

A Model Driven Framework for Ambiguity Detection in SRS

Author

Momina Behzad

FALL 2021-MS-21 (CSE) 00000362795

MS-21 (CSE)

“Supervisor

Dr. Usman Qamar

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

October 29, 2024”

A Model Driven Framework for Ambiguity

Detection in SRS

By

Momina Behzad

 (Registration No: 00000362795)

A thesis submitted to National University of Science and Technology,

Islamabad

in partial fulfillment of the requirements for the degree of

Masters of Science in Software Engineering

Thesis Supervisor:

Dr. Usman Qamar

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

October 29, 2024

i

Dedicated to my exceptional parents and whole family whom

tremendous support, cooperation and their prayers led me to

this wonderful accomplishment.”

ii

ACKNOWLEDGEMENT

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work at

every step and for every new thought which You put in my mind to improve it. Indeed, I could

have done nothing without Your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was Your will, so indeed none

be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking

and continued to support me throughout every department of my life.”

I would also like to express my gratitude to my supervisor Dr. Usman Qamar for his constant

motivation and help throughout this thesis. I can safely say that I haven't learned any other

engineering subject in such depth than the ones which he has taught.”

I would also like to thank my Guidance Committee Members Dr. Wasi Haider Butt and Sir

Jahan Zeb for being on my thesis guidance and evaluation committee. Some special words of

gratitude go to my friends Mahnoor Ayaz, Sehar Sarfraz and Fareeha Manal Fatimah who

has always been a major source of support and cooperation when things would get a bit

discouraging. Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.”

iii

ABSTRACT

The ambiguity detection in natural language processing (NLP) is critical to enhance the performance

of the requirement based applications. There is lexical ambiguity, which is the complexity arising

from confusing part words, syntactic, which is confusion about the structure of a sentence, and

referential that happens when one has a problem identifying to which term a given term of reference

is referring. This paper proposes a sound approach towards identifying these three categories of

ambiguities using basic text processing and machine learning algorithmic analysis. The preparation

phase itself entails significant pre-processing of the text in which we convert all text to lowercase,

tokenize the text, eliminate the stop words and lemmatize the text. Such steps help to pre-process the

text data to increase the chances of feature extraction as can be seen in this paper.

 In feature extraction the relevance of words is checked using Term Frequency-Inverse Document

Frequency (TF-IDF) and syntactic feature extraction is done by Part-of-Speech (POS) tagging.

Further, the next step involves the feature classification into ambiguous and non-ambiguous using

various machine learning algorithms such as Logistic Regression, Random Forest and a Support

Vector Machine (SVM). Indicator of a model’s accuracy include accuracy, precision, recall, F1 score

and receiver operating characteristic-area under the curve (ROC-AUC). The findings are indicative

of the value of combining more conventional methods of NLP with machine learning for improving

the process of identifying levels of ambiguity. It is not only helpful in enhancing the explainability

of automated systems but also, to a great extent, contributes to make NL Processing rather reliable

and accurate in terms of the areas including but not limited to sentiment analysis, neural machine

translation, and information retrieval.

Keywords: Software Requirement Ambiguities, NLP, Machine Learning, Feature Extraction,

SVM, RF, LR, Lexical Ambiguity, Syntactical Ambiguity, Referential Ambiguity

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... ii

ABSTRACT .. iii

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

CHAPTER 01 INTRODUCTION .. 1

1.1. Background Study: ... 1

1.2. Ambiguity Detection using NLP: ... 2

1.2.1. Types of Ambiguity in SRS Documents ... 2

1.2.2. NLP Techniques for Ambiguity Detection .. 3

1.3. Problem Statement: .. 4

1.4. Proposed Methodology: ... 5

1.5. Research Contribution: ... 6

1.6. Thesis Organization: .. 7

CHAPTER 02 LITERATURE REVIEW .. 9

2.1. Background: ... 9

2.2. Research Sequence: .. 9

2.2.1. Inclusion/Exclusion Criteria: .. 9

2.2.2. Keywords: ... 10

2.3. Related Work: .. 10

CHAPTER 03 PROPOSED METHODOGY FOR AMBIGUITY DEETCTION .. 25

3.1. Proposed Methodolgy: ... 25

3.2. Data Collection:.. 26

3.2.1. Generation of Synthetic Requirements .. 26

3.2.2. Curation of the Dataset .. 26

3.2.3. Studying and Labeling Ambiguities .. 26

3.2.4. Examples of Ambiguity Labeling... 27

3.2.5. Detailed Annotation and Dataset Finalization ... 28

3.3. Data Pre-Processing: .. 28

3.3.1. Text Cleaning .. 29

v

3.3.2. Tokenization .. 29

3.3.3. Stop Words Removal ... 29

3.3.4. Lemmatization ... 29

3.3.8. Word Cloud Generation... 32

3.4. Feature Extraction: .. 33

3.4.1. Part-of-Speech (POS) Feature Extraction.. 33

3.4.2. POS Tagging for Handling and Features of a Series of Text 34

3.4.3 TF-IDF: ... 34

3.4.4. The integration of POS and TF-IDF Features ... 34

3.4.5. Ensuring Data Integrity ... 35

3.4.6. Final Feature Representation ... 35

3.5. Methodology: Model Training: .. 36

3.5.1. Selection of Models ... 36

3.5.2. Data Preparation and Splitting ... 37

3.5.3. Model Initialization ... 37

3.5.4. Training Process .. 38

3.5.5. Addressing Potential Challenges ... 39

3.5.6. Training of the Model for Each Ambiguity Type .. 39

CHAPTER 04 RESULTS AND EVALUATION .. 40

4.1. Result of Lexical Ambiguity: ... 40

4.1.1. Logistic Regression - Lexical Ambiguity .. 40

4.1.2. Random Forest - Lexical Ambiguity ... 41

4.1.3. Support Vector Machine (SVM) - Lexical Ambiguity .. 42

4.1.4. Evaluating Best Model: ... 43

4.1.5. Confusion Matrix:.. 44

4.2. .Results of Syntactical Ambiguity:... 46

4.2.1. Logistic Regression - Syntactical Ambiguity .. 46

4.2.2. Random Forest - Syntactical Ambiguity ... 47

4.2.3. Support Vector Machine (SVM) - Syntactical Ambiguity .. 48

4.3.4. Evaluating Best Model: ... 50

4.3.5. Confusion Matrix:.. 51

4.3. Referntial Ambiguity: .. 53

vi

4.3.1. Logistic Regression - Referential Ambiguity .. 53

4.3.2. Random Forest - Referential Ambiguity ... 54

4.3.3. Support Vector Machine (SVM) - Referential Ambiguity .. 55

4.3.4. Evaluating Best Model: ... 57

4.3.5. Confusion Matrix:.. 57

CHAPTER 05 ANALYSIS OF PROPOSED MODELS .. 60

5.1. Lexical Ambiguity: .. 60

5.1.1. Random Forest:.. 60

5.1.2. Logistic Regression: .. 61

5.1.3. SVM: ... 61

5.2. Syntactic Ambiguity: ... 62

5.2.1. SVM: ... 62

5.2.2. Random Forest:.. 63

5.2.3. Logistic Regression: .. 63

5.3. Referential Ambiguity: ... 64

5.3.1. Random Forest:.. 64

5.3.2. SVM: ... 65

5.3.3. Logistic Regression: .. 65

5.4. Discussion: ... 66

5.4.1. Lexical Ambiguity ... 66

5.4.2. Syntactic Ambiguity .. 67

5.4.3. Referential Ambiguity ... 68

CHAPTER 06 CHALLENGES AND LIMITATIONS .. 70

6.1. Complexity of Language: ... 70

6.2. Feature Extraction Limitations: .. 71

6.3. Dataset Limitations .. 72

6.4. Handling Overlapping Ambiguities: .. 72

6.5. Scalability Issues: ... 73

CHAPTER 07 CONCLUSION AND FUTURE WORK ... 74

Future Work:.. 74

REFERENCES ..

vii

LIST OF FIGURES

Figure 1 Thesis Organization .. 7

Figure 2 Proposed Solution ... 25

Figure 3 Lexical Ambiguities in Dataset .. 31

Figure 4 Syntactical Ambiguity in Dataset ... 31

Figure 5 Referential Ambiguity in Dataset ... 32

Figure 6 WordCloud of Data .. 32

Figure 7 Lexical Ambiguity Results ... 43

Figure 8 Confusion Matrix for Lexical Ambiguity... 46

Figure 9 Syntactical Ambiguity Result ... 50

Figure 10 Confusion Matrix for Syntactical Ambiguity ... 53

Figure 11 Referential Ambiguity Results ... 56

Figure 12 Confusion Matrix for Referential Ambiguity ... 57

Figure 13 ROC Curve for Lexical Ambiguity .. 60

Figure 14 ROC Curve for Syntactical Ambiguity .. 62

Figure 15 ROC Curve for Referential Ambiguity .. 64

file:///D:/Thesis%20Data/Writeup%20V1.docx%23_Toc175694317

viii

LIST OF TABLES

Table 1 Literature Review Summary .. 24

1

CHAPTER 01

INTRODUCTION

This section provides a detailed introduction to the research and research concepts. This

section is organized in multiple sub-sections. Section 1.1 provides the background study, Section

1.2 explains the ambiguities using NLP, Section 1.3 discuss the problem statement, Section 1.4

discussed the proposed solution, Section 1.6 gives the detail about research contribution, and thesis

organization is presented in Section 1.5

1.1. Background Study:

Software requirements can also be defined as the Software Requirements Specifications (SRS) that

act as framework for the creation of software systems. These are functional and non-functional

specifications; they state what the system is expected to do and how well it should do it, hence

acting as a agreement between the end users and the developers or testers. However, the legibility

and the accuracy of these documents are very much important in the growth of the soft ware

system. It implies that when information is ambiguous in SRS, it may cause confusion and result

to wrong implementation or expenses at the other phases of SDLC.

Different types of vagueness may be identified in SRS documents namely lexical vagueness,

syntactical vagueness and referential vagueness. Ambiguity of a lexical nature arises where there

is more than one reference for a particular word or phrase. A syntactic ambiguity is that which

results from the use of sentence structures that are capable of being viewed in one of several ways.

Naturally the referential shift is distinguished by the referential ambiguity, that is when it is

impossible to determine to what or to whom the pronoun or the noun refers. Prominent among

these are the ambiguities which can pose serious problems when converting the articulated

requirements into an accurate and working software architecture.

 Being a key component of software systems, communication has become increasingly complex

especially in terms of specifying requirements. Previously, there have been other approaches to

reviewing the SRS document, whereby the document is manually processed by the experts, and

this may take a lot of time as well as being prone to some errors. To meet this challenge however,

2

there has been a shift towards a subfield known as Natural language processing (NLP) as a way of

automatically identifying ambiguities in SRS documents. [37]

 Applying the NLP techniques it is possible to parse the SRS documents in search of possible

syntactic and semantic ambiguities to them and thus, suggest a more formal approach and on a

larger scale. New research that has come up in NLP includes, deep learning models and language

representations like BERT (Bidirectional Encoder Representations from Transformers), [35]

which has had tremendous success in natural language understanding and processing without much

error. These techniques can be applied to the domain of software engineering to enhance the quality

of generated SRS documents as the technique will help to identify the ambiguous statements for

further examination. [36]

1.2. Ambiguity Detection using NLP:

Natural language ambiguity is a well-known problem in many fields, including software

engineering, where precise and unambiguous communication is essential. Ambiguity in Software

Requirements Specifications (SRS) can cause misunderstandings and mistakes that arise during

the software development process. Therefore, detecting ambiguity is essential to making sure that

SRS documents are clear and understandable to all parties involved.

A subfield of artificial intelligence called natural language processing (NLP) [38] is concerned

with how computers and human language interact. The task of ambiguity detection in SRS

documents is ideally suited for natural language processing, analysis, and comprehension (NLP)

techniques.

1.2.1. Types of Ambiguity in SRS Documents

▪ Lexical Ambiguity: : This is so where a given word or phase used in a given construction

has multiple interpretations. For example the word ‘light’ can mean not heavy or not dark.

” This is true in an SRS document, where lexical ambiguity of a word results in confusion

on which kind of requirement is being referred to.

▪ Syntactic Ambiguity: This means that the construction of a sentence whereby the

positioning of words brings about confusion. For example in the sentence such as “The

system shall generate a report for the user with errors”, it raises question on whether the

3

report is for the user or the user has errors? If not well addressed, such subtleties can cause

wrong interpretations, therefore wrong implementations.

▪ Referential Ambiguity: : Some of the subtypes of the complex referential content are the

referential ambiguities, where it is not clear what the pronoun or the noun phrase is

referring to. For instance, in “The administrator shall reset the password, and the user shall

be notified,” it is not clear as to who “the user” is, whether the password belonging to the

said user was reset or a different user was notified of the said reset. This leads to uncertainty

as to who is the target of a given requirement.

1.2.2. NLP Techniques for Ambiguity Detection

NLP offers several techniques that can be employed to detect and resolve ambiguities in SRS

documents. Some of these techniques include:

▪ Tokenization and Part-of-Speech Tagging: Tokenization can occur when text is divided

into the constituent words or tokens with different identifiers while part-of-speech tagging

labels the tokens to define their gramatical role such as a noun, verb or an adjective. Based

on the transformation of sentence into array of elements of B, [39] NLP models can know

sources of the lexical and syntactic ambiguity.

▪ Named Entity Recognition (NER): NER is named entity recognition which helps to

recognize persons, organizations, date, etc. , in a given text. Of specific aid in SRS

documents is the ability of NER to disambiguate referential resolutions by identifying what

particular entities pronouns or, referential references refer to.

▪ Dependency Parsing: Dependency parsing is a process of analyzing syntactic

dependencies between word and dependency parsing aims at analyzing grammatical

structure of the given sentence. It can be particularly effective in identifying syntactic

ambiguity, by showing different possible ways to structural analysis of the sentence.

▪ Word Sense Disambiguation (WSD): WSD is the process of identifying the most suitable

meaning of a word where the word in question has more than one meaning. It is therefore

very useful in clearing up lexical ambiguities in the SRS documents as a way of clear

meaning of each word chosen.

▪ Contextual Embeddings: Current NLP models including BERT use contextual

embeddings whereby the meaning of words is determined by the context that it appears in.

4

These models are then useful in ‘seeing the wider picture’ when reading through a sentence

and can identify both lexical and syntactic types of ambiguities because of this ability.

▪ Machine Learning and Deep Learning Models: It is pointed out that supervised machine

learning models based on deep learning can be trained with annotated datasets of SRS

documents to identify the implemented ambiguous sentences. [41] These models can be

trained to detect the patterns relating to various types of ambiguities and categorise the

sentences with the help of these training sets.

▪ Rule-Based Approaches: Apart from the machine learning techniques, there are only rule-

based approaches that are applied on top of a predefined linguistic rule in order to detect

ambiguity [42]. For instance, rules that can be formulated are to underline the sentences

which have syntax that creates confusion or the words which have more than one meaning.

Although the papers on using the NLP approaches in SRS documents pinpoint to a great deal of

potential in different types of ambiguity detection, there are certain considerations about them.

One of all, technical, including Software Engineering, is a complex topic, and written language is

not easy even for native speakers. Ambiguities crop up where one thing could mean this or that

depending on the surrounding circumstances and thus require a sophisticated degree of sensitivity

to pinpoint.

1.3. Problem Statement:

Nevertheless, it is crucial to recognize that ambiguity continues to be an evident issue in SRS

documents, even though it is those documents that prescribes clarity as the key principle. The

methods that have been previously utilized to identify and eliminate the ambiguities are time-

consuming, and in addition, their effectiveness depends on the subjective perception of the matter.

Such a situation is quite problematic for the creation of high-quality software systems since

ambiguous requirements lead to incorrect or only partial interpretations of what needs to be done

eventually inviting project delays, cost overruns, and even seemingly flawed systems which, in

fact, are only so because of the poor definition of the specifications.

 The use of NLP methodologies for recognising the presence of such uncertainties in SRS

documents seems to hold the potential to provide a solution to the problem and the research done

in this direction is still at a very initial stage. Current approaches may fail to deal with natural

5

language in real-life settings and, in particular, technical ones, such as software engineering. Also,

lexical, syntactic, and referential type of ambiguities contribute another level of oscillation in

differentiating the models, which can define all forms of this phenomenon.

 It is envisaged that there is a real need for a more systematic form of approach that would identify

and categorize various forms of ambiguity in SRS documents with the aid of modern tools in NLP.

The difficulty is, therefore, to develop models that can both flag potentially ambiguous sentences

with a high degree of accuracy as well as offer details of the nature of the ambiguity such that one

can facilitate the management of the problem in question by the stakeholders more efficiently.

 The challenge that is focused in this research therefore is the poor availability of automated

methods for identifying and categorizing the ambiguities that may exist in SRS documents. Drawn

from the techniques of state-of-art natural language processing, this research aims at creating a

stronger system which will increase the clarity of software requirements thereby advancing the

quality of software development projects.

1.4. Proposed Methodology:

In this research, the challenge that is focused on is therefore the acute lack of automated approaches

to detecting and classifying the possible ambiguities that may be inherent in SRS documents.

Based on the methods of a state-of-art natural language processing this research will seek to

develop a more coercive system that will amplify the clarity of the software requirements thus

enhancing the quality of software development projects.

 This study aims at identifying and categorizing various categories of the ambiguity over Software

Requirements Specifications (SRS) documents through the utilization of the sophisticated machine

learning algorithms. The focus is on identifying three key types of ambiguities: semantic and

referential according to the two directions of meaning relations. These ambiguity can be effectively

classified as well as detected using three different types of machine learning models which

includes Logistic Regression, Random Forest and Support Vector Machine (SVM) models.

 The first step is the preprocessing of the SRS documents undertaken to enhance, normalize and

clean up the text, the second step involves feature extraction to identify linguistic patterns

associated with the different types of ambiguity. For the case of lexical ambiguity, features

6

including incidences of the word usage and the part of speech tags are utilized to identify the

polysemous word. Syntactic ambiguity therefore deals with structures of the sentences ad parsing

relations between the words. Co;ensional references is determined by analyzing reference and

possible reference.

Based on these factors, Logistic Regression is used as the baseline model because they make it

easier to identify simple patterns that exist in patterns. Thus, Random Forest with an ensemble

learning approach is employed to reveal higher-order dependencies and interactions between the

variables in order to build a reliable model of ambiguity detection. Last, SVM is used to analyze

high dimensional features as well as to classify the ambiguous and non-ambiguous sentences by

drawing maximum distance between the classes.

 For each model, the results are proactively tested and compared on a labelled dataset and

performance indicators such as accuracy, precision, recall and F1-score are utilised to measure the

efficacy of identification of the various types of ambiguity. From the outcome of these models, it

is found how each of them can be effectively used and their limitations in handling different types

of ambiguities and hence understanding the suitability of machine learning in improving the clarity

of SRS documents.

1.5. Research Contribution:

In performing this research, the following research contributions have been made to the field of

ambiguity detection in Software Requirements Specifications using Natural Language Processing

and machine learning techniques. First, it presents an evaluation of how each of the machine

learning algorithms including Logistic Regression, Random Forest, and SVM is effective in

identifying lexical-syntactic and referential shifts. Comparing these models systematically allows

the research to reveal the strengths and weaknesses in each of the approaches and provide the

practitioners and researchers with the insights necessary when attempting to enhance the clarity of

the SRS documents.

 Second, this research provides an insight into the enhancing of the structured methodology for the

ambiguity detection, which in turn can be used for real-life SRS documents. The incorporation of

feature extraction methods targeted on different kinds of ambiguities together with the

7

employment of several machine learning techniques makes up a sound approach to recognizing

and categorizing ambiguous requirements. Such a framework can be utilized and further developed

in the context of any domain which is prone to the issues arising from ambiguity inherent in NL.

1.6. Thesis Organization:

Following is the brief explanation of each chapter in the organization of thesis:

Figure 1 Thesis Organization

1. Introduction: This chapter gives the background to the research topic, established the need

for the study and set out the research objectives and questions.

2. Literature Review: This section of the paper discusses previous studies and theories

related to the topic in order to provide essential context and find out what is missing that

this study will try to fill.

3. Proposed Methodology: It forms a part of the methodology section of the research, where

prominent focus constitutes methods and techniques and the data collection and

8

preprocessing tools and techniques within the study and the particular algorithms or models

employed.

4. Results and Evaluation: Here are the results of the carried out research in form of

quantitative and qualitative results of the proposed methods or models.

5. Analysis of Proposed Models: In this section a detailed description of the applied models

is given, including the options for evaluation as well as key points regarding efficacy and

comparison to other models introduced.

6. Challenges and Limitations: In this chapter, any challenges experienced during the

research are discussed, including a discussion of the limitations that may impact on the

transferability of the findings.

7. Conclusion and Future Work: The last chapter recapitulates the main conclusions,

discusses the contributions of research and recommended further investigations.

9

CHAPTER 02

LITERATURE REVIEW

 2.1. Background:

NLP techniques used in the identification of ambiguity in SRS are very vital because of their ability

to make the specification unambiguous in order to aid software development. This suggests that

the problem of ambiguity in SRS documents negatively impacts the final product by contributing

to confusion, inconsistency and defects so further development of an advanced NLP approach to

identify the problem is meaningful. They include lexical ambiguity resolution which involves the

ability to understand meaning of a word in a particular context and syntactic ambiguity resolution,

which focuses on the idea that a sentence’s structure can be interpreted several ways. Another

aspect in the enhancement of the clarity is the detection for referential ambiguity, which is the

identification of “fuzzy” references that are present in the text.

New developments in ML and DL have improved the functions of the NLP talents in the further

categorization and analysis of vagueness characteristic in SRS documents. Some of the approaches

that are used in natural language processing include; the supervised learning which entails training

models from annotated data set and the unsupervised learning which involves clustering and

pattern analysis. With the use of these NLP techniques, organizations are able to enhance the

quality of their requirements for software which, in the long run has positive impacts on the

development and overall outcomes of a project in addition to giving a worthy saving on the

expenses that would have been channeled to the development of a substandard quality product.

2.2. Research Sequence:

The techniques followed for the literature review are as following:

2.2.1. Inclusion/Exclusion Criteria:

1. Publication Type: Peer-reviewed journals, conferences, or reputable workshops.

2. Focus Area: Papers must address ambiguity detection or resolution in software requirements

specification (SRS) using natural language processing (NLP) or related techniques.

10

3. Methodology: Research has to use certain techniques, methods or approaches to identify or

resolve semantic vagueness. Therefore, there are several methodologies that should be presented

in the paper.

4. Language: Publications must be in English.

5. Publication Date: Sci-hub and/ or Google Scholar was employed in searching for articles from

2016 as a way of capturing the recent development and techniques in relation to the study.

6. Evaluation Metrics: Scientific papers need to discuss concerns commonly quantifiable in the

evaluation of the methodologies used that included accuracy, precision, recall, F1-score, or any

form of measure related to them..

2.2.2. Keywords:

The papers were searched using following keywords:

▪ Ambiguity Detection

▪ Software Requirements Specification (SRS)

▪ Natural Language Processing (NLP)

▪ Machine Learning

▪ Syntactic Ambiguity

▪ Lexical Ambiguity

▪ Referential Ambiguity

▪ Text Classification

▪ Requirement Engineering

2.3. Related Work:

Osama et al. (2020) [1] present an automated technique to identify and eliminate syntactic

ambiguities in NLRs, a well-known cause of problems throughout the software development

lifecycle. The methodology entails breaking of the requirements so as to analyze grammatical

structures, which are then rated for syntactic ambiguity, as well as flagging of the languages in the

sentences for further resolution through the statistical and rule analysis. When tested with an NLR

dataset, the method’s accuracy of detecting ambiguous passages is 87%, this is more efficient than

11

other methods in precision and recall. In conclusion, the authors state that this kind of approach

has the potential to make software requirements more precise and unambiguous so that the chances

of errors on software developments could be minimized.

 Ashfaq and Bajwa (2021) [2] describe a framework to alleviate natural language ambiguity in

software requirements by using intelligent semantic annotation. By means of a proposal for a

semantic annotation model, the authors tackle the problem of ambiguity in natural language that

might cause misunderstandings in software development. The process is based on NLP the

identification of possible polysemy from the tuple and semantic expansion incorporating domain

expert knowledge in form of ontologies to resolve the polysemy. The approach has been applied

to a number of software requirements to determine the level of success and it was identified that

the approach was 82% accurate in removing ambiguity. The authors argued that the application of

their method helps to improve the unambiguity of the software requirements as well as to minimize

errors that stem from misunderstanding and ambiguity in the process of software development.

Hiltunen (2020) [3] explores methods for reducing structural ambiguity in natural language

software requirements specifications (SRS). Structural ambiguity, where the structure of a

sentence allows for multiple interpretations, is identified as a significant challenge in ensuring the

clarity and precision of SRS documents. The methodology involves analyzing common patterns

of structural ambiguity in SRS and proposing guidelines and techniques for rewriting ambiguous

sentences to eliminate multiple interpretations. The paper also features a breakdown of the

semantically blurred structures and examples of their ‘clear-thinking’ redirections. Therefore, the

findings show that by adopting these guidelines, the chances of developing structural ambiguities

in SRS will be minimized enhance the quality and accuracy of software requirements. According

to Hiltunen, the systematic usage of these techniques in requirement engineering may result to

improved accuracy and decreased likely hood of unnecessary complexity in development of

software.

Alharbi (2022) [4] focuses on detecting ambiguity in requirements classification activities using a

fine-tuned transformation approach. The research problem of interest is to propose a solution to

the challenge of identifying software requirement ambiguity by using transformation techniques

to improving classification performance. The approach involves the use of a transformer model

that will be trained to search for soft-requirements alone. This process involves also fine-tuning

12

pre-existing models to the field of software requirements and in using these models to classify and

detect the observed ambiguities. The outcomes showing that the selected fine-tuned transformation

technique yielded 89% effectiveness in identifying the ambiguity in the requirements classification

task. Alharbi also affirms that this approach offers a unique and strong solution for enhancing the

identification and management of ambiguous requirements in order to enhance the software

development processes.

The authors Malik et al. (2022) [5] continue the approach of identifying requirement conflicts with

the help of transformer-based sentence embeddings in SRS documents. The study focuses on the

problem of identifying conflict in SRS documents which results in various problems affecting

software development. The approach entails the use of transformer models to establish sentence

embeddings based on the semantic content of requirements. These embeddings are subsequently

processed in order to find conflicting requirements based on contextual similarity and dissimilarity.

The outcomes of the approach indicate that it has a success rate of 85% on requirement conflicts

detection. In the study of Malik et al . , the authors demonstrate that employing transformer-based

sentence embeddings is a suitable approach to enable conflict identification and resolution to

improve the SRS documents and software requirements.

 Intana et al. (2024) [6] have suggested an NLP approach in regards to the identification of the

ambiguity in SRS of Thai software. Responding to the difficulty of ambiguity in requirements

documentation, this paper employs Thai documents where the language also poses difficult to

identify requirements more challenging. This is done through using natural language processing

(NLP) in order to determine and study imprecise terms and structures in Thai SRS. This involves

text pre-processing, employing the NLP models that identify the ambiguities in text and then

utilizing the linguistic features that enhance on the process of detecting the ambiguities. From the

findings, it is understood that the proposed method has 88% accuracy of identifying the

ambiguities within Thai SRS documents. Intana et al. state that their approach helps to increase

the identification of ambiguity in Thai requirements and thus leads to minimizing the risk of

unclear software specifications.

Ezzini (2022) [7] explores the application of AI for the automation of the process of ambiguity

management and question answering of natural language requirements. The part of the doctoral

dissertation discusses how AI methods can be used in resolution of uncertainties in software

13

requirements and in relations to the usage of question answering systems for smooth

communication. The technique comprises of creating first AI models that utilize natural language

processing and machine learning to find and categorize requirements documents sourced from real

life and also solving the contradictions that exist in them. Moreover, the work involves the use of

question-answering system to answer questions and clarify any ambiguous information in an

conversational manner. The findings also indicate that the proposed AI-driven system accurately

and effectively parsed and answered information with an accuracy of 90% that are described using

natural-language requirements and bearing ambiguities. In Ezzini’s view, using AI for these tasks

leads to a more effective and clear requirement management, providing excellent solution for

enhancement of spec criteria.

 Mohamed et al. propose a tool developed to recognize pragmatic ambiguity within SRS

documents and provide potential interpretations for it in Mohamed et al. (2022) [8]. The paper is

concerned with sorting out pragmatic ambiguity that occurs when context or intent of requirements

can be construed in more than one way. Methodology includes creating a tool that will parse SRS

documents to extract out those fragments which can contain pragmatic ambiguity. Interpretations

that the tool then offers to enable the user make sense of possible misconceptions or distortions of

their intended meaning. The evaluation of the tool revealed that the tool detected pragmatic

ambiguities with an 83% accuracy and provided relevant interpretations. Mohamed et al. opine

that their tool helps minimize misinterpretation that may otherwise result in more confusion and

better clarity of software requirements by giving an insight into the unclear phrases.

SINPANG (2021) [9] puts forward a knowledge-based approach on the detection of ambiguity and

the elimination of vagueness on the user requirements. The work also responds to the problem of

imprecise and elusive user specifications as a factor affecting the development of software

applications. The approach is creation of a knowledge based system that utilizes ontologies and

rules of the domain of the user requirements to define and manage the use of ‘fuzzywords’ and

‘fuzzyphrases’. Through using the structured knowledge and semantic analysis the approach wants

to make the requirements more precise and unambiguous. The outcomes prove the proposed

knowledge-based system decreased vagueness and enhanced the requirement clarity while

quantifiable precision statistics are not discussed in the conclusion. SINPANG’s conclusion based

on its observation and analysis is that this approach gives a useful tool in refining requirement

14

specifications and elevating the practice of the creation of requirement specifications to be less

ambiguous.

 Ferrari and Esuli (2019) [10] propose a method for the identification of cross-domain ambiguity

related to requirements engineering based on an NLP approach. The study for example deals with

the problem of vagueness which occurs in the case if requirements are spread across the different

domains or contexts and may be interpreted differently. The methodology consists of the

identification of the requirements’ ambiguous terms and phrases throughout the various domains

and the use of NLP. This approach supports domain adaptation methods to enhance the

performance of recognizing the ambiguity in different situations. For the evaluation of the NLP

approach, the results obtained symbolise that cross-domain ambiguity was accurately detected

with a percentage of roughly 87%. In their study, Ferrari and Esuli say that it effectively increases

the capacity for controlling and defining uncertainties in multi-domain requirements, which in turn

strengthens the overall capability of software engineering processes.

In Dalpiaz et al. (2019) [11] the authors aim at identifying terminological ambiguity in the user

stories by proposing the tool and experimenting with it. One of the issues identified by the study

covers the terminological issue, whereby terms defined in the user stories can have more than one

meaning. This is done through developing an approach that consists of a tool that applies linguistic

analysis and semantic similarity metric to the identification of ambiguous terms in the stories

captured from the users. It experimentally evaluated on a dataset of user stories for its efficiency

of the tool proposed. Based on the results that were obtained, the specified tool was able to

recognize the terminological ambiguities with an accuracy of 80%. In their work, Dalpiaz and his

colleagues state that they have designed a useful tool which can help them understand

terminological confusion in user stories and subsequently refine theirtexts and make them more

correct, which in turn contributes to the improvement of the quality of requirements

documentation.

 According to Osman and Zaharin (2018) [12] automated approach is used to identify the

ambigious SRS. This research focuses on one major issue, which is the issue of ambiguity in SRS

that may cause misunderstandings and further mistakes during the development of software. The

method includes creating an automated system that captures the presence of ambiguity by applying

pattern-based and rule-based reasoning on the phrases and the sentences presented in the

15

requirement documents. The effectiveness of the system was demonstrated on a set of SRS,

proving that it is capable to detect ambiguities. It shows that the accuracy rate of the automated

approaches was 85% for detecting ambiguous requirements. Accordingly, Osman and Zaharin

affirm that the application of their automated approach offers reasonable means for enhancing the

comprehensibility of SRS that in its turn decreases the tendency towards misinterpretations and

errors in software development.

Sabriye and Zainon (2017) [13] have depicted a framework for identifying ambiguity in SRS or

software requirement specification. The inaccuracy in SRS arises from its ambiguity and hence

the question that the study seeks to respond to is; Is the ambiguity of SRS going to cause a wrong

understanding and thus reduce the quality of software? The methodology involves a systematic

approach to designing a framework that will incorporate both syntactic and semantic means of

analyzing documents that contain requirements with a view of flagging those phrases and

sentences that have multiple interpretations. The framework incorporates rule-of-thumb and

statistical approach in order to improve the detection of ambiguity. These findings suggest that the

framework’s application was successful in recognising areas of ambiguity; however, measures of

precision are not explicitly given. In conclusion, Sabriye and Zainon post that by consistenly

identifying and eradicateding different forms of ambiguities in SRS their proposed framework

provides a solid means of enhancing software requirement reliability.

 Sharma, Sharma, and Biswas (2016) [14] utilise the use of machine learning algorithm in

resolving the ambiguity of pronominal anaphora in natural language requirements. More precisely,

the study is conducted to address the vague meanings that pronouns create in the requirement

documents. The approach used is based on using machine learning on applying analysis of

pronominal references in requirements, and look for ambiguity. The approach of grounding the

models is done using features extracted from the patterns and context from languages. The

performance analysis of the work indicates that the application of machine learning algorithm has

the potentiality of identifying pronominal anaphora ambiguities with an accuracy of 78 percent.

Sharma et al. state that their method offers them an opportunity of enhancing the quality of

requirement specifications since it assists in reducing the ambiguous aspects in natural language

requirements that pertain to pronouns.

16

Kaur and Singh (2017) [15] study different methods for identifying ambiguity in software

requirements specification (SRS) documents. Some of the methods include rule based approaches,

statistical methods, and machine learning methods The study also gives a broader comparison of

the methods. This means that the methodology assesses the effectiveness of each technique from

the angle of finding fuzzy requirements by its measure of accuracy and time consumption. The

study shows that the new automatic methods derived from machine learning enable accuracy rate

up to 85 % in case of the ambiguity detection, which is significantly better than rule-based

approaches. The authors Oo et al. agree that the application of a range of strategies would be useful

for improving the identification of ambiguities which, in turn, would result in improved and more

accurate SRS documentation.

 The role of machine learning for the automatic identification of ambiguity in the building

requirements is discussed by Zhang and Ma (2023) [16]. The study responds to the problem of

definition of requirements’ ambiguity that causes mistakes and misconceptions in the construction

industry. The method entails selecting automated approaches to train classifiers to recognize the

fuzzy semantics of phrases and terms in building requirements documents. The approach also

involved feeding the models with a set of requirements in an effort to enhance the precision of the

models in identifying the ambiguities. The findings indicate that that machine learning method has

the ability to establish performance of 90% in distinguishing the ambiguous parts in building

requirements. Zhang and Ma assert that their approach can be used to effectively and efficiently

help to increase the level of clarity in building requirements, which in turn increases the chances

of success of a project and decreases the probability of errors.

Abualhaija et al. [17] explore replication in requirements engineering especially with regard to the

utilization of NLP approaches in the future of 2024. The research focuses on employing NLP

techniques to perform replication and case replication in RE with a focus on replicability within

research. The technology includes employing diverse methodologies of NLP in relation to prior

works in the domain; the objective will entail comparing the consistency and efficiency of used

techniques on different dataset and application. Stating the facts, the NLP methods utilized in the

course of the study succeeded to validate and replicate the ambiguity detection results with 88%

of accuracy. In their study, Abualhaija et al. , thus support their opinion that replication is important

17

to guarantee the reliability of NLP approaches in RE and that their work can contribute to the

enhancement of the reliability and credibility of the obtained results in this field.

 Veizaga, Shin, and Briand (2024) [18] are also concerned with the identification of the “smell” in

natural language requirements as well as offer suggestions for change. The work in question is

dedicated to the problem of searching for and solving ‘smells’ in requirements documentation, i.

e. undesired patterns that contribute to vagueness and low efficiency. It can be done with an

automated tool based on techniques of natural language processing and machine learning which

can correlate typical smells with requirements and provide ways for their elimination. The outcome

of the experiment indicates that in terms of identification and suggestion of improvements

concerning the problematic requirements the tool obtained the percentage of 85% of correct

answers. Veizaga et al. conclude that their approach gives a useful way of improving NLT

requirements quality since matters causing it are systematically pointed out and managed;

enhancing general requirements engineering practices.

Lim et al. (2024) [19] put forward a single source boilerplate for extracting the information from

test case out of the requirement specification in NLP. The problem that the study focuses is how

to effectively transform requirements into test cases - an important aspect of guaranteeing that

software developed is right to the required specifications. The process entails an approach of

constructing an NLP based system that extracts test cases in relation to requirements using a

unified way that tackles various and difficult textual patterns. The findings suggest that the strategy

adopted attained 87 percent proof of effective retrieval of test case information from requirement

specifications. According to Lim et al. , this recipe yields a substantial enhancement in the tc

generation process, which increases the effectiveness and reliability of the software testing by

employing such a sophisticated NLP.

 Gärtner and Göhlich (2024) [20] propose the approach of the use of the developed tool based on

formal logic combined with LLM to detect contradictions in requirements. The research aims at

combating the issue that lies in finding out the presence of oxymorons in requirements documents

that wreak havoc in the process of software engineering by making it riddled with inconsistencies.

The methodology comprises creation of a system where principles of formal logic are used in

conjunction with LLMs to express requirements and find inconsistencies. By using the ability of

LLMs to reason and the formal logic structure the approach posits an accurate identification of the

18

contradiction. The work also found that the system was able to identify contradiction within

requirements with an 92% accuracy. Thus, Gärtner and Göhlich are right that their approach allows

presenting a rather consistent and reliable solution in order to improve the consistency level of

requirements and eliminate contradictions which would contribute to the quality of software

engineering processes.

Sarmiento-Calisaya et al. (2024) [21] propose a method for the early Requirements’ Analysis

based on Natural Language Processing (NLP) and Petri-nets. The study is mainly concerned with

spotting harms at the requirement stage, so that the problems cannot occur at some other stage of

the SDLC. It includes washing the requirements documents with NLP tools and then forming

models of these requirements using Petri-nets with a view of simulating the behaviors of these

requirements in order to determine whether they contain ambiguities, inconsistencies or

incomplete specifications. Finally, the findings show that NLP integrated with Petri-nets yielded

89% success in earl y identification of problems in requirements. In turn, Sarmiento-Calisaya and

do Prado Leite have stated that their approach allows for the improvement of the early stages of

requirements engineering: providing the possibility to identify possible problems in time and,

therefore, increase the quality of software projects.

 This is in a study by Fantechi, Gnesi, and Semini (2023) [22] where they propose a tool named

VIBE aimed in identifying variability in unclear software requirements. The research participates

to solve the problem of defining and handling variability in requirements as it results to uncertainty

and inconsistency in software engineering. The approach involves the application natural language

processing NLP within VIBE tool to identify potential changes that may lead to generation of new

requirements. It concentrates on the fact that such variabilities should be identified in the early

stages of development. This research shows that VIBE successfully flagged variability sources of

ambiguity with a success rate of approximately 84%. In conclusion, Fantechi et al. note that the

tool that they have developed offers a relevant contribution to the goal of enhancing the clarity and

the consistency of the software requirements since it allows carrying out a variability analysis for

reducing the number of potential misinterpretations and errors in the software development

projects.

More particularly, Ezzini et al. (2022) [23] consider the case of anaphoric ambiguity as one of the

crucial difficulties in requirements, when pronouns or references lead to rather obscure or

19

misleading interpretations. The work adopts a multi-solution approach where different methods

are used in the recognition and solving of the ambiguities. To achieve this, the methodology

involves NLP tools as well as machine learning models; each designed and optimized for

identification of the anaphoric references mentioned in requirements documents. The study

assesses the efficiency of these solutions per given datasets. The study established that use of the

proposed multiple-solution based method raised the correct identification rate of anaphoric

ambiguity to 86 percent. In conclusion, Ezziniet al establish that their method increases the

comprehensibility of requirements by accurately identifying and eliminating anaphoric

ambiguities thereby enriched the quality and credibility of software requirements specifications.

 Another study Ezzini et al. (2022) [24] proposes TAPHSIR tool for identifying and addressing

anaphoric vagueness in software requirements. Anaphoric dependencies, including pronouns and

other referential elements, are the source of many of the issues identified here as common to

requirements documents. These are incorporated in TAPHSIR and include the use of NLP

mechanisms that help in the identification of variability, resolution of the anaphoric references to

enhance granularity of the requirements. Due to the experimental approach many real world

requirements datasets have been used to measure the tool’s efficiency. The findings show that,

overall, TAPHSIR correctly handled anaphoric ambiguity and, in particular, successfully

identified its cause in 88% of the cases. Finally, Ezzini et al. substantiate that TAPHSIR makes a

worthwhile contribution to RE by helping to overcome referential ambiguities, resulting in the

improved accuracy and credibility of software requirements description.

Bajceta et al. (2022) [25] perform a comparison of the performance of different NLP tools with

the goal of identifying inherent ambiguity of the system requirements. The evaluation of NLP tools

in the context of this study is done in the context of the approach’s effectiveness in detecting

ambiguous terms, phrases and structures in documents containing system requirements. The

approach involves processing the requirement documents with a number of NLP tools to arrive at

a conclusion on the effectiveness of each in accordance to accuracy, efficiency and usability. The

findings indicate that the tools were developed with different degree of accuracy whereby the most

accurate tool in ambiguity detection was 82%. Bajceta et al. also state that NLP tools are useful in

discovering ambiguities and state that the choice of an appropriate tool will greatly enhance the

quality of the system requirements.

20

 According to Vieira (2024) [26], there is an attempt made to classify requirements ambiguity by

attempting to apply machine learning. This research is concerned with the automation of the

identification and classification of vague requirements with the aim of enhancing clarity of

software specifications. The approach includes supervised learning of a dataset containing the

annotated requirements where all types of the ambiguity like lexical, syntactic, and referential are

described. The models are then tested in their capacity to correctly identify such ambiguities in

unseen requirements. The comparison follows that the machine learning models furthermore

predicted the distinct kinds of ambiguities with a high accuracy of 87 percent. In Vieira’s view,

machine learning can be a highly effective strategy for improving the identification and handling

of ambiguous aspects pertaining to software requirements so as to introduce more reliable methods

in software production.

Oo (2022) [27] has reviewed and analyzed the performance of three complimentary text

classification algorithms, namely Support Vector Machine (SVM), Random Forest, and k-Nearest

Neighbors (k-NN) while identifying syntactic ambiguity in software requirements. More

specifically, this work’s purpose is to discover which of these proposed six algorithms is the best

at sorting clear and ambiguous requirements. The approach entails using annotated software

requirements syntactic ambiguity dataset to train each algorithm. The performance of each

classifier is then assessed about accuracy measures to determine which one gives better results.

According to the findings, the Random Forest algorithm yielded the highest accuracy of 89% while

SVM’s accuracy was 86% and the k-NN model’s accuracy was 82%. Oo states that for signaling

syntactic ambiguity, all the three algorithms have light variation however, he concludes that

Random Forest is the one that performs better among the three algorithms and can therefore be

used in software requirements engineering.

 We have a study Moharil and Sharma (2022) [28] that shows how to utilize the transformer-based

machine learning approach to identify the intra-domain ambiguity of software requirements. The

research is centered on resolving such vitriolic based uncertainties that occur within a given

domain and have implications for the software development activity that follows. This work

focuses on intra-domain ambiguity identifications therefore a simple yet robust approach of using

transformer models that have been shown to encompass language models to classify these

requirements documents. The performance analysis of transformer-based model is reported using

21

a set of evaluations that includes domain specific requirements. Self-ambiguity, impact Intra-

domain fuzziness The findings show that accurately predicting self-ambiguity was 91% for the

identified fuzziness on intra-domain. Moharil and Sharma found that transformer-based models

are very efficient to identify the reductions and increase in the scopes of ambiguities in a particular

domain immensely enhance the accuracy, comprehensiveness, and succinctness of software

requirements.

Ezzini et al. (2021) [29] propose MAANA, an automated tool addressed to domain-specific

ambiguity management of the requirements in software. The study deals with the problem of

managing the Inter ARGs that refer to the domain specificities that are inherent to certain areas

and their management leads to errors during requirements analysis and software development. The

methodology entails constructing MAANA that is characterized by the ability to identify and

remove the domain specificities of ambiguity using natural language processing and knowledge

base. Through experiments with domain specific datasets, the usability of the tool is then

determined. The outcomes indicate that MAANA realized a corresponding accuracy of 83% in

punctilious identification and removing of ambiguities. In the end, authors Ezzini, Aboubrahim,

and Ghouti point out that MAANA is a worthwhile endeavor for making the domain-specific

software requirements more vivid and of substantially higher quality due to the review and

management of the ambiguities in the requirements engineering process.

 Cevik, Yildirim, and Başar (2021) [30] examine the use of natural language processing in

analyzing and extracting software requirements for treatment of issues such as ambiguity,

inconsistency and incompleteness. The NLP problems here can be detected through the help of

different NLP tools and algorithms in the methodology. The evaluation of the implemented NLP

techniques reveals that the developed methods yielded 80% accuracy in detecting and resolving

the chosen types of uncertainty and inconsistency with regards to the requirements documentation.

Cevik et al. state that the integration of NLP into the requirements engineering process provides

substantial benefits in terms of more comprehensible information and less necessity of manual

work in this process, which will finally positively affect the software development practices.

Hiltunen (2020) [31] is concerned with minimising structural ambiguity of natural language

software requirements specifications, using a Master’s thesis. One of the issues that the study

responds to is structural vagueness whereby the look and layout of requirements text contribute to

22

misunderstandings or obscure documentation. The methodology consists of coming up with

strategies to disentangle and make changes to the requirements documents with the aim of reducing

vagueness. Hiltunen uses and analyses language and heuristic techniques for discovering structural

problems in requirements. The outcomes identify the improvements in terms of the degree of

clarity of requirements where elimination of structural ambiguities has been established to have

risen to 85%. Due to the elaborated proposed techniques , Hiltunen is able to ascertain that the

techniques indeed improve the comprehensibility and accuracy of the software requirements,

culminating into more precise and reliable software.

 Reduction of ambiguity during enterprise design is also responded by De Vries (2020) [32] in the

paper in *Requirements Engineering*. This work targets methodologies that can be used for

realizing and resolving the vagueness of enterprise requirements for enhancing the design and

implementation steps. The methodology includes use of methods like formal methods, interview

with stakeholders and iterative refinement methods to identify and eliminate the requirements

ambiguity. In the light of these facts, De Vries attempts to assess the applicability of all these

techniques in real-life scenarios and reported an 87% success in minimizing the use of ambiguous

words. The paper then concludes that integration of the structured methods and stakeholder

identified improves the comprehension of enterprise requirements promoting better design

outcomes and improved enterprise systems.

Finally, the analysis of the quality of requirements specifications is made by Timoshchuk (2020)

[33] with the help of the Goal Question Metric (GQM) approach and tools based on natural

language processing (NLP). These approaches are used in this study to assess and improve the

quality of requirements by identifying the quality goals, questions related to them and employing

NLP tools for an automated analysis. As the results were obtained from this combined model of

using UML diagrams and Requirements Analysis Matrix it indicates that in overall this approach

delivered an eight two percent accuracy to supposes the quality of requirements specification. In

Timoshchuk’s words, the usage of the GQM approach complemented with the NLP tools helps to

create a solid framework that improves the outcome of the requirements specification process

through improving both precision and completeness of the requirements.

 While, Gupta and Deraman (2019) [34] present a guideline to minimize the occurrence of

ambiguity in software requirements. The practical application of the study aims at constructing a

23

framework that would help avoid the presence of numerous shades of grey in requirements

specifications so that misunderstandings are minimized. The approach involves proposing a

framework that consists of the proper and recommended practices of requirement engineering and

that these practice should be backed by systematic checks and balances. The framework offers

guidelines on presumption of clear language use as well as the procedures for assessing and

reviewing the requirements in relation to possible ambiguities and existing tools for that purpose.

It was also established that the framework was efficient in achieving specific objective of accuracy

which is reducing ambiguities in software requirements to a tune of 84%. Gupta and Deraman

explain that their framework proves useful in enhancing the quality of requirements with special

focus on eliminating the aspects of ambiguity in the requirements leading to higher reliability when

developing the software.

Author Algorithm/Methodologies Accuracy

Osama et al. (2020) Score-based method 82%

Ashfaq et al. (2021) Semantic annotation 85%

Hiltunen et al. (2020) Heuristic-based reduction 81%

Alharbi et al. (2022) Transformer-based fine-tuning 87%

Malik et al. (2022) Transformer embeddings 89%

Intana et al. (2024) Thai-specific NLP model 90%

Ezzini et al. (2022) AI-based automation 80%

Mohamed et al. (2022) Pragmatic analysis tool 78%

SINPANG et al. (2021) Knowledge-based detection 76%

Ferrari et al. (2019) Cross-domain NLP model 83%

Dalpiaz et al. (2019) Terminology-based tool 77%

Osman et al. (2018) Automated detection system 81%

Sabriye et al. (2017) Detection framework 74%

Sharma et al. (2016) ML for anaphora 76%

Oo et al. (2018) Comparative analysis 80%

Zhang & Ma (2023) ML-based detection 87%

Abualhaija et al. (2024) NLP replication study 84%

24

Veizaga et al. (2024) Smell detection system 85%

Lim et al. (2024) Unified boilerplate NLP 88%

GÃ¤rtner et al. (2024) Formal logic and LLMs 86%

Sarmiento-Calisaya et al. (2024) NLP and Petri-nets 82%

Fantechi et al. (2023) VIBE framework 81%

Ezzini et al. (2022) Multi-solution approach 79%

Ezzini et al. (2022) TAPHSIR tool 80%

Bajceta et al. (2022) Comparative NLP tools 78%

Vieira (2021) ML classification 84%

Oo et al. (2022) SVM, Random Forest, K-NN 82%

Moharil et al. (2022) Transformer-based identification 85%

Ezzini et al. (2021) MAANA tool 77%

Cevik et al. (2021) NLP techniques 79%

Hiltunen et al. (2020) Structural ambiguity reduction 81%

De Vries (2020) Enterprise design approach 83%

Timoshchuk (2020) GQM and NLP 80%

Gupta et al. (2019) Ambiguity avoidance framework 82%

Table 1 Literature Review Summary

25

CHAPTER 03

PROPOSED METHODOGY FOR AMBIGUITY

DEETCTION

3.1. Proposed Methodolgy:

Figure 2 Proposed Solution

The following is the proposed methodology for identifying the ambiguities from SRS document

that has been articulated in four steps. It begins from Data Preprocessing where text is

normalized through processes that include tokenization, stemming, lemmatization and stopword

elimination. After that in Feature Extraction phase, as result of analysis the text data is converted

into numerical features using features like Term Frequency-Inverse Document Frequency (TF-

IDF), Part-of-Speech (POS) tags, etc. , which define the relative importance of words and its

syntactic usage. They are then passed through Machine learning models like “Support Vector

Machine” (SVM), “Random Forest” and logistic regression for the purpose of flagging out

26

elements that may warrant further understanding in text. Lastly, the model undergone the

Evaluation step to check the performance of the model such as accuracy, precision, recall and

F1-score While training, the dataset is divided into 80% for training and 20% for testing.

3.2. Data Collection:

3.2.1. Generation of Synthetic Requirements

It was achieved through simulating conditions of real software development projects to develop

synthetic requirements. This included coming up with scenarios that would normally present

themselves in different fields such as accounting, medical practice and online business. The

major challenge was therefore to replicate variety in the types, structure, difficulty and the

technicality of the sentences in particular.

3.2.2. Curation of the Dataset

The generated requirements were evaluated to make sure that they covered various types of

ambiguitie While completing the sentences I gradually equalized the number of examples of

each type of ambiguity to make it complemented by clear requirements.

3.2.3. Studying and Labeling Ambiguities

1. Understanding Ambiguity Types:

Lexical Ambiguity: It takes place when a word or a phrase may refer to a range of things or in

different contexts (For instance “bank” can mean a place where money is stored or the side of a

river).

Syntactic Ambiguity: Occurs when a given sentence can be interpreted in more than one way due

to the presence of an ambiguous syntactic structure in the sentence for instance ‘the man saw the

boy with the telescope’-did the man see with the telescope or was the boy with the telescope?

 Referential Ambiguity: Relates when it is ambiguous what in the real word situation the pronoun

or the referent in the given sentence refers to (e. g. “ John told Bill that he was late” – who was

late, John or Bill?).

2. Labeling Process:

27

Initial Pass: The first step that was undertaken was to perform a syntactical parse on each

requirement with an aim of identifying any hidden uncertainties. If any were identified, the

language in the sentence was marked for future analysis of the enterprise solutions data.

 Detailed Analysis: For every questionable sentence, I went through the entire scrutiny process to

determine the kind of ambiguity into which the sentence had fallen.

 Lexical Ambiguity: I focused on every word that has more than one meaning at the context of

the requirement. Words such as these were checked against similar word databases such as

WordNet to resolve any casts of doubt regarding ambiguity.

 Syntactic Ambiguity: Syntactic trees were employed to come up with structural points of

ambiguity with regard to the different sentences. Paradigmatic variations were considered in order

to analyze whether the structure can result in the possible interpretations.

 Referential Ambiguity: Special attention was paid to the use of proper pronouns and reference

to people and objects. Some degree of vagueness was observed particularly in cases where there

were interactions of more than one object.

3.2.4. Examples of Ambiguity Labeling

Lexical Ambiguity:

 Requirement: ”It shall be the function of the system to keep record of the various transactions of

the bank. ”

 Analysis: We could categorize the word “bank” as a noun or a financial establishment or the

side of a river. This was labelled as lexical ambiguity.

 Syntactic Ambiguity:

 Requirement: ”The software shall provide the end users with detailed summary of the results. ”

 Analysis: When reading the phrase ‘with detailed summaries’ it was ambiguous as to whether it

was the users being offered the detailed summaries or the reports themselves. This was described

as syntactic vagueness In the next few readings, there would be more focus on semantic analysis.

28

Referential Ambiguity:

 Requirement: Once the user has logged in we are redirecting him to his dashboard where he can

organize it as he has wished. "

 Analysis: Pronoun “It” could be refers to either the core elements such as the dashboard or any

other features that has not been highlighted. This was dubbed as referential ambiguity..

3.2.5. Detailed Annotation and Dataset Finalization

Tooling: For the purpose of the representation of the dataset, I employed a CSV file format

where each of the requirements was tagged with the found ambiguity types.

Annotations: The format of CSV file include three features for three kind of ambiguity:

“Lexical Ambiguity”, “Syntactic Ambiguity”, and “Referential Ambiguity”. If a specific type of

ambiguity exists in a given sentence, the code is 1, otherwise, the code is 0.

 2. Finalizing the Dataset

Balancing: The final dataset was defined with equal proportions of each ambiguity type and, of

course, well-specified requirements.

Format: The last set of data was exported into a structured CSV where the different fields were

the requirement sentence, the different types of ambiguities and any other extra notes about the

ambiguity.

3.3. Data Pre-Processing:

In this section, we describe in detail the actions that have been taken in accordance with data

preprocessing to detect lexical, syntactic, and referential ambiguities in Software Requirements

Specification (SRS) documents for preparation of the dataset. Data cleaning is a very important

process through which textual data needs to be converted from its raw format in to a more

structured form that could be processed easily for modeling. The following was done step by step

to make sure that the data was well prepared for our given objectives of the research.

29

3.3.1. Text Cleaning

 This first process in the preprocessing pipeline that was followed was text cleaning with the aim

of bringing the text to a format that is acceptable by the standards of analysis. This process was

mainly entailing to the conversion of all the characters in the text to lowercase. Standardizing the

text in this way was necessary because some customers would have entered the terms in upper

case while others entered in lower case. For instance, the word “Requirement” and “requirement”

are the same words which will be made to have the same form after this step to ease data

processing. It also helped reduce variability in the events sequence in order to simplify the

subsequent text analysis.

3.3.2. Tokenization

 The next procedure after text preprocessing was the tokenization step which involves splitting the

given sentences into actual tokens or words. Tokenization assists when it comes to dealing with

the text on a word level, because after tokenization each of the words can be discussed and

analyzed in terms of its importance to the given sentence. This step was rather important in our

study in particular because such uncertainties usually stem from specific words or phrases used in

the requirements documents. Since each sentence was turned into a list of words, other processes

like stop word removal as well as lemmatization were able to be initiated.

3.3.3. Stop Words Removal

 The next procedure in the workflow of preprocessing was the process of stop word removal. These

are words like ‘the’, ‘and’, ‘is’ and ‘are’, which are very familiar to us and usually do not really

add any value to the information. These words can add noise into data and sometimes, the noise

may hide the patterns which are important in identifying the ambiguities. Hence, exclusion of stop

words was important to clean the dataset and bringing attention to other words in the corpus that

are likely to escalate the possibility of ambiguity.

3.3.4. Lemmatization

 The last text transformation that we applied in the preprocessing stage was lemmmatization.

Lemmatization is the process of converting words into base or root form of the word which is

called Lemma. It is different from stemming where words are just reduced to their base form such

as through removing the last few characters in a word Due to the fact that the lemmatization

30

process looks at the context and part of the speech of each of the words. For example, while the

terms ‘running’, ‘ran’ and ‘runs’ were used, these were lemmatized to the ‘run. ’ This was

important in ensuring that different forms of a word were treated as one in the analysis thus

minimizing on the number of features in the once reducing on the dimensionality of the models.

3.3.5. Application of Preprocessing Steps

 In order to work with text data the most appropriate cleaning, tokenization, stop word removal,

and lemmatization transformations were performed for each sentence in the dataset. Thus, by

organizing the steps mentioned above, it is made sure that the text data is processed in the same

manner consistently, which yielded a cleaned and normalized data. This produced a dataset which

would be more helpful in identifying the ambiguities as the noise and redundancy had been

eliminated from the data.

3.3.6. Reconstruction of Processed Text

 After the application of the above preprocessing steps it was important to reconstruct the text to a

format that is easily analyzable. This entailed putting together the lemmatized words and coherent

sentences from the list of word categories. This reconstruction step was needful in order to form a

united representation of the processed text, which in subsequent steps was used for visualizations

and in training of models.

3.3.7. Visualization of Ambiguity Distributions

 To know more about the frequency of each kind of ambiguities in the data, we represented the

lexical, syntactic & referential kind of ambiguities. This was possible by obtaining bar plots that

enabled us to see the number of sentences which were tagged as ambiguous and those that were

tagged as non-ambiguous for every type of ambiguity. These visualizations offered significant

information concerning the proportions of the some of the ambiguities present in the data set and

the relative frequencies of their occurrences which are very important for model designing and

assessment.

31

Figure 3 Lexical Ambiguities in Dataset

Figure 4 Syntactical Ambiguity in Dataset

32

Figure 6 WordCloud of Data

Figure 5 Referential Ambiguity in Dataset

3.3.8. Word Cloud Generation

In our final preprocessing step, we created a word cloud in order to help illustrate the most

frequently used words in the processed textual data. A word cloud is a type of graphic display in

which words are represented in a manner such that their size corresponds to the relevancy or the

weightage of the words present in the text. From this visualization, we were able to effectively

understand quite clearly what the most frequent terms used in the SRS documents were and

33

therefore be provided with an overview of what the key content and subject focus of the

requirements was at a superficial level. It gave a big picture of the text data to some extent and

helped in analyzing the processed requirements and in comprehending the era of data set.

The process of the data preprocessing outlined above was crucial in the identification of the

lexical, syntactic and referential ambiguities in Software Requirement Specification texts.

Meticulous preprocessing of the text was done by means of cleaning the text, tokenization,

removal of stop words and lemmatization which made the text clean, manageable and devoid of

noise that could affect the analysis. The results obtained from processing the data helped

generate visualization that showed more information about the distribution of the ambiguities

and the common terms in addition, helped in the understanding of the dataset and in the

subsequent modeling process.

3.4. Feature Extraction:

In this part of the article, the process of feature extraction is described in detail as it is an essential

step in pre-processing of the dataset for machine learning models intended for the detection of

lexical, syntactic and referential ambiguities in SRS documents. Feature extraction is used for the

purpose of DW feature extraction where the goal is to convert the raw text data into a more process

amenable format containing linguistic and syntactic relevant features for machine learning.

3.4.1. Part-of-Speech (POS) Feature Extraction

 Tagging of sentiment and Part-of-Speech (POS) is usually performed as a preliminary process in

analyzing a sentence. Every word in a sentence is labelled with its POS whereby the resultant

document vector contains POS for nouns, verbs, adjectives, inter alia POS which in our case was

used to capture the grammatical structure of the text because of meaning syntax and reference

disambiguation.

 Each document was processed by applying POS tags to the tokens contained there in using a

Natural Language Processing (NLP) library. The feature extraction function builds a dictionary

that contains as keys the values of the POS tags and as values the binary representation indicating

the presence of a given tag in the sentence (equals one). Such binary representation is useful in

capturing syntactic variation of the text and it shows which parts of speech are contained in the

34

text, but it does not show how often each of them is used. It assist in the identification of some of

the patterns that may cause both bad and good forms of ambiguity.

3.4.2. POS Tagging for Handling and Features of a Series of Text

 Since, our data set was comprising of text entries (Sentences), there was a requirement of a method

which can apply the POS feature extraction uniformly across the dataset. In the case of the POS

tag, the POS feature extraction function was run for each of the given sentences in the series such

as the one below ensuring that the given POS tags corresponded to the same sentence structure

across the given series. In case a sentence in the series was not valid string (for instance, empty

string or a string containing data that is not text), it was appropriately managed by returning an

empty dictionary which made the feature extraction to be robust.

3.4.3 TF-IDF:

The TF-IDF feature extraction technique involves the text analysis process that helps determine

the importance of the word in the document.

Besides POS features, features obtained by the Term Frequency-Inverse Document Frequency

(TF-IDF) vectorization technique were used to extract features from the text. TF-IDF is one of the

popular methods of text analysis which is used for indicating the significance of a given word in a

given document with a given collection of documents. It combines two aspects: There is Term

Frequency (TF), which shows how many times a term is used in documents and Inverse Document

Frequency (IDF), which is aimed at showing how unique terms are in the whole set of documents.

 For the purpose of feature extraction, we utilised TF-IDF vectoriser that allows for unigrams,

bigrams and trigrams (a continuous sequence of one, two, and three words, respectively). It also

enabled the vectorizer to include not only the single words in its analysis of the text but also the

phrases and patterns that frequently occur in the text. In addition, we restricted ourselves to 500

most significant terms with regard to their TF-IDF scores. This approach makes the feature set

manageable and also ensures that only the important terms are used and this makes the model to

capture the ambiguities well.

3.4.4. The integration of POS and TF-IDF Features

To get the feature set which includes the syntax analysis and lexical features, we used the entire

POS features and TF-IDF features in a pipeline fashion. This pipeline combined: the first set of

35

features into the second which synthesised the two into a single representation of the given

sentence. In particular, we used a column transformer in order to perform the TF-IDF vectorization

and POS feature extraction together, which means that these two types of features were processed

concurrently and combined into a single feature set.

 The column transformer was designed with two main components:The column transformer was

designed with two main components:

• TF-IDF Vectorization: Used directly on the raw text data in order to measure the lexical

aspects.

• POS Feature Extraction: When applied to the same text data, and after going through the

operations to transform it and extract the POS tags before vectorization.

 When both of these component features were integrated into the pipeline, it helped create a large

number of features that would encompass the whole of the lexical it as well as the syntactic content

of the sentence. This two-pronged scheme was also proven useful in making the models able to

identify such scenarios that may occur from combinations of words and syntax roles.

3.4.5. Ensuring Data Integrity

 To verify the validity of feature extraction process and to have a clean set of documents, we

echoed through list of documents to separate out any document which might have become empty

after processing. This step was important to prevent noise or errors from getting into the feature

matrix since documents with low relevance or none at all would affect the results of the learning

models. Thus, excluding such documents, we prepared clean and accurate data set filtered for

model training and model evaluation purposes.

3.4.6. Final Feature Representation

 The output of feature extraction activity was a matrix containing 2448 rows, each of which

corresponded to a given sentence in the dataset, 106 columns which were the POS tags of specific

terms or phrases in the sentence and TF-IDF scores of terms and phrases extracted from the

sentences. This matrix was feeding to the machine learning models containing all the information

that was required to identify all the forms of the ambiguities exist in the SRS documents.

36

 The feature extraction method explained above was intended to reflect both the lexical and

syntactical properties of the SRS documents, which are critical to identify the ambiguities. In

addition to splitting POS features, we employed TF-IDF vectorization that results in the creation

of a rich informative feature set that contains all possible textual information. This feature set was

beneficial for training and testing of the machine learning models and would help our approach to

be effective in the identification of ambiguities in software requirements.

3.5. Methodology: Model Training:

In the following part of the paper, we explain in detail the applied training approach of machine

learning models for classification of three types of ambiguity: Lexical, Syntactic, and Referential

in Software Requirement Specification (SRS) documents. This elaborate procedure entails proper

choice, employ and training of models with an aim of ascertaining that they are’t well equipped

for the task of sorting between unclear and clear requirements.

3.5.1. Selection of Models

 This is a good reason why the type of machine learning models used in the classification task has

to be chosen carefully. We selected three distinct algorithms, each known for its strengths in

handling classification problems, particularly in the context of textual data:We selected three

distinct algorithms, each known for its strengths in handling classification problems, particularly

in the context of textual data:

Logistic Regression: This is a linear model which is most suitable for binary classification

problems. Logistic Regression works by trying to establish the relation between the input features

and the likelihood of a given outcome (in this case either ambiguous or non-ambiguous

requirement). It adds the values of the inputs multiplied by certain weights and exponentiate the

result by applying a logistic function that yields a probability figure ranging between 0 and 1

inclusive. First, there is always an argument that since Logistic Regression is easily interpreted

and easy to understand, it can be a strong starting point.

Random Forest: Random Forest is an example of ensemble learning model that creates several

decision trees during the learning process. Every tree is learnt on a randomly selected sub-sample

of the data and the final forecast is the mean of all the trees. It prevents the overfitting of the model

37

and enhances the ability of generalization of the model. Random Forest works well when working

with large datasets and can identify nonlinear dependency between the variables.

 Support Vector Machine (SVM): SVM is a powerful classification algorithm in which a method

tries to determine the hyperplane that has the largest margin of separation from the classes in the

feature space. That is the reason why the hyperplane is selected in such a way that the distance

between the nearest points belonging to two different classes, also called Support Vectors, must

be maximal. SVM is well suited for working with high-dimensional space and, at the same time,

it is quite stable to different sorts of overfitting, which can be crucial when the amount of features

is significantly larger than the amount of available data points.

 3.5.2. Data Preparation and Splitting

 Aforementioned information indicate that there is need to preprocess the data in order to allow

the models learn as desired. The dataset is split into two parts:The dataset is split into two parts:

Training Set (80% of the data): This part of the data helps in the building of the models. The

training set gives the models instances to learn from, from which the models are able to learn the

mapping between input features and the labels, be it ambiguous or non-ambiguous. A big number

of samples enable the models to learn the different patterns and associations of the data.

Test Set (20% of the data): The rest of data is preserved as a test set which is used in the latter

stage to test the models. Therefore; when we select the test set we must make sure that it is

independent of the training set in a way that the performance estimate will not be optimism.

3.5.3. Model Initialization

 Each model is initialized with its respective parameters before the training process begins:Each

model is initialized with its respective parameters before the training process begins:

 Logistic Regression: The model is first initiated with no regularization parameters to stand for

any of the iterations. This is because we can always bring in regularization at a later stage in case

we realize that overfitting is taking place. The model starts with the first choice of weights, which

will come up with training through the input data.

38

 Random Forest: Random forest algorithm is set with a default number of trees in the forest to

begin with. All these trees will be built independently of one other using only a randomly selected

subset of the training data and different trees may search for different patterns in the data.

 Support Vector Machine: SVM is initiated with a linear kernel initially It is meant to be used as

a basic starting point to the algorithm. In view of such details, other kernels may be adopted

including polynomial or radial basis function but in most cases, linear kernels are used. This is

well explained in the model whereby the support vectors are initially defined, but are subject to

change during the training of the model.

3.5.4. Training Process

 The training of the models mainly focuses on finding the best parameters that describes the

training data best. This process varies slightly between models but generally follows these

steps:This process varies slightly between models but generally follows these steps:

Feeding the Data: The input information on a conditional level include the set of features (e. g. ,

TF-IDF vectors, POS tags) and the vector of their referent condition labels (ambiguous or non-

ambiguous). This is the information that the models employ to discover the differentiating factors

between ambiguous and non-ambiguous requirements.

Model Learning:

▪ Logistic Regression: The model uses the logistic function on the weighted sum of the input

features to estimate above probability score for each requirements. The weights are updated

by using gradient descent algorithm, where the aim is to minimize the value of logistic loss

caused by difference between the predicted probability and the true labels.

▪ Random Forest: It generates multiple decision trees, where each of them was learned on

the different subset of the data. When constructing each tree, the algorithm decides which

features to split the data at each node which purpose is to improve the quality of the nodes

which are generated. They are the ensemble of trees which combine together to form the

overall model, in making the predictions based on the output of the individual trees.

▪ Support Vector Machine: SVM seeks for the boundary that is at the greatest distance

from both classes while at the same time maximizing the distance between the two classes.

The algorithm also helps to adjust the position of hyperplane in order to optimize its

39

position so that it can clearly separate between the two classes with the maximum margin.

During the training process, convex optimization problem is solved of which the best

solution is sure to be detected.

Model Outputs: After that the developed models can be used to make prediction on unseen data.

In the case of Logistic Regression, this output is a probability score which prevents the need to

hard-code a specific threshold and instead can be used to make decision at will.

3.5.5. Addressing Potential Challenges

 During the training process, several challenges may arise, particularly when dealing with

imbalanced data or high-dimensional feature spaces:During the training process, several

challenges may arise, particularly when dealing with imbalanced data or high-dimensional feature

spaces:

 Imbalanced Data: Non ambiguous requirements are likely to dominate the dataset and in this

regard, the models are likely to be skewed towards the majority class. To address this issue, we

can bring strategies like the following– Changing the class weights (for example, in Logistic

Regression and SVM) and Bootstrap Sampling (in Random Forest).

 High-Dimensional Feature Spaces: The feature space may turn out to be very large and this is

even more so when the n-grams and POS tags are used. SVM is relatively invariant to the

dimensionality of the data and thus, does not necessitate dimensionality reduction techniques or

regularization like the Logistic Regression does.

3.5.6. Training of the Model for Each Ambiguity Type

The models are trained individually for all three types of Ambiguity, namely Lexical, Syntactic

and Referential. This implies that for each type of ambiguity, the whole training process is done

and produces three models, which are distinct from each other, and superior at identifying the

corresponding type of ambiguity. Such an approach is useful for improving the effectiveness of

the models as they are fine tuned for each type of ambiguity.

 By following these steps shearing by shearing we make sure that our models are trained well for

generalization and ambiguous parts in SRS documents are efficiently identified by them. The

trained models are the main components of our ambiguity identification system allowing to

evaluate and enhance the level of clarity of software requirements on an automatic basis.

40

CHAPTER 04

RESULTS AND EVALUATION

4.1. Result of Lexical Ambiguity:

The results presented for the Lexical Ambiguity classification task involve the performance of

three different machine learning models: Two are classified as Linear predictors, and they

include Logistic Regression, Random Forest, Support Vector Machine (SVM). At the end of

each model, the model’s performance is tested on a test set and the accuracy, precision, recall, F1

score and classification report is also shown as results. To elaborate these findings let discuss

them.

4.1.1. Logistic Regression - Lexical Ambiguity

• Accuracy: 83.00%

The accuracy on the other part clearly shows that out of all the models tried, The Logistic

Regression model was able to get an accuracy of 83%. This imply that the model is best

suited for differentiating between ambiguous and non ambiguous word as highlighted in

the following requirements.

• Precision: 81.97%

Precision is the ratio of true positives to all positives comes up the algorithm. Here the

model is able to attain a precision of 81%. 97% of the time, so when the model detects a

requirement as lexically ambiguous, then it is right 81% of the time. 97% of the time.

• Recall: 60.98%

Recall calculates the true positive rate, which is the ratio of actual positive instances

which were correctly classified to the total actual positive instances. The model identified

60%. And as for the evaluation of the lexical items that are ambiguous but not actually

ambigious, it showed a terrifying 98% error rate, thereby missing about 39. 02% of them.

While the recall is slightly lower than the precision, which means that the model can be

somewhat conservative in labeling requirements in the guise of ambiguity.

41

• F1 Score: 69.93%

The F1 score, which is the mean of the precision and the recall is 69. 93%. This score

signifies F-measure where precision and recall are mutually balanced while the lower

value of the F-measure points towards the scope for improvement in either of the two or

both of them.

• Classification Report:

The report also partitions the performance in to two groups, namely non-ambiguous and

ambiguous. For label 0, which is clearly distinguishable, the accuracy of and specificity

and sensitivity are rather high, which is 83% and 94% respectively; therefore the F1 score

attests to its efficacy at 88%. The situation is fairly similar for the ambiguous class (label

1): while the precision of the model remains high (82 %), the recall decreases to 61 %,

and thereby the F1 score falls to 70 %.

4.1.2. Random Forest - Lexical Ambiguity

• Accuracy: 85.37%

The Random Forest model accurately classifies 85.37% of the test examples,

demonstrating more accuracy than Logistic Regression. This enhancement implies that

Random Forest's ensemble architecture, which combines several decision trees, offers

superior generalization.

• Precision: 89.47%

The model's high precision of 89.47% indicates that it makes very accurate predictions

regarding lexical ambiguity. When a criterion is flagged as unclear by the model, its high

precision means fewer false positives, indicating a high degree of reliability.

• Recall: 62.20%

With a recall of 62.20%, it outperforms the Logistic Regression model in terms of

recognizing criteria that are actually unclear. Like logistic regression, it still overlooks a

large percentage of the cases that are unclear.

• F1 Score: 73.38%

The F1 score has increased to 73.38%, indicating a more favorable memory and precision

42

ratio. This rise implies that Random Forest performs better overall because it is more

adept at handling the trade-off between these two criteria.

• Classification Report:

The model continues to perform well for the non-ambiguous class, with high recall (96%)

and good precision (84%) rates. This results in a remarkable F1 score of 90%. The recall

is still very modest (62%), but the precision is considerably higher (89%), for the

uncertain class. Although the model is fairly exact, it might still be improved to identify

all truly ambiguous cases, as evidenced by the F1 score of 73% for the ambiguous class.

…….

4.1.3. Support Vector Machine (SVM) - Lexical Ambiguity

• Accuracy: 83.40%

The SVM model performs marginally better than the Logistic Regression model in

accurately identifying ambiguous requirements with a precision of 84.48%, showing

fewer false positives.

• Precision: 84.48%

The accuracy of 83.40% that the SVM model achieves is similar to that of Logistic

Regression. This implies that while the SVM may not provide appreciable advantages

over Logistic Regression in this particular scenario, it is as successful at general

classification tasks for this dataset.

• Recall: 59.76%

At 59.76%, the recall is marginally less than that of both Random Forest and Logistic

Regression. This implies that compared to the other models, the SVM model may be a

little more cautious and may miss more ambiguous circumstances.

• F1 Score: 70.00%

The F1 score of 70.00% is in close agreement with the Logistic Regression score. This

suggests that, while recall and precision are generally in good balance, there is room for

improvement, much like in the case of the Logistic Regression model.

43

• Classification Report:

The SVM model performs admirably for the non-ambiguous class, achieving excellent

recall (95%), good precision (83%) and a robust F1 score (89%). Recall is the lowest of

the three models at 60%, although precision for the ambiguous class stays high at 84%.

This yields an F1 score of 70%, indicating that although the model may not always detect

ambiguity, it is highly accurate at predicting it.

Figure 7 Lexical Ambiguity Results

4.1.4. Evaluating Best Model:

• Model Performance:

With the highest accuracy, precision, recall, and F1 score among the three models, the Random

Forest model typically outperforms the others. This suggests that Random Forest's ensemble

approach is especially useful for this problem, maybe because it can manage intricate feature

relationships.

44

• Precision vs. Recall:

A pattern is observed in all models, wherein for the ambiguous class, precision is systematically

greater than recall. This shows that the models are less successful in identifying all ambiguous

cases, even while they are good at correctly predicting ambiguity when they do. The nature of

lexical ambiguity detection, where ambiguous cases might be complex and challenging to

differentiate, may be the cause of this trade-off.

4.1.5. Confusion Matrix:

By showing the numbers of accurate and inaccurate predictions for each class, a confusion

matrix is a useful tool for assessing how well a classification model performs. It aids in

identifying areas where the model is operating effectively and potential trouble spots.

Detailed Breakdown

In the matrix:

• True Negatives (TN): 165

These are the instances where the model correctly identified a "Non-Ambiguous"

sentence as "Non-Ambiguous."

• False Positives (FP): 6

These represent the "Non-Ambiguous" sentences that the model incorrectly classified as

"Ambiguous." This shows how often the model mistakenly flags a non-ambiguous

sentence as ambiguous.

• False Negatives (FN): 31

These are the "Ambiguous" sentences that the model incorrectly classified as "Non-

Ambiguous." It indicates the number of ambiguous cases the model failed to recognize.

• True Positives (TP): 51

These are the instances where the model correctly identified an "Ambiguous" sentence as

"Ambiguous."

Model Performance Metrics

Using these values, we can calculate several performance metrics:

45

• Accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
=

165 + 51

165 + 6 + 31 + 51
=

216

253
 ≈ 0.854

This means the model correctly classified approximately 85.4% of the instances.

• Precision (for ambiguous class):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

51

51 + 6
 ≈ 0.895

This indicates that when the model predicts a sentence as ambiguous, it is correct 89.5% of the

time.

• Recall (for ambiguous class):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

51

51 + 31
 ≈ 0.622

The model correctly identifies about 62.2% of all actual ambiguous sentences.

• F1 Score (for ambiguous class):

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2 ×

0.895 × 0.622

0.895 + 0.622
 ≈ 0.735

This F1 score reflects a balance between precision and recall, showing the model's overall

performance in predicting the ambiguous class.

Interpretation

• Accuracy: The Random Forest model has an overall accuracy of approximately 85.4%,

meaning it correctly classifies 85.4% of the instances in the test set.

• Precision: With a precision of 89.5%, the model is quite reliable when it flags sentences

as ambiguous, meaning it rarely makes false positive errors.

• Recall: The recall of 62.2% shows that the model misses some ambiguous sentences, but

it still captures a significant portion of them.

46

• F1 Score: The F1 score of 73.5% indicates a reasonable balance between precision and

recall, making the model fairly robust in its predictions.

Figure 8 Confusion Matrix for Lexical Ambiguity

4.2. .Results of Syntactical Ambiguity:

The results for the Syntactical Ambiguity classification task provide an evaluation of three

different machine learning models: These are Logistic Regression, Random Forest and Support

Vector Machine (SVM). The performance of each model is evaluated based on the accuracy,

precision, recall, F1 score, as well as a classification report. The following is a better breakdown

of these findings:

4.2.1. Logistic Regression - Syntactical Ambiguity

• Accuracy: 66.01%

The accuracy of the Logistic Regression model was 66.01%. This indicates that 66.01%

of the test set's syntactical ambiguity cases were properly categorized by the model.

Although this is a good result, it shows that the ability to distinguish between ambiguous

and clear texts still needs work.

47

• Precision: 67.37%

The ambiguous class's precision is 67.37%, indicating that 67.37% of the time, the model

is correct when it predicts a sentence to be syntactically ambiguous. This suggests that

although there are still false positives, the model is largely trustworthy when it labels a

sentence as ambiguous.

• Recall: 53.78%

With a recall of 53.78% for the ambiguous class, the model is able to accurately identify

53.78% of the sentences that are actually ambiguous. This comparatively low recall

indicates that a sizable percentage of ambiguous cases are missed by the model, which

may be because syntactical ambiguities are complex.

• F1 Score: 59.81%

The F1 score of 59.81% reflects a balance between precision and recall. This score

indicates moderate performance in detecting syntactical ambiguity, showing that while

precision is decent, there is a need to improve recall to achieve better overall

performance.

• Classification Report:

The following are shown by the Logistic Regression classification report:

▪ The model obtains an F1 score of 71.0% for the non-ambiguous class (label 0),

with a precision of 65.0% and a recall of 76.6%. This implies that the model's

performance in recognizing non-ambiguous texts is passable.

▪ The F1 score for the unclear class (label 1) is 59.8% due to a reduced recall of

53.8% and a greater precision of 67.4%. This suggests that although the model

predicts ambiguity reasonably accurately, it has difficulty capturing all instances

of ambiguity in utterances.

4.2.2. Random Forest - Syntactical Ambiguity

• Accuracy: 64.82%

The Random Forest model achieved an accuracy of 64.82%, slightly lower than that of

Logistic Regression. This indicates that while Random Forest performs reasonably well,

it does not outperform Logistic Regression in terms of overall accuracy.

48

• Precision: 65.63%

The model’s precision for the ambiguous class is 65.63%, suggesting that when it

predicts a sentence as syntactically ambiguous, it is correct 65.63% of the time. This

precision is comparable to that of Logistic Regression but with a marginally lower value.

• Recall: 52.94%

The recall for the ambiguous class is 52.94%, indicating that Random Forest identifies

52.94% of the actual ambiguous sentences. This recall is slightly lower than that of

Logistic Regression, showing that the Random Forest model may miss more ambiguous

cases.

• F1 Score: 58.60%

The F1 score of 58.60% reflects a similar performance to Logistic Regression, with

moderate effectiveness in balancing precision and recall. The F1 score suggests that

Random Forest has comparable strengths and weaknesses to Logistic Regression in the

context of syntactical ambiguity detection.

• Classification Report:

For Random Forest:

o For the non-ambiguous class (label 0), the precision is 64.0%, and the recall is

75.0%, resulting in an F1 score of 68.5%. This shows good performance in

identifying non-ambiguous sentences.

o For the ambiguous class (label 1), the precision is 65.6%, and the recall is 52.9%,

leading to an F1 score of 58.6%. This indicates that the model has similar issues

with recall as Logistic Regression, with only a marginally better precision.

4.2.3. Support Vector Machine (SVM) - Syntactical Ambiguity

• Accuracy: 68.38%

The SVM model achieved the highest accuracy of 68.38% among the three models. This

suggests that SVM is somewhat better at overall classification tasks for syntactical

ambiguity compared to Logistic Regression and Random Forest.

49

• Precision: 80.00%

The SVM model has a high precision of 80.00% for the ambiguous class, meaning it is

very accurate when it predicts a sentence as syntactically ambiguous. This indicates that

SVM is effective at minimizing false positives for ambiguous cases.

• Recall: 43.70%

The recall for the ambiguous class is 43.70%, which is notably lower compared to the

other models. This implies that SVM is less effective at identifying all actual ambiguous

sentences, which could be due to the complexity of syntactical ambiguities or the choice

of hyperparameters.

• F1 Score: 56.52%

The F1 score of 56.52% shows that while SVM achieves high precision, its lower recall

affects the overall performance. This score highlights a trade-off between precision and

recall, with SVM being better at avoiding false positives but missing some actual

ambiguous sentences.

• Classification Report:

For SVM:

o For the non-ambiguous class (label 0), the model achieves high precision (64.0%)

and recall (90.0%), resulting in a strong F1 score (75.0%). This indicates that

SVM performs well in identifying non-ambiguous sentences.

o For the ambiguous class (label 1), the precision is very high (80.0%), but the

recall is the lowest among the three models at 43.7%, leading to an F1 score of

56.5%. This shows that while SVM is precise when it predicts ambiguity, it

struggles to identify all truly ambiguous sentences.

50

Figure 9 Syntactical Ambiguity Result

4.3.4. Evaluating Best Model:

Model Performance:

Among the three models, SVM shows the highest accuracy and precision but with the lowest

recall for ambiguous sentences. Logistic Regression and Random Forest show similar

performance, with Random Forest having a slight edge in accuracy and precision. All models

exhibit lower recall compared to precision, indicating a common challenge in detecting all

syntactically ambiguous sentences.

Precision vs. Recall:

The results reveal a consistent trade-off between precision and recall. While precision is

generally high, recall is comparatively lower for all models. This suggests that the models are

better at correctly identifying ambiguous sentences when they predict them but are less effective

at capturing all instances of ambiguity.

51

4.3.5. Confusion Matrix:

A confusion matrix is a performance measurement tool for classification problems, showing the

number of true positive, true negative, false positive, and false negative predictions made by the

model.

The matrix you shared displays:

• True Negatives (TN): The number of instances where the model correctly predicted the

sentence as non-ambiguous.

• False Positives (FP): The number of instances where the model incorrectly predicted the

sentence as ambiguous when it was actually non-ambiguous.

• False Negatives (FN): The number of instances where the model incorrectly predicted

the sentence as non-ambiguous when it was actually ambiguous.

• True Positives (TP): The number of instances where the model correctly predicted the

sentence as ambiguous.

Detailed Explanation

Here’s a breakdown of the numbers in the matrix:

• True Negatives (TN): 120

This value represents the number of non-ambiguous sentences that the SVM model

correctly classified as non-ambiguous.

• False Positives (FP): 14

This value represents the number of non-ambiguous sentences that the SVM model

incorrectly classified as ambiguous. This indicates the number of times the model

incorrectly flagged a sentence as ambiguous.

• False Negatives (FN): 15

This value represents the number of ambiguous sentences that the SVM model

incorrectly classified as non-ambiguous. This shows how many ambiguous sentences

were missed by the model.

52

• True Positives (TP): 104

This value represents the number of ambiguous sentences that the SVM model correctly

classified as ambiguous.

Model Performance Metrics

Using these values, we can compute the following performance metrics:

• Accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
=

120 + 104

120 + 14 + 15 + 104
=

224

253
 ≈ 0.884

• Precision (for ambiguous class):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
=

104

14 + 104
 ≈ 0.743

• Recall (for ambiguous class):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
=

104

15 + 104
 ≈ 0.873

• F1 Score (for ambiguous class):

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2 𝑥

0.743 𝑥 0.873

0.743 + 0.873
 ≈ 0.805

Interpretation

• Accuracy: The SVM model has an overall accuracy of approximately 88.4%, which

means it is correct about 88.4% of the time for this classification task.

• Precision: The precision of 74.3% indicates that when the model predicts a sentence as

ambiguous, it is correct 74.3% of the time.

• Recall: The recall of 87.3% shows that the model is good at identifying ambiguous

sentences, capturing 87.3% of all actual ambiguous cases.

• F1 Score: The F1 score of 80.5% balances precision and recall, showing that the SVM

model performs well overall, with a good balance between correctly identifying

ambiguous sentences and minimizing false positives.

53

Figure 10 Confusion Matrix for Syntactical Ambiguity

4.3. Referntial Ambiguity:

The results for the Referential Ambiguity classification task assess the performance of three

machine learning models: Logistic Regression, Random Forest, and Support Vector Machine

(SVM). The evaluation metrics used are accuracy, precision, recall, F1 score, and the

classification report. Here’s a comprehensive analysis of these results:

4.3.1. Logistic Regression - Referential Ambiguity

• Accuracy: 84.19%

Logistic Regression achieved an accuracy of 84.19%, indicating that it correctly

classified 84.19% of the referential ambiguity instances in the test set. This reflects a

strong overall performance in identifying both ambiguous and non-ambiguous sentences.

• Precision: 94.12%

The precision for the ambiguous class is 94.12%, meaning that when the model predicts a

sentence as referentially ambiguous, it is correct 94.12% of the time. This high precision

54

indicates that the model is very reliable when it classifies a sentence as having referential

ambiguity.

• Recall: 64.00%

Recall for the ambiguous class is 64.00%, which means the model correctly identifies

64.00% of the actual ambiguous sentences. This relatively lower recall suggests that

while the model is precise, it misses a significant portion of ambiguous cases.

• F1 Score: 76.19%

The F1 score of 76.19% reflects a balance between precision and recall. This score

indicates that while the model is effective at identifying referential ambiguity when it

predicts it, there is still room for improvement in capturing all instances of ambiguity.

• Classification Report:

o Non-Ambiguous Class (Label 0): The model has a precision of 81.00% and a

recall of 96.67%, leading to an F1 score of 88.00%. This suggests strong

performance in identifying non-ambiguous sentences, with high precision and

recall.

o Ambiguous Class (Label 1): Precision is very high at 94.12%, but recall is lower

at 64.00%, resulting in an F1 score of 76.19%. This indicates that while the model

is highly accurate in predicting referential ambiguity, it fails to identify all true

cases of ambiguity.

4.3.2. Random Forest - Referential Ambiguity

• Accuracy: 84.58%

Random Forest achieved an accuracy of 84.58%, which is slightly higher than that of

Logistic Regression. This means that Random Forest correctly classified 84.58% of the

instances, demonstrating strong overall performance.

• Precision: 94.20%

The precision for the ambiguous class is 94.20%, showing that when the model predicts

55

referential ambiguity, it is correct 94.20% of the time. This precision is comparable to

that of Logistic Regression.

• Recall: 65.00%

The recall for the ambiguous class is 65.00%, indicating that Random Forest correctly

identifies 65.00% of the actual ambiguous sentences. This is slightly better than the recall

of Logistic Regression, showing a marginal improvement in capturing ambiguous cases.

• F1 Score: 76.92%

The F1 score of 76.92% reflects a good balance between precision and recall. This score

is slightly higher than that of Logistic Regression, suggesting that Random Forest has a

slight edge in detecting referential ambiguity.

• Classification Report:

o Non-Ambiguous Class (Label 0): Precision is 81.00% and recall is 96.67%,

resulting in an F1 score of 88.00%. This indicates strong performance in

identifying non-ambiguous sentences, similar to Logistic Regression.

o Ambiguous Class (Label 1): Precision is 94.20%, and recall is 65.00%, leading

to an F1 score of 76.92%. This shows that Random Forest is slightly better than

Logistic Regression in detecting referential ambiguity, with improved recall.

4.3.3. Support Vector Machine (SVM) - Referential Ambiguity

• Accuracy: 83.40%

The SVM model achieved an accuracy of 83.40%, which is slightly lower than both

Logistic Regression and Random Forest. This indicates that SVM is less effective overall

in classifying referential ambiguity compared to the other two models.

• Precision: 98.33%

The precision for the ambiguous class is very high at 98.33%, meaning that when SVM

predicts a sentence as referentially ambiguous, it is correct 98.33% of the time. This

indicates that SVM is extremely reliable when it makes a prediction of ambiguity.

56

• Recall: 58.00%

The recall for the ambiguous class is 58.00%, which is lower compared to both Logistic

Regression and Random Forest. This suggests that SVM misses a significant portion of

true ambiguous cases.

• F1 Score: 73.75%

The F1 score of 73.75% reflects a trade-off between the high precision and lower recall.

While SVM is highly precise, its lower recall affects the overall performance.

• Classification Report:

o Non-Ambiguous Class (Label 0): Precision is 79.00% and recall is 99.00%,

leading to a high F1 score of 88.75%. This shows that SVM performs very well in

identifying non-ambiguous sentences.

o Ambiguous Class (Label 1): Precision is extremely high at 98.33%, but recall is

58.00%, resulting in an F1 score of 73.75%. This indicates that while SVM is

very precise, it struggles to capture all actual cases of referential ambiguity.

Figure 11 Referential Ambiguity Results

57

4.3.4. Evaluating Best Model:

Model Performance:

Random Forest exhibits the highest accuracy and precision for referential ambiguity, with

Logistic Regression following closely. SVM shows the highest precision but with the lowest

recall, indicating that while it is very accurate when it predicts ambiguity, it misses more actual

ambiguous cases compared to the other models.

Precision vs. Recall:

All models demonstrate a trade-off between precision and recall. High precision is observed

across models, but recall is generally lower. This implies that while the models are reliable when

predicting referential ambiguity, they are less effective in identifying all instances of ambiguity.

4.3.5. Confusion Matrix:

The confusion matrix is a tool that helps visualize the performance of a classification model by

showing the counts of correct and incorrect predictions across different classes. In this case, it

illustrates how well the Random Forest model distinguishes between "Ambiguous" and "Non-

Ambiguous" instances.

Figure 12 Confusion Matrix for Referential Ambiguity

58

Detailed Breakdown

In the matrix:

• True Negatives (TN): 149

These are the instances where the model correctly identified a "Non-Ambiguous"

sentence as "Non-Ambiguous."

• False Positives (FP): 4

These represent the "Non-Ambiguous" sentences that the model incorrectly classified as

"Ambiguous." This shows how often the model incorrectly flagged a non-ambiguous

sentence as ambiguous.

• False Negatives (FN): 35

These are the "Ambiguous" sentences that the model incorrectly classified as "Non-

Ambiguous." It indicates the number of ambiguous cases the model failed to recognize.

• True Positives (TP): 65

These are the instances where the model correctly identified an "Ambiguous" sentence as

"Ambiguous."

Model Performance Metrics

Using these values, we can calculate the following performance metrics:

• Accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
=

149 + 65

149 + 4 + 35 + 65
=

214

253
 ≈ 0.846

This means the model correctly classified approximately 84.6% of the instances.

• Precision (for ambiguous class):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
=

65

65 + 4
 ≈ 0.942

59

This indicates that when the model predicts a sentence as ambiguous, it is correct 94.2% of the

time.

• Recall (for ambiguous class):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
=

65

65 + 35
 ≈ 0.650

The model correctly identifies about 65.0% of all actual ambiguous sentences.

• F1 Score (for ambiguous class):

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2 ×

0.942 × 0.650

0.942 + 0.650
 ≈ 0.767

This F1 score reflects a balance between precision and recall, showing the model's overall

performance in predicting the ambiguous class.

Interpretation

• Accuracy: The Random Forest model has an overall accuracy of approximately 84.6%,

indicating it correctly classifies 84.6% of the instances in the test set.

• Precision: With a precision of 94.2%, the model is very reliable when it flags sentences

as ambiguous, meaning it rarely makes false positive errors.

• Recall: The recall of 65.0% shows that the model identifies a significant portion of the

ambiguous sentences but misses some.

• F1 Score: The F1 score of 76.7% demonstrates a good balance between precision and

recall, indicating that the model is fairly effective overall.

60

CHAPTER 05

ANALYSIS OF PROPOSED MODELS

5.1. Lexical Ambiguity:

Figure 13 ROC Curve for Lexical Ambiguity

5.1.1. Random Forest:

• ROC Curve: The Random Forest model is probably better in terms of true true positive

ratios since we will have a steeper ROC curve as compared to the remaining models. This

slope points out that compared to the original model, the Random Forest is a better

classifier between the ambiguous and non-ambiguous data inputs. By using the same data

set we expect that Random Forest is to have higher area under the curve (AUC) as it is

known to be better in dealing with lexical ambiguity.

• Feature Importance: Random Forest computes feature importance as a matter of course,

which can then help identify which words or features are the most predictive of lexical

61

ambiguity. This capability is very helpful in comparing the nuances of the meaning of the

words which also speaks volumes for its effectiveness.

• Ensemble Learning: Random Forest reduces the overfitting issue since its principle is

based on the decision trees’ combined result reducing the chances of getting the results

correct for the wrong reasons.

5.1.2. Logistic Regression:

• ROC Curve: Random Forest would expect the ROC curve to be flatter for Logistic

Regression, which means that it is less powerful in differentiating between different and

clear cases. It is expected that the AUC would be lower.

• Linear Decision Boundary: Decision’ai’ Logistic Regression assumes that there is a

linear relationship between the features and target which might not effectively capture the

nature of lexical ambiguity. Otherwise, decision boundaries can be too simple and they will

not capture small nuances that define uncertainty.

• Simplicity and Interpretability: Even though it is more interpretable, this model could

be less accurate in a setting where word meanings can have high-order interactions when

combined.

5.1.3. SVM:

• ROC Curve: The ROC curve for SVM is might be good at high value of specificity but

can be worst at higher value of sensitivity because of the trade-off between them in the

margin based classification.

• Kernel Trick: The ability to use kernel function is the advantage of SVM in relation to

Logistic Regression in the case that the relationships are non-linear. However, in the case

of lexical ambiguity, the kernel, for example, might not analyze the high-dimensional

feature interactions as relevanly as the Random Forest ensemble does.

• Sensitivity to Hyperparameters: It needs to be highlighted that SVM has shown to be

highly sensitive to the type of kernel and the amount of regularization. If not properly

calibrated it may not be as efficient as the Random Forest since this algorithm is not very

sensitive to the choice of its parameters.

62

5.2. Syntactic Ambiguity:

Figure 14 ROC Curve for Syntactical Ambiguity

5.2.1. SVM:

• ROC Curve: While using ROC curve it is possible to discover that although SVM has

higher specificity than the rest methods it simultaneously has lower sensitivity which

indicates its definite ability to point a syntactic ambiguity. The AUC might be moderate, it

means that the performance is enough balanced between TRUE positives and FALSE ones,

but may contain the best recall.

• Margin-Based Classification: Margin-based technique is highly useful in creating margin

for distinction which is useful in distinguishing the unambiguous syntactic ambiguity.

However, it can be a problem since for such complexities the model is worse in terms of

recall because near the decision boundary all the points are classified.

• Kernel Flexibility: SVM thus has the certificates of working by means of kernels to enable

it handle on non-linear nature of syntactic structures; this puts it little over the capability

63

of the Logistic Regression. However, if it is, then its performance might still spread behind

the other approaches because syntactic ambiguity is undisputedly complex to solve.

5.2.2. Random Forest:

• ROC Curve: The resulting ROC curve of Random Forest may not have the same steep

slope as that of SVM, and this might mean that it makes little difference between

ambiguous and non ambiguous cases. This would be equivalent to a lower AUC

especially when we are dealing with syntactic ambiguity.

• Handling of Non-linear Interactions: Generally, Random Forest has a great

effectiveness in dealing with non-linear interactions, yet the specific and context-bound

features of syntactic variation may not be learned adequately by the model. This leads to

moderate precision and recall regarding the classification, it is clearly seen in the metrics

section.

• Overfitting Risk: In case of syntactic ambiguity there may generate overfitting to the

training data in case only complicated and irregular syntactic patterns were introduced.

This over fits may negative affects on performance on unseen and different data thus

impounding the generalization of the model.

5.2.3. Logistic Regression:

• ROC Curve: The ROC curve of the LR would have been less efficient showing less area

under the curve which indicates the model’s poor efficiency in dealing with non-linear

syntactic ambiguities.

• Model Simplicity: Reviewing the logic of Logistic Regression it is necessary to mark its

linear base that does not let decipher the rich interconnections located in syntactic levels.

This means that the simplicity impedes the enhancement of accuracy and recall as reflected

by the classification parameters.

• Feature Engineering Dependence: Logistic Regression could be less capable though it

will probably need somewhat more elaborate feature extraction (like polynomials or

interaction terms) to do well on syntactic ambiguity. If such engineering is not properly

done it is expected that the whole performance of the model will not be so good.

64

5.3. Referential Ambiguity:

Figure 15 ROC Curve for Referential Ambiguity

5.3.1. Random Forest:

• ROC Curve: Based on the assumption that the F-measure of the identification of

referential ambiguity is positively related to the F-measure of sentiment classification, the

ROC curve of random forest should be steepest. The AUC would be likely to be the highest

among the models of classification because it can accurately differentiate the referentially

ambiguous and non-ambiguous sentences.

• Feature Importance and Interaction: Thanks to the feature importance evaluation

Random Forest is able to determine that which features (for instance, specific pronouns or

entity references) are the most predictive of referential ambiguity. This is a significant step

towards developing an AI model that can establish pathways in the diverse connections

between entities thereby making it superior.

• Handling Complex Relationships: It is found that referential ambiguity typically deals

with relations between objects which Random Forest schema can recover given its use of

65

a number of base models. Because it involves a moving-average of decisions, it

incorporates a number of features to capture the fine-grained patterns that give rise to the

notion of ambiguity.

5.3.2. SVM:

• ROC Curve: The ROC for referential ambiguity and SVM might seem advantageous for

the model at the start but might level off; though the model is very accurately classifying

70% or so of the cases, it might be missing several ambiguous ones (lowering the recall).

The AUC would be high but again, not as high as the one obtained using Random Forest.

• High Precision, Lower Recall: In the few cases where referential ambiguity is identified,

SVM’s high precision implies that the identified cases are accurate. However its recall rate

is low, and so it might be missing on other instances of referential ambiguity which is quite

a disadvantage in this regard.

• Margin-based Classification: The margin-based approach of SVM perhaps fails to

address recall where the referential ambiguity is less overt or variable with a context.

5.3.3. Logistic Regression:

• ROC Curve: It is possible that the ROC curve of Logistic Regression will look slightly

different from the ROC curve of the SVM, but the AUC value will be even less, proving

that the approach has difficulty distinguishing between referentially ambiguous and

referentially non-ambiguous cases.

• Linear Decision Boundary: Finally, Logistic Regression has a linear decision boundary

which is not efficient when dealing with preferential choices that are complex and, often,

non-linear and context sensitive. This leads to reduced precision and F1 score as observed

from the classification metrics below,

• Simplicity and Interpretability: Logistic Regression is straightforward and easy to

interpret but its strength does not suffice the challenge of referential ambiguity thus

performs poorly.

66

5.4. Discussion:

5.4.1. Lexical Ambiguity

Why Random Forest Works:

• Handling Feature Interactions: The presence of lexical ambiguity is case of many

interacted relations between words and contexts. These interactions, Random Forest, which

generates a number of decision trees and takes average of the trees’ decision, can recognize

well. This capability to infer non-linear associations makes it both suitable for capturing

subtle differences of word meanings.

• Robustness: Due to the average of a number of decision trees Random Forest does not

overfit to the same extent as single decision tree models which can be especially useful

when dealing with the diverse and often subtle nature of lexical ambiguity. Thus, this is

usually helpful for the model’s generalization to new data, which means higher accuracy

of the model itself.

Why Logistic Regression Struggles:

• Linear Assumptions: Unlike other algorithms, Logistic Regression assumes a linear

distribution between the features and the target variable. While the scale of the effect is

well described by this model, there are important cases resulting from lexical ambiguity

where the relationship is non-linear and cannot be captured by this model. Consequently,

the model may end up with a simple decision boundary hence, poor performance.

• Lack of Feature Interaction Modeling: Another key difference between Random Forest

and the method used in this project, Logistic Regression does not consider interaction

between features on its own if it is not included as part of the model. This decreases its

chances of identifying most of the intricate cases of the lexical ambiguity of words.

67

Why SVM Works Moderately Well:

• Non-linear Decision Boundaries: SVM, especially when using non-linear kernels like

RBF, can capture some of the non-linear relationships in lexical ambiguity. This allows it

to handle cases where the ambiguity is more context-dependent.

• Margin-based Approach: SVM's margin-based classification can help it be precise in

identifying lexical ambiguity, but it might struggle when the ambiguity is subtle or

involves very complex feature interactions, which limits its overall effectiveness

compared to Random Forest.

5.4.2. Syntactic Ambiguity

Why SVM Works:

• Kernel Trick: Disambiguation on syntactic level entails non-linearity because it is

involves structure of sentences. SVM has capabilities of using the kernel functions for

mapping input space into a higher dimensional space where the datasets can be better

segregated by boundary lines between them that are not restricted to be linear. This makes

SVM better placed to address the nested patterns that are evident in syntactic ambiguity.

• Clear Decision Boundaries: SVM’s goal is to maximize the distance between two classes;

this is particularly useful in the construction of decision boundaries for cases where it is

easy to distinguish with syntactic rules. This is however helpful where the uncertainty is

conspicuous; it may fail to capture the less concrete ones.

Why Random Forest Struggles:

• Complex Sentence Structures: Random Forest might fail when handling syntactic

ambiguity because dealing with the structure of a tree (decision tree), the trees may end up

bloated with too many complicated rules of syntactic structures. This can cause the model

to be overly specific and thus the name overfitting meaning the model will give poor

performance on fresh data.

• Feature Importance Challenges: Syntactic above, it might be harder to measure and

value in terms of feature importance within the decision trees; features like word order or

68

some specific syntactic constructs. This can lead to an error in predictions as the model

may not put importance on the right features.

Why Logistic Regression Struggles:

• Oversimplification: Due to the fact that Logistic Regression does not have the capacity to

handle syntactic ambiguity because it does not recognize a one to many relation between

the features and the target. Syntactic ambiguity, in most of the cases, has regard to nested

structures in language and hence cannot strictly be described by the linear model.

• Dependency on Feature Engineering: Which means for Logistic Regression to work out

well on syntactic ambiguity it would need a great deal of feature engineering for example

use of n-grams or syntactic parse trees. Indeed, the absence of such refined elements

determines the model’s capabilities.

5.4.3. Referential Ambiguity

Why Random Forest Works:

• Capturing Entity Relationships: Recognising referents refers to the identification of how

different entities known to the reader relate to one another in a given sentence or document.

Random Forest outperforms here because it is able to capture such complex relationships

through a number of decision trees which can pick on different relationships between the

entities.

• Ensemble Strength: Due to randomness and inclusiveness of the approach in RF, it is less

sensitive to error from Trees as it continues to average its results hence very suitable for

handling Referential Ambiguity ‘variability and subtlty.’ This results in better precision

and better recall in identifying when a reference is contentious.

Why SVM Struggles:

• High Precision, Low Recall: SVM, although is accurate to detect referential ambiguity

(as witnessed by high precision) often lacks recall. This is because SVM might set a

69

decision boundary that will be strict in a way that will lead to overlooking other cases where

the level of uncertainty is not so high, or where the uncertainty depends on the context.

Difficulty with Contextual Relationships: Conceptually, SVM even if using non-linear kernels

might fail to capture the adequate semantic context of relationships between entities, which is

arguably the most important component in accurately handling referential ambiguity. This

limitation comes from the fact that SVM main objective is to maximize the margin between classes

rather than considering the context in between.

Why Logistic Regression Struggles:

• Linear Assumptions: Just like how Logistic Regression cannot handle many other kinds

of ambiguity, it also has to impose linearity onto the relationships that referential ambiguity

involves. This often leads to worse results than more versatile algorithms, namely the

benchmark RF.

• Context Handling: Numerically, referential ambiguity is resolved when the model has an

ability to estimate the context of the given entities. Logistic Regression, which has a limited

capability to model interaction, lacks context information; hence, information recall and

assessment accuracy are lower.

70

CHAPTER 06

CHALLENGES AND LIMITATIONS

Detection of the ambiguity in natural language processing (NLP) is essential for enhancing

efficiency and effectiveness of different text-based systems. However, this task is not an easy one

because it also come with a number of difficulties and constraints which limit the usefulness of the

ambiguity detection models. This chapter further examines the detailed difficulties in ambiguity

detection such as the limitation of language, feature extraction, dataset and overlapping

ambiguities and scalability. To alleviate these challenges, the following approaches are required

to promote the development of the NLP technologies and their subsequent deployment in

organizational settings.

6.1. Complexity of Language:

Language is unstructured naturally as it has more possibilities in term of syntactical and semantic

structure and is used in more nuanced context. This complexity makes it very difficult for any

automated ambiguity detection model with regards to the issue at hand. Several aspects contribute

to this challenge:

1. Contextual Variability: Because context plays a huge role on how words and entire

sentences are interpreted, models have a hard time interpreting sentences in a similar away.

For instance, the word “bank” when used-literally can mean the institution that accepts

deposits and gives loans or it can mean the side of the river. Some of the earlier models are

therefore limited in that they only take into account such features and some fixed set of

rules which may not accommodate such changes in contextual features effectively.

2. Semantic Ambiguity: They also pointed out that one word may have more than one mean

or may be used in different senses, depending on context. For instance the word ‘bat’ could

mean a flying animal or just the cricket bat. These semantic distinctions involve features

that entail recognizing further analytical abstract structures that are difficult for traditional

ML algorithms.

3. Syntactic Complexity: Semantic ambiguities occur when there are two or more meanings

assigned to a particular syntax so that the overall meaning of the two parts of the sentence

71

may be entirely different. For instance, a sentence like ‘I saw the man with the telescope’

may be understood in different ways depending on whether the link between the telescope

and the man or the act of seeing and the man is assumed. These syntactic ambiguities can

perhaps be otherwise not identified by traditional semantic and static models without

sophisticated parsing and structural analysis.

4. Deep Learning Requirements: However, transformers are already considered as the

deeper models which provide better ability to capturing contextual information, at the same

time, they come with relatively high model architectural, training and computational cost.

Some of these models need to be trained through larger data sets and require a significant

amount of computing power; this is a problem.

6.2. Feature Extraction Limitations:

Feature extraction is a very important step when it comes to using text data in building and training

machine learning models. The current study employed Term Frequency-Inverse Document

Frequency (TF-IDF) and Part-of-Speech (POS) tagging, but these methods have inherent

limitations:

1. TF-IDF Limitations: TF IDF assesses the relevance of words by their frequency in a

document with the overall archive collection. Still, it was only beneficial for the estimation

of word importance and ignored the semantics of the words or their relevancies. For

example, two words similar in meaning or with very similar contexts can be processed as

separate words and this can restrain the model’s capacity to establish more subtle kinds of

ambiguity.

2. POS Tagging Constraints: POS tagging offer feature of word, but it is lack of semantic

or contextual understanding. This limitation can turn out to be highly disadvantageous, and

this is especially so in cases where referential ambiguity is expected in a text since, by its

nature, the captures relationships between an entity and its referents. The relationships

described above probably cannot be understood solely on the basis of POS tags derived

from the given corpora.

3. Feature Representation: Using such feature extraction techniques may be unsuitable in

providing sufficient description of the linguistic richness of language. For example, the

72

embeddings that store the word meanings based on the word co-occurrence within the

context (such as Word2Vec or GloVe) are not leveraged within the current approach and

so the primary transferred model might have potential issues in understanding some

inherent semantic relations.

6.3. Dataset Limitations

The complexity of the ambiguity detection models depends on the quality and the range of options

available in different dataset. Several limitations associated with dataset constraints are:

1. Dataset Diversity: It is evident that the results of the ambiguity detection models greatly

depend on the variability of the training sets. It is therefore possible that a dataset that has

texts of only one type, from only one genre, and in only one language may train models

especially to these types of patterns and not a wider MML. For instance, a data set that

consists mostly of written texts is probably not rich enough to take into account people’s

conversational or colloquial language.

2. Data Quality: The quality of the data that must be training and evaluation is really

significant. Anyset of data that contain such traits as noise, inconsistency or inaccuracy

degrades the model. To build ambiguity detection systems, high quality, clean and

representative data is critical.

3. Annotation and Labeling: The labeling of ambiguous and non-ambiguous text is

important for the training of the supervised models generation. These issues result from

inconsistent and inaccurate annotations that produce model creation with ambiguity

identification complications. The aspect of defining detailed guidelines for annotations is

regarded as critical for future data quality.

6.4. Handling Overlapping Ambiguities:

Ambiguities in text can overlap and interact in complex ways, presenting challenges for detection

and classification:

1. Multi-Label Classification: This means that the established models have to be used in

multi-label classification, where more than one kind of ambiguity could be pointed at a

73

given text. In such cases, traditional classification models may not be prepared to address

such cases and therefore such mistakes may occur.

2. Complex Ambiguity Patterns: When two texts contain similar sources of ambiguity, the

relations between these texts might be complex and hard for models to resolve. For

instance, a syntactic and referential uncertainty with a sentence will need more complex

methods to sort out the various forms of complexity in their interpretations.

3. Model Interpretability: It is always difficult to grasp how the models approach choosing

between ambiguous overlaps. VALIDATING FINDS /Modeling must be accurate and

precise so that the findings from the model may be actionable and meaningful if there are

misclassification issues.

6.5. Scalability Issues:

Scalability is a critical factor in the practical deployment of ambiguity detection systems:

1. Computational Resources: Nevertheless, a range of well-known structures of deep

learning models demands extensive computational power for training and computation.

Proper management of these resources becomes necessary in order to increase the

likelihood that models can indeed be deployed at scale without breaking the bank.

2. Processing Time: The effectiveness of the models to detect ambiguity is therefore

measured by its effectiveness in real time application. Another reason is that it is difficult

to design models capable of analyzing vast amounts of textual data in real time. Improving

algorithms and searching for better model architectures are the two relevant factors to deal

with this problem.

3. Large-Scale Datasets: The use of ambiguity detection in large scale datasets poses

challenges that are perceived in the aspects of storage, retrieval and processing of the data.

Easy part is to design efficient solutions that could be introduced into operations with

petabytes of data and yet achieve both high precision and speed.

The issues explained in this chapter provide about the ambiguitive detection concern that remains

oppressive in natural language processing. To this, there is a need to continue exploring ways

through which the effectiveness and relevancy of the developed ambiguity detection systems may

be improved to meet these challenge

74

CHAPTER 07

CONCLUSION AND FUTURE WORK

As a stepping stone for the betterment of natural language processing one of the most vital tasks

involved in natural language processing system is the demixing of the meanings that have come

together in a word and the eradication of such meanings. This research demonstrates that by using

the classical text preprocessing pipeline together with the chosen machine learning models, it is

reliable to classify lexical, syntactic and referential types of ambiguity. By using the feature

extraction with TF-IDF approach and by including Pos tagging into the models they seem to

address different types of ambiguity in NLP. The findings thus gathered demonstrates that models

like the Random Forest and the Support Vector Machine (SVM) offer high results while also

exercising capacity in handling all forms of ambiguity. Logistic Regression also has good to high

accuracy rate depending on their data set, but in addition, it is helpful when inter Slim and low

interpretability of the result is suitable. Hence the classification of the samples into ambiguous and

non ambiguous shows that there is a need for an ambiguity detection in natural language

processing. The identification of the ambiguity plays a very crucial role in enhancing the fine tune

of the automated systems considering the various areas that it is applicable for example, Sentiment

Analysis where understanding of text and clarity of the message can be directly felt, Machine

translation where clarity ushers the levels of the result or Information Retrieval where the

comprehension of the queries is pretty essential. In total, the conclusions of this study show that

the problem of ambiguity identification requires increased attention in order to improve the

foreseen NLP systems. Thus sorting of such issues will aid in refining the applications for text

automation and thus transform the convenience of the applications for the user.

Future Work:

This will establish the basis on which the subsequent studies will integrate the result of this study

with an overall goal of developing a more advanced tool that is capable of identifying any forms

of ambiguity and categorizing them in real time. The stages related to the development of this tool

will firstly address the following few areas:The development of this tool will focus on several key

areas:

75

1. Incorporation of Deep Learning Models: This work will try to proceed to other forms of

deep learning models such as BERT, GPT and other transformer models that have better

characteristics for capture contextual characteristics of a language. These models should

provide improved means for detecting the fine and socio-syntactic grained nuanced

uncertainty that a conventional ability to learn model may not detect.

2. Handling Overlapping Ambiguities: New tool shall be developed to describe such

scenarios when several types of ambiguity are interconnected in the given text. This will

call for the use of multiple label classification techniques, as well as improved feature

extraction mechanism in order to enhance the identification of different types of ambiguity

at one time.

3. Expansion of Dataset Diversity: As for the future investigations, the expansion of the

dataset with other potential types of text sources, genres and languages to define the inter-

lingual and cross-genre universality of the proposed tool will be made. This will also help

in the overall improvement of the parameters of the tool in different applications hence the

use of the word ‘’tool’’ in diverse domains.

Therefore the future work is to continue the further improvement of the ScuPER system and to

expand the domain of the ambiguity detection area to cover more and more fields of problems and

sectors of industries.

REFERENCES

[1] Osama, M., Zaki-Ismail, A., Abdelrazek, M., Grundy, J., & Ibrahim, A. (2020,

September). Score-based automatic detection and resolution of syntactic ambiguity in

natural language requirements. In 2020 IEEE International Conference on Software

Maintenance and Evolution (ICSME) (pp. 651-661). IEEE.

[2] Ashfaq, F., & Bajwa, I. S. (2021). Natural language ambiguity resolution by intelligent

semantic annotation of software requirements. Automated Software Engineering, 28(2),

13.

[3] Hiltunen, L. (2020). Reducing structural ambiguity in natural language software

requirements specifications (Master's thesis, L. Hiltunen).

[4] Alharbi, S. (2022, November). Ambiguity Detection in Requirements Classification Task

using Fine-Tuned Transformation Technique. In CS & IT Conference Proceedings (Vol.

12, No. 21). CS & IT Conference Proceedings.

[5] Malik, G., Cevik, M., Parikh, D., & Basar, A. (2022). Identifying the requirement conflicts

in SRS documents using transformer-based sentence embeddings. arXiv preprint

arXiv:2206.13690.

[6] Intana, A., Laosen, K., Nuanchan, P., Pattanakit, N., & Dermchai, S. (2024, June). An

NLP-Based Approach for Detecting Ambiguity of Thai Software Requirements

Specification. In 2024 21st International Joint Conference on Computer Science and

Software Engineering (JCSSE) (pp. 99-106). IEEE.

[7] Ezzini, S. (2022). Artificial Intelligence-enabled Automation For Ambiguity Handling

And Question Answering In Natural-language Requirements (Doctoral dissertation,

University of Luxembourg, Luxembourg, Luxembourg).

[8] Mohamed, K. A., Din, J., & Baharom, S. (2022). A tool to detect pragmatic ambiguity

with possible interpretations suggestion in software requirement specifications.

International Journal of Synergy in Engineering and Technology, 3(2), 52-60.

[9] SINPANG, J. S. A. (2021). KNOWLEDGE-BASED AMBIGUITY DETECTION

APPROACH TO ELIMINATE VAGUENESS IN USER REQUIREMENTS.

[10] Ferrari, A., & Esuli, A. (2019). An NLP approach for cross-domain ambiguity detection

in requirements engineering. Automated Software Engineering, 26(3), 559-598.

[11] Dalpiaz, F., Van Der Schalk, I., Brinkkemper, S., Aydemir, F. B., & Lucassen, G. (2019).

Detecting terminological ambiguity in user stories: Tool and experimentation. Information

and Software Technology, 110, 3-16.

[12] Osman, M. H., & Zaharin, M. F. (2018, June). Ambiguous software requirement

specification detection: An automated approach. In Proceedings of the 5th International

Workshop on Requirements Engineering and Testing (pp. 33-40).

[13] Sabriye, A. O. J. A., & Zainon, W. M. N. W. (2017, May). A framework for detecting

ambiguity in software requirement specification. In 2017 8th International Conference on

Information Technology (ICIT) (pp. 209-213). IEEE.

[14] Sharma, R., Sharma, N., & Biswas, K. K. (2016, December). Machine learning for

detecting pronominal anaphora ambiguity in NL requirements. In 2016 4th Intl Conf on

Applied Computing and Information Technology/3rd Intl Conf on Computational

Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud

Computing, Data Science & Engineering (ACIT-CSII-BCD) (pp. 177-182). IEEE.

[15] Oo, K. H., Nordin, A., Ismail, A. R., & Sulaiman, S. (2018). An analysis of ambiguity

detection techniques for software requirements specification (SRS). International Journal

of Engineering & Technology, 7(2.29), 501-505.

[16] Zhang, Z., & Ma, L. (2023, July). Using machine learning for automated detection of

ambiguity in building requirements. In EC3 Conference 2023 (Vol. 4, pp. 0-0). European

Council on Computing in Construction.

[17] Abualhaija, S., Aydemir, F. B., Dalpiaz, F., Dell'Anna, D., Ferrari, A., Franch, X., &

Fucci, D. (2024). Replication in Requirements Engineering: The NLP for RE Case. ACM

Transactions on Software Engineering and Methodology, 33(6), 1-33.

[18] Veizaga, A., Shin, S. Y., & Briand, L. C. (2024). Automated smell detection and

recommendation in natural language requirements. IEEE Transactions on Software

Engineering.

[19] Lim, J. W., Chiew, T. K., Su, M. T., Ong, S., Subramaniam, H., Mustafa, M. B., &

Chiam, Y. K. (2024). Test case information extraction from requirements specifications

using NLP-based unified boilerplate approach. Journal of Systems and Software, 211,

112005.

[20] Gärtner, A. E., & Göhlich, D. (2024). Automated requirement contradiction detection

through formal logic and LLMs. Automated Software Engineering, 31(2), 49.

[21] Sarmiento-Calisaya, E., & do Prado Leite, J. C. S. (2024). Early analysis of requirements

using NLP and Petri-nets. Journal of Systems and Software, 208, 111901.

[22] Fantechi, A., Gnesi, S., & Semini, L. (2023). VIBE: looking for variability in ambiguous

requirements. Journal of Systems and Software, 195, 111540.

[23] Ezzini, S., Abualhaija, S., Arora, C., & Sabetzadeh, M. (2022, May). Automated handling

of anaphoric ambiguity in requirements: a multi-solution study. In Proceedings of the 44th

International Conference on Software Engineering (pp. 187-199).

[24] Ezzini, S., Abualhaija, S., Arora, C., & Sabetzadeh, M. (2022, November). TAPHSIR:

towards AnaPHoric ambiguity detection and ReSolution in requirements. In Proceedings

of the 30th ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (pp. 1677-1681).

[25] Bajceta, A., Leon, M., Afzal, W., Lindberg, P., & Bohlin, M. (2022, March). Using NLP

Tools to Detect Ambiguities in System Requirements-A Comparison Study. In REFSQ

Workshops.

[26] Vieira, C. D. Classification of Requirements Ambiguity Through Machine Learning

Techniques.

[27] Oo, K. H. (2022, July). Comparing accuracy between svm, random forest, k-nn text

classifier algorithms for detecting syntactic ambiguity in software requirements. In

International Conference on Information Systems and Intelligent Applications (pp. 43-58).

Cham: Springer International Publishing.

[28] Moharil, A., & Sharma, A. (2022, May). Identification of intra-domain ambiguity using

transformer-based machine learning. In Proceedings of the 1st International Workshop on

Natural Language-based Software Engineering (pp. 51-58).

[29] Ezzini, S., Abualhaija, S., Arora, C., Sabetzadeh, M., & Briand, L. (2021, May).

MAANA: an automated tool for DoMAin-specific HANdling of ambiguity. In 2021

IEEE/ACM 43rd International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion) (pp. 188-189). IEEE.

[30] Cevik, M., Yildirim, S., & Başar, A. (2021, November). Natural language processing for

software requirement specifications. In Proceedings of the 31st Annual International

Conference on Computer Science and Software Engineering (pp. 308-309).

[31] Hiltunen, L. (2020). Reducing structural ambiguity in natural language software

requirements specifications (Master's thesis, L. Hiltunen)

[32] De Vries, M. (2020). Reducing ambiguity during enterprise design. Requirements

Engineering, 25(2), 231-251.

[33] Timoshchuk, E. V. (2020). Assessing the quality of the requirements specification by

applying GQM approach and using NLP tools. Труды института системного

программирования РАН, 32(2), 15-28.

[34] Gupta, A. K. G., & Deraman, A. (2019). A framework for software requirement ambiguity

avoidance. International Journal of Electrical and Computer Engineering, 9(6), 5436.

[35] Resnik, P., & Lin, J. (2010). Evaluation of NLP systems. The handbook of computational

linguistics and natural language processing, 271-295.

[36] Mihalcea, R., Liu, H., & Lieberman, H. (2006). NLP (natural language processing) for

NLP (natural language programming). In Computational Linguistics and Intelligent Text

Processing: 7th International Conference, CICLing 2006, Mexico City, Mexico, February

19-25, 2006. Proceedings 7 (pp. 319-330). Springer Berlin Heidelberg.

[37] Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language

processing: an introduction. Journal of the American Medical Informatics Association,

18(5), 544-551.

[38] Zhou, M., Duan, N., Liu, S., & Shum, H. Y. (2020). Progress in neural NLP: modeling,

learning, and reasoning. Engineering, 6(3), 275-290.

[39] Webster, J. J., & Kit, C. (1992). Tokenization as the initial phase in NLP. In COLING 1992

volume 4: The 14th international conference on computational linguistics.

[40] Kang, Y., Cai, Z., Tan, C. W., Huang, Q., & Liu, H. (2020). Natural language processing

(NLP) in management research: A literature review. Journal of Management Analytics,

7(2), 139-172.

[41] Smeaton, A. F. (1999). Using NLP or NLP resources for information retrieval tasks. In

Natural language information retrieval (pp. 99-111). Dordrecht: Springer Netherlands.

[42] Wang, X., Wang, H., & Yang, D. (2021). Measure and improve robustness in NLP models:

A survey. arXiv preprint arXiv:2112.08313.

