Subj. 1, Subj. 3, Subj. 4, and Subj. 6 were alternatively treated as clients. 

Since training based on multiple days improves overall system performance [19], 

equal no. of trials for both days were distributed for training and testing data except 

for Subj. 2, Subj. 5 and Subj. 7. Trials of Subj. 2, Subj.7, Subj. 5 and all subjects other 

than the client were used as imposter data. 
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4.3.2 Self-Recorded Dataset– I and II 

Analog Input object in Mathworks Matlab® software was used to read composite 

EEG signal from the soundcard. The sound card was configured to operate in mono 

mode and sampling frequency was adjusted to 44100 samples/sec. Samples per trigger 

was adjusted to 44100 to read data from the soundcard in blocks of 1sec duration. 

Matlab® Filter toolbox was used to design FIR Least Square band pass filters with 

stop band attenuation of 60dB. Envelope detection method was used to demodulate 

the Amplitude modulated signal. Demodulated signal was down sampled to 1050Hz 

and was passed through low-pass filter with cutoff frequency 49Hz. 

The demodulated filtered data of Dataset–I was stored in a 1x720 cell structure 

containing data of 4 subjects for two days. Each cell contained subject identification, 

task performed, trial number, demodulated signals of four channels, composite signal, 

session number and day number. The demodulated filtered data of Dataset–II was 

stored in an 11x80 cell structure containing data of 11 subjects. Each row contained 

data from single subject. 

Figure 4.5 shows the demodulated signals recorded from Four Channel EEG machine.  

 

Figure 4.5–Demodulated Four Channel EEG 

Data 

In Figure 4.5, x-axis shows the number of signal samples and y-axis shows the 

amplitude. A comparison of these signals with available EEG machines was beyond 
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the scope of this study. Although at the time of initial prototype design an effort was 

made to carry out a comparison of demodulated signals with a commercial EEG 

machine from Nihon Kohden® but the efforts proved unsuccessful as recorded signals 

decoding failed due to proprietary software. 

4.4 Feature Extraction 

Fractional spectral coefficients values were extracted for each one second of 

segmented EEG data using Fractional Fourier Transform (FRFT). The value of the 

order ‘a’ was optimized during validation for each electrode, task and subject using 

slightly modified coarse to fine approach proposed by [26]. The optimum order was 

selected which maximizes the classifier performance. The steps involved in the order 

optimization are listed in Figure 4.6, where ƛ and ɛ are positive numbers less than 1. 

 

 

 • Order, a = 0 : ∆a : 1 

• FRFT and classifier performance was evaluated for each value of ‘a’ 

• aopt = Maximum classifier performance 

• Order, a=max{0, aopt – 0.5∆a}: ∆a : min{1, aopt + 0.5∆a} 

• ∆a = ∆a x ƛ 

• Repeat the process till the time ∆a ≤ ɛ 

 

Figure 4.6–Order Optimization 

4.5 Classification 

Features extracted from each electrode channel were passed to Exact Radial Basis 

(RBE) Neural Network. The output of each neural network corresponding to the 

electrode was independent. RBE was selected as a classifier due to its low training 

time. It consists of one hidden radial basis layer containing as many neurons as input 

vectors and an output linear layer. One bit target vector was selected assigning a high 

value for the client and a low value for the imposter.  
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RBE neural network calculates the distance between incoming signal vector and its 

weight vector adjusted during training resulting in an output of radial basis neuron 

greater than 0.5 if the distance is less than spread chosen. Spread determines the 

distance an input vector must be from a neuron's weight vector for the output to be 

equal to 0.5. 

A threshold was calculated for individual neural network classifier using a special one 

dimensional case of k-means clustering. Initial threshold was assumed to be 0.5. 

Response of Neural Network Classifier was distributed in two portions based on the 

initial threshold. Means of both the portions were calculated and their average was 

taken as the new threshold. This process was iteratively repeated till the time the 

difference of two consecutive thresholds was either zero or less than pre-decided 

small number. Radial Basis Function response for spread = 1 is shown in Figure 4.7. 

 

Figure 4.7–Radial Basis Function Response 

for Spread = 1 

As evident from Figure 4.7, if the distance between input’s signal vector and neuron’s 

weight vector is |0.833| than the response of Radial basis neuron will be equal to 0.5.  
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4.6 Network Weight Adjustment 

Consider X = {E1, E2, E3… EN} represents N independent electrode channels in a BCI 

system and Y = {P(E1), P(E2), P(E3), ….. , P(EN)} represents probability of correct 

classification for respective channels. 

4.6.1 Simple Majority Rule 

In simple majority rule the fundamental assumption is P(E1)= P(E2)= …= P(EN)=P as 

such decision of each electrode channel comprising the panel is equally weighted. If 

the number of electrodes (ѓ) that makes a correct classification decision is a binomial 

random variable (N, P) then probability that the panel comprising N electrodes makes 

a correct decision is given by: 

 (   )   ∑(
 

 
) ( ) ( )   

 

   

   (   ) 

where   ⌈
    

 
⌉      represents ceiling function. l is the minimum number of 

independent electrode channels reaching a correct decision whose combined output 

results in the entire panel’s decision to be correct and       represents the 

probability that an electrode channel makes a wrong classification decision. As 

mentioned earlier, the ability of the feature extractor algorithm to extract features 

from signals corresponding to different brain locations is not uniform hence 

classification accuracy also varies from one electrode to another. Classification based 

on simple majority rule does not take into account this phenomena resulting in 

erroneous or suboptimal classification. 

4.6.2 Weight Adjustment 

If P(E1)≠ P(E2)≠ … ≠ P(EN) and the probability that all N electrodes comprising 

the panel makes a correct classification is given by: 
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Then the probability that panel makes correct classification decision is equal to the 

individual sum of probabilities of {EN, EN-1, EN-2……,  } channels making a correct 

classification decision and is given by: 
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In case of N= 6 electrode channels the above equation is reduced to: 
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In order to apply weight adjustment, individual weights for each electrode are 

calculated using the equation: 

 (  )   
 (  )

  
       (   ) 

where    ∑  (  )   
 
    is sum of probabilities of the individual channels, N is 

the total number of channels in the system and  (  ) represent the weight of 

  electrode network. The probability of the Electrodes panel making correct 

classification after weight adjustment becomes: 
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Here   is the same as defined in Eq. (4.1) and Qk is the probability that k
th

 electrode 

makes a wrong decision. Eq. (4.5) represents sum of probabilities that ( -1) or more 

electrodes make a correct decision. The second term in Eq. (4.6) has the condition that 

sum of the individual weights of all possible combinations of (l-1) electrodes reaching 

a correct decision is greater than 50.In case of N= 6 electrode channels the above 

equation is reduced to: 
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4.7 Performance Evaluation 

In an authentication system there are two types of errors that can occur. 

False Acceptance Rate (FAR):  It is a type – II error that is system makes an incorrect 

decision and gives access to an imposter and is typically calculated as the ratio of 

number of false acceptances to number of access attempts. 

False Rejection Rate (FRR):  It is a likelihood measure that a valid client is denied 

access to the system and is usually calculated as a ratio of number of false rejections 

to number of authentication attempts. 

The various models used for Authentication system attempts to reduce the above two 

errors. A unique measure known as Half Total Error Rate (HTER) is often used to 

evaluate the performance of authentication systems. HTER combines the above two 

ratios and is given as: 

      
       

 
   (   ) 

4.8 Summary 

To summarize captured EEG signals of all the electrodes are first log normalized and 

are transformed to the optimum fractional order. The fractional coefficients obtained 

are passed through a parallel neural network structure and its corresponding output is 

compared with the threshold computed during validation using one dimensional k-

means clustering and interim response of each electrode in the panel is obtained. The 

cumulative sum of weighted individual response of each electrode is used for final 

classification decision to either deny or grant access to the user. 
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Chapter 5 

 

RESULTS AND ANALYSIS 

5.1 Introduction 

In this chapter, the algorithm is systematically tested on pre-recorded datasets to test 

the efficiency of the algorithm design. The emphasis of the tests performed was to 

analyze the performance of the classifier for various mental and motor imagery tasks 

and to determine the variation in individual electrode characteristics, corresponding 

weights and optimized order that results from one subject to another.   

5.2 Offline Pre-Recorded Dataset Results 

The     ̅̅ ̅̅ ̅̅ ̅̅  performance of the authentication system for Subject 1 is shown in Figure 

5.1. The figure contains the results of authentication for all the mental imagery tasks 

for all the electrode networks. The average performance of the authentication system 

for all the electrodes and mental imagery tasks for Subj. 1 was observed to be 

approximately 70%. E1, E2, E3 etc. are different electrode networks in Figure 5.1. 

 

Figure 5.1–Individual Electrode     ̅̅ ̅̅ ̅̅ ̅ 
Performance Curve for Subj. 1 

E1 E2 E3 E4 E5 E6

Multiplication 78.54 68.94 72.86 74.42 68.04 81.33

Baseline 63.84 68.04 64.80 69.74 81.66 63.35

Letter-Composition 68.53 80.70 76.12 67.03 82.54 58.72

Rotation 72.89 63.65 74.10 65.76 69.96 74.10

Counting 71.90 59.07 60.53 72.07 54.99 61.68
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The average performance of Subj. 3, Subj.4 and Subj. 6 for all the electrodes and 

mental imagery tasks was observed to be approximately 67%, 68% and 71% 

respectively as shown in Figures 5.2-5.4.   

 

Figure 5.2–Individual Electrode     ̅̅ ̅̅ ̅̅ ̅ 
Performance Curve for Subj. 3 

 

Figure 5.3–Individual Electrode     ̅̅ ̅̅ ̅̅ ̅ 
Performance Curve for Subj. 4 

E1 E2 E3 E4 E5 E6

Multiplication 68.20 55.95 63.10 60.12 80.89 67.35

Baseline 53.48 65.98 54.03 54.47 84.02 82.62

Letter-Composition 70.11 53.61 56.91 65.10 83.62 83.53

Rotation 67.32 58.72 88.60 61.21 81.09 80.73

Counting 61.57 63.40 67.32 57.89 58.85 89.72

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

 A
cc

u
ra

cy
 

Subject 3 

E1 E2 E3 E4 E5 E6

Multiplication 67.41 70.75 72.26 66.64 65.87 71.05

Baseline 67.65 74.29 54.19 57.35 65.05 77.58

Letter-Composition 55.37 55.74 58.95 66.33 64.50 71.95

Rotation 57.51 65.90 65.79 74.97 57.40 71.33

Counting 79.77 75.19 81.09 78.26 78.78 74.31
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Results shown in figures above indicate that the performance of classifiers not only 

vary from one subject to another but also for each electrode and task performed.Also 

for each user there is a different task that results in most efficient performance of the 

classifier which implies that weights adjustment to be carried out for one user might 

not necessarily be the same for another user. Depending upon the tasks being 

performed only those electrodes can be selected which provides higher performance 

for a particular subject. The efficiency of the classifier varies from one subject to 

another, hence a variable training time would also improve system performance i.e., 

users with low classifier response would require an increased amount of training time. 

 

Figure 5.4–Individual Electrode     ̅̅ ̅̅ ̅̅ ̅ 
Performance Curve for Subj. 6 

Table 5.1–INDIVIDUAL ELECTRODE ACCURACIES 

FOR ALL MENTAL IMAGERY TASKS 

Electrodes Subj. 1 Subj. 3 Subj. 4 Subj. 6 

E1 71.14 64.14 65.54 74.82 

E2 68.08 59.53 68.37 73.62 

E3 69.68 65.99 66.46 71.08 

E4 69.81 59.76 68.71 73.41 

E5 71.44 77.69 66.32 67.04 

E6 67.83 80.79 73.24 66.34 

The Table 5.1 lists average performance for all the mental imagery tasks for 

individual electrodes for all the subjects. 

E1 E2 E3 E4 E5 E6

Multiplication 65.41 84.35 65.87 82.73 62.14 62.77

Baseline 66.50 72.92 57.46 57.59 58.53 51.75

Letter-Composition 80.31 60.50 57.92 62.38 63.60 56.69

Rotation 84.76 80.81 91.06 92.63 78.18 87.80

Counting 77.11 69.55 83.10 71.74 72.75 72.67
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Table 5.2–OPTIMUM FRACTIONAL ORDERS FOR 

MENTAL IMAGERY TASKS SUBJECT 1 

Electrodes 

Mental Imagery Tasks 

Multiplication 

Task 

Baseline 

Task 

Letter 

Task 

Rotation 

Task 

Counting 

Task 

E1 1 1 1 1 1 

E2 0.9 1 1 0.7 0.9 

E3 1 1 1 1 0.9 

E4 1 1 0.5 1 1 

E5 1 1 1 1 0.6 

E6 0.9 1 0.1 1 1 

Table 5.3–OPTIMUM FRACTIONAL ORDERS FOR 

MENTAL IMAGERY TASKS SUBJECT 3 

Electrodes 

Mental Imagery Tasks 

Multiplication 

Task 

Baseline 

Task 

Letter 

Task 

Rotation 

Task 

Counting 

Task 

E1 1 1 1 0.9 0.8 

E2 0 0.9 0.8 0.2 0 

E3 0.9 0.7 0.9 1 1 

E4 0.7 0.3 0 0.9 0.5 

E5 1 1 1 1 1 

E6 0.9 1 1 1 1 

Table 5.4–OPTIMUM FRACTIONAL ORDERS FOR 

MENTAL IMAGERY TASKS SUBJECT 4 

Electrodes 

Mental Imagery Tasks 

Multiplication 

Task 

Baseline 

Task 

Letter 

Task 

Rotation 

Task 

Counting 

Task 

E1 1 1 0.8 0 1 

E2 1 1 0.8 1 0.9 

E3 0.9 0.9 0.2 1 1 

E4 0.9 1 1 1 1 

E5 1 1 1 0.5 1 

E6 0.9 1 1 1 1 

Table 5.5–OPTIMUM FRACTIONAL ORDERS FOR 

MENTAL IMAGERY TASKS SUBJECT 6 

Electrodes 

Mental Imagery Tasks 

Multiplication 

Task 

Baseline 

Task 

Letter 

Task 

Rotation 

Task 

Counting 

Task 

E1 0.9 0.9 1 1 1 

E2 1 1 0.8 1 0.7 

E3 0 0.7 0.7 1 1 

E4 0.1 0.7 0.9 1 0.8 

E5 1 1 1 1 1 

E6 0.7 1 1 1 1 
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The Tables 5.2–5.5 list the optimum fractional orders for each subject, mental 

imagery tasks and electrodes. Fractional order not only varies from one subject to 

another but also from one task to another. The mental imagery task for which an order 

has been optimized will provide poor results for other mental imagery tasks, 

providing another layer of protection against imposters as not only the brain waves of 

the client have to be duplicated but also the mental imagery task for which the system 

was trained and optimized. 

Table 5.6–WEIGHT ADJUSTMENT FOR MENTAL 

IMAGERY TASKS SUBJ. 1 

Weights Adj. 
Mental Imagery Tasks Subject 1 

Mul. Baseline Letter. Rotation Count. 

W(E1) 18 16 16 17 19 

W(E2) 16 17 19 15 16 

W(E3) 16 16 18 18 16 

W(E4) 17 17 15 16 19 

W(E5) 15 20 19 17 14 

W(E6) 18 15 14 18 16 

Table 5.7–WEIGHT ADJUSTMENT FOR MENTAL 

IMAGERY TASKS SUBJ. 3 

Weights Adj. 
Mental Imagery Tasks Subject 3 

Mul. Baseline Letter. Rotation Count. 

W(E1) 17 14 17 15 15 

W(E2) 14 17 13 13 16 

W(E3) 16 14 14 20 17 

W(E4) 15 14 16 14 15 

W(E5) 20 21 20 19 15 

W(E6) 17 21 20 18 22 

Table 5.8–WEIGHT ADJUSTMENT FOR MENTAL 

IMAGERY TASKS SUBJ. 4 

Weights Adj. 
Mental Imagery Tasks Subject 4 

Mul. Baseline Letter. Rotation Count. 

W(E1) 16 17 15 15 17 

W(E2) 17 19 15 17 16 

W(E3) 17 14 16 17 17 

W(E4) 16 14 18 19 17 

W(E5) 16 16 17 15 17 

W(E6) 17 20 19 18 16 
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Table 5.9–WEIGHT ADJUSTMENT FOR MENTAL 

IMAGERY TASKS SUBJ. 6 

Weights Adj. 
Mental Imagery Tasks Subject 6 

Mul. Baseline Letter. Rotation Count. 

W(E1) 15 18 21 16 17 

W(E2) 20 20 16 16 16 

W(E3) 16 16 15 18 19 

W(E4) 20 16 16 18 16 

W(E5) 15 16 17 15 16 

W(E6) 15 14 15 17 16 

Tables 5.6–5.9 lists the weight adjustments for Subj. 1, Subj. 3, Subj. 4 and Subj. 6 

calculated using Eq. 3 for the electrodes performance for various mental tasks shown 

in Figure 5.1–5.4 respectively. High fidelity electrodes are provided higher weights 

and these weights vary for different electrodes, subjects and from one mental task to 

another. 

Table 5.10–EXPECTED SYSTEM PERFORMANCE 

FOR MENTAL IMAGERY TASKS 

Tasks 
Subject 1 Subject 3 

Without  (  ) With  (  ) Without  (  ) With  (  ) 
Mult. 81.62% 90.65% 66.72% 82.97% 

Baseline 71.87% 85.89% 66.61% 85.45% 

Letter 78.91% 90.50% 72.73% 88.30% 

Rotation 74.65% 85.76% 80.38% 92.64% 

Counting 61.45% 77.71% 67.83% 86.93% 

Average 73.7% 86.10% 70.85% 87.26% 
 

Expected Authentication system accuracy based on individual electrode performances 

for all the tasks of Subject 1 and 3 with and without weight adjustment is shown in 

Table 5.10. The expected results were calculated using Eq.4.4 and 4.7. The weights 

are highly dependent on the validation data if the performance evaluated for the 

validation data does not represent the testing data, system performance will be 

degraded instead of improvement. Also weight adjustment will be ineffective for less 

than three channels as weight adjustment in such a scenario would simply cancel the 

response of the electrode with lower performance. Any channel having performance 

less than 50% will degrade the performance of the entire system. Figure 5.5 illustrates 

the weighted performance for all the tasks for various subjects. Average weighted 

performance of Subj. 1 equals to 81% and Subj. 3 equals to 84% which is an average 

improvement of approximately 14% over the system without any weight adjustment 
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while expected performance improvement was calculated to be 14.4%. The results 

shown indicates that system provides optimal performance for letter-composition task 

in case of Subject 1, rotation task in case of Subject 3 and Subject 4 and counting task 

in case of Subject 6. The results depicted in Figure 5.5 are for small training data 

(40%) and they can be further improved to nearly 100% by using groups of multiple 

consecutive segments and applying the voting rules for authentication [21]. This 

approach however delays the system response with the delay dependent on number of 

consecutive segments used and the duration of each segment. 

 

Figure 5.5–Weight Adjusted Performance 

for each Mental Imagery task for various 

Subjects 

5.3 Offline Self-Recorded Dataset-I Results 

The     ̅̅ ̅̅ ̅̅ ̅̅  performance of the authentication system for Subject 2 and Subject 3 of 

self-recoded Dataset-I are shown in Figure 5.6 and Figure 5.7 respectively. The 

figures contains the results of authentication for all the mental imagery tasks for all 

the electrode networks. The average performance of the authentication system for all 

the electrodes and mental imagery tasks for Subj. 1 and Subj. 3 was observed to be 

approximately 56% and 57% respectively. 
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Figure 5.6–Individual Electrode Performance 

for Subj. 2 

 

Figure 5.7–Individual Electrode 

Performance for Subj. 3 

The results shown in Figure 5.6 and Figure 5.7 depict lower system performance 
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proper insulation and an electrode cap for placement of electrodes is used during 

signal acquisition. 

Table 5.11–INDIVIDUAL ELECTRODE ACCURACIES 

Electrodes Subj. 2 Subj. 3 

E1 57.76 57.92 

E2 55.52 57.63 

E3 55.04 57.91 

E4 53.46 53.23 

Table 5.12–OPTIMUM FRACTIONAL ORDERS FOR 

MOTOR IMAGERY TASKS SUBJECT 2 

Electrodes 
Motor Imagery Tasks 

Up Task Down Task Right Task Left Task 

E1 0.52 0.9 0.4 0.2 

E2 0.8664 0.9 0 0.1 

E3 0.17 0.9 1 0.2 

E4 0.77 0.5 0.7 0.72 

Table 5.13–OPTIMUM FRACTIONAL ORDERS FOR 

MOTOR IMAGERY TASKS SUBJECT 3 

Electrodes 
Motor Imagery Tasks 

Up Task Down Task Right Task Left Task 

E1 0.4 0 0 0.8 

E2 0.8 0.2 0 0.95 

E3 0.5 0.8 1 0.99 

E4 0.8 0.7 0.9 0.95 

Table 5.14–WEIGHT ADJUSTMENT FOR MOTOR 

IMAGERY TASKS SUBJ. 2 

Weights Adj. 
Motor Imagery Tasks Subject 2 

Up Down Right Left 

W(E1) 27 34 26 25 

W(E2) 25 31 26 26 

W(E3) 23 34 25 26 

W(E4) 25 0 24 23 

Table 5.15–WEIGHT ADJUSTMENT FOR MOTOR 

IMAGERY TASKS SUBJ. 3 

Weights Adj. 
Motor Imagery Tasks Subject 3 

Up Down Right Left 

W(E1) 26 25 24 26 

W(E2) 26 26 25 25 

W(E3) 24 25 27 25 

W(E4) 24 23 23 24 
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5.4 Offline Self-Recorded Dataset-II Results 

The     ̅̅ ̅̅ ̅̅ ̅̅  performance of the authentication system for Subject 1–11 of self-recoded 

Dataset–II are shown in Figures 5.8–5.18 respectively. The figures contain the results 

of authentication for all the mental imagery tasks for all the electrode networks. It 

could be seen from Table 5-16 that classifier offers consistently higher performance 

for all the subjects for signals recorded from Electrode–I except for Subject–9 for 

which Electrode – III results in highest efficiency. 

 

Figure 5.8–Individual Electrode 

Performance for Subj. 1 Dataset - II 

 

Figure 5.9–Individual Electrode 

Performance for Subj. 2 Dataset - II 
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Figure 5.10–Individual Electrode 

Performance for Subj. 3 Dataset - II 

 

Figure 5.11–Individual Electrode 

Performance for Subj. 4 Dataset - II 

 

Figure 5.12–Individual Electrode 

Performance for Subj. 5 Dataset - II 
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Figure 5.13–Individual Electrode 

Performance for Subj. 6 Dataset - II 

 

Figure 5.14–Individual Electrode 

Performance for Subj. 7 Dataset - II 

 

Figure 5.15–Individual Electrode 

Performance for Subj. 8 Dataset - II 
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Figure 5.16–Individual Electrode 

Performance for Subj. 9 Dataset - II 

 

Figure 5.17–Individual Electrode 

Performance for Subj. 10 Dataset - II 

 

Figure 5.18–Individual Electrode 

Performance for Subj. 11 Dataset - II 
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Table 5.16–AVERAGE ELECTRODE ACCURACIES 

FOR MOTOR IMAGERY TASKS FOR ALL SUBJECTS 

SUBJECT E1 E2 E3 E4 

1 87.8 80.43 73.21 76.71 

2 97.02 59.30 60.34 59.45 

3 92.93 62.95 60.79 62.13 

4 86.76 56.85 61.90 56.85 

5 92.04 65.62 67.11 65.40 

6 93.97 59.3 59.45 66.59 

7 92.78 53.87 55.28 57.37 

8 87.28 62.13 56.10 56.10 

9 76.93 69.72 79.61 58.04 

10 91 67.93 63.39 59.45 

11 95.24 59.90 64.06 56.10 

 

The results of Dataset–II are comparatively better than Dataset–I due to the fact that 

signal recordings were made only in a single session. Performance degradation over 

time cannot be gauged from single day recordings. The results provided in this 

chapter highlights the potential of a system based on Fractional Fourier Transform by 

offering better performance and flexibility of transform order to adjust system 

performance in varying conditions without altering the overall system design. The 

system results shown above are for a maximum response time of two seconds only. If 

a tradeoff is made between response time and system efficiency and several 

consecutive segments are used to authenticate a user the system response can be 

improved significantly. 
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5.5 Comparison Existing Techniques 

The effective comparison of proposed algorithm with existing techniques requires that 

tests are carried out under similar conditions. Different approaches have been used on 

different datasets under different conditions and each leading to satisfactory 

performance. For instance, the pre-recorded dataset used in this work was also used 

by R. Palaniappan [31] for person identification using Autoregressive (AR) 

coefficients extracted through Burg’s method with order six as features and Linear 

Discriminant Classifier was used for classification. The 50% of the entire data was 

used for training as opposed to 40% training data for clients used in this study. The 

average results obtained in [31] were around 95% and they were further improved by 

using two tasks in conjunction for the purpose of person identification. Although the 

response time for the offline analysis was similar to the one used in this study but if 

analyzed for online analysis the overall response time would be greater since the 

authentication system is a type of asynchronous BCI as such the user has to be 

provided sufficient time break between execution of two tasks resulting in overall 

slower response time.  

Poulos et. al. [30] used spectral values extracted from EEG signals in overlapping 

alpha rhythm frequency bands 7-10Hz, 8-11Hz and 9-12Hz as features to identify 

users. The study was aimed at pointing out differences in classifier performance for 

different frequency bands for the single channel captured EEG signals. The dataset 

used comprised of multiple recordings from four clients and single recording each 

from 75 subjects were used for impersonation. No significant changes were observed 

and classification accuracy varied in between 72 – 84%. 

In another approach the ratio of Power Spectral Density and Energy of the signal for 

each electrode is used to obtain normalized feature value for N number of electrodes 

and are concatenated together to form a feature vector. The drawback with this 

approach is large number of electrodes required to form a feature vector that results in 

reasonable classifier accuracy. To the best of author’s knowledge weight adjustment 

based on electrode characteristics has never been carried out. 
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5.6 Summary 

In this chapter, tests were carried out using proposed algorithm on datasets obtained 

from Colorado University and signals captured through indigenously prepared EEG 

machine. The experimental and mathematical results obtained suggest an average 

improvement of 10% in classifier performance for a weight adjusted response.    
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Chapter 6 

 

CONCLUSION AND FUTURE WORK 

6.1 Overview 

The Brain Computer Interface is currently a hot area of research. Existing BCI 

systems can be utilized for biometric systems in a multimodal environment that is a 

system utilizing more than one biometric parameter like Iris scan and Finger-printing 

utilized in unison to authenticate or identify a particular individual. At the same time 

Fractional Fourier Transform offers improved system performance and is a better 

feature extractor and analysis tool for time varying signals like EEG as compared to 

conventional Fourier Transform based techniques.  

6.2 Objectives Achieved 

The Fractional Fourier Transform is a relatively new signal processing tool. The work 

carried out in this research systematically analyzes the utilization of Fractional 

Fourier Transform and demonstrates its efficacy not only for EEG based person 

authentication but also for filtering noisy signals henceforth were impossible to filter. 

The examples simulated demonstrate how chirp signals can be detected and its 

parameters can be accurately estimated even in the presence of noise using FRFT. The 

order optimization was also achieved using the MACF algorithm resulting in faster 

system response. The weight adjustment method was used not only to predict the 

performance of the system but a variable training session was suggested to 

significantly improve individual user performance. 

6.3 Future Work 

Although a framework for the application of FRFT to Biometric systems is proposed 

but still a lot of problems exist that needs to be solved before the system can be 

successfully utilized. One of the problems include the dimensional normalization 

which is not considered in the present algorithm as DZPM causes such an increase in 

computational load making it impossible to be used in online situations. While DSM 
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method on the other hand only operates on time axis and its application is 

meaningless since neural networks only operate on signal amplitudes.  

Influence of the user’s physical and physiological conditions on the EEG signals was 

not part of this study. Subsequently the variations in EEG signal characteristics due to 

user’s mental state needs to be monitored over large period of time and it remains to 

be seen whether these variations can be predicted and removed to effectively utilize 

EEG signals as a biometric tool. 

Another question that still needs to be answered is the change in Fractional Order for 

a particular subject over time. It remains to be studied whether the change can be 

calculated and predicted and thereby incorporating it in the algorithm design to 

improve its performance. Also the use of Neuro-Fuzzy networks instead of neural 

networks might also improve system performance as it involves a true value that 

ranges in degrees between 0 and 1 instead of the binary output in case of RBE neural 

networks. Also the weight adjustment proposed and analyzed in this study can be 

extended to multiple feature extractors used in parallel for similar inputs to further 

improve classifier performance. 

6.4 Summary 

In this chapter various objectives achieved in the research work are summarized and 

some of the questions still left unanswered and suggestions based on observations 

made during experimentation for additional system improvements are listed as a 

potential area for further research in future.  
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