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Abstract 

Motor Imagery electroencephalography (MI EEG) data are employed in brain computer 

interface (BCI) systems to identify the intention of participants. Several factors, such as 

poor signal to noise ratios and a scarcity of high-quality samples, complicate the 

classification of MI EEG signals. For BCI systems to operate well, it is necessary to analyse 

MI-EEG signals. Recent successful applications of deep learning methods have been 

observed in pattern recognition and other domains. Conversely, there have been few 

successful implementations of deep learning algorithms in BCI systems, particularly those 

based on machine intelligence. Brain-computer interfaces (BCI) can be crucial in 

facilitating communication with the external environment for those with movement 

impairments. Deep learning has achieved remarkable success across the many domains. 

Nevertheless, deep learning has achieved only limited progress in the analysis of 

Electroencephalogram (EEG) information. The present study suggests a novel approach to 

address the problem by integrating the Continuous Wavelet Transform (CWT) with deep 

learning-based transfer learning approach. Continuous Wavelet Transform (CWT) 

converts one-dimensional EEG signals into a two-dimensional representation of time, 

frequency, and amplitude images. This allows us to explore existing deep networks via 

transfer learning. The present work assesses the efficacy of the suggested methodology by 

utilising a publicly accessible dataset from the BCI competition VI-2b. Our study attained 

a promising validation accuracy of 81.72% by comparing the findings of the approach with 

previous efforts on the same dataset. A comparative analysis of the proposed algorithm 

with existing algorithms demonstrates its superior performance in classification tasks. The 

approach can enhance the classification accuracy of motor imagery (MI)-based brain-

computer interfaces (BCIs) and BCI systems designed for individuals with impairment. 

Keywords: Brain Computer Interface (BCI), Motor Imagery EEG signals (MI EEG), Time 

frequency images, CWT, VGG16 
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Chapter 1 

1 INTRODUCTION 

1.1 BACKGROUND 

A brain-computer interface, often known as a BCI, is a type of intercommunication system that 

allows for direct connection between the human brain and external technological entities, such as 

computers or other electronic equipment, without the need for any intermediaries to be involved. 

Through the use of brain-generated impulses, this method makes it possible for the user to directly 

manipulate the computer or smart device, hence eliminating the need for the user to rely on 

peripheral organs and muscles. In terms of theoretical applications, military applications, medical 

applications, and recreational applications, brain-computer interface (BCI) research is extremely 

relevant. The exploration of Brain-Computer Interfaces (BCI) holds a substantial amount of 

academic significance across a wide range of departments [1, 2]. When seen from a conceptual 

standpoint, it has the potential to offer an understanding of the functioning of the human mind that 

is unequaled. It is possible for it to improve the efficiency of soldiers when they are out in the field, 

which is a military use. When viewed from a medical point of view, it has the potential to be 

utilized in the treatment of particular conditions, such as paralysis, that were previously thought to 

be incurable. In the end, it makes it easier to build interesting recreational activities by providing 

users with the opportunity to explore virtual surroundings and interact with them in ways that are 

both unique and pioneering. Electroencephalography, sometimes known as EEG, is a signal that 

is frequently utilized in the process of developing Brain-Computer Interface (BCI) systems. There 
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are numerous advantages associated with it, including its portability, non-invasiveness, and cost-

effectiveness[3]. Concurrently, we face the challenge of dealing with the high-resolution spatial 

EEG signal suffering from inadequate robustness and a low proportion of signal to noise [4]. 

Furthermore, MI-EEG contains a irregular and inconsistent signal, so its statistics, including 

variance and mean, exhibit temporal variations [5]. Using a Brain-Computer Interface (BCI), an 

EEG signal is decoded and converted into practical messages[1]. A control system that is designed 

to drive a powered wheelchair for people who have lost their motor abilities is an example of a 

practical application of signal translation. A joystick control system that makes use of the subject's 

chin movement as a control mechanism is one solution that could be considered. On the other 

hand, however, this strategy is regarded as being difficult to implement and lacking in appeal[6]. 

The electroencephalogram (EEG) signal makes it possible for people with severe motor disabilities 

to use a device without using their hands by seeing the actions of their limbs. The combination of 

brain signal recording and decoding for the purpose of controlling an external device is what is 

known as a brain-computer interface (BCI) in the field of human-machine interaction (HMI) [7]. 

As a result of the incorporation of software technologies, the interaction between the human brain 

and the mechanical apparatus is made easier. Through the development of the BCI technology, 

one of the goals that is frequently sought is to make it possible for people who have physical 

limitations but are in good mental health to operate a computer on their own using only their brain 

impulses autonomously [8]. The development of neuro-prosthetics with the purpose of restoring 

movement, auditory function, and visual perception in those who have disabilities is the major 

objective under consideration. There is still room for improvement in terms of classification 

accuracy in order to achieve better system implementation, despite the fact that a number of studies 

on Brain-Computer Interfaces (BCI) have demonstrated its effective use in transmitting cerebral 
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commands to control external devices such as computer cursors, prosthetic limbs, robotic arms, or 

wheelchairs. 

Through the use of electroencephalography (EEG), it is possible to identify the electrical impulses 

that are generated by neurons in the human brain. In this procedure, the oscillatory activation map 

of the brain is collected from the scalp in a way that is not potentially invasive. The control 

command for the Brain-Computer Interface (BCI) can therefore be obtained by this method, which 

is completely suitable and reliable [7, 8]. Previous research has shown the use of EEG signals, 

namely motor imagery (MI) related to picturing finger or limb movement, for the purpose of 

controlling an artificial intelligence system [7]. A primary objective of these BCI investigations is 

to identify the EEG pattern generated by the MI-task. A great temporal resolution is exhibited by 

the non-stationary EEG signal [9]. The frequency spectrum of an EEG signal typically spans from 

0.5 to 100 Hz and is further compartmented into several sub-frequency bands. Efficient detection 

of event-related synchronisation (ERS) is observed in the activity recorded from the sensorimotor 

cortex in the Mu (8-13 Hz) and Beta (13-30 Hz) frequency bands for MI-based BCI systems[10] 

and de-synchronization (ERD) pattern [11]. There is a characteristic of an EEG signal known as a 

mu band that occurs during motor events. This occurs when the rhythm patterns of the brain 

become less synchronized (desynchronized) during motor movements. The inverted 

electroencephalogram (EEG) patterns that are seen in the sensory-motor cortex during myocardial 

infarction (MI) are the source of the Mu rhythm. The echogenic resonant decay (ERD) 

characteristic of brain potentials, which displays a polarity inversion similar to that of the Greek 

letter Mu, is responsible for the production of these patterns. Beta band and mu rhythms have been 

shown to have a substantial association with event-related potential systems, according to a 

number of studies[12, 13]. It has also been brought to people's attention that frequency bands are 
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subject-specific the majority of the time and can somewhat fluctuate from one subject to the next 

[14]. In the field of research that is based on Brain-Computer Interfaces (BCI), the extraction of 

information from recorded EEG signals in order to determine the specific activation pattern serves 

as an essential component. The precise transfer of the user's intention to the control device 

continues to be a significant challenge in the field of human-computer interaction (BCI), despite 

the fact that it was introduced many years ago. An efficient Brain-Computer Interface (BCI) 

system must have two key prerequisites: a comprehensive collection of EEG characteristics that 

are able to differentiate between brain activity caused by tasks, and a highly efficient machine 

learning framework for classifying the extracted features. Both of these requirements must be met 

for the system to be considered successful. As a result of the significance of both time and 

frequency information in EEG, a wavelet transform that is based on multiple resolutions is 

regarded as being more suitable for EEG analysis than techniques that are based on the Fourier 

domain [7]. Numerous studies have merged approaches for feature extraction based on wavelet 

transforms into applications for brain-computer interfaces[9, 11]. The usage of common spatial 

patterns (CSP) is yet another well-known technique for feature extraction that is utilised in MI 

applications[15, 16]. During common spatial pattern, also known as CSP, additive sub-windows 

of the signal are produced. These sub-windows display maximal difference invariance. The 

computational complexity is reduced as a result of these extracted features, which reflect the 

statistical qualities of the signal in the temporal domain. The determination of the activation pattern 

of BCI-based EEG is made easier with the use of classification algorithms to these statistical 

elements which are being considered. As a result, a number of different machine learning 

algorithms have been evaluated in order to determine which approach is the best effective for 

identifying tasks using machine intelligence. Conventional classification algorithms, such as 
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artificial neural networks (ANN), have been observed to exhibit a significant improvement in the 

accuracy of categorization[17, 18], Bayesian classifier [19], K-nearest neighbor (KNN) [9], 

quadratic discriminant analysis (QDA) [9], linear discriminant analysis (LDA)[17] and support 

vector machine (SVM) [15, 17]. Conventional techniques like Artificial Neural Networks (ANN) 

can effectively train the network, but they are constrained by inherent limits, such as a finite 

number of hidden layers. These approaches were unable to fully leverage multi-dimensional 

information. Conventional approaches in Brain-Computer Interfaces (BCI) require spatial filtering 

to consider the position of electrodes and their spatial orientation. Convolutional Neural 

Networks[20] turn out to be a viable solution to the classification problems in practical applications 

as it uses two-dimensional images. Although the achieved results are already remarkable, there is 

still scope for enhancing accuracy, interpretability, and usability for real-time applications. The 

automatic identification of MI-based EEG necessitates a precise learning system. Deep learning 

using a convolutional neural network (CNN) is a recent advancement in the field of machine 

learning that has shown remarkable performance in the processing of EEG data[21, 22]. Recently, 

these learning algorithms had worked well in the detection of emotion[23]. 

1.2 PROBLEM STATEMENT 

Within the framework of the Brain Computer Interface (BCI) system, the classification of EEG 

signals pertaining to motor imagery is an essential part of the process. An electroencephalogram, 

sometimes known as an EEG, is a dataset that is extremely nonlinear and hence presents substantial 

difficulties in terms of categorization. Brain-computer interface (BCI) systems make heavy use of 

motor imagery electroencephalogram (MI-EEG) signals from the left and right hands in order to 

determine whether or not a participant intends to manipulate external devices. The efficient 
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classification of motor imagery, on the other hand, has considerable challenges due to a number 

of parameters, including low signal-to-noise ratios and a limited dataset. In order to successfully 

implement Brain-Computer Interface (BCI) systems, it is essential to identify the 

electroencephalogram (EEG) signals of both the left and right hands.In order to promote the 

formulation of methods that are more accurate and effective for classifying left and right hand two 

class motor imagery EEG data, the purpose of this work is to address the existing gaps in 

knowledge that have been identified. The domains of robotics, brain-computer interfaces, and 

rehabilitation are all potential areas of use for these systems. 

1.3 RESEARCH QUESTION  

“How does the performance of Continuous Wavelet Transform (CWT) combined with deep 

learning compare to other feature extraction and classification methods for two class motor 

imagery EEG signal classification?” 

1.4 SIGNIFICANCE OF RESEARCH QUESTION 

Those individuals who have major movement limitations and poor communication abilities would 

experience a significant improvement in their well-being if a reliable Brain-Computer Interface 

(BCI) technology were to be developed. Brain-computer interfaces, also known as BCIs, have the 

potential to offer people who have this disease a means of communication and control over their 

environment. As a result, these persons will be able to participate in more diverse activities that 

are part of their daily lives, which will ultimately improve their overall health and well-being. A 

technique known as brain-computer interface (BCI) has emerged as a viable solution for those who 

have movement impairments. This technology enables users to operate equipment by using brain 

impulses, which is a significant advancement. Through the development of a dependable Brain-
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Computer Interface (BCI) system that enables more effective and pleasant communication with 

machines, it is possible to improve the quality of life and autonomy of these individuals at the 

same time. The methodology that has been provided shows promise in terms of helping the 

development of Brain-Computer Interfaces (BCIs) that are more sophisticated and accurate. This 

will allow people who have motor disabilities to use their brain signals for a wide variety of tasks. 

1.5 RESEARCH OBJECTIVE 

The primary objective of this thesis is to enhance the accuracy of classifying two-class MI EEG 

signals by utilising time-frequency pictures of MI EEG signals generated using CWT algorithm. 

Through a comparative analysis of the performance of our proposed approach with existing 

methods, we shall demonstrate its efficacy. Furthermore, this thesis will encompass a 

comprehensive examination of Motor Imagery EEG signal processing and analysis, CWT and 

spectral feature extraction approaches, as well as relevant research on Motor imagery EEG signal 

classification.  

The particular goals are:  

 To generate time-frequency pictures of Motor Imagery (MI) EEG signals using continuous 

wavelet transform (CWT) 

 To categorise motor imagery EEG data to two classes using generated time-frequency 

pictures  

 To assess the efficacy of the suggested approach in terms of classification accuracy by a 

comparative analysis with existing methodologies. 

Although Brain-Computer Interfaces (BCIs) have the capacity to facilitate communication and 

equipment operation for individuals with motor impairments, the task of categorising motor 
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imagery brainwaves (EEG) signals has shown to be a formidable one. A recent study has shown 

encouraging outcomes in collecting the frequency characteristics of EEG data and generating a 

robust set of features for classifying motor imagery EEG signals. The advancement of more 

accurate and reliable Brain-Computer Interface (BCI) technologies can greatly enhance the 

efficacy and comfort of communication and interaction for those with movement disabilities. The 

present thesis introduces a method for classifying two-class MI EEG data by using time-frequency 

pictures derived from Continuous Wavelet Transform (CWT). Commonly employed for the time-

frequency analysis of non-stationary data such as EEG, Continuous Wavelet Transform (CWT) is 

a robust method.  
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Chapter 2 

2 LITERATURE REVIEW 

2.1  RELATED WORK  

In order to enhance the dependability of the classification of electroencephalogram (EEG) data 

pertaining to motor imagery (MI), a substantial amount of research has been conducted. When it 

comes to the performance of these systems, the attributes that have been carefully chosen and the 

classification algorithm that is being used are the most essential elements that determine the 

performance. Convolutional neural networks have been utilized by a number of researchers in the 

field of academia over the course of the past few years in order to evaluate and extract information 

from electroencephalogram data. A significant reduction in the number of connections and features 

that are present in a deep network is achieved via the utilization of this strategy, which makes use 

of the relevant geographical or temporal interconnections between data points that are located in 

close proximity to one another. Taking this into consideration, it is possible to draw conclusions 

about relevant qualities for a particular machine learning application as a consequence of this. 

Refer to [24] additionally, it was proposed that convolutional neural networks (CNNs) make use 

of a method known as frequency complementary map selection (FCMS), which is founded on 

augmented convolutional support vectors (ACSP). In order to lessen the dependency on spatial 

mapping of features over a variety of frequency bands, this was carried out. The temporal 

information that is obtained by the EEG recording, on the other hand, is not utilized to the extent 

that it could be by means of this instrument. Refer to [16] For the purpose of converting EEG 

impulses into image signals, a technique known as short-time Fourier transformation (STFT) was 
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utilised. Next, convolutional neural networks (CNN) and automated stacking encoding (SAE) were 

employed in order to extract features and categorise them. In [25], A Convolutional Neural 

Network (CNN) is utilized in order to collect the temporal information that is contained inside an 

electroencephalogram (EEG). The utilization of envelope representations, which are supplemented 

by Hilbert transform calculations, is what allows this to be performed. It is feasible to downsample 

the envelope signal because of its low frequency, which will result in a reduction in the number of 

dimensions that are accurately represented by the data. This will be the case since the envelope 

signal is low in frequency. A substantial quantity of data is required for the use of computational 

neural networks (CNNs) and other deep learning approaches in order to get a reasonable 

presentation on the task at hand. There is a possibility that a shortage of data for training deep 

learning models could lead to the overfitting of particular characteristics to a particular training 

set. This would then result in the model's generalizability being restricted. Because the model has 

only been trained on a specific dataset, its capacity to accurately predict or comprehend new data 

is already restricted. This is because the model has only been trained on a single dataset. An 

inherent limitation of the paradigm is that this is the case. The acquisition of additional data and 

the verification that it is representative of the hypothetical data that we anticipate coming across 

in the future are both essential procedures that need to be completed in order to increase the 

accuracy of the model. Both of these steps are necessary in order to achieve the desired result. 

Following the implementation of this method, the model's ability to generalise will be enhanced, 

and the outcomes will be more accurate in terms of forecasting. As a result of the extensive 

procedures and tight guidelines that were utilized in the research for the acquisition of MI-EEG 

signals, it is difficult to acquire sufficient training data in order to classify MI-EEG signals[26]. 

Both irregular and body unsteady have the potential to produce sudden spikes in the 
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electroencephalogram (EEG) data. These spikes are known as eye movement artefacts and muscle 

measure artefacts, correspondingly [27]. A variety of preparatory procedures need to be carried 

out in order to obtain a sample that can be depended upon. In addition, this is necessary in order 

to obtain a sample. When performing these actions, it is necessary to mentally visualize the motion 

and to follow the pointing arrows displayed on the computer. The next step is a brief period of rest 

that comes after them. In light of this, it is imperative that the subject keep their focus during the 

whole of this time period; yet, as the duration of the experiment continues to increase, it becomes 

increasingly difficult to retain attention in a consistent manner. As a result, it is highly challenging 

to perform the task of collecting a substantial quantity of high-quality MI-EEG signals for the 

training assignment. The problem of general overfitting is usually addressed by academics through 

the utilization of data augmentation (DA) technology, which is widely employed by these 

individuals. The application of data augmentation techniques, which include data processing and 

overtaking, can result in an increase in the size of the data sets that are already available [28]. 

Numerous fields, including target recognition and image analysis, have been shown to benefit from 

the application of DA, as proved by experimental evidence [29]. In general, the usage of two 

different approaches results in the generation of improved data. The first strategy makes use of 

geometric alterations, whereas the second method involves the incorporation of noise into the 

training data that was previously accessible. Refer to [30] proposed a convolutional neural network 

(CNN) with many inputs for the purpose of identifying multi-channel MI-EEG signals to be 

received. Transforming the MI-EEG image by rotating and flipping it was done in order to increase 

the amount of data that was collected. Refer to [26] This article presents a Data Augmentation 

(DA) that incorporates rotating images with incremental noise. The electroencephalogram (EEG) 

is a collection of dynamic, highly significant (both temporally and spatially), non-stationary time 
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series that are collected from several electrodes. This is in contrast to visuals, which are static. In 

order to avoid the possibility of time-domain properties being distorted, it is not possible to directly 

apply geometric transforms to EEG data[31]. Refer to [32] The empirical mode decomposition 

(EMD) technique was utilized by us in order to produce novel synthetic EEG frames. After that, 

we utilized complex Morlet wavelets as inputs for the neural network, which allowed us to 

transform all of the EEG data into tensors. By employing the EMD method, the 

electroencephalogram (EEG) signal is segmented into its intrinsic mode functions (IMFs), which 

are typically narrowband in configuration. It is conceivable to do research on each of these IMFs 

apart from one another in order to acquire information concerning particular frequency bands that 

are believed to be connected with various cognitive functions. Methods of DA [28, 33, 34] At the 

present moment, it is of the utmost importance to carry out research on methods that are 

appropriate for monitoring EEG signals. In general, the process of developing a CNN that is 

adequate for feature extraction and classification over a segment of exceedingly complicated and 

unstable EEG signals is a considerable challenge. This is because the procedure involves a lot of 

moving parts. On the other hand, the utilisation of CNNs for the purpose of signal classification 

can call for the utilisation of a significant amount of data as well as the robustness of the system. 

Throughout the course of this investigation, we approached these problems from two distinct 

points of view, both of which were founded on the characteristics of EEG signals. An initial 

proposal was made for a data set that integrated the time domain with the frequency domain. 

Higher-order statistics of Power Spectral Density (PSD) at different orders led to the generation of 

characteristics such as logarithmic amplitudes and spectral moments for both the first and second 

orders. These characteristics were produced for both orders. By utilizing Support Vector Machines 

(SVM) and Linear Discriminant Analysis (LDA), it was discovered that a misclassification rate of 
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ten percent was the lowest attainable rate. Wavelet transform is one of the technologies that has 

garnered a lot of trust due to its capacity to analyze EEG signals. As a consequence of this, 

researchers have utilized it for the purpose of feature extraction [35, 36]. Significant features are 

contained within the brain's spatial patterns, and the properties of common spatial patterns (CSP) 

have been utilised extensively for EEG signal processing, primarily for the purposes of brain-

computer interfaces (BCI). CSP is utilised in conjunction with SVM in [15], This results in an 

accuracy of classification of 82.6% for the third data set of the BCI competition II. Various 

classification algorithms, such as KNN classification, [9] This results in a classification accuracy 

of 84.29 percent for two-class motor imaging, with the average band power of the Alpha (Mu) 

frequency band and the Beta band. Using the support vector machine (SVM) classifier, a recent 

study found that Shannon entropy as a feature yielded an accuracy of classification of 86.4% [12]. 

In recent times, deep learning has emerged as a significant platform that has captured the attention 

of researchers. Deep learning is mostly available in the field of image and video classification. It 

is relatively new to the field of biological signals, and in recent years, numerous public assessments 

have been conducted [37], The application of deep learning to the field of biomedicine has been 

addressed. Deep learning has been applied to the classification challenge for MI data by utilising 

CNN and stacked autoencoders (SAE) in conjunction with Short Time Fourier Transform (STFT). 

The results that have been achieved are a 9 percent improvement over the system that was qualified 

for the EEG dataset [16]. Despite the fact that STFT is a competing tool for time-frequency 

analysis, there is still room for development in terms of the time-frequency tradeoff. According to 

our methodology, CNN acquires knowledge of the activation patterns by analysing the input data 

of MI signals. The application of convolution operations is only performed on the time axis; it 

does not take into account the location or frequency of the observation. Therefore, the 
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convolutional layer is responsible for learning both the shape of the activation patterns (i.e., the 

power values at different frequencies) and the occurrence of these patterns (i.e., the position of the 

EEG channel). The categorisation is then improved by a vibrational autoencoder (VAE) that has 

five hidden layers. This is accomplished by a deep neural network. Transfer Learning is making it 

possible to implement tasks for the purpose of training and testing models for research that span 

multiple topics [38]. 

Researchers from the field participated in BCI and examined several implementation options for 

transfer learning [39]. Implementation of transfer learning across subjects through the use of CNN 

systems [40] exhibited, as well as an analysis of the kernel approach for determining the parameter 

relationship of the classifier which was demonstrated [41] has been scrutinised in previous 

research. The suggested framework, which is built on CapsNet, is able to classify the motor 

imagery into two distinct classes, right-hand motions and left-hand movements. Through the 

application of the short-time Fourier transform (STFT) technique, the motor imagery EEG signals 

are initially converted into two-dimensional images. These images are then utilised for the purpose 

of training and testing the capsule network. The proposed framework was tested based on its 

performance on the BCI competition IV 2b dataset, and the model achieved an average accuracy 

of 78.44% across all subjects under consideration.Refer to [42] The classification of motor imagery 

EEG signals was proposed using a Convolutional Neural Network (CNN) that was built on 

AlexNet in two dimensions. CNNs have the potential to be used for feature extraction and 

classification in motor imaging tasks, as demonstrated by their technique, which was used to the 

BCI Competition IV Dataset 2a and achieved a classification accuracy of 81.09%. 

In a similar vein, [43] A CNN was applied to Dataset 2b, which was a part of the same competition. 

The accuracy of their model was demonstrated to be 80.30 percent, which provides additional 
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evidence that CNNs are useful in the classification of motor images. According to the findings of 

both research, CNNs, particularly those that have representations of EEG signals in two 

dimensions, operate effectively for this task. Refer to[44]also employed a CNN model but applied 

it to both the Graz BCI-IV Dataset 2a and Dataset 2b. Their results, however, showed a slightly 

lower accuracy of 73.86%. This performance gap may be attributed to differences in model 

architecture or preprocessing techniques, suggesting that CNN-based models may be sensitive to 

these factors. 

A different approach was introduced by[45], who utilized a Capsule Network (CapsNet) for motor 

imagery classification on Dataset 2b. Their model achieved a classification accuracy of 78.44%. 

CapsNets, which are designed to capture spatial hierarchies in data more effectively than 

traditional CNNs, offer a compelling alternative to CNN-based methods, though the performance 

was slightly lower compared to CNN models. 

Lastly, a ref.[46], In addition, the method that was provided in the research paper titled 

Distribution-Based Learning Network for Motor Imagery Electroencephalogram Classification 

was utilised on Dataset 2b, and it was successful in obtaining an accuracy of 79.69%. The potential 

of distribution-based approaches in EEG classification is brought to light by this method, which 

provides a fresh viewpoint in comparison to the CNNs and CapsNets that are more widely utilized. 

As long as there are human subjects involved, it is always desirable for the BCI application to have 

reliable classification accuracy. There is a promise of more dependable outcomes and improved 

response if the precision of the system is improved using new algorithms and methodologies. For 

the purpose of improving the classification accuracy utilising our method, we plan to employ 

transfer learning on top of deep neural networks that are already in existence in the present 
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research. Some noteable work is done in past on bci competition iv dataset 2b and 2a is listed in 

table 1.  

Reference Article Methodology Dataset Model 

Performance 

(Anwar and Eldeib 

2020)[42] 

 

2D AlexNet 

Convolutional Neural 

Network (CNN) 

 

The proposed 

approach was 

analyzed and 

evaluated using 

dataset 2a from BCI 

Competition IV 

81.09% 

(Roy, McCreadie et 

al. 2019)[43] 

Convolutional Neural 

Network (CNN) 

To conduct this study, 

dataset 2b from BCI 

competition IV used 

80.30% 

(Arı and Taçgın 

2023)[44] 

CNN Graz BCI-IV-2A and 

BCI-IV-2B datasets 

73.86% 

(Ha and Jeong 

2019)[45] 

Capsule 

Network(CapsNet) 

BCI Competition IV 

Dataset 2b 

78.44% 

(Wang, Annan 

2021)[46] 

Distribution Based 

Learning (DBL) 

framework based on 

deep learning 

BCI Competition IV 

Dataset 2b 

79.69 

 

Table 2-1:  Summary of literature review 
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The approach that we have developed operates in both the time domain and the frequency domain 

in order to modify the data. This is in contrast to the methods that are currently being employed, 

which operate specifically in the frequency domain. This operation ensures that the models will be 

successful in their intended purpose. The second stage was to generate inputs for a deep learning 

model that had been pretrained and was dubbed VGG16. This was then followed by the addition 

of raw images and continuous wavelet transform (CWT) transformations of EEG images as inputs. 

Finally, in order to test the effectiveness of the system, classification experiments were carried out 

using a data set that was already available to the public. This model not only highlights the most 

significant features of the original data, but it also maintains other important aspects of the original 

data. It is vital to notice that this model does not simply highlight its most important aspects. In 

order to extract elements from the various frequency spectrums and features from the EEG data, 

the Fourier transform has been utilized. This has been done in order to accomplish the 

aforementioned aim.  

2.2 SUMMARY OF THE CHAPTER 

From literature review it concluded that CNN-based approaches have consistently demonstrated 

strong performance in motor imagery EEG classification, with accuracy rates typically ranging 

between 73% and 81.09%.  Methods like Capsule Networks and DBL frameworks also offer 

competitive alternatives, suggesting that deep learning models, particularly those focusing on time-

frequency transformations of EEG signals, are highly effective for motor imagery classification 

tasks.  

  



 

18 
 

Chapter 3 

3 DATASET 

The purpose of this chapter is to provide a complete review of the dataset that served as the basis 

for our research on the categorization of EEG signals by making use of a bci competition iv dataset. 

The participants participated in motor imagery activities as part of an experimental paradigm, and 

the electroencephalogram (EEG) signals were acquired utilizing EEG technologies of a high grade. 

In the course of our research, we made use of the BCI competition IV 2b dataset in order to divide 

the EEG data that was associated with motor imagery into two distinct groups [47]. Using the 

experimental methods, the dataset was collected from nine individuals who were involved in a 

motor imaging task. These participants were divided into two groups: those who were left-handed 

and those who made use of their right hand. In this particular investigation, the collection of 

electrical EEG data was carried out with a sampling frequency of 250 Hz using three bipolar 

electrodes (C3, Cz, and C4). The electroencephalogram (EEG) data were subjected to band-pass 

filtering with a notch filter at a frequency of 50 Hz throughout the entire frequency range stretching 

from 0.5 Hz to 100 Hz.Because there were a total of five participation sessions, the dataset contains 

information about each and every individual participant. Instructional sessions are incorporated 

into the initial three segments, whilst the evaluation segment is specifically dedicated for the last 

two segments. 

3.1 EXPERIMENTAL PARADIGM 
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Empirical framework This dataset comprises EEG data obtained from 9 participants listed in a 

study published in reference [47]. Participants included those who were right-handed and had 

normal or corrected-to-normal vision. They were compensated for their participation in the trials 

and got pay for their participation. Every single participant was seated in an armchair, and they 

were all looking at a flat screen monitor that was approximately one meter away and at eye level. 

Each participant is allotted a total of five sessions, with the first two sessions consisting of training 

material that does not include any feedback (screening), and the next three sessions being recorded 

with feedback. Figure 1 illustrates that each session is comprised of numerous runs simultaneously. 

At the beginning of each session, an initial recording that lasted around five minutes was carried 

out in order to evaluate the effects of electroencephalography (EOG). The recording was broken 

up into three parts: (1) a two-minute period during which the eyes were open (which was pointed 

towards a fixation cross on the screen), (2) a one-minute period during which the eyes were closed, 

and (3) a one-minute period during which eye movements were observed. The artefact block was 

divided into four sections, each of which had artefacts that lasted for fifteen seconds and included 

a five-second break in between each segment. The participants were instructed to perform either 

eye blinking, rolling, up-down, or left-right motions by means of text that was displayed on the 

monitor displaying the instructions. Each assignment was accompanied by a low warning tone at 

the beginning of the assignment and a high warning tone at the end of the assignment, 

respectively[48]. (Refer to figure 3.1 for a comprehensive list of all participants) 
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Figure 3-1 Dataset description 

 

 

Figure 3-2:  Description Scheduling of a single session (including screening and feedback). 

 

Figure 3-3: Three monopolar EOG channels' electrode montage [48] 

 

3.2 DATA RECORDING  

It was determined that a sampling frequency of 250 Hz was appropriate for the acquisition of triple 

bipolar recordings (C3, Cz, and C4). During the screening procedures, the recordings exhibited a 
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dynamic range of around 100 µV, while during the feedback sessions, the range was approximately 

50 µV. Bandpass filtering was applied to the signals over the frequency spectrum, which ranged 

from 0.5 Hz to 100 Hz. Additionally, a notch filter was applied at a frequency of 50 Hz. When it 

came to the positioning of the three bipolar recordings for each individual, there was a slight 

variance in the placement of the recordings depending on whether they were conducted at long or 

short distances and whether they were more anterior or posterior(for additional details, see [47]). 

When the EEG ground was placed, it was at the location of electrode Fz. In addition, the 

electrooculogram (EOG) was recorded by employing three monopolar electrodes (as shown in 

Figure 3.3, with the left mastoid serving as a reference). The amplifier settings were same, but the 

dynamic range was raised to ±1 mV. This was done on top of the electroencephalogram (EEG) 

channels. One of the key goals of the EOG channels is to simplify and improve the efficiency with 

which artefact processing activities are carried out [49] and should not be utilised for categorisation 

purposes. The motor imagery (MI) of the left hand (class 1) and the right hand (class 2) were 

composed of the two classes that were included in the screening paradigm that was dependent on 

cues. Over the course of two weeks, each participant was subjected to two screening sessions that 

were videotaped on separate days. These sessions were conducted without any comments being 

made. A total of six distinct runs were included in each session, with each run consisting of ten 

trials and two categories of imagery. Consequently, there were twenty trials carried out during 

each run, and a total of one hundred and twenty trials were included in each session. A total of 120 

repetitions of each MI class were included in the sample for each distinct individual. The 

participant performed and envisioned a variety of movements for each body part prior to 

embarking on the initial motor imagery training. They then selected the movement that they were 

able to visualize with the greatest degree of clarity, such as the compression of a ball or the 
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application of a brake. Every trial started with a fixation cross, which was then followed by a brief 

auditory warning tone that lasted for seventy milliseconds and had a frequency of one kilohertz. A 

visual indication in the shape of an arrow that indicated either the left or right direction, depending 

on the class that was defined, was displayed for a duration of 1.25 seconds after a few seconds had 

passed. Following that, it was necessary for the participants to mentally picture the corresponding 

manual motion for a period of four seconds. After every single test, there was a small pause that 

lasted for at least one and a half seconds on average. An additional randomised duration of up to 

one second was incorporated into the break in order to combat the phenomenon of adaptation. 

Every one of the three online feedback sessions consisted of four runs, each of which offered 

feedback with a smile. Every single run consisted of twenty trials for every single form of motor 

imagery. The feedback, which was depicted as a grey smiley and was precisely positioned in the 

middle of the screen, was displayed at the beginning of each trial, which was the second zero. At 

the second and a half mark, a brief alert beep was emitted, which had a frequency of 1 kHz and 

lasted for 70 milliseconds. When the score was between three and seven and a half, the cue was 

presented. It was informed to the participants that they should mentally visualize motions of their 

left or right hand in order to maneuver the smiley towards either the left or right side, according 

on the cue that was given to them. In the course of the feedback period, the smiley altered its color 

to green when it was positioned appropriately, but it changed to red in all other circumstances. A 

determination was made regarding the distance between the smiley and the origin by utilizing the 

integrated classification output that was accomplished during the course of the preceding two 

seconds (for additional information, please refer to). Furthermore, the output of the classifier was 

found to be connected with the curvature of the mouth, which led to the smiley face being 

interpreted as either a sign of happiness (with the corners of the mouth facing upwards) or a sign 
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of sadness (with the corners of the mouth facing downwards). At the 7.5th second, the screen went 

completely black, and a random interval that lasted anywhere from one to two seconds was 

incorporated into the experiment. It was stated to the participant that they should keep the happy 

face on the correct side for as long as it was possible to do so, which would result in the longest 

possible duration of the movement inhibition(MI)[48]. 

 

Figure 3-4 Screening [48] 

 

Figure 3-5 Smiley Feedback  [48] 



 

24 
 

3.3 SUMMARY OF CHAPTER 

The dataset chapter provides a comprehensive description of the techniques and procedures 

employed to gather, analyse, and define the BCI MI EEG dataset utilised in this work. The 

introduction lines establish the context for the study's results by presenting important participant 

characteristics and ethical considerations. Comprehensive details on the EEG acquisition 

procedure, experimental paradigm, marker positioning, and data organisation are provided to 

guarantee the data is of superior quality and suitable for further analysis. The methods employed 

to prepare the raw EEG data for analysis will be elaborated upon in the subsequent methodology 

chapter. Artefact elimination, filtering, epoch determination, and feature extraction techniques 

such as time-domain and frequency-domain analysis will be addressed. Furthermore, the chapter 

also addresses techniques for categorising EEG data into different types of motor imagery. In this 

thesis, a detailed overview of the EEG data collecting, processing, and analysis procedure is 

presented, including a summary of the dataset chapter and a preview of the methodology chapter.  
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Chapter 4 

4 METHODOLOGY 

4.1 CHAPTER INTRODUCTION 

This chapter includes a description of the approach that may be used to process and analyze the 

motor imagery bci dataset. The goal of this chapter is to facilitate the development of EEG-based 

motor imagery classification algorithms. Pre-processing, feature extraction, and classification are 

the focal points of this chapter, which is divided into three distinct sections. This section will cover 

the procedures that were used during the pre-processing step in order to filter and remove artefacts 

from the raw EEG data. These procedures were used in order to ensure that the data was accurate. 

The significance of these parameters in the classification of motor imagery tasks will be discussed 

in the following section. In addition, the spectral features that were recovered using the Continuous 

wavelet transform (CWT) will also be discussed. We shall discuss the classification algorithms 

that were utilized for the pretrained deep learning model vgg16 in the third section of this article. 

Through the application of these algorithms, the motor imaging tasks were classified according to 

the features that were retrieved. The methods that were carried out in order to get the raw EEG 

data ready for statistical analysis are described in detail in the preprocessing part of the 

methodology chapter. In order to achieve this goal, wasted data segments that contain an excessive 

amount of noise or artefacts are eliminated. Additionally, band-pass and notch filters are applied 

in order to reduce the amount of noise and artefacts that are present in the data. In addition, we 

will proceed to explore the utilization of Independent Component Analysis (ICA) in order to 



 

26 
 

breakdown electroencephalogram (EEG) signals into their component elements and eliminate 

artefacts. Utilising the CWT allows for the determination of the spectrum features of the EEG 

signals, which is the objective of the use. In addition to this, there will be a focus on the importance 

of these characteristics in relation to the categorization of motor imagery tasks. At the end of this 

paper, a full discussion of the classification algorithms that were used to classify the motor imagery 

tasks based on the retrieved characteristics will be offered. These methods were used to classify 

the tasks. A deep learning vgg16 was used to perform the prettraining for these algorithms. This 

part will provide an overview of the architecture of each network, as well as the training and testing 

techniques that were utilized in order to optimize the settings of the network. In addition, we will 

discuss the procedures that were used to test and train the network. We will also talk about the 

metrics that were used in order to evaluate the degree to which each algorithm contributed to the 

classification process. This will be done in addition to the previous point. A thorough description 

of the methodologies and procedures that were used to manage and analyze the EEG data in order 

to construct EEG-based motor imagery categorization algorithms is provided in the methodology 

chapter. This chapter is referred to as the "methodology" chapter.  The approach that was utilized 

in the most significant aspects of this investigation is illustrated in Figure 5.1, which can be found 
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on the page concerned. Furthermore, a functioning block diagram of the proposed methodology is 

presented in figure 5.2 to illustrate its components. 

 

Figure 4-1 Key portions of methodology chapter 
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Figure 4-2: Block diagram of proposed methodology 

 

4.2 PREPROCESSING 

Both non-physiological artifacts and physiological artifacts are able to be distinguished from one 

another when it comes to recorded electroencephalogram (EEG) signals. Interference brought on 

by a power frequency of fifty hertz is the principal cause of anomalies that are not related to the 

body's physiological processes. A total of nine individuals were included in the Motor Imagery 

EEG dataset that was analyzed for this investigation. Each topic is broken up into five separate 

sessions. Within the scope of this study, the initial three sessions were utilized for each participant. 

There are six channels that are made up of EEG and EOG signals that make up the motor imagery 

EEG signal collection. Three channels, cz, c3, and c4, have been kept, but the EOG channels have 

been removed from the lineup. A total of 769 events for class 1 left and 770 events for class 2 right 

are the primary events that are the focus of the dataset that is now being discussed. Those 
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occurrences that are still occurring are ignored. In each session, there are a different amount of 

challenges and activities to complete. In the initial step of the process, the raw motor imagery eeg 

signals are subjected to a band pass filter with a frequency range of 5Hz to 30Hz. Following the 

implementation of the band pass filter, a notch filter operating at 50Hz was utilized in order to 

reduce the likelihood of signal degradation brought on by interference from power lines. After the 

filtering operation was completed, additional preprocessing processes were put into place in order 

to reduce the impact of noise and artifacts that were present in the EEG data. Due to the fact that 

they obscure the underlying brain activity that is of interest, these artifacts have the potential to 

either distort or inhibit the appropriate analysis of EEG data. Additionally, in order to guarantee 

that the EEG signal is clear and trustworthy for subsequent analysis, it is typical to make use of a 

number of different techniques in order to remove these distortions from the data. Independent 

Component Analysis, sometimes known as ICA, is a method of signal processing that divides a 

high-dimensional signal into discrete components that are not Gaussian. Using ICA to analyze 

EEG data enables the identification and removal of signal components that are associated with 

artifacts, such as eye blinks or muscle movements. This is made possible by the application of 

image correlation analysis (ICA). By separating and removing these components, the ICA 

technique ensures that the residual EEG signal will be clear and reliable for subsequent analysis. 

This is accomplished by the elimination of these components. The techniques known as ICA are 

well acknowledged for their effectiveness in removing artifacts from the processing of EEG raw 

data. Important patterns of brain activity that may have been concealed by artifact interference can 

be uncovered with the assistance of this approach, which guarantees the purity and reliability of 

the EEG signal for subsequent investigation. Additionally, it is vital to keep in mind that both ICA 

and AAR have limits, and that they should be utilized in conjunction with other approaches in 
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order to ensure that the analysis of EEG data is reliable. Because of its ease of calculation and its 

capacity to offer a basic method for minimizing the influence of intrinsic noise across a variety of 

channels, this method is frequently utilized in the processing of electroencephalogram (EEG) data. 

The filtering, blind source separation, and re-referencing approaches improved the quality of the 

electroencephalogram (EEG) data by removing undesirable artifacts and noise. This made it 

possible to analyze the EEG characteristics that are linked with tasks that involve motor imagining. 

Following that, event markers are utilized in order to extract and epoch the data in a manner that 

is distinct from one another, dividing it into intervals of two seconds that correspond to motor 

imagery tasks that involve movements of either the left or right hand, and additionally performing 

baseline correction. In the end, the epochs are converted into NumPy arrays, and labels are 

generated for the purpose of classification jobs. The left hand is assigned a value of 1, while the 

right hand is assigned a value of 0. The result is EEG data that has been preprocessed and is ready 

to be used for the training of machine learning or deep learning models during the training phase. 

An illustration of the EEG data after it has been preprocessed can be found in Figure 4.5. The 

segmented data were subjected to preprocessing procedures in accordance with the technique that 

was proposed in order to make subsequent analysis more readily available. Using a deep learning 

model that had been pretrained, the suggested method intended to identify EEG signals that were 

associated with motor imagery. Additionally, the preprocessed EEG data was intended to be 

transformed into time frequency images by means of continuous wavelet transform (CWT). In 

order to generate time frequency images, the technique involved the utilization of segmented EEG 

data as input. Every single image was utilized to represent a single occurrence, which was 

subsequently incorporated into the classification models as a feature. In the following sections, 
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you will find some additional information that is more detailed regarding the algorithm that was 

suggested and the process of extracting spectral features. 

 

Figure 4-3: After the initial preprocessing of raw EEG signals 
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4.3 CONTINUOUS WAVELET TRANSFORM 

The Continuous Wavelet Transform (CWT) is a method that is often used for the purpose of 

evaluating the time-frequency of signals. This approach is known as a technique. Morlet and 

Grossman were the ones who initially put up the concept in the year 1987. A time-frequency 

representation of signals can be generated using the Continuous Wavelet Transform (CWT) 

method. This method works by dividing a signal into wavelets of varying sizes from the beginning. 

Specifically, this is performed through the utilization of signal processing. It is important to note 

that the wavelets in question are functions that are employed for the purpose of conducting an 

analysis of the various frequency components of the signal. This makes it possible to conduct a 

more comprehensive investigation of signals, in contrast to the conventional methods of frequency 

analysis, which only offer a single frequency representation of the signal at a certain instant in 

time. As a result of this, it is able to conduct a more in-depth investigation of signals. In terms of 

the frequency and temporal characteristics of the EEG data, it has been demonstrated that the 

Continuous Wavelet Transform (CWT) is an excellent method for decoding the data. For the 

purpose of gaining a knowledge of brain activity and diagnosing a wide range of neurological 

conditions, this is a vital component[50, 51]. Within the realm of wavelet analysis, there are five 

basis functions that are utilized rather frequently. The Morlet wavelet, the Mexican Hat wavelet, 

the Haar wavelet, the Daubechies wavelet, and the SymN wavelet clusters are some examples of 

these wavelets. To serve as the foundational function for the wavelet representation, the Morlet 

wavelet has been selected from among the various possibilities that are accessible. In order to 

perform preprocessing on the fundamental signal, the Continuous Wavelet Transform, which is 

more commonly referred to as CWT, is utilized. After that, the mapped time-frequency domain 

image that was produced is used as one of the inputs for the VGG16 deep learning model that was 
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advised. This is performed after the previous step has been completed. In this particular inquiry, a 

scalogram was utilized, and the values of the scalogram were specifically determined by the 

absolute values of the Continuous Wavelet Transform (CWT) of the signal. A graphical 

representation of the scalogram that is a function of both time and frequency is something that can 

be done. Reference, [18] Motor Imagery (MI) signals are composed of progressively changing 

events that are occasionally disrupted by abrupt shifts, which exhibit unique properties at different 

scales. The utilization of scalograms enables enhanced temporal localization of high frequency, 

short-duration events and superior frequency localization of longer-duration, low-frequency 

events. Using Continuous Wavelet Transform (CWT) within a filter-bank [52], The data from the 

one-dimensional electroencephalogram (EEG) is converted into a single image that contains both 

time-frequency and amplitude information. The filter-bank is made up of the parameters that have 

been developed expressly for the purpose of applying the circular wavelet transform (CWT) on 

the signal that has been provided. Throughout the entirety of the experiment, each and every 

filterbank parameter for the Compressed Wavelet Transform (CWT) was maintained at a constant 

value. The Continuous Wavelet Transform (CWT) makes use of the analytic Morse wavelet 

because of the greater time-frequency localization that it provides. There was no change made to 

either the gamma symmetry parameter or the temporal bandwidth product for the complex more 

(cmor) wavelet. Both parameters were kept at their original values of 1. In each octave, there were 

ten different voices that were used. In order to offer a cohesive portrayal of a single event (either 

Left or Right) hand imagery, the data that was collected from electrodes C3 and C4 are organized 

in a stacked fashion, with C4 succeeding C3. After the data has been analyzed, it is further utilized 

in the training of the model by employing the VGG16 pretrained deep learning neural network. A 

deep learning model that has been pretrained and created specifically for the purpose of feature 
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recognition is known as the VGG16 model. As a result of the fact that the pre-trained CNN 

architectures that were utilized in this work require two-dimensional image data as input, these 

networks are unable to accommodate one-dimensional EEG signals. It is possible to employ 

Continuous Wavelet Transform (CWT) for training deep neural networks because of its capability 

to translate electroencephalogram (EEG) signals into appropriate visuals. This is one of the most 

significant advantages of CWT. Data pertaining to amplitude, scale, and temporal information are 

included in the post-cyclic wavelet transform (CWT) image. For the purpose of motor imagery 

classification, the study makes use of time-amplitude values at a variety of scales as the primary 

criteria. The final stage of preprocessing entails rescaling the two-dimensional image that was 

produced so that it conforms to the input conditions of the particular deep neural network. To get 

started, you will need to create an image for a single channel. There is a total of three channels 

available. Afterwards, you will need to concatenate these photographs in order to produce a single 

image for a single event. The visuals for each of these three events are denoted by the letters cz, 

c3, and c4. After that, the photos that were concatenated are saved in the directory as images of 

the.png file type, and the process is repeated for each and every event. A total of 400 photographs 

are produced in the case that a single subject is photographed for a total of 400 times over the 

course of three sessions. Without exception, each and every person is required to go through the 

same process. Following the generation of photographs, the labels are further saved in a.csv file 

for each and every image. Because of this, it is essential for each and every subject to have 

scalogram photos and labels stored in a.csv file. Constructing the scalogram time frequency 

pictures that are displayed in Figure 4.4 for the left hand and Figure 4.5 for the right hand was 

accomplished through the utilization of the continuous wavelet transform. In the subsequent step, 

these photographs are incorporated into the VGG16 model as input in order to train the model. 
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Figure 4-4: Time frequency image for Left 

 

Figure 4-5: Time frequency image for Right 

4.4 CLASSIFICATION 

In this particular investigation, the classification of EEG data was carried out by means of a 

pretrained deep learning model, which is a well-known and widely recognized deep learning 

model. These models are frequently used in EEG-based brain-computer interface applications 
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because, in comparison to other models, they have demonstrated superior performance in a variety 

of picture and signal processing tasks. The Continuous Wavelet Transform (CWT) was utilized in 

order to generate scalogram images from the EEG data that had been preprocessed. These photos 

were used as the training data for the VGG16 model, and after that, the model was enhanced by 

tweaking the hyperparameters. The purpose of our research was to make use of sophisticated 

techniques in order to achieve a high level of classification accuracy and robustness in the process 

of determining the fundamental brain activity based on the EEG data. 

4.4.1 Transfer Learning 

Transfer learning is an approach that is used in the disciplines of machine learning and deep 

learning. This strategy involves using a model that has already been trained as a starting point for 

a new task that is linked to, or related to, the model that was previously taught. Through the process 

of transfer learning, we are able to make use of the information that has already been obtained by 

a pre-trained model. This is in contrast to the conventional way of constructing a model from the 

ground up and training it on a large dataset. Pre-trained models are frequently trained on big 

datasets like ImageNet in order to solve a wide range of computer vision problems. This is done 

for the aim of resolving the problem. It is feasible to reuse the feature representations that have 

been learned by making use of this model that has already been through the training process. It is 

possible to use these representations for a new job that is connected to it, such as recognizing Rock-

Paper-Scissors motions, because they are sufficiently broad. During the process of transfer 

learning, the model that has been pre-trained is often utilized, and the last layer is substituted with 

a new layer that is specifically designed to address the new task. After this, the new layer is trained 

on the smaller dataset that is specific to the new task, while the rest of the pre-trained model is 

frozen and its weights are fixed. This is done while the new layer is doing its training. By doing 
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so, we are able to fine-tune the pre-trained model on the new assignment while simultaneously 

avoiding overfitting and reducing the amount of time spent on training. This allows us to achieve 

both success and efficiency. As a result of the deployment of transfer learning, which has become 

an important technique in deep learning, there has been a large gain in both the accuracy and speed 

of a wide variety of computer vision tasks. This has led to a significant increase in the overall 

performance of these tasks[53].  

4.4.2 VGG16 

This inquiry makes use of a bespoke VGG-16 model that has been pre-trained in order to do the 

analysis. In 2014, the VGG16 model became triumphant in the ImageNet competition, establishing 

itself as one of the image classification models that experiences the greatest amount of usage. 

There are sixteen layers that make up this structure, thirteen of which are convolutional layers, and 

three of which are fully connected. Because it was trained on a large number of images, the VGG16 

model that has been pretrained is able to recognize a wide variety of features. This is because it 

was trained on that collection. The output layer of the model, on the other hand, is a feature that is 

exclusive to the dataset that it was previously trained on. In the event that this is the case, you will 

be required to replace the output layer with a new layer that is specific to the dataset that is being 

considered [53]. Figure 4-6 illustrates the fundamental constructs that make up the vgg16 model. 
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Figure 4-6: Fundamental structure of the VGG16 model 

In order to achieve the objective of separating the EEG signals that are linked with motor imagery 

into two different groups, the VGG16 model is utilized. There are currently nine individuals that 

participated in the research project, and scalogram time frequency images have already been made 

for each of them. Additionally, a label that is prepared for the subjects using the.csv file format is 

also prepared that is included in the preparation. Given the limited quantity of data available, the 

time frequency images ought to be separated into training and validation sections. This is because 

there is only a little amount of data. Twenty percent of the images are used for the purpose of 

validating and testing the trained model, while ninety percent of the photographs are divided up as 

part of the training procedure. The training technique is comprised of ninety percent of the 

photographs. During the training phase, the Adam optimiser is utilized, and the training procedure 

is carried out over a period of fifty epochs. This is done in order to train the original model. The 

loss of validation, on the other hand, has a tendency to increase rather than decrease when the 

precision of the validation is increased. This is the source of model overfitting. This is due to the 

fact that the validation is evolving to become more precise. Due to the fact that this has occurred, 

this model has been enhanced, and adjustments have been made to the hyperparameters, with the 

goal of achieving the desired outcomes and achieving improved performance. Following the 

completion of the hyperparameter tuning, the epoch size is set to thirty, and the Adam optimizer 
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is utilized with a learning rate of 0.0001; this is done in order to achieve optimal results. The 

training process begins once the model has achieved the highest possible level of performance that 

is reasonable. This takes place following the step that came before it. In total, there are nine distinct 

individuals, and the same procedure is carried out for each and every one of them. The VGG16 

model that was used for pretrained training is depicted in a summary diagram that may be seen in 

Figure 4.7. 

 

Figure 4-7: summary of vgg16 proposed model for Motor Imagery EEG signal classification 
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4.5 SUMMARY OF CHAPTER 

The primary objectives of the research were, as outlined in the chapter on methodology, the 

classification of EEG data through the utilisation of a variety of preprocessing techniques, the 

generation of time frequency images through the Continuous wavelet transform (CWT), and the 

utilisation of a pretrained deep learning VGG16 model for classification. The Independent 

Component Analysis (ICA) technique was utilised during the data preparation step in order to 

eliminate artefacts and enhance the overall quality of the electroencephalogram (EEG) data. After 

completing the preprocessing stage, the CWT method was utilised to convert the preprocessed 

EEG data into spectrograms, which exhibited the data in the form of images during the subsequent 

stage. After then, these time frequency photos were used as input for the VGG16 models. The 

VGG16 model, which consists of sixteen layers, made it possible to train longer and more complex 

networks. In the course of the classification phase, the pre-trained VGG16 model was utilised in 

order to extract features from the EEG data. The models were educated by the application of 

techniques such as transfer learning. During the training process, the models were trained using 

the Adam optimiser, a binary cross-entropy loss function, and a training dataset that contained 

ninety percent of the data. Using a different test dataset, the performance of the models was 

evaluated, and it was determined whether or not the class labels that were projected were accurate. 

The technique chapter provides a comprehensive framework for preprocessing, producing time 

frequency imags, and classifying EEG signals. Throughout general, this framework is described 

throughout the chapter. 
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Chapter 5 

5 RESULTS 

5.1 TOOLS TO BE USED  

 Google Colab for the Implementation of Research Systems 

 We used the Pro edition of Google Colab to speed up the training and convergence process. 

This version provides access to 15 to 40 GB of GPU Memory, 12.7 to 83.5 GB of RAM, 

and a storage size of 78.2 GB. Python version 3 is currently supported by Google Colab, 

and Google Compute Engine is used at the backend (T4 and A100 GPUs).  

 For the purpose of dataset preprocessing and model training and classification, the Python 

programming language was utilised, along with the Numpy, mne, keras, tensorflow, and 

matplotlib Python libraries. 

 When it comes to handling references, Endnote is utilised, whereas Microsoft Word is 

utilised for documentation.  

5.2 PREPROCESSING RESULTS 

The electroencephalogram (EEG) data were subjected to a comprehensive analysis during the 

preprocessing stage of the inquiry. The purpose of this analysis was to identify any noise or 

artefacts that would have possibly impacted the accuracy of the findings. The purpose was to 

eliminate any signals that were not desired and to make certain that the EEG data was adequately 

prepared for further examination. The significance of this step cannot be overstated because of the 
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possibility that artefacts and noise will cause the conclusions to be skewed and the data to be 

distorted. For the purpose of removing the artefacts and noise, a variety of techniques were utilized. 

These techniques included bandpass filtering, notch filtering, and artefact rejection through the 

utilization of independent component analysis (ICA). The final stage consisted of applying ICA to 

identify and eliminate any remaining sources of noise or artefacts. This was done after the initial 

two approaches had been completed. Immediately after the preprocessing phase, an evaluation of 

the quality of the EEG data was carried out in order to determine whether or not the noise and 

artefacts had been successfully eliminated. The purpose of this step was to guarantee that the data 

had been sanitized in the appropriate manner. In general, the findings of the preprocessing stage 

suggest that the electroencephalogram (EEG) signals were successfully cleaned up and are now 

adequately prepared for the upcoming analysis methods. Establishing the foundation for 

appropriate categorization of motor imagery EEG data is accomplished by the application of CWT 

time frequency image generation as the analytical method. 

5.3 CLASSIFICATION PERFORMANCE 

In order to determine how well the algorithm performed in terms of classification by making use 

of the method that was suggested, it is necessary to conduct an evaluation of the algorithm. The 

evaluation of the algorithm is one way to accomplish this. The analysis that was carried out to 

evaluate the effectiveness of the categorization strategy revealed that it consistently produced good 

accuracy rates. This was discovered during the course of the investigation. The conclusions of this 

evaluation are broken down into their component elements in the paragraphs that are to follow. 

topic 4, which was the topic with the highest possible score, was chosen as the subject with the 

highest possible score. Subject 4 gained the best possible score. When all nine subjects were taken 
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into consideration together, it was found that an overall average accuracy of 81.72 was reached at 

the individual level. An indication of the best level of accuracy that the VGG16 model has yet 

achieved may be found in Table 5.1, which can be found further down on this page. The table 

contains this information, which may be obtained there. It is clear from the data presented in the 

table that the proposed model VGG16 achieves a higher level of performance for subject 4, despite 

the fact that it achieves a lower level of performance for subject 3, yet the total average score is 

81.72. Figure 5.1 is a bar graph that provides a visual representation of the performance of the 

suggested model for each of the subjects. 

Subject Model Performance % 

Subject 1 95.00 

Subject 2 83.68 

Subject 3 65.00 

Subject 4 95.78 

Subject 5 83.00 

Subject 6 80.00 

Subject 7 73.00 

Subject 8 80.00 

Subject 9 80.00 

 

Table 5-1 : Performance results of the model for all subjects 
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Figure 5-1 Proposed Model Performance Graph for each subject 

 

 

5.4 EVALUATION METRICS 

The term "evaluation metrics" refers to the instruments that are utilised in the process of measure 

the effectiveness of classification models. Within the scope of this investigation, the metrics that 

were utilised included the F1 score in addition to accuracy, sensitivity, specificity, and precision. 

Accuracy can be defined as the proportion of samples that were correctly classified in comparison 

to the total number of samples under consideration. An individual is able to ascertain the sensitivity 

of a test by dividing the total number of positive results by the quantity of "true positives," which 

are positives that have been appropriately recognised. The specificity of a negative is determined 

by dividing the total number of real negatives, which are negatives that have been properly 
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identified, by the total number of actual negatives. As a measure of accuracy, the "precision" ratio 

is defined as the proportion of actual positive results to the total number of expected positive 

results. It is the F1 score that is a statistic that takes into consideration both sensitivity and 

precision. Following the findings of the investigation, it was determined that the technique that 

was suggested was successful in reaching high accuracy rates. The fact that a large portion of the 

samples were placed in the appropriate categories is demonstrated by this. Considering that the 

values for sensitivity, specificity, accuracy, and F1-score were satisfactory, it would appear that 

the method that was provided is capable of accurately classifying the two class motor imagery eeg 

signals. 

5.5 COMPARISON WITH PAST STUDIES 

Multiple studies have been conducted on the classification of Motor Imagery EEG signals, and 

each of these investigations has made use of the same dataset. In the accompanying table 5.2, a 

comparison is made between the results that were obtained from the CapsNet model with STFT 

spectrogram pictures and the results that were obtained from the suggested model when it was 

applied to the same dataset. The findings of the analysis of the table suggest that the results for 

subjects 1, 2, and 3 have shown an improvement, whilst the results for the remaining subjects 

indicate that there is only a tiny difference between them. The model that was being used before 

has a lower average accuracy for all nine subjects when compared to the model that was being 

used for the same dataset. The model that was being used before has a higher average accuracy. 

Comparative graphs for each of the nine individuals are displayed in Figure 5.2. These graphs were 

created using the indicated approach using capsNet. The proposed model CWT with vgg16 model 
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performance is represented by the brown bars, while the CapsNet model performance results are 

represented by the blue color bars. 

 

Subject CapsNet[45] 

Proposed 

Model(CWT+VGG16) 

S1 78.75 95.00 

S2 55.71 83.68 

S3 55 65.00 

S4 95.93 95.78 

S5 83.12 83.00 

S6 83.43 80.00 

S7 75.62 73.00 

S8 91.25 80.00 

S9 87.18 80.00 

Average 78.44 81.72 

 

Table 5-2: Comparative analysis of outcomes using STFT+CapsNet and the proposed approach 

CWT+VGG16 
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Figure 5-2 Comparison Of Proposed Model with CapsNet Across Each Subjects 

A comparison is conducted between the findings of the suggested approach and the findings of 

previous research on motor imagery EEG signals BCI competition datasets, which are included in 

the table that is shown below. This comparison is shown in Table 5.3. The average degree of 

accuracy that is maintained by the approaches is brought to the forefront via the utilization of this 

comparative emphasizing. The information that is shown in the table makes it abundantly evident 

that the approach that has been proposed delivers superior performance in comparison to the 

original study in terms of the average accuracy. This is made clear by the fact that the table contains 
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the information. In addition, the comparison graph between the recommended model and past 

methodologies is displayed in Figure 5.3.  

Reference Article Methodology Dataset 
Model 

Performance 

(Anwar and Eldeib 

2020)[42] 

 

2D AlexNet 

Convolutional Neural 

Network (CNN) 

 

The proposed 

approach was 

analyzed and 

evaluated using 

dataset 2a from BCI 

Competition IV 

81.09% 

(Roy, McCreadie et 

al. 2019)[43] 

Convolutional Neural 

Network (CNN) 

To conduct this 

study, dataset 2b 

from BCI 

competition IV used 

80.30% 

(Arı and Taçgın 

2023)[44] 
CNN 

Graz BCI-IV-2A and 

BCI-IV-2B datasets 
73.86% 

(Ha and Jeong 

2019)[45] 

Capsule 

Network(CapsNet) 

BCI Competition IV 

Dataset 2b 
78.44% 

(Wang, Annan 

2021)[46] 

Distribution Based 

Learning (DBL) 

framework based on 

deep learning 

BCI Competition IV 

Dataset 2b 
79.69 

Proposed 

Methodology 

 

CWT+VGG16 
BCI Competition 

IV Dataset 2b 
81.72 

 

Table 5-3: Assessment of Accuracy in Relation to Other Cutting-Edge Models 
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Figure 5-3 Proposed Model Performance Comparison across Different Methods 

 

5.6 SUMMARY OF CHAPTER  

The findings of this research indicate that the strategy that was developed for detecting motor 

imagery EEG signals by utilising continuous wavelet transform (CWT) with temporal frequency 

images is a technique that is capable of being implemented. Considering the significant differences 

in the temporal frequency patterns of motor imagery EEG signals that were observed across all of 

the subjects, the findings of the experiment indicate that these characteristics have the potential to 

be utilised for classification purposes in an efficient manner. By utilising the method that was 

provided, it was possible to successfully obtain high accuracy rates while also preserving 

appropriate levels of sensitivity, specificity, precision, and F1-score indices. Even when noise is 

present, the proposed method is able to efficiently classify two distinct categories of motor imagery 
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EEG data. This is demonstrated by the robustness study, which reveals that the proposed method 

is resistant to noise. Furthermore, this method is able to accomplish this goal even in situations 

when the quantity of the dataset is rather restricted. The findings of the analysis confirm beyond a 

reasonable doubt that this is the situation that was seen. Based on the results of the real-time 

performance investigation, it has been demonstrated that the technique that has been proposed is 

effective in correctly classifying two different types of motor imagery, more specifically EEG 

signals. When compared to CapsNet and other methods, the suggested method produced 

significantly higher overall accuracy in classification than the other approaches. 
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Chapter 6 

6 DISCUSSION AND CONCLUSION 

6.1 DISCUSSION 

To begin, we conducted a series of exhaustive quantitative tests to demonstrate that the VGG16-

based technique is feasible in the EEG domain. This was the first thing that we accomplished. 

Following that, we made certain that the recommended method was not only effective but also 

successful by contrasting it with other options that served as a baseline. The outcomes of the 

experiments make it abundantly clear that VGG16 is capable of successfully learning important 

properties from MI-EEG data, which ultimately leads to an improvement in the system's overall 

performance. This is the case because the trials were conducted. In spite of the fact that all of this 

is taken into account, there are still a great lot of difficult problems that need to be solved. Through 

the utilization of hyper-parameter tuning, which enabled us to collect this knowledge, we were 

able to determine the configuration that was most suitable for the network. However, there is a 

constraint in that we only evaluated the optimization of network parameters, rather than the 

architecture of VGG16. This meant that we did not take into account. Consider this a drawback. 

This is a limitation that needs to be taken into consideration. Although it generally surpasses other 

baseline techniques in terms of average classification accuracy, we are of the opinion that the 

current form of the proposed VGG16-based approach has limited capability to detect 

discriminative patterns or features from EEG signals. This is despite the fact that it achieves a 

higher level of accuracy than other baseline techniques. Specifically, this is because the VGG16 
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algorithm forms the basis for the VGG16-based technique, which is the reason why this is the case. 

According to what was mentioned in this section, there are a number of distinct aspects of the use 

of VGG16 in the EEG domain that have the potential to be enhanced. There are a variety of 

approaches that could be taken to accomplish these enhancements. As a means of increasing the 

performance of motor imagery EEG classification tasks, we are going to work on overcoming the 

concerns that were brought up in the part that came before this one. 

6.2 CONCLUSION 

Within the confines of this investigation, we developed a novel approach to the classification of 

two-class motor imagery EEG signals data by making use of VGG16 on our end. The method that 

was proposed made use of a series of CWT time frequency images that were extracted from raw 

EEG data. These images were used as the input for the strategy. The entire network was trained to 

do a classification task while the VGG16 operation was being carried out. This training took place 

simultaneously. An study and optimisation of the configuration of the VGG16 architecture that 

was proposed was carried out. This analysis and optimisation took into consideration a range of 

factors, including the number of channels and the number of routing iterations. We were able to 

perform the objective of analysing the effectiveness of the method that was provided by making 

use of the dataset that was made available to us by the BCI competition IV 2b. Within the context 

of the experiment, we first assessed whether or not the proposed method was viable, and then we 

evaluated it in relation to other ways that are deemed to be state-of-the-art in terms of classification 

accuracy and efficiency. The results of the trials demonstrated that the proposed approach has a 

greater classification accuracy than both the conventional methods and the alternative CNN-based, 

CapsNet method. This was demonstrated and demonstrated by the findings of the studies. By 
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employing visualisation, it is predicted that a deeper knowledge of the relationships that exist 

between the aforementioned components will result in the acquisition of more significant insights. 

This is because visualisation allows for the visualisation of information. In conclusion, in order to 

develop more practical applications of BCI, it is required to take into consideration a lot of distinct 

components simultaneously within the same context. Aspects such as accuracy, efficiency, and 

usefulness are included in this category.  

6.3 FUTURE WORK 

In spite of the fact that the method that was suggested was successful in delivering the outcomes 

that were sought, there are still issues that have not been resolved and will need to be addressed in 

the future. To begin, as was indicated in the section under "Discussion," our method can be 

improved by incorporating a broad variety of creative optimisation algorithms for hyper-parameter 

tunnig and network topologies. This is something that can be done. Within the scope of this 

investigation, we will investigate the ways in which the performance of BCI applications could be 

enhanced by utilising new and sophisticated methods for deep learning. In addition, it is of utmost 

significance to study whether or not the technique that is based on VGG16 can be employed for 

more sophisticated tasks, such as those that involve a bigger number of individuals, electrodes, 

and class labels. 
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