
i

Analysis of Malicious Applications on Smart Phones

Running the Android Operating System

By

Waleed Bin Shahid

Submitted to the Faculty of Information Security Department,

 Military College of Signals, National University of Sciences and Technology,

Islamabad in partial fulfillment for the requirements of an M.S. Degree in

Information Security

FEBRUARY 2013

ii

ABSTRACT

Android has now become the most widely used operating system for smartphones in

the world. This rapid increase in the use of Android both for smartphones and tablets

along with its open source nature has motivated malware authors to write highly

sophisticated malware for Android operating system. A lot of work has been carried

out by security researchers to counter the effect caused by growing amount of

malware.

In this research, a new algorithm for static analysis of Android applications has been

proposed that checks an application for maliciousness on the basis of application

features and not signatures, as the latter is inefficient in detecting zero day malware.

Various features of an Android application, e.g. sending SMS, accessing internet,

uploading files, accessing Wi-Fi, have been found out which when occur in different

combinations along with other features aid in constituting malicious rules. Hence a

rule is combination of multiple features which if exist in an application, tend to show

malicious behavior. A set of 958 malicious and 816 benign applications were

analyzed against all rules and only those rules were selected for the algorithm whose

probability of occurrence was significantly higher in malicious applications than in

benign. The Least significant difference between the probabilities of occurrence in

malicious and benign applications was computed and Gaussian distribution with 5%

level of significance was used to accept rules whose arithmetic difference was greater

than the least significance distance. The algorithm has also been supported with a

proof of concept application written in C language supported with a Graphical User

interface written in Microsoft Foundation Class Library.

iii

The proposed algorithm has been tested on another 247 malicious and 768 benign

applications and yields the accuracy of 98.32% and specificity of 99.6% with low

false positive ratio. The algorithm shows better results than other related algorithms

for countering Android malware. The computational complexity of the algorithm is

exceptionally low, thus making it suitable for analyzing applications.

iv

ACKNOWLEDGEMENTS

First of all, I pay my deepest gratitude to Almighty Allah whose blessings and

exaltations flourished my thoughts and enabled me to be amongst those who make

contributions, special praise to Prophet Muhammad (Peace be upon Him) who is and

always be the shiniest torch of knowledge and guidance for mankind.

I owe a debt of gratitude to my ever helpful and dedicated supervisor Dr. Fauzan

Mirza, Assistant Professor, NUST School of Electrical Engineering and Computer

Science, Islamabad, who put a lot of effort through valuable guidance, sympathetic

attitude, keen interest and constructive criticism for the accomplishment of the present

work.

I am also highly grateful to Ms. Ayesha Naureen, Mr. Wasim Iqbal and Ms. Rabia

Khan, who being the able members of my Guidance and Examination Committee

(GEC) guided me throughout my research and provided me support for accomplishing

this task. I am also very highly thankful to Mr. Moin-ud-Din, Assistant Professor,

NUST SEECS, for his valuable guidance for understanding the statistical aspects

associated with my research. I would also like to thank Lt Col Dr. Asif Masood, Head

of Information Security Department, Military College of Signals, for providing an

encouraging environment for academics and research in the college.

I pay my deepest love and thanks to my mother, brother, sister, their families, and my

best friend, whose heartiest cooperation, kindness, prayers and noble guidance were a

great source of strength to me. It is because of them that I am able to achieve this

milestone in my life.

At the end, I owe my gratitude to my friends, colleagues, and classmates, lab

attendants and library staff who afforded me patiently and yet remained highly

supportive throughout the research period.

v

TABLE OF CONTENTS

INTRODUCTION..1

1.1 Chapter Overview ...1

1.2 Background ...1

1.3 Android Operating System ..2

1.3.1 Structural Overview of Android Operating System ..2

1.3.2 Components of Android Applications...4

1.3.3 Security Analysis of Android ..4

1.3.4 Recent Vulnerabilities in Android Applications ...5

1.4 Android Malware Analysis ...5

1.4.1 Android Malware Static Analysis ...5

1.5 Android Malware Analysis Tools ...6

1.5.1 Android Software Development Kit ...6

1.5.2 Apktool ..6

1.5.3 7-Zip ..6

1.5.4 UltraEdit Text Editor ...7

1.5.5 Dex2Jar..7

1.5.6 JD-GUI ..7

1.6 Statement of Problem ..7

1.7 Objectives ..8

1.8 Author’s Contribution ...8

vi

1.9 Thesis Organization...9

LITERATURE REVIEW ...10

2.1 Chapter Overview ...10

2.2 Stowaway ..10

2.2.1 Android Permission Map ..10

2.2.2 Critical Analysis of Stowaway ..11

2.3 Findroid ...12

2.3.1 Issues with Findroid ..13

2.4 The Genome Project ..13

2.4.1 Issues with the Genome Project ..14

2.5 Kirin: Mobile Phone Application Certification ...14

2.6 Androguard..15

2.7 Chapter Summary ..16

DATASETS ..17

3.1 Chapter Overview ...17

3.2 Android Malware Genome Project ...17

3.2.1 Genome Dataset Release Policy ..17

3.2.2 Acquisition of Genome Dataset ..18

3.2.3 Dataset: Algorithm Development..19

3.2.4 Dataset: Algorithm Testing ...20

3.3 Contagio Dump ...21

vii

3.4 Acquisition of Benign Android Applications..21

3.5 Chapter Summary ..21

PROPOSED ALGORITHM ...22

4.1 Chapter Overview ...22

4.2 Android Application Features ...22

4.2.1 Features used in the Algorithm ...22

4.3 Establishing Rules on basis of Features ..26

4.4 Checking Presence of Rules in Dataset ...31

4.4.1 Presence in Malware Dataset ..31

4.4.2 Presence in Benign Dataset ...35

4.4.3 Computing Differences between Malware and Benign Datasets39

4.5 Selection of Rules..40

4.5.1 Bernoulli’s Trial ..41

4.5.2 Computing Variance and Standard Error ..42

4.5.3 Computing least Significant Distance using Standard Normal Distribution 44

4.6 Computing Overall Malicious Score ...54

4.6.1 Malicious Score for Malware Dataset ...55

4.6.2 Malicious Score for Benign Dataset..55

4.6.3 Setting the Malicious Score Threshold ...56

4.7 Chapter Summary ..58

TESTING ..59

viii

5.1 Chapter Overview ...59

5.2 Test Dataset ...59

5.3 Testing on Malware Dataset ..59

5.4 Testing on Benign Dataset ..60

CONCLUSION AND FUTURE DIRECTIONS ...63

6.1 Chapter Overview ...63

6.2 Research Overview ...63

6.3 Objectives Achieved ...63

6.4 Limitations ..64

6.5 Future Directions ...64

ix

 LIST OF FIGURES

Figure 1: Android Operating System Architecture .. 3

Figure 2: Stowaway’s Functionality .. 10

Figure 3: Android Malware Gold Dream tested on Stowaway.................................... 11

Figure 4: Acquiring strings in an APK code using Androguard 15

Figure 5: Strings obtained from Gold Dream using Androguard 15

Figure 6: NUST has now been mentioned at Android Malware Genome project 18

Figure 7: Malware families along with the number of samples used as dataset 19

Figure 8: Names of features found in ZITMO malware .. 25

Figure 9: Number of each feature found in ZITMO malware 26

Figure 10: Flowchart for finding Rules in Malware Database 32

Figure 11: Flowchart for finding Rules in Benign Database 36

Figure 12: Normal Distribution ... 45

Figure 13: Mean of Normal Distribution ... 45

Figure 14: Area under the Gaussian Curve .. 46

Figure 15: Characteristics of a Normal Distribution .. 46

Figure 16: Standard Normal Probability Distribution ... 47

Figure 17: Standard Normal Probability Distribution ... 48

Figure 18: Malware Dataset with a percentile value of 5 .. 57

Figure 19: Benign Dataset with a percentile value of 95 ... 57

Figure 20: Scores of Malicious Test Dataset ... 60

Figure 21: Scores of Benign Test Dataset.. 61

x

LIST OF TABLES

Table 1: Android Malware Gold Dream tested on Stowaway 14

Table 2: Genome Malware Families used for Algorithm Development 20

Table 3: Genome Malware Families used for Algorithm Testing 21

Table 4: Parsers written in Python to find Features in DEX and Manifest file 23

Table 5: Features which are being looked for in Android Applications 25

Table 6: Rules which are being looked for in Android Applications 31

Table 7: Probability of Occurrence and Rejection of Rules in Malware Dataset 35

Table 8: Probability of Occurrence and Rejection of Rules in Benign Dataset 39

Table 9: Difference between presence of all Rules in malicious and benign datasets 40

Table 10: Applying Bernoulli’s Trial to Rules .. 41

Table 11: Rule ‘1c’ in Malware Dataset .. 42

Table 12: Rule ‘1c’ in Benign Dataset ... 42

Table 13: Values of Variance and Standard Error for all Rules 44

Table 14: Graph for checking Area under the Standard Normal Curve 48

Table 15: Values of L.S.D computed using Standard Normal Distribution 50

Table 16: Accepted and Rejected Rules .. 52

Table 17: Accepted Rules with respective Scores ... 54

1

C h a p t e r 1

INTRODUCTION

1.1 Chapter Overview

This chapter explains the concept of malware analysis of Android applications, its

basics, types and components. It also briefly discusses different tools used in

analyzing Android malware. The chapter will also discuss the Architecture of Android

operating system and its security model. Then the objectives of this research, the

problem statement and author’s contribution towards the topic have been presented.

Finally, organization of this thesis is presented.

 1.2 Background

Recent years have seen unprecedented increase in the development and spread of

Android malware. The newer types of Android malware are not just proof of concept

or early code but they are totally purposeful and matured. Since Android has now

become the most widely used smart phone operating system [1], malware is

threatening the ever growing Android operating system. The vulnerabilities in the

operating system and applications are being exploited by the hackers in order to

penetrate into the systems, steal user data and gain financial benefits by

compromising the confidentiality, integrity and availability of Android applications

and user data [2]. Malwares are found in applications which are cracked or which are

not officially available on Google Play. Like cracked windows applications it is

becoming increasingly difficult to stop the spread of cracked Android applications

because they are available for free even if the original version is costly. Researchers

around the world are analyzing android malware by studying its code, features, and

2

functionalities. The objectives which govern the analysis of malicious android

applications are, but not limited to:

1. To study and understand the loopholes in applications and operating system

that might have provided the malware with a safe heaven.

2. To analyze and find out the features present in the malware and present

remedial measures

3. To investigate the severity of malware attack by understanding the malicious

code section and functionality.

1.3 Android Operating System

The Android platform was created by the Android Inc. which was later bought by the

technology giant Google and later released as the Android Open Source Project. A

consortium of 78 different companies formed the Open Handset Alliance whose key

responsibility is to develop and distribute the Android Operating System [3]. The

development of Android Operating System takes place rapidly, as a newer version

replaces the older one after every few months.

1.3.1 Structural Overview of Android Operating System

The Android operating system’s architectural stack is shown in figure 1.1 that can be

subdivided into five different layers [4]. Applications are at the top, then the

Application framework, then Android Runtime, Libraries followed by the lower level

tools and Linux Kernel.

3

Figure 1: Android Operating System Architecture

The kernel in use is Linux 2.6 series kernel that has been modified and updated to

meet some specific requirements like power management, runtime environment and

memory management. Above the kernel some Linux typical daemons run for different

functions e.g. Bluetooth support and Wi-Fi encryption.

Android operating system is supposed to run on devices with stringent battery

conditions with little main memory and CPUs which are low powered, the libraries

for CPU intensive tasks are compiled to device optimized native code. In the libraries

layer, the surface manager takes care of the screen access for the window manager.

The media framework that includes audio and video codecs also resides in this layer.

The Android Runtime consists of the Dalvik virtual machine [5] and Java core

libraries. The Dalvik virtual machine provides a virtual environment for the Dalvik

byte code to execute that has been transformed from the java byte code.

Frameworks in the application framework layer are written in Java and provide

abstractions of the underlying native libraries and Dalvik capabilities to applications.

Android applications run in a separate environment and contain multiple components

like Activities, Services, Intents, broadcast receivers and content providers.

4

1.3.2 Components of Android Applications

Components of Android applications contain Activities, Services, Broadcast

Receivers and Content providers. Applications can start other applications or specific

components of other applications by sending Intent. These intents contain among

other things the name of desired executed action. The Intent Manager resolves

incoming intents and starts the proper application or component. The reception of

Intent can be filtered by an application. Services and broadcast receivers allow

applications to perform jobs in the background and provide additional functionality to

other components. Broadcast receivers can be triggered by events and only run a short

period of time whereas a service may run a long time.

1.3.3 Security Analysis of Android

The core Android development team knows that a robust security model was required

to enable guaranteed application security for all applications. As a result, through its

entire development lifecycle, Android has been subjected to a professional security

program. The Android team has had the opportunity to observe how other mobile,

desktop, and server platforms prevented and reacted to security issues and built a

security program to address weak points observed in other offerings. But still malware

authors find different ways to inject malicious code in benign applications e.g. by

cracking them or altogether crafting new applications to meet the purpose for example

the cracked version of a famous and widely used Android application, Instagram was

found to be malicious [6]. Apart from Google Play, Google’s official android

application repository, many other forums and websites host applications which have

not been analyzed by Google’s security team. These types of applications when

installed on an Android phone perform malicious actions of a variety of nature.

5

1.3.4 Recent Vulnerabilities in Android Applications

Almost twenty five percent of Android applications contain code that can access

application permissions and cause security vulnerabilities, according to a recent study

by mobile security firm TrustGo. Of the 2.3 million Android applications analyzed by

TrustGo in the fourth quarter of 2012, 511,000 were identified as high risk, defined as

being able to make unauthorized payments, steal data or modify user settings. Not all

of the apps are universally available. For example, just 10 percent of apps in the US

and Western Europe had a high risk for causing security issues. While China was

reported to have the most high risk apps available for download. According

to TrustGo's report, 77 percent of all apps available in China pose a high risk for

security breaches [7]. The five riskiest app stores to download Android apps from

were also reported to be based in China.

1.4 Android Malware Analysis

Android malware is evolving in a rapid manner. According to McAfee Security

Company, its database contains more than 90 million samples as Android malware

has increased multifold over the years [8]. It is becoming quite challenging to detect

zero day malware as they are using new methodologies, signatures and encapsulation

techniques. There are many antivirus solutions available for Android which helps in

detecting and combating Android malware but a large number of highly sophisticated

malware go undetected. Malware researchers study different variables related to the

rise, spread and development of Android malware along with the activities it

performs.

1.4.1 Android Malware Static Analysis

This research focuses on the static analysis of malicious Android applications. This

type of analysis is used to study and analyze the behavior of a malicious sample by

6

examining the code of the application. The other method is the Dynamic Analysis of

Android applications which check the behavior of these applications after executing

them, preferably in a sandbox environment. It looks for certain features, rules,

functions, traces, artifacts, API calls, routines etc. that help in acquiring a complete

picture of the overall functionality of the malicious file. Since it is extremely hard to

acquire the source code of Android malware samples so the binary code is analyzed to

serve the purpose. Many software and solutions are available in the form of debuggers

and de-compilers that convert the malware code to its binary or assembly level [9].

1.5 Android Malware Analysis Tools

Various open source tools were used during the course of this research that helped in

analyzing the Android applications. These tools helped in decompiling,

disassembling, extracting, analyzing and understanding the malicious Android

samples.

1.5.1 Android Software Development Kit

Android SDK is an emulator that is widely used to create local Android virtual

devices. It contains many packages that are related to mobile phones, android

platforms and software development. It needs to be installed along with other

packages [10]. It also contains of a panel which can be used to create virtual devices

and install latest packages.

1.5.2 Apktool

Apktool [11] is actually a disassembler that is used to analyze Android malware. In

this research, Apktool has been used to decode the AndroidManifest.xml file to its

original condition. It can also be used to recompile the code after modifications.

Apktool makes use of Baksmali for disassembling and Smali for assembling.

1.5.3 7-Zip

7

7-Zip has been used to decompress the Android APK files in order to extract the dex

and manifest file along with resources, libraries and assets of the Android application.

This is a very good un-packer with high compression ratio and strong encryption as

compared to WinZip.

1.5.4 UltraEdit Text Editor

There are various text editors available like Notepad++ etc. that are used to edit and

view the Dex and manifest files. UltraEdit is very easy to use and has a high

execution time along with being user friendly. It has a lot of options that makes the

analysis part very easy.

1.5.5 Dex2Jar

It has been discussed that the java code is converted to Dalvik executable byte code

due to limited power and memory issues. During analysis there is a need to convert

that Dex byte code back to java format. Dex2Jar [12] is an easy to use command line

tool which serves the purpose. It is platform independent and converts the Dex byte

code to readable java code.

1.5.6 JD-GUI

When the Dex byte code has been converted to the readable java code, an easy to use

tool JD-GUI [13] is used to view the java code. This gives information about all

classes, functions, methods, API calls and routines in the java code.

1.6 Statement of Problem

The algorithm proposed in this research deals with the analysis of malicious

applications on smart phones running the Android operating system. There are various

commercial applications which serve the purpose but their methodology and source

code is unknown. Other research tools and applications written by various Android

security researchers have provided a better understanding of how newer types of

8

malware work and also help in analyzing their behavior. But most of them either yield

unsatisfactory results or do not cater for zero day malware samples. These algorithms

are also not fully tested on large datasets which also raise doubts on their ability. The

proposed research analyses Android applications and a novel and efficient anti-

malware algorithm has been proposed. However the challenge of detecting newer

types of malware has been growing.

1.7 Objectives

The following are the objectives of this research work:

1. To propose an optimal and sophisticated anti-malware algorithm that detects

malicious android applications on the basis of a wide range of features present

in an application.

2. To present an application for proof of concept that takes an Android

application as input and outputs the decision whether the application was

malicious or benign.

3. To develop a set of rules which can be tested on a large dataset so that

statistical approaches are applied to select and reject a rule based on its

presence in both malicious and benign samples.

4. To develop a proof of concept detection tool for android malware

1.8 Author’s Contribution

1. The author has proposed an anti-malware algorithm which is supported by a

proof of concept malware detection tool written using Python and C language.

The tool takes an Android application as input and detects whether it is

malicious or not. The tool has also been tested on very recent Android

malware samples and the results have been promising.

9

2. The proposed algorithm looks for certain features in the Android application’s

code. These features help in knowing the occurrence of malicious rules in the

application. Each rule occurrence carries some weight and the overall

malicious weight is computed by adding the weights of all rules that are found

out in the application.

3. The proposed algorithm makes use of data mining and statistical approaches

during the development of the anti-malware algorithm. This is a significant

feature of the proposed algorithm as using statistical and data mining

approaches incurs efficiency. The algorithm was made after analyzing 958

malicious and 816 benign applications. The large dataset that has been used to

devise the algorithm is another strength of the

4. The proposed algorithm was tested on 246 malicious and 758 benign

applications and an accuracy of 98.32% was observed which is considerably

high as compared to the accuracy of other algorithms discussed in Chapter 2.

1.9 Thesis Organization

The remaining portion of this thesis is organized as follows. Chapter 2 presents a brief

literature review of various anti-malware algorithms for Android operating system

and their pros and cons. Chapter 3 presents details about datasets used to develop and

evaluate the performance of the proposed anti-malware algorithm. Chapter 4 explains

the proposed anti-malware algorithm in detail. Chapter 5 presents the results and

analysis of proposed algorithm on various malicious and benign Android applications.

Chapter 6 concludes the carried research, explains its limitations and gives brief

insight into future directions.

10

C h a p t e r 2

LITERATURE REVIEW

2.1 Chapter Overview

This chapter presents a brief overview of existing algorithms which perform static

analysis of android applications, discusses their performance and efficiency and

highlights pros and cons of these algorithms.

2.2 Stowaway

Stowaway is a tool that demystifies Android applications to see whether a particular

compiled android application is over privileged or not. The way Stowaway works [14]

is that it finds the API calls an application uses and then maps those API calls to an

application’s permissions that have been called in the AndroidManifest.xml file.

Figure 2: Stowaway’s Functionality

2.2.1 Android Permission Map

Since the access control policy of Android is not thoroughly documented but in order

to determine whether an application is over privileged or not, there was an immense

need to build a permission map for Android. This is the best feature of the research

carried out while building stowaway that the researchers have developed a permission

map that characterizes the permission required for each API calls that an application

makes. The final output of this research was a tool named ‘Stowaway’ that ascertains

Determine the API
Calls

Map those API
Calls to

application's
Permissions

Check Over-
Privilege

11

the maximum set of permissions any application might ask for. The tool analyses how

the application makes use of API calls, Intents, Broadcast receivers and Content

Providers to analyze the permissions required by these processes and operations. In

this manner Stowaway computes the maximum set of permissions an application can

use and after that it computes the actual permissions being used by the application. If

the actual permissions being used by the application are greater than the maximum

permissions required by the application to smoothly run, then it is over privileged. A

set of 940 applications have been used for this analysis. Any android application can

be analyzed using stowaway’s online portal [15] where applications are uploaded for

analysis. A screen shot of an android application being after analysis is shown below.

Figure 3: Android Malware Gold Dream tested on Stowaway

2.2.2 Critical Analysis of Stowaway

This research work provides a very useful basis for understanding the overall

phenomenon of how permissions in Android work. It also utilizes ComDroid [16]

which is a tool that determines the threat imposed by dynamic intents. But the most

important question that arises here is that can any information be acquired about the

12

maliciousness of an application if it is over privileged, and the following arguments

elucidate the matter further.

1. An application can be malicious even if it is not over privileged. This means

that the permissions demanded by different operations such as API calls,

Intents, Broadcast receivers and Content providers are justified and no extra

permission has been demanded by the application. The application can

perform its malicious job without necessarily demanding extra permissions.

2. The other claim is that an application can be over privileged but not

malicious. This can happen because developers at times do not follow

development best practices and add extra permissions in their applications

just to be on the safer side because they never want their applications to fail at

any point of time in future. These developer errors can be avoided with proper

software quality assurance and testing but inexperienced developers just

release the application without having it properly tested. So this cannot be

ascertained that an application is suspicious or malicious if it is over

privileged.

2.3 Findroid

Findroid [17] is a tool that statically analyzes android applications and computes the

risk score based on the features it sees in the applications decompiled code. Also if the

score is greater than a particular threshold than the android application is labeled as

malicious. The algorithm depends on property detectors which were implemented and

categorized as Permissions, API call detectors, Command detectors, Presence of

executable or zip files in resources and assets, geographic detectors, URL detectors,

code size and some set combinations. The algorithm is tested on different android

13

applications and a total risk score is computed which would tell whether an

applications is benign or malicious.

2.3.1 Issues with Findroid

The biggest issue with Findroid is that it employs no statistical or data mining

approach to compute the score for any property detector. It also follows no technical

approach to set a value to the threshold that acts as a benchmark to decide

maliciousness of an application. Similarly, only seven property detectors are not

sufficient to decide on the maliciousness of an application.

2.4 The Genome Project

Another commendable research work that has been carried out in dissecting android

malware is known as the Genome project. This research work [21] successfully

systematized and characterized the Android malware available from August 2010 to

October 2011. A total of 1260 malware samples have been categorized in 49 families.

Four antivirus applications i.e. AVG Antivirus, Lookout Security and Antivirus,

Norton Mobile Security Lite and TrendMicro Mobile Security Personal Edition were

used to detect maliciousness of these applications. If any application is detected as

malicious, these Antiviruses will generate a warning that is recorded by a script

written by the researchers in Perl. The scanning results of these four antiviruses are

shown below in descending order of performance.

Antivirus No. of Malware

Families Scanned

No. of Applications

detected as malicious

Lookout 39 1003

TrendMicro 42 966

AVG 32 689

14

Norton 36 254

Table 1: Android Malware Gold Dream tested on Stowaway

2.4.1 Issues with the Genome Project

The research work is appreciable as far as the categorization of android malware is

concerned, since it is also available on request for future researchers working in

Android Security, but there are some deficiencies in the work.

First of all these four antiviruses probably use malware signatures for detection

purposes and do not analyze the application’s code statically. That is one obvious

reason that they fail to detect few latest malwares like BeanBot, CoinPirate, Droid

Coupon, DroidKungfuSapp, NickyBot and RogueLemon. The results of the mobile

security solutions used are somewhat disappointing as experiments show that the best

case detects 79.6 percent of malware, while the worst case detects only 20.2 percent

of malware available in the dataset.

2.5 Kirin: Mobile Phone Application Certification

Another useful research work that has been carried out was the development of Kirin

[22], an Android application that mitigates malware and allows legitimate

applications to be installed on the mobile phone. Kirin works on the principle of rules

which when found in an application term it as malicious. A total of nine rules have

been made to decide on the maliciousness of an application. The issue is that these

nine rules can just detect specific types of malware and might even reject legitimate

applications from getting installed. So Kirin can curtail few types of malware but it is

not a thorough security application that can be used for wider purposes. Also a set of

just nine rules is not sufficient to detect a variety of malwares which are so widely

spread in case of Android operating system.

15

2.6 Androguard

Androguard [23] provides the most useful set of commands and tools for reverse

engineering, malware and code analysis of Android applications. It is a tool mainly

written in python to play with the Android APK files, DEX (Dalvik executable) files

and Android manifest files. It helps in decompiling, disassembling and modifying the

Android application’s code. It also helps in the static analysis of the code. It is also

used for reverse engineering of Android applications and also provides a feature for

finding similarities and differences in Android Applications. It would also tell where a

particular permission is being used and called in the code and which API call or intent

specifically calls the permission. For instance the following set of commands is used

to display the strings present in an applications code.

Figure 4: Acquiring strings in an APK code using Androguard

The following figure shows the strings acquired from the code of Gold Dream

malware.

Figure 5: Strings obtained from Gold Dream using Androguard

16

2.7 Chapter Summary

In this chapter, various research works in the field of Android security and malware

analysis have been discussed. Stowaway is good tool for checking over privileged

applications while it does not discuss the maliciousness of an application. Findroid

lacks statistical and data mining approaches, Genome research project does not

produce promising results while Kirin cannot mitigate a variety of Android malware.

Androguard on the other hand is good for research purposes and cannot be used in

real time.

17

C h a p t e r 3

DATASETS

3.1 Chapter Overview

This chapter provides the detail of all malware samples being used for

experimentation and validation of the proposed algorithm for mitigation of malware.

Many of these samples have been used as datasets for other researches that have been

carried out in the same field. These samples belong to different malware families and

are obtained from various sources.

3.2 Android Malware Genome Project

In the genome project [24], the existing Android malware has been characterized by a

group of researchers after a yearlong effort. A set of 1260 Android applications were

collected and categorized in 49 different malware families. The characterization of

these malware samples depends on their installation methods, nature of carrying

malicious payloads and behavior. The Android Malware Genome Project was

supported in part by the US National Science Foundation (NSF) [8] while Google,

SOURCEfire, NQ Mobile and Trend Micro supported the project with Hardware

donations.

3.2.1 Genome Dataset Release Policy

In order to continue and aid further research in mitigating Android Malware, the

researchers working on the Android malware genome project released their dataset to

the Android security community. In order to avoid its probable misuse, proper

authentication was required to acquire their dataset. Their dataset is available to both

researchers working in the industry and academia.

18

1. For academic research, the student(s) needs to contact through his/her

university email also mentioning the faculty involved in the research.

2. For industrial purposes, the researcher(s) need to contact through his/her

official email along with the justification clearly stating the reasons why

dataset is being requested.

3.2.2 Acquisition of Genome Dataset

The genome Android malware dataset was acquired by officially requesting the

Genome team. The Genome Project has thus mentioned the name of National

University of Sciences and Technology (NUST), Pakistan on their portal where they

have mentioned universities, research labs and companies for whom the dataset has

been released.

Figure 6: NUST has now been mentioned at Android Malware Genome project

The 49 different malware families along with the number of samples contained in

each of these families is described in the table below. These malware samples were

used during different phases of Algorithm development and testing. The results

19

obtained while testing the proposed algorithm on these samples were compared with

the results produced by the Genome project itself in later chapters.

Figure 7: Malware families along with the number of samples used as dataset

3.2.3 Dataset: Algorithm Development

From the above dataset obtained, few families were used during the process of

Algorithm development. A total of 957 samples from the following malware families

were used during the selection of rules and making of the algorithm.

Genome Malware

Families

(Algorithm Development)

ADRD

AnswerBot

BaseBridge

20

DroidDream

DroidDream Light

DroidKungfu 3

DroidKungfu 4

Geinimi

jSMSHider

Kmin

PjApps

Plankton

Zsone

Table 2: Genome Malware Families used for Algorithm Development

3.2.4 Dataset: Algorithm Testing

For testing the proposed algorithm, different malware samples were used including

the Android genome malware project and Contagiodump [9]. 213 samples from

different Android genome malware families which were used for testing the proposed

algorithm are mentioned in the table below.

Genome Malware

Families

(Algorithm Testing)

RogueLemon RogueSPPush

SMSReplicator Spitmo

Walkinwat Tapsnake

LoveTrap NickyBot

NickySpy Jifake

GGTracker GingerMaster

GamblerSMS DroidKungFuUpdate

FakeNetflix CoinPirate

21

CruiseWin Dogwars

DroidCoupon Droid Deluxe

Asroot BeanBot

BgServ DroidKungFuSapp

GoldDream

Table 3: Genome Malware Families used for Algorithm Testing

3.3 Contagio Dump

For testing purposes different newer malware samples were acquired from Contagio

blogspot [25]. Some of these malware samples hardly a few weeks old. Contagio is a

well-known repository for acquiring malicious samples for different platforms.

3.4 Acquisition of Benign Android Applications

The benign applications were acquired from Google play using the Android Market

API. Since Google does not allow direct downloading of Android applications on

computers, there are various hacks available like the Android Market API and

different tools. Few benign applications were also acquired from other research teams

working in the field of Android forensics and security in the industry.

3.5 Chapter Summary

This chapter presented details about different datasets used during the development,

rectification and testing of the algorithm. These datasets were acquired mainly from

the Android genome malware project that consisted of 49 families and 1260 samples.

Malware samples were also acquired from Contagio malware dump while benign

applications were acquired from Google Play following a procedure mentioned in the

chapter.

22

C h a p t e r 4

PROPOSED ALGORITHM

4.1 Chapter Overview

The chapter presents, in detail, the proposed anti-malware algorithm for Android

applications. First of all it discusses the application features and malicious rules that

are needed to make the algorithm followed by the refinement and enhancement of the

algorithm using data mining and statistical techniques.

4.2 Android Application Features

Every application has some features that provide some knowledge about the behavior

of that application. It is important to know that Android application features cannot be

regarded as benign, suspicious or malicious; a feature is just a feature that helps in

understanding the functionality of an application. Later on it would become clear that

how these features are used to decide about the maliciousness of Android

applications. Sending SMS, sending MMS, making voice calls, writing to external

storage, accessing internet, starting a service, using Bluetooth or accessing WiFi

information etc. can be termed as features but most of them cannot be labeled as

malicious features.

4.2.1 Features used in the Algorithm

As discussed in Chapter 1, Android application comes in the APK format which when

extracted contains the AndroidManifest.xml file, the DEX file, assets and resources.

The proposed algorithm looks for these features in the Androidmanifest.xml and

classes.dex file. Apparently, it might occur that why not to find these features in Java

source code which is in the JAR file that is obtained after converting byte code to Java

code. But as the Dalvik byte code is obtained by converting Java code to DEX format

23

while developing the application so while reverse engineering it, it is enough to just

look for these features in the DEX file.

So for this purpose three scripts were written in Python which parse the

AndroidManifest.xml file, classes.dex file and both combined. The three Python

parsers written are

DexFeatures.py Parses DES file

ManifestFeatures.py Parses AndroidManifest.xml file

MutualFeatures.py Parses both DEX and Manifest file

Table 4: Parsers written in Python to find Features in DEX and Manifest file

So these parsers find features in the files specified to them. Since each feature has

been assigned a unique number, the features along with their number and name are

stored in a comma separate file for further use.

The list of various features which the parsers search in the Android application is

given in the table below.

Features

Reading Phone Credentials

Sending SMS

Downloading Files from Internet

Establishing connections over the Internet

Accessing Wi-Fi Information

Reading Contacts

Making a File

Uploading Files on the Internet

Starting a Service

24

Listening to Incoming Messages

Installing Packages

Copying Assets to the Phone

Enabling the USB Mode

Installing another Application

Using Encryption

Changing Permissions

Using Hashing Algorithms

Running Exploits

Accessing Social Media sites

Establishing Bluetooth Connection

Accessing FINE, COARSE, MOCK Location

Writing to External Storage

Monitoring SMS, MMS

Recording Audio

Web Search

Making a Zip Archive

Making Files on the device

Broadcast after System Reboot

Contacting a Server

Monitor, Modify, Abort Outgoing Calls

Writing Incoming Messages

Getting list of Installed Packages

Writing to System Settings

25

Deleting Installed Packages

Reading Low level System Logs

Changing Wi-Fi connectivity state

Mounting/Un-mounting File Systems

Turning debugging Mode for other Applications

Recording Audio

Formatting File systems for removable storage

Table 5: Features which are being looked for in Android Applications

If the parser script written in Python finds any feature, then the name and number of

this feature is stored in two separate comma separated files respectively. For instance

after scanning the Android malware ZITMO which was acquired from Contagio

dump, the following screenshot is taken from the file which stores the names of

features found in it.

Figure 8: Names of features found in ZITMO malware

Similarly the numbers assigned to these features are also stored in a separate file and

the following screenshot displays them.

26

Figure 9: Number of each feature found in ZITMO malware

4.3 Establishing Rules on basis of Features

As discussed earlier, features depict the overall behavior of any application and do not

alone help in deciding whether an application is malicious or not. For this purpose,

certain Malware Rules [26] have been established with the help of these features that

clearly help in deciding whether an application is malicious or not. It should be noted

that in most of the cases, different features combine to make one rule and in fewer

cases a singular feature can itself act as a rule. The latter case appears rarely because it

is quite uncommon for a single feature to be considered malicious.

The rules which have been made for determining the maliciousness of an application

are listed below.

Rule # Features in each Rule

Reading Phone

Credentials
1a

android.permission.READ_PHONE_STATE

android.permission.INTERNET (conn)

android.permission.INTERNET (upload)

Making File

Contacting a Remote Server

1b

android.permission.READ_PHONE_STATE

android.permission.INTERNET (Upload)

Zip Archive OR File

1c

android.permission.READ_PHONE_STATE

android.permission.INTERNET (conn)

Zip Archive OR

27

1d
android.permission.READ_PHONE_STATE

android.permission.INTERNET (conn)

1e
android.permission.READ_PHONE_STATE

Sending SMS

2a

android.permission.SEND_SMS

android.permission.INTERNET (conn)

android.permission.INTERNET (upload)

Zip Archive

Making File

Contacting a Remote Server

2b

android.permission.SEND_SMS

android.permission.INTERNET (Upload)

Zip Archive OR

Making File

2c

android.permission.SEND_SMS

android.permission.INTERNET (conn)

Zip Archive OR

Making File

2d
android.permission.SEND_SMS

android.permission.INTERNET (conn)

2e
android.permission.SEND_SMS

Reading Contacts

3a

android.permission.READ_CONTACTS

android.permission.INTERNET (conn)

android.permission.INTERNET (upload)

Zip Archive

Making File

Contacting a Remote Server

3b

android.permission.READ_CONTACTS

android.permission.INTERNET (Upload)

Zip Archive OR

Making File

3c

android.permission.READ_CONTACTS

android.permission.INTERNET (conn)

Zip Archive OR

Making File

3d
android.permission.READ_CONTACTS

android.permission.INTERNET (conn)

28

3e
android.permission.READ_CONTACTS

Access Wi-Fi State
4

android.permission.ACCESS_WIFI_STATE

android.permission.INTERNET (conn)

Listening to Incoming

messages

5a

android.permission.RECEIVE_SMS

android.permission.INTERNET (conn)

android.permission.INTERNET (upload)

Zip Archive

Making File

Contacting a Remote Server

5b

android.permission.RECEIVE_SMS

android.permission.INTERNET (Upload)

Zip Archive OR

Making File

5c

android.permission.RECEIVE_SMS

android.permission.INTERNET (conn)

Zip Archive OR

Making File

5d
android.permission.RECEIVE_SMS

android.permission.INTERNET (conn)

5e
android.permission.RECEIVE_SMS

Installing Packages

6a

copy Assets

android.permission.INSTALL_PACKAGES

chmod 775 OR

Root Shell

6b

copy Assets

chmod 775 OR

Root Shell

6c
copy Assets

android.permission.INSTALL_PACKAGES

Encryption

7

Hashing SHA1

Key Ciphers

PRNG

Hashing MD5

Enabling USB Mode
8 Enabling USB Mode

29

Installing other

Applications
9a

action.download_apk

intsall apps

Download files

9b
action.download_apk

intsall apps

Rooting/Shell Scripts

10a

action.download_shells

chmod

Root Shell

10b
action.download_shells

Root Shell

Phone State and Audio

11

android.permission.READ_PHONE_STATE

android.permission.RECORD_AUDIO

android.permission.INTERNET (conn)

Access FINE Location

12a

android.permission.ACCESS_FINE_LOCATION

RECEIVE BOOT COMPLETED

android.permission.INTERNET (conn)

12b
android.permission.ACCESS_FINE_LOCATION

android.permission.INTERNET (conn)

Access CORASE

Location
13a

android.permission.ACCESS_COARSE_LOCATION

RECEIVE BOOT COMPLETED

android.permission.INTERNET (conn)

13b
android.permission.ACCESS_COARSE_LOCATION

android.permission.INTERNET (conn)

Receive/Write SMS
14

android.permission.RECEIVE_SMS

android.permission.WRITE_SMS

Send/Write SMS
15

android.permission.SEND_SMS

android.permission.WRITE_SMS

CALL_PRIVILEGED

16
 android.permission.CALL_PRIVILEGED

Calling Phone

17a

android.permission.CALL_PHONE

Internet

android.permission.PROCESS_OUTGOING_CALL

17b

android.permission.CALL_PHONE

Internet

30

17c

android.permission.PROCESS_OUTGOING_CALL

Internet

17d android.permission.CALL_PHONE

17e android.permission.PROCESS_OUTGOING_CALL

Accessing Web and

Social Media
18a

Accessing Twitter

Internet

Web Search

18b

Accessing Twitter

Internet

Uploading Bluetooth

data

19a
Bluetooth

Upload Files

19b
 Bluetooth

Starting Service

20

Service

BOOT_COMPLETED

INTERNET

Accessing MOCK

Location
21a

android.permission.ACCESS_MOCK_LOCATION

RECEIVE BOOT COMPLETED

android.permission.INTERNET (conn)

21b
android.permission.ACCESS_MOCK_LOCATION

android.permission.INTERNET (conn)

Writing to External

Storage
23

 WRITE_EXTERNAL_STORAGE

Web Search

24

WEB_SEARCH

DOWNLAOD

INTERNET

Contacting Server
25

SERVER

INTERNET

Installed Packages
26

LIST OF PACKAGES

INTERNET

31

Reading Logs
27

READ_LOGS

INTERNET

Mounting/Un-

mounting File Systems

28a
MOUNTING/UNMOUNTING

INTERNET

28b MOUNTING/UNMOUNTING

SET_DEBUG_APPS
29a

SET_DEBUG_APPS

INTERNET

29b SET_DEBUG_APPS

Format File Systems
30a

FORMAT_FILE_SYSTEMS

INTERNET

30b FORMAT_FILE_SYSTEMS

Delete Packages
31 android.permission.DELETE_PACKAGES

Write Settings
32 android.permission.WRITE_SETTINGS

Write Security Settings
33

android.permission.WRITE_SECURE_SETTINGS

Table 6: Rules which are being looked for in Android Applications

4.4 Checking Presence of Rules in Dataset

After these rules are made, the dataset used in making the algorithm as mentioned in

Chapter 3 is checked for the presence of these rules. So it is important to know that

these rules will be checked for in both the malicious and benign datasets.

4.4.1 Presence in Malware Dataset

An automated script written in Python checks for the presence of these rules in the

malware dataset which consists of 957 samples. The malware dataset is placed at a

different location on the drive and a batch file picks each sample, copies it to the

location where the analysis is being performed, extracts and stores the results in a data

32

repository and this process continues till the acquisition of complete results. The

following Flowchart explains the process in an elucidated manner.

Figure 10: Flowchart for finding Rules in Malware Database

Batch File Executes

Fetches APK file

from malware

Dataset

Python Script

Executes

Update ‘Malware Analysis’

Database

Start

End

Rule

Found

YES NO

‘1’ ‘0’

33

After the process completes and results are gathered in the repository, presence of

rules for overall malicious dataset is computed. The following steps would explain

how information about the existence of rules is computed.

 When a particular rule is found in a malware sample, the algorithm returns 1,

else it returns 0.

 Let ‘ ’ be the total number of malware samples tested for Rule presence.

 Let be the total number of 1s against a particular rule ‘ ’ which means that

Rule ‘ ’ is found in ‘ ’ samples out of the total ‘ ’ samples.

 Number of samples where Rule ‘ ’ is not found would be

 Now the probability of occurrence of Rule ‘ ’ can be found out by:

 () (4.1)

 And the probability of absence of Rule ‘ ’ can be found out by:

 () () (4.2)

Now, since it is clear how the probabilities of occurrence and absence of a rule are

being calculated for the malware dataset, the actual results of all 67 rules are

displayed in the table below:

 RULES MALWARE

Name No. P(0) P(1)

Reading Phone State & Internet 1d 0.017763845 0.982236155

Reading Phone State, Internet & Zip Archive 1c 0.257053292 0.742946708

Starting a Service 20 0.399164054 0.600835946

Accessing Wi-Fi State 4 0.287356322 0.712643678

Sending SMS and Internet 2d 0.562173459 0.437826541

Reading Contact & Internet 3d 0.562173459 0.437826541

Sending SMS and Internet & Zip Archive 2c 0.587251829 0.412748171

SEND/WRITE SMS 15 0.612330199 0.387669801

RECEIVE SMS & Internet 5d 0.595611285 0.404388715

RECEIVE/WRITE SMS 14 0.635318704 0.364681296

RECEIVE SMS, Internet & Zip Archive 5c 0.62800418 0.37199582

Enabling USB Mode 8 0.670846395 0.329153605

34

Calling Phone & Internet 17b 0.546499478 0.453500522

Contacting a Server 25 0.793103448 0.206896552

Access COARSE Location, Boot Completed &

Internet 13a 0.764890282 0.235109718

Reading Logs 27 0.779519331 0.220480669

Access FINE Location, Boot Completed & Internet 12a 0.781609195 0.218390805

Call Phone 17d 0.545454545 0.454545455

Access COARSE Location & Internet 13b 0.5276907 0.4723093

Hashing 7c 0.228840125 0.771159875

Disallowed Broadcasts 34 0.92476489 0.07523511

Reading Contact, Internet & Zip Archive 3c 0.931034483 0.068965517

Mounting/Un-mounting & Internet 28a 0.920585162 0.079414838

Ciphers 7b 0.360501567 0.639498433

Process Outgoing Call & Internet 17c 0.955067921 0.044932079

Process Outgoing Call 17e 0.954022989 0.045977011

Deleting Packages 31 0.96969697 0.03030303

Writing to External Storage 23 0.310344828 0.689655172

Mounting/Un-mounting 28b 0.91954023 0.08045977

Call Phone, Process Outgoing Call & Internet 17a 0.967607106 0.032392894

Access FINE Location & Internet 12b 0.593521421 0.406478579

Write Settings 32 0.918495298 0.081504702

Receive SMS 5e 0.987460815 0.012539185

Reading Phone State 1e 0.988505747 0.011494253

Reading Phone State, Upload & Zip Archive 1b 0.995820272 0.004179728

Sending SMS 2e 0.995820272 0.004179728

Reading Contacts 3e 0.995820272 0.004179728

RECEIVE SMS, Upload & Zip Archive 5b 0.995820272 0.004179728

Reading Phone State, Upload, Zip Archive, Server 1a 1 0

Sending SMS, Upload, Zip Archive, Server 2a 1 0

Reading Contacts, Upload, Zip Archive, Server 3a 1 0

Reading Contacts, Upload, Zip Archive 3b 1 0

Receive SMS, Upload, Zip Archive, Server 5a 1 0

Copy Assets, Install Packages & Rooting 6a 1 0

Copy Assets & Rooting 6b 1 0

Copy Assets & Install Packages 6c 1 0

Download files & Install APK 9a 1 0

Download APKS 9b 1 0

Downloading Shell Script & Changing Permissions 10a 1 0

Downloading Shell Script & Rooting 10b 1 0

Accessing Web and Social Media 18a 1 0

Bluetooth Upload 19a 1 0

Web Search 24 1 0

List of Installed Packages & Internet 26 1 0

SET_DEBUG_APPS & Internet 29a 1 0

SET_DEBUG_APPS 29b 1 0

35

Format File Systems & Internet 30a 1 0

Format File Systems 30b 1 0

Reading Phone State, Recording Audio & Internet 11 0.973876698 0.026123302

Sending SMS, Upload, Zip Archive 2b 0.998955068 0.001044932

Writing Security Settings 33 0.991640543 0.008359457

Privileged Call Permission 16 0.996865204 0.003134796

Accessing MOCK Location, Boot Completed &

Internet 21b 0.997910136 0.002089864

Bluetooth Upload 19d 0.997910136 0.002089864

Encryption, Hashing, Ciphering 7a 0.996865204 0.003134796

Accessing Twitter 18b 0.979101358 0.020898642

Table 7: Probability of Occurrence and Rejection of Rules in Malware Dataset

4.4.2 Presence in Benign Dataset

Another automated script written in Python checks for the presence of these rules in

the benign dataset which consists of 816 samples in the similar manner as it was done

for malicious samples. The following Flowchart explains the process in an elucidated

manner.

36

Figure 11: Flowchart for finding Rules in Benign Database

After the process completes and results are gathered in the repository, presence of

rules for overall benign dataset is computed. The following steps would explain how

information about the existence of rules is computed.

 When a particular rule is found in a benign sample, the algorithm returns 1,

else it returns 0.

 Let ‘ ’ be the total number of malware samples tested for Rule presence.

 Let be the total number of 1s against a particular Rule ‘ ’ which means that

Rule ‘ ’ is found in ‘ ’ samples out of the total ‘ ’ samples.

Fetches APK file

from Benign

Dataset

Python Script

Executes

Update ‘Benign Analysis’

Database

Rule

Found

YES NO

‘1’ ‘0’

Start

37

 Number of samples where Rule ‘ ’ is not found would be

 Now the probability of occurrence of Rule ‘ ’ can be found out by:

 () (4.3)

 And the probability of absence of Rule ‘ ’ can be found out by:

 () () (4.4)

Now, since it is clear how the probabilities of occurrence and absence of a rule are

being calculated for the malware dataset, the actual results of all 67 rules are

displayed in the table below:

RULES BENIGN

Name No. Q(0) Q(1)

Reading Phone State & Internet 1d 0.881127451 0.118872549

Reading Phone State, Internet & Zip Archive 1c 0.933823529 0.066176471

Starting a Service 20 0.962009804 0.037990196

Accessing Wi-Fi State 4 0.830882353 0.169117647

Sending SMS and Internet 2d 0.995098039 0.004901961

Reading Contact & Internet 3d 0.995098039 0.004901961

Sending SMS and Internet & Zip Archive 2c 0.996323529 0.003676471

SEND/WRITE SMS 15 0.991421569 0.008578431

RECEIVE SMS & Internet 5d 0.968137255 0.031862745

RECEIVE/WRITE SMS 14 0.993872549 0.006127451

RECEIVE SMS, Internet & Zip Archive 5c 0.975490196 0.024509804

Enabling USB Mode 8 1 0

Calling Phone & Internet 17b 0.781862745 0.218137255

Contacting a Server 25 0.99877451 0.00122549

Access COARSE Location, Boot Completed

& Internet
13a

0.955882353 0.044117647

Reading Logs 27 0.964460784 0.035539216

Access FINE Location, Boot Completed &

Internet
12a

0.955882353 0.044117647

Call Phone 17d 0.724264706 0.275735294

Access COARSE Location & Internet 13b 0.667892157 0.332107843

Hashing 7c 0.329656863 0.670343137

Disallowed Broadcasts 34 0.99877451 0.00122549

Reading Contact, Internet & Zip Archive 3c 0.993872549 0.006127451

Mounting/Un-mounting & Internet 28a 0.968137255 0.031862745

Ciphers 7b 0.432598039 0.567401961

Process Outgoing Call & Internet 17c 0.993872549 0.006127451

Process Outgoing Call 17e 0.990196078 0.009803922

38

Deleting Packages 31 0.99877451 0.00122549

Writing to External Storage 23 0.37254902 0.62745098

Mounting/Un-mounting 28b 0.958333333 0.041666667

Call Phone, Process Outgoing Call & Internet 17a 0.995098039 0.004901961

Access FINE Location & Internet 12b 0.645833333 0.354166667

Write Settings 32 0.947303922 0.052696078

Receive SMS 5e 1 0

Reading Phone State 1e 1 0

Reading Phone State, Upload & Zip Archive 1b 1 0

Sending SMS 2e 1 0

Reading Contacts 3e 1 0

RECEIVE SMS, Upload & Zip Archive 5b 1 0

Reading Phone State, Upload, Zip Archive,

Server
1a

1 0

Sending SMS, Upload, Zip Archive, Server 2a 1 0

Reading Contacts, Upload, Zip Archive,

Server
3a

1 0

Reading Contacts, Upload, Zip Archive 3b 1 0

Receive SMS, Upload, Zip Archive, Server 5a 1 0

Copy Assets, Install Packages & Rooting 6a 1 0

Copy Assets & Rooting 6b 1 0

Copy Assets & Install Packages 6c 1 0

Download files & Install APK 9a 1 0

Download APKS 9b 1 0

Downloading Shell Script & Changing

Permissions
10a

1 0

Downloading Shell Script & Rooting 10b 1 0

Accessing Web and Social Media 18a 1 0

Bluetooth Upload 19a 1 0

Web Search 24 1 0

List of Installed Packages & Internet 26 1 0

SET_DEBUG_APPS & Internet 29a 1 0

SET_DEBUG_APPS 29b 1 0

Format File Systems & Internet 30a 1 0

Format File Systems 30b 1 0

Reading Phone State, Recording Audio &

Internet
11

0.986519608 0.013480392

Sending SMS, Upload, Zip Archive 2b 1 0

Writing Security Settings 33 0.996323529 0.003676471

Privileged Call Permission 16 0.993872549 0.006127451

Accessing MOCK Location, Boot Completed

& Internet
21b

0.992647059 0.007352941

Bluetooth Upload 19d 0.984068627 0.015931373

Encryption, Hashing, Ciphering 7a 0.944852941 0.055147059

Accessing Twitter 18b 0.829656863 0.170343137

39

Table 8: Probability of Occurrence and Rejection of Rules in Benign Dataset

4.4.3 Computing Differences between Malware and Benign Datasets

Since the information about the presence of all rules has been calculated for both

Malicious and Benign datasets, the next step is to examine which Rules are more

prevalent in malicious samples as compared to benign. The most apparent method to

check the difference between the prevalence of rules in both sets is to compute the

arithmetic difference between probabilities of existence or a rule in both datasets. This

has been computed and shown below in the following table:

RULES DIFFERENCE

Name No. Ω = P(1)-Q(1)

Reading Phone State & Internet 1d 0.863363606

Reading Phone State, Internet & Zip Archive 1c 0.676770238

Starting a Service 20 0.56284575

Accessing Wi-Fi State 4 0.543526031

Sending SMS and Internet 2d 0.43292458

Reading Contact & Internet 3d 0.43292458

Sending SMS and Internet & Zip Archive 2c 0.409071701

SEND/WRITE SMS 15 0.37909137

RECEIVE SMS & Internet 5d 0.37252597

RECEIVE/WRITE SMS 14 0.358553845

RECEIVE SMS, Internet & Zip Archive 5c 0.347486016

Enabling USB Mode 8 0.329153605

Calling Phone & Internet 17b 0.235363268

Contacting a Server 25 0.205671062

Access COARSE Location, Boot Completed & Internet 13a 0.190992071

Reading Logs 27 0.184941453

Access FINE Location, Boot Completed & Internet 12a 0.174273158

Call Phone 17d 0.17881016

Access COARSE Location & Internet 13b 0.140201457

Hashing 7c 0.100816737

Disallowed Broadcasts 34 0.07400962

Reading Contact, Internet & Zip Archive 3c 0.062838066

Mounting/Un-mounting & Internet 28a 0.047552093

Ciphers 7b 0.072096472

Process Outgoing Call & Internet 17c 0.038804628

Process Outgoing Call 17e 0.03617309

Deleting Packages 31 0.02907754

Writing to External Storage 23 0.062204192

40

Mounting/Un-mounting 28b 0.038793103

Call Phone, Process Outgoing Call & Internet 17a 0.027490934

Access FINE Location & Internet 12b 0.052311912

Write Settings 32 0.028808624

Receive SMS 5e 0.012539185

Reading Phone State 1e 0.011494253

Reading Phone State, Upload & Zip Archive 1b 0.004179728

Sending SMS 2e 0.004179728

Reading Contacts 3e 0.004179728

RECEIVE SMS, Upload & Zip Archive 5b 0.004179728

Reading Phone State, Upload, Zip Archive, Server 1a 0

Sending SMS, Upload, Zip Archive, Server 2a 0

Reading Contacts, Upload, Zip Archive, Server 3a 0

Reading Contacts, Upload, Zip Archive 3b 0

Receive SMS, Upload, Zip Archive, Server 5a 0

Copy Assets, Install Packages & Rooting 6a 0

Copy Assets & Rooting 6b 0

Copy Assets & Install Packages 6c 0

Download files & Install APK 9a 0

Download APKS 9b 0

Downloading Shell Script & Changing Permissions 10a 0

Downloading Shell Script & Rooting 10b 0

Accessing Web and Social Media 18a 0

Bluetooth Upload 19a 0

Web Search 24 0

List of Installed Packages & Internet 26 0

SET_DEBUG_APPS & Internet 29a 0

SET_DEBUG_APPS 29b 0

Format File Systems & Internet 30a 0

Format File Systems 30b 0

Reading Phone State, Recording Audio & Internet 11 0.01264291

Sending SMS, Upload, Zip Archive 2b 0.001044932

Writing Security Settings 33 0.004682986

Privileged Call Permission 16 -0.002992655

Accessing MOCK Location, Boot Completed & Internet 21b -0.005263077

Bluetooth Upload 19d -0.013841508

Encryption, Hashing, Ciphering 7a -0.052012263

Accessing Twitter 18b -0.149444496

Table 9: Difference between presence of all Rules in malicious and benign datasets

4.5 Selection of Rules

Since the difference between the existence of rules in malicious and benign samples

has been acquired and the rules with positive values of difference can be selected for

41

the anti-malware but it has been ascertained that just the arithmetic difference is not a

good measure for this purpose because it is not known that how greater the probability

of existence of a particular rule in malicious samples should be from the probability of

its existence in benign samples. The following method has been used to make the

process of rule selection statistically correct.

4.5.1 Bernoulli’s Trial

Bernoulli’s Trial [24] is a statistical experiment whose result can be either two

possible outcomes, either ‘1’ or ‘0’. If Bernoulli’s process [27] is applied to this

particular research problem, it can be said that the Probability of Occurrence and

Probability of Absence of a rule in both malicious and benign datasets are the only

two possible outcomes e.g. ‘existence of a rule’ and ‘absence of a rule’ such that:

 ‘1’ corresponds to ‘Presence of Rule’

 ‘0’ corresponds to ‘Absence of Rules’

Applying Bernoulli’s Trial to the scenario

 () () . ()

0 1-p 0 0

1 p p p

 1 () ()

Table 10: Applying Bernoulli’s Trial to Rules

Applying Bernoulli’s Trial to Rule ‘1c’ for both malicious and benign datasets, the

following information is acquired.

 () () . ()

0 0 0

42

1 p

 1

Table 11: Rule ‘1c’ in Malware Dataset

 () () . ()

0 0 0

1 p

 1

Table 12: Rule ‘1c’ in Benign Dataset

4.5.2 Computing Variance and Standard Error

As variance [28] is a statistical concept for measuring how far the numbers are spread

out and more specifically how far the set of numbers lie from the mean value of that

set of numbers. So keeping in view Table 4.6 and Table 4.7 the variance is computed

as.

 () () () (4.5)

 =

 = ()

 =

For number of samples, Variance becomes () .

After computing variance, the next step is to compute Standard Error which is the

estimate of the standard deviation [27] derived from the presented dataset. Standard

Error is related to variance in the following manner

 = √() (4.6)

43

Since the requirement is to know the difference between the probabilities of

occurrence of a rule in malicious and benign datasets respectively i.e. () and

 () so the Standard Error of [() - ()] should be calculated

 () () = √
 () ()

 () ()

 (4.7)

The computed values of Variance and Standard deviation [28] are shown in the table

below:

RULES
DIFFERENCE VARIANCE

STANDARD

ERROR

Ω = P(1)-Q(1)

n1 = 957, n2 =

816 S.E (P1-P2)

1d 0.863363606 0.000146592 0.012107535

1c 0.676770238 0.00027529 0.016591856

20 0.56284575 0.000295396 0.017187094

4 0.543526031 0.000386186 0.019651616

2d 0.43292458 0.000263172 0.016222566

3d 0.43292458 0.000263172 0.016222566

2c 0.409071701 0.000257767 0.016055123

15 0.37909137 0.000258471 0.016077021

5d 0.37252597 0.000289484 0.017014232

14 0.358553845 0.000249562 0.015797539

5c 0.347486016 0.000273412 0.016535177

8 0.329153605 0.000230733 0.015189899

17b 0.235363268 0.000467985 0.021632965

25 0.205671062 0.000172963 0.01315155

13a 0.190992071 0.000239594 0.015478821

27 0.184941453 0.000221596 0.014886118

12a 0.174273158 0.000230046 0.015167284

17d 0.17881016 0.000503811 0.022445735

13b 0.140201457 0.00053226 0.023070772

7c 0.100816737 0.000455214 0.021335753

34 0.07400962 7.42009E-05 0.008613995

3c 0.062838066 7.45575E-05 0.008634666

28a 0.047552093 0.000114196 0.010686269

7b 0.072096472 0.000541704 0.023274534

17c 0.038804628 5.23045E-05 0.007232184

17e 0.03617309 5.77308E-05 0.007598079

31 0.02907754 3.22051E-05 0.00567495

23 0.062204192 0.000510114 0.022585698

28b 0.038793103 0.000126245 0.011235873

44

17a 0.027490934 3.87298E-05 0.006223326

12b 0.052311912 0.000532403 0.023073868

32 0.028808624 0.000139401 0.011806815

5e 0.012539185 1.29383E-05 0.003596985

1e 0.011494253 1.18727E-05 0.003445673

1b 0.004179728 4.34928E-06 0.002085492

2e 0.004179728 4.34928E-06 0.002085492

3e 0.004179728 4.34928E-06 0.002085492

5b 0.004179728 4.34928E-06 0.002085492

1a 0 0 0

2a 0 0 0

3a 0 0 0

3b 0 0 0

5a 0 0 0

6a 0 0 0

6b 0 0 0

6c 0 0 0

9a 0 0 0

9b 0 0 0

10a 0 0 0

10b 0 0 0

18a 0 0 0

19a 0 0 0

24 0 0 0

26 0 0 0

29a 0 0 0

29b 0 0 0

30a 0 0 0

30b 0 0 0

11 0.01264291 4.28814E-05 0.006548387

2b 0.001044932 1.09074E-06 0.001044386

33 0.004682986 1.3151E-05 0.003626425

16 -0.002992655 1.07285E-05 0.003275439

21b -0.005263077 1.11239E-05 0.003335252

19d -0.013841508 2.13919E-05 0.004625138

7a -0.052012263 6.71206E-05 0.008192716

18b -0.149444496 0.000194575 0.013949027

Table 13: Values of Variance and Standard Error for all Rules

4.5.3 Computing least Significant Distance using Standard Normal Distribution

Now since the standard error has been computed, the next step is to compute the Least

Significant Distance. For calculating the LSD, Gaussian distribution [29], [30] is

45

used. This will be used because in the proposed algorithm the total number of samples

is greater than 30. For experiments where the total number of samples is less than 30,

Tailor’s distribution is used.

Gaussian distribution or Normal distribution is a continuous probability distribution in

probability theory. The entire family of normal probability distributions is defined by

its mean and its standard deviation

Figure 12: Normal Distribution

The highest point on the Normal Curve is at the mean, which is also the Median and

Mode.

Figure 13: Mean of Normal Distribution

Probabilities for the Random Normal Variable are given by Areas under the curve.

The total area under the curve is ‘1’ (‘0.5’ to the left of mean and ‘0.5’ to the right) as

shown in the figure below:

 X

 Standard Deviation s

 Mean m

 X

46

Figure 14: Area under the Gaussian Curve

There are certain characteristics [31] of the standard normal distribution

 68.26% of values of a Normal Random Variable are within ‘+/-1 Standard

Deviation’ of its mean.

 95.44% of values of a Normal Random Variable are within ‘+/-2 Standard

Deviation’ of its mean.

 99.72% of values of a Normal Random Variable are within ‘+/-3 Standard

Deviation’ of its mean.

The characteristics mentioned above are depicted in the figure below:

Figure 15: Characteristics of a Normal Distribution

 .5 .5

X

47

Now, a random variable having a normal distribution with a mean of ‘0’ and a

standard deviation of ‘1’ is said to have a Standard Normal Probability Distribution.

The letter ‘z’ is used to designate the Standard Normal random Variable.

Figure 16: Standard Normal Probability Distribution

Converting to the Standard Normal Distribution

 (4.8)

‘z’ can be thought of as a measure of the number of Standard Deviations x is from

Mean. In this research the Standard Normal Distribution with 5% level of significance

has been used as shown in the figure below:

 0

 z

48

Figure 17: Standard Normal Probability Distribution

The above graph shows the Normal Distribution of the test statistic ‘z’ in a two sided

hypothesis test. ‘z’ has a standard normal distribution with a mean of Zero and a

variance of 1. The critical values for 5% level of significance are fixed at +1.96 and -

1.96. The rejection regions are the areas marked with oblique lines under the two tails

of the curve, and they correspond to any test statistic lying either below -1.96 or

above +1.96. The value of 1.96 is obtained by looking at the standard graph of Areas

under the Standard Normal Curve from 0 to ‘z’ as shown below.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756

Table 14: Graph for checking Area under the Standard Normal Curve

49

Finally the Least Significant Distance is computed by multiplying the Standard Error

with 1.96 since Standard Normal Distribution with 5% significance is being used. The

computed values of Least Significant Distance are listed in the table below:

RULES
DIFFERENCE VARIANCE

STANDARD

ERROR
LSD

Ω = P(1)-Q(1)

n1 = 957, n2 =

816 S.E (P1-P2)

LSD (p1-

p2)

1d 0.863363606 0.000146592 0.012107535 0.023730769

1c 0.676770238 0.00027529 0.016591856 0.032520038

20 0.56284575 0.000295396 0.017187094 0.033686703

4 0.543526031 0.000386186 0.019651616 0.038517168

2d 0.43292458 0.000263172 0.016222566 0.03179623

3d 0.43292458 0.000263172 0.016222566 0.03179623

2c 0.409071701 0.000257767 0.016055123 0.031468042

15 0.37909137 0.000258471 0.016077021 0.03151096

5d 0.37252597 0.000289484 0.017014232 0.033347894

14 0.358553845 0.000249562 0.015797539 0.030963176

5c 0.347486016 0.000273412 0.016535177 0.032408946

8 0.329153605 0.000230733 0.015189899 0.029772202

17b 0.235363268 0.000467985 0.021632965 0.042400612

25 0.205671062 0.000172963 0.01315155 0.025777039

13a 0.190992071 0.000239594 0.015478821 0.03033849

27 0.184941453 0.000221596 0.014886118 0.02917679

12a 0.174273158 0.000230046 0.015167284 0.029727876

17d 0.17881016 0.000503811 0.022445735 0.04399364

13b 0.140201457 0.00053226 0.023070772 0.045218712

7c 0.100816737 0.000455214 0.021335753 0.041818076

34 0.07400962 7.42009E-05 0.008613995 0.016883431

3c 0.062838066 7.45575E-05 0.008634666 0.016923945

28a 0.047552093 0.000114196 0.010686269 0.020945087

7b 0.072096472 0.000541704 0.023274534 0.045618088

17c 0.038804628 5.23045E-05 0.007232184 0.014175081

17e 0.03617309 5.77308E-05 0.007598079 0.014892235

31 0.02907754 3.22051E-05 0.00567495 0.011122903

23 0.062204192 0.000510114 0.022585698 0.044267968

28b 0.038793103 0.000126245 0.011235873 0.022022311

17a 0.027490934 3.87298E-05 0.006223326 0.012197719

12b 0.052311912 0.000532403 0.023073868 0.045224781

32 0.028808624 0.000139401 0.011806815 0.023141356

5e 0.012539185 1.29383E-05 0.003596985 0.007050091

1e 0.011494253 1.18727E-05 0.003445673 0.006753518

1b 0.004179728 4.34928E-06 0.002085492 0.004087564

2e 0.004179728 4.34928E-06 0.002085492 0.004087564

50

3e 0.004179728 4.34928E-06 0.002085492 0.004087564

5b 0.004179728 4.34928E-06 0.002085492 0.004087564

1a 0 0 0 0

2a 0 0 0 0

3a 0 0 0 0

3b 0 0 0 0

5a 0 0 0 0

6a 0 0 0 0

6b 0 0 0 0

6c 0 0 0 0

9a 0 0 0 0

9b 0 0 0 0

10a 0 0 0 0

10b 0 0 0 0

18a 0 0 0 0

19a 0 0 0 0

24 0 0 0 0

26 0 0 0 0

29a 0 0 0 0

29b 0 0 0 0

30a 0 0 0 0

30b 0 0 0 0

11 0.01264291 4.28814E-05 0.006548387 0.012834839

2b 0.001044932 1.09074E-06 0.001044386 0.002046997

33 0.004682986 1.3151E-05 0.003626425 0.007107793

16 -0.002992655 1.07285E-05 0.003275439 0.00641986

21b -0.005263077 1.11239E-05 0.003335252 0.006537093

19d -0.013841508 2.13919E-05 0.004625138 0.009065271

7a -0.052012263 6.71206E-05 0.008192716 0.016057724

18b -0.149444496 0.000194575 0.013949027 0.027340092

Table 15: Values of L.S.D computed using Standard Normal Distribution

4.5.4 Selection of Rules

After the computation of Least Significant Difference between the probability of

occurrence of a rule between malicious and benign applications a threshold should be

defined in order to select some specific rules. The is set such that if the arithmetic

difference of the probability of occurrence of a rule in malicious and benign is less

than the Least Significant Difference of the probability of occurrence of a rule in

51

malicious and benign dataset, the rule is rejected, otherwise accepted. The process is

shown in the form of pseudo code as shown below.

If (Arithmetic Difference of P(i) and Q(i) > L.S.D of P(i) and Q(i))

 Accept Rule

Else

 Reject Rule

The computed values along with the decision of acceptance and rejection are

illustrated in the table below.

RULES

STANDARD

ERROR
LSD DECISION

ACCEPTANCE

DECISION

S.E (P1-P2)
LSD (p1-p2)

whether Ω >

LSD

1d 0.012107535 0.023730769 0.839632837 Accept

1c 0.016591856 0.032520038 0.6442502 Accept

20 0.017187094 0.033686703 0.529159046 Accept

4 0.019651616 0.038517168 0.505008863 Accept

2d 0.016222566 0.03179623 0.401128351 Accept

3d 0.016222566 0.03179623 0.401128351 Accept

2c 0.016055123 0.031468042 0.377603659 Accept

15 0.016077021 0.03151096 0.34758041 Accept

5d 0.017014232 0.033347894 0.339178076 Accept

14 0.015797539 0.030963176 0.327590669 Accept

5c 0.016535177 0.032408946 0.31507707 Accept

8 0.015189899 0.029772202 0.299381403 Accept

17b 0.021632965 0.042400612 0.192962656 Accept

25 0.01315155 0.025777039 0.179894023 Accept

13a 0.015478821 0.03033849 0.160653581 Accept

27 0.014886118 0.02917679 0.155764663 Accept

12a 0.015167284 0.029727876 0.144545282 Accept

17d 0.022445735 0.04399364 0.13481652 Accept

13b 0.023070772 0.045218712 0.094982745 Accept

7c 0.021335753 0.041818076 0.058998662 Accept

34 0.008613995 0.016883431 0.057126189 Accept

3c 0.008634666 0.016923945 0.045914122 Accept

28a 0.010686269 0.020945087 0.026607006 Accept

7b 0.023274534 0.045618088 0.026478384 Accept

17c 0.007232184 0.014175081 0.024629548 Accept

17e 0.007598079 0.014892235 0.021280855 Accept

31 0.00567495 0.011122903 0.017954638 Accept

52

23 0.022585698 0.044267968 0.017936224 Accept

28b 0.011235873 0.022022311 0.016770792 Accept

17a 0.006223326 0.012197719 0.015293215 Accept

12b 0.023073868 0.045224781 0.007087131 Accept

32 0.011806815 0.023141356 0.005667267 Accept

5e 0.003596985 0.007050091 0.005489094 Accept

1e 0.003445673 0.006753518 0.004740735 Accept

1b 0.002085492 0.004087564 9.21639E-05 Accept

2e 0.002085492 0.004087564 9.21639E-05 Accept

3e 0.002085492 0.004087564 9.21639E-05 Accept

5b 0.002085492 0.004087564 9.21639E-05 Accept

1a 0 0 0 Reject

2a 0 0 0 Reject

3a 0 0 0 Reject

3b 0 0 0 Reject

5a 0 0 0 Reject

6a 0 0 0 Reject

6b 0 0 0 Reject

6c 0 0 0 Reject

9a 0 0 0 Reject

9b 0 0 0 Reject

10a 0 0 0 Reject

10b 0 0 0 Reject

18a 0 0 0 Reject

19a 0 0 0 Reject

24 0 0 0 Reject

26 0 0 0 Reject

29a 0 0 0 Reject

29b 0 0 0 Reject

30a 0 0 0 Reject

30b 0 0 0 Reject

11 0.006548387 0.012834839 -0.000191929 Reject

2b 0.001044386 0.002046997 -0.001002064 Reject

33 0.003626425 0.007107793 -0.002424807 Reject

16 0.003275439 0.00641986 -0.009412515 Reject

21b 0.003335252 0.006537093 -0.01180017 Reject

19d 0.004625138 0.009065271 -0.022906779 Reject

7a 0.008192716 0.016057724 -0.068069987 Reject

18b 0.013949027 0.027340092 -0.176784588 Reject

Table 16: Accepted and Rejected Rules

53

4.5.5 Score Assignment to Selected Rules

After the selection of rules which are to be used in malware detector, the next step is

to assign scores to each of the selected rules [32]. The approach followed for

assigning weightage depends on the arithmetic difference of P(1) and Q(1).

It is assumed that the highest score that can be assigned to any rule be ‘100’ and the

lowest score for any rule can very clearly be ‘0’. Let Rule X be a hypothetic rule with

a score 100 because for Rule X

 P(1) = 1 and Q(1) = 0

The possibility of having a Rule X satisfying the above criteria is very difficult

because for this to satisfy the rule should be present in all malicious samples and in no

benign samples.

Now, the rule will have ‘0’ or no score when it would satisfy the below conditions

 P(1) = 0 and Q(1) = 0

 P(1) = Q(1)

Since the above technique solely depends upon the difference in the probability of

occurrence of a rule in malicious and benign datasets, so all rules have been assigned

weights that equal the difference in P(1) and Q(1). All the selected rules that have

been assigned weights using the above mentioned technique are shown in the table

below.

RULES

DIFFERENCE LSD DECISION
ACCEPTANCE

DECISION
WEIGHTS

Ω = P(1)-Q(1) LSD (p1-p2)
whether Ω >

LSD

1d 0.863363606 0.023730769 0.839632837 Accept 86

1c 0.676770238 0.032520038 0.6442502 Accept 68

20 0.56284575 0.033686703 0.529159046 Accept 56

4 0.543526031 0.038517168 0.505008863 Accept 54

2d 0.43292458 0.03179623 0.401128351 Accept 43

3d 0.43292458 0.03179623 0.401128351 Accept 43

2c 0.409071701 0.031468042 0.377603659 Accept 41

15 0.37909137 0.03151096 0.34758041 Accept 38

54

5d 0.37252597 0.033347894 0.339178076 Accept 37

14 0.358553845 0.030963176 0.327590669 Accept 36

5c 0.347486016 0.032408946 0.31507707 Accept 35

8 0.329153605 0.029772202 0.299381403 Accept 33

17b 0.235363268 0.042400612 0.192962656 Accept 24

25 0.205671062 0.025777039 0.179894023 Accept 21

13a 0.190992071 0.03033849 0.160653581 Accept 19

27 0.184941453 0.02917679 0.155764663 Accept 18

12a 0.174273158 0.029727876 0.144545282 Accept 17

17d 0.17881016 0.04399364 0.13481652 Accept 18

13b 0.140201457 0.045218712 0.094982745 Accept 14

7c 0.100816737 0.041818076 0.058998662 Accept 10

34 0.07400962 0.016883431 0.057126189 Accept 7

3c 0.062838066 0.016923945 0.045914122 Accept 6

28a 0.047552093 0.020945087 0.026607006 Accept 5

7b 0.072096472 0.045618088 0.026478384 Accept 7

17c 0.038804628 0.014175081 0.024629548 Accept 4

17e 0.03617309 0.014892235 0.021280855 Accept 4

31 0.02907754 0.011122903 0.017954638 Accept 3

23 0.062204192 0.044267968 0.017936224 Accept 6

28b 0.038793103 0.022022311 0.016770792 Accept 4

17a 0.027490934 0.012197719 0.015293215 Accept 3

12b 0.052311912 0.045224781 0.007087131 Accept 5

32 0.028808624 0.023141356 0.005667267 Accept 3

5e 0.012539185 0.007050091 0.005489094 Accept 1

1e 0.011494253 0.006753518 0.004740735 Accept 1

1b 0.004179728 0.004087564 9.21639E-05 Accept 1

2e 0.004179728 0.004087564 9.21639E-05 Accept 1

3e 0.004179728 0.004087564 9.21639E-05 Accept 1

5b 0.004179728 0.004087564 9.21639E-05 Accept 1

Table 17: Accepted Rules with respective Scores

4.6 Computing Overall Malicious Score

After assigning individual scores to all rules, the same dataset is used for computing

over all malicious score of all these samples [33], both malicious and benign. For this

purpose a script has been written in python that checks the presence of all rules and

computes overall score by adding the respective scores of all those rules which are

found in the sample.

55

Let be a rule that has been found in the sample and be its respective score as

mentioned in Table 4.13. The script runs for all the malicious dataset and fills in the

database such that the total malicious score ‘Ś’ of a sample is

 ∑
 (4.9)

4.6.1 Malicious Score for Malware Dataset

The same dataset of 957 malware samples was again scanned in order to compute the

total malicious score of each sample. After executing the python script and checking

the results by analysis, it was calculated the average malicious score for malware

dataset was ‘398.4252874’.

 µ = (∑
) (4.10)

µ = 381293/957

µ = 398.4252874

Where ‘N’ is the total number of malicious applications scanned.

4.6.2 Malicious Score for Benign Dataset

The same dataset of 816 benign samples was again scanned in order to compute the

total malicious score of each sample. After executing the python script and checking

the results by analysis, it was calculated the average malicious score for malware

dataset was ‘63.1764705’.

 µ = (∑
) (4.11)

µ = 51552/816

µ = 63.1764705’

Where ‘M’ is the total number of benign applications scanned.

So it has been calculated that the proposed algorithm on the basis of its Rules

produces very acceptable results. The mean of overall score for malicious dataset is

far greater than the mean of benign dataset’s malware score.

56

4.6.3 Setting the Malicious Score Threshold

Since the malicious scores for all samples in the benign and malicious datasets has

been computed and the average malicious score for malware dataset has been found

out to be more than 6 times the average malicious score for benign dataset. Now,

there should be a threshold such that if malicious score of an application is greater

than that threshold score, it is considered to be malicious, else benign.

For this purpose the ‘Percentile’ approach is followed. Firstly, the value in malicious

dataset is found that has a percentile value of 5 such that just 5% values are lesser

then this value.

Let ‘N’ be the total samples in the malware dataset. Such that

N = 957

 P05 =

 () (4.12)

= 48

It means that the 48
th

 value has the percentile value of 5. So the Value is 156 that

mean that just 5% values of score in the malware dataset are less than 156.

Now the same approach is followed for benign dataset but with 95 percentile value. A

value which is greater than 95% of all scores in the benign dataset is found out. The

following graph shows that scores of malware dataset along with the percentile value

of 5. 95% values are greater than the value 156.

57

Figure 18: Malware Dataset with a percentile value of 5

Let ‘M’ be the total samples in the malware dataset. Such that

M = 816

 Q95 =

 () (4.13)

= 776

This means that in the benign dataset the 776
th

 value has a percentile value of 95.

After looking at the benign dataset the value is found out to be 198.

The following graph shows that scores of benign dataset along with the percentile

value of 95. Only 5% values are greater than the value 198.

Figure 19: Benign Dataset with a percentile value of 95

0

0.2

0.4

0.6

0.8

1

1.2

1 2

0

0.2

0.4

0.6

0.8

1

1.2

1 2

58

Now a range is acquired such that the threshold value has to be between P05 and Q95.

The threshold value is set to P05 such that the false positive value of 5% is tolerated

keeping an eye the current dataset. So the threshold value is 156.

4.7 Chapter Summary

This chapter discussed in detail the proposed Algorithm for detecting malicious

Android applications. Firstly, a set of rules is proposed which after utilizing Data

mining approaches gets filtered and selected rules are used in the anti-malware

algorithm. Each rule is assigned a weightage and both the malicious and benign

dataset are scanned for the presence of these rules. The mean of overall score for

malicious and benign datasets is computed and appreciable results are acquired.

Finally the threshold score for deciding whether an application is benign or malicious

is computed.

59

C h a p t e r 5

TESTING

5.1 Chapter Overview

This chapter contains information about the performance of proposed algorithm after

testing it on the test dataset containing both malicious and benign applications. The

test results are computed and performance graphs are computed. The accuracy along

with True Negative and False Positive ratios are also calculated.

5.2 Test Dataset

The dataset for testing comprised of 246 malicious and 768 benign applications.

Malicious applications were acquired from Gnome android malware project and

contagion while the benign applications were acquired from Google Play. The dataset

was tested with the algorithm and the malicious score for each sample (both malicious

and benign) was computed. The value which acts as a threshold for deciding whether

a sample is malicious is set to be 156.

5.3 Testing on Malware Dataset

A set of 246 malicious applications were scanned with the proposed anti-malware

algorithm. A python script checks each application for rule presence and respective

scores for each rule is added to compute the overall malicious score. The graph below

shows the values of malicious score of each application.

60

Figure 20: Scores of Malicious Test Dataset

The above graph shoes that there are some values which are below the threshold

which means that there will be some value of True Negatives as well. Let ‘N’ be the

total number of samples and N0 be the number of samples with a malicious score less

than 156.

 TP = N - N0 (5.1)

 = 246 – 14

 = 232

5.4 Testing on Benign Dataset

A set of 768 benign applications were scanned with the proposed anti-malware

algorithm. A python script checks each application for rule presence and respective

scores for each rule is added to compute the overall malicious score. The graph below

shows the values of malicious score of each application.

61

Figure 21: Scores of Benign Test Dataset

The above graph shoes that there are some values which are above the threshold

which means that there will be some value of False Positives as well. Let ‘M’ be the

total number of samples and M0 be the number of samples with a malicious score

greater than 156.

 TN = N - N0 (5.2)

 = 768 – 3

 = 765

5.5 Algorithm performance and Efficiency

The efficiency and performance of the proposed algorithm has also been computed by

calculating certain metrics like the TP ratio, FP ratio, Accuracy, Specificity and

Sensitivity.

5.5.1 True Positive Rate

True positive ratio [34] or sensitivity of the algorithm has been computed using the

following formula

 () (5.3)

0

20

40

60

80

100

120

140

160

180

200

1

3
1

6
1

9
1

1
2

1
1

5
1

1
8

1
2

1
1

2
4

1

2
7

1
3

0
1

3
3

1

3
6

1
3

9
1

4
2

1
4

5
1

4
8

1

5
1

1
5

4
1

5
7

1
6

0
1

6
3

1

6
6

1
6

9
1

7
2

1
7

5
1

62

Putting in the values,

 (232 + 14)

5.5.2 False Positive Rate

False positive ratio [35] of the algorithm has been computed using the following

formula

 () (5.4)

 ()

5.5.3 Accuracy

The accuracy of the proposed Algorithm has been computed using the following

formula

 () () (5.5)

 () ()

5.5.4 Specificity

The specificity of the proposed Algorithm has been computed using the following

formula

 (5.6)

 ()

 ()

63

C h a p t e r 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Chapter Overview

This chapter provides overview of the carried research, objectives achieved,

limitations of proposed solution and future directions.

6.2 Research Overview

In this thesis, a novel anti-malware algorithm for Android applications has been

proposed. The proposed algorithm has been made after analyzing more than 1600

Android applications, both benign and malicious and it is producing highly accurate

and acceptable results. The thesis has explained the proposed anti-malware algorithm

for Android applications in a chronological order. A brief introduction to Android

malware, its background and applications, unresolved problems and research

objectives have been presented in Chapter 1. Chapter 2 presented various state-of the

art algorithms for detecting malicious Android applications and their categories.

Chapter 3 presented the details of dataset used for experimentation and validation of

proposed algorithm. Chapter 4 presented the proposed anti-malware algorithm.

Chapter 5 evaluated the performance of proposed algorithm on almost 1000 samples.

The proposed algorithm efficiently detected malicious applications with an accuracy

of 98.32% at a very low computational cost, thus making it suitable for real-time

applications.

6.3 Objectives Achieved

This research produced a novel anti-malware algorithm for detecting malicious

Android applications. The Algorithm looks for certain features in the application and

observe the presence of malicious rules in the application being tested. Since each

64

rule’s presence carries a score, the overall malicious score of an application is

computed by adding all weights of all the rules which are found. The selection of

rules is done by applying statistical approaches and using the standard normal

distribution. Finally, the experimental results show efficient results as very high

accuracy has been achieved with an extremely low computational complexity, this

making the algorithm suitable for real-time applications.

6.4 Limitations

The proposed algorithm works well for any kind of android malware samples so far. It

has been designed to detect zero day exploits and malwares but still there is a room

for improvement. The algorithm does not specifically detect the re-packaging [36] of

applications which is a very prevalent feature of malicious applications. There is also

a need for enhancing the detection of malicious features in the application.

Furthermore, the proposed application provides no statistical justification for the

selection of features which are looked for in the application. The proposed algorithm

takes the extracted files of an Android application as input and not the actual Android

packaged file as in other algorithms for the same purpose [37].

6.5 Future Directions

To further increase and enhance the True positive rate there is a need to improve

further, the selection and augmentation of malicious features. This would help in

efficiently detecting the zero day exploits which are being used in newer versions of

Android malware. Another appreciable work would be to make an Android

application for this purpose which would check the applications being installed on the

smartphone. Another direction would be to regular change and update the application

for newer versions of Android operating system. A web portal can also be made that

would ask researchers to upload the Android application that needs to be tested.

65

REFERENCES

[1] Francesco Di Cerbo, Andrea Girardello, Florian Michahelles and Svetlana

Voronkova, “Detection of Malicious Applications on Android OS,” in IWCF

2012, LNCS, pp138-149, 2011.

[2] Stefan Brahler, “Analysis of the Android Architecture”, Karlsruhe institute for

technology,” , pp. 4-1, October 2010.

[3] Vadodil Joel Varghese, Stuart Walker, "Dissecting Andro Malware," in SANS

Institute InfoSec Reading Room, University of Essex, UK, 2011.

[4] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the OS and

dalvik semantic views for dynamic android malware analysis,” in Proceedings of

the 21st USENIX Security Symposium, 2012.

[5] Johnson, R.,Wang, Z., Gagnon, C., Stavrou, A.: Analysis android applications

permissions. In: Proceedings of the 6th International Conference on Software

Security and Reliability. (2012)

[6] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege Escalation

Attacks on Android,” in Proceedings of the 13th Information Security

Conference (ISC ’10), Oct. 2010.

[7] Fake Instagram Android Application spreads malware

http://nakedsecurity.sophos.com/2012/04/18/fake-instagram-app-android-

malwar/

[8] Malware on the Rise, TrustGo and Lookout

http://securitywatch.pcmag.com/none/308184-trustgo-and-lookout-top-android-

mobile-security-test

http://nakedsecurity.sophos.com/2012/04/18/fake-instagram-app-android-malwar/
http://nakedsecurity.sophos.com/2012/04/18/fake-instagram-app-android-malwar/
http://securitywatch.pcmag.com/none/308184-trustgo-and-lookout-top-android-mobile-security-test
http://securitywatch.pcmag.com/none/308184-trustgo-and-lookout-top-android-mobile-security-test

66

[9] Rise in Android Malware, Report by

McAfeehttp://www.redmondpie.com/mcafee-mobile-malware-increased-by-700-

over-2011-mostly-targeting-android/

[10] Android SDK, http://developer.android.com/sdk/index.html

[11] Android-apktool, http://code.google.com/p/android-apktool/

[12] Dex2jar, Tools to work with android .dex and java .class files

http://code.google.com/p/dex2jar/

[13] JD-GUI, http://java.decompiler.free.fr/?q=jdgui

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions

demystified” Technical Report UCB/EECS-2011-48, University of California,

Berkeley, May 2011.

[15] Stowaway: Web Portal, http://www.android-permissions.org/

[16] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-application

communication in Android” in Proceedings of the 9th International Conference

on Mobile Systems, Applications, and Services (MobiSys 2011), June 2011.

[17] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE: Context-related policy

enforcement for Android” in Proceedings of the Thirteen Information Security

Conference (ISC ’10), Boca Raton, FL, Oct. 2010.

[18] Zhou,Y., and Jiang, X, “Dissecting android malware: Characterization and

evolution” in Proceedings of the 33rd IEEE Symposium on Security and Privacy

(Oakland 2012), San Francisco, CA, USA, May 2012.

[19] Enck, W., Ongtang, M., and Mcdaniel, P., “On Lightweight Mobile Phone

Application Certification” in Proceedings of the 16th ACM Conference on

Computer and Communications Security (CCS), November 2009.

http://www.redmondpie.com/mcafee-mobile-malware-increased-by-700-over-2011-mostly-targeting-android/
http://www.redmondpie.com/mcafee-mobile-malware-increased-by-700-over-2011-mostly-targeting-android/
http://developer.android.com/sdk/index.html
http://code.google.com/p/android-apktool/
http://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/?q=jdgui
http://www.android-permissions.org/

67

[20] Androguard, http://code.google.com/p/androguard/

[21] Zhou,Y., and Jiang, X, “Dissecting android malware: Characterization and

evolution” in Proceedings of the 33rd IEEE Symposium on Security and Privacy

(Oakland 2012), San Francisco, CA, USA, May 2012.

[22] http://contagiodump.blogspot.com/search?q=Android

[23] Blount, J.J, Tauritz, D.R, Mulder, S.A, “Adaptive Rule-Based Malware

Detection Employing Learning Classifier Systems: A Proof of Concept,” in 35
th

Annual Computer Software and Applications Conference Workshops, pp. 110-

115, 18-22 July 2011.

[24] Damiano Varagnolo, Gianluigi Pillonetto, and Luca Schenato, “Distributed

statistical estimation of the number of nodes in Sensor Networks” in IEEE

Conference on Decision and Control, pages 1498-1503, Atlanta, USA, December

2010.

[25] Siegel, A., “Toward a Usable Theory of Chernoff Bounds for Heterogeneuos and

Partially Dependent Random Variables,” in manuscript, New York University,

1992.

[26] Morganstein, D. R., and Brick, J. M., “WesVarPC: Software for computing

variance estimates from complex designs” in Proceedings of the Bureau of the

Census 1996 Annual Research Conference, pp. 861-866. Washington, DC:

Bureau of the Census.

[27] Ahn, S. and Fessler, A., “Standard Errors of Mean, Variance, and Standard

Deviation Estimators” in Technical Report, Ann Arbor, MI, USA, EECS

Department, University of Michigan, July 2003.

[28] Giles, D. E. A., “Calculating a standard error for the Gini coefficient: Some

http://code.google.com/p/androguard/
http://contagiodump.blogspot.com/search?q=Android

68

further results” in Oxford Bulletin of Economics and Statistics, 66(3), pp. 425-

433.

[29] Aludaat, K.M. and Alodat, M.T., “A note on approximating the normal

distribution function” in Applied Mathematical Sciences, Vol 2, no 9, pp 425-

429.

[30] Bowling, S. R., Khasawneh, M. T. , Kaewkuekool, S.,Cho, B. R., “A logistic

approximation to the cumulative normal distribution” in Journal of Industrial

Engineering and Management, vol. 2, no. 1, pp. 114-127, 2009.

[31] Balakrishnan, N. and Malik, H.J., “Means, Variances and covariances of logistic

order statistics for sample size up to fifty”, in J. Statist. Plann. Inf, Vol 13, pp.

117-129.

[32] H. Khan, F. Mirza, and S. A. Khayam, "Determining Malicious Executable

Distinguishing Attributes and Low-Complexity Detection," in Springer Journal

in Computer Virology (JCV), vol. 7, no. 2, pp. 95-105, January 2010.

[33] Anderson, B., Quist, D., Neil, J., Storlie, C. and Lane, T., “Graph-Based

Malware Detection using Dynamic Analysis” in Journal in Computer Virology 7,

pp 247-258.

[34] Wen Zhu, Nancy Zeng, Ning Wang, "Sensitivity, Specificity, Accuracy,

Associated Confidence Interval and ROC Analysis with Practical SAS

Implementations" in Proceedings of the SAS Conference, pp 9, 2010.Baltimore,

Maryland.

[35] A. Foss and O. R. Zaıane, “A hybrid classification and clustering approach for

medical diagnostics and other high dimensional data” in Technical Report TR08-

15, University of Alberta, 2008.

69

[36] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “DroidMOSS: Detecting Repackaged

Smartphone Applications in Third-Party AndroidMarketplaces” in Proceedings

of the 2nd ACM Conference on Data and Application Security and Privacy,

CODASPY’ 12, 2012.

[37] Baker, B.S., Baker, B.S., “Parameterized duplication in strings: Algorithms and

an application to software maintenance” in , pp. 1343-1362, 1997.

[35]

